Supplementary Information (SI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2025

Radiolytic Synthesis of rGO-PEDOT Nanohybrids with Enhanced Functional Properties

Souad Abou Zeid.a* Liran Hu.a Rasta Ghasemi.b Matthieu Gervais.c Jaspreet Kaur Randhawa.d Prem Felix Siril e

and Samy Remita a.f *

Supporting information

a. Institut de Chimie Physique, ICP, UMR 8000, CNRS, Université Paris-Saclay, bâtiment 349, Campus d'Orsay, 15 avenue Jean Perrin, 91405 Orsay Cedex, France.

^{b.} Institut d'Alembert, IDA, ENS Paris-Saclay, 4 avenue des sciences, 91190 Gif-sur-Yvette, France.

^c Laboratoire Procédés et Ingénierie en Mécanique et Matériaux, PIMM, Arts et Métiers ParisTech, UMR 8006, CNRS, CNAM, HESAM université, 151 boulevard de l'hôpital, 75013 Paris, France.

^{d.} School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Mandi-175005, Himachal Pradesh, India

e. School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh-175005, India.

¹ Département Chimie Vivant Santé, EPN 7, Conservatoire National des Arts et Métiers, CNAM, 292 rue Saint-Martin, 75141 Paris Cedex 03, France.

^{*} Corresponding author. Institut de Chimie Physique, ICP, UMR 8000, CNRS, Université Paris-Saclay, bâtiment 349, Campus d'Orsay, 15 avenue Jean Perrin,91405 Orsay Cedex, France. E-mail address: samy.remita@universite-paris-saclay.fr (S. Remita), souadabouzeid321@gmail.com (S. Abou Zeid).

 Table S1 Nomenclature of Samples Synthesized According to the three different procedures

Series	Sample Name	Absorbed dose (kGy)	Initial Composition	Notes/Description		
0	GO-E (0 kGy)	0		Unirradiated control		
	rGO-P (20 kGy)	20				
	rGO -P (43 kGy)	43				
	rGO -P (72 kGy)	72	[GO] = 1.42 g L ⁻¹ , [EDOT] = 10			
	rGO -P (100 kGy)	100	mM, [IPA] = 0.2 M	Reduced GO + PEDOT formed		
	rGO -P (115 kGy)	115				
	rGO -P (130 kGy)	130				
	rGO -P (160 kGy)	160				
	GO-P36 (0 kGy)	0		Unirradiated control with PEDOT oligomers		
	rGO -P36 (10 kGy)	10				
	rGO -P36 (30 kGy)	30				
2	rGO -P36 (43 kGy)	43	[GO] = 1.42 g L ⁻¹ , [P36] = 10 mM	Reduced GO + PEDOT formed		
Q	rGO -P36 (60 kGy)	60	in monomers, [IPA] = 0.2 M	Reduced GO + PLDOT Torried		
	rGO -P36 (80 kGy)	80				
	rGO -P36 (100 kGy)	100				
	rGO -P36 (120 kGy)	120				
	GO-P72 (0 kGy)	0		Unirradiated control with fully polymerized PEDOT		
	rGO -P72 (10 kGy)	10				
3	rGO -P72 (30 kGy)	30	[[GO] = 1.42 g L ⁻¹ , [P72] = 10 mM in monomers, [IPA] = 0.2 M			
	rGO -P72 (43 kGy)	43				
	rGO -P72 (60 kGy)	60		Reduced GO + PEDOT formed		
	rGO -P72 (70 kGy)	70				
	rGO -P72 (80 kGy)	80				
	rGO -P72 (100 kGy)	100				

