Supporting Information

Photoinduced diversity-oriented synthesis of α-ketoester β-enamino

esters, 3,3-difluoro-4-pyrrolin-2-ones, and 3-fluoro-3-pyrrolin-2-ones

from bromodifluoroacetates and β -enamino esters

Dewei Feng,^{a,b} Renhua Zheng,^{*a} Zhifang Li,^b Xiao Geng,^{*a} and Lei Wang^{*a,b}

^a Department of Chemistry and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China

^b Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China

Table of Contents

1. General information	2
2. General procedures for the synthesis of products	2
3. Optimization reaction conditions	7
4. Characterization data of products	10
5. Unsuccessful substrates in the reaction	
6. X-Ray structure and data for 3q and 5e	
7. Mechanism investigation	34
8. References	
9. NMR spectra of products	

1. General information

All ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometer (400/100/376 MHz). Chemical shifts (δ) are given in parts per million relative to TMS or the residual of solvent signal (TMS, $\delta_{\rm H} = 0.00$ ppm; CDCl₃, $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.0$ ppm), and the coupling constants are given in Hertz (Hz). The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. High resolution mass spectroscopy data of the product were collected on an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS (ESI). Crystallographic data of products **3q** and **5e** were collected on Bruker SMART APEX II (Mo target, voltage 50 KV, current 30 mA). The chemicals and solvents were purchased from commercial suppliers either Aldrich (USA), or Shanghai Chemical Company (P. R. China). Products were purified by flash chromatography on 200–300 mesh silica gels, SiO₂. The substrates enamines^[1-9] and bromodifluoroacetates^[10-12] were prepared according to previously described methods.

2. General procedures for the synthesis of products

2.1 General procedure for the synthesis of product 3 in 0.2 mmol scale (3a as an example)

A 10 mL oven-dried reaction vessel equipped with a magnetic stirrer bar was charged with ethyl (*E*)-3-(dimethylamino)acrylate **1a** (28.3 mg, 0.2 mmol), bromodifluoroacetate **2a** (121.8 mg, 0.6 mmol), $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (2.24 mg, 0.002 mmol, 1 mol%) and dimethyl sulfoxide (DMSO, 2.0 mL). The reaction vessel was exposed to blue LEDs (450–455 nm, 2×3 W) irradiation at room

temperature in N₂ with stirring for 4 h. After completion of the reaction, the mixture was diluted with water and extracted with ethyl acetate, the organic layer was combined, dried over by anhydrous Na₂SO₄, and filtered, then concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = $10:1\sim5:1$, V/V) to give the corresponding product **3a** (32.6 mg, 67%).

2.2 General procedure for the synthesis of product 3a in 5.0 mmol scale

A 100 mL oven-dried reaction vessel equipped with a magnetic stirrer bar was charged with ethyl (*E*)-3-(dimethylamino)acrylate **1a** (707.5 mg, 5.0 mmol), bromodifluoroacetate **2a** (3045 mg, 15.0 mmol), $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (28.05 mg, 0.025 mmol, 0.5 mol%) and dimethyl sulfoxide (DMSO, 50.0 mL). The reaction vessel was exposed to blue LEDs irradiation at room temperature in N₂ with stirring for 4 h. After completion of the reaction, the mixture was diluted with water and extracted with ethyl acetate, the organic layer was combined, dried over by anhydrous Na₂SO₄, and filtered, then concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether : ethyl acetate = 2:1, V/V) to give the corresponding product **3a** (742 mg, 69%).

2.3 General procedure for the synthesis of product 4 in 0.2 mmol scale (4a as an example)

A 10 mL oven-dried reaction vessel equipped with a magnetic stirrer bar was charged with methyl (*Z*)-3-aminobut-2-enoate **1n** (23.0 mg, 0.2 mmol), bromodifluoroacetate **2a** (81.2 mg, 0.4 mmol), *fac*-Ir(ppy)₃ (1.31 mg, 0.002 mmol, 1 mol%) and dimethyl sulfoxide (DMSO, 2.0 mL). The reaction vessel was exposed to blue LEDs (450–455 nm, 2×3 W) irradiation at room temperature in N₂ with stirring for 1 h. After completion of the reaction, the mixture was diluted with water and extracted with ethyl acetate, the organic layer was combined, dried over by anhydrous Na₂SO₄, and filtered, then concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = $10:1\sim5:1$, V/V) to give the corresponding product **4a** (27.1 mg, 71%).

2.4 General procedure for the synthesis of product 4a in 5.0 mmol scale

A 100 mL oven-dried reaction vessel equipped with a magnetic stirrer bar was charged with methyl (*Z*)-3-aminobut-2-enoate **1n** (575 mg, 5.0 mmol), bromodifluoroacetate **2a** (2030 mg, 10.0 mmol), *fac*-Ir(ppy)₃ (16.38 mg, 0.025 mmol, 0.5 mol%) and dimethyl sulfoxide (DMSO, 50.0 mL). The reaction vessel was exposed to blue LEDs irradiation at room temperature in N₂ with stirring for 1 h. After completion of the reaction, the mixture was diluted with water and extracted with ethyl acetate, the organic layer was combined, dried over by anhydrous Na₂SO₄, and filtered, then concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether : ethyl acetate = 3:1, V/V) to give the corresponding product **4a** (593 mg, 62%).

