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1. Materials and General Methods

All the solvents and reactants were purchased from commercialized companies and used as
received without further purification except for specifying otherwise.

"H NMR was recorded on the 400 MHz (Bruker ARX400) and 13C NMR spectra were recorded on
the Bruker 101 MHz spectrometer at room temperature with CDCl; as the solvent and
tetramethylsilane (TMS) as the internal standard. ESI high resolution mass-spectra (HRMS) were
acquired on a Bruker Apex IV FTMS mass spectrometer. UV-Vis spectra were acquired on the
Hitachi U-3900H UV-Vis spectrophotometer. Transient and delayed photoluminescence spectra were
performed on the Hitachi F-7000 or Edinburgh Instruments FLLS980 fluorescence spectrophotometer
equipped with a continuous xenon lamp (Xel) and a microsecond flashlamp, respectively.
Phosphorescence lifetime were acquired on the Edinburgh Instruments FLS980 fluorescence
spectrophotometer (A.x = 365 nm) equipped with a microsecond flashlamp. The emission lifetime of
the samples was determined by the Time Correlated Single Photon Counting (TCSPC) technique
using an Edinburgh Instruments mini-tau lifetime spectrophotometer equipped with an EPL 375
pulsed diode laser.

TD-DFT calculations were conducted on Gaussian 09 program with a method similar to previous
literature.l!) Ground state (Sy) geometries of BCz, NBCz, 2NBCz-1, 2NBCz-2, BCz-PhCOOH,
NBCz-PhCOOH, 2NBCz-1-PhCOOH and 2NBCz-2-PhCOOH monomer were directly optimized in
vacuum condition. On the basis of this, exciton energies in singlet (S,) and triplet states (T,) were
estimated through a combination of TDDFT and B3LYP at the 6-311+G (p, d) level. We have to
emphasize that the computed singlet and triplet levels in this article refer to emission (excited state
optimization). Kohn-Sham frontier orbital analysis was subsequently performed based on the results

of theoretical calculation to elucidate the mechanisms of possible singlet-triplet intersystem crossings,



in which the channels from S; to T, were believed to share part of the same transition orbital
compositions. Herein, energy levels of the possible T, states were considered to lie within the range
of ES; £0.3 eV.[I Spin-orbital couplings (SOC) matrix elements were conducted through the Beijing
Density Functional (BDF) program based on optimized or single crystal structures at the B3LYP/6-

311G* level.



2. Syntheses and characterizations

The synthesis methods of the substrates (NBCz and 2NBCz-2) used in this paper are the same as our
previous work.[3] 2NBCz-1 is commercially available and was used after further purification. The
detailed syntheses of BCz-PhCOOH, NBCz-PhCOOH, 2NBCz-1-PhCOOH and 2NBCz-2-PhCOOH

are shown as follows.
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Scheme S1. The synthetic route to BCz-PhCOOH.

BCz-PhCN: 7H-benzo[c]carbazole (250 mg, 1.15 mmol), sodium tert-butoxide (194 mg, 1.73
mmol), 4-fluorobenzonitrile (167 mg, 0.138 mmol), 2 mL DMF were added to a 10 mL Shrek bottle.
The mixed solution was refluxed at room temperature for 12 h in nitrogen atmosphere. After the
reaction was over, the resultant mixture was cooled down to room temperature and the solvent was
removed under reduced pressure. The crude product was purified by silica gel column using
petroleum ether and ethyl acetate (Vpg/Vga, 10:1) as the eluent and pure product was obtained as
white powder. Yield: 71%.

'"H NMR (400 MHz, DMSO-d;) 6 8.90 (d, J = 8.4 Hz, 1H), 8.75 (dd, J=7.1, 2.0 Hz, 1H), 8.24 —
8.16 (m, 2H), 8.16 — 8.09 (m, 1H), 8.04 — 7.90 (m, 3H), 7.79 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H), 7.66 (d,

J=8.9 Hz, 1H), 7.61 — 7.38 (m, 4H).



