Supporting Information

Copper-Catalyzed *anti*-Stereoselective 1,2-Silylamination of Alkynes

Kelu Yan,*,† Xiaoyu Wang,† Jiangwei Wen,† Qiuyun Li,‡ Jianjing Yang,† Xinru

Tao,[†] Shenghao Pan,[†] Haosheng Liang[†] and Xiu Wang[†]

[†]Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China.

[‡]Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangshu 224051, P. R. China

E-mail: yankl@qfnu.edu.cn

Contents

Table of Contents	S2
1. Experimental Section: General Considerations	S3
2. Table S1. Optimization of the Reaction Conditions	S3–S4
3. Synthetic Procedures	S4–S7
(a) General Procedure for the Copper-Catalyzed Preparation of 4, 5, 6 and 7	S4–S5
(b) Gram-Scale Preparation of 4a	S5
(c) Derivatization Reaction of $4a$ for the Preparation of 8	S5–S6
(d) Derivatization Reaction of $4a$ for the Preparation of 9	S 6
(e) Derivatization Reaction of 4a for the Preparation of 11	S6-S7
4. X-ray Crystallography of 4a	S7–S8
5. Mechanism Research	S8-S43
(a) The Effect of <i>N</i> -Protecting Groups	S8–S9
(b) Intermolecular Competition Experiments	S9–S30
(c) Deuterium-Labeling Experiments	S30-S32
(d) Radical Scavenger Experiments	S32–S36
(e) Competition Experiments for the Hammett Study	S36-S37
(f) Reaction Progress Kinetic Analysis	S37–S43
6. Characterization of 4, 5, 6, 7, 8, 9 and 11	S43-S86
7. References	S 86
8. NMR Spectra	S87–S184

1. Experimental Section:

General Considerations. All products were prepared under argon atmosphere using standard Schlenk technique. ¹H, ¹³C, and ¹⁹F data were recorded with Bruker Advance III (500 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. All chemical shifts are reported relative to tetramethylsilane and d-solvent peaks, respectively. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quartet (q), and multiplet (m). Column chromatography was performed on silica gel 200-300 mesh. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm). High-resolution mass spectrometry (HRMS) were done on an electrospray ionization (ESI) Fourier transform mass spectrometer (FTMS, Thermo QExactive Focus). Gas chromatograms were completed on a gas chromatograph (Shimazu: Nexis GC-2030). X-ray diffraction (XRD) patterns were recorded on a Rigaku smartlab system at 45 kV and 200 mA with Cu-Ka radiation. 2-Picolinamidederivatives were prepared following a literature procedure.¹ Unless otherwise noted below, all other compounds have been reported in the literature or are commercially available from Aldrich, Acros, Alfa Aesar, and Energy Chemical Company and used as received without any further purification.

	PA O N N 1a	DOEt + Ph 2a	+ Ph ₃ SiH Catalyst Oxidant Solvent 3a Temp.	(15 mol%) (3 equiv) (1 mL) , 20 h PA Ph Ph 4a	[∼] COOEt Ì SiPh ₃
Entry	Catalyst	Oxidant	Solvent	T (°C)	Yield (%) ^[b]
1	CuF ₂	DTBP	Toluene	100	63
2	Cu(OAc) ₂	DTBP	Toluene	100	47
3	Cu(OTf) ₂	DTBP	Toluene	100	0
4	$Cu(acac)_2$	DTBP	Toluene	100	45
5	CuSO ₄	DTBP	Toluene	100	60
6	CuCl ₂	DTBP	Toluene	100	52
7	CuBr ₂	DTBP	Toluene	100	30

2. Table S1. Optimization of the Reaction Conditions^a

8	Cu ₂ O	DTBP	Toluene	100	58
9	CuCl	DTBP	Toluene	100	53
10	CuBr	DTBP	Toluene	100	40
11	CuI	DTBP	Toluene	100	35
12	ZnCl ₂	DTBP	Toluene	100	17
13	MnCl ₂	DTBP	Toluene	100	15
14	FeCl ₂	DTBP	Toluene	100	24
15	FeCl ₃	DTBP	Toluene	100	27
16	NiCl ₂	DTBP	Toluene	100	39
17	-	DTBP	Toluene	100	0
18	CuF ₂	TBHP	Toluene	100	37
19	CuF ₂	TBPB	Toluene	100	55
20	CuF ₂	DCP	Toluene	100	48
21	CuF ₂	BPO	Toluene	100	41
22	CuF ₂	$K_2S_2O_8$	Toluene	100	0
23	CuF ₂	-	Toluene	100	0
24	CuF ₂	DTBP	o-xylene	100	54
25	CuF ₂	DTBP	<i>m</i> -xylene	100	61
26	CuF ₂	DTBP	<i>p</i> -xylene	100	55
27	CuF ₂	DTBP	mesitylene	100	50
28	CuF ₂	DTBP	4-chlorotoluene	100	48
29	CuF ₂	DTBP	PhCF ₃	100	74
30	CuF ₂	DTBP	DCE	100	16
31	CuF ₂	DTBP	DMF	100	11
32	CuF ₂	DTBP	PhCF ₃	110	79
33	CuF ₂	DTBP	PhCF ₃	120	82
34	CuF ₂	DTBP	PhCF ₃	130	81
35 ^[c]	CuF ₂	DTBP	PhCF ₃	120	54

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), **3a** (0.6 mmol), catalyst (15 mol%), oxidant (3 equiv) and in the solvent (1 mL) for 20 h under nitrogen atmosphere. DTBP = di-*tert*-butyl peroxide. TBHP = *tert*-Butyl hydroperoxide. TBPB = *tert*-Butyl peroxybenzoate. DCP = Dicumyl peroxide. BPO = Benzoyl Peroxide. PA = 2-Pyridylacyl. [b] Isolated yields. [c] Under air.

3. Synthetic Procedures

(a) General Procedure for the Copper-Catalyzed Preparation of 4, 5, 6 and 7

A mixture of substituted amides (1) (0.2 mmol, 1.0 equiv), alkynes (2) (0.3 mmol, 1.5 equiv), silanes (3) (0.6 mmol, 3.0 equiv), CuF_2 (0.03 mmol, 15 mol%), and DTBP (0.6 mmol, 3 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry PhCF₃ (1 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 20 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by column chromatography on silica gel with EtOAc/petroleum ether.

(b) Gram-Scale Preparation of 4a

A mixture of ethyl picolinoylglycinate (1a) (3 mmol, 1.0 equiv), phenylacetylene (2a) (4.5 mmol, 1.5 equiv), triphenylsilane (3a) (9 mmol, 3.0 equiv), CuF₂ (15 mol%), and DTBP (3 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry PhCF₃ (15 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 20 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether, the product 4a was affored as a yellow solid in 72% yield (1.229 g, 2.16 mmol).

(c) Derivatization Reaction of 4a for the Preparation of 8²

A mixture of ethyl (E)-N-(1-phenyl-2-(triphenylsilyl)vinyl)-N-picolinoylglycinate (4a)

(0.2 mmol, 1.0 equiv), and AgF (1.5 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry MeOH (2 mL) was added and the mixture was stirred at 90 °C in a pre-heated oil bath for 24 h. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether, the product **8** was affored as a yellow solid in 78% yield (48.5 mg, 0.156 mmol).

(d) Derivatization Reaction of 4a for the Preparation of 9³

A mixture of ethyl (*E*)-*N*-(1-phenyl-2-(triphenylsilyl)vinyl)-*N*-picolinoylglycinate (**4a**) (0.2 mmol, 1.0 equiv), and NIS (5 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry CH₃CN (2 mL) was added and the mixture was stirred at 70 °C in a pre-heated oil bath for 36 h. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether, the product **9** was affored as a yellow solid in 85% yield (95.5 mg, 0.170 mmol).

(e) Derivatization Reaction of 4a for the Preparation of 11⁴

A mixture of ethyl (*E*)-*N*-(1-phenyl-2-(triphenylsilyl)vinyl)-*N*-picolinoylglycinate (**4a**) (0.2 mmol, 1.0 equiv), 1-iodo-4-methoxybenzene (**10**), $Pd(PPh_3)_2Cl_2$ (5 mol%), AgF (2 equiv), and K₂CO₃ (2 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry CH₃CN (2 mL) was added and the mixture was stirred at 80 °C in a pre-heated oil bath for 12 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo

and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether, the product **11** was affored as a yellow solid in 71% yield (59.1 mg, 0.142 mmol).

4. X-ray Crystallography of 4a

Crystal preparation of compound 4a.

Compound 4a (25 mg) was dissolved in 5 mL of dichloromethane/*n*-hexane (v1/v2 = 1:1), and it was crystallized to give crystal as colorless prisms after the solvent was slowly volatilized in 4 days at room temperature (~ 25 °C).

CCDC-2348897 (4a), contain the supplementary crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk/). Thermal ellipsoids are shown at the 30% level. Hydrogen atoms have been omitted for clarity. X-ray crystallographic data is available as Figure S1.

Figure S1. The molecular structure of 4a

Table S2. Crystal Data and Summary of X-ray Data Collection for 4a

Empirical formula	C ₃₆ H ₃₂ N ₂ O ₃ Si	
Formula weight	568.72	
Temperature	273.15 K	
Wavelength	0.71073 A	
Crystal system, space group	triclinic, P-1	

Unit cell dimensions	a = 9.4969(10) A alpha = 78.497(3) deg.
	b = 10.0179(11) A beta = 81.332(3) deg.
	c = 19.138(2) A gamma = 77.856(3) deg.
Volume	1733.0(3) A^3
Z, Calculated density	2, 1.09 g/cm^3
Absorption coefficient	0.102 mm^-1
F(000)	600
Crystal size	0.1 x 0.05 x 0.05 mm
Radiation	MoKa ($\lambda = 0.71073$)
Theta range for data collection	4.222 to 50.698 deg.
Limiting indices	-11<=h<=11, -12<=k<=12, -23<=l<=23
Reflections collected / unique	19028 / 6328 [Rint = 0.0783, Rsigma = 0.1201]
Completeness to theta $= 25.24$	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7457 and 0.6402
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	6328/49/380
Goodness-of-fit on F ²	0.976
Final R indices [I>2sigma(I)]	R1 = 0.0761, wR2 = 0.1870
R indices (all data)	R1 = 0.1700, wR2 = 0.2328
Largest diff. peak and hole	0.43 and -0.40 e.A^-3

5. Mechanism Research

(a) The Effect of N-Protecting Groups

A mixture of substituted amides (1) (0.2 mmol, 1.0 equiv), phenylacetylene (2a) (0.3 mmol,

1.5 equiv), triphenylsilane (**3a**) (0.6 mmol, 3.0 equiv), CuF_2 (15 mol%), and DTBP (3 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry PhCF₃ (1 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 20 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by column chromatography on silica gel with EtOAc/petroleum ether.

(b) Intermolecular Competition Experiments

A mixture of *N*-phenylpicolinamide (39.6 mg, 0.2 mmol, 2.0 equiv), ethyl picolinoylglycinate (41.6 mg, 0.2 mmol, 2.0 equiv), phenylacetylene (**2a**) (10.2 mg, 0.1 mmol, 1.0 equiv), triphenylsilane (**3a**) (52.0 mg, 0.2 mmol, 2.0 equiv), CuF₂ (1.5 mg, 0.015 mmol, 15 mol%), and DTBP (52 uL, 0.3 mmol, 3 equiv) were weighted in a Schlenk sealed tube equipped with a stir bar. Dry PhCF₃ (1.5 mL) was added and the mixture was stirred at 120 °C

in a pre-heated oil bath for 20 h under N_2 atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give a mixture of products **5a** and **4a** at a ratio of 2.2:1.

A mixture of ethyl picolinoylglycinate (41.6 mg, 0.2 mmol, 2.0 equiv), *N*-methylpicolinamide (27.2 mg, 0.2 mmol, 2.0 equiv), phenylacetylene (**2a**) (10.2 mg, 0.1 mmol, 1.0 equiv), triphenylsilane (**3a**) (52.0 mg, 0.2 mmol, 2.0 equiv), CuF₂ (1.5 mg, 0.015 mmol, 15 mol%), and DTBP (52 uL, 0.3 mmol, 3 equiv) were weighted in a Schlenk sealed tube equipped with a stir bar. Dry PhCF₃ (1.5 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 20 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash

column chromatography on silica gel with EtOAc/petroleum ether to give a mixture of products **4a** and **5n** at a ratio of 4.0:1.

A mixture of *N*- methylpicolinamide (27.2 mg, 0.2 mmol, 2.0 equiv), *N*benzylpicolinamide (42.4 mg, 0.2 mmol, 2.0 equiv), phenylacetylene (**2a**) (10.2 mg, 0.1 mmol, 1.0 equiv), triphenylsilane (**3a**) (52.0 mg, 0.2 mmol, 2.0 equiv), CuF₂ (1.5 mg, 0.015 mmol, 15 mol%), and DTBP (52 uL, 0.3 mmol, 3 equiv) were weighted in a Schlenk sealed tube equipped with a stir bar. Dry PhCF₃ (1.5 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 20 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give a mixture of products **5n** and **5i** at a ratio of 1.5:1.

Computational details: All calculations were performed at the DFT level using the Gaussian

09 (Rev D.01) suite of programs. The structure of minima was fully optimized using the hybrid functional M06-2X'. C, H, O and N were described using the triple- ζ Pople-type basis sets (6-311+G(dp)). Bulk solvent effects were represented using the SMD implicit solvent model as implemented in Gaussian. The default cavity parameters, static, and optical dielectric constants for Benzene were used. The nature of optimized stationary points was checked by analytical frequency calculations. Harmonic frequencies were computed to estimate Gibbs energies at 298 K under 1atm pressure using the usual harmonic approximation.

Gibbs free energies account for the change in standard states on going from the gas-phase 1 atm state to the more relevant 1 mol L⁻¹ solution state: $\Box_r G_{1atm} \rightarrow \Box_r G_{1M} = 1.89$ kcal mol⁻¹ for an associative pathway ($\Delta_r n = -1$)..Gas-phase calculations were performed using the CBS-QB3 method, with no additional basis set specified.

Theoretical calculation of pK_a : Continuum solvent pK_a calculations using the direct method employ a thermodynamic cycle (Fig. S2).

$$HA (aq. 1M) \xrightarrow{\bigtriangleup G^{*}_{aq}} H^{\dagger}(aq. 1M) + A^{-}(aq. 1M)$$

$$\downarrow -\bigtriangleup G^{*}_{solv}(HA) \qquad \uparrow \bigtriangleup G^{*}_{solv}(H^{+}) \qquad \uparrow \bigtriangleup G^{*}_{solv}(A^{-})$$

$$HA (g. 1M) \xrightarrow{\bigtriangleup G^{*}_{gas}} H^{\dagger}(g. 1M) + A^{-}(aq. 1M)$$

Figure S2. Thermodynamic Cycle Used in pK_a Calculations with Direct Method. The dissociation of an acid can be represented as follows

 $HA(aq) \longrightarrow H^{+}(aq) + H^{+}(aq)$ (1)

The directly calculated pK_a is obtained using the equation: $pK_a = \frac{\Delta G_{aq}^*}{2.303RT}$ (1) (the unit of ΔG_{aq}^* is J mol⁻), where ΔG_{aq}^* represents the difference in free energies in solution between the acid (HA), its conjugate base (A⁻), and the free proton (H⁺). For computational efficiency, ΔG_{aq}^* can using the thermodynamic cycle shown in Fig. S3, following Eqs. (2)–(5). $\Delta G_{aq}^* = \Delta G_{gas}^* + \delta \Delta G_{solv}^*$ (2) where ΔG_{gas}^{*} and $\delta \Delta G_{solv}^{*}$ are $\Delta G_{gas}^{*} = \Delta G_{gas}^{*}(H^{+}) + \Delta G_{gas}^{*}(HA)_{(3)}$ $\delta \Delta G_{solv}^{*} = \Delta G_{solv}^{*}(H^{+}) + \Delta G_{solv}^{*}(A^{-}) + \Delta G_{solv}^{*}(HA)_{(4)}$

In this work, the gas-phase Gibbs free energies and solvation energies of HA and its anion A⁻ were calculated. The most recent experimental-theoretical values were used for the gas-phase Gibbs free energy of H⁺ ($G_{gas}^{*}(H^{+}) = 6.28 \ kcal \ mol^{-}$) and the solvation energy of H⁺ in water ($G_{gas}^{*}(H^{+}) = 265.9 \ kcal \ mol^{-}$) Gas-phase energy calculations were performed for a standard state of 1 atm, while solvation energies were referenced to 1 mol/L. To account for this difference, a correction factor of 1.89 kcal mol⁻ (RT^{ln 24.46}) was added to the gas-phase energies.

Therefore, ΔG_{aq}^* is obtained as:

$$\Delta G_{aq}^{*} = \Delta G_{gas}^{*}(A^{-}) + \Delta G_{gas}^{*}(HA) + \Delta G_{solv}^{*}(A^{-}) - \Delta G_{solv}^{*}(HA) - 270 \ kcal \ mol^{-1} \ (5)$$

Table S2 presents the gas-phase energies of A, B, C, and D, along with their corresponding anions, calculated at different levels of theory. Using these energy values, the theoretically derived **pKa** values are computed and shown in Figure S3.

Figure S3. Theoretically Derived pK_a Values.

Table S3. Gas-phase and Solvation Energies of A, B, C, D and Its Anion Calculated atDifferent Levels of Theory.

Geometry	G_{gas}^{*}	E_{gasb}	E _{solv} c	$\Delta G_{solv^{\mathrm{d}}}^{*}$
Α	-646.981271	-639.884102	-639.897197	-0.013095
A -anion	-646.423282	-639.184449	-639.239031	-0.054582
В	-722.384729	-714.161957	-714.174223	-0.012265

B -anion	-721.816134	-713.441661	-713.493412	-0.051752
С	-455.581328	-450.479504	-450.487637	-0.00813
C-anion	-454.994512	-449.740482	-449.794922	-0.05444
D	-686.208528	-678.068795	-678.082827	-0.014031
D -anion	-685.630554	-677.987684	-678.043076	-0.055392

^aThe free energy calculated by CBS-QB3. ^bThe electronic energy calculated by M06-2X in gas phase. ^cThe electronic energy calculated by M06-2X in benzene phase. ^d $\Delta G_{solv}^{*} = E_{solv} - E_{gas}$, unit is a.u.

Geometries for all the optimized compounds

A, gas phase, C	BS-QB3		
С	2.44432100	1.61425000	-2.10929300
С	2.03401800	3.86892300	-2.06236700
С	0.65362700	3.67447400	-2.07706800
С	0.17234200	2.37082000	-2.10959700
С	1.08281200	1.31761500	-2.12609300
Н	3.18499700	0.82032500	-2.12133400
Н	0.00353900	4.53894800	-2.06280500
Н	-0.89440500	2.17840200	-2.12189400
Н	0.75107100	0.28676000	-2.15143400
С	2.57338400	5.28378800	-2.02700100
Ν	3.93626500	5.32620600	-2.01606800
Н	4.36464300	4.40652200	-2.03329500
Ο	1.81952800	6.24450100	-2.01124400
Ν	2.91605600	2.86146000	-2.07809700
С	4.79190500	6.44071700	-1.98541900
С	6.17264600	6.19347400	-1.98138000
С	4.32889100	7.76345500	-1.95923700
С	7.07634000	7.24763200	-1.95177000
Н	6.53256100	5.16955000	-2.00162800
С	5.24874900	8.80836900	-1.92971100
Н	3.26660200	7.95270900	-1.96236800
С	6.61986600	8.56446000	-1.92569300
Н	8.14011900	7.03803400	-1.94909600
Н	4.88118600	9.82839400	-1.90960300
Н	7.32412600	9.38778000	-1.90258200
A -anion, gas ph	ase, CBS-QB3		
С	1.28552000	2.44027200	-3.52886100

С	2.28032200	3.68921800	-1.87845100
С	1.61896900	2.93813000	-0.89101600
С	0.76772000	1.90865300	-1.26374000
С	0.58954800	1.64465600	-2.62106500
Η	1.17394800	2.26672600	-4.59925300
Η	1.80943600	3.20473400	0.14002400
Η	0.24967900	1.31933200	-0.51202100
Η	-0.06453000	0.85141300	-2.96874300
С	3.20842700	4.81439500	-1.39893600
Ν	3.79984600	5.47832000	-2.38513300
0	3.27933700	4.94974500	-0.15145900
Ν	2.10726200	3.43319400	-3.18559300
С	4.66699700	6.52104800	-2.14424400
С	5.06924000	7.05324900	-0.88704000
С	5.22736800	7.13987400	-3.29339900
С	5.96177600	8.11940700	-0.81334600
Η	4.65900200	6.60220600	0.00422800
С	6.11547600	8.20125800	-3.20619200
Η	4.92384500	6.73783700	-4.25429500
С	6.49713000	8.70852000	-1.95965000
Η	6.24586000	8.49916700	0.16612300
Η	6.51674100	8.64069100	-4.11669700
Η	7.19238200	9.53965600	-1.88627400
A, s	olvent phase, M06-2X, 6-311+G(d	dp)	
С	2.45170500	1.62751600	-2.13744700
С	1.99200100	3.89448100	-2.05517800
С	0.61037500	3.66393800	-2.05783000
С	0.14806300	2.34611100	-2.10186900
С	1.08625500	1.31035100	-2.14321200
Η	3.20271200	0.82631200	-2.16884100
Η	-0.07146500	4.51954600	-2.02492400
Η	-0.92490100	2.12855500	-2.10474300
Η	0.77029200	0.26409100	-2.17916400
С	2.53502800	5.34093900	-2.00527700
Ν	3.95053400	5.30479600	-2.00863600
Η	4.31839600	4.32959700	-2.04286800
0	1.81360000	6.35380300	-1.96900900
Ν	2.94626000	2.90408100	-2.09342500
С	4.83858100	6.41436600	-1.98148600
С	6.23047400	6.18867500	-1.98821500
С	4.34510800	7.73427000	-1.94916500
С	7.10766600	7.27120500	-1.96269500
Η	6.60627500	5.16269100	-2.01328800
C	5 23826200	8 80457800	-1 92423600

