

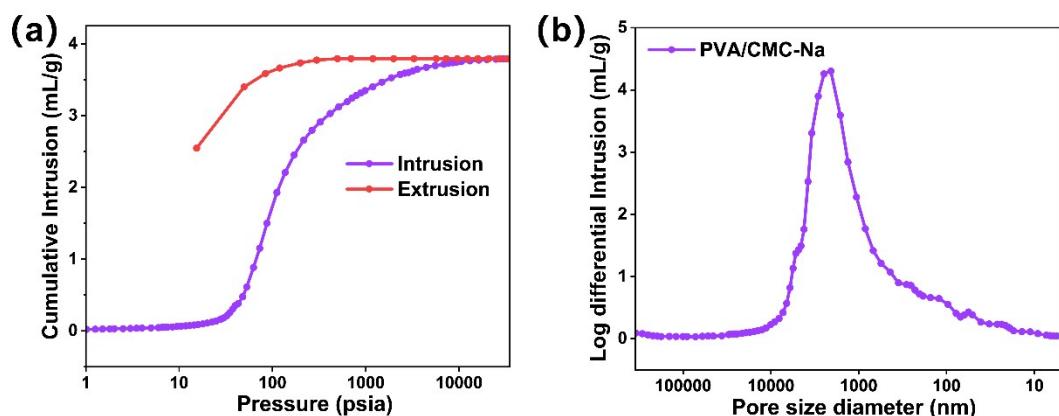
Supporting Information

Recyclable low-thermal-conductivity phase change materials for building thermal management

Xiaolong Guo ^a, Jin Hu ^{b,*}, Haoyang Cheng ^a, Lin Zhang ^a, Kanghui Wang ^a, Bingtao Tang ^c, and Wentao Wang ^{a,d,*}

^a *School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.*

^b *School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha 410114, China.*


^c *State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.*

^d *Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 212451, China.*

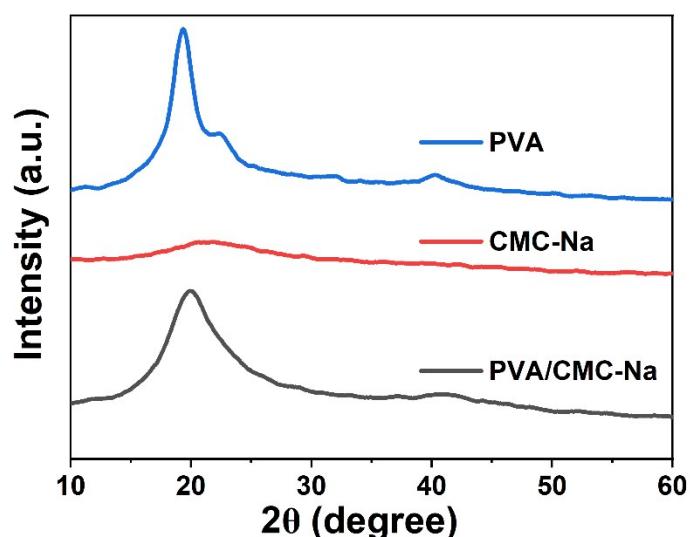

*Correspondence: jhu@csust.edu.cn, wtwang@zstu.edu.cn

Table S1. The mass ratios of each component in the PCP CPCMs.

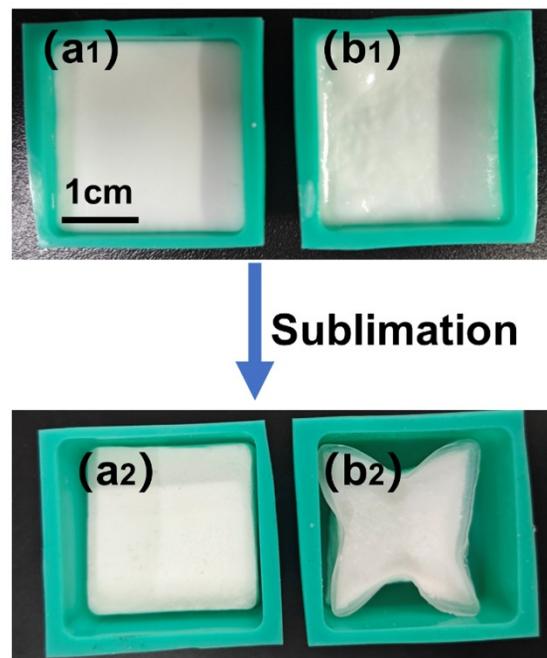
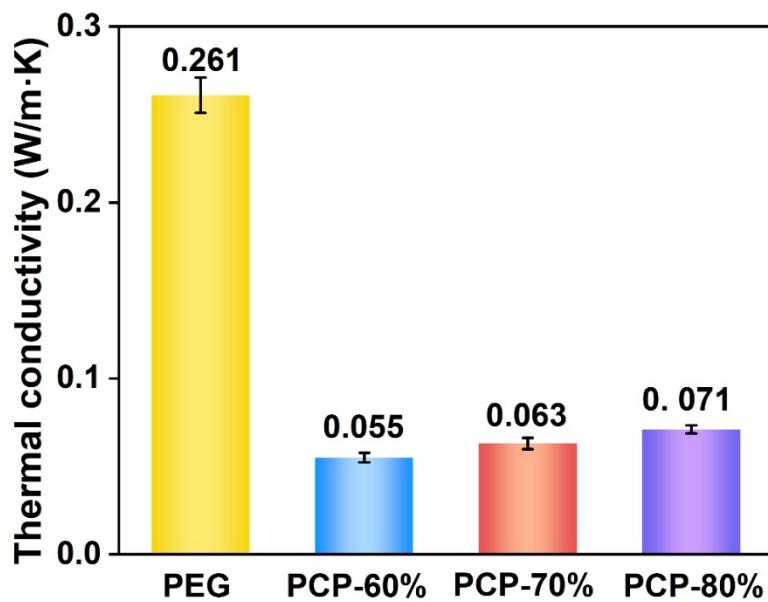