BCz-PhCOOH: BCz-PhCN (159.19 mg, 0.5 mmol) and NaOH (300 mg, 7.5 mmol) were placed in
a 25 mL round-bottom flask, followed by the addition of 2.5 mL ethanol and 2.5 mL deionized
water. A magnetic stir bar was added, and a spherical condenser was installed. The mixture was
refluxed at 100 °C for 24 h. After the reaction was complete, the flask was cooled to room
temperature, and 1.25 mL HCI was added for acidification until the pH was 1-2. The reaction was
continued for another 2 h, then filtered under vacuum, washed with deionized water, and dried in a
vacuum drying oven for 24 h to obtain a white product. Yield: 23%.

'"H NMR (400 MHz, DMSO-d;) 6 13.16 (s, 1H), 8.91 (d, /= 8.3 Hz, 1H), 8.76 (dd, J=7.1, 1.8 Hz,
1H), 8.34 — 8.22 (m, 2H), 8.12 (d, /= 8.1 Hz, 1H), 8.00 (d, /=9.0 Hz, 1H), 7.89 — 7.73 (m, 3H),
7.67 (d,J=8.9 Hz, 1H), 7.62 — 7.41 (m, 4H).

BCNMR (101 MHz, DMSO-dq) & 167.24, 140.75, 139.47, 137.98, 131.78, 130.74, 129.70, 129.48,
128.27,127.95, 127.66, 125.51, 124.01, 123.84, 123.63, 122.57, 121.81, 115.51, 112.02, 110.80.

HR-ESI-MS Calcd. For Cy3H5NO, [M+H]*: 338.110. Found: 338.3423.
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Scheme S2. The synthetic route to NBCz-PhCOOH.

NBCz-PhCN: 7H-indolo[2,3-c]quinoline (109.13 mg, 0.5 mmol), sodium tert-butoxide (84.15 mg,
0.75 mmol), 4-fluorobenzonitrile (72.66 mg, 0.6 mmol), 2 mL. DMF were added to a 10 mL Shrek
bottle. The mixed solution was refluxed at room temperature for 12 h in nitrogen atmosphere. After
the reaction was over, the resultant mixture was cooled down to room temperature and the solvent

was removed under reduced pressure. The crude product was purified by silica gel column using



petroleum ether and ethyl acetate (Vpg/VEga, 1:1) as the eluent and pure product was obtained as
white powder. Yield: 68%.

'"H NMR (400 MHz, DMSO-d;) 6 9.20 (s, 1H), 8.94 (dd, /= 8.3, 1.4 Hz, 1H), 8.86 (d, J= 8.0 Hz,
1H), 8.28 — 8.20 (m, 3H), 8.07 (d, J = 8.5 Hz, 2H), 7.85 (ddd, /= 8.3, 6.9, 1.4 Hz, 1H), 7.77 (ddd, J
=8.3,6.9, 1.4 Hz, 1H), 7.71 — 7.66 (m, 2H), 7.57 (ddd, /= 8.1, 5.1, 3.0 Hz, 1H).

NBCz-PhCOOH: NBCz-PhCN (31.94 mg, 0.1 mmol) and NaOH (60 mg, 1.5 mmol) were placed in
a 25 mL round-bottom flask, followed by the addition of 2.5 mL ethanol and 2.5 mL deionized water.
A magnetic stir bar was added, and a spherical condenser was installed. The mixture was refluxed at
100 °C for 24 h. After the reaction was complete, the flask was cooled to room temperature, and 1.25
mL HCI was added for acidification until the pH was 1-2. The reaction was continued for another 2
h, then filtered under vacuum, washed with deionized water, and dried in a vacuum drying oven for
24 h to obtain a white product. Yield: 25%.