Н	3.26096600	7.87341600	-1.94456000
С	6.61920400	8.58207200	-1.93093100
Н	8.18624400	7.08935500	-1.96794500
Н	4.85037700	9.82715800	-1.89973500
Н	7.31317500	9.42566700	-1.91139800
A, gas ph	ase, M06-2X, 6-311+G(dp)		
С	2.44246700	1.61781300	-2.12832600
С	2.00056600	3.88750300	-2.05707400
С	0.61690900	3.66738400	-2.06256000
С	0.14351200	2.35366600	-2.10316500
С	1.07472200	1.31076300	-2.13665300
Н	3.18684100	0.81058300	-2.15435000
Н	-0.05353200	4.53202600	-2.03513300
Н	-0.93076400	2.14431700	-2.10882400
Н	0.75095600	0.26713900	-2.16921300
С	2.54559800	5.33414600	-2.01311300
Ν	3.96085000	5.29824300	-2.01793100
Н	4.33013700	4.32422400	-2.04864500
0	1.82043100	6.34460200	-1.97953600
Ν	2.94936900	2.89091900	-2.08909400
С	4.84546900	6.41231000	-1.98652600
С	6.23801800	6.19369600	-1.99684000
С	4.34322200	7.72855400	-1.94536500
С	7.10964000	7.28116400	-1.96624700
Н	6.62014600	5.17050300	-2.02876600
С	5.23077100	8.80361600	-1.91520100
Н	3.25793900	7.85940200	-1.93857600
С	6.61333300	8.58888900	-1.92537300
Н	8.18904100	7.10584500	-1.97442400
Н	4.83759200	9.82375200	-1.88345800
Н	7.30195400	9.43651300	-1.90168400
A-anion,	solvent phase, M06-2X, 6-311	+G(dp)	
С	2.25499600	1.43794200	-2.05174000
С	2.18709400	3.75639900	-2.04771300
С	0.78153300	3.72027500	-2.13376500
С	0.10560500	2.50541400	-2.17830600
С	0.86349000	1.33043400	-2.13688700
Н	2.86395000	0.52405200	-2.01727000
Н	0.27510400	4.69033100	-2.16041100
Н	-0.98598000	2.46466600	-2.24392600
Н	0.38733200	0.34772100	-2.16836500
С	2.84917300	5.18287900	-1.99819900
Ν	4.24167700	5.09026900	-1.95598400
0	2.04308400	6.16221700	-2.00666400

Ν	2.96303400	2.61481200	-2.00366600
С	4.91014400	6.32757300	-1.91522000
С	6.34426700	6.28503800	-1.87186200
С	4.33027400	7.63743100	-1.91265800
С	7.11402000	7.43730700	-1.83309100
Н	6.82288000	5.30307600	-1.87249700
С	5.11658900	8.78249100	-1.87316700
Н	3.23784400	7.66422500	-1.94501700
С	6.51311000	8.70487700	-1.83270000
Н	8.20483300	7.35748400	-1.80204000
Н	4.63478000	9.76561300	-1.87281700
Н	7.12246800	9.60917800	-1.80106400
A-anion, gas ph	ase, M06-2X,6-311+G(0	dp)	
С	2.24169200	1.42633600	-2.07379500
С	2.20455200	3.74441800	-2.05414300
С	0.79568100	3.72309100	-2.11496300
С	0.10314700	2.51869800	-2.15584900
С	0.84777800	1.33408900	-2.13474500
Н	2.83913800	0.50464000	-2.05636900
Н	0.31219600	4.70562900	-2.12654400
Н	-0.98943300	2.49090500	-2.20300900
Н	0.36011300	0.35752600	-2.16464200
С	2.86643200	5.17359100	-2.01242800
Ν	4.25657500	5.07993200	-1.95673000
0	2.05021200	6.14643100	-2.03594700
Ν	2.96947400	2.59289600	-2.03163800
С	4.91937900	6.32249300	-1.91695700
С	6.35347400	6.29116700	-1.85881800
С	4.32901700	7.62846100	-1.92787600
С	7.11320500	7.45049400	-1.81597800
Н	6.83875300	5.31262100	-1.84910800
С	5.10554400	8.77979100	-1.88436800
Н	3.23631500	7.64325000	-1.97252700
С	6.50285700	8.71377000	-1.82794100
Н	8.20408400	7.37978400	-1.77231400
Н	4.61618100	9.75893900	-1.89437100
Н	7.10493600	9.62275100	-1.79396900
B , gas phase, C	BS-QB3		
C	2.09440100	1.83292500	-1.66054700
С	1.67159100	4.06493200	-1.96693400
С	0.45532600	3.79301100	-2.60163200
С	0.06770100	2.46941100	-2.75807400
С	0.90321900	1.46351900	-2.27814800
Н	2.77290600	1.07799200	-1.27323700

Η	-0.14322700	4.62342400	-2.94996000
Η	-0.86920300	2.22461200	-3.24557100
Η	0.64166400	0.41686700	-2.37814800
С	2.05701200	5.52211600	-1.81733200
Ν	3.22574300	5.86235900	-1.20544500
Η	3.37741000	6.86422100	-1.16315600
0	1.30662400	6.38641800	-2.25241000
Ν	2.47746500	3.10289500	-1.50429800
С	4.28297200	5.07361000	-0.60587400
Η	4.75460500	4.39111600	-1.31639600
Η	3.92847800	4.44993400	0.21780100
С	5.34213500	6.02258500	-0.07184600
0	5.29401100	7.22590800	-0.14509800
0	6.34323000	5.33487900	0.49503100
С	7.43217000	6.11906200	1.05132800
Η	7.86090900	6.73117000	0.25490800
Η	7.02339700	6.79259400	1.80765800
С	8.43807200	5.14793000	1.63229400
Η	8.82547600	4.47963900	0.86038100
Η	9.27761200	5.69928000	2.06336000
Η	7.98471700	4.54124200	2.41902100
B -ar	nion, gas phase, CBS-QB3		
С	2.30604400	1.89640300	-1.96998200
С	2.20509700	4.18743400	-2.21810700
С	1.01462700	4.22408400	-1.46593400
С	0.49459900	3.05568900	-0.94155200
С	1.14973500	1.84694300	-1.20573200
Η	2.84455100	0.97921600	-2.20690600
Η	0.52740000	5.18152100	-1.33942200
Η	-0.41302800	3.07256500	-0.34429800
Η	0.77375100	0.90034600	-0.83120000
С	2.67602200	5.50373200	-2.86747000
Ν	3.90781800	5.95922700	-2.78752400
Ο	1.72354000	6.06904200	-3.46143300
Ν	2.84122700	3.02662900	-2.45446600
С	4.89349100	5.24082400	-2.03259300
Η	5.89744600	5.46669600	-2.41673900
Η	4.80895900	4.14040100	-2.06208400
С	4.93763600	5.57296700	-0.54783200
Ο	4.04561800	5.97938000	0.15124500
0	6.19036000	5.30940800	-0.02555200
С	6.32700400	5.50459300	1.38543100
Η	6.07461200	6.53891400	1.63917800
Η	5.61616800	4.86263600	1.91601500

С	7.76166100	5.17252500	1.75598700
Η	8.45804500	5.82358000	1.22138500
Η	7.91983700	5.30392600	2.83127200
Н	7.99733900	4.13767800	1.49506400
B , so	olvent phase, M06-2X, 6-311+G(dp)		
С	2.18875000	1.82673700	-2.31536900
С	1.73670900	4.07839800	-2.06107900
С	0.35407600	3.83401400	-2.02132500
С	-0.11099000	2.52310300	-2.12835800
С	0.82795100	1.49784900	-2.27708900
Н	2.93860600	1.03316000	-2.43654200
Н	-0.32317200	4.68677800	-1.91233500
Н	-1.18264800	2.30240800	-2.09870000
Н	0.51510100	0.45377100	-2.36506400
С	2.19296400	5.55038200	-1.96717400
Ν	3.60120700	5.76322500	-1.83962700
Н	3.84400900	6.75810200	-1.60477400
0	1.38951000	6.49421700	-2.08614800
Ν	2.69126000	3.09947000	-2.21204100
С	4.47802500	4.88483200	-1.02897700
Н	5.07193200	4.19596000	-1.65482100
Н	3.91722600	4.27920300	-0.29675200
С	5.43194600	5.86593000	-0.27510500
0	5.33438600	7.09905700	-0.36303500
0	6.37859300	5.18017200	0.48637500
С	7.25953900	6.12774800	1.18123900
Η	7.77795600	6.77280600	0.44665200
Η	6.66397100	6.78366200	1.84420200
С	8.27497900	5.30395700	1.99774900
Η	8.86894800	4.66465300	1.33513000
Η	8.94961100	5.98167300	2.53323700
Η	7.75597200	4.67238500	2.72740600
B , ga	as phase, M06-2X, 6-311+G(dp)		
С	2.17451700	1.80684100	-2.23642600
С	1.72766000	4.06517200	-2.04643700
С	0.34311700	3.83295900	-2.10804600
С	-0.12623100	2.52576400	-2.23419500
С	0.81178000	1.49027900	-2.29882800
Η	2.92364700	1.00548200	-2.29006600
Н	-0.32683000	4.69725500	-2.06209500
Η	-1.19882900	2.31503800	-2.28400400
Н	0.49630400	0.44841500	-2.39861100
С	2.17412800	5.54038400	-1.94085900
Ν	3.57410500	5.76862800	-1.77352000

Н	3.80621000	6.76545700	-1.54132700
0	1.36362300	6.47549000	-2.08160700
Ν	2.68237400	3.07675000	-2.11081500
С	4.45565800	4.89062500	-0.97063100
Н	5.03522700	4.19261500	-1.59937800
Н	3.90165700	4.29107200	-0.22790100
С	5.42439700	5.87114500	-0.23493700
0	5.32564600	7.10464000	-0.31149900
0	6.39323400	5.18345000	0.50185100
С	7.28538700	6.13453700	1.17561700
Н	7.77351500	6.79040500	0.43021600
Н	6.70396400	6.78160600	1.85934000
С	8.33345500	5.31337200	1.95516600
Н	8.90770900	4.68223400	1.26839100
Н	9.02063700	5.99099100	2.47379700
Н	7.84035700	4.67304700	2.69448100
B -anion, solvent pl	nase, M06-2X, 6-311	+G(dp)	
С	1.33314400	1.91666500	-0.91690000
С	1.98517000	3.89097600	-1.95919800
С	1.18434200	3.55125100	-3.06983600
С	0.45272700	2.37446500	-3.10394800
С	0.53059300	1.52740700	-1.98888500
Н	1.40268100	1.26664500	-0.03365200
Н	1.22347500	4.32622100	-3.84984600
Н	-0.16853100	2.10667700	-3.96439300
Н	-0.02134200	0.58549700	-1.95175500
С	2.72622900	5.31804300	-2.17782300
Ν	3.62286500	5.86833000	-1.30152900
0	2.37777700	5.86688400	-3.27350500
Ν	2.07573300	3.07550300	-0.85004900
С	3.87583900	5.02755500	-0.08303400
Н	4.27896600	4.01759700	-0.28980700
Н	2.99245700	4.88400000	0.56879900
С	4.94399800	5.77098400	0.77704200
0	4.76741700	6.59788600	1.68167700
0	6.25187000	5.38611300	0.37236200
С	7.25286000	6.13331800	1.13046000
Н	7.14407900	7.22137300	0.95875800
Н	7.13186100	5.96185600	2.21758600
С	8.64666300	5.65728600	0.66628700
Н	8.77308800	5.84001300	-0.40655000
Н	9.42893600	6.19924200	1.21024300
Н	8.76666300	4.58457100	0.85424300

B-anion, gas phase, M06-2X, 6-311+G(dp)

С	1.84738900	2.02561400	-2.36509300
С	2.32274500	4.29651300	-2.10575900
С	1.27821700	4.39003000	-1.15557900
С	0.53245600	3.27282500	-0.79652400
С	0.82412300	2.05216000	-1.41665200
Н	2.08356900	1.08086700	-2.87398200
Н	1.07023600	5.37217100	-0.72258300
Н	-0.26680700	3.34186100	-0.05279400
Н	0.26743900	1.14478700	-1.17452200
С	3.02012400	5.68359700	-2.55631700
Ν	4.38468000	5.84504000	-2.60882700
0	2.16330100	6.57882100	-2.83214400
Ν	2.61868500	3.10050900	-2.74025300
С	5.12903900	4.61580200	-2.17476800
Н	6.17556000	4.69823200	-2.51546300
Н	4.71274800	3.66162400	-2.54332700
С	5.17722200	4.52295900	-0.61614500
0	4.34319000	4.04527700	0.16616700
0	6.33428200	5.20358000	-0.11820200
С	6.28921400	5.25458800	1.33896000
Н	5.36026000	5.74347800	1.68968800
Н	6.29971600	4.23627200	1.77454100
С	7.52564700	6.05055700	1.81767800
Н	7.50640700	7.06224200	1.39850200
Н	7.53392700	6.12060400	2.91133300
Н	8.44619300	5.55634400	1.48881500
C, gas phase	e, CBS-QB3		
С	2.05715800	1.80464100	-3.07195000
С	2.14711600	3.76604300	-1.89113400
С	0.95762900	3.48151100	-1.22226900
С	0.30537600	2.28906800	-1.51336600
С	0.86387600	1.43098000	-2.45695400
Н	2.52277500	1.16129400	-3.81286000
Н	0.58254200	4.19547600	-0.50121400
Н	-0.62203600	2.03228900	-1.01402400
Н	0.38975200	0.49160200	-2.71466300
С	2.86787500	5.06233900	-1.58309300
Ν	4.00912300	5.23168400	-2.29018500
Н	4.24388400	4.48586300	-2.93104700
С	4.85628500	6.39930800	-2.15429900
0	2.42348200	5.85456400	-0.76324500
Н	4.40224600	7.05573300	-1.41331700
Н	5.85979100	6.12184100	-1.81747200
Ν	2.69137200	2.94658800	-2.79997100

Н	4.94136300	6.93784000	-3.10309800
C-anion, ga	as phase, CBS-QB3		
С	2.33951200	2.07821900	-2.86662700
С	2.04063300	4.23604700	-2.11117600
С	0.94577800	3.81567200	-1.32910800
С	0.58412200	2.48100800	-1.30481700
С	1.29360200	1.57695100	-2.10422600
Н	2.90890600	1.41187700	-3.51498200
Н	0.39865300	4.57649400	-0.78768700
Н	-0.24488500	2.14139800	-0.68908800
Н	1.03945500	0.52216800	-2.13758700
С	2.33779000	5.74955800	-2.16576600
Ν	3.54644800	6.24407100	-2.07771000
С	4.69084700	5.37984700	-1.89781300
0	1.26566300	6.40871700	-2.28496700
Н	5.47336000	5.93570500	-1.35660700
Н	4.51387600	4.45154000	-1.32396600
Ν	2.72782100	3.36076900	-2.86689400
Н	5.14720500	5.05582700	-2.85058200
C, solvent	phase, M06-2X, 6-311+G(dp)	
С	2.08034200	1.82855800	-3.07632800
С	2.13464700	3.77587900	-1.82735200
С	0.91658500	3.46526000	-1.20796300
С	0.26821300	2.27584500	-1.54801900
С	0.86311800	1.44204000	-2.49961500
Н	2.55891800	1.18599400	-3.82795500
Н	0.50397900	4.16366100	-0.47345900
Н	-0.68355800	2.00262700	-1.08134200
Н	0.39261300	0.50118900	-2.79780300
С	2.86271500	5.09490700	-1.47725200
Ν	4.15292100	5.11313600	-2.05548000
Н	4.26434200	4.38228200	-2.78936400
С	4.87576000	6.38703100	-2.20061300
0	2.38380700	5.98446700	-0.75206100
Н	4.52041100	7.06145600	-1.40813300
Н	5.95925400	6.23198500	-2.08109000
Ν	2.74957700	2.98543600	-2.77193700
Н	4.69596600	6.86691100	-3.17839400
C, gas phas	se, M06-2X, 6-311+G(dp)		
С	2.06862400	1.82368100	-3.08343700
С	2.13605900	3.77286900	-1.84006400
С	0.92496900	3.46343400	-1.20581300
С	0.27290700	2.27342900	-1.53582700
С	0.85798700	1.43780600	-2.49241300

Н	2.53881000	1.18002100	-3.83905200
Н	0.52459800	4.16627200	-0.46863700
Н	-0.67318400	2.00020000	-1.05839800
Н	0.38464700	0.49645800	-2.78332900
С	2.86350700	5.09288100	-1.49302600
Ν	4.13999200	5.12529900	-2.09544900
Н	4.26563200	4.38963000	-2.82006000
С	4.87857200	6.39327600	-2.19215900
0	2.39144400	5.97491800	-0.75421600
Н	4.46163500	7.06592300	-1.42846400
Н	5.95061500	6.24079400	-1.99221900
Ν	2.74260900	2.98172600	-2.79014000
Н	4.77018800	6.87004800	-3.18145700
C-anion, solvent pha	ase, M06-2X, 6-311	+G(dp)	
С	2.26560500	2.14167900	-3.16568600
С	2.04558300	4.29314900	-2.28655700
С	1.15744500	3.79063200	-1.30983900
С	0.83722800	2.43626000	-1.26332200
С	1.40597800	1.58510800	-2.21559700
Н	2.71761500	1.49009300	-3.92666400
Н	0.72334600	4.48632300	-0.58661900
Н	0.15682600	2.04381300	-0.50128600
Н	1.18692500	0.51530700	-2.22398300
С	2.31673300	5.88248700	-2.37692300
Ν	3.53014400	6.38465100	-1.99646400
С	4.46827000	5.30646100	-1.54656200
0	1.31632200	6.54621600	-2.79137600
Н	5.39964800	5.77902000	-1.19106200
Н	4.09928400	4.68532500	-0.70646100
Ν	2.61690500	3.46725300	-3.24283200
Н	4.76493100	4.59209200	-2.33837000
C-anion, gas phase,	M06-2X, 6-311+G	(dp)	
С	2.21132100	2.10694600	-3.17110600
С	2.09767800	4.28062300	-2.32211400
С	1.18825600	3.82723700	-1.33657600
С	0.80445700	2.49139600	-1.27043800
С	1.32887900	1.60139900	-2.21366500
Н	2.63006000	1.42475600	-3.92422700
Н	0.78973900	4.55347300	-0.62310600
Н	0.10936500	2.14066400	-0.50173900
Н	1.05976600	0.54352700	-2.20829500
С	2.40058700	5.87098600	-2.44653800
Ν	3.58724700	6.37347200	-1.99726300
С	4.48289400	5.28851300	-1.47540900

0	1.42585900	6.51276700	-2.94774400
Н	5.40274400	5.75299400	-1.08225200
Н	4.05766700	4.69208500	-0.64366900
Ν	2.62822500	3.41284000	-3.26845400
Н	4.80404300	4.55219000	-2.23700600
D , gas phase, C	CBS-QB3		
С	2.34904500	2.20926500	-3.40817600
С	2.13715400	3.78242700	-1.75666000
С	0.74509600	3.73634800	-1.81462400
С	0.15113400	2.87232900	-2.72734300
С	0.96682800	2.09182400	-3.54210500
Н	3.01735100	1.61670300	-4.02604300
Н	0.17431800	4.37161400	-1.15052100
Н	-0.92844100	2.80783100	-2.80266700
Н	0.54685000	1.40497500	-4.26700700
С	2.79770200	4.71909100	-0.76677100
Ν	4.15206000	4.68454300	-0.80068700
Н	4.56555800	4.04191100	-1.46404900
С	4.99025100	5.48975500	0.07100100
Ο	2.13300700	5.42867300	-0.02432800
Н	4.31194400	6.15686200	0.60912200
Н	5.47746400	4.85329800	0.81825500
С	6.04399200	6.28197100	-0.67889300
С	5.70409600	7.04974600	-1.79809500
С	7.37133800	6.27940700	-0.24530200
С	6.66952500	7.79940100	-2.46282700
Н	4.67787000	7.05528700	-2.14853600
С	8.34035200	7.03210700	-0.90730600
Н	7.65012800	5.68301900	0.61788600
С	7.99168300	7.79406700	-2.01870800
Н	6.39039000	8.39082300	-3.32789200
Н	9.36659200	7.01755500	-0.55729500
Н	8.74347400	8.37792100	-2.53772400
Ν	2.92927000	3.03497800	-2.53566200
D , gas phase, C	CBS-QB3		
С	2.11356400	2.06630100	-1.15373700
С	2.31466500	3.93791800	-2.48324600
С	0.91523600	4.09478900	-2.49024600
С	0.11999400	3.21791400	-1.77372000
С	0.73016200	2.16268100	-1.08802900
Н	2.62912300	1.25188800	-0.64561300
Н	0.50852600	4.89616400	-3.09261900
Н	-0.95987400	3.33782800	-1.75465000
Н	0.15144300	1.43736600	-0.52528700