2.5 General procedure for the synthesis of product 5 in 0.2 mmol scale (5a as an example)

A 10 mL oven-dried reaction vessel equipped with a magnetic stirrer bar was charged with ethyl (Z)-3-aminopent-2-enoate 1z (28.6 mg, 0.20 mmol), bromodifluoroacetate 2a (81.2 mg, 0.40 mmol), *fac*-Ir(ppy)₃ (1.31 mg, 0.002 mmol, 1 mol%) and dimethyl sulfoxide (DMSO, 2.0 mL). The reaction vessel was exposed to blue LEDs (450–455 nm, 2×3 W) irradiation at room temperature in N₂ with stirring for 1 h. After completion of the reaction (detected by TLC), TMEDA (23.2 mg, 0.2 mmol) is added and the reaction continues at room temperature for 1 h. Once the reaction is finished, the mixture was diluted with water and extracted with ethyl acetate, the organic layer was combined, dried over by anhydrous Na₂SO₄, and filtered, then concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = $10:1\sim5:1$, V/V) to give the corresponding product **5a** (24.7 mg, 62%).

2.6 General procedure for the synthesis of product 5a in 5.0 mmol scale

A 100 mL oven-dried reaction vessel equipped with a magnetic stirrer bar was charged with ethyl (Z)-3-aminopent-2-enoate 1z (715 mg, 5 mmol), bromodifluoroacetate 2a (2030 mg, 10 mmol), *fac*-Ir(ppy)₃ (16.38 mg, 0.025 mmol, 0.5 mol%) and dimethyl sulfoxide (DMSO, 50 mL). The reaction vessel was exposed to blue LEDs irradiation at room temperature in N₂ with stirring for 1 h. After

completion of the reaction (detected by TLC), TMEDA (580 mg, 0.2 mmol) was added and the reaction was performed at room temperature for 1 h. Once the reaction was finished, the mixture was diluted with water and extracted with ethyl acetate, the organic layer was combined, dried over by anhydrous Na_2SO_4 , and filtered, then concentrated to yield the crude product, which was further purified by flash chromatography (silica gel, petroleum ether : ethyl acetate = 3:1, V/V) to give the corresponding product **5a** (647 mg, 65%).

2.7 General photoreactor used in the reaction (Figure S1)

Manufacturer: GeAo Chemical Company				
Model: 2×3 W, blue LEDs				
Broadband source: $\lambda = 450-455$ nm				
Material of the irradiation vessel:				
Borosilicate reaction tube				
Distance from the light source to the				
irradiation vessel: 3.0 cm				
No any filters				

Figure S1. Photoreactor used in this research (2×3 W blue LEDs)

3. Optimization reaction conditions

EtO ₂			conditions	EtO ₂ C
	H Nivie	F F		
	1a	2a		3a
entry	solvent	photocatalyst (PC)	ratio of 1a:2a	yield of 3a (%) ^b
1	DMSO	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]	PF_6 1a : 2a = 1:2	50 (46) ^c
2	DMSO	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)	$]PF_6$ 1a:2a = 1:3	70 (67) ^c
3	DMSO	<i>fac</i> -Ir(ppy) ₃	1a:2a = 1:3	30
4	DMSO	[Ir(ppy) ₂ (dtbbpy)]PF ₆	1a:2a = 1:3	trace
5	DMSO	4CzIPN	1a:2a = 1:3	15
6	DMSO	4DPAIPN	1a:2a = 1:3	33
7	DMSO	EosinY	1a:2a = 1:3	trace
8	DMSO	Rose Bengal	1a:2a = 1:3	trace
9	DMSO	_	1a:2a = 1:3	trace
10	DMA	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]	PF_6 1a : 2a = 1:3	61
11	THF	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]	PF_6 1a : 2a = 1:3	28
12	DCM	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]	PF_6 1a : 2a = 1:3	34
13	MeCN	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]	PF_6 1a : 2a = 1:3	37
14^d	DMSO	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]	PF_6 1a : 2a = 1:3	trace
15^e	DMSO	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]	PF_6 1a : 2a = 1:3	68
16 ^f	DMSO	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]	PF_6 1a:2a = 1:3	65
F F F	CF3	PF ₆ 'Bu 'Bu 'Bu	PF ₆	$ \begin{array}{c} $
[lr(dF(0	CF ₃)ppy) ₂ (dtbbp	by)]PF ₆ fac-lr(ppy) ₃	[lr(ppy) ₂ (dtbbpy)]PF ₆	4CzIPN
Ph NC Ph Ph Ph Ph Ph	$h N^{Ph}$ $\downarrow CN$ $h N^{Ph}$ $h N^{Ph}$ $h N^{Ph}$ Ph Ph	$Br \rightarrow CO_2H$ $Br \rightarrow Br$ $Br \rightarrow Br$ Eosin Y	CI CI CI CO ₂ Na I CO ₂ Na	

Table S1 Optimizing the reaction conditions for the formation of 3a^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (amount indicated in this Table), PC (1.0 mol%), DMSO (2.0 mL, 0.1 M), N₂, rt, 4 h, 450–455 nm blue LEDs. ^{*b*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*c*}Isolated yield. ^{*d*}In the absence of light. ^{*e*}H₂O (5.0 equiv). ^{*f*}H₂O (10.0 equiv).