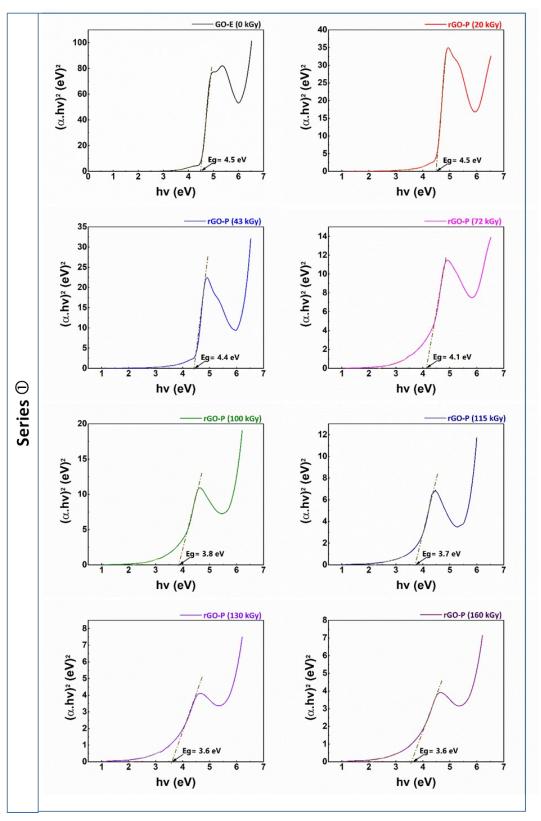


Figure S1. Tauc plots for the samples from Series 1 (GO at 1.42 g L^1 and EDOT at 10 mM) as a function of absorbed dose. The optical bandgap values are determined from the intercept of the linear extrapolation of $(\alpha h v)^2$ with the photon energy axis (hv) for each sample in Series 1.

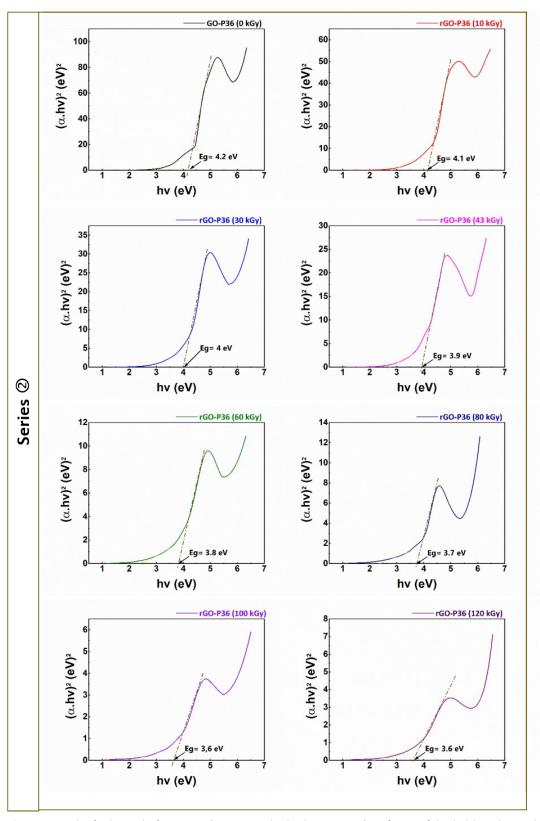


Figure S2. Tauc plots for the samples from Series 2 (GO at 1.42 g L^{-1} and and P36 at 10 mM) as a function of absorbed dose. The optical bandgap values are determined from the intercept of the linear extrapolation of $(\alpha h v)^2$ with the photon energy axis (hv) for each sample in Series 2.