С	3.13901200	4.90604800	-3.35865300
Ν	4.31478100	5.36518200	-2.99470500
С	4.92001400	5.02700300	-1.73808500
0	2.53626200	5.19832000	-4.42414600
Н	4.21872100	4.98752800	-0.88322700
Н	5.39163000	4.02801200	-1.74443200
С	6.01069900	6.02342700	-1.35592400
С	6.73385600	5.86973500	-0.16624800
С	6.31990500	7.10694100	-2.18158300
С	7.73260600	6.77132300	0.19371000
Н	6.50619700	5.02961000	0.48608000
С	7.31995100	8.01205600	-1.82596000
Н	5.74555300	7.19166100	-3.09708400
С	8.03178800	7.85184400	-0.63809400
Η	8.27866200	6.63316100	1.12293500
Н	7.54557000	8.84890500	-2.48152900
Н	8.80998900	8.55733100	-0.36177900
Ν	2.89717500	2.93000000	-1.81253500
D, s	solvent phase, M06-2X,6-311+G(dp)		
С	2.43084100	2.20414500	-3.32722500
С	2.09918400	3.85548600	-1.72154300
С	0.70420200	3.82319000	-1.91087300
С	0.16695900	2.93425400	-2.85560800
С	1.04742500	2.10967100	-3.57649400
Η	3.13723700	1.56065300	-3.88743200
Η	0.06999500	4.49785700	-1.31159700
Η	-0.92118800	2.88318900	-3.02927100
Η	0.67059100	1.39711200	-4.32752800
С	2.73059100	4.82940000	-0.67684900
Ν	4.12485000	4.63547800	-0.68810500
Η	4.42894500	3.91594500	-1.38661000
С	5.05633200	5.39173100	0.16292900
0	2.09116900	5.62792700	0.03867800
Η	4.41231100	6.05633900	0.78408300
Η	5.61390700	4.71458800	0.84942100
С	6.07046300	6.23579600	-0.64128000
С	5.64612600	6.99264100	-1.75321900
С	7.42863600	6.26628500	-0.26825100
С	6.56457000	7.76879600	-2.47693900
Η	4.58462500	6.96336500	-2.04931900
С	8.34845600	7.04466700	-0.99087600
Η	7.76576100	5.67274700	0.59747500
С	7.91804100	7.79731700	-2.09605300
Н	6.22412100	8.35724900	-3.34444500

Н	9.40889700	7.06118400	-0.69106700
Н	8.63925300	8.40623600	-2.66462400
Ν	3.00373200	3.06048400	-2.41033500
D -anion, gas	phase, M06-2X, 6-311+G(dp)	
С	2.51109800	2.18558100	-3.27171600
С	2.15949800	3.88027600	-1.71779900
С	0.77887300	3.91061600	-1.99514900
С	0.25890300	3.02930700	-2.95636300
С	1.14271900	2.15025900	-3.60601600
Н	3.21944400	1.50013600	-3.77662100
Н	0.14529400	4.62817000	-1.44727300
Н	-0.81725100	3.02545900	-3.19757200
Н	0.77988400	1.44167800	-4.36729800
С	2.76699400	4.85560000	-0.66076100
Ν	4.13790600	4.55545200	-0.52295300
Н	4.46284100	3.83519400	-1.21128400
С	5.05464800	5.38725200	0.27602400
0	2.12815100	5.73273000	-0.04353900
Н	4.39220000	6.06680000	0.85979000
Н	5.63539400	4.76318100	0.99137700
С	6.03210500	6.21486200	-0.58817700
С	5.53695000	7.00723500	-1.64512600
С	7.41792900	6.18949100	-0.33909800
С	6.41371300	7.76361300	-2.43773600
Н	4.45194500	7.02185700	-1.84009100
С	8.29725200	6.94847500	-1.13086600
Н	7.80984800	5.56951400	0.48390800
С	7.79678900	7.73584400	-2.18104800
Н	6.01842100	8.38049600	-3.26087800
Н	9.38007600	6.92269800	-0.92807200
Н	8.48566400	8.32931600	-2.80319200
Ν	3.06874600	3.03263900	-2.33542800
D -anion, solv	ent phase, M06-2X, 6-311-	+G(dp)	
С	2.16247800	1.93208400	-1.31877700
С	2.40997000	3.89119900	-2.56076600
С	1.06406900	4.22180500	-2.28835200
С	0.27146600	3.39572800	-1.49658000
С	0.83402200	2.21726700	-0.99570400
Н	2.61873100	1.00492400	-0.94470700
Н	0.65834100	5.14028300	-2.72110500
Н	-0.76741100	3.65632400	-1.27220400
Н	0.25537200	1.53136400	-0.37327800
С	3.22999400	4.82240600	-3.58946100
Ν	4.43741100	5.36212900	-3.24575300

С	4.88090100	4.99320000	-1.87136200
0	2.62357500	4.99030000	-4.69280000
Н	4.07969900	4.98781200	-1.10337500
Н	5.34017500	3.98324600	-1.80688400
С	5.95572700	5.99823700	-1.38171600
С	6.58189400	5.87601600	-0.13042800
С	6.31622300	7.06801400	-2.21064700
С	7.54332500	6.80411300	0.27784700
Н	6.31241600	5.04554900	0.52879800
С	7.27653900	7.99898200	-1.80791900
Н	5.79310500	7.10289500	-3.17441100
С	7.89319900	7.86837000	-0.55936600
Н	8.02436900	6.69918100	1.25435200
Н	7.54921300	8.83000800	-2.46492600
Н	8.64579800	8.59315100	-0.23829100
Ν	2.98460900	2.72634900	-2.08059000
D -anion, gas phase,	M06-2X, 6-311+G	(dp)	
С	2.15836400	1.92870800	-1.32533000
С	2.40357700	3.90525200	-2.54155700
С	1.04221600	4.20444500	-2.30045600
С	0.24524000	3.35787800	-1.53663700
С	0.81722600	2.18461100	-1.03218400
Н	2.62194000	1.00595000	-0.94967100
Н	0.63265300	5.11716800	-2.74163500
Н	-0.80356500	3.59607000	-1.33641600
Н	0.23629800	1.48250600	-0.43102700
С	3.21498500	4.87067700	-3.55573200
Ν	4.41116300	5.42346800	-3.19666000
С	4.84604900	5.03551400	-1.82403300
0	2.59775500	5.04259100	-4.65189700
Н	4.04819100	5.05888900	-1.05217700
Н	5.27284500	4.01196800	-1.75953900
С	5.95387900	6.01107000	-1.34853000
С	6.58903100	5.90121800	-0.10134700
С	6.33552200	7.04881400	-2.20951000
С	7.58152800	6.81271400	0.27290100
Н	6.30370300	5.09592400	0.58177600
С	7.32591400	7.96127600	-1.84127000
Н	5.78585300	7.05258200	-3.16158400
С	7.95235500	7.84439100	-0.59492200
Н	8.06991200	6.71981300	1.24666200
Н	7.61616100	8.76758500	-2.52080300
Н	8.72834300	8.55498400	-0.29984100
Ν	2.98807300	2.74487000	-2.05698400

A mixture of ethyl picolinoylglycinate (1a) (20.8 mg, 0.1 mmol, 1.0 equiv), phenylacetylene (2a) (20.4 mg, 0.2 mmol, 2.0 equiv), triphenylsilane (52.0 mg, 0.2 mmol, 2.0 equiv), methyldiphenylsilane (39.6 mg, 0.2 mmol, 2.0 equiv), CuF₂ (1.5 mg, 0.015 mmol, 15 mol%), and DTBP (52 uL, 0.3 mmol, 3 equiv) were weighted in a Schlenk sealed tube equipped with a stir bar. Dry PhCF₃ (1.5 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 20 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give a mixture of products 4a and 6j at a ratio of 1.9:1.

A mixture of ethyl picolinoylglycinate (1a) (20.8 mg, 0.1 mmol, 1.0 equiv), phenylacetylene (2a) (20.4 mg, 0.2 mmol, 2.0 equiv), methyldiphenylsilane (39.6 mg, 0.2 mmol, 2.0 equiv), dimethyl(phenyl)silane (27.2 mg, 0.2 mmol, 2.0 equiv), CuF₂ (1.5 mg, 0.015 mmol, 15 mol%), and DTBP (52 uL, 0.3 mmol, 3 equiv) were weighted in a Schlenk sealed tube equipped with a stir bar. Dry PhCF₃ (1.5 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 20 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give a mixture of products **6j** and **6l** at a ratio of 1.8:1.

A mixture of ethyl picolinoylglycinate (1a) (20.8 mg, 0.1 mmol, 1.0 equiv), phenylacetylene (2a) (20.4 mg, 0.2 mmol, 2.0 equiv), dimethyl(phenyl)silane (27.2 mg, 0.2 mmol, 2.0 equiv), triethylsilane (23.2 mg, 0.2 mmol, 2.0 equiv), CuF₂ (1.5 mg, 0.015 mmol, 15 mol%), and DTBP (52 uL, 0.3 mmol, 3 equiv) were weighted in a Schlenk sealed tube equipped with a stir bar. Dry PhCF₃ (1.5 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 20 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give a mixture of products **61** and **6m** at a ratio of 1.3:1.

-5.5135

(c) Deuterium-Labeling Experiments

A mixture of ethyl picolinoylglycinate (1a) (0.2 mmol, 1.0 equiv), (ethynyl-d)benzene (2ad) (0.3 mmol, 1.5 equiv), triphenylsilane (3a) (0.6 mmol, 3.0 equiv), CuF_2 (15 mol%), and DTBP (3 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry PhCF₃ (1.5 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 20 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give products **4a**-*d* and **4a**. The ratio of **4a**-*d* and **4a** was 62:38 according to the ¹H NMR.

A mixture of ethyl picolinoylglycinate (1a) (0.2 mmol, 1.0 equiv), phenylacetylene (2a) (0.3 mmol, 1.5 equiv), triphenylsilane (3a) (0.6 mmol, 3.0 equiv), CuF_2 (15 mol%), DTBP (3 equiv), and D_2O (0.2 mL) were weighted in a Schlenk tube equipped with a stir bar. Dry PhCF₃ (1.5 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 20 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography

on silica gel with EtOAc/petroleum ether to give products **4a**-*d* and **4a**. The ratio of **4a**-*d* and **4a** was 75:25 according to the ¹H NMR.

(d) Radical Scavenger Experiments

A mixture of ethyl picolinoylglycinate (1a) (0.2 mmol, 1.0 equiv), phenylacetylene (2a) (0.3 mmol, 1.5 equiv), triphenylsilane (3a) (0.6 mmol, 3.0 equiv), CuF_2 (15 mol%), DTBP (3 equiv), and additive (0.4 mmol, 2.0 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry PhCF₃ (1.5 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath for 20 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and quenched with brine, the aqueous phase was extracted with EtOAc. The crude mixture was firstly analyzed by HRMS (High Resolution Mass Spectrometry). Then the solvent was concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give product 4a.

S33

(e) Competition Experiments for the Hammett Study

A mixture of ethyl picolinoylglycinate (1a) (0.2 mmol, 1.0 equiv), alkyne (2) (0.3 mmol, 1.5 equiv), triethylsilane (0.6 mmol, 3.0 equiv), CuF₂ (15 mol%), and DTBP (3 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry PhCF₃ (1 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath under N₂ atmosphere. Then, the small potion solution (50 μ l) was taken with a syringe every 10 minutes and diluted immediately by brine to quench reaction, and the aqueous phase was extracted with EtOAc. The yields of products **4** were obtained by further gas chromatography analysis.

Figure S2. The kinetic data of *para*-substituted aryl alkynes for the silylamination reaction

Figure S3. Hammett plots for the silylamination reaction of *para*-substituted aryl alkynes using σ values from the literature (log(*kX/kH*) vs σ)

(f) Reaction Progress Kinetic Analysis

A mixture of ethyl picolinoylglycinate (1a) (0.2 mmol, 1.0 equiv), phenylacetylene (2a) (0.3 mmol, 1.5 equiv), triethylsilane (0.6 mmol, 3.0 equiv), CuF₂ (15 mol%), and DTBP (3 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry PhCF₃ (1 mL) was added and the mixture was stirred at 120 °C in a pre-heated oil bath under N₂ atmosphere. Then, the small potion solution (50 μ l) was taken with a syringe every 5 minutes and diluted immediately by brine to quench reaction, and the aqueous phase was extracted with EtOAc. The yields of product **6m** were obtained by further gas chromatography analysis.

Figure S4. Monitor of the reaction profile.

The rate on the concentration of ethyl picolinoylglycinate 1a

Figure S5. The rate on the concentration of ethyl picolinoylglycinate 1a from the reaction of 2a (0.1 mmol), Et₃SiH (3 equiv), CuF₂ (15 mol%), DTBP (3 equiv) with (1.0/1.25/1.5/1.75/2.0 equiv) of 1a in PhCF₃ (1 mL).

The rate on the concentration of phenylacetylene 2a

Figure S6. The rate on the concentration of phenylacetylene 2a from the reaction of 1a (0.1 mmol), Et₃SiH (3 equiv), CuF₂ (15 mol%), DTBP (3 equiv) with (1.0/1.5/2.0/2.5/3.0 equiv) of 2a in PhCF₃ (1 mL).

The rate on the concentration of Et₃SiH

Figure S7. The rate on the concentration of Et_3SiH from the reaction of 1a (0.1 mmol), 2a (1.5 equiv), CuF_2 (15 mol%), DTBP (3 equiv) with (2.5/3.0/3.5/4.0/4.5 equiv) of Et_3SiH in PhCF₃ (1 mL).

The rate on the concentration of CuF₂

Figure S8. The rate on the concentration of CuF_2 from the reaction of 1a (0.1 mmol), 2a (1.5 equiv), Et₃SiH (3 equiv), DTBP (3 equiv) with (15/20/25/30/35 mol%) of CuF₂ in PhCF₃ (1 mL).

The rate on the concentration of DTBP

Figure S9. The rate on the concentration of DTBP from the reaction of 1a (0.1 mmol), 2a (1.5 equiv), Et₃SiH (3 equiv), CuF₂ (15 mol%), with (2.5/3.0/3.5/4.0/4.5 equiv) of DTBP in PhCF₃ (1 mL).

6. Characterization of Products 4, 5, 6, 7, 8, 9 and 11

J = 7.3 Hz, 2H), 7.25 – 7.22 (m, 3H), 7.19 – 7.12 (m, 12H), 6.98 (t, J = 6.8 Hz, 2H), 6.85 (t, J = 7.7 Hz, 2H), 5.84 (s, 1H), 4.24 – 4.17 (m, 4H), 1.27 (t, J = 5.4 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 168.7, 155.4, 153.6, 148.0, 136.2, 136.0, 135.5, 134.3, 129.8, 129.1, 127.5, 127.5, 124.3, 123.9, 122.1, 61.1, 48.9, 14.1. HRMS (ESI): Calcd for C₃₆H₃₂N₂NaO₃Si [M+Na]⁺ 591.2074, found: 591.2078.

ethyl (E)-N-picolinoyl-N-(1-(p-tolyl)-2 (triphenylsilyl)vinyl)glycinate (4b) Et The title compound was isolated by column chromatography (eluent:

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 84% yield (97.8 mg, 0.168 mmol). Mp: 127 – 128 °C. ¹H NMR (CDCl₃, 500 MHz):

δ 8.33 (d, J = 4.4 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H), 7.26 – 7.22 (m, 5H), 7.17 – 7.11 (m, 12H), 6.98 – 6.93 (m, 1H), 6.63 (d, J = 7.9 Hz, 2H), 5.77 (s, 1H), 4.24 – 4.17 (m, 4H), 2.11 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 168.7, 155.4, 153.6, 148.0, 139.1, 136.2, 135.6, 134.4, 133.1, 129.7, 128.9, 128.2, 127.4, 124.3, 123.8, 121.5, 61.1, 48.8, 21.1, 14.1. HRMS (ESI): Calcd for C₃₇H₃₄N₂NaO₃Si [M+Na]⁺ 605.2231, found: 605.2232.

$\begin{array}{c} & \text{ethyl} \\ & \text{picolin} \\ & O & N & CO_2Et \\ & & & \text{The tit} \\ & & & & \text{EtOAc} \end{array}$

ethyl (*E*)-*N*-(1-(4-ethylphenyl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (4c)

Et The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 88% yield (104.9 mg, 0.176 mmol). Mp: 151 – 152 °C. ¹H NMR (CDCl₃, 500 MHz):

δ 8.34 (d, J = 4.6 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.25 – 7.23 (m, 3H), 7.18 – 7.12 (m, 12H), 6.98 – 6.95 (m, 1H), 6.67 (d, J = 8.0 Hz, 2H), 5.78 (s, 1H), 4.24 – 4.20 (m, 4H), 2.41 (q, J = 7.6 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H), 1.07 (t, J = 7.6 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 168.7, 155.4, 153.7, 148.0, 145.4, 136.2, 135.6, 134.4, 133.3, 129.8, 129.0, 127.4, 127.0, 124.3, 123.8, 121.5, 61.1, 48.9, 28.5, 15.4, 14.1. HRMS (ESI): Calcd for C₃₈H₃₆N₂NaO₃Si [M+Na]⁺ 619.2387, found: 619.2385.

n-Pr

ethyl (*E*)-*N*-picolinoyl-*N*-(1-(4-propylphenyl)-2-(triphenylsilyl)vinyl)glycinate (4d)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 83% yield (101.3 mg, 0.166 mmol). Mp: 134 – 135 °C. ¹H NMR

(CDCl₃, **500** MHz): δ 8.34 (d, J = 4.5 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.25 – 7.22 (m, 3H), 7.19 – 7.12 (m, 12H), 6.99 – 6.95 (m, 1H), 6.66 (d, J = 8.0 Hz, 2H), 5.79 (s, 1H), 4.24 – 4.20 (m, 4H), 2.35 (t, J = 7.7 Hz, 2H), 1.49 – 1.42 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H), 0.85 (t, J = 7.3 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 168.7, 155.5, 153.7, 148.0, 143.8, 136.2, 135.6, 134.4, 133.4, 129.7, 129.0, 127.6, 127.4, 124.2, 123.8, 121.4, 61.1, 48.9, 37.7, 24.2, 14.1, 13.8. HRMS (ESI): Calcd for C₃₉H₃₈N₂NaO₃Si [M+Na]⁺ 633.2544, found: 633.2548.

ethyl (*E*)-*N*-(1-(4-isopropylphenyl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (4e)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 78% yield (95.2 mg, 0.156 mmol). Mp: 146 – 147 °C. ¹H NMR (CDCl₃,

500 MHz): $\delta 8.35$ (d, J = 4.5 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.31 (d, J = 8.1 Hz, 2H), 7.26 – 7.23 (m, 3H), 7.19 – 7.13 (m, 12H), 6.98 – 6.94 (m, 1H), 6.70 (d, J = 8.1 Hz, 2H), 5.78 (s, 1H), 4.25 – 4.21 (m, 4H), 2.67 (dq, J = 13.8, 6.9 Hz, 1H), 1.27 (t, J = 7.2 Hz, 3H), 1.08 (d, J = 6.9 Hz, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.1, 168.7, 155.4, 153.7, 150.0, 148.0, 136.1, 135.6, 134.3, 133.4, 129.7, 129.0, 127.4, 125.5, 124.2, 123.7, 121.4, 61.1, 48.9, 33.7, 23.7, 14.1. HRMS (ESI): Calcd for C₃₉H₃₈N₂NaO₃Si [M+Na]⁺ 633.2544, found: 633.2540.

ethyl (*E*)-*N*-(1-(4-butylphenyl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (4f)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 81%

yield (101.1 mg, 0.162 mmol). Mp: 152 – 153 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.34 (d, J = 4.5 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.45 (t, J = 7.2 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.24 – 7.23 (m, 3H), 7.19 – 7.13 (m, 12H), 6.99 – 6.96 (m, 1H), 6.66 (d, J = 7.9 Hz, 2H), 5.78 (s, 1H), 4.23 – 4.19 (m, 4H), 2.37 (t, J = 7.6 Hz, 2H), 1.43 – 1.38 (m, 2H), 1.27 – 1.22 (m, 5H), 0.90 (t, J = 7.3 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.1, 168.7, 155.5, 153.7, 148.1, 144.1, 136.2, 135.6, 134.4, 133.4, 129.7, 129.0, 127.6, 127.4, 124.3, 123.8, 121.4, 61.1, 48.9, 35.3, 33.4, 22.2, 14.2, 13.9. HRMS (ESI): Calcd for C₄₀H₄₀N₂NaO₃Si [M+Na]⁺ 647.2700, found: 647.2704.

ethyl (*E*)-*N*-(1-(4-(tert-butyl)phenyl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (4g)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 77% yield (96.1 mg, 0.154 mmol). Mp: 159 – 160 °C. ¹H NMR (CDCl₃,

500 MHz): $\delta 8.38$ (d, J = 4.4 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 8.2 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.22 – 7.15 (m, 12H), 7.00 – 6.96 (m, 1H), 6.88 (d, J = 8.3 Hz, 2H), 5.80 (s, 1H), 4.28 – 4.24 (m, 4H), 1.30 (t, J = 7.1 Hz, 3H), 1.17 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.1, 168.8, 155.3, 153.7, 152.2, 148.0, 136.1, 135.6, 134.3, 132.9, 129.4, 129.0, 127.4, 124.4, 124.2, 123.7, 121.4, 61.1, 48.9, 34.4, 31.1, 14.2. HRMS (ESI): Calcd for C₄₁H₄₃N₂NaO₃Si [M+Na]⁺ 647.2700, found: 647.2698.

ethyl (*E*)-*N*-(1-(4-methoxyphenyl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (4h)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 74% yield (88.5 mg, 0.148 mmol). Mp: $155 - 156 \,^{\circ}$ C. ¹H NMR (CDCl₃,

500 MHz): δ 8.33 (d, J = 4.6 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.29 (d, J = 8.6 Hz, 2H), 7.25 – 7.23 (m, 3H), 7.17 – 7.13 (m, 12H), 6.97 – 6.94 (m, 1H), 6.35 (d, J = 8.6 Hz, 2H), 5.72 (s, 1H), 4.23 – 4.18 (m, 4H), 3.61 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.1, 168.7, 160.3, 155.2, 153.8, 148.0, 136.2, 135.6, 134.5,

131.2, 129.0, 128.6, 127.5, 124.3, 123.8, 120.6, 112.9, 61.1, 55.1, 49.0, 14.2. **HRMS (ESI):** Calcd for C₃₇H₃₄N₂NaO₄Si [M+Na]⁺ 621.2180, found: 621.2183.

ethyl (*E*)-*N*-(1-([1,1'-biphenyl]-4-yl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (4i)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 71% yield (91.5 mg, 0.142 mmol). Mp: 161 – 162 °C. ¹H NMR (CDCl₃, 500 MHz):

δ 8.30 (d, J = 3.5 Hz, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.41 – 7.28 (m, 7H), 7.26 – 7.23 (m, 1H), 7.19 – 7.12 (m, 9H), 7.09 – 7.06 (m, 6H), 6.96 (d, J = 8.1 Hz, 2H), 6.92 – 6.88 (m, 1H), 5.79 (s, 1H), 4.22 (s, 2H), 4.16 (q, J = 7.1 Hz, 2H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.1, 168.7, 155.1, 153.6, 148.0, 141.8, 140.7, 136.3, 135.6, 135.0, 134.2, 130.2, 129.1, 128.6, 127.5, 127.3, 127.0, 126.2, 124.4, 123.9, 122.1, 61.2, 49.0, 14.2. HRMS (ESI): Calcd for C₄₂H₃₆N₂NaO₃Si [M+Na]⁺ 667.2387, found: 667.2390.

ethyl (*E*)-*N*-(1-(4-fluorophenyl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (4j)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 70% yield (82.1 mg, 0.140 mmol). Mp: 116 – 117 °C. ¹H NMR (CDCl₃, 500 MHz): δ

8.37 (d, J = 2.5 Hz, 1H), 7.65 (d, J = 7.4 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.40 – 7.38 (m, 2H), 7.31 – 7.27 (m, 3H), 7.22 – 7.15 (m, 12H), 7.04 – 7.00 (m, 1H), 6.52 (t, J = 8.7 Hz, 2H), 5.85 (s, 1H), 4.25 – 4.21 (m, 4H), 1.28 – 1.26 (m, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.9, 168.6, 163.1 (d, J = 249.2 Hz), 154.4, 153.5, 147.9, 136.4, 135.5, 134.0, 132.3, 131.7 (d, J = 8.5 Hz), 129.2, 127.6, 124.5, 124.0, 122.0, 114.3 (d, J = 21.7 Hz), 61.2, 48.9, 14.1. ¹⁹F NMR (CDCl₃, 471 MHz): δ -112.0. HRMS (ESI): Calcd for C₃₆H₃₁FN₂NaO₃Si [M+Na]⁺ 609.1980, found: 609.1982.

