

## Supporting Information

### Single-Crystalline NiO Octahedron with (111) facet as a Bifunctional Electrocatalyst for Overall Water Splitting

Abu Raihan,<sup>a</sup> Sunny Sarkar,<sup>a</sup> Soumita Sarkar,<sup>a</sup> Arabinda Karmakar,<sup>b</sup> and Astam K. Patra\*<sup>a</sup>

<sup>a</sup>Department of Chemistry, University of Kalyani, Kalyani 741235, West Bengal, India  
E-mail: astamchem18@klyuniv.ac.in, ORCID: 0000-0001-6071-8653.

<sup>b</sup>Department of Physics, University of Kalyani, Kalyani 741235, West Bengal, India

#### Characterization Techniques

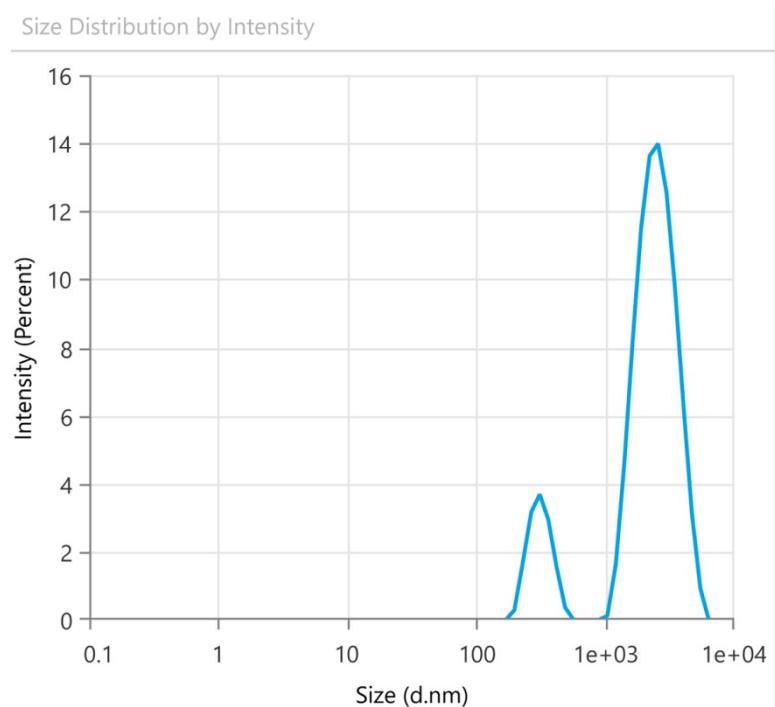
The Ni(OH)<sub>2</sub> and NiO materials were analyzed using various characterization techniques. The powder X-ray diffraction patterns of the samples were obtained using a Bruker D-8 Advance diffractometer, operating at 40 kV voltage and 40 mA current, and utilizing Cu Ka radiation with a wavelength of 0.15406 nm. The Powder X-ray diffraction patterns were analyzed using MATCH software, Version 3.x, by CRYSTAL IMPACT located at Kreuzherrenstr, 102, 53227 Bonn, Germany to determine the phase of the synthesized materials.

Morphology analysis was conducted using a JEOL JEM 6700 Field Emission Scanning Electron Microscope (FE SEM).

