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ray (EDX) mapping of TBZTFPG-COP in terms of constituent
elements C, N and O. Elemental mapping and EDX analysis
confirm the uniform elemental distribution within the
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S1. Chemicals and Materials. 2,6-diisopropylaniline, 2,4,6-triformylphloroglucinol,
bromine, dodecyltrimethylammonium bromide and iron powder were procured from Sigma-
Aldrich, while sodium hydroxide, 1,4-dioxane, THF and acetone were obtained from
Spectrochem. Sodium formiate, Pd/C, acetic acid, diethyl ether, NaOH, DMF, anhydrous
sodium sulfate, pentane and magnesium sulfate were purchased from Merck. All reagents and
solvents were of analytical grade and used without further purification. Freshly prepared

deionized water from a Millipore system was employed in all experiments.

S2. Instrumentation. 'H and 3C NMR NMR spectra were obtained using a JEOL ECS 400
MHz spectrometer with DMSO-ds and CDCl; as solvents, and tetramethylsilane (TMS)
served as the external reference. Chemical shifts are stated in parts per million (ppm).
Fourier-transform infrared (FT-IR) spectra were recorded on a SHIMADZU IR Affinity-1
spectrometer, with 45 scans collected at a 4 cm’!' resolution. Solid-state 3C NMR

measurements were performed at [ISc Bangalore using a JEOL ECX400 MHz spectrometer
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equipped with a Bruker magic-angle spinning (MAS) probe. A total of 32,000 scans were
conducted to achieve an adequate signal-to-noise ratio. X-ray diffraction (XRD) analysis was
carried out using a Panalytical X Pert Pro diffractometer, and the resulting data were
processed with the Reflex module of Materials Studio V6.0. Thermal stability was evaluated
using a TGA-DTA TA Module Q600 system. Samples were heated from room temperature
(RT) to 800 °C at a heating rate of 10 °C/min under a continuous nitrogen flow of 20 mL/min
(combining purge and protective gases). Surface area and porosity measurements were
conducted using a Nova Touch LX2 gas sorption analyzer (Quantachrome). Nitrogen
adsorption isotherms were recorded at 77 K with ultrahigh-purity N, gas at pressure (up to ~1
atm). Field-emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray
spectroscopy (EDX) analyses were performed on a Nova Nano FE-SEM 450 microscope
(FEI) after sputter-coating the samples with a platinum layer for 100 seconds to enhance
conductivity. Transmission electron microscopy (TEM) and selected area electron diffraction
(SAED) were carried out using a Tecnai G2 20 S-TWIN transmission electron microscope

(FEI) operating at an accelerating voltage of 200 kV.

S3. Experimental Section
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Scheme S1. Synthesis of 2,2',6,6'-Tetraisopropylbenzidine (TBZ) using 4-bromo,2,6-
diisopropylaniline.

S3.1. Synthesis of 4-bromo,2,6-diisopropylaniline. 4-bromo,2,6-diisopropylaniline was
synthesized according to a previously reported procedure.! Bromine (15 g, 0.094 mol) was
added dropwise over a period of 2 hours to a stirred mixture of 2,6-diisopropylaniline (12 g,

0.102 mol) and iron powder (0.056 g, 1 mmol). Upon completion of the addition, the
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resulting precipitate was isolated by filtration and recrystallized from ethanol. The obtained
white solid was washed thoroughly with 20% aqueous sodium hydroxide solution, followed
by extraction with diethyl ether (100 mL). The organic phase was dried over anhydrous
sodium sulfate, and the solvent was removed under reduced pressure to afford the product as

a white powder (12.2 g, 61% yield).