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 73% yield (87.9 mg, 0.146 mmol). Mp: 158 – 159 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.37 (d, J = 4.0 Hz, 1H), 7.71 – 7.60 (m, 1H), 7.54 – 7.51 (m, 1H), 7.33 – 7.28 (m, 5H), 7.18 – 7.17 (d, J = 4.5 Hz, 12H), 7.02 (d, J = 4.6 Hz, 1H), 6.79 (d, J = 8.4 Hz, 2H), 5.88 (s, 1H), 4.23 (m, 4H), 1.28 (t, J = 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.8, 168.5, 154.3, 153.3, 147.8, 136.3, 135.5, 134.9, 134.6, 133.8, 131.1, 129.1, 127.6, 127.5, 124.5, 124.0, 122.6, 61.1, 48.8, 14.1. HRMS (ESI): Calcd for C₃₆H₃₁ClN₂NaO₃Si [M+Na]⁺ 625.1685, found: 625.1687.

eth N pic O N CO₂Et Th Br SiPh₃ Etc

ethyl (*E*)-*N*-(1-(4-bromophenyl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (4l)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 71% yield (91.8 mg, 0.142 mmol). Mp: 125 - 126 °C. ¹H NMR (CDCl₃, 500 MHz):

δ 8.37 (d, J = 4.7 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.31 (dt, J = 8.8, 4.3 Hz, 3H), 7.27 (d, J = 8.0 Hz, 2H), 7.22 – 7.15 (m, 12H), 7.03 – 7.00 (m, 1H), 6.95 (d, J = 8.4 Hz, 2H), 5.89 (s, 1H), 4.23 (q, J = 7.2 Hz, 4H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.8, 168.5, 154.3, 153.3, 147.9, 136.4, 135.5, 135.1, 133.9, 131.4, 130.5, 129.2, 127.6, 124.5, 124.0, 123.4, 122.8, 61.2, 48.8, 14.1. HRMS (ESI): Calcd for C₃₆H₃₁BrN₂NaO₃Si [M+Na]⁺ 669.1180 and 671.1159, found: 669.1180 and 671.1158.

ethyl (*E*)-*N*-picolinoyl-*N*-(1-(4-(trifluoromethyl)phenyl)-2-(triphenylsilyl)vinyl)glycinate (4m)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 69% yield (87.8 mg, 0.138 mmol). Mp: 143 – 144 °C. ¹H NMR (CDCl₃,

500 MHz): δ 8.38 (d, *J* = 4.5 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.51 (t, *J* = 8.8 Hz, 3H), 7.30 – 7.27 (m, 3H), 7.21 – 7.14 (m, 12H), 7.07 (d, *J* = 8.2 Hz, 2H), 7.02 (dd, *J* = 7.0, 5.1 Hz, 1H), 5.98 (s, 1H), 4.29 – 4.18 (m, 4H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.8, 168.5, 154.0, 153.2, 147.8, 139.6, 136.5, 135.5, 133.6, 130.7 (q, *J* = 32.3 Hz), 130.1,

129.4, 127.7, 124.7, 124.3 (q, J = 3.8 Hz), 124.2, 123.9, 123.7 (q, J = 272.3 Hz), 61.3, 48.8, 14.1. ¹⁹F NMR (CDCl₃, 471 MHz): δ -63.0. HRMS (ESI): Calcd for C₃₇H₃₁F₃N₂NaO₃Si [M+Na]⁺ 659.1948, found: 659.1948.

methyl (*E*)-4-(1-(*N*-(2-ethoxy-2-oxoethyl)picolinamido)-2-(triphenylsilyl)vinyl)benzoate (4n)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 71% yield 88.9 mg, 0.142 mmol). Mp: 106 - 107 °C. ¹H NMR

(CDCl₃, 500 MHz): δ 8.49 (d, J = 15.5 Hz, 1H), 7.75 (d, J = 7.9 Hz, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 7.40 – 7.36 (m, 4H), 7.31– 7.27 (m, 11H), 7.15 (d, J = 20.0 Hz, 2H), 6.09 (s, 1H), 4.36 – 4.32 (m, 4H), 3.97 (s, 3H), 1.39 (t, J = 8.2 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.8, 168.5, 166.5, 154.4, 153.2, 147.9, 140.7, 136.4, 135.5, 133.8, 130.2, 129.8, 129.2, 128.7, 127.6, 124.6, 124.1, 123.8, 61.2, 52.0, 48.9, 14.1. HRMS (ESI): Calcd for C₃₈H₃₄N₂NaO₅Si [M+Na]⁺ 649.2129, found: 649.2136.

ethyl (*E*)-*N*-(1-(4-cyanophenyl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (40)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 72% yield (85.4 mg, 0.144 mmol). Mp: 174 - 175 °C. ¹H NMR (CDCl₃, 500 MHz):

δ 8.38 (d, J = 4.4 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.51 (d, J = 8.1 Hz, 3H), 7.33 – 7.28 (m, 3H), 7.23 – 7.14 (m, 12H), 7.08 (d, J = 8.1 Hz, 2H), 7.05 – 7.02 (m, 1H), 6.03 (s, 1H), 4.27 – 4.21 (m, 4H), 1.29 – 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.7, 168.5, 153.0, 147.8, 140.8, 136.6, 135.5, 133.4, 131.1, 130.4, 129.5, 127.8, 124.8, 124.3, 118.5, 112.3, 61.4, 49.0, 14.1. HRMS (ESI): Calcd for C₃₇H₃₁N₃NaO₃Si [M+Na]⁺ 616.2027, found: 616.2029.

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 75% yield (87.3 mg, 0.150 mmol). Mp: 121 – 122 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.44 (d, *J* = 4.5 Hz, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.67 (t, *J* = 7.7 Hz, 1H), 7.32 – 7.27 (m, 4H), 7.23 – 7.17 (m, 12H), 7.12 (dd, *J* = 6.7, 5.1 Hz, 1H), 6.90 (t, *J* = 7.1 Hz, 1H), 6.69 (t, *J* = 6.2 Hz, 2H), 6.06 (s, 1H), 4.30 – 4.26 (m, 4H), 2.15 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.7, 169.0, 154.6, 153.9, 148.0, 136.9, 136.4, 135.8, 135.5, 134.3, 131.6, 130.0, 128.9, 128.7, 127.4, 125.1, 124.4, 124.1, 120.2, 61.2, 49.0, 19.9, 14.2. HRMS (ESI): Calcd for C₃₇H₃₅N₂O₃Si [M+H]⁺ 583.2411, found: 583.2414.

ethyl (*E*)-*N*-(1-(2-methoxyphenyl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (4q)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 72% yield (86.1 mg, 0.144 mmol). Mp: 108 – 109 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.43

(d, J = 4.6 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.52 (d, J = 7.5 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.26 – 7.12 (m, 15H), 6.99 (dd, J = 6.9, 5.3 Hz, 1H), 6.88 (t, J = 7.8 Hz, 1H), 6.57 (t, J = 7.5 Hz, 1H), 6.11 (d, J = 8.3 Hz, 1H), 6.07 (s, 1H), 4.33 – 4.22 (m, 4H), 3.22 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (CDCl₃, 125 MHz): δ 169.5, 168.9, 156.9, 154.0, 150.2, 148.1, 136.0, 135.5, 134.2, 131.4, 130.0, 128.8, 127.2, 124.9, 124.0, 123.5, 123.2, 119.7, 109.4, 61.0, 54.0, 49.0, 14.2. HRMS (ESI): Calcd for C₃₇H₃₅N₂O₄Si [M+H]⁺ 599.2361, found: 599.2363.

ethyl (*E*)-*N*-(1-(2-chlorophenyl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (4r)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 66% yield (79.5 mg, 0.132 mmol). Mp: 131 - 132 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.43 (d,

J = 4.4 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.27 – 7.19 (m, 9H), 7.16 – 7.13 (m, 6H), 7.10 – 7.07 (m, 1H), 6.79 (t, J = 6.9 Hz, 1H), 6.73 – 6.70 (m, 2H), 6.26 (s, 1H), 4.38 (s, 2H), 4.25 (q, J = 7.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.0, 153.8, 148.0, 136.4, 135.6, 135.4, 133.9, 133.5, 132.7,

129.6, 129.1, 128.9, 127.5, 125.9, 124.5, 124.0, 123.2, 61.2, 49.7, 14.2. **HRMS (ESI):** Calcd for C₃₆H₃₁ClN₂NaO₃Si [M+Na]⁺ 625.1685, found: 625.1683.

ethyl (*E*)-*N*-picolinoyl-*N*-(1-(m-tolyl)-2-(triphenylsilyl)vinyl)glycinate (4s) ^{CO₂Et The title compound was isolated by column chromatography (eluent:}

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 80% yield (93.2 mg, 0.160 mmol). Mp: 109 – 110 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.32 (d, J = 4.5 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.34

(d, J = 7.6 Hz, 1H), 7.26 – 7.23 (m, 3H), 7.16 – 7.13 (m, 12H), 7.04 (s, 1H), 6.97 (dd, J = 7.1, 5.1 Hz, 1H), 6.86 (t, J = 7.6 Hz, 1H), 6.79 (d, J = 7.5 Hz, 1H), 5.81 (s, 1H), 4.22 – 4.19 (m, 4H), 1.89 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.9, 168.6, 155.6, 153.6, 148.0, 137.0, 136.1, 136.0, 135.5, 134.4, 130.9, 129.8, 129.0, 127.6, 127.4, 126.5, 124.2, 123.8, 121.7, 61.0, 48.8, 20.9, 14.1. HRMS (ESI): Calcd for C₃₇H₃₄N₂NaO₃Si [M+Na]⁺ 605.2231, found: 605.2228.

ethyl (*E*)-*N*-(1-(3-methoxyphenyl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (4t)

SiPh₃

Me

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 74% yield (88.5 mg, 0.148 mmol). Mp: 106 – 107 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.35 (d, J = 4.7 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.0 Hz, 1H), 7.24 –

7.23 (m, 3H), 7.19 – 7.11 (m, 12H), 7.03 – 7.00 (m, 2H), 6.94 – 6.91 (m, 1H), 6.80 (t, J = 7.9 Hz, 1H), 6.52 (dd, J = 8.2, 2.5 Hz, 1H), 5.82 (s, 1H), 4.23 – 4.19 (m, 4H), 3.35 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 168.7, 158.7, 155.5, 153.7, 148.1, 137.8, 136.3, 135.5, 134.4, 129.1, 128.8, 127.5, 124.4, 123.9, 122.1, 121.9, 115.8, 114.6, 61.1, 54.8, 48.9, 14.2. HRMS (ESI): Calcd for C₃₇H₃₄N₂NaO₄Si [M+Na]⁺ 621.2180, found: 621.2179.

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 71% yield (85.5 mg, 0.142 mmol). Mp: 134 – 135 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.36 (d, *J* = 4.5 Hz, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.26 – 7.21 (m, 3H), 7.19 – 7.12 (m, 12H), 7.00 (dd, *J* = 7.0, 5.1 Hz, 1H), 6.91 (d, *J* = 8.1 Hz, 1H), 6.77 (t, *J* = 7.8 Hz, 1H), 5.89 (s, 1H), 4.24 – 4.14 (m, 4H), 1.24 (t, *J* = 5.4 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.8, 168.5, 154.0, 153.3, 148.0, 138.1, 136.4, 135.5, 133.9, 133.4, 130.0, 129.2, 129.0, 128.8, 127.9, 127.6, 124.5, 124.1, 123.2, 61.2, 48.8, 14.1. HRMS (ESI): Calcd for C₃₆H₃₁ClN₂NaO₃Si [M+Na]⁺ 625.1685, found: 625.1683.

ethyl (*E*)-*N*-(1-(3,5-dimethoxyphenyl)-2-(triphenylsilyl)vinyl)-*N*-picolinoylglycinate (4v)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 70% yield (88.0 mg, 0.140 mmol). Mp: 114 - 115 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.36 (d, J = 4.5 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H),

7.52 (t, J = 7.5 Hz, 1H), 7.26 – 7.22 (m, 3H), 7.18 – 7.14 (m, 12H), 7.04 (dd, J = 7.0, 5.2 Hz, 1H), 6.61 (d, J = 2.1 Hz, 2H), 6.07 (t, J = 2.1 Hz, 1H), 5.81 (s, 1H), 4.25 – 4.20 (m, 4H), 3.37 (s, 6H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.9, 168.7, 160.0, 155.5, 153.7, 148.1, 138.6, 136.3, 135.4, 134.5, 129.0, 127.4, 124.4, 123.9, 121.7, 107.7, 102.3, 61.1, 55.0, 48.8, 14.2. HRMS (ESI): Calcd for C₃₈H₃₆N₂NaO₅Si [M+Na]⁺ 651.2286, found: 651.2283.

ethyl (*E*)-*N*-picolinoyl-*N*-(1-(thiophen-3-yl)-2-(triphenylsilyl)vinyl)glycinate (4w)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 82% yield (94.2 mg, 0.164 mmol). Mp: 74 – 75 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.33 (d, J

= 4.6 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H), 7.26 – 7.22 (m, 3H), 7.20 – 7.14 (m, 12H), 7.09 (d, J = 1.9 Hz, 1H), 7.05 (d, J = 5.0 Hz, 1H), 7.00 (dd, J = 6.7, 5.0 Hz, 1H), 6.78 (dd, J = 4.9, 3.0 Hz, 1H), 5.78 (s, 1H), 4.28 (s, 2H), 4.18 (q, J = 7.1 Hz, 2H), 1.23 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.8, 168.7, 153.7, 150.6, 148.1, 138.6,

136.3, 135.5, 134.3, 129.2, 128.5, 128.0, 127.6, 125.0, 124.4, 123.8, 121.2, 61.2, 49.2, 14.2. **HRMS (ESI):** Calcd for C₃₄H₃₀N₂NaO₃SSi [M+Na]⁺ 597.1639, found: 597.1638.

ethyl (*E*)-*N*-(1-(cyclohex-1-en-1-yl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (4x)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 55% yield (62.9 mg, 0.110 mmol). Mp: 101 – 102 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.39

(d, J = 4.6 Hz, 1H), 7.55 (d, J = 3.8 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.32 – 7.28 (m, 1H), 7.25 – 7.16 (m, 14H), 6.98 (dd, J = 6.7, 5.4 Hz, 1H), 5.60 – 5.60 (m, 1H), 5.41 (s, 1H), 4.26 – 4.12 (m, 4H), 1.95 – 1.95 (m, 2H), 1.33 (t, J = 11.8 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H), 1.10 (m, 2H), 0.91 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 168.7, 157.9, 153.9, 148.0, 136.1, 135.4, 135.1, 134.7, 134.3, 129.0, 127.5, 124.1, 123.9, 119.8, 61.0, 48.3, 26.2, 24.9, 21.6, 20.8, 14.1. HRMS (ESI): Calcd for C₃₆H₃₆N₂NaO₃Si [M+Na]⁺ 595.2387, found: 595.2383.

ethyl (*E*)-*N*-(1-phenyl-2-(triphenylsilyl)prop-1-en-1-yl)-*N*picolinoylglycinate (4y)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 46% yield (53.6 mg, 0.092 mmol). Mp: 159 – 160 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.80 (d,

J = 4.3 Hz, 1H), 7.89 (d, J = 7.8 Hz, 1H), 7.81 (t, J = 8.3 Hz, 1H), 7.63 (d, J = 7.3 Hz, 2H), 7.50 – 7.47 (m, 1H), 7.39 – 7.30 (m, 11H), 7.26 – 7.23 (m, 4H), 6.96 (t, J = 7.3 Hz, 1H), 6.88 (t, J = 7.5 Hz, 2H), 4.47 (d, J = 16.8 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 3.96 (d, J = 16.8 Hz, 1H), 1.78 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.5, 168.8, 154.4, 150.9, 147.3, 137.3, 136.5, 136.1, 135.8, 134.1, 130.9, 128.8, 128.7, 127.4, 126.5, 124.9, 124.3, 61.0, 49.5, 21.6, 14.1. HRMS (ESI): Calcd for C₃₇H₃₄N₂NaO₃Si [M+Na]⁺ 605.2231, found: 605.2233.

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 37% yield (47.7 mg, 0.074 mmol). Mp: 189 – 190 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.78 (d, J = 4.3 Hz, 1H), 7.53 (d, J = 7.4 Hz, 2H), 7.44 (t, J = 7.7 Hz, 2H), 7.40 – 7.39 (m 5H), 7.26 – 7.23 (m, 4H), 7.17 – 7.13 (m, 7H), 7.01 (t, J = 7.2 Hz, 1H), 6.95 (t, J = 7.5 Hz, 2H), 6.73 – 6.71 (m, 3H), 6.61 (t, J = 7.7 Hz, 2H), 4.11 – 3.99 (m, 3H), 3.88 (d, J = 16.6 Hz, 1H), 1.18 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 168.7, 168.2, 153.7, 153.4, 146.9, 140.2, 138.4, 136.3, 136.2, 134.6, 131.3, 130.8, 130.6, 128.8, 128.4, 127.5, 127.2, 126.8, 126.0, 124.8, 124.8, 60.8, 52.9, 14.0. HRMS (ESI): Calcd for C₄₂H₃₆N₂NaO₃Si [M+Na]⁺ 667.2387, found: 667.2386.

(E)-N-phenyl-N-(1-phenyl-2-(triphenylsilyl)vinyl)picolinamide (5a)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 84% yield (93.8 mg, 0.168 mmol). Mp: 130 – 131 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.43 (s, 1H), 7.41

-7.11 (m, 25H), 6.87 (t, J = 7.3 Hz, 1H), 6.76 (t, J = 7.2 Hz, 2H), 5.96 (s, 1H).

¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 156.5, 154.5, 148.0, 141.1, 136.7, 136.2, 135.5, 134.3, 129.6, 129.1, 128.8, 128.4, 127.5, 127.1, 126.8, 126.3, 124.4, 124.0, 122.6. HRMS (ESI): Calcd for C₃₈H₃₀N₂NaOSi [M+Na]⁺ 581.2020, found: 581.2023.

(*E*)-*N*-(1-phenyl-2-(triphenylsilyl)vinyl)-*N*-(*p*-tolyl)picolinamide (5b) The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 85% yield (97.3 mg, 0.170 mmol). Mp: 167 – 168 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.36 (d, *J* = 4.4 Hz, 1H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.43 (t, *J* = 7.1 Hz, 1H),

7.36 (d, J = 7.4 Hz, 2H), 7.26 – 7.13 (m, 17H), 7.05 (d, J = 8.1 Hz, 2H), 6.98 (dd, J = 7.4, 4.9 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 6.72 (t, J = 7.6 Hz, 2H), 5.90 (s, 1H), 2.21 (s, 3H). ¹³C **NMR (CDCl₃, 125 MHz):** δ 170.0, 156.6, 154.7, 148.0, 136.8, 136.2, 136.1, 135.5, 134.4, 129.7, 129.5, 129.1, 128.4, 127.5, 127.1, 126.6, 124.3, 124.0, 122.4, 21.0. **HRMS (ESI):** Calcd for C₃₉H₃₂N₂NaOSi [M+Na]⁺ 595.2176, found: 595.2174.