	NH_2	Brs L	conditions	F F	CO ₂ Me
I	MeO ₂ C	e FF		0=	K _N Me
	1n	2a			H 4a
entry	solvent	РС	additive	ratio of 1n:2a	yield of $4a \ (\%)^b$
1	DMF	<i>fac</i> -Ir(ppy) ₃	_	1n:2a = 1:2	25
2	DMA	<i>fac</i> -Ir(ppy) ₃	_	1n:2a = 1:2	38
3	NMP	<i>fac</i> -Ir(ppy) ₃	_	1n:2a = 1:2	<10%
4	DMSO	<i>fac</i> -Ir(ppy) ₃	-	1n:2a = 1:2	80 (71) ^c
5	1,4-Dioxane	<i>fac</i> -Ir(ppy) ₃	-	1n:2a = 1:2	trace
6	CH ₃ CN	<i>fac</i> -Ir(ppy) ₃	-	1n:2a = 1:2	trace
7	DMSO	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]PF ₆	-	1n:2a = 1:2	60
8	DMSO	[Ir(ppy) ₂ (dtbbpy)]PF ₆	_	1n:2a = 1:2	47
9	DMSO	$Ru(bpy)_3(PF_6)_2$	_	1n:2a = 1:2	trace
10	DMSO	<i>fac</i> -Ir(ppy) ₃	Na ₂ CO ₃	1n:2a = 1:2	N.D.
11	DMSO	<i>fac</i> -Ir(ppy) ₃	K ₃ PO ₄	1n:2a = 1:2	N.D.
12	DMSO	<i>fac</i> -Ir(ppy) ₃	Et ₃ N	1n:2a = 1:2	N.D.
13	DMSO	<i>fac</i> -Ir(ppy) ₃	DABCO	1n:2a = 1:2	N.D.
14	DMSO	<i>fac</i> -Ir(ppy) ₃	$ZnCl_2$	1n:2a = 1:2	78
15	DMSO	<i>fac</i> -Ir(ppy) ₃	НСООН	1n:2a = 1:2	trace
16	DMSO	<i>fac</i> -Ir(ppy) ₃	CF ₃ COOH	1n:2a = 1:2	52
17	DMSO	<i>fac</i> -Ir(ppy) ₃	_	1n:2a = 1:1.5	62
18	DMSO	<i>fac</i> -Ir(ppy) ₃	_	1n:2a = 1:2.5	63
19	DMSO	<i>fac</i> -Ir(ppy) ₃	_	1n:2a = 1:3	53
20^d	DMSO	<i>fac</i> -Ir(ppy) ₃	_	1n:2a = 1:2	N.D.
21	DMSO	_	_	1n:2a = 1:2	N.D.
22 ^e	DMSO	<i>fac</i> -Ir(ppy) ₃	_	1n:2a = 1:2	N.D.
F F				PF6 Bu	2PF ₆
(Ir	(ar(Cr ₃)ppy) ₂ (dtbbp)	/)]PF ₆ fac-lr(ppy) ₃	[lr(ppy) ₂ (dtbbpy)]F	PF ₆ [Ru(bpy	y) ₃][2PF ₆]

Table S2 Optimizing the reaction conditions for the formation of 4a^a

^{*a*}Reaction conditions: **1n** (0.2 mmol), **2a** (amount indicated in this Table), PC (1.0 mol%), DMSO (2.0 mL, 0.1M), N₂, rt, 1 h, 450–455nm. ^{*b*}Determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^{*c*}Isolated yield. ^{*d*}40 °C. ^{*e*}In the absence of light.

EtO ₂ C	+ Br OEt - i) fac-Ir(ppy) ₃ , DMSO rt, N ₂ , 1 h, blue LEDs ii) additive, 1 h	► CO ₂ Et
1z	2a	5a
entry	additive	yield of 5a (%) ^b
1	Na ₂ CO ₃	trace
2	K ₃ PO ₄	trace
3	LiHMDS	20
4	CH ₃ COONa	trace
5	'BuOK	trace
6	DBU	20
7	DABCO	trace
8	Ру	trace
9	TMEDA	70 (65) ^c
10	DIPEA	15
11	Et ₃ N	37
12	N,N,N',N'-Tetraethyl ethylened iamine	53
13	N,N-Dimethylethanolamine	51
14	Triisobutylamine	ND
15	Diethylamine	trace
16^d	TMEDA	40
17 ^e	TMEDA	43
18 ^f	TMEDA	57
19 ^g	TMEDA	55
20^{h}	TMEDA	54
21^{i}	TMEDA	52

Table S3 Optimizing the reaction conditions for the formation of 5a^a

^{*a*}Reaction conditions: **1z** (0.2 mmol), **2a** (0.4 mmol), additive (0.2 mmol), *fac*-Ir(ppy)₃ (1.0 mol%), DMSO (2.0 mL, 0.1M), N₂, rt, 1 h, 450–455 nm blue LEDs. ^{*b*}Determined by ¹H NMR using dibromomethane as an internal standard. ^{*c*}Isolated yield. ^{*d*}TMEDA (0.5 equiv). ^{*e*}TMEDA (0.8 equiv). ^{*f*}TMEDA (1.2 equiv). ^{*g*}TMEDA (1.5 equiv). ^{*h*}TMEDA (2.0 equiv). ^{*i*}TMEDA (3.0 equiv).

4. Characterization data of products

Diethyl (E)-2-((dimethylamino)methylene)-3-oxosuccinate

32.6 mg as oil (67% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 2/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 4.09 (q, *J* = 7.2 Hz, 2H), 3.30 (s, 3H), 2.96 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.2, 166.6, 166.0, 160.1, 97.2, 61.3, 60.2, 48.3, 43.2, 14.2, 14.0.

HRMS (ESI) *m/z*: Calcd for C₁₁H₁₈NO₅⁺ [M + H]⁺: 244.1179; found: 244.1177.