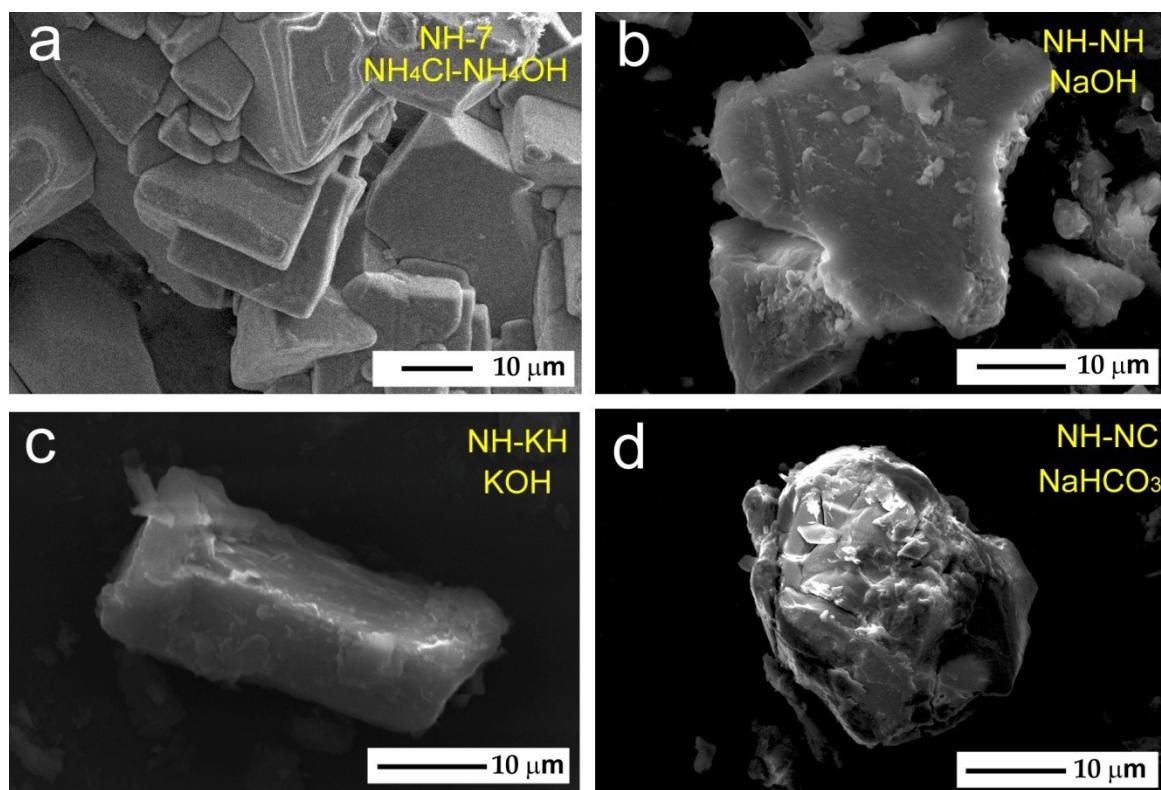
TEM images were captured using a JEOL 2010 TEM operating at 200 kV.

Raman spectra were recorded using a Bruker Senterra Raman microscope.

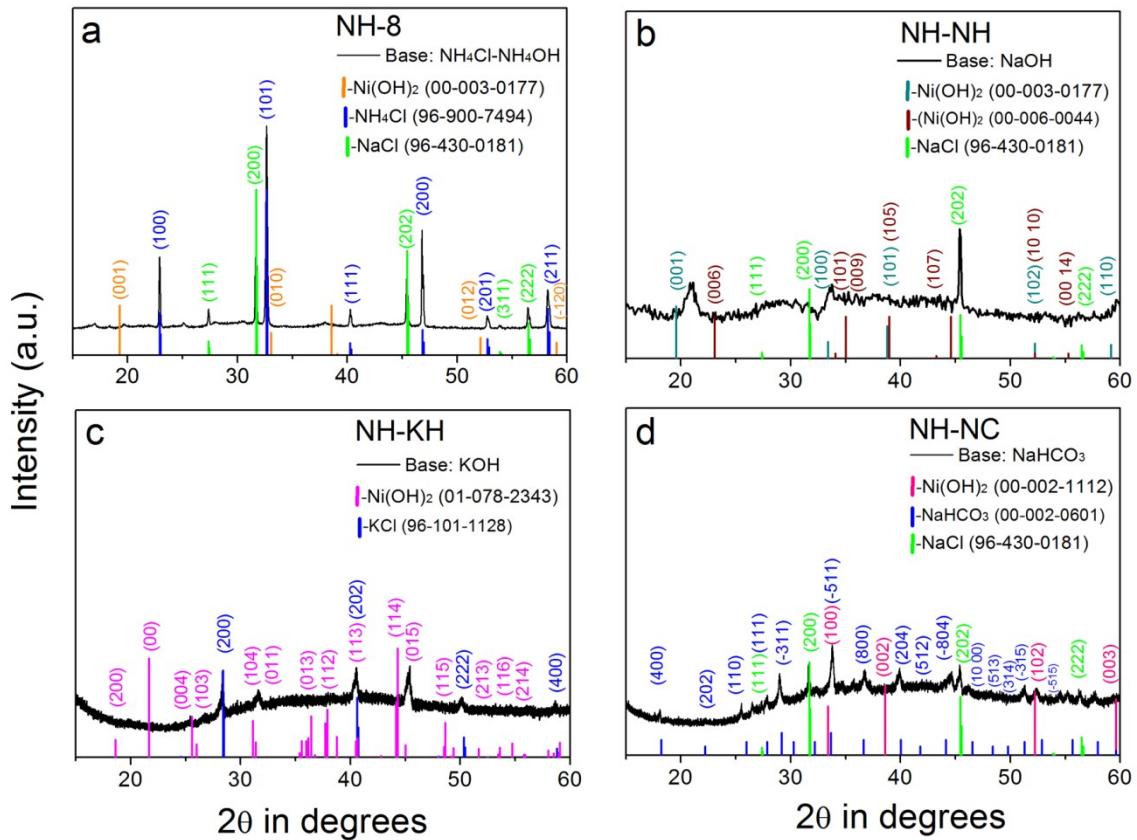
X-ray photoelectron spectroscopy (XPS) was performed on a Thermo Scientific (Model No ESCALAB 250Xi). X-ray Photoelectron Spectrometer operated at 15 kV and 20 mA with a monochromatic Al K $\alpha$  X-ray source.


