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Fig. S1 FTIR spectra of hd-CWM, 1d-CWM, and CWM electrodes.

Table S1 Textural properties of CWM, 1d-CWM, and hd-CWM obtained at different

etching temperatures.

Electrode Sger (m? g'1)¢ Pore volume (cm?3 g-1)? Pore size (nm)°
CWM 75.8 0.04 2.18
1d-CWM 527.9 0.31 2.34
hd-CWM (550
242.5 0.14 2.34
OC)
hd-CWM (650
699.1 0.37 2.13
oC)
hd-CWM (750
913.8 0.53 2.30
OC)
hd-CWM (850
739.9 0.41 2.20
OC)

@ BET surface area (Sggr) is calculated from the linear part of the BET plot.

b Single point total pore volume of the pores at P/Py=0.99.

¢ Adsorption average pore width (4 V A-! by BET).
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Fig. S2 CV curves of (a) ld-CWM-based SC and (b) CWM-based SC. GCD curves of

(c) Id-CWM-based SC and (d) CWM-based SC.

Table S2 Series resistance (R;) and electron transfer resistance (R) of the hd-CWM-,

1d-CWM-, and CWM-based SCs

SC Rs (Q) Rct (Q)
hd-CWM-based SC 0.47 0.15
1d-CWM-based SC 0.97 0.16

CWM-based SC 0.68 0.62




12
a ——0.1Ag"
——02Ag"
1.0 /\ Kt
\ \ 08Ag"
< 0.8 10Ag"
?— \ —20Ag"
3 50Ag"
= 06 80Ag"
2 / hd-CWhi-based SC
a 0441/
0.2 //
0.0 T T T T T v
0 300 600 900 1200 1500 1800
Time (s)
1.2
d —— ho-C\W-based SC|
Id-CWM-based SC
1.0 CWM-based SC
€ 081 01Ag"
=
T 0.6
2
o
a 044
0.24
0.0 T T T T y
0 300 600 900 1200 1500 1800

Time (s)

Potential (V)
o o o o = a
N - o [+4] o N

o
o

200

o
=]

Specific capacitance (F g)

11 A
1

=]
t=3

o
=]

——01Ag"
——02Ag"
05Ag"
08Ag"
10Ag"
—20Ag"
50Ag"
80Ag"
1/ / 1d-CWM-based SC

411

400 600 800

Time (s)

200

e —a— hd-CWM-based SC
ld-CWM-based SC

CWM-based SC

Capacity retention=78.3%

0 T T T T T T T r
o 1 2 3 4 5 8 7 8

Current density (A g")

-
(8]

Potential (V)
o o o -
» o » tl:>

=3
o

0.0

—01Ag
——02Ag
P4l o
/\ il \ 0‘: ::
/ |‘ / g \ CWh-based SC
J | \
/J(\
\ \
\ e 58

\\

0

5 10 15 20 25 30 35 40
Time (s)

o

-

Energy density (Wh kg™")

—@—hd-CWM-based SC
I1d-CWM-based SC

09— 5

=
o

100 1000
Power density (W kg")

10000

Fig. S3 GCD curves of (a) hd-CWM-, (b) Id-CWM-, and (c) CWM-based SCs at

different current densities. (d) GCD curves at 0.1 A g! and (e) the corresponding Cy,

values of the hd-CWM-, Id-CWM-, and CWM-based SCs. (f) Ragone plots (mass

energy density vs. mass power density) of hd-CWM-, and 1d-CWM-based SCs.
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Fig. S4 GCD curves of (a) hd-CWM-, (b) Id-CWM-, and (c) CWM-based SCs at

different current densities. (d) GCD curves at 10 mA cm™ and (e) the corresponding