	PVA (wt%)	CMC-Na (wt%)	PEG (wt%)	Leakage
PCP-60%	32	8	60	NO
PCP-70%	24	6	70	NO
PCP-80%	16	4	80	NO
PCP-85%	12	3	85	YES

Fig. S1. (a) Mercury intrusion curve. (b) Pore size distribution curve

Fig. S2. XRD patterns of PVA, CMC-Na, and PVA/CMC-Na composites.

Fig. S3. Digital photos of PVA/CMC-Na/PEG after (a₁) freezing and (a₂) freeze-drying. Digital photos of PVA/PEG after (b₁) freezing and (b₂) freeze-drying.

Table S2. Thermal properties of PEG and CPCMs.


	T_m (°C)	ΔH_m (J/g)	T_c (°C)	ΔH_c (J/g)
PEG	38.81	162.77	23.11	159.56
PCP-60%	37.79	96.23	22.36	93.25
PCP-70%	37.38	108.70	21.27	104.76
PCP-80%	37.49	125.16	22.59	122.54
PCP-85%	36.96	131.59	22.74	126.80

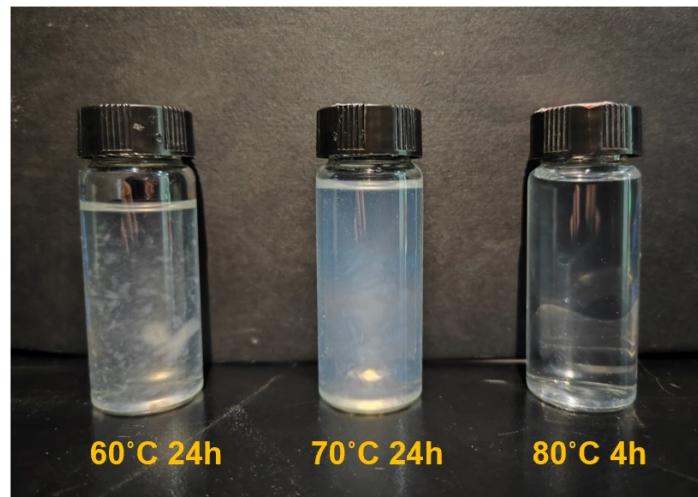

Fig. S4.TGA curves of PVA/CMC-Na, PEG, and CPCMs.

Table S3. TG data of pure PEG and different CPCMs.

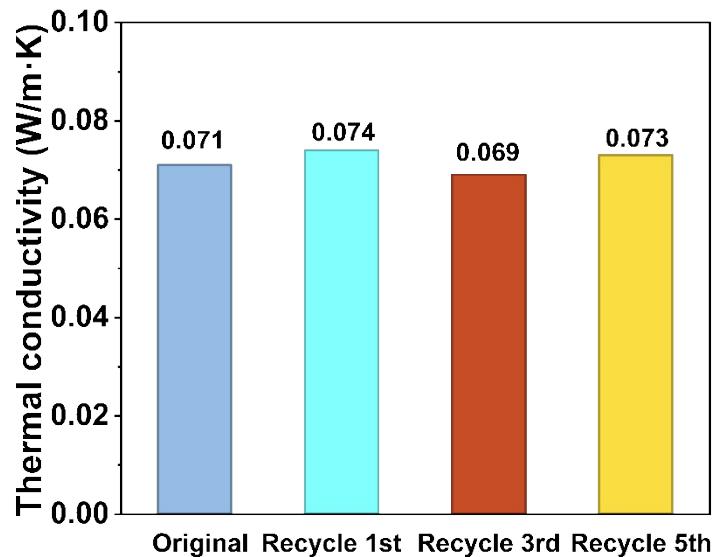

	T _{5wt%} (°C)	T _{max} (°C)	T _{end} (°C)	Weight loss (wt%)
PEG	343.15	367.48	427.17	1.70
PVA/CMC-Na	81.03	256.33	475.67	18.07
PCP-60%	292.33	361.78	418.30	7.12
PCP-70%	293.48	362.40	420.06	5.91
PCP-80%	296.37	363.62	416.85	4.21
PCP-85%	293.14	365.23	417.11	3.73

Fig. S5. Thermal conductivities of pure PEG and different CPCMs.

Fig. S6. The dissolution of PCP-80% at different temperatures.

Fig. S7. The thermal conductivity of phase transition of R-PCP before and after 5 cycles of recovery.

Table S4. The thermal performance of R-PCP during different cycles of recovery.

	T_m (°C)	ΔH_m (J/g)	T_c (°C)	ΔH_c (J/g)
Original	38.33	121.18	23.26	119.55
Recycle 1st	38.19	120.52	23.27	118.87
Recycle 3rd	38.52	117.26	21.42	117.94
Recycle 5th	38.02	119.13	22.3	120.41