The electrochemical experiments were conducted using a computer-controlled electrochemical workstation (BioLogic 150e) within a standard three-electrode system.

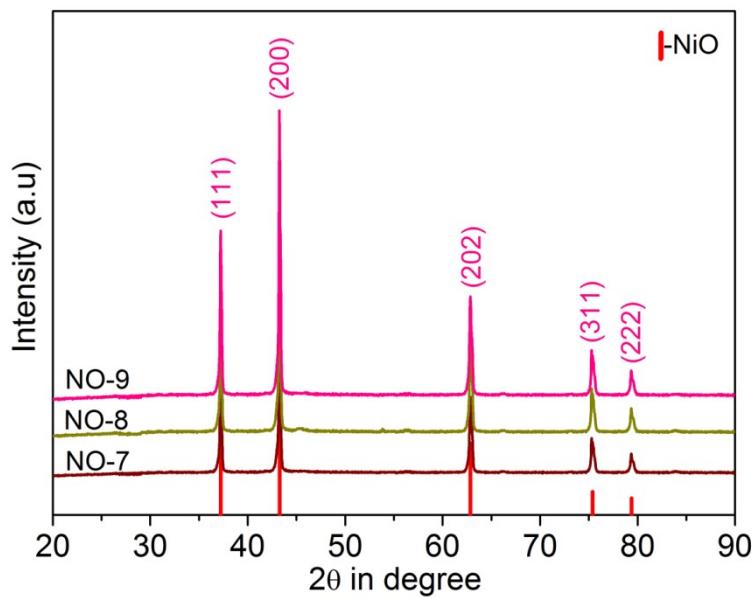
### ***Electrochemical Measurements***


**Electrode Preparation:** The working electrode utilized in this experiment was the NiO octahedron materials on fluorine doped tin oxide (FTO), with an electrolyte solution of 1 M KOH. The working electrode was made according to usual technique. FTO glasses were cleaned with acetone and ethanol under sonication bath. To disperse 2 mg of powdered NiO, a combination of 40  $\mu$ L dry ethanol and 20  $\mu$ L 5% Nafion was used, followed by 30 minutes of sonication. A 5  $\mu$ L suspension was gently drop cast onto an FTO-coated plate, resulting in a circular film. The film was then dried at ambient humidity to serve as a functioning electrode.

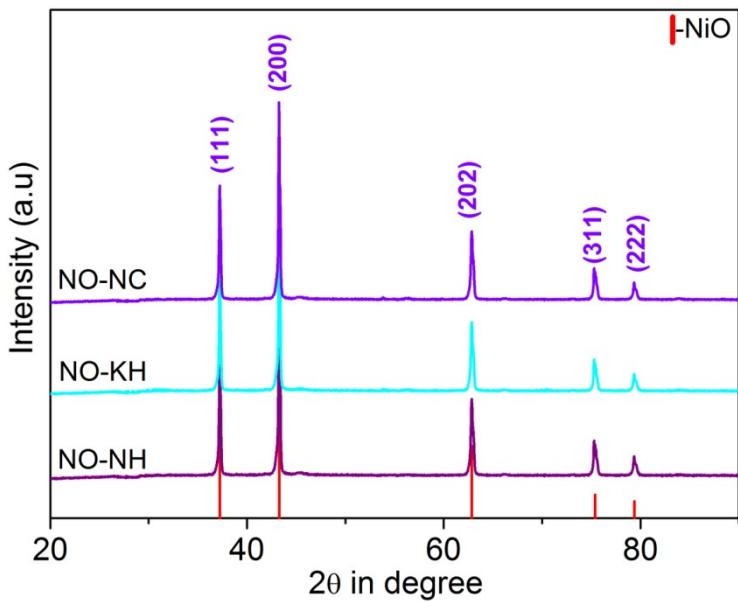
**Electrochemical Characterization:** The electrochemical experiments were carried out on a computer-controlled electrochemical workstation (BioLogic 150e) in a three-electrode system with a Pt wire and a saturated Ag/AgCl electrode (in 3 M NaCl) serving as the counter and reference electrodes, respectively. For the OER and HER experiment, the LSV studies were completed with a scan rate of 50 mV/s. The iR compensation LSV was done manually with eighty five percent of the Rs of impedance spectroscopy (EIS). LSV Stability test of NiO materials studies was carried out with a scan rate of 100 mV/s for 1000 cycles in the 1 M KOH solution for HER and OER. The cyclic voltammograms (CV) were measured in 1 M KOH solution with a scan rate 50 mV/s. The applied potentials vs. Ag/AgCl (NaCl Sat'd) were converted to RHE (Reversible Hydrogen Electrode) potentials using the following equations:


$$E_{RHE} = E_{Ag/AgCl} + 0.0591pH + E^\theta_{Ag/AgCl} (E^\theta_{Ag/AgCl} = 0.194 V \text{ vs NHE at } 25^\circ\text{C})$$

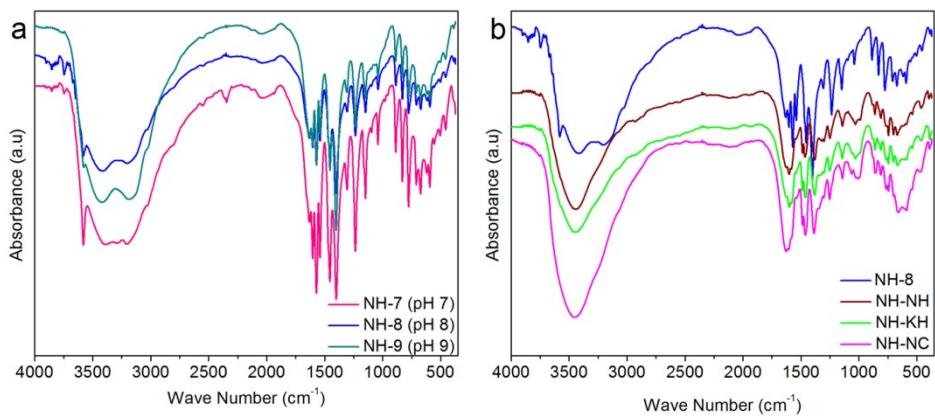



**Fig. S1.** DLS study of NO-8 sample showing bimodal distribution.

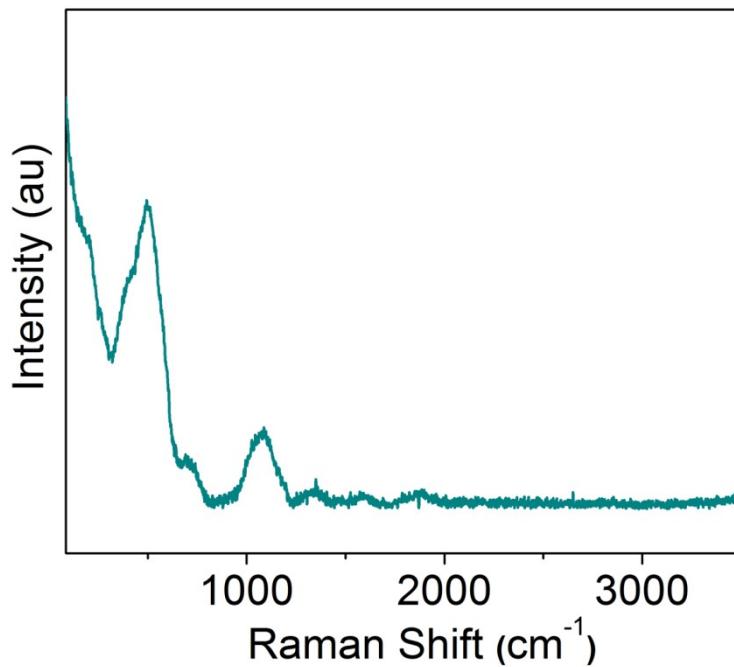



**Fig. S2.** FE SEM images of as-synthesized materials obtained in different base medium. a) NH-7 (NH<sub>4</sub>Cl-NH<sub>4</sub>OH), b) NH-NH (NaOH), c) NH-KH (KOH), and d) NH-NC (NaHCO<sub>3</sub>).