(E)-N-(4-chlorophenyl)-N-(1-phenyl-2-

(triphenylsilyl)vinyl)picolinamide (5c)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 80% yield (94.7 mg, 0.160 mmol). Mp: 173 - 174 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.35 (d,

J = 4.6 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.34 (d, J = 7.8 Hz, 2H), 7.26 – 7.12 (m, 19H), 6.99 (dd, J = 7.1, 5.2 Hz, 1H), 6.85 (t, J = 7.4 Hz, 1H), 6.73 (t, J = 7.7Hz, 2H), 5.89 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 156.0, 154.2, 148.1, 139.6, 136.4, 136.4, 135.5, 134.2, 131.8, 129.8, 129.2, 129.0, 128.7, 128.0, 127.6, 127.2, 124.6, 124.1, 123.3. HRMS (ESI): Calcd for C₃₈H₂₉ClN₂NaOSi [M+Na]⁺ 615.1630, found: 615.1628.

(*E*)-*N*-(4-bromophenyl)-*N*-(1-phenyl-2-(triphenylsilyl)vinyl)picolinamide (5d)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 77% yield (98.0 mg,

0.154 mmol). Mp: 175 – 176 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.35 (d, J = 4.4 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.37 – 7.34 (m, 4H), 7.25 – 7.23 (m, 3H), 7.20 – 7.13 (m, 14H), 6.99 (dd, J = 7.1, 5.0 Hz, 1H), 6.85 (t, J = 7.4 Hz, 1H), 6.73 (t, J = 7.6 Hz, 2H), 5.89 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.9, 155.9, 154.1, 148.1, 140.1, 136.4, 135.5, 134.1, 132.0, 129.7, 129.2, 128.7, 128.3, 127.6, 127.2, 124.6, 124.1, 123.4, 119.8. HRMS (ESI): Calcd for C₃₈H₂₉BrN₂NaOSi [M+Na]⁺ 659.1125 and 661.1104, found: 659.1123 and 661.1104.

(*E*)-*N*-(1-phenyl-2-(triphenylsilyl)vinyl)-*N*-(4-(trifluoromethyl)phenyl)picolinamide (5e)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 72% yield (90.2 mg, 0.144 mmol). Mp: 187 – 188 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.42

(d, *J* = 2.9 Hz, 1H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.57 (d, *J* = 8.3 Hz, 2H), 7.52 – 7.48 (m, 3H), 7.42 (d, *J* = 7.5 Hz, 2H), 7.33 – 7.30 (m, 3H), 7.24 – 7.20 (m, 12H), 7.09 – 7.06 (m, 1H), 6.91

(t, J = 7.4 Hz, 1H), 6.79 (t, J = 7.6 Hz, 2H), 5.98 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.1, 155.8, 153.9, 148.1, 144.3, 136.4, 136.3, 135.5, 134.1, 129.8, 129.2, 128.9, 127.9 (q, J = 32.9 Hz), 127.6, 127.3, 126.7, 126.0 (q, J = 3.6 Hz), 124.8, 124.2, 123.9 (q, J = 272.2 Hz). ¹⁹F NMR (CDCl₃, 471 MHz): δ -62.3. HRMS (ESI): Calcd for C₃₉H₂₉F₃N₂NaOSi [M+Na]⁺ 649.1893, found: 649.1892.

(*E*)-4-(*N*-(1-phenyl-2-

methyl

(triphenylsilyl)vinyl)picolinamido)benzoate (5f)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 75% yield (92.4 mg, 0.150 mmol). Mp: 156 – 157 °C. ¹H NMR (CDCl₃, 500 MHz):

δ 8.38 (d, J = 4.5 Hz, 1H), 7.95 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 7.8 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.41 – 7.37 (m, 4H), 7.29 – 7.26 (m, 3H), 7.23 – 7.16 (m, 12H), 7.03 (dd, J = 7.4, 4.9 Hz, 1H), 6.85 (t, J = 7.4 Hz, 1H), 6.75 (t, J = 7.6 Hz, 2H), 5.96 (s, 1H), 3.83 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 166.4, 155.8, 154.0, 148.1, 145.3, 136.4, 136.3, 135.5, 134.1, 130.2, 129.7, 129.2, 128.7, 127.6, 127.5, 127.2, 126.3, 124.7, 124.1, 123.9, 52.0. HRMS (ESI): Calcd for C₄₀H₃₂N₂NaO₃Si [M+Na]⁺ 639.2074, found: 639.2072.

Ph SiPh₃

(*E*)-*N*-(2-chlorophenyl)-*N*-(1-phenyl-2-(triphenylsilyl)vinyl)picolinamide (5g)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 75% yield (88.8 mg, 0.150 mmol). Mp: 162 – 163 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.39 (d, J = 0.5

Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.40 (d, J = 7.5 Hz, 2H), 7.33 – 7.31 (m, 2H), 7.25 – 7.23 (m, 3H), 7.19 – 7.03 (m, 15H), 6.85 (t, J = 7.3 Hz, 1H), 6.74 (t, J = 7.5 Hz, 2H), 5.84 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.4, 156.1, 153.7, 148.3, 136.3, 135.6, 135.0, 134.5, 132.4, 130.5, 129.6, 129.1, 128.7, 128.3, 127.9, 127.5, 127.4, 127.2, 124.7, 124.3. HRMS (ESI): Calcd for C₃₈H₂₉ClN₂NaOSi [M+Na]⁺ 615.1630, found: 615.1632.

(E)-N-(3,4-dichlorophenyl)-N-(1-phenyl-2-

(triphenylsilyl)vinyl)picolinamide (5h)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 80% yield (100.2 mg, 0.160 mmol). Mp: 187 – 188 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.42 (d,

J = 4.6 Hz, 1H), 7.69 (d, J = 7.8 Hz, 1H), 7.54 – 7.49 (m, 2H), 7.41 (d, J = 7.3 Hz, 2H), 7.36 (d, J = 8.6 Hz, 1H), 7.34 - 7.30 (m, 3H), 7.24 - 7.20 (m, 13H), 7.08 (dd, J = 7.1, 5.0 Hz, 1H),6.93 (t, J = 7.4 Hz, 1H), 6.81 (t, J = 7.7 Hz, 2H), 5.95 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.9, 155.6, 153.7, 148.1, 140.5, 136.4, 136.1, 135.5, 134.0, 132.6, 130.4, 130.1, 129.7, 129.2, 128.9, 128.6, 127.6, 127.3, 126.0, 124.8, 124.1, 124.0. HRMS (ESI): Calcd for C₃₈H₂₈Cl₂N₂NaOSi [M+Na]⁺ 649.1240, found: 649.1244.

(E)-N-benzyl-N-(1-phenyl-2-(triphenylsilyl)vinyl)picolinamide (5i)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 71% yield (81.3 mg, 0.142) Ph mmol). Mp: 127 – 128 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.44 – 8.44 (m, . SiPh₃ 1H), 7.71 (d, J = 7.0 Hz, 1H), 7.54 (d, J = 7.3 Hz, 1H), 7.41 – 7.27 (m, 8H), 7.19 - 6.86 (m, 18H), 5.42 (s, 1H), 4.81 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.6, 154.8, 154.6, 148.0, 137.2, 136.2, 136.0, 135.5, 134.1, 129.8, 129.4, 129.0, 128.9, 128.4,

127.4, 127.4, 127.3, 124.2, 124.1, 123.7, 49.4. HRMS (ESI): Calcd for C₃₉H₃₃N₂OSi [M+H]⁺ 573.2357, found: 573.2360.

Pł

(E)-N-(4-methoxybenzyl)-N-(1-phenyl-2-(triphenylsilyl)vinyl)picolinamide (5j)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 64% yield (77.1 mg, 0.128 mmol). Mp: 157 – 158 °C. ¹H NMR (CDCl₃, 500 MHz):

δ 8.40 (d, J = 4.6 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.50 (t, J = 7.7 Hz, 1H), 7.33 (d, J = 7.4 Hz, 2H), 7.26 – 7.21 (m, 5H), 7.13 – 7.10 (m, 6H), 7.04 – 7.00 (m, 8H), 6.92 – 6.86 (m, 4H), 5.36 (s, 1H), 4.72 (s, 2H), 3.86 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.5, 159.0, 154.8, 154.6, 148.0, 136.1, 136.0, 135.5, 134.2, 130.8, 129.8, 129.3, 129.0, 128.8, 127.4, 127.4, 124.2, 124.1, 123.7, 113.7, 55.2, 48.7. **HRMS (ESI):** Calcd for C₄₀H₃₄N₂NaO₂Si [M+Na]⁺ 625.2282, found: 625.2286.

(*E*)-*N*-(4-bromobenzyl)-*N*-(1-phenyl-2-(triphenylsilyl)vinyl)picolinamide (5k)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 62% yield (80.6 mg, 0.124 mmol). Mp: 165 – 166 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.39

(d, J = 4.4 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.56 – 7.44 (m, 3H), 7.31 (d, J = 7.1 Hz, 2H), 7.27 – 7.21 (m, 5H), 7.17 – 7.08 (m, 7H), 7.05 – 7.00 (m, 2H), 6.98 – 6.97 (m, 5H), 6.88 (t, J = 7.7 Hz, 2H), 5.33 (s, 1H), 4.70 (s, 2H). ¹³**C** NMR (CDCl₃, 125 MHz): δ 169.6, 154.6, 154.2, 148.1, 136.2, 135.8, 135.4, 134.0, 131.5, 131.2, 129.8, 129.1, 129.0, 127.6, 127.5, 127.4, 124.5, 124.3, 123.8, 121.4, 48.7. HRMS (ESI): Calcd for C₃₉H₃₁BrN₂NaOSi [M+Na]⁺ 673.1281 and 675.1261, found: 673.1285 and 675.1265.

(*E*)-*N*-(4-cyanobenzyl)-*N*-(1-phenyl-2-(triphenylsilyl)vinyl)picolinamide (5l)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 70% yield (83.6 mg, 0.140 mmol). Mp: 181 – 182 °C. ¹H NMR (CDCl₃, 500 MHz): δ

8.42 (d, J = 4.6 Hz, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.66 (d, J = 8.1 Hz, 2H), 7.57 (t, J = 7.7 Hz, 1H), 7.42 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 7.5 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.16 – 7.13 (m, 6H), 7.09 – 7.05 (m, 2H), 7.00 – 6.99 (m, 6H), 6.92 (t, J = 7.6 Hz, 2H), 5.38 (s, 1H), 4.81 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.8, 154.7, 153.8, 148.1, 142.7, 136.3, 135.6, 135.3, 133.9, 132.2, 130.0, 129.7, 129.2, 127.7, 127.5, 124.5, 124.4, 123.9, 118.8, 111.2, 49.2. HRMS (ESI): Calcd for C₄₀H₃₁N₃NaOSi [M+Na]⁺ 620.2129, found: 620.2125.

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 57% yield (74.1 mg, 0.114 mmol). Mp: 115 – 116 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.38 (d, *J* = 4.6 Hz, 1H), 7.60 (d, *J* = 7.9 Hz, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 1H), 7.29 (t, *J* = 8.2 Hz, 2H), 7.24 – 7.17 (m, 6H), 7.11 – 7.08 (m, 6H), 7.01 – 6.94 (m, 8H), 6.80 (t, *J* = 7.6 Hz, 2H), 5.63 (s, 1H), 4.97 (s, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.6, 154.9, 154.6, 148.1, 136.2, 136.0, 135.7, 135.5, 134.1, 132.8, 130.9, 129.7, 129.0, 128.9, 128.7, 127.4, 127.4, 127.3, 124.0, 123.9, 123.5, 123.4, 49.7. HRMS (ESI): Calcd for C₃₉H₃₁BrN₂NaOSi [M+Na]⁺ 673.1281 and 675.1261, found: 673.1284 and 675.1265.

(*E*)-*N*-methyl-*N*-(1-phenyl-2-(triphenylsilyl)vinyl)picolinamide (5n)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 74% yield (73.4 mg, 0.148 mmol). Mp: 94 – 95 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.35 – 8.35 (m, 1H),

7.55 (d, J = 5.9 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 2H),

7.30 – 7.26 (m, 3H), 7.21 – 7.15 (m, 12H), 7.03 – 6.96 (m, 2H), 6.87 (t, J = 7.6 Hz, 2H), 5.72 (s, 1H), 3.20 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.9, 157.4, 154.5, 148.0, 136.7, 136.2, 135.6, 134.3, 129.4, 129.1, 128.9, 127.5, 127.5, 124.0, 123.5, 120.3, 35.6. HRMS (ESI): Calcd for C₃₃H₂₉N₂OSi [M+H]⁺ 497.2044, found: 497.2046.

(E)-N-ethyl-N-(1-phenyl-2-(triphenylsilyl)vinyl)picolinamide (50)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 70% yield (71.4 mg, 0.140 mmol). Mp: 96 – 97 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.35 – 8.35 (m, 1H),

7.60 – 7.60 (m, 1H), 7.47 – 7.47 (m, 1H), 7.41 (d, J = 7.4 Hz, 2H), 7.28 – 7.28 (s, 3H), 7.18 – 7.17 (m, 12H), 7.01 (dd, J = 15.7, 8.2 Hz, 2H), 6.90 (t, J = 7.2 Hz, 2H), 5.67 (s, 1H), 3.63 – 3.62 (m, 2H), 1.26 (t, J = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 155.6, 136.4, 135.7, 135.5, 134.9, 134.3, 129.9, 129.6, 129.0, 128.9, 128.0, 127.8, 127.5, 127.4, 122.4, 41.4, 12.7. HRMS (ESI): Calcd for C₃₄H₃₀N₂NaOSi [M+Na]⁺ 533.2020, found: 533.2018.

(E)-N-(1-phenyl-2-(triphenylsilyl)vinyl)-N-propylpicolinamide (5p)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 73% yield (76.5 mg, 0.146 mmol). Mp: 107 – 108 °C. ¹H NMR (CDCl₃, 500 MHz): 8.32 (d, J = 4.7 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H), 7.40 (d, J = 7.3 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.19 – 7.13 (m, 12H), 7.02 (t, J = 7.4 Hz, 1H), 6.97 (dd, J = 7.5, 4.9 Hz, 1H), 6.89 (t, J = 7.7 Hz, 2H), 5.66 (s, 1H), 3.57 - 3.42 (m, 2H), 1.75 - 1.67 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.6, 156.0, 154.8, 148.0, 136.4, 136.1, 135.5, 134.4, 129.7, 129.1, 128.9, 127.5, 127.5, 123.9, 123.5, 122.3, 47.9, 21.0, 11.4. HRMS (ESI): Calcd for C₃₅H₃₂N₂NaOSi [M+Na]⁺ 547.2176, found: 547.2174.

(E)-N-butyl-N-(1-phenyl-2-(triphenylsilyl)vinyl)picolinamide (5q)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 67% yield (72.1 mg, 0.134 mmol). Mp: 87 – 88 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.33 (d, J = 4.2 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.40 (d, J = 7.1 Hz,

2H), 7.29 – 7.26 (m, 3H), 7.19 – 7.14 (m, 12H), 7.02 (t, J = 7.4 Hz, 1H), 6.97 (dd, J = 7.0, 5.4 Hz, 1H), 6.89 (t, J = 7.7 Hz, 2H), 5.65 (s, 1H), 3.54 – 3.54 (m, 2H), 1.70 – 1.63 (m, 2H), 1.41 -1.33 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.6, 156.0, 154.9, 148.0, 136.4, 136.1, 135.5, 134.4, 129.7, 129.1, 128.9, 127.5, 127.5, 123.9, 123.5, 122.3, 46.0, 29.9, 20.1, 13.9. HRMS (ESI): Calcd for C₃₆H₃₄N₂NaOSi [M+Na]⁺ 561.2333, found: 561.2330.

(E)-N-hexyl-N-(1-phenyl-2-(triphenylsilyl)vinyl)picolinamide (5r)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 60% yield (68.0 mg, 0.120 mmol). Mp: 111 – 112 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.33 (d, J = 4.6 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.39 (d, J

= 7.2 Hz, 2H), 7.29 - 7.26 (m, 3H), 7.19 - 7.14 (m, 12H), 7.02 (t, J = 7.4 Hz, 1H), 6.97 (dd, J= 7.0, 5.3 Hz, 1H), 6.89 (t, J = 7.7 Hz, 2H), 5.65 (s, 1H), 3.53 - 3.52 (m, 2H), 1.71 - 1.65 (m, 2H), 1.35 – 1.27 (m, 6H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.5, 156.0, 154.9, 148.0, 136.4, 136.1, 135.6, 134.4, 129.7, 129.1, 128.9, 127.5, 127.5, 123.9, 123.5, 122.3, 46.3, 31.6, 27.7, 26.6, 22.5, 14.1. HRMS (ESI): Calcd for C₃₈H₃₈N₂NaOSi [M+Na]⁺ 589.2646, found: 589.2643.

(E)-N-octyl-N-(1-phenyl-2-(triphenylsilyl)vinyl)picolinamide (5s) The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 56% yield (66.6 mg, 0.112 mmol). Mp: 101 – 102 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.33 (d, J = 4.5 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H), 7.39 (d, J

= 7.5 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.20 – 7.12 (m, 12H), 7.01 (t, J = 7.4 Hz, 1H), 6.97 (dd, J = 6.9, 5.4 Hz, 1H), 6.89 (t, J = 7.6 Hz, 2H), 5.65 (s, 1H), 3.53 – 3.53 (m, 2H), 1.73 – 1.65 (m, 2H), 1.34 – 1.27 (m, 10H), 0.88 (t, J = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.5, 156.0, 154.9, 148.0, 136.4, 136.1, 135.5, 134.4, 129.7, 129.1, 128.9, 127.5, 127.5, 123.9, 123.5, 122.3, 46.3, 31.8, 29.4, 29.1, 27.7, 26.9, 22.6, 14.1. HRMS (ESI): Calcd for C₄₀H₄₂N₂NaOSi [M+Na]⁺ 617.2959, found: 617.2954.

(E)-N-(3,3-diphenylpropyl)-N-(1-phenyl-2-

(triphenylsilyl)vinyl)picolinamide (5t)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 70% yield (94.7 mg,

0.140 mmol). Mp: 125 – 126 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.33 (d, J = 4.5 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.34 (d, J = 7.2 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.22 – 7.11 (m, 22H), 7.03 – 6.98 (m, 2H), 6.87 (t, J = 7.7 Hz, 2H), 5.61 (s, 1H), 3.92 (t, J = 7.8 Hz, 1H), 3.59 – 3.42 (m, 2H), 2.49 (q, J = 7.9 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.4, 156.1, 154.6, 148.0, 144.2, 136.4, 136.1, 135.6, 134.3, 129.7, 129.1, 128.9, 128.4, 127.7, 127.5, 127.5, 126.2, 124.0, 123.6, 122.3, 48.9, 45.7, 33.1. HRMS (ESI): Calcd for C₄₇H₄₀N₂NaOSi [M+Na]⁺ 699.2802, found: 699.2802.

methyl (*E*)-*N*-(1-phenyl-2-(triphenylsilyl)vinyl)-*N*-picolinoylglycinate (5u)

CO₂Me The title compound was isolated by column chromatography (eluent: Ph SiPh₃ EtOAc/petroleum ether = 1/5) as a yellow solid in 86% yield (95.3 mg, 0.172 mmol). Mp: 94 – 95 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.37 (d, J = 3.8 Hz, 1H), 7.66 (t, J = 11.3 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.42 (d, J = 7.6 Hz, 2H), 7.29 – 7.24 (m, 3H), 7.20 – 7.15 (m, 12H), 7.03 – 6.99 (m, 2H), 6.88 (t, J = 7.5 Hz, 2H), 5.87 (s, 1H), 4.25 (s, 2H), 3.77 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 169.1, 155.3, 153.5, 148.0, 136.3, 135.9, 135.5, 134.2, 129.8, 129.1, 129.1, 127.5, 127.5, 124.4, 123.9, 122.2, 52.0, 48.7. HRMS (ESI): Calcd for C₃₅H₃₀N₂NaO₃Si [M+Na]⁺ 577.1918, found: 577.1915.

methyl

(triphenylsilyl)vinyl)picolinamido)propanoate (5v)

(E)-3-(N-(1-phenyl-2-

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 80% yield (90.9 mg, 0.160 mmol). Mp: 105 – 106 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.32

(d, J = 4.6 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.44 (d, J = 7.5 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.20 – 7.13 (m, 12H), 7.04 (t, J = 7.4 Hz, 1H), 6.98 (dd, J = 7.5, 4.8 Hz, 1H), 6.92 (t, J = 7.7 Hz, 2H), 5.64 (s, 1H), 3.83 (t, J = 7.1 Hz, 2H), 3.64 (s, 3H), 2.76 (t, J = 7.3 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 171.9, 169.7, 155.5, 154.1, 148.1, 136.2, 136.0, 135.5, 134.2, 129.7, 129.2, 129.1, 127.6, 127.5, 124.1, 123.6, 122.8, 51.7, 42.6, 32.3. HRMS (ESI): Calcd for C₃₆H₃₂N₂NaO₃Si [M+Na]⁺ 591.2074, found: 591.2069.

methyl (*E*)-4-(*N*-(1-phenyl-2-(triphenylsilyl)vinyl)picolinamido)butanoate (5w)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 75% yield (87.3 mg, 0.150 mmol). Mp: 121 - 122 °C. ¹H NMR (CDCl₃, 500 MHz):

δ 8.33 (d, *J* = 4.6 Hz, 1H), 7.61 (d, *J* = 7.8 Hz, 1H), 7.48 (t, *J* = 8.4 Hz, 1H), 7.41 (d, *J* = 7.7 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.19 – 7.13 (m, 12H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.98 (dd, *J* = 7.4,

4.9 Hz, 1H), 6.90 (t, J = 7.6 Hz, 2H), 5.65 (s, 1H), 3.63 (s, 3H), 3.60 – 3.54 (m, 2H), 2.42 (t, J = 7.6 Hz, 2H), 2.05 – 1.98 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 173.3, 169.7, 155.8, 154.5, 148.0, 136.2, 136.1, 135.6, 134.2, 129.7, 129.1, 129.0, 127.5, 124.0, 123.6, 122.7, 51.5, 45.4, 31.5, 23.2. HRMS (ESI): Calcd for C₃₇H₃₄N₂NaO₃Si [M+Na]⁺ 605.2231, found: 605.2225.

methyl

(triphenylsilyl)vinyl)picolinamido)hexanoate (5x)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 54% yield (65.9 mg, 0.108 mmol). Mp: 130 - 131 °C. ¹H NMR

(CDCl₃, 500 MHz): δ 8.32 (d, J = 4.6 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.39 (d, J = 7.2 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.20 – 7.11 (m, 12H), 7.02 (t, J = 7.4 Hz, 1H), 6.97 (dd, J = 7.0, 5.1 Hz, 1H), 6.90 (t, J = 7.7 Hz, 2H), 5.64 (s, 1H), 3.64 (s, 3H), 3.54 (t, J = 5.8 Hz, 2H), 2.30 (t, J = 7.5 Hz, 2H), 1.71 – 1.62 (m, 4H), 1.40 – 1.34 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 174.0, 169.6, 155.9, 154.7, 148.0, 136.3, 136.1, 135.5, 134.3, 129.7, 129.1, 129.0, 127.5, 123.9, 123.5, 122.4, 51.4, 46.0, 33.9, 27.4, 26.4, 24.7. HRMS (ESI): Calcd for C₃₉H₃₈N₂NaO₃Si [M+Na]⁺ 633.2544, found: 633.2540.