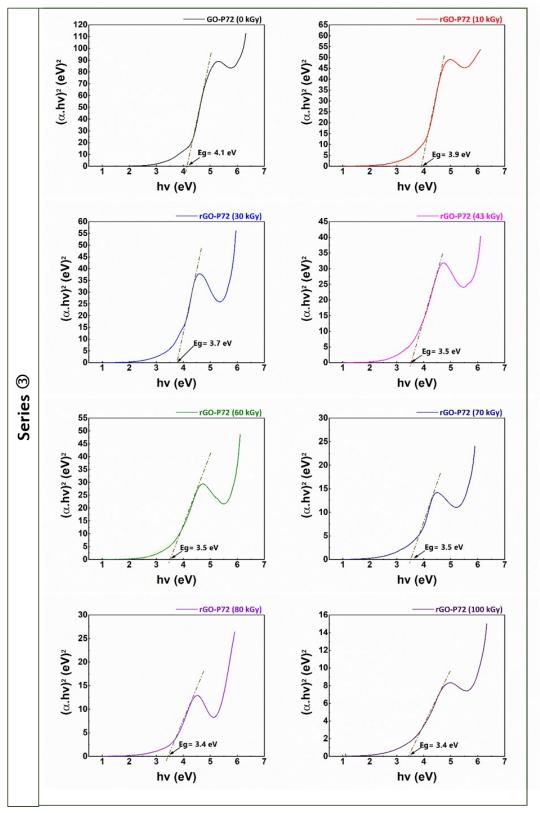


Figure S3. Tauc plots for the samples from Series 2 (GO at 1.42 g L⁻¹ and and P72 at 10 mM) as a function of absorbed dose. The optical bandgap values are determined from the intercept of the linear extrapolation of $(\alpha h \nu)^2$ with the photon energy axis (h ν) for each sample in Series 3.

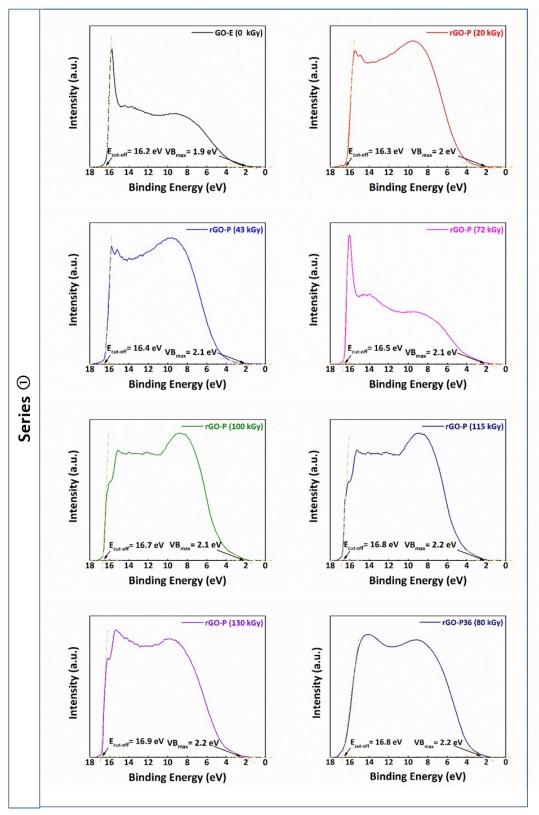
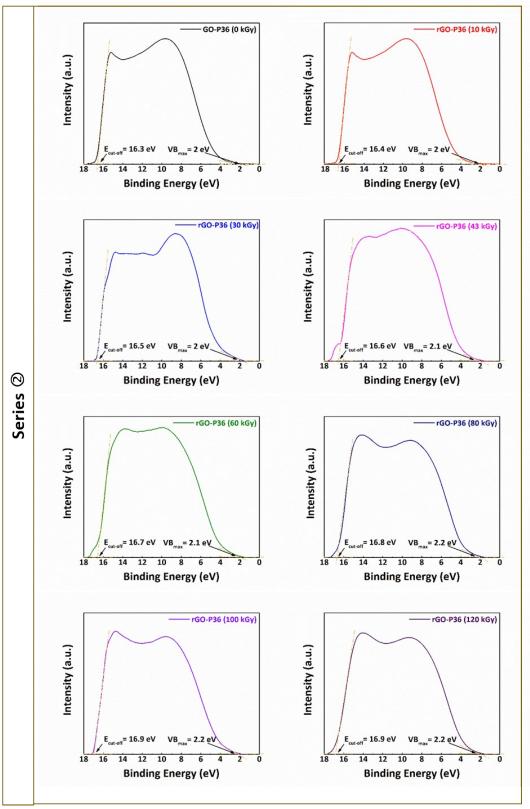
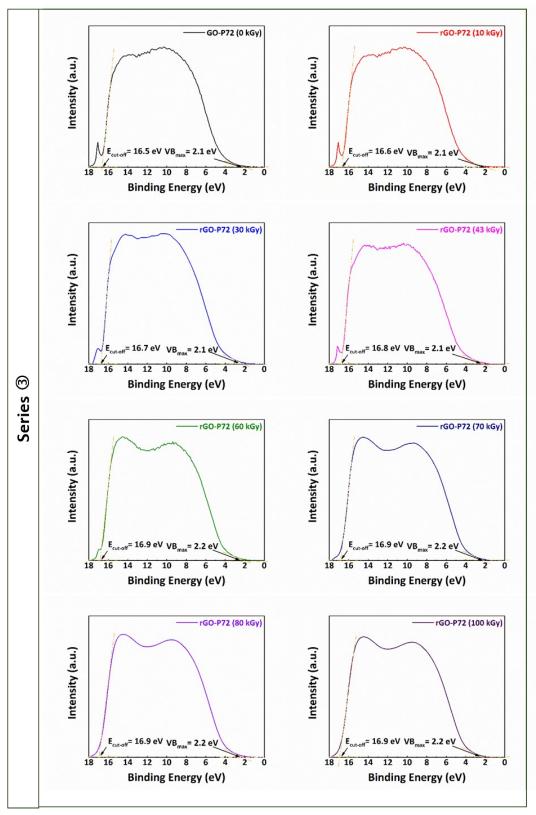