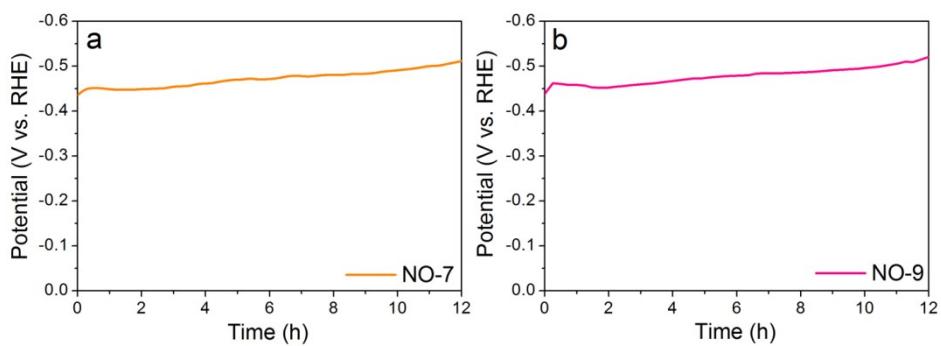



**Fig. S3.** Wide-angle powder XRD pattern of different as-synthesized materials at different base medium. a) NH-8 (NH<sub>4</sub>Cl - NH<sub>4</sub>OH), b) NH-NH (NaOH), c) NH-KH (KOH), and d) NH-NC (NaHCO<sub>3</sub>).