"H NMR (400 MHz, DMSO-d;) 6 13.33 (s, 1H), 9.41 (s, 1H), 9.09 (d, J= 8.2 Hz, 1H), 8.98 (d, J =
8.1 Hz, 1H), 8.44 — 8.24 (m, 3H), 7.98 (dq, /= 8.3, 2.0 Hz, 3H), 7.94 — 7.87 (m, 1H), 7.77 (dt, J =
15.7,5.1 Hz, 2H), 7.64 (ddd, J = 8.1, 6.7, 1.3 Hz, 1H).

BCNMR (101 MHz, DMSO-dq) 6 167.05, 142.83, 138.96, 134.94, 133.25, 131.97, 131.92, 131.63,
131.46, 130.21, 129.86, 127.91, 126.65, 125.16, 124.92, 123.74, 123.63, 123.30, 121.04, 112.25.

HR-ESI-MS Calcd. For C»,H4N,O, [M+H]": 339.1055. Found: 339.1149.
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Scheme S3. The synthetic route to 2NBCz-1-PhCOOH.




2NBCz-1-PhCN: 6H-indolo[2,3-b]quinoxaline (109.6 mg, 0.5 mmol), sodium tert-butoxide (84.15
mg, 0.75 mmol), 4-fluorobenzonitrile (72.66 mg, 0.6 mmol), 2 mL DMF were added to a 10 mL
Shrek bottle. The mixed solution was refluxed at room temperature for 12 h in nitrogen atmosphere.
After the reaction was over, the resultant mixture was cooled down to room temperature and the
solvent was removed under reduced pressure. The crude product was purified by silica gel column
using petroleum ether and ethyl acetate (Vpg/VEga, 10:1) as the eluent and pure product was obtained
as white powder. Yield: 63%.

'"H NMR (400 MHz, CDCl;) 6 8.62 (d, J= 7.7 Hz, 1H), 8.41 —8.35 (m, 1H), 8.15 — 8.09 (m, 1H),
8.07 — 7.95 (m, 4H), 7.80 (dtd, /= 8.0, 6.9, 5.1 Hz, 2H), 7.72 (dt, /= 7.8, 1.0 Hz, 1H), 7.66 (dt, J =
8.3,0.9 Hz, 1H), 7.54 (ddd, /= 8.0, 7.2, 1.1 Hz, 1H).

2NBCz-1-PhCOOH: 2NBCz-1-PhCN (32 mg, 0.1 mmol) and NaOH (60 mg, 1.5 mmol) were
placed in a 25 mL round-bottom flask, followed by the addition of 2.5 mL ethanol and 2.5 mL
deionized water. A magnetic stir bar was added, and a spherical condenser was installed. The
mixture was refluxed at 100 °C for 24 h. After the reaction was complete, the flask was cooled to
room temperature, and 1.25 mL HCI was added for acidification until the pH was 1-2. The reaction
was continued for another 2 h, then filtered under vacuum, washed with deionized water, and dried
in a vacuum drying oven for 24 h to obtain a white product. Yield: 23%.

'"H NMR (400 MHz, DMSO-d;) 6 13.20 (s, 1H), 8.50 (d, /J=7.7 Hz, 1H), 8.33 (dd, /J=8.2, 1.7 Hz,
1H), 8.20 (d, J= 8.5 Hz, 2H), 8.08 — 8.02 (m, 1H), 8.00 — 7.88 (m, 2H), 7.86 — 7.74 (m, 3H), 7.68 —
7.59 (m, 1H), 7.56 — 7.52 (m, 1H).

BCNMR (101 MHz, DMSO-dq) 6 167.69, 167.22, 145.68, 144.24, 140.23, 139.76, 139.35, 132.16,
131.27, 130.39, 129.76, 129.53, 129.46, 128.26, 127.46, 127.33, 122.89, 122.71, 119.87, 111.30.

HR-ESI-MS Calcd. For C;;H;3N30, [M+H]": 340.1008. Found: 340.1097.
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Scheme S4. The synthetic route to 2NBCz-2-PhCOOH.