Figure S4. Evolution of the UPS spectra recorded with He I radiation for the samples of Series 1 (GO at 1.42 g L⁻¹ and and EDOT at 10 mM) as a function of absorbed dose.

Figure S5. Evolution of the UPS spectra recorded with He I radiation for the samples of Series 2 (GO at 1.42 g L⁻¹ and and P36 at 10 mM) as a function of absorbed dose.



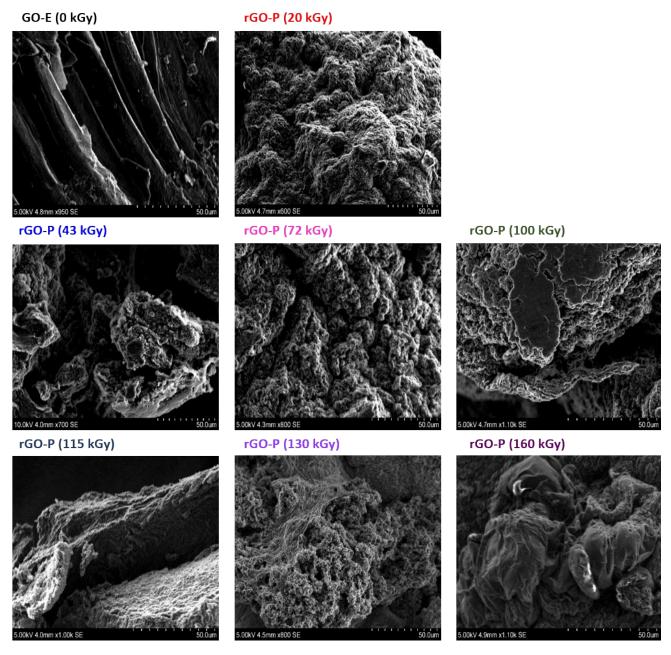
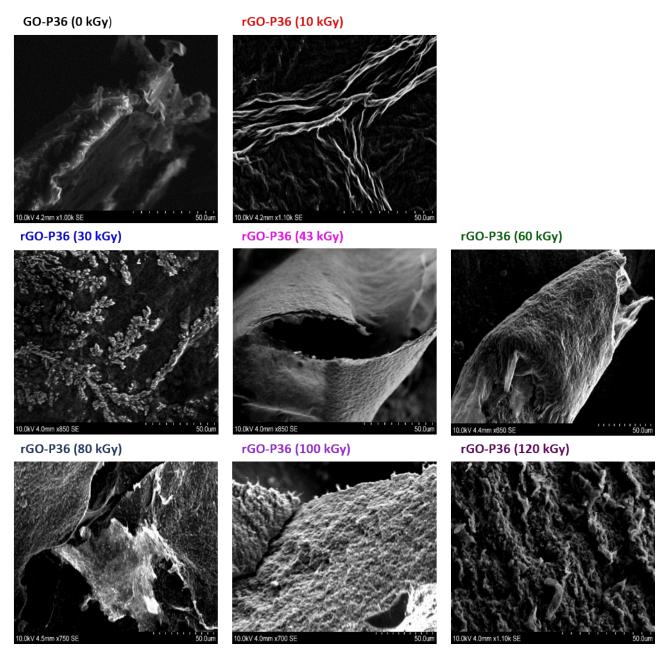
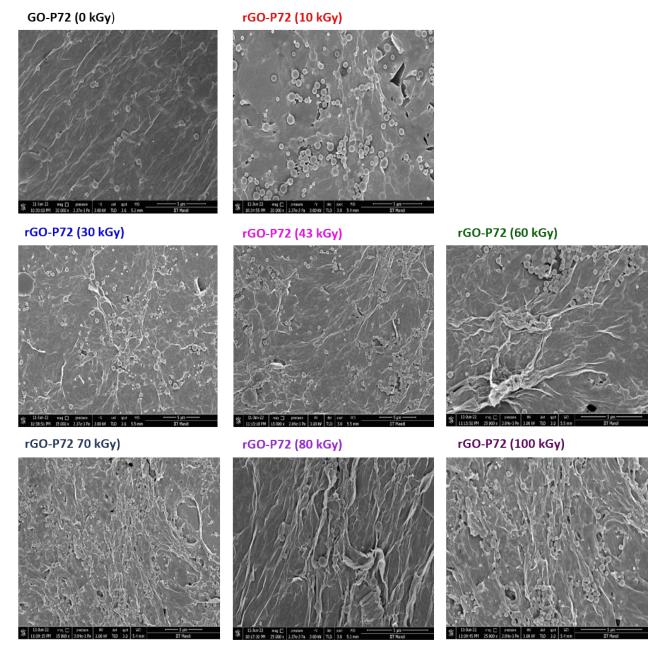