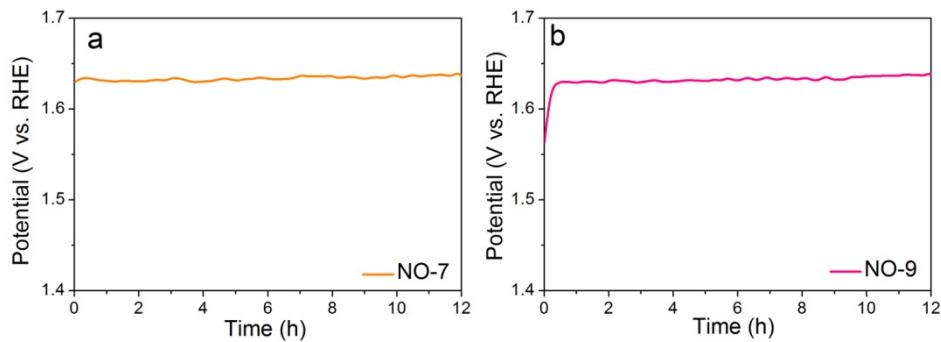



**Fig. S4.** Wide-angle powder XRD pattern of NO-7, NO-8, and NO-9.

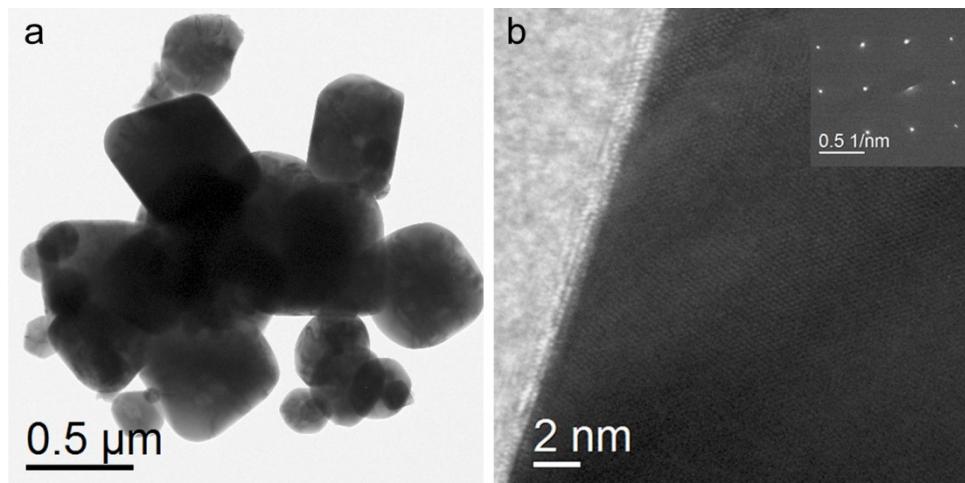



**Fig. S5.** Wide-angle powder XRD pattern of NO-NH, NO-KH, and NO-NC.

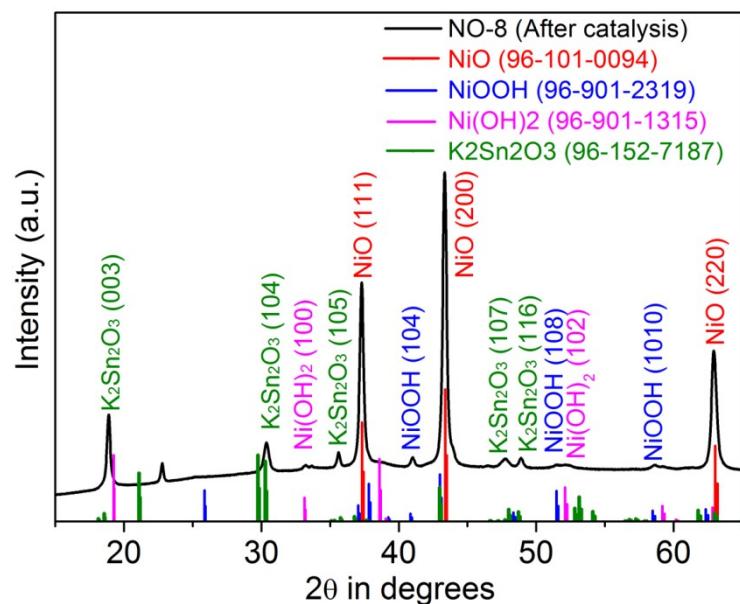



**Fig. S6.** FT IR images of material obtained in different condition. a) Different pH: NH-7 (pH 7), NH-8 (pH 8), NH-9 (pH 9), and b) different bases: NH-8 ( $\text{NH}_4\text{Cl-NH}_4\text{OH}$ ), NH-NH ( $\text{NaOH}$ ), NH-KH ( $\text{KOH}$ ), NH-NC ( $\text{NaHCO}_3$ ).




**Fig. S7.** Raman spectra of NiO octahedrons (NO-8 sample).




**Fig. S8.** Long-term chronopotentiometric stability test (HER) of NiO octahedrons applying a constant current  $-10 \text{ mA/cm}^2$ . a) NO-7 and b) NO-9.



**Fig. S9.** Long-term chronopotentiometric stability test (OER) of NiO octahedrons applying a constant current  $10 \text{ mA/cm}^2$ . a) NO-7 and b) NO-9.