(*E*)-4-((*N*-(1-phenyl-2-

(E)-6-(N-(1-phenyl-2-

(triphenylsilyl)vinyl)picolinamido)methyl)cyclohexane-1-

carboxylate (5y)

methyl

 CO_2Me The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 42%

yield (53.4 mg, 0.084 mmol). Mp: 181 – 182 °C. ¹H NMR (CDCl₃, 500 MHz): δ^{1} H NMR (500 MHz, CDCl₃) δ 8.32 (d, J = 4.7 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.39 (d, J = 7.2 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.20 – 7.09 (m, 12H), 7.03 (t, J = 7.4 Hz, 1H), 6.97 (dd, J = 7.5, 4.8 Hz, 1H), 6.90 (t, J = 7.7 Hz, 2H), 5.64 (s, 1H), 3.68 (s, 3H), 3.39 (s, 2H), 2.29 – 2.22 (m, 1H), 2.02 – 2.00 (m, 2H), 1.88 – 1.86 (m, 2H), 1.77 – 1.72 (m, 1H), 1.47 – 1.38 (m, 2H), 1.11 – 1.02 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 176.4, 169.9, 156.1, 154.8, 148.1, 136.2, 136.0, 135.5, 134.3, 129.7, 129.1, 129.0, 127.6, 127.6, 123.9, 123.5,

122.9, 51.5, 51.3, 43.2, 36.6, 29.8, 28.7. **HRMS (ESI):** Calcd for C₄₁H₄₀N₂NaO₃Si [M+Na]⁺ 659.2700, found: 659.2705.

8.37 (d, J = 4.3 Hz, 1H), 7.69 (d, J = 7.8 Hz, 1H), 7.53 (d, J = 7.4 Hz, 2H), 7.30 – 7.24 (m, 4H), 7.19 – 7.12 (m, 12H), 7.04 (t, J = 6.9 Hz, 2H), 6.91 (t, J = 7.1 Hz, 2H), 5.74 (s, 1H), 4.20 (t, J = 6.2 Hz, 1H), 3.72 (s, 3H), 3.56 (s, 3H), 2.62 – 2.56 (m, 1H), 2.55 – 2.47 (m, 2H), 2.43 – 2.38 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 173.1, 170.4, 169.7, 156.2, 153.7, 148.2, 136.3, 135.8, 135.5, 134.2, 130.4, 129.3, 129.1, 127.5, 127.5, 124.4, 123.8, 123.5, 59.1, 52.2, 51.5, 30.9, 24.7. HRMS (ESI): Calcd for C₃₉H₃₆N₂NaO₅Si [M+Na]⁺ 663.2286, found: 663.2292.

tert-butyl

(E)-(4-(N-(1-phenyl-2-

(triphenylsilyl)vinyl)picolinamido)butyl)carbamate (5aa) The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 47% yield (61.4 mg, 0.094 mmol). Mp: 135 – 136 °C. ¹H NMR

(CDCl₃, 500 MHz): δ 8.33 (d, J = 4.7 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.40 (d, J = 7.4 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.20 – 7.11 (m, 12H), 7.03 (t, J = 7.4 Hz, 1H), 6.98 (dd, J = 7.0, 5.0 Hz, 1H), 6.90 (t, J = 7.7 Hz, 2H), 5.63 (s, 1H), 4.60 (s, 1H), 3.53 – 3.52 (m, 2H), 3.13 – 3.12 (m, 2H), 1.73 – 1.67 (m, 2H), 1.56 – 1.50 (m, 2H), 1.44 (s, 9H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.6, 155.9, 154.6, 148.1, 136.2, 136.2, 135.5, 134.3, 129.7, 129.1, 129.0, 127.5, 124.0, 123.5, 122.5, 79.0, 45.9, 40.3, 28.4, 27.3, 25.1. HRMS (ESI): Calcd for C₄₁H₄₃N₃NaO₃Si [M+Na]⁺ 676.2966, found: 676.2969.

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 51% yield (60.8 mg, 0.102 mmol). Mp: 92 – 93 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.33 (d, J = 4.7 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.47 (t, J = 8.3 Hz, 1H), 7.40 (d, J = 7.8 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.19 – 7.13 (m, 12H), 7.02 (t, J = 7.4 Hz, 1H), 6.98 (dd, J = 7.5, 4.8 Hz, 1H), 6.89 (t, J = 7.6 Hz, 2H), 5.67 (s, 1H), 3.63 (t, J = 6.9 Hz, 2H), 3.50 (t, J = 6.5 Hz, 2H), 3.36 (t, J = 6.6 Hz, 2H), 2.03 – 1.95 (m, 2H), 1.52 – 1.44 (m, 2H), 1.33 – 1.26 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.6, 156.1, 154.7, 148.1, 136.4, 136.1, 135.5, 134.4, 129.7, 129.1, 128.9, 127.5, 127.5, 123.9, 123.5, 122.3, 70.5, 68.4, 44.0, 31.8, 28.0, 19.3, 13.9. HRMS (ESI): Calcd for C₃₉H₄₀N₂NaO₂Si [M+Na]⁺ 619.2751, found: 619.2749.

ethyl (*E*)-*N*-(2-(diphenyl(*p*-tolyl)silyl)-1-phenylvinyl)-*N*picolinoylglycinate (6a)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 91% yield (106.0 mg, 0.182 mmol). Mp: 60 - 61 °C. ¹H NMR (CDCl₃, 500 MHz): δ
^e 8.39 (d, J = 4.4 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.52 (t, J = 7.3 Hz, 1H)

1H), 7.43 (d, J = 7.3 Hz, 2H), 7.29 – 7.26 (m, 2H), 7.22 – 7.12 (m, 10H), 7.04 – 7.01 (m, 4H), 6.90 (t, J = 7.7 Hz, 2H), 5.89 (s, 1H), 4.33 – 4.18 (m, 4H), 2.34 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 168.6, 155.2, 153.6, 148.0, 139.0, 136.2, 136.0, 135.6, 135.5, 134.5, 130.5, 129.8, 128.9, 128.4, 127.5, 127.4, 124.3, 123.8, 122.4, 61.1, 48.9, 21.4, 14.1. HRMS (ESI): Calcd for C₃₇H₃₄N₂NaO₃Si [M+Na]⁺ 605.2231, found: 605.2233.

ethyl (*E*)-*N*-(2-((4-methoxyphenyl)diphenylsilyl)-1-phenylvinyl)-*N*-picolinoylglycinate (6b)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 83% yield (99.3 mg, 0.166 mmol). Mp: 146 – 147 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.38 (d, J = 4.5 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.52 (t, J = 7.7

Hz, 1H), 7.43 (d, J = 7.6 Hz, 2H), 7.29 – 7.26 (m, 2H), 7.22 – 7.11 (m, 10H), 7.03 (t, J = 6.6

Hz, 2H), 6.90 (t, J = 7.7 Hz, 2H), 6.75 (d, J = 8.5 Hz, 2H), 5.87 (s, 1H), 4.27 – 4.23 (m, 4H), 3.80 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 168.7, 160.5, 155.2, 153.7, 148.0, 137.1, 136.2, 136.1, 135.5, 134.7, 129.8, 129.0, 129.0, 127.5, 127.5, 124.9, 124.3, 123.9, 122.5, 113.4, 61.1, 55.0, 48.9, 14.2. HRMS (ESI): Calcd for C₃₇H₃₄N₂NaO₄Si [M+Na]⁺ 621.2180, found: 621.2178.

ethyl (E)-N-(2-((4-fluorophenyl)diphenylsilyl)-1-phenylvinyl)-Npicolinoylglycinate (6c)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 76% yield (89.1 mg, 0.152 mmol). Mp: 132 – 133 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.36 (d, J = 4.6 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H),7.40 (d, J = 7.8 Hz, 2H), 7.30 – 7.27 (m, 2H), 7.19 – 7.18 (m, 8H), 7.14 – 7.10 (m, 2H), 7.04 -7.00 (m, 2H), 6.89 (t, J = 7.7 Hz, 2H), 6.84 (t, J = 8.9 Hz, 2H), 5.83 (s, 1H), 4.25 - 4.21 (m, 4H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.9, 168.6, 163.6 (d, J =248.9 Hz), 155.6, 153.6, 148.0, 137.5 (d, *J* = 7.7 Hz), 136.3, 136.0, 135.5, 134.2, 129.8, 129.6 (d, J = 3.6 Hz), 129.2, 129.2, 127.6, 127.6, 124.4, 124.0, 121.7, 114.6 (d, J = 19.9 Hz), 61.1,

48.8, 14.1. ¹⁹F NMR (CDCl₃, 471 MHz): δ -111.5. HRMS (ESI): Calcd for C₃₆H₃₁FN₂NaO₃Si [M+Na]⁺ 609.1980, found: 609.1979.

ethyl (E)-N-(2-((4-chlorophenyl)diphenylsilyl)-1-phenylvinyl)-Npicolinoylglycinate (6d)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 75% yield (90.3 mg, 0.150 mmol). Mp: 115 – 116 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.35 (d, J = 4.6 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H),

7.39 (d, J = 7.1 Hz, 2H), 7.30 – 7.27 (m, 2H), 7.20 – 7.17 (m, 8H), 7.11 (d, J = 8.2 Hz, 2H), 7.06 (d, J = 8.3 Hz, 2H), 7.04 – 7.00 (m, 2H), 6.89 (t, J = 7.7 Hz, 2H), 5.81 (s, 1H), 4.27 – 4.18 (m, 4H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.9, 168.6, 155.8, 153.6, 148.0, 136.8, 136.3, 136.0, 135.5, 133.9, 132.7, 129.8, 129.3, 129.2, 127.7, 127.6, 127.6, 124.4, 124.0, 121.4, 61.1, 48.8, 14.1. **HRMS (ESI):** Calcd for C₃₆H₃₁ClN₂NaO₃Si [M+Na]⁺ 625.1685, found: 625.1682.

ethyl (*E*)-*N*-(2-(diphenyl(o-tolyl)silyl)-1-phenylvinyl)-*N*picolinoylglycinate (6e)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 80% yield (93.2 mg, 0.160 mmol). Mp: 77 – 78 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.27 (d, J

= 4.2 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.37 (d, J

= 7.6 Hz, 2H), 7.31 – 7.26 (m, 3H), 7.22 (t, J = 7.5 Hz, 1H), 7.19 – 7.12 (m, 8H), 7.07 (t, J = 7.4 Hz, 1H), 7.01 – 6.94 (m, 3H), 6.84 (t, J = 7.7 Hz, 2H), 5.97 (s, 1H), 4.26 – 4.21 (m, 4H), 1.89 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 168.7, 154.9, 153.6, 148.1, 144.5, 137.1, 136.2, 135.7, 135.4, 134.5, 133.0, 129.8, 129.7, 129.0, 127.6, 127.3, 124.8, 124.3, 123.8, 122.4, 61.1, 49.0, 23.4, 14.1. HRMS (ESI): Calcd for C₃₇H₃₄N₂NaO₃Si [M+Na]⁺ 605.2231, found: 605.2228.

ethyl (*E*)-*N*-(2-(diphenyl(m-tolyl)silyl)-1-phenylvinyl)-*N*picolinoylglycinate (6f)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 82% yield (95.5 mg, 0.164 mmol). Mp: 65 – 66 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.36 (d, J = 4.6 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H),

7.42 (d, J = 7.7 Hz, 2H), 7.29 – 7.26 (m, 2H), 7.20 – 7.15 (m, 8H), 7.08 (d, J = 4.8 Hz, 2H), 7.03 – 6.98 (m, 4H), 6.88 (t, J = 7.6 Hz, 2H), 5.86 (s, 1H), 4.26 – 4.22 (m, 4H), 2.22 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 168.7, 155.3, 153.6, 148.0, 136.6, 136.2, 136.2, 136.1, 135.6, 134.5, 133.8, 132.7, 129.9, 129.8, 129.0, 127.5, 127.4, 124.3, 123.9, 122.4, 61.1, 48.9, 21.4, 14.2. HRMS (ESI): Calcd for C₃₇H₃₄N₂NaO₃Si [M+Na]⁺ 605.2231, found: 605.2229.

ethyl (E)-N-(2-(naphthalen-1-yldiphenylsilyl)-1-phenylvinyl)-Npicolinoylglycinate (6g)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 77% yield (95.2 mg, 0.154 mmol). Mp: 147 – 148 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.30 (d, J = 1.3 Hz, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H),7.55 – 7.44 (m, 3H), 7.35 – 7.27 (m, 3H), 7.23 – 7.20 (m, 3H), 7.17 – 7.08 (m, 10H), 6.89 (d, J = 1.3 Hz, 1H), 6.72 (t, J = 7.4 Hz, 1H), 6.55 (t, J = 7.7 Hz, 2H), 5.98 (s, 1H), 4.20 - 4.15 (m, 4H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.1, 168.7, 155.1, 153.7,

147.9, 136.9, 136.6, 136.1, 135.7, 135.6, 134.5, 133.3, 132.4, 130.6, 129.4, 129.2, 129.1, 128.7, 128.4, 127.6, 126.8, 125.4, 125.3, 125.0, 124.2, 123.7, 122.2, 61.1, 49.0, 14.1. HRMS (ESI): Calcd for $C_{40}H_{34}N_2NaO_3Si [M+Na]^+ 641.2231$, found: 641.2233.

ethyl (E)-N-(2-(naphthalen-2-yldiphenylsilyl)-1-phenylvinyl)-Npicolinoylglycinate (6h)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 82% yield (101.4) mg, 0.164 mmol). Mp: 133 – 134 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.35 (d, J = 4.6 Hz, 1H), 7.80 – 7.74 (m, 2H), 7.70 – 7.66 (m, 2H),

7.63 (d, J = 8.2 Hz, 1H), 7.50 – 7.44 (m, 4H), 7.40 (t, J = 7.2 Hz, 1H), 7.29 (t, J = 7.2 Hz, 2H), 7.25 - 7.23 (m, 5H), 7.20 - 7.17 (m, 4H), 6.94 - 6.88 (m, 2H), 6.83 (t, J = 7.6 Hz, 2H), 5.94(s, 1H), 4.35 - 4.16 (m, 4H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 168.7, 155.5, 153.6, 148.0, 136.9, 136.2, 136.1, 135.6, 134.3, 133.6, 132.7, 131.8, 131.3, 129.8, 129.1, 129.1, 128.1, 127.6, 127.5, 126.6, 126.5, 125.7, 124.3, 123.9, 122.1, 61.1, 48.8, 14.1. HRMS (ESI): Calcd for C₄₀H₃₄N₂NaO₃Si [M+Na]⁺ 641.2231, found: 641.2230.

(E)-N-(2-(benzo[b]thiophen-2-yldiphenylsilyl)-1ethyl phenylvinyl)-N-picolinoylglycinate (6i)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 73% yield (91.1 mg, 0.146 mmol). Mp: 143 – 144 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.33 (d, J = 4.5 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 7.7 Hz, 1H), 7.37 – 7.26 (m, 8H), 7.24 – 7.22 (m, 4H), 7.19 – 7.16 (m, 4H), 7.10 (t, J = 7.2 Hz, 1H), 6.95 (dd, J = 7.0, 5.1 Hz, 1H), 6.88 (t, J = 7.4 Hz, 1H), 6.76 (t, J = 7.7 Hz, 2H), 5.94 (s, 1H), 4.26 – 4.18 (m, 4H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.1, 168.7, 155.6, 153.6, 147.9, 142.8, 141.4, 138.2, 136.0, 135.6, 135.4, 133.8, 131.5, 129.5, 129.3, 129.0, 127.7, 127.1, 125.3, 124.2, 123.9, 123.8, 123.7, 122.1, 121.1, 61.1, 48.8, 14.2. HRMS (ESI): Calcd for C₃₈H₃₂N₂NaO₃SSi [M+Na]⁺ 647.1795, found: 647.1799.

ethyl (*E*)-*N*-(2-(methyldiphenylsilyl)-1-phenylvinyl)-*N*picolinoylglycinate (6j)

ONCO2Et Ph SiMePh2

Et The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 77% yield (78.0 mg, 0.154 mmol). Mp: 45 – 46 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.48 (d, J

= 4.7 Hz, 1H), 7.68 (d, J = 7.7 Hz, 1H), 7.62 (t, J = 7.7 Hz, 1H), 7.52 (d, J = 7.8 Hz, 2H), 7.28 (t, J = 7.4 Hz, 2H), 7.23 – 7.16 (m, 6H), 7.15 – 7.11 (m, 6H), 5.71 (s, 1H), 4.23 – 4.19 (q, J = 7.1 Hz, 4H), 1.28 – 1.25 (m, 3H), 0.01 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.8, 168.6, 154.8, 153.8, 148.1, 137.0, 137.0, 136.4, 134.3, 130.0, 129.3, 128.9, 127.9, 127.6, 124.5, 124.1, 123.8, 61.1, 48.7, 14.1, -4.0. HRMS (ESI): Calcd for C₃₁H₃₀N₂NaO₃Si [M+Na]⁺ 529.1918, found: 529.1920.

N ON CO₂Et Ph SiHPh₂ ethyl (*E*)-*N*-(2-(diphenylsilyl)-1-phenylvinyl)-*N*-picolinoylglycinate (6k) The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 64% yield (63.0 mg, 0.128 mmol). Mp: 53 – 54 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.36 (d, *J* = 4.5 Hz, 1H), 7.62 – 7.59 (m, 3H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.33 – 7.27

(m, 3H), 7.26 - 7.18 (m, 10H), 7.06 (dd, J = 6.6, 5.4 Hz, 1H), 5.69 (d, J = 5.4 Hz, 1H), 4.75 (d, J = 5.5 Hz, 1H), 4.26 (s, 2H), 4.21 (q, J = 7.1 Hz, 2H), 1.26 (t, J = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 168.6, 156.0, 153.6, 148.2, 136.8, 136.3, 135.0, 134.0, 129.8, 129.4,

129.4, 128.0, 127.8, 124.4, 123.8, 120.0, 61.2, 49.1, 14.1. HRMS (ESI): Calcd for $C_{30}H_{28}N_2NaO_3Si [M+Na]^+ 515.1761$, found: 515.1765.

ethyl (*E*)-*N*-(2-(dimethyl(phenyl)silyl)-1-phenylvinyl)-*N*picolinoylglycinate (6l)

 $\begin{array}{l} \begin{array}{c} O & \mathsf{N} & \mathsf{CO}_2\mathsf{Et} \\ \mathsf{Ph} & \mathsf{SiMe}_2\mathsf{Ph} \end{array} \\ \begin{array}{c} \mathsf{EtOAc/petroleum\ ether\ =\ 1/5)\ as\ a\ yellow\ solid\ in\ 68\%\ yield\ (60.4\ mg, \\ 0.136\ mmol).\ Mp:\ 41\ -\ 42\ ^\circ\mathsf{C}.\ ^1\mathsf{H}\ \mathbf{NMR}\ (\mathbf{CDCl}_3,\ \mathbf{500\ MHz}):\ \delta\ 8.54\ (d,\ J \\ \end{array} \\ \begin{array}{c} =\ 4.7\ \mathrm{Hz},\ 1\mathrm{H}),\ 7.72\ (d,\ J\ =\ 4.3\ \mathrm{Hz},\ 2\mathrm{H}),\ 7.61\ (d,\ J\ =\ 7.3\ \mathrm{Hz},\ 2\mathrm{H}),\ 7.38\ -\ 7.27\ (m,\ 7\mathrm{H}),\ 7.21\ (d, \\ J\ =\ 6.9\ \mathrm{Hz},\ 2\mathrm{H}),\ 5.52\ (s,\ 1\mathrm{H}),\ 4.28\ -\ 4.23\ (m,\ 4\mathrm{H}),\ 1.32\ (t,\ J\ =\ 2.1\ \mathrm{Hz},\ 3\mathrm{H}),\ -0.12\ (s,\ 6\mathrm{H}).\ ^{13}\mathsf{C} \\ \mathbf{NMR}\ (\mathbf{CDCl}_3,\ \mathbf{125\ MHz}):\ \delta\ 169.9,\ 168.6,\ 154.1,\ 153.6,\ 148.1,\ 138.8,\ 137.3,\ 136.4,\ 133.5,\ 130.0,\ 129.3,\ 128.7,\ 128.0,\ 127.6,\ 125.9,\ 124.4,\ 123.9,\ 61.1,\ 48.5,\ 14.1,\ -1.9.\ \mathbf{HRMS}\ (\mathbf{ESI}):\ \mathbf{Calcd}\ \mathbf{for}\ \mathbf{C}_{26}\mathbf{H}_{28}\mathbf{N}_2\mathbf{NaO}_3\mathbf{Si}\ [\mathsf{M+Na}]^+\ 467.1761,\ found:\ 467.1760. \end{array}$

Nethyl (E)-N-(1-phenyl-2-(triethylsilyl)vinyl)-N-picolinoylglycinate (6m)The title compound was isolated by column chromatography (eluent:ONCO2EtEtOAc/petroleum ether = 1/5) as a yellow solid in 65% yield (55.1 mg,0.130 mmol). Mp: 55 - 56 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.47 (d, J= 4.6 Hz, 1H), 7.71 - 7.65 (m, 2H), 7.62 (d, J = 6.6 Hz, 2H), 7.35 - 7.29(m, 3H), 7.23 (t, J = 5.7 Hz, 1H), 5.30 (s, 1H), 4.21 - 4.16 (m, 4H), 1.27 - 1.24 (m, 3H), 0.60(t, J = 7.9 Hz, 9H), 0.14 (q, J = 7.9 Hz, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.9, 168.7,

154.3, 152.8, 148.3, 137.8, 136.4, 129.8, 129.1, 127.9, 125.1, 124.3, 123.8, 61.0, 48.6, 14.1, 7.2, 4.3. **HRMS (ESI):** Calcd for C₂₄H₃₂N₂NaO₃Si [M+Na]⁺ 447.2074, found: 447.2072.

ethyl (*E*)-*N*-(1-phenyl-2-(triisopropylsilyl)vinyl)-*N*-picolinoylglycinate (6n)

 CO_2Et The title compound was isolated by column chromatography (eluent: isi/Pr_3 EtOAc/petroleum ether = 1/5) as a yellow solid in 67% yield (62.5 mg,0.134 mmol). Mp: 86 - 87 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.47 (d, J

= 4.6 Hz, 1H), 7.72 - 7.66 (m, 4H), 7.33 - 7.27 (m, 3H), 7.23 - 7.20 (m, 1H), 5.41 (s, 1H),

4.20 - 4.16 (m, 4H), 1.26 - 1.24 (m, 3H), 0.78 - 0.68 (m, 21H). ¹³C NMR (CDCl₃, 125) MHz): δ 168.7, 154.0, 153.0, 148.3, 138.3, 136.5, 129.8, 129.0, 127.8, 124.5, 124.2, 123.6, 61.0, 48.9, 18.8, 14.1, 12.3. HRMS (ESI): Calcd for C₂₇H₃₈N₂NaO₃Si [M+Na]⁺ 489.2544, found: 489.2542.