Spectral data obtained for the compound are in good agreement with the reported data.^[12]

4-Ethyl 1-methyl (E)-2-((dimethylamino)methylene)-3-oxosuccinate

28.9 mg as oil (63% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 1/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 4.29 (q, J = 7.2 Hz, 2H), 3.68 (s, 3H), 3.34 (s, 3H), 3.02 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) *δ* 183.4, 167.1, 166.1, 160.2, 97.3, 61.5, 51.4, 48.5, 43.3, 14.2.

HRMS (ESI) m/z: Calcd for C₁₀H₁₆NO₅⁺ [M + H] ⁺: 230.1023; found: 230.1023.

1-(Cyclohexylmethyl) 4-ethyl (E)-2-((dimethylamino)methylene)-3-oxosuccinate

39.5 mg as oil (64% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 1/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 3.90 (d, *J* = 6.8 Hz, 2H), 3.34 (s, 3H), 3.00 (s, 3H), 1.75–1.68 (m, 4H), 1.67–1.62 (m, 1H), 1.34 (t, *J* = 7.2 Hz, 3H), 1.24–1.08 (m, 4H), 0.98–0.87 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) *δ* 183.3, 167.0, 165.9, 160.1, 97.6, 69.7, 61.5, 48.5, 43.3, 37.3, 29.8, 26.4, 25.8, 14.1.

HRMS (ESI) *m/z*: Calcd for C₁₆H₂₆NO₅⁺ [M + H]⁺: 312.1805; found: 312.1803.

4-Ethyl 1-phenyl (*E*)-2-((dimethylamino)methylene)-3-oxosuccinate

40.4 mg as yellow solid, melting point: 60.2-62.5 °C (70% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 2/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.35 (t, *J* = 8.0 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.12–7.07 (m, 2H), 4.22 (q, *J* = 7.2 Hz, 2H), 3.38 (s, 3H), 3.09 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 183.6, 166.0, 165.1, 161.0, 150.8, 129.5, 125.7, 121.8, 96.6, 61.7, 48.7, 43.6, 14.1.

HRMS (ESI) *m/z*: Calcd for C₁₅H₁₈NO₅⁺ [M + H]⁺: 292.1179; found: 292.1177.

4-Ethyl-1-((1*R*,2*R*,5*S*)-2-isopropyl-5-methylcyclohexyl)-(*E*)-2-((dimethylamino) methylene)-3-oxosuccinate

44.6 mg as oil (64% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 1/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 4.81–4.75 (m, 1H), 4.29–4.22 (m, 2H), 3.33 (s, 3H), 3.00 (s, 3H), 2.02–1.97 (m, 1H), 1.90–1.84 (m, 1H), 1.68–1.62 (m, 2H), 1.47–1.43 (m, 1H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.33–1.25 (m, 2H), 0.99–0.88 (m, 2H), 0.88–0.83 (m, 6H), 0.73 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 183.6, 166.3, 166.1, 160.4, 97.6, 74.2, 61.4, 48.4, 47.4,
43.4, 41.0, 34.4, 31.5, 26.1, 23.4, 22.1, 21.0, 16.3, 14.1.

HRMS (ESI) *m/z*: Calcd for C₁₉H₃₂NO₅⁺ [M + H]⁺: 354.2275; found: 354.2271.

1-(4-(*tert*-Butyl)benzyl) 4-ethyl (*E*)-2-((dimethylamino)methylene)-3-oxosuccinate 51.4 mg as yellow solid, melting point: 84.3–86.7 °C (72% yield, Flash column chromatography eluent, petroleum ether/ethyl acetate = 2/1, V/V).

¹H NMR (400 MHz, CDCl₃) *δ* 7.86 (s, 1H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 5.10 (s, 2H), 3.93 (q, *J* = 7.2 Hz, 2H), 3.33 (s, 3H), 3.01 (s, 3H), 1.30 (s, 9H), 1.14 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 183.4, 166.6, 166.0, 160.4, 151.4, 132.9, 128.6, 125.5, 97.1, 66.3, 61.4, 48.5, 43.4, 34.7, 31.4, 14.0.

HRMS (ESI) *m/z*: Calcd for C₂₀H₂₈NO₅⁺ [M + H]⁺: 362.1962; found: 362.1959.

4-Ethyl-1-(4-fluorobenzyl) (E)-2-((dimethylamino)methylene)-3-oxosuccinate

40.2 mg as oil (63% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.33–7.28 (m, 2H), 7.00 (t, J = 8.8 Hz, 2H), 5.07 (s, 2H), 4.00 (q, J = 7.2 Hz, 2H), 3.31 (s, 3H), 2.97 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 183.2, 166.4, 165.9, 162.6 (d, J = 246.7 Hz), 160.4, 131.9 (d, J = 3.2 Hz), 130.4 (d, J = 8.2 Hz), 115.4 (d, J = 21.5 Hz), 96.9, 65.5, 61.4, 48.4, 43.4, 13.9.

HRMS (ESI) *m/z*: Calcd for C₁₆H₁₉FNO₅⁺ [M + H]⁺: 324.1242; found:324.1241.

Diethyl (E)-2-((diethylamino)methylene)-3-oxosuccinate

50.3 mg as oil (47% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 4/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 4.25 (q, *J* = 7.2 Hz, 2H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.56 (q, *J* = 7.2 Hz, 2H), 3.50 (q, *J* = 7.2 Hz, 2H), 1.38–1.26 (m, 6H), 1.23 (t, *J* = 7.2 Hz, 3H), 1.13 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) *δ* 183.7, 167.0, 166.1, 157.0, 97.5, 61.4, 60.4, 54.4, 46.8, 14.9, 14.2, 14.1, 12.1.

HRMS (ESI) *m/z*: Calcd for C₁₃H₂₂NO₅⁺ [M + H]⁺: 272.1492; found: 272.1491.