Figure S6. Evolution of the UPS spectra recorded with He I radiation for the samples of Series 3 (GO at 1.42 g $\rm L^{1}$ and and P72 at 10 mM) as a function of absorbed dose.

Table S2. Values used for the calculation of the energy band structure of all samples as a function of absorbed dose for: (a) Series 1 (GO at 1.42 g L⁻¹ and EDOT at 10 mM), (b) Series 2 (GO at 1.42 g L⁻¹ and P36 at 10 mM), and (c) Series 3 (GO at 1.42 g L⁻¹ and P72 at 10 mM). The uncertainty associated with the determined values is less than 5%.


a-	Series ①						
	Sample	E _g (eV)	VB _{max} (eV)	E _{cut-off} (eV)	WF (eV)	VB (eV)	CB (eV)
	GO-E (0 kGy)	4.5	1.9	16.2	5	6.9	2.4
	rGO-P (20 kGy)	4.5	2	16.3	4.9	6.9	2.4
	rGO-P (43 kGy)	4.4	2.1	16.4	4.8	6.9	2.5
	rGO-P (72 kGy)	4.1	2.1	16.5	4.7	6.8	2.7
	rGO-P (100 kGy)	3.8	2.1	16.7	4.5	6.6	2.8
	rGO-P (115 kGy)	3.7	2.2	16.8	4.4	6.6	2.9
	rGO-P (130 kGy)	3.6	2.2	16.9	4.3	6.5	2.9
	rGO-P (160 kGy)	3.6	2.2	16.9	4.3	6.5	2.9
	Series@						
	Échantillons	E _g (eV)	VB _{max} (eV)	E _{cut-off} (eV)	WF (eV)	VB (eV)	CB (eV)
	Échantillons GO-P36 (0 kGy)	E _g (eV)	VB _{max} (eV)	E _{cut-off} (eV)	WF (eV)	VB (eV)	CB (eV)
		-			-		
	GO-P36 (0 kGy)	4.2	2	16.3	4.9	6.9	2.7
	GO-P36 (0 kGy) rGO-P36 (10 kGy)	4.2 4.1	2	16.3 16.4	4.9	6.9	2.7
	GO-P36 (0 kGy) rGO-P36 (10 kGy) rGO-P36 (30 kGy)	4.2	2 2 2	16.3 16.4 16.5	4.9 4.8 4.7	6.9 6.8 6.7	2.7 2.7 2.7
	GO-P36 (0 kGy) rGO-P36 (10 kGy) rGO-P36 (30 kGy) rGO-P36 (43 kGy)	4.2 4.1 4 3.9	2 2 2 2.1	16.3 16.4 16.5 16.6	4.9 4.8 4.7 4.6	6.9 6.8 6.7	2.7 2.7 2.7 2.8
	GO-P36 (0 kGy) rGO-P36 (10 kGy) rGO-P36 (30 kGy) rGO-P36 (43 kGy) rGO-P36 (60 kGy)	4.2 4.1 4 3.9 3.8	2 2 2 2.1 2.1	16.3 16.4 16.5 16.6 16.7	4.9 4.8 4.7 4.6 4.5	6.9 6.8 6.7 6.7	2.7 2.7 2.7 2.8 2.8