**Fig. S10.** TEM analysis of NO-8 after OER LSV measurement.



**Fig. S11.** Powder XRD analysis of NO-8 after OER LSV measurement.

**Table S1.** Comparison of HER catalytic performance with other catalysts on recently available literatures.

| Sl No | Material                                               | Medium      | Overpotential (mV) @10 mA/cm <sup>2</sup> | Tafel Slope (mV/dec) | Ref                                                             |
|-------|--------------------------------------------------------|-------------|-------------------------------------------|----------------------|-----------------------------------------------------------------|
| 1     | Co <sub>3</sub> O <sub>4</sub> nanocube {001} (NF)     | 1 (M) KOH   | 284                                       | 97                   | <i>ACS Appl. Mater. Interfaces</i> <b>2017</b> , 9, 27736–27744 |
| 2     | Co <sub>3</sub> O <sub>4</sub> nanobelt {110} (NF)     | 1 (M) KOH   | 260                                       | 78                   | <i>ACS Appl. Mater. Interfaces</i> <b>2017</b> , 9, 27736–27744 |
| 3     | Co <sub>3</sub> O <sub>4</sub> octahedron {111} (NF)   | 1 (M) KOH   | 195                                       | 50                   | <i>ACS Appl. Mater. Interfaces</i> <b>2017</b> , 9, 27736–27744 |
| 4     | Co <sub>3</sub> O <sub>4</sub> nanosheet {112} (NF)    | 1 (M) KOH   | 232                                       | 59                   | <i>ACS Appl. Mater. Interfaces</i> <b>2017</b> , 9, 27736–27744 |
| 5     | CoSn(OH) <sub>6</sub> Nanocube {220} (GCE)             | 3 (M) KOH   | 262.7                                     | 309.5                | <i>Electrochimica Acta</i> , <b>2024</b> , 507, 145190          |
| 6     | CoSn(OH) <sub>6</sub> Cube {400} (GCE)                 | 3 (M) KOH   | 191.4                                     | 348.9                | <i>Electrochimica Acta</i> , <b>2024</b> , 507, 145190          |
| 7     | CoSn(OH) <sub>6</sub> Octahedron {422} (GCE)           | 3 (M) KOH   | 168.8                                     | 268.9                | <i>Electrochimica Acta</i> , <b>2024</b> , 507, 145190          |
| 8     | CoSn(OH) <sub>6</sub> Dodecahedron {420} (GCE)         | 3 (M) KOH   | 161.9                                     | 275.4                | <i>Electrochimica Acta</i> , <b>2024</b> , 507, 145190          |
| 9     | CuMn <sub>2</sub> O <sub>4</sub> {400} {200} (Cu-Foam) | 1 (M) KOH   | 116                                       | 115                  | <i>J. Mater. Chem. A</i> , <b>2022</b> , 10, 17710–17720        |
| 10    | NiSe <sub>2</sub> Nanoctahedron {211} @NF              | 1 (M) KOH   | 345 @ 50 mV/dec                           | 104                  | <i>ACS Appl. Energy Mater.</i> <b>2025</b> , 8 (4), 2088–2102   |
| 11    | NiMoN Nanowire {100} (NF)                              | 1 (M) KOH   | 290 @ 50 mV/dec                           | 46                   | <i>ChemSusChem</i> <b>2018</b> , 11, 3198 – 3207                |
| 13    | NiO (Calcined at 300 °C) (GCE)                         | 1 (M) KOH   | 424                                       | 105                  | <i>Int. J. Hydrogen Energy</i> , <b>2018</b> , 43, 21665–21674  |
| 14    | NiO (Calcined at 400 °C) (GCE)                         | 1 (M) KOH   | 498                                       | 125                  | <i>Int. J. Hydrogen Energy</i> , <b>2018</b> , 43, 21665–21674  |
| 15    | NiO (Calcined at 500 °C) (GCE)                         | 1 (M) KOH   | 553                                       | 145                  | <i>Int. J. Hydrogen Energy</i> , <b>2018</b> , 43, 21665–21674  |
| 16    | NiO Hollow Microsphere (GCE)                           | 1 (M) KOH   | 372                                       | 165                  | <i>Electrochimica Acta</i> , <b>2020</b> , 361, 137040          |
| 17    | NiO <sub>x</sub> -SC (FTO)                             | 0.5 (M) KOH | 350                                       | 89                   | <i>ACS Omega</i> , <b>2020</b> , 5, 10641–10650                 |
| 18    | Octahedron NiO {111} (FTO)                             | 1 (M) KOH   | 369.92                                    | 239.8                | <i>This Work</i>                                                |