Diethyl (E)-2-((di-isopropylamino)methylene)-3-oxosuccinate

52 mg as oil (87% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 2/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 4.38–4.30 (m, 1H), 4.27 (q, *J* = 7.2 Hz, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.82–3.71 (m, 1H), 1.35–1.31 (m, 9H), 1.29–1.22 (m, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 183.6, 167.4, 166.7, 155.4, 96.4, 61.3, 60.3, 55.7, 49.2,
24.1, 20.3, 14.2, 14.1.

HRMS (ESI) *m/z*: Calcd for C₁₅H₂₆NO₅⁺ [M + H]⁺: 300.1805; found: 300.1802

Diethyl (E)-2-((dipropylamino)methylene)-3-oxosuccinate

83.1 mg as oil (69% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 5/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 4.21 (q, J = 7.2 Hz, 2H), 4.09 (q, J = 7.2 Hz, 2H), 3.55–3.26 (m, 4H), 1.71–1.59 (m, 2H), 1.53–1.42 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H), 0.87 (t, J = 7.6 Hz, 3H), 0.78 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) *δ* 183.4, 166.8, 166.0, 157.4, 97.3, 62.0, 61.3, 60.3, 53.8, 22.4, 19.6, 14.1, 14.0, 10.8, 10.7.

HRMS (ESI) *m/z*: Calcd for C₁₅H₂₆NO₅⁺ [M + H]⁺: 300.1805; found: 300.1805

Diethyl (E)-2-oxo-3-(piperidin-1-ylmethylene)succinate

38.1 mg as oil (68% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 2/1, V/V).
¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 4.27 (q, J = 7.2 Hz, 2H), 4.14 (q, J = 7.2 Hz, 2H), 3.64–3.51 (m, 2H), 3.50–3.39 (m, 2H), 1.81–1.66 (m, 6H), 1.33 (t, J = 7.2 Hz, 3H), 1.23 (t, J = 7.2 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 183.8, 167.0, 166.5, 158.6, 96.1, 61.4, 60.3, 58.3, 52.5, 26.7, 25.8, 23.2, 14.3, 14.1.

HRMS (ESI) *m/z*: Calcd for C₁₄H₂₂NO₅⁺ [M + H]⁺: 284.1492; found: 284.1490.

Diethyl (E)-2-((benzyl(methyl)amino)methylene)-3-oxosuccinate

81.4 mg as oil (64% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 2/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.38–7.28 (m, 3H), 7.20 (d, *J* = 6.8 Hz, 2H), 4.62 (d, *J* = 8.8 Hz, 2H), 4.26 (q, *J* = 7.2 Hz, 2H), 4.13 (q, *J* = 7.2 Hz, 2H), 2.90 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.21 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 183.4, 166.6, 165.9, 159.6, 133.9, 129.2, 128.7, 127.4,
97.9, 64.9, 61.4, 60.3, 41.1, 14.2, 14.0.

HRMS (ESI) *m/z*: Calcd for C₁₇H₂₂NO₅⁺ [M + H]⁺: 320.1492; found: 320.1491.

Diethyl (E)-2-((benzyl(tert-butyl)amino)methylene)-3-oxosuccinate

39.3 mg as oil (27% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 2/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.25–7.16 (m, 3H), 6.98 (d, *J* = 7.2 Hz, 2H), 4.93 (s, 2H), 4.11–4.05 (m, 2H), 3.94–3.78 (m, 2H), 1.49 (s, 9H), 1.21 (t, *J* = 7.2 Hz, 3H), 0.99 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) *δ* 183.3, 167.1, 165.0, 152.2, 135.0, 128.5, 127.2, 126.6, 100.5, 63.5, 61.3, 60.4, 51.0, 29.3, 14.0, 13.9.

HRMS (ESI) *m/z*: Calcd for C₂₀H₂₈NO₅⁺ [M + H]⁺: 362.1962; found: 362.1960.

1-Ethyl-4-methyl (E)-2-((dimethylamino)methylene)-3-oxosuccinate

38.4 mg as oil (84% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 3.33 (s, 3H), 3.00 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) *δ* 183.1, 166.7, 166.4, 160.2, 97.4, 60.4, 52.2, 48.4, 43.3, 14.3.

HRMS (ESI) m/z: Calcd for C₁₀H₁₆NO₅⁺ [M + H]⁺: 230.1023; found: 230.1023.

1-Cyclohexyl-4-ethyl (E)-3-((dimethylamino)methylene)-2-oxosuccinate

48.9 mg as oil (83% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 2/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 4.92–4.82 (m, 1H), 4.15 (q, J = 7.2 Hz,

2H), 3.33 (s, 3H), 3.00 (s, 3H), 1.97–1.90 (m, 2H), 1.77–1.70 (m, 2H), 1.56–1.45 (m, 3H), 1.43–1.26 (m, 3H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.8, 166.8, 165.6, 160.0, 97.7, 74.2, 60.3, 48.4, 43.3, 31.5, 25.4, 23.9, 14.4.

HRMS (ESI) *m/z*: Calcd for C₁₅H₂₄NO₅⁺ [M + H]⁺: 298.1649; found: 298.1648.