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a vellow solid in 58% yield (68.7 mg, 0.116 mmol). Mp: 61 – 62 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.45 (d, J = 4.7 Hz, 1H), 7.66 (d, J = 3.9 Hz, 2H), 7.61 (d, J = 7.7 Hz, 2H), 7.35 – 7.28 (m, 3H), 7.24 – 7.21 (m, 1H), 5.27 (s, 1H), 4.21 – 4.08 (m, 4H), 1.26 – 1.19 (m, 10H), 1.14 - 1.08 (m, 6H), 1.07 - 1.00 (m, 6H), 0.91 - 0.83 (m, 15H), 0.12 - 0.07 (m, 5H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.8, 168.5, 154.3, 152.2, 148.2, 137.7, 136.3, 129.8, 129.1, 127.9, 126.0, 124.1, 123.8, 60.9, 48.5, 33.3, 31.4, 23.5, 22.5, 14.1, 13.3. HRMS (ESI): Calcd

ethyl (*E*)-*N*-(1-phenyl-2-(trihexylsilyl)vinyl)-*N*-picolinoylglycinate (60)

for C₃₆H₅₆N₂NaO₃Si [M+Na]⁺ 615.3952, found: 615.3958. ethyl (E)-N-(1-phenyl-2-(tribenzylsilyl)vinyl)-N-picolinoylglycinate (6p)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 53% yield (64.7 mg, 0.106 mmol). Mp: 60 – 61 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.44 (d, J = 4.7 Hz, 1H), 7.64 (d, J = 3.8 Hz, 2H), 7.23 - 7.20 (m, 2H), 7.18 - 7.15

(m, 6H), 7.12 - 7.05 (m, 8H), 6.72 - 6.70 (d, J = 7.6 Hz, 5H), 5.30 (s, 1H), 4.23 (q, J = 7.1 Hz, 2H), 4.14 (s, 2H), 1.71 (s, 6H), 1.28 (t, J = 5.8 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 168.6, 154.7, 153.8, 147.9, 138.7, 137.9, 136.5, 129.9, 129.3, 128.7, 128.3, 128.0, 124.5, 124.4, 124.2, 120.2, 61.1, 49.4, 22.3, 14.2. HRMS (ESI): Calcd for C₃₉H₃₈N₂NaO₃Si [M+Na]⁺ 633.2544, found: 633.2542.

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 62% yield (52.6 mg, 0.124 mmol). Mp: 48 – 49 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.50 (d, J = 4.7 Hz, 1H), 7.74 – 7.63 (m, 4H), 7.34 – 7.29 (m, 3H), 7.24 – 7.21 (m, 1H), 5.40 (s, 1H), 4.21 – 4.17 (m, 4H), 1.27 – 1.24 (m, 3H), 0.59 (s, 9H), - 0.45 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ 168.7, 154.0, 153.6, 148.1, 137.8, 136.6, 130.3, 129.0, 127.8, 124.7, 124.5, 124.2, 61.0, 48.5, 26.2, 16.4, 14.2, -5.0. HRMS (ESI): Calcd for C₂₄H₃₂N₂NaO₃Si [M+Na]⁺ 447.2074, found: 447.2073.

ethyl (*E*)-*N*-(2-(benzyldimethylsilyl)-1-phenylvinyl)-*N*picolinovlglvcinate (6r)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 60% yield (55.0 mg,

0.120 mmol). Mp: 54 – 55 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.42 (d, J = 4.6 Hz, 1H), 7.63 – 7.56 (m, 2H), 7.42 (d, J = 7.0 Hz, 2H), 7.24 – 7.17 (m, 4H), 7.08 (t, J = 7.6 Hz, 2H), 6.97 (t, J = 7.4 Hz, 1H), 6.73 (d, J = 7.4 Hz, 2H), 5.20 (s, 1H), 4.18 – 4.07 (m, 4H), 1.65 (s, 2H), 1.21 – 1.18 (m, 3H), -0.53 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.8, 168.6, 154.3, 153.3, 148.0, 139.5, 137.6, 136.4, 129.9, 129.3, 128.1, 128.0, 125.7, 124.3, 124.1, 123.9, 61.1, 48.6, 26.2, 14.1, -2.6. HRMS (ESI): Calcd for C₂₇H₃₀N₂NaO₃Si [M+Na]⁺ 481.1918, found: 481.1917.

ethyl (*E*)-*N*-(1-(3-dodecanamidophenyl)-2-(triphenylsilyl)vinyl)-*N*-picolinoylglycinate (7a) The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether =

1/3) as a yellow solid in 75% yield (114.8 mg, 0.150

mmol). Mp: 98 – 99 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.27 (d, *J* = 3.9 Hz, 1H), 7.71 (d, *J* = 9.0 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 1H), 7.31 – 7.28 (m, 3H), 7.26 – 7.24 (m, 1H), 7.22 – 7.10 (m, 12H), 7.01 – 6.97 (m, 1H), 6.95 (t, *J* = 7.9 Hz, 1H), 6.91 (s, 1H), 6.48 (s, 1H), 5.85 (s, 1H), 4.23 – 4.18 (m, 4H), 2.21 (t, *J* = 7.5 Hz, 2H), 1.67 – 1.62 (m, 3H), 1.33 – 1.24 (m, 18H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 171.0, 169.9,
168.6, 155.1, 153.4, 148.1, 137.3, 136.8, 136.3, 135.6, 134.5, 129.2, 128.7, 127.6, 125.4, 124.4, 123.9, 122.5, 121.2, 121.0, 61.2, 48.8, 37.7, 31.9, 29.6, 29.6, 29.5, 29.4, 29.3, 29.3, 25.5, 22.7, 14.1, 14.1. **HRMS (ESI):** Calcd for C₄₈H₅₅N₃NaO₄Si [M+Na]⁺ 788.3854, found: 788.3857.

ethyl (*E*)-*N*-picolinoyl-*N*-(1-(3stearamidophenyl)-2-

(triphenylsilyl)vinyl)glycinate (7b)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/3) as a yellow solid in 71% yield

(120.6 mg, 0.142 mmol). Mp: 105 – 106 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.27 (d, J = 4.3 Hz, 1H), 7.71 (d, J = 7.9 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.52 (t, J = 7.1 Hz, 1H), 7.31 – 7.24 (m, 3H), 7.26 – 7.24 (m, 1H), 7.20 – 7.12 (m, 12H), 6.99 (dd, J = 6.8, 5.4 Hz, 1H), 6.95 (t, J = 7.9 Hz, 1H), 6.91 (s, 1H), 6.47 (s, 1H), 5.85 (s, 1H), 4.23 – 4.19 (m, 4H), 2.21 (t, J = 7.5 Hz, 2H), 1.69 – 1.62 (m, 3H), 1.29 – 1.25 (m, 30H), 0.87 (t, J = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.9, 169.9, 168.6, 155.1, 153.4, 148.1, 137.3, 136.8, 136.3, 135.6, 134.5, 129.2, 128.7, 127.6, 125.4, 124.4, 123.9, 122.5, 121.2, 121.0, 61.1, 48.8, 37.7, 31.9, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.3, 25.5, 22.7, 14.1, 14.1. HRMS (ESI): Calcd for C₅₄H₆₇N₃NaO₄Si [M+Na]⁺ 872.4793, found: 872.4799.

ethyl *N*-((*E*)-1-(3-oleamidophenyl)-2-(triphenylsilyl)vinyl)-*N*-picolinoylglycinate (7c)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/3) as a yellow solid in 54% yield

(91.5 mg, 0.108 mmol). Mp: 78 – 79 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.36 (d, *J* = 4.3 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.20 – 7.16 (m, 11H), 7.06 – 7.00 (m, 3H), 6.97 (s, 1H), 5.82 (s, 1H), 5.38 – 5.36 (m,

2H), 4.30 - 4.19 (m, 4H), 2.31 (t, J = 7.4 Hz, 2H), 2.05 - 2.01 (m, 4H), 1.75 - 1.68 (m, 2H), 1.36 - 1.26 (m, 23H), 0.90 (t, J = 6.9 Hz, 3H). ¹³**C** NMR (CDCl₃, 125 MHz): δ 170.0, 168.6, 154.9, 153.6, 148.1, 138.7, 136.3, 135.6, 134.3, 130.7, 130.0, 129.7, 129.0, 127.5, 124.4, 123.9, 121.8, 118.3, 61.1, 48.9, 37.8, 31.9, 29.8, 29.7, 29.5, 29.3, 29.2, 29.1, 27.2, 27.2, 25.5, 22.7, 14.2, 14.1. HRMS (ESI): Calcd for C₅₄H₆₅N₃NaO₄Si [M+Na]⁺ 870.4637, found: 870.4642.

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/1)

as a yellow solid in 45% yield (74.7 mg, 0.090 mmol). Mp: 186 – 187 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.26 (d, J = 4.4 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 7.3 Hz, 1H), 7.36 (d, J = 7.7 Hz, 1H), 7.25 – 7.16 (m, 9H), 7.12 – 7.08 (m, 11H), 7.04 (s, 1H), 6.97 – 6.92 (m, 2H), 6.84 (t, J = 7.9 Hz, 1H), 5.81 (s, 1H), 5.25 (s, 1H), 4.97 (s, 1H), 4.31 (s, 1H), 4.21 – 4.13 (m, 4H), 3.05 (d, J = 6.6 Hz, 2H), 1.38 (s, 9H), 1.23 – 1.21 (m, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.9, 169.0, 168.6, 154.7, 153.4, 148.0, 136.8, 136.4, 136.3, 135.5, 134.2, 129.3, 129.2, 128.8, 128.4, 127.6, 127.1, 126.1, 124.4, 123.9, 122.7, 121.6, 121.1, 61.2, 53.4, 48.7, 38.4, 29.7, 28.2, 14.2. HRMS (ESI): Calcd for C₅₀H₅₀N₄NaO₆Si [M+Na]⁺ 853.3392, found: 853.3398.

ethyl (*E*)-*N*-(1-(3-(2-(4isobutylphenyl)propanamido)phenyl)-2-(triphenylsilyl)vinyl)-*N*-picolinoylglycinate (7e)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/3) as a yellow solid in 60% yield (92.6 mg, 0.120 mmol). Mp: 90 – 91 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.24 (d, J = 4.1 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.25 – 7.20 (m, 4H), 7.15 (d, J = 8.0 Hz, 2H), 7.12 – 7.05 (m, 14H), 6.91 (t, J = 8.0 Hz, 2H), 6.78 (s, 1H), 6.40 (s, 1H), 5.79 (s, 1H), 4.23 – 4.08 (m, 4H), 3.49 (q, J = 7.1 Hz, 1H), 2.44 (d, J = 7.1 Hz, 2H), 1.83 (dt, J = 13.4, 6.7 Hz, 1H), 1.49 (d, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H), 0.88 (d, J = 6.6 Hz, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ 171.9, 169.9, 168.6, 154.9, 153.5, 148.0, 141.0, 138.1, 136.9, 136.5, 136.3, 135.5, 134.2, 129.7, 129.1, 128.5, 127.5, 127.3, 125.3, 124.3, 123.9, 122.4, 121.7, 121.1, 61.1, 48.8, 47.6, 45.0, 30.1, 22.4, 18.6, 14.1. HRMS (ESI): Calcd for C₄₉H₄₉N₃NaO₄Si [M+Na]⁺ 794.3385, found: 794.3388.

ethyl (*E*)-*N*-(1-(4-(2-(4isobutylphenyl)propanamido)phenyl)-2-(triphenylsilyl)vinyl)-*N*-picolinoylglycinate (7f)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum

ether = 1/3) as a yellow solid in 64% yield (98.7 mg, 0.128 mmol). Mp: 92 – 93 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.33 (d, J = 4.5 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.31 (d, J = 8.5 Hz, 2H), 7.25 – 7.11 (m, 19H), 7.04 (s, 1H), 6.99 (dd, J = 7.1, 5.1 Hz, 1H), 6.94 (d, J = 8.4 Hz, 2H), 5.79 (s, 1H), 4.22 – 4.18 (m, 4H), 3.64 (q, J = 7.0 Hz, 1H), 2.49 (d, J = 7.2 Hz, 2H), 1.88 (dt, J = 13.5, 6.7 Hz, 1H), 1.55 (d, J = 7.1 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H), 0.92 (d, J = 6.6 Hz, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ 172.3, 170.0, 168.6, 154.9, 153.5, 148.0, 141.0, 138.8, 138.1, 136.2, 135.5, 134.2, 131.7, 130.5, 129.7, 128.9, 127.5, 127.2, 124.4, 123.8, 121.8, 118.2, 61.1, 48.8, 47.6, 44.9, 30.1, 22.3, 18.4, 14.1. HRMS (ESI): Calcd for C₄₉H₄₉N₃NaO₄Si [M+Na]⁺ 794.3385, found: 794.3389.

ethyl (*S*,*E*)-*N*-(1-(4-(2-((((9*H*-fluoren-9yl)methoxy)carbonyl)amino)-4-oxo-4-(tritylamino)butanamido)phenyl)-2-(triphenylsilyl)vinyl)-*N*-picolinoylglycinate (7g)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether =

1/1) as a yellow solid in 33% yield (76.7 mg, 0.066 mmol). Mp: 122 – 123 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.66 (s, 1H), 8.37 (d, J = 4.6 Hz, 1H), 7.77 (d, J = 7.5 Hz, 2H), 7.69 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 5.1 Hz, 2H), 7.53 (t, J = 7.7 Hz, 1H), 7.41 – 7.37 (m, 4H), 7.31 – 7.16 (m, 33H), 7.05 – 7.02 (m, 1H), 6.92 (d, J = 8.4 Hz, 2H), 6.46 (d, J = 5.1 Hz, 1H), 5.85 (s, 1H), 4.62 – 4.62 (m, 1H), 4.46 – 4.42 (m, 2H), 4.26 – 4.20 (m, 5H), 3.15 (d, J = 15.4 Hz, 1H), 2.67 – 2.62 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 168.6, 156.3, 155.0, 153.6, 148.1, 144.0, 143.6, 143.6, 141.3, 138.1, 136.3, 135.6, 134.4, 132.4, 130.6, 129.1, 128.6, 128.1, 127.8, 127.6, 127.2, 127.1, 125.0, 124.4, 124.0, 120.1, 118.9, 71.1, 67.3, 61.2, 48.9, 47.1, 38.8, 14.2. HRMS (ESI): Calcd for C₇₄H₆₃N₅NaO₇Si [M+Na]⁺ 1184.4389, found: 1184.4393.

ethyl (E)-N-(1-(4-(N,Ndipropylsulfamoyl)benzamido)phenyl)-2-(triphenylsilyl)vinyl)-Npicolinoylglycinate (7h)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum

ether = 1/3) as a yellow solid in 63% yield (107.1 mg, 0.126 mmol). Mp: $151 - 152 \circ C. {}^{1}H$ **NMR (CDCl₃, 500 MHz):** δ 8.37 (d, J = 4.4 Hz, 1H), 8.01 (s, 1H), 7.92 (d, J = 8.3 Hz, 2H), 7.83 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 7.43 (d, J = 8.5 Hz, 2H), 7.30 - 7.26 (m, 3H), 7.24 - 7.15 (m, 14H), 7.02 (dd, J = 7.0, 5.2 Hz, 1H), 5.86 (s, 1H), 4.25 - 4.21 (m 4H), 3.12 - 3.07 (m, 4H), 1.60 - 1.52 (m, 4H), 1.28 (t, J = 7.1 Hz, 3H), 0.88 (t, J = 7.4 Hz, 6H). ${}^{13}C$ NMR (CDCl₃, 125 MHz): δ 170.0, 168.6, 164.1, 154.8, 153.5, 148.1, 143.0, 138.4, 136.3, 135.6, 134.2, 132.6, 130.8, 129.1, 127.9, 127.6, 127.3, 124.5, 123.9, 122.2, 119.0, 61.2, 50.0, 48.9, 21.9, 14.2, 11.1. HRMS (ESI): Calcd for C₁₉H₅₀N₄NaO₆SSi [M+Na]⁺ 873.3113, found: 873.3118.

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/3) as a yellow solid in 55% yield (94.4 mg, 0.110 mmol). Mp: 81 – 82 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.34 – 8.33 (m, 2H), 7.66 – 7.61 (m, 3H), 7.59 – 7.57 (m, 2H), 7.48 (t, J = 8.4 Hz, 1H), 7.39 – 7.30 (m, 9H), 7.25 – 7.21 (m, 3H), 7.18 – 7.11 (m, 11H), 7.04 – 6.96 (m, 3H), 5.80 (s, 1H), 4.32 – 4.10 (m, 4H), 3.25 (t, J = 6.8 Hz, 2H), 2.90 (t, J = 6.6 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 169.5, 168.6, 162.4, 154.9, 153.6, 148.1, 145.7, 138.8, 136.3, 135.6, 135.0, 134.8, 134.3, 132.2, 131.8, 130.6, 129.0, 128.7, 128.7, 128.6, 128.3, 127.8, 127.5, 126.5, 124.4, 123.9, 121.8, 118.4, 61.1, 48.9, 34.1, 24.0, 14.1. HRMS (ESI): Calcd for C₅₄H₄₆N₄NaO₅Si [M+Na]⁺ 881.3130, found: 881.3133.

ethyl (*E*)-*N*-(1-(3-(2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanamido)phenyl)-2-

(triphenylsilyl)vinyl)-*N*-picolinoylglycinate (7j) The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/3) as a yellow solid in 56% yield (90.6 mg,

0.112 mmol). Mp: 94 – 95 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.28 (d, J = 4.4 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.58 – 7.53 (m, 3H), 7.49 – 7.44 (m, 3H), 7.41 – 7.37 (m, 2H), 7.30 (d, J = 7.6 Hz, 1H), 7.25 – 7.23 (m, 3H), 7.14 – 7.11 (m, 14H), 6.97 – 6.94 (m, 2H), 6.89 (s, 1H), 6.54 (s, 1H), 5.82 (s, 1H), 4.22 – 4.18 (m, 4H), 3.57 (q, J = 7.0 Hz, 1H), 1.56 (d, J = 7.1 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 171.0, 170.0, 168.6, 159.8 (d, J = 248.9 Hz), 154.8, 153.4, 148.0, 142.3, 142.2, 136.8, 136.7, 136.3, 135.5, 135.2, 134.2, 131.2 (d, J = 4.0 Hz), 129.2, 128.9 (d, J = 2.6 Hz), 128.6, 128.5, 127.8, 127.5, 125.5, 124.4, 123.9, 123.5 (d, J = 3.2 Hz), 122.6, 121.7, 121.1, 115.3 (d, J = 23.6 Hz), 61.2, 48.8, 47.5, 18.6, 14.1. ¹⁹F NMR (CDCl₃, 471 MHz): δ -116.7. HRMS (ESI): Calcd for C₅₁H₄₄FN₃NaO₄Si [M+Na]⁺ 832.2977, found: 832.2980.