2NBCz-2-PhCN: 6H-pyrazino[2,3-b]carbazole (109.6 mg, 0.5 mmol), sodium tert-butoxide (84.15
mg, 0.75 mmol), 4-fluorobenzonitrile (72.66 mg, 0.6 mmol), 2 mL DMF were added to a 10 mL
Shrek bottle. The mixed solution was refluxed at room temperature for 12 h in nitrogen atmosphere.
After the reaction was over, the resultant mixture was cooled down to room temperature and the
solvent was removed under reduced pressure. The crude product was purified by silica gel column
using petroleum ether and ethyl acetate (Vpg/VEga, 5:1) as the eluent and pure product was obtained
as white powder. Yield: 56%.

'"H NMR (400 MHz, CDCl;) 6 8.88 (d, J= 3.4 Hz, 3H), 8.37 (d, J= 7.7 Hz, 1H), 8.06 (s, 1H), 8.03
—7.96 (m, 2H), 7.91 — 7.84 (m, 2H), 7.61 (ddd, J=8.4, 7.1, 1.2 Hz, 1H), 7.53 — 7.43 (m, 2H).
2NBCz-2-PhCOOH: 2NBCz-2-PhCN (32 mg, 0.1 mmol) and NaOH (60 mg, 1.5 mmol) were placed
in a 25 mL round-bottom flask, followed by the addition of 2.5 mL ethanol and 2.5 mL deionized
water. A magnetic stir bar was added, and a spherical condenser was installed. The mixture was
refluxed at 100 °C for 24 h. After the reaction was complete, the flask was cooled to room
temperature, and 1.25 mL HCI was added for acidification until the pH was 1-2. The reaction was
continued for another 2 h, then filtered under vacuum, washed with deionized water, and dried in a

vacuum drying oven for 24 h to obtain a white product. Yield: 20%.



'H NMR (400 MHz, DMSO-dg) & 13.25 (s, 1H), 9.17 — 8.84 (m, 3H), 8.60 (d, J= 7.7 Hz, 1H), 8.34
— 8.18 (m, 2H), 8.04 — 7.81 (m, 3H), 7.64 (t, J= 7.7 Hz, 1H), 7.53 (dd, J= 17.7, 8.2 Hz, 1H), 7.45
(td, J=7.4,3.7 Hz, 1H).

13C NMR (151 MHz, DMSO-dq) § 167.26, 145.37, 143.71, 143.20, 142.01, 141.61, 138.06, 131.92,
130.14, 129.59, 128.67, 126.89, 122.96, 122.70, 121.75, 120.57, 110.43, 105.94, 40.53.

HR-ESI-MS Calcd. For C;;H3N30, [M+H]": 340.1008. Found: 340.1121.



3. NMR spectra and HR-MS of mentioned molecules
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Figure S1. 'H NMR spectrum of BCz-PhCN in DMSO-d.
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Figure S2. 'H NMR spectrum of BCz-PhCOOH in DMSO-d.
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Figure S4. 'H NMR spectrum of NBCz-PhCOOH in DMSO-d;,
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Figure S6. 'H NMR spectrum of 2NBCz-1-PhCOOH in DMSO-d.
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Figure S7. '"H NMR spectrum of 2NBCz-2-PhCN in CDCl;.
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Figure S8. 'H NMR spectrum of 2NBCz-2-PhCOOH in DMSO-d.
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Figure S9. 3C NMR spectrum of BCz-PhCOOH in DMSO-d.
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Figure S10. 3C NMR spectrum of NBCz-PhCOOH in DMSO-d.
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Figure S11. 3C NMR spectrum of 2NBCz-1-PhCOOH in DMSO-d.
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Figure S12. 3C NMR spectrum of 2NBCz-2-PhCOOH in DMSO-d.
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Figure S13. HR-MS spectrum of BCz-PhCOOH.
20250821-ZYJ-2-POS 43 (0.182) 1: TOF MS ES+
100 7 - 226e6
339 1149
=
340 1168
7
‘ ERELS
] 1 1
12928790 595 1235 305 1454 314139 2520 55 9649 27T 5390540 | | 2421223 3551106 361.0956 3671411369 0985 3770739 _383.0800.385.1795 3932207 399.0520 4051913
T T P t - T T t A T e T T T s T ? ooyt t e T B e T + miz
265 200 205 300 305 310 315 320 325 330 336 340 345 350 356 360 365 370 375 380 385 390 305 400 405 210