1-Ethyl-4-(4-phenylbutyl) (E)-2-((dimethylamino)methylene)-3-oxosuccinate

59.0 mg as oil (85% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 2/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.26-7.22 (m, 2H), 7.18–7.12 (m, 3H), 4.22 (t, J = 6.4 Hz, 2H), 4.11 (q, J = 7.2 Hz, 1H), 3.32 (s, 3H), 3.00 (s, 3H), 2.63 (t, J = 7.2 Hz, 2H), 1.88–1.54 (m, 6H), 1.21 (t, J = 7.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 183.4, 166.2, 160.2, 142.1, 128.5, 128.4, 125.9, 97.6,
65.4, 60.4, 48.4, 43.4, 35.5, 28.1, 27.7, 14.4.

HRMS (ESI) *m/z*: Calcd for C₁₉H₂₆NO₅⁺ [M + H]⁺: 348.1805; found: 348.1801.

1-(2,3-Dihydro-1*H*-inden-2-yl)-4-ethyl-(*E*)-3-((dimethylamino)methylene)-2-

oxosuccinate

111.0 mg as yellow solid, melting point: 77.3–78.9 °C (84% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 2/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.24–7.18 (m, 2H), 7.17–7.12 (m, 2H), 5.69–5.61 (m, 1H), 4.14 (q, J = 7.2 Hz, 2H), 3.35 (dd, J = 17.2, 6.8 Hz, 2H), 3.27 (s,

3H), 3.16 (dd, J = 17.2, 3.2 Hz, 2H), 2.96 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 183.0, 166.6, 165.9, 160.1, 140.3, 126.7, 124.6, 97.2, 76.3, 60.2, 48.3, 43.3, 39.3, 14.4.

HRMS (ESI) *m/z*: Calcd for C₁₈H₂₂NO₅⁺ [M + H]⁺: 332.1492; found: 332.1489.

1-Ethyl-4-((1*R*,2*S*)-2-isopropyl-5-methylcyclohexyl)-(*E*)-2-((dimethylamino)meth y-lene)-3-oxosuccinate

120.1 mg as yellow solid, melting point: 183.3–184.5 °C (85% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 2/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 4.86–4.64 (m, 1H), 4.14 (q, J = 7.2 Hz, 2H), 3.30 (s, 3H), 2.98 (s, 3H), 2.14 (d, J = 12.0 Hz, 1H), 2.01–1.92 (m, 1H), 1.65 (d, J = 11.6 Hz, 2H), 1.52–1.37 (m, 2H), 1.23 (t, J = 7.2 Hz, 3H), 1.08–0.97 (m, 2H), 0.91–0.83 (m, 7H), 0.76 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 183.6, 166.7, 165.6, 159.7, 97.7, 75.6, 60.2, 48.3, 47.0,
43.1, 40.4, 34.2, 31.4, 25.9, 23.4, 22.1, 20.9, 16.4, 14.5.

HRMS (ESI) *m/z*: Calcd for C₁₉H₃₂NO₅⁺ [M + H]⁺: 354.2275; found: 354.2271.

1-((3*R*,5*S*,8*R*,9*S*,10*S*,13*S*,14*S*)-10,13-Dimethyl-17-oxohexadecahydro-1*H*-cyclope n-ta[*a*]phenanthren-3-yl)-4-ethyl-(*E*)-3-((dimethylamino)methylene)-2-oxosuccin at-e

63.6 mg as oil (66% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 4.82-4.76 (m, 1H), 4.18–4.06 (m, 2H), 3.31 (s, 3H), 2.98 (s, 3H), 2.44–2.33 (m, 1H), 2.11–1.85 (m, 4H), 1.73 (s, 4H), 1.63–1.57 (m, 2H), 1.55–1.40 (m, 4H), 1.31–1.17 (m, 7H), 1.10–0.86 (m, 3H), 0.81 (s, 6H), 0.72–0.65 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 221.4, 183.6, 166.7, 165.6, 159.9, 97.5, 74.9, 60.3, 54.3, 51.4, 48.4, 47.8, 44.7, 43.2, 36.7, 35.9, 35.7, 35.0, 33.7, 31.5, 30.8, 28.3, 27.2, 21.8, 20.5, 14.3, 13.8, 12.3.

HRMS (ESI) *m/z*: Calcd for C₂₈H₄₂NO₆⁺ [M + H]⁺: 488.3007; found: 488.3005.

Methyl-4,4-difluoro-2-methyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate

27.1 mg as a solid, melting point: 100.8–102.2 °C (71% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 3.81 (s, 3H), 2.49 (t, *J* = 2.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1 (t, *J* = 30.3 Hz), 162.3, 162.2 (t, *J* = 6.8 Hz), 111.1 (t, *J* = 250.0 Hz), 102.8 (t, *J* = 21.9 Hz), 51.8, 14.6. ¹⁹F NMR (376 MHz, CDCl₃) δ –113.64 (s).

HRMS (ESI) m/z: Calcd for $C_7H_8F_2NO_3^+$ [M + H]⁺: 192.0467; found: 192.0466.

Ethyl-4,4-difluoro-2-methyl-5-oxo-4,5-dihydro-1*H*-pyrrole-3-carboxylate

33.8 mg as a solid, melting point: 102.1-103.4 °C (82% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 2.48 (t, *J* = 3.2 Hz, 3H), 1.32 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.1 (t, *J* = 30.3 Hz), 162.0 (t, *J* = 7.4 Hz), 161.9 (t, *J* = 1.7 Hz), 111.1 (t, *J* = 249.7 Hz), 102.8 (t, *J* = 21.6 Hz), 60.8, 14.5, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ –113.84 (t, *J* = 2.5 Hz).

HRMS (ESI) m/z: Calcd for C₈H₁₀F₂NO₃⁺ [M + H]⁺: 206.0623; found: 206.0623.