Series [®]]					
Échantillons	E _g (eV)	VB _{max} (eV)	E _{cut-off} (eV)	WF (eV)	VB (eV)	CB (eV)
GP-P72 (0 kGy)	4.1	2.1	16.5	4.7	6.8	2.7
rGO-P72 (10 kGy)	3.9	2.1	16.6	4.6	6.7	2.8
rGO-P72 (30 kGy)	3.7	2.1	16.7	4.5	6.6	2.9
rGO-P72 (43 kGy)	3.5	2.1	16.8	4.4	6.5	3
rGO-P72 (60 kGy)	3.5	2.2	16.9	4.3	6.5	3
rGO-P72 (70 kGy)	3.5	2.2	16.9	4.3	6.5	3
rGO-P72 (80 kGy)	3.4	2.2	16.9	4.3	6.5	3.1
rGO-P72 (100 kGy)	3.4	2.2	16.9	4.3	6.5	3.1


b-

 $\textbf{Figure S7}. \text{ SEM images of the samples from Series 1 (GO at 1.42 g L$^{-1}$ and and EDOT at 10 mM) as a function of absorbed dose. Scale bar: 50 ~\mu m.}$

 $\textbf{Figure S8}. \text{ SEM images of the samples from Series 2 (GO at 1.42 g L$^{-1}$ and and P36 at 10 mM) as a function of absorbed dose. Scale bar: 50 \ \mu m.}$

 $\textbf{Figure S9}. \text{ SEM images of the samples from Series 3 (GO at 1.42 g L$^{-1}$ and and P72 at 10 mM) as a function of absorbed dose. Scale bar: 5 ~\mu m.}$

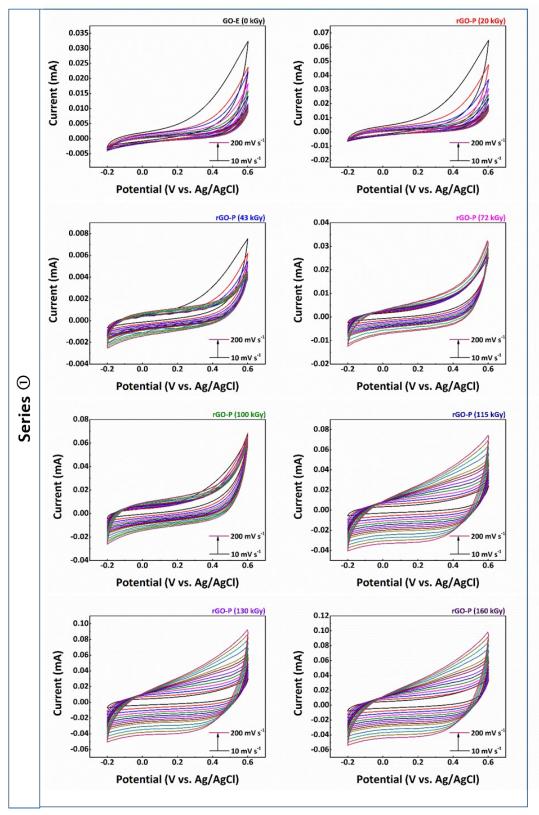


Figure S10. Cyclic voltammograms of the samples from Series 1 (GO at 1.42 g L^{-1} and and EDOT at 10 mM) obtained at various absorbed doses and recorded at different scan rates ranging from 10 to 200 mV s^{-1} in a 0.1 M KOH aqueous solution.