C, values of the hd-CWM-, 1d-CWM-, and CWM-based SCs. (f) Ragone plots

(volumetric energy density vs. volumetric power density) of hd-CWM- and 1d-CWM-
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Fig. S5 Ragone plots (areal energy density vs. areal power density) of hd-CWM- and
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Fig. S6 SEM images of hd-CWM electrodes prepared at different etching

temperatures of (a-c) 550 °C, (d-f) 650 °C, and (g-1) 850 °C.
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Fig. S7 Stress-strain curves of hd-CWM electrodes prepared at different etching

temperatures.
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Fig. S8 (a) XRD spectra, (b) EPR spectra, (¢) N, adsorption-desorption profiles and
the corresponding (d) pore size distribution curves of hd-CWM electrodes prepared at

different etching temperatures.
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Fig. S9 CV and GCD curves of the SCs assembled with hd-CWM electrodes prepared

at different etching temperatures.
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Fig. S10 C, values of the SCs assembled with hd-CWM electrodes prepared at

different etching temperatures.
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Fig. S11 GCD curves of the SCs assembled with hd-CWM electrodes prepared at

different etching temperatures of (a) 550, (b) 650, and (c) 850 °C and the

corresponding (d) C,, values at difference current densities.
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Fig. S12 GCD curves of the SCs assembled with hd-CWM electrodes prepared at
different etching temperatures of (a) 550, (b) 650, and (c) 850 °C and the

corresponding (d) C, values at difference current densities.
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Fig. S13 (a) GCD curves, (b) Cy, values of hd-CWM-based SC at different current

densities, and (c) the corresponding Ragone plot. (d) GCD curves, (e) C, values of hd-



CWM-based SC at different current densities, and (f) the corresponding Ragone plot.
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Fig. S14 (a-c) SEM images of hd-CWM electrode after cycling stability test in the

potential window of 0-1.3 V at a current density of 10 mA cm™.
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Fig. S15 (a) XRD spectrum, (b) Raman spectrum, and (c) EPR spectrum of hd-CWM

electrode after cycling stability test in the potential window of 0-1.3 V at a current

density of 10 mA cm=2.



Table S3 Comparison of electrochemical performance of the hd-CWM-based SC

with reported carbon-based SCs.

Cycling

Electrode Electrolyte C,or C, Energy Density stability Ref.
5547 mF cm™ 0.26 mWh cm? 97.4%
PCN/CW 6.0 M KOH
(5 mA cm?) (1.19 mW cm™2) (10000 cycles)
286 F ¢! 9.9 Wh kg'! 95.0%
WTCS 6.0 M KOH
(1Agh (250 W kg!) (5000 cycles)
5037.5 mF cm™ 0.65 mWh cm ™ 86.3%
FA-OC2 6.0 M KOH
(2 mA cm?) (58.0 mW cm™2) (20000 cycles)
639.5 F ¢! 43.11 Wh kg'! 88.5%
CWM@PANI 1.0 M H,SO,
(0.5A g (350 W kg!) (5000 cycles)
4100 mF cm™ 0.82 mWh cm 85.7%
C-RS-BL 6.0 M KOH
(1 mA cm?) (0.6 mW cm™?) (10000 cycles)
2368.0 mF cm 87 uWh cm™2 87.5%
HBC-2M 1.0M Na2804
(1 mA cm?) (470 uW cm™2) (2000 cycles)
99 F g'! 3.44 Wh kg'! 104%
CC 6.0 M KOH X |
(0.TAgh (25 W kg!) (20000 cycles)
319.1 mF cm™ 96.4%
CNTs/NF 6.0 M KOH n.p
(1 mA cm?) (10000 cycles)
CGCM@GNS&CN 441 mF cm™ 31 uyWh cm™ 102.5 %
1.5M NaZSO4
T (1 mA cm?) (800 pW cm2) (2000 cycles)
330 F ¢! 6.1 Wh kg"! 90.0%
BCPC-3 6.0 M KOH
(0.5Agh (25 W kg'h) (5000 cycles)
1599.8 mF cm- 55.5 uWh cm?/5.8
2/166.6 F g'! Wh kg! 116.3%
hd-CWM 6.0 M KOH
(ImAcm?0.1A (250 uW cm?/25 (10000 cycles)
gh W kg')

n. p: Not applicable.
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