Propyl-4,4-difluoro-2-methyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate

28.0 mg as a solid, melting point: 83.1–84.3 °C (64% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 4.16 (t, *J* = 6.4 Hz, 2H), 2.48 (s, 3H), 1.75–1.67(m, 2H), 0.97 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.0 (t, J = 30.4 Hz), 161.8, 161.7 (t, J=7.0 Hz),

111.0 (t, *J* = 249.7 Hz), 102.9 (t, *J* = 21.7 Hz), 66.2, 21.9, 14.4, 10.3.

¹⁹F NMR (376 MHz, CDCl₃) δ –113.80 (s).

HRMS (ESI) m/z: Calcd for C₉H₁₂F₂NO₃⁺ [M + H]⁺: 220.0780; found: 220.0779.

Isopropyl-4,4-difluoro-2-methyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate

23.8 mg as a solid, melting point: 106.3-108.1 °C (54% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 4/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 5.17–5.19 (m, 1H), 2.48 (t, *J* = 3.2 Hz, 3H), 1.31 (s, 3H), 1.30 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.0 (t, J = 30.4 Hz), 161.3, 160.9 (t, J = 7.8 Hz),

111.1 (t, J = 250.0 Hz), 103.7 (t, J = 21.7 Hz), 68.4, 21.9, 14.6.

¹⁹F NMR (376 MHz, CDCl₃) δ –113.85 (s).

HRMS (ESI) m/z: Calcd for C₉H₁₂F₂NO₃⁺ [M + H]⁺: 220.0780; found: 220.0778.

Pentyl-4,4-difluoro-2-methyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate

36.2 mg as an oil (73% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 4.20 (t, J = 6.8 Hz, 2H), 2.48 (t, J = 3.2 Hz, 3H), 1.71–1.66 (m, 2H), 1.36–1.33 (m, 4H), 0.90 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1 (t, J = 30.4 Hz), 161.9, 161.6 (t, J = 7.4 Hz), 111.1 (t, J = 249.9 Hz), 103.2 (t, J = 21.7 Hz), 64.9, 28.3, 28.1, 22.4, 14.6, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ –113.75 (d, J = 2.7 Hz). HRMS (ESI) m/z: Calcd for C₁₁H₁₆F₂NO₃⁺ [M + H]⁺: 248.1093; found: 248.1091.

Isopentyl-4,4-difluoro-2-methyl-5-oxo-4,5-dihydro-1*H***-pyrrole-3-carboxylate** 38.3 mg as a solid, melting point: 95.3–96.5 °C (78% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 4.23 (t, *J* = 6.8 Hz, 2H), 2.48 (t, *J* = 3.2 Hz, 3H), 1.76–1.68 (m, 1H), 1.59 (q, *J* = 6.8 Hz, 2H), 0.92 (d, *J* = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1 (t, *J* = 30.4 Hz), 161.9, 161.8 (t, *J* = 7.4 Hz), 111.1 (t, *J* = 249.8 Hz), 103.1 (t, *J* = 21.8 Hz), 63.4, 37.3, 25.2, 22.5, 14.6. ¹⁹F NMR (376 MHz, CDCl₃) δ –113.66 ~ –113.76 (m). HRMS (ESI) *m/z*: Calcd for C₁₁H₁₆F₂NO₃⁺ [M + H]⁺: 248.1093; found: 248.1091.

Benzyl-4,4-difluoro-2-methyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate

32.8 mg as a solid, melting point: 108.8–109.2 °C (62% yield, flash column chromatography eluent, petroleum ether/ethyl acetate =3/1, V/V).
¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.43–7.27 (m, 5H), 5.27 (s, 2H), 2.45 (t, J = 3.2 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 166.8 (t, J = 30.4 Hz), 162.1 (t, J = 7.4 Hz), 161.5, 135.9, 128.7, 128.3, 127.8, 111.0 (t, J = 250.0 Hz), 102.9 (t, J = 21.9 Hz), 66.1, 14.7.

¹⁹F NMR (376 MHz, CDCl₃) δ –113.32 (s).

HRMS (ESI) *m/z*: Calcd for C₁₃H₁₂F₂NO₃⁺ [M + H]⁺: 268.0780; found: 268.0781.

Tert-butyl-4,4-difluoro-2-methyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate

22.6 mg as a solid, melting point: 113.3-114.5 °C (49% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 4/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 2.44 (t, *J* = 3.2 Hz, 3H), 1.51 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 167.3 (t, J = 30.4 Hz), 161.0, 160.2 (t, J = 7.5 Hz),

111.2 (t, *J* = 249.8 Hz), 104.7 (t, *J* = 21.5 Hz), 82.0, 28.4, 14.5.

¹⁹F NMR (376 MHz, CDCl₃) δ –114.11~ –114.17 (m).

HRMS (ESI) m/z: Calcd for C₁₀H₁₄F₂NO₃⁺ [M + H]⁺: 234.0936; found: 234.0932.

2-Methoxyethyl-4,4-difluoro-2-methyl-5-oxo-4,5-dihydro-1*H*-pyrrole-3-carboxyl

32.7 mg as a solid, melting point: 110.6–112.1 °C (70% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 4.36 (t, *J* = 4.8 Hz, 2H), 3.67 (t, *J* = 4.8 Hz, 2H), 3.40 (s, 3H), 2.46 (t, *J* = 3.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.9 (t, J = 30.3 Hz), 162.7 (t, J = 7.3 Hz), 161.7, 111.1 (t, J = 249.8 Hz), 102.5 (t, J = 21.7 Hz), 70.4, 63.5, 59.1, 14.7.

¹⁹F NMR (376 MHz, CDCl₃) δ –113.47 ~ –113.67 (m).