Figure S14. HR-MS spectrum of NBCz-PhCOOH.
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Figure S15. HR-MS spectrum of 2NBCz-1-PhCOOH.
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Figure S16. HR-MS spectrum of 2NBCz-2-PhCOOH.



4. Photopysical properties in the solution
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Figure S17. Absorption spectra of (a) BCz, NBCz, 2NBCz-1 and 2NBCz-2, (b) BCz-PhCOOH,
NBCz-PhCOOH, 2NBCz-1-PhCOOH and 2NBCz-2-PhCOOH in THF solution (20 uM).



5. Photophysical properties in the solid state.
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Figure S18. (a) Steady-state and 1 ms-delayed PL spectra of BCz-PhCOOH powder, and (b) decay
spectra at ambient condition (A = 365 nm).
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Figure S19. (a) Steady-state and 1 ms-delayed PL spectra of NBCz-PhCOOH powder, and (b)
decay spectra at ambient condition (Aex = 365 nm).
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Figure S20. (a) Steady-state and 1 ms-delayed PL spectra of 2NBCz-1-PhCOOH powder, and
(b) decay spectra at ambient condition (Aex = 365 nm).



(a) INBCz2-PhCOOH smdra b) INBCz 2 PLCOOH
= L0t 1 ms delay g %
= 468 nm —=456 us
Eq}a 10° = S33nm —=480pus
43 sl + 619nm =43 ps
H wn
g 06 £ 10
- ' =
@ D4F / (4]
2 B 10°F
= ;
g 02 ] . =L
LE / : ~.:d-¢-|-|-|-ﬂ--n—~- ‘---
Lo f—— wek - -

100 500 500 00 300 00 200 400 600 800 1000

Wavelength (nm) Time (ps)

Figure S21. (a) Steady-state and 1 ms-delayed PL spectra of 2NBCz-2-PhCOOH powder, and
(b) decay spectra at ambient condition (Aex = 365 nm).

6. Photophysical properties in the PVA film
Table S1. Phosphorescence quantum yield of the PVA films.

sample Phosphorescence quantum yield (%)
BCz 14.86
BCz-PhCOOH 21.09
NBCz 15.36
NBCz-PhCOOH 17.41
2NBCz-1 0.98
2NBCz-1-PhCOOH 22.74
2NBCz-2 0.85

2NBCz-2-PhCOOH 1.73




7. Chemical shift of BCz-PhCOOH and BCz-PhCOOH@PVA
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Figure S22. 'H NMR spectrum of BCz-PhCOOH@PVA films in DMSO-d.



Table S2. Chemical shift of BCz-PhCOOH and BCz-PhCOOH@PVA.

Chemical shift (ppm) BCz-PhCOOH BCz-PhCOOH@PVA
a 8.92 8.90
b 8.77 8.73
c 8.29 8.18
d 8.13 8.11
e 8.01 7.98
f 7.85 7.77
g 7.79 7.62
h 7.68 7.57
i 7.59 7.55
] 7.57 7.50
k 7.51 7.48

1 7.47 7.43




8. HOMO and LUMO
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Figure S23. The HOMO and LUMO of the single molecule in the BCz-PhCOOH, NBCz-
PhCOOH, 2NBCz-1-PhCOOH and 2NBCz-2-PhCOOH.



9. TD-DFT results
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Figure S24. Energy levels and spin-orbit coupling matrix elements (&) of BCz, NBCz, 2NBCz-1, and
2NBCz-2 based on TD-DFT.