S3.2. Synthesis of 2,2',6,6'-Tetraisopropylbenzidine (TBZ). 2,2',6,6'
Tetraisopropylbenzidine (TBZ) was synthesized according to a previously reported
procedure.> Sodium formiate (125 mmol), dodecyltrimethylammonium bromide (1.0 g),
palladium on charcoal (0.46 g, 3 wt% Pd), sodium hydroxide (1.8 g), and 2,6-diisopropyl-4-
bromoaniline (7.7 g, 30 mmol) were combined in 50 mL of water and refluxed under
vigorous stirring while a slow stream of air through the reaction mixture. After 10 hours of
reflux, an additional 125 mmol of sodium formate was added, and the reaction was continued
under the same conditions for another 20 hours. After cooling to room temperature, 100 mL
of diethyl ether was added to the resulting biphasic mixture. The aqueous phase was extracted
twice with diethyl ether, and the combined organic extracts were dried over magnesium
sulfate. The solvent was removed under reduced pressure to yield a red oil, from which the
product gradually crystallized as pale violet crystals. The product was recrystallized from
pentane, to afford 1.8 g (5.1 mmol, 34% yield). 'H NMR (400 MHz, CDCls): 6/ppm 7.19 (s,
4 H), 3.73 (s, 4 H), 2.99 (sep, 4H), 1.32 (d, 24H). °C NMR (400 MHz, CDCl;): 6/ppm
138.92, 133.19, 132.69, 121.74, 28.18, 22.56.

S3.3.  Synthesis of TBZTFPG-COP. A  mixture comprising 2,2',6,6'-
Tetraisopropylbenzidine (TBZ) (87.26 mg, 0.2475 mmol), 2,4,6-triformylphloroglucinol
(TFPG) (35 mg, 0.165 mmol), 6 M aqueous acetic acid (0.3 mL), and dry 1,4-dioxane (3 mL)
was introduced into a borosilicate glass tube. The reaction mixture was sonicated for 10
minutes to obtain a uniform suspension. The sealed tube was then heated at 120 °C for 5 days
under solvothermal conditions, resulting in the formation of a covalent organic polymer
(COP) gel. To purify the COP, the gel was repeatedly washed with 1,4-dioxane, ethyl acetate,
DMF, THF, acetone, and methanol to remove unreacted monomers and residual solvents.
Upon air-drying, the gel transformed into a brittle monolithic solid, which was further dried
at 90 °C to ensure complete solvent removal. The dried monolith was subsequently ground
into a fine yellow powder to yield the final COP material (92 mg). Mp >350 °C. Anal. calcd
for Cy70H 136N73015: C, 78.97; H, 8.70; N, 5.76. Found: C, 73.891; H, 8.519; N, 6.52. CP-
MAS 3C NMR (500 MHz, 295 K): 8 185.65, 157.57, 142.92, 136.14, 123.44, 106.65, 28.87,
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23.56 ppm. FT-IR ; 3390, 2962, 2870, 1666, 1573, 1435, 1388, 1288, 1249, 1095, 1010, 941,
871,817,732, 663 and 601 cm™!.

S4. FTIR, 'TH NMR, 13C NMR spectrum of 2,2",6,6'-Tetraisopropylbenzidine (TBZ)
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Figure S1. Fourier transform infrared (FT-IR) spectra of 2,2',6,6'-Tetraisopropylbenzidine
(TBZ).
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Figure S2. '"H NMR spectrum of TBZ in DMSO-dg.
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Figure S3. 3C NMR spectrum of TBZ in DMSO-dg.
S5. CHN, FTIR, TGA, PXRD, FE-SEM and HR-TEM analysis of TBZTFPG-COP
Table S1: CHN analysis of TBZTFPG-COP:

TBZTFPG-COP Calculated (Obtained)
Mol. Weight (g/mol) Formula C% H% N%
4380.30 Ca70H186N78015  78.97 (73.891)  8.70 (8.519) 5.76 (6.52)
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Figure S4. Chemical structure illustrating the tautomerisation of TBZTFPG-COP from the
enol-form product to the keto-form product.
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Figure SS. Comparative FT-IR spectra of TBZTFPG-COP and its precursors.
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Figure S6. TGA of TBZTFPG-COP under N, flow with a heating rate of 10 °C/min.
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Figure S7. PXRD patterns of TBZTFPG-COP after soaking in different solvents.
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Figure S8. FE-SEM images of TBZTFPG-COP at different magnifications. Low-
magnification images show irregular, plate-like particles with agglomeration, while high-
magnification images reveal a rough, crumpled surface indicative of a layered 2D COP
structure. Energy dispersive X-ray (EDX) mapping of TBZTFPG-COP in terms of
constituent elements C, N and O. Elemental mapping and EDX analysis confirm the uniform
elemental distribution within the framework.
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Figure S9. HR-TEM images of the TBZTFPG-COP under different magnifications showing
the aggregates formed by stacking of many sheets. Darker regions are from such multi-flake
stacking. While at 20 nm resolution the uniform micropores all along the surface of the COF
can be seen.
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Figure S10. HR-TEM images of the TBZTFPG-COP under higher magnifications and SAED
pattern of TBZTFPG-COP.

S6. CV Measurements

S6.1. Electrochemical characterization: Synthesized COP material was tested for Linear
Sweep Voltammetry (LSV), Cyclic voltammetry (CV), Electrochemical Impedance
Spectroscopy (EIS) and Galvanic Charge — Discharge (GCD) studies were performed using

electrochemical workstation (Biologic, SP50e).

S6.2. Electrode preparation and supercapacitor fabrication: To examine the energy
storage capabilities of the synthesized COP material, electrodes were prepared using
stainless-steel sheet and electrochemical tests were performed using three-electrode,

symmetric two-electrode and asymmetric two-electrode setups. In a three-electrode setup,
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active material (TBZTFPG-COP) was mixed well with polyvinylidene fluoride (PVDF), and
carbon black in the weight ratio of 8:1:1 and grinded well. Further, N-methyl-2-pyrrolidone
solvent was added dropwise to the finely grinded mixture to make a slurry and this slurry was
coated on the stainless-steel sheet of area 1cm? x 1cm? dimensions. The coated sheets were
dried at 60-70 °C under vacuum and further these sheets were used as working electrodes
along with Ag/Agcl as a reference electrode and platinum foil as a counter electrode for the
electrochemical evaluation. In a symmetric two-electrode system, two symmetrical stainless-
steel sheets with the same above-mentioned dimensions were used as electrodes to fabricate a
supercapacitor device. In an asymmetric two-electrode system, TBZTFPG-COP was used as
a positive electrode and carbon black was used as a negative electrode to fabricate a
supercapacitor device. All the electrochemical tests were performed using 1M H,SO4
electrolyte. The electrode active material loading on the stainless-steel substrate was 2 mg

cmin the three-electrode system and 4 mg cm™ in the two-electrode system.

The specific capacitance was calculated using the following equation.

-1
C(Fg )=y

Where, C; is specific capacitance (F g!), A is current(A), k is scan rate (V/s), m is mass (g),

and AV is potential window (V).

The energy density and power density for the supercapacitor devices were calculated using

the following equation.

CV? x 1000

Eq(Whkg™") = 2 x 3600

where, Eq is Energy density, C is specific capacitance and V is operating voltage.

E, % 3600

P,(Wkg™ 1) = o

where, Py is the power density, Eq is the energy density and At is the time.

Where AV is Voltage Window, S is scan rate (V/s)
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Figure S12. CV of the (a) TBZ monomer, (b) TFPG monomer at various scan rates.
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Swagelok type cell

Figure S13. Photograph of the fabricated swagelok type supercapacitor device.
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Figure S14. XRD plot of TBZTFPG-COP after cycling stability over 5000 cycles.
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Table S2: Comparison of electrochemical performance of different polymer and framework materials as electrode materials for supercapacitors.