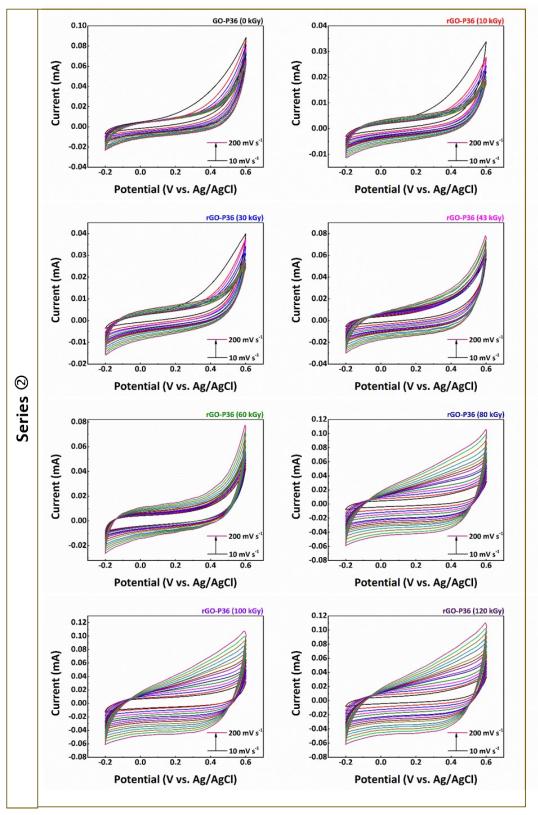


Figure S11. Cyclic voltammograms of the samples from Series 2 (GO at 1.42 g L^1 and and P36 at 10 mM) obtained at various absorbed doses and recorded at different scan rates ranging from 10 to 200 mV s^1 in a 0.1 M KOH aqueous solution.

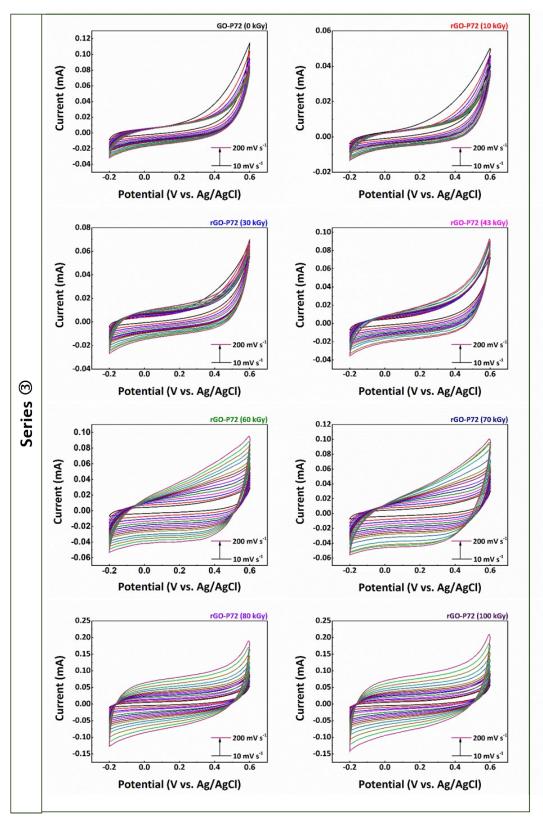


Figure S12. Cyclic voltammograms of the samples from Series 3 (GO at 1.42 g L^1 and and P72 at 10 mM) obtained at various absorbed doses and recorded at different scan rates ranging from 10 to 200 mV s^1 in a 0.1 M KOH aqueous solution.