Table S3. TD-DFT calculated singlet and triplet excited states transition configurations of BCz.

Excited State ~ Energy (eV) Transition configuration (%)

T, 2.6101 H-1—L (6.30), H—~L (81.95)

H-2—L (3.33), H-2—~L+2 (2.49),H-1—L (75.23), H—L (8.95),

T, 3.1996
H—L+1 (2.03), H—~L+2 (2.62)

H-3—L (19.26), H-2—L (4.15), H-1—L (10.69), H-1—~L+4

T, 3.5629
(4.23), H—~L+1 (35.36), H—L+2 (15.78)

S 3.6645 H-1—L (10.03), H-1—L+1 (3.45), H—L (82.29)

H-3—L (8.71), H-3—L+1 (4.11), H-2—L (4.29), H-1—L+1
T, 3.8392 (9.37), H-1—L+2 (10.72), H-1—-L+4 (2.74),H—~L (5.33),

H—L+1 (25.53), H—L+2 (19.58)

S, 3.8957 H-1--L (72.47), H—~L (11.10), H—~L+1 (13.56)

Table S4. TD-DFT calculated singlet and triplet excited states transition configurations of NBCz.

Excited State ~ Energy (eV) Transition configuration (%)

T, 2.6568 H-1—-L (18.36), H—L (70.27), H—~L+1 (2.76)



H-2—L (3.69), H-2—L+2 (2.27), H-1—L (64.51), H—~L

T, 3.0789
(22.69), H—=L+1 (2.05)

H-4—L (26.51), H-2—L (12.50), H-1—L (6.44), H-1—L+1
Ts 3.5941

(5.83), H-1—L+4 (4.98), H—L+1 (12.55), H—>L+2 (17.89)
Sy 3.6366 H-1—L (4.67), H-1-L+1 (3.58), H—L (88.62)
T, 3.7593 H-3—L (91.68), H-3—~L+8 (4.09)

H-4—L (13.67), H-4—L+2 (2.21), H-2—~L (30.60), H-1—L
Ts 3.8530

(4.93), H-1—~L+2 (14.67), H—L+1 (9.29), H—~L+2 (11.95)

Table S5. TD-DFT calculated singlet and triplet excited states transition configurations of 2NBCz-

1.
Excited State  Energy (eV) Transition configuration (%)
T1 2.4413 H-2—L (3.17), H-1—L (15.57), H—L (73.46)
T2 2.7842 H-1—L (77.32), H—L (18.12)
T3 3.0963 H-3—L (94.30), H-3—L+5 (2.39)
S1 3.2620 H—L (96.57)
T4 3.4059 H-2—L (70.69), H—L (4.89), H—L+1 (7.90), H—~L+3 (5.84)

Table S6. TD-DFT calculated singlet and triplet excited states transition configurations of 2NBCz-

2.

Excited State  Energy (eV) Transition configuration (%)




T1 2.5285 H-4—L (4.18), H-1—L (11.77), H—L (75.73), H—L+2 (2.80)

T2 2.8947 H-4—L (2.09), H-3—L (6.68), H-1—L (72.70), H—L (14.74)
T3 2.9862 H-2—L (90.88), H-2—~L+1 (5.09)
S1 3.3213 H—L (94.94)

H-4—L (4.59), H-3—L (9.78), H-3—L+2 (3.05), H-1—L+1

T4 3.5057

(2.31), H-1—>L+4 (4.87), H—~L+1 (50.24), H—L+2 (14.07)
S2 3.5118 H-1—L (90.03), H—L+1 (7.02)
S3 3.5512 H-2—L (97.74)

Table S7. TD-DFT calculated singlet and triplet excited states transition configurations of BCz-