. Three electrode setu Two electrode setu Number of
Material | Surfac | Electroly P P eyeles Refer
9
S e area te Retention ences
ED and
Cs ED Cs
P P PD
TPT-
DAHQ 1855 | 0.1 M KOH 256 Flg 43 Whikg - - 1800, 81.5% 3
COF
IISERP IM
1233 H,SO4/P - - ~92 mF/cm? 98 uW/cm? 10000, 83 % 4
COF10
VA
IISERP 1M ~ 102
- - ~ 2 [ 4
COF11 921 H,SO4/P 32 mF/cm uW/em? 10000, 88 %
VA
gg?(’;g\} 6 1003 LiCl/PVA - - 15.2 mF/cm? | 7.3 mWh/cm? 5000, 93.1% 5
COF 0.1 M . .
TDFP-1 651 H,S0, 354 F/g 58 Wh/kg - - 1000, 95.0%
TPDA- 1M . ,
COF 28.0 Na,SO, - - 70.6 F/g 9.8 mW h/g 10000, 81.5%
TTT-
DHTD 839 1 M KOH 2733 F/g - - - 2000, 99% 8
COF
CAP-2 594 2M KCl1 240 F/g - 233 F/g 23 Wh/kg 10000,80% 9
DAAQ- 2 030 10
TFP COF - 1 M H,SO, 3 mF/cm - - - 5000, ~93%
TaPaPy 687 1 M H,SO, 209 F/g - 102 F/g 9.06 Wh/kg 6000,92% 1
POP-1 260 3 M KOH 192 F g! 10,000, 94%) 12
POP-2 342 3 M KOH 192F g! 92(10,000@1) 12
CzT- -1 0 13
CMOP-1 615 6 M KOH 240F g - - - 2000, 97%
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TAT- 1M B . u
CMP-1 88 N2,S0, 141 Fg - - - 10000, 83%
TAT- 1M B . U
CMP-2 106 N2,S0, 183F¢g - - - 10000, 95 %
4.2 Whikg . s
TPT-CTFs 128.53 1 M H2S04 110 F/g - 13 F/g and 250 W/kg 10000, 105 %
8 Wh/kg and o 16
CTF-600 - 1 M KOH 458 F/g - 16 F/g 250 W/ke 5000, 92.15%
6 M KOH
PDC-MA- 29.2 Whikg o 17
COF 748.2 aqueous 335 F/g - 94 F/g and 750 W/kg 20000, 88%
solution
05M 17.0 Whikg
HTR'ICOF' 2830 K,SO, 1826F/2 | 101 swhke | 307 Flg and 119.3 5000, 97.8% 18
(aq) Wikg
COF/rGO 10.3 Wh/kg 0 19
hybrid 498 IM.H,SO4 321 F/g - 74 F/g and 50 W/kg 5000, 94.3%
TFPDQG 59.4 Wh/kg 0 20
0 267.5 1 M NaCl 429.0 F/g - 118.5 F/g and 950 W/ke 10000, 80.6%
Coé%‘?Nl 79.7 Whike
24 - 6 M KOH 2697.7 F/g - 2242 F/g and 693.5 10000, 79.3% 21
(CS/NCZS
) W/kg
COP
(porphyrin
-based
5M 196.8 Wh/kg o »
CcoP - NaClO, 292.7 F/g and 752 W/kg 55.5F/g 37.3 Whikg 20000, 100 %
wrapped
on
MWCNT)
TPTP- 34.6 Whikg
COF@f- - 6 M KOH 577.4 F/g - 56.4F/g and 831 10 000, 81.5 % 23
CNF W/kg
16.4 Wh/kg
EG@3COF_ 1397 6 M KOH 501 F/g - 45F/g and 806 10 000, 92.3 % 2
W/kg
PANI/PED
OT/PSS @ 0.5M . s
PL.COF- 1080 H,S0, 729.2 F/g - 182 F/g - 10 000, 89.8 %
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700

cop

0.1M 21.9 Whikg
(FCF@PC - 670.8 Flg - ; 10000, 96.4% 2
(HDC- 22.3 Whikg 215 Whikg . -
b0y 612 | IMKOH | 678Flg | 2o 0 | 312Fe | Sl i | 10000,92%
114.4 Wh 15.4 Whikg | 10000, 97% :
TCEZC%FPP 28193 | 1M H,SO, | 824 Flg /Kg and 111.4F/g | and 2500 Columbic vf(‘)‘:;
10,000 W/kg Wi/kg efficiency 96%
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