**TableS2.** Comparison of OER catalytic performance with other catalysts on recently available literatures.

| Sl No | Material                                                                 | Medium      | Overpotential (mV) @10 mA/cm <sup>2</sup> | Tafel Slope (mV/dec) | Ref                                                              |
|-------|--------------------------------------------------------------------------|-------------|-------------------------------------------|----------------------|------------------------------------------------------------------|
| 1     | Co <sub>3</sub> O <sub>4</sub> {111} truncatedOctahedron (Carbon Paper)  | 1 (M) KOH   | 423                                       | 78.8                 | <i>ACS Energy Lett.</i> <b>2024</b> , 9, 2182–2192               |
| 2     | Cubic Co <sub>3</sub> O <sub>4</sub> {001} containing Ovs (Carbon Paper) | 1 (M) KOH   | 375                                       | 58.2                 | <i>ACS Energy Lett.</i> <b>2024</b> , 9, 2182–2192               |
| 3     | Co <sub>3</sub> O <sub>4</sub> {001} Cubic (Carbon Paper)                | 1 (M) KOH   | 460                                       | 96.9                 | <i>ACS Energy Lett.</i> <b>2024</b> , 9, 2182–2192               |
| 4     | Co <sub>3</sub> O <sub>4</sub> {111} Truncated Octahedron (Carbon Paper) | 1 (M) KOH   | 460                                       | 107.3                | <i>ACS Energy Lett.</i> <b>2024</b> , 9, 2182–2192               |
| 5     | Co <sub>3</sub> O <sub>4</sub> nanocube {001} (NF)                       | 1 (M) KOH   | 362                                       | 119                  | <i>ACS Appl. Mater. Interfaces</i> <b>2017</b> , 9, 27736–27744  |
| 6     | Co <sub>3</sub> O <sub>4</sub> nanobelt {110} (NF)                       | 1 (M) KOH   | 341                                       | 101                  | <i>ACS Appl. Mater. Interfaces</i> <b>2017</b> , 9, 27736–27744  |
| 7     | Co <sub>3</sub> O <sub>4</sub> octahedron {111} (NF)                     | 1 (M) KOH   | 320                                       | 49                   | <i>ACS Appl. Mater. Interfaces</i> <b>2017</b> , 9, 27736–27744  |
| 8     | Co <sub>3</sub> O <sub>4</sub> nanosheet {112} (NF)                      | 1 (M) KOH   | 312                                       | 73                   | <i>ACS Appl. Mater. Interfaces</i> <b>2017</b> , 9, 27736–27744  |
| 9     | CoSn(OH) <sub>6</sub> Nanocube {220} (GCE)                               | 3 (M) KOH   | 235                                       | 108.2                | <i>Electrochimica Acta</i> , <b>2024</b> , 507, 145190           |
| 10    | CoSn(OH) <sub>6</sub> Cube {400} (GCE)                                   | 3 (M) KOH   | 233.6                                     | 103.9                | <i>Electrochimica Acta</i> , <b>2024</b> , 507, 145190           |
| 11    | CoSn(OH) <sub>6</sub> Octahedron {422} (GCE)                             | 3 (M) KOH   | 232                                       | 89.7                 | <i>Electrochimica Acta</i> , <b>2024</b> , 507, 145190           |
| 12    | CoSn(OH) <sub>6</sub> Dodecahedron {420} (GCE)                           | 3 (M) KOH   | 228                                       | 76.1                 | <i>Electrochimica Acta</i> , <b>2024</b> , 507, 145190           |
| 13    | CuMn <sub>2</sub> O <sub>4</sub> {400} {200} (Cu-Foam)                   | 1 (M) KOH   | 406                                       | 135                  | <i>J. Mater. Chem. A</i> , <b>2022</b> , 10, 17710–17720         |
| 14    | NiSe <sub>2</sub> Nanoctahedron {211} @NF                                | 1 (M) KOH   | 119                                       | 165                  | <i>ACS Appl. Energy Mater.</i> <b>2025</b> , 8 (4), 2088–2102    |
| 15    | NiO {111} Microwave (GCE)                                                | 0.1 (M) KOH | 414                                       | 50.8                 | <i>ACS Appl. Mater. Interfaces</i> <b>2024</b> , 16, 62142–62154 |
| 16    | NiO {111} Solvothermal (GCE)                                             | 0.1 (M) KOH | 405                                       | 52.3                 | <i>ACS Appl. Mater. Interfaces</i> <b>2024</b> , 16, 62142–62154 |
| 17    | NiO (Calcined at 300°C) (GCE)                                            | 1 (M) KOH   | 370                                       | 156                  | <i>Int. J. Hydrogen Energy</i> , <b>2018</b> , 43, 21665–21674   |
| 18    | NiO (Calcined at                                                         | 1 (M)       | 470                                       | 188                  | <i>Int. J. Hydrogen Energy</i> ,                                 |

|    |                                                                                           |             |     |       |                                                       |
|----|-------------------------------------------------------------------------------------------|-------------|-----|-------|-------------------------------------------------------|
|    | 400°C) (GCE)                                                                              | KOH         |     |       | <b>2018, 43, 21665–21674</b>                          |
| 19 | NiO (Calcined at 500°C) (GCE)                                                             | 1 (M) KOH   | 540 | 290   | <i>Int. J. Hydrogen Energy, 2018, 43, 21665–21674</i> |
| 20 | NiO <sub>x</sub> -SC (FTO)                                                                | 0.5 (M) KOH | 300 | 57    | <i>ACS Omega, 2020, 5, 10641–10650</i>                |
| 21 | NiPc350 (FTO)                                                                             | 0.1 NaOH    | 610 | 147   | <i>ChemistrySelect, 2018, 3, 11357–11366</i>          |
| 24 | NiCoO (FTO)                                                                               | 1 (M) KOH   | 460 | 191   | <i>ACS Omega, 2023, 8, 9539–9546</i>                  |
| 26 | Ni <sub>x</sub> Co <sub>y</sub> Mn <sub>x</sub> O <sub>4</sub> (Calcined at 500 °C) (FTO) | 1 (M) KOH   | 436 | 78    | <i>ACS Omega, 2024, 9, 43503–43512</i>                |
| 27 | Ni <sub>x</sub> Co <sub>y</sub> Mn <sub>x</sub> O <sub>4</sub> (Calcined at 700 °C) (FTO) | 1 (M) KOH   | 465 | 84    | <i>ACS Omega, 2024, 9, 43503–43512</i>                |
| 28 | NiO Octahedron{111}(FTO)                                                                  | 1 (M) KOH   | 389 | 65.67 | <b><i>This Work</i></b>                               |