PhCOOH.
Excited State ~ Energy (eV) Transition configuration (%)
T, 2.5991
H—L+1 69.2%, H-1—L+1 11.1%, H—~L 8.4%
T, 2.9846
H—L 49.2%, H-1—L 30.4%, H-4—L 11.3%
T; 3.1949
H-1—L+1 70.5%, H—L+1 14.9%
Sy 3.2372
H—L 98.4%
T, 3.3108
H-1—L 49.9%, H—L 37.6%
S, 3.4629
H-1—L 98.3%
Ts 3.5713
H—L+3 29.1%, H-3—L+1 18.9%, H—~L+4 14.9%, H-1—L+1
8.4%
S; 3.6458
H—L+1 81.3%, H-1-L+1 10.5%
T 3.8090

H-4—L 44.7%, H-5—L+2 20.4%, H-1—L 14.0%

Table S8. TD-DFT calculated singlet and triplet excited states transition configurations of NBCz-



PhCOOH.

Excited State  Energy (eV) Transition configuration (%)
T, 2.6435
H—L+146.2%, H-1—L+1 22.6%, H—~L 15.9%
T, 3.0416
H—L 35.8%, H-1—L+1 29.2%, H-1—L 16.4%

T; 3.0691

H—L+1 38.0%, H—L 23.9%, H-1—L+1 18.7%, H-5—L 6.9%
Sy 3.4136

H—L 96.3%
S, 3.5735
H—L+1 89.3%

T, 3.5894

H-4—L+1 20.8%, H—L+4 13.3%, H-1—L 10.2%, H-1—L+3

6.9%, H—L+3 6.6%, H-3—L+1 5.1%

Ts 3.6465

H-1—L 41.9%, H—L 15.1%, H-1—L+1 13.6%, H-5—L 7.8%
T 3.6913

H-2—L+1 50.8%, H-3—L+1 25.9%, H-2—L 9.6%
S; 3.7386
H-1—L 94.7%

T 3.8566

H-5—L 14.9%, H-3—L+1 10.6%, H-1—L+1 9.7%, H-1—L

9.0%, H-6—~L+2 7.8%, H-2—L+1 7.1%, H—>L+3 7.0%, H-

1—=L+4 6.7%

Table S9. TD-DFT calculated singlet and triplet excited states transition configurations of 2NBCz-

1-PhCOOH.
Excited State ~ Energy (eV) Transition configuration (%)
T, 2.4254
H—L 70.6%, H-1—L 17.4%
T, 2.7510
H-1—L 73.0%, H—L 20.6%
T; 3.0553

H-2—L 73.7%, H-3—L 19.2%



S 3.1242

H—L 97.4%

T4 3.1495

H—L+1 68.4%, H-5—L+1 8.0%, H-4—L+1 6.2%
Ts 3.3715

H-3—L 56.8%, H-2—L 14.3%, H—>L+2 5.6%, H—>L 5.2%
S, 3.5507
H-2—L 76.9%, H-3—L 20.7%

Te 3.7133

H—L+2 29.2%, H-6—L 14.0%, H-1—L+2 9.1%
S; 3.7316

H—L+1 87.5%, H-1—L 9.4%

Table S10. TD-DFT calculated singlet and triplet excited states transition configurations of 2NBCz-

2-PhCOOH.
Excited State ~ Energy (eV) Transition configuration (%)
T, 2.3810
H—L 78.3%, H-1—L 7.0%, H-3—L 6.2%
T, 2.7550
H-2—L 86.9%, H-2—L+2 5.2%
T; 3.0126
H—L+1 45.6%, H-1—L 31.2%, H—L 7.6%
T, 3.1049
H-1—L 43.4%, H—L+1 35.4%
S 3.1605
H—L 97.7%
S, 3.3407
H-2—L 95.4%
S; 3.4137
H—L+1 98.7%
Ts 3.6242
H—L+2 63.5%, H-3—L 19.5%
T 3.7826

H-4—L+1 17.7%, H-1—L+1 10.6%, H-1—>L+2 8.1%, H—>L+5




7.7%, H—>L+1 7.4%, H-5—L+3 7.2%, H-5—L+1 5.9%
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