S77

ethyl (*E*)-*N*-(1-(4-(2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanamido)phenyl)-2-

(triphenylsilyl)vinyl)-N-picolinoylglycinate (7k)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/3) as a yellow solid in 54% yield (87.4 mg, 0.108 mmol). Mp: 97 – 98 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.33 (d, J = 4.4 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.55 (d, J = 8.2 Hz, 2H), 7.50 – 7.43 (m, 4H), 7.39 – 7.33 (m, 3H), 7.23 – 7.10 (m, 17H), 7.03 – 6.97 (m, 4H), 5.80 (s, 1H), 4.22 – 4.18 (m, 4H), 3.67 (q, J = 7.0 Hz, 1H), 1.58 (d, J = 7.1 Hz, 3H), 1.25 (t, J = 6.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 171.2, 170.0, 168.6, 159.9 (d, J = 249.1 Hz), 154.8, 153.5, 148.1, 142.3, 142.3, 138.6, 136.3, 135.6, 135.2, 134.3, 132.1, 131.2 (d, J = 3.4 Hz), 130.6, 129.0, 128.9 (d, J = 2.7 Hz), 128.5, 127.8, 127.5, 124.4, 123.9, 123.5 (d, J = 3.3 Hz), 122.0, 118.4, 115.2 (d, J = 23.5 Hz), 61.1, 48.9, 47.6, 18.6, 14.1. ¹⁹F NMR (CDCl₃, 471 MHz): δ -116.7. HRMS (ESI): Calcd for C₅₁H₄₄FN₃NaO₄Si [M+Na]⁺ 832.2977, found: 832.2983.

ethyl (*E*)-*N*-(1-(4-(2-(1-(4-chlorobenzoyl)-5methoxy-2-methyl-1H-indol-3vl)acetamido)phenyl)-2-

(triphenylsilyl)vinyl)-*N*-picolinoylglycinate (7l)

The title compound was isolated by column

chromatography (eluent: EtOAc/petroleum ether = 1/1) as a yellow solid in 41% yield (75.6 mg, 0.082 mmol). Mp: 112 – 113 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.32 (d, *J* = 4.4 Hz, 1H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.51 – 7.48 (m, 3H), 7.32 (d, *J* = 8.5 Hz, 2H), 7.23 – 7.18 (m, 3H), 7.16 – 7.10 (m, 11H), 7.06 (s, 1H), 7.00 (dd, *J* = 6.9, 5.0 Hz, 1H), 6.94 – 6.86 (m, 4H), 6.73 (dd, *J* = 9.1, 2.5 Hz, 1H), 5.79 (s, 1H), 4.25 – 4.13 (m, 4H), 3.83 (s, 3H), 3.75 (s, 2H), 2.45 (s, 3H), 1.27 – 1.25 (m, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 168.6, 168.3, 156.4, 154.8, 153.6, 148.0, 139.7, 138.1, 137.3, 136.6, 136.3, 135.6, 134.3, 133.5, 132.3, 131.2, 131.0, 130.6, 130.1, 129.3, 129.0, 127.5, 126.4, 124.4, 123.9, 118.6, 115.2, 112.3, 112.2, 101.0, 100.0, 61.1, 55.8, 48.8, 33.4, 14.2, 13.3. HRMS (ESI): Calcd for C₅₅H₄₇ClN₄NaO₆Si [M+Na]⁺ 945.2846, found: 945.2850.

ethyl N-((*E*)-1-(4-((*R*)-4-((5*S*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-10,13-dimethyl-3,7,12trioxohexadecahydro-1*H*cyclopenta[*a*]phenanthren-17yl)pentanamido)phenyl)-2-

(triphenylsilyl)vinyl)-N-picolinoylglycinate (7m)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/1) as a yellow solid in 26% yield (50.3 mg, 0.052 mmol). Mp: 133 – 134 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.27 (d, *J* = 4.3 Hz, 1H), 7.69 – 7.66 (m, 2H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.31 – 7.27 (m, 3H), 7.23 (d, *J* = 7.7 Hz, 1H), 7.20 – 7.17 (m, 6H), 7.14 – 7.13 (m, 6H), 6.99 (dd, *J* = 6.9, 5.1 Hz, 1H), 6.95 – 6.92 (m, 2H), 6.57 (s, 1H), 5.84 (s, 1H), 4.24 – 4.16 (m, 4H), 2.93 – 2.82 (m, 3H), 2.38 – 2.12 (m, 12H), 2.08 – 1.80 (m, 8H), 1.65 – 1.58 (m, 1H), 1.39 (s, 3H), 1.27 – 1.24 (m, 3H), 1.08 (s, 3H), 0.89 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 212.0, 208.9, 208.7, 171.0, 169.9, 168.6, 155.1, 153.4, 148.1, 137.3, 136.3, 135.6, 134.5, 129.2, 128.7, 127.6, 125.4, 124.4, 123.9, 121.2, 121.0, 61.1, 56.9, 51.8, 49.0, 46.8, 45.6, 45.5, 45.0, 42.8, 38.6, 36.4, 36.0, 35.4, 35.3, 34.4, 30.8, 27.6, 25.1, 21.9, 18.8, 14.1, 11.9. HRMS (ESI): Calcd for C₆₀H₆₅N₃NaO₇Si [M+Na]⁺990.4484, found: 990.4489.

ethyl (*E*)-*N*-(1-(4-(2-(4-(2-(4chlorobenzamido)ethyl)phenoxy) Et -2-methylpropanamido)phenyl)-2-(triphenylsilyl)vinyl)-*N*picolinoylglycinate (7n)

The title compound was isolated

by column chromatography (eluent: EtOAc/petroleum ether = 1/1) as a yellow solid in 37% yield (68.5 mg, 0.074 mmol). Mp: 92 – 93 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.35 – 8.34 (m, 2H), 7.67 (d, J = 7.8 Hz, 1H), 7.63 – 7.62 (m, J = 8.5 Hz, 3H), 7.51 (t, J = 7.7 Hz, 1H), 7.39 – 7.36 (m, 4H), 7.24 – 7.21 (m, 3H), 7.20 – 7.13 (m, 13H), 7.08 (d, J = 8.5 Hz, 2H), 7.01 (dd, J = 7.1, 4.9 Hz, 1H), 6.92 (d, J = 8.4 Hz, 2H), 6.12 – 6.07 (m, 1H), 5.81 (s, 1H), 4.31 – 4.14 (m,

4H), 3.71 - 3.67 (m, 2H), 2.92 (t, J = 7.0 Hz, 2H), 1.55 (s, 6H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 172.6, 170.0, 168.6, 166.4, 154.8, 153.5, 152.6, 148.1, 138.2, 137.7, 136.3, 135.6, 134.3, 132.9, 132.2, 130.7, 129.7, 129.0, 128.8, 128.2, 127.5, 124.4, 123.9, 122.1, 121.8, 118.5, 81.9, 61.1, 48.9, 41.3, 34.9, 24.9, 14.1. HRMS (ESI): Calcd for C₅₅H₅₁ClN₄NaO₆Si [M+Na]⁺ 949.3159, found: 949.3163.

ethyl

ethyl (E)-N-(1-(4-(4-(4methoxynaphthalen-1-yl)-4oxobutanamido)phenyl)-2-(triphenylsilyl)vinyl)-N-picolinoylglycinate (70)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/1) as a yellow solid in 61% yield (100.4 mg, 0.122 mmol). Mp: 85 – 86 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.95 (d, *J* = 8.7 Hz, 1H), 8.35 – 8.30 (m, 2H), 8.12 (d, *J* = 8.2 Hz, 1H), 7.67 – 7.61 (m, 3H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 8.3 Hz, 2H), 7.25 – 7.21 (m, 3H), 7.19 – 7.11 (m, 12H), 7.04 (d, *J* = 8.1 Hz, 2H), 6.99 (dd, *J* = 7.0, 5.0 Hz, 1H), 6.82 (d, *J* = 8.3 Hz, 1H), 5.80 (s, 1H), 4.23 – 4.19 (m, 4H), 4.07 (s, 3H), 3.50 (t, *J* = 6.2 Hz, 2H), 2.81 (t, *J* = 5.9 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 200.9, 170.0, 168.6, 159.5, 155.0, 153.6, 148.1, 136.2, 135.6, 135.0, 134.3, 132.0, 131.4, 130.6, 129.0, 128.8, 127.9, 127.5, 126.7, 125.9, 125.9, 125.8, 124.4, 123.9, 122.2, 121.7, 118.4, 102.2, 61.1, 55.8, 48.9, 36.2, 32.1, 14.1. HRMS (ESI): Calcd for C₅₁H₄₅N₃NaO₆Si [M+Na]⁺ 846.2970, found: 846.2972.

(triphenylsilyl)vinyl)picolinamido)benzoate (7p)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 77% yield (97.1 mg, 0.154 mmol). Mp: 117 – 118 °C. ¹H NMR (CDCl₃, 500 MHz):

(E)-4-(N-(1-phenyl-2-

δ 8.41 (d, *J* = 4.4 Hz, 1H), 7.98 (d, *J* = 8.6 Hz, 2H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.50 (t, *J* = 7.1 Hz, 1H), 7.41 (t, *J* = 8.6 Hz, 4H), 7.32 – 7.28 (m, 3H), 7.25 – 7.17 (m, 13H), 7.06 (dd, *J* = 7.0,

5.1 Hz, 1H), 6.88 (t, J = 7.4 Hz, 1H), 6.77 (t, J = 7.7 Hz, 2H), 5.98 (s, 1H), 4.33 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (CDCl₃, 125 MHz): δ 170.0, 165.9, 155.8, 154.0, 148.1, 136.4, 136.3, 135.5, 134.1, 130.2, 129.8, 129.2, 128.7, 127.9, 127.6, 127.2, 126.3, 124.7, 124.2, 123.9, 60.9, 14.2. HRMS (ESI): Calcd for C₄₁H₃₄N₂NaO₃Si [M+Na]⁺ 653.2231, found: 653.2233.

N-((*Z*)-octadec-9-en-1-yl)-*N*-((*E*)-1-phenyl-2-(triphenylsilyl)vinyl)picolinamide (7q)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/3) as a yellow solid in 42% yield (61.5 mg, 0.084 mmol). Mp:

94 – 95 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.40 (d, *J* = 4.5 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 1H), 7.47 (d, *J* = 7.9 Hz, 2H), 7.36 – 7.34 (m, 4H), 7.24 – 7.23 (m, 11H), 7.09 (t, *J* = 7.3 Hz, 1H), 7.05 (dd, *J* = 7.2, 5.1 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 2H), 5.72 (s, 1H), 5.44 – 5.42 (m, 2H), 3.61 – 3.61 (m, 2H), 2.09 – 2.04 (m, 4H), 1.79 – 1.73 (m, 2H), 1.41 – 1.33 (m, 22H), 0.96 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.5, 156.1, 154.9, 148.0, 136.5, 136.1, 135.6, 134.4, 129.9, 129.8, 129.7, 129.1, 128.9, 127.5, 127.5, 123.9, 123.5, 122.3, 46.4, 32.6, 31.9, 29.8, 29.7, 29.7, 29.5, 29.4, 29.4, 29.3, 27.7, 27.2, 27.2, 26.9, 22.7, 14.1. HRMS (ESI): Calcd for C₅₀H₆₀N₂NaOSi [M+Na]⁺ 755.4367, found: 755.4369.

ethyl N-(1-phenylvinyl)-N-picolinoylglycinate (8)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 78% yield (48.4 mg, 0.156 mmol). Mp: 42 – 43 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.40 (s,

1H), 7.68 – 7.54 (m, 4H), 7.33 – 7.30 (m, 3H), 7.20 (s, 1H), 5.23 (s, 1H), 4.99 (s, 1H), 4.29 (s, 2H), 4.23 (q, J = 6.9 Hz, 2H), 1.28 (t, J = 7.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 168.6, 148.2, 136.3, 136.2, 128.8, 128.4, 127.3, 124.5, 123.6, 112.4, 61.2, 49.4, 14.1. HRMS (ESI): Calcd for C₁₈H₁₈N₂NaO₃ [M+Na]⁺ 333.1210, found: 333.1206.

ethyl N-(2,2-diiodo-1-phenylvinyl)-N-picolinoylglycinate (9)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 85% yield (95.5 mg, 0.170 mmol). Mp: 67 – 68 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.54 (d, J = 4.5 Hz, 1H), 8.13 (d, J = 7.9 Hz, 1H), 7.99 (dd, J = 7.5, 2.0 Hz, 2H), 7.83 (t, J = 7.7 Hz, 1H), 7.43 – 7.38 (m, 4H), 4.23 (d, J = 16.8 Hz, 1H), 4.11 – 4.06 (m, 2H), 3.93 (d, J = 16.8 Hz, 1H), 1.19 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 167.7, 167.5, 153.3, 152.4, 147.0, 136.5, 136.5, 131.7, 129.7, 128.2, 125.6, 125.5, 61.2, 48.8, 14.1. HRMS (ESI): Calcd for C₁₈H₁₆I₂N₂NaO₃ [M+Na]⁺ 584.9142, found: 584.9152.

ethyl (*E*)-*N*-(2-(4-methoxyphenyl)-1-phenylvinyl)-*N*-^D₂Et picolinovlglycinate (11)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 71% yield (59.1 mg, 0.142 mmol). Mp: 55 – 56 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.48 (d, J = 4.2 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.66 – 7.59 (m, 3H), 7.31

- 7.26 (m, 3H), 7.16 - 7.12 (m, 1H), 6.83 (d, J = 8.6 Hz, 2H), 6.58 (d, J = 8.7 Hz, 2H), 6.28 (s, 1H), 4.23 (q, J = 7.1 Hz, 2H), 4.14 (s, 2H), 3.69 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.7, 168.7, 158.6, 153.7, 148.0, 139.4, 136.4, 134.9, 130.8, 130.2, 128.6, 128.4, 128.3, 128.0, 124.4, 124.0, 113.4, 61.1, 55.0, 48.1, 14.2. HRMS (ESI): Calcd for C₂₅H₂₄N₂NaO₄ [M+Na]⁺ 439.1628, found: 439.1626.

ÓMe

SiPha

ethyl (*E*)-*N*-(1-phenyl-2-(triphenylsilyl)vinyl)-*N*-(pyrimidine-2carbonyl)glycinate (4a-1)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 65% yield (74.0 mg,

0.130 mmol). Mp: 131 – 132 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.38 (d, J = 4.8 Hz, 2H), 7.38 (d, J = 7.3 Hz, 2H), 7.29 – 7.27 (m, 3H), 7.20 – 7.12 (m, 12H), 7.01 (t, J= 7.4 Hz, 1H), 6.88 (t, J = 7.7 Hz, 2H), 6.74 (t, J = 4.8 Hz, 1H), 5.95 (s, 1H), 4.25 – 4.21 (m, 4H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 168.2, 167.5, 162.2, 156.4, 154.2, 135.6, 135.0, 133.9, 129.8, 129.4, 129.2, 127.7, 127.6, 123.2, 120.4, 61.3, 47.9, 14.2. HRMS (ESI): Calcd for C₃₅H₃₁N₃NaO₃Si [M+Na]⁺ 592.2027, found: 592.2031.

ethyl (E)-N-(1-phenyl-2-(triphenylsilyl)vinyl)-N-(quinoline-2carbonyl)glycinate (4a-2)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid in 43% yield (53.2 mg, 0.086 mmol). Mp: 126 – 127 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.38 (d, J = 7.8 Hz, 1H), 8.31 (d, J = 5.6 Hz, 1H), 7.66 – 7.61 (m, 3H), 7.40 –

7.38 (m, 3H), 7.22 - 7.19 (m, 3H), 7.06 - 7.03 (m, 6H), 6.96 - 6.92 (m, 7H), 6.83 (t, J = 7.6Hz, 2H), 5.99 (s, 1H), 4.37 (s, 2H), 4.32 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 169.1, 168.7, 154.9, 154.9, 141.0, 136.1, 136.0, 135.3, 134.0, 130.3, 129.7, 129.0, 128.9, 128.0, 127.5, 127.4, 127.1, 126.6, 126.4, 121.4, 121.4, 61.3, 48.4, 14.2. **HRMS (ESI):** Calcd for $C_{40}H_{35}N_2O_3Si [M+H]^+ 619.2411$, found: 619.2406.

ethyl (E)-N-(isoquinoline-1-carbonyl)-N-(1-phenyl-2-(triphenylsilyl)vinyl)glycinate (4a-3)

The title compound was isolated by column chromatography (eluent: CO₂Et EtOAc/petroleum ether = 1/5) as a yellow solid in 51% yield (63.1 mg, 0.102 mmol). Mp: 118 – 119 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.05 (d,

J = 8.5 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.74 – 7.66 (m, 2H), 7.64 (d, J = 8.4 Hz, 1H), 7.55 – 7.50 (m, 3H), 7.23 - 7.20 (m, 3H), 7.10 - 6.97 (m, 13H), 6.88 (t, J = 7.6 Hz, 2H), 5.90 (s, 1H), 4.33 (s, 2H), 4.27 (q, J = 7.1 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 170.4, 168.7, 155.3, 153.6, 146.6, 136.5, 135.9, 135.4, 133.9, 129.8, 129.8, 129.6, 129.1, 128.9, 128.1, 127.7, 127.4, 127.4, 127.2, 122.8, 120.6, 61.1, 48.7, 14.2. HRMS (ESI): Calcd for C₄₀H₃₄N₂NaO₃Si [M+Na]⁺ 641.2231, found: 641.2228.

7. References:

N

0́

Ph

ŠiPh₃

(1) (a) Li, K.; Tan, G.; Huang, J.; Song, F.; You, J. Angew. Chem., Int. Ed. 2013, 52, 12942-12945. (b) Tan, M.; Li, K.; Yin, J.; You, J. Chem. Commun. 2018, 54, 1221-1224.

(2) Zheng, N.; Song, W.; Zhang, T.; Li, M.; Zheng, Y.; Chen, L. J. Org. Chem. 2018, 83, 6210-6216.

(3) Chang, X.-H.; Wang, Z.-L.; Zhao, M.; Yang, C.; Li, J.-J.; Ma, W.-W.; Xu, Y.-H. Org. Lett. 2020, 22, 1326-1330.

(4) Song, L.-J.; Ding, S.; Wang, Y.; Zhang, X.; Wu, Y.-D.; Sun, J. J. Org. Chem. 2016, 81, 6157–6164.

8. NMR Spectra

100 90 f1 (ppm)

100 90 f1 (ppm)

100 90 f1 (ppm)

100 90 f1 (ppm) Ó

a Ministeri Andria Andria Andria Andria Andria

a shi ta shi ta bidin

100 90 f1 (ppm)

20 10 0 -60 -70 f1 (ppm) -15(-10 -20 -30 -40 -50 -<mark>8</mark>0 -90 -100 -110 -120 -130 -140

100 90 f1 (ppm)

100 90 f1 (ppm)

100 90 f1 (ppm)

100 90 f1 (ppm)

--3.3748 42462 42269 42126 41983

100 90 f1 (ppm) Ó

-1.7770 -1.3663 -1.3522

100 90 f1 (ppm)

100 90 f1 (ppm)

100 90 f1 (ppm)

100 90 f1 (ppm)

^{100 90} f1 (ppm)

8.3554 8.3554 8.3457 7.6133 7.71357 7.71737 7.71737 7.71737 7.71737 7.71737 7.71737 7.71737 7.71737 7.71737 7.717480

100 90 f1 (ppm)

100 90 f1 (ppm)

7.5 7.0 5.0 4.5 f1 (ppm) 0.0 9.5 9.0 8.5 8.0 6.5 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

-100 -110 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 -120 -130 -140 -180 -190 -200 -210 -150 -160 -170

100 90 f1 (ppm)

100 90 f1 (ppm)

S151

100 90 f1 (ppm)

^{100 90} f1 (ppm)

^{100 90} f1 (ppm)

^{100 90} f1 (ppm) -10

▲ 8.2721 ▲ 8.2643 ▲ 8.2643 ▲ 8.2643 ▲ 1.1572 ▲ 1.1572 ▲ 1.1532 ▲ 1.1532 ▲ 1.1532 ▲ 1.1532 ▲ 1.1532 ▲ 1.1532 ▲ 1.1532 ▲ 1.1532 ▲ 1.1533 ▲ 1.1534

42.724 42.7245 42.245 42.245 42.283 42.284

100 90 f1 (ppm)

~ 8 2633 8 2644 7 7 1652 7 7 2128 7 7 2138 7 7 2138 7 7 2138 7 7 186 7 7 186 7 7 186 7 7 186 6 9510 6 9510 6 9510 6 9510 6 9510 6 9510 6 9510 6 9510 6 9510 7 1203 2 11272 2 1212 2

California (Construction) California (Construction)

100 90 f1 (ppm)

, (bbu)

100 90 f1 (ppm)

~ 8 2801 ~ 7 7 5220 8 2713 6 2713 7 7 2522 7 7 2522 7 7 2522 7 7 2522 6 2 242 7 7 1552 6 5 2 49 6 5 5 2 49 6 5 5 2 49 7 1 5 63 7 4 1 2037 7 1 5 63 6 5 5 2 49 7 1 5 63 6 5 5 2 49 7 1 5 63 6 5 5 2 49 7 1 5 63 7 1 5 6

^{-90 -100} f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -110 -120 -130 -170 -180 -190 -140 -150 -160

110 100 f1 (ppm) Ó

^{110 100} f1 (ppm) Ó

A 8 4086 A 8 33966 A 8 33967 A 1057 A 10577 A 10577 A 10577 A 10577 A 1

190 0 180 170 110 100 90 f1 (ppm) 80 70 60 40 30 20 10 160 150 140 130 120 50

 $\underbrace{ \{ \begin{array}{c} 1 & 2926 \\ 1 & 2786 \\ 1 & 2646 \\ \end{array} }_{1 & 2646 \\ \end{array} }$

100 90 f1 (ppm)

8 5314 8 5315 8 5314

€1,1908 €1,1908

 48 488 4848 48 4763 48 4763 48 4763 48 4763 47 5342 47 5342 47 5342 48 5363 48 5363 48 2533 48 2533	€1.3060 1.2917
--	-------------------

100 90 f1 (ppm)

100 90 f1 (ppm)

100 90 f1 (ppm)