HRMS (ESI) m/z: Calcd for C₉H₁₂F₂NO₄⁺ [M + H]⁺: 236.0729; found: 236.0728.

Ethyl-4,4-difluoro-5-oxo-2-propyl-4,5-dihydro-1H-pyrrole-3-carboxylate

30 mg as an oil (65% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 2.94–2.84 (m,

2H), 1.68–1.64 (m, 2H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.02 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.3 (t, J = 30.5 Hz), 165.2 (t, J = 7.1 Hz), 161.6,

111.3 (t, *J* = 250.1 Hz), 102.9 (t, *J* = 21.7 Hz), 60.6, 29.6, 20.3, 14.3, 13.8.

¹⁹F NMR (376 MHz, CDCl₃) δ –113.70 (s).

HRMS (ESI) m/z: Calcd for C₁₀H₁₄F₂NO₃⁺ [M + H]⁺: 234.0936; found:234.0932.

Ethyl-4,4-difluoro-2-isopropyl-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate

37.4 mg as yellow solid, melting point: 99.9–101.8 °C (81% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 4.27 (q, *J* = 7.2 Hz, 2H), 4.06–3.98 (m, 1H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.24 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6 (t, *J* = 7.0 Hz), 168.0 (t, *J* = 30.5 Hz), 161.5, 111.5 (t, *J* = 250.2 Hz), 101.4 (t, *J* = 21.5 Hz), 60.7, 26.3, 19.2, 14.3. ¹⁹F NMR (376 MHz, CDCl₃) δ –113.92 (d, *J* = 1.9 Hz). HRMS (ESI) *m/z*: Calcd for C₁₀H₁₄F₂NO₃⁺ [M + H]⁺: 234.0936; found: 234.0931.

Ethyl 2-ethyl-4,4-difluoro-5-oxo-4,5-dihydro-1*H*-pyrrole-3-carboxylate

29.7 mg as yellow solid, melting point: 103.4–105.4 °C (68% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 2.92 (q, *J* = 7.6

Hz, 2H), 1.31 (t, *J* = 7.2 Hz, 3H), 1.25 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.6 (t, J = 30.4 Hz), 166.6 (t, J = 7.2 Hz), 161.6,

111.4 (t, J = 250.1 Hz), 102.1 (t, J = 21.6 Hz), 60.7, 21.4, 14.3, 10.9.

¹⁹F NMR (376 MHz, CDCl₃) δ –113.87 ~ –113.88(m).

HRMS (ESI) m/z: Calcd for C₉H₁₂F₂NO₃⁺ [M + H]⁺: 220.0780; found: 220.0779.

Methyl-2-ethyl-4,4-difluoro-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate

30.4 mg as yellow solid, melting point: 94.5–96.6 °C (75% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 3.81 (s, 3H), 2.95–2.93 (m, 2H), 1.26 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.5 (t, J = 30.5 Hz), 166.8 (t, J = 7.2 Hz), 162.0,

111.3 (t, *J* = 250.2 Hz), 101.9 (t, *J* = 21.7 Hz), 51.7, 21.4, 10.8.

¹⁹F NMR (376 MHz, CDCl₃) δ –113.69 (s).

HRMS (ESI) m/z: Calcd for C₈H₁₀F₂NO₃⁺ [M + H]⁺: 206.0623; found: 206.0622.

Methyl 2-butyl-4,4-difluoro-5-oxo-4,5-dihydro-1H-pyrrole-3-carboxylate

40.9 mg as oil (88% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 3.80 (s, 3H), 2.99–2.84 (m, 2H), 1.65–

1.57 (m, 2H), 1.40–1.37 (m, 2H), 0.94 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.4 (t, J = 30.3 Hz), 166.1 (t, J = 7.1 Hz), 162.1,

111.3 (t, *J* = 250.0 Hz), 102.3 (t, *J* = 21.7 Hz), 51.7, 28.7, 27.6, 22.5, 13.7.

¹⁹F NMR (377 MHz, CDCl₃) δ -113.62 (d, J = 1.6 Hz).

HRMS (ESI) m/z: Calcd for C₁₀H₁₄F₂NO₃⁺ [M + H]⁺: 234.0936; found: 234.0934.

Methyl 4,4-difluoro-2-isobutyl-5-oxopyrrolidine-3-carboxylate

35.5 mg as yellow solid, melting point: 81.6-82.7 °C (75% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 3.81 (s, 3H), 2.85–2.79 (m, 2H), 2.07– 1.99 (m, 1H), 1.02 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 167.3 (t, J = 30.5 Hz), 164.8 (t, J = 7.2 Hz), 162.0 (d,

J = 1.8 Hz), 111.2 (t, *J* = 250.2 Hz), 103.4 (t, *J* = 21.7 Hz), 51.7, 36.4, 27.6, 22.4.

¹⁹F NMR (376 MHz, CDCl₃) δ –113.54 (d, J = 2.1 Hz).

HRMS (ESI) m/z: Calcd for C₁₀H₁₄F₂NO₃⁺ [M + H]⁺: 234.0936; found: 234.0935.

Ethyl (Z)-2-ethylidene-4-fluoro-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate

24.7 mg as a yellow solid, melting point: 129.5–131.1 °C (62% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 10.35 (s, 1H), 6.43 (q, *J* = 7.6 Hz, 1H), 4.35 (q, *J* = 7.2 Hz, 2H), 2.06–1.97 (m, 3H), 1.36 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, J = 28.2 Hz), 160.5 (d, J = 4.4 Hz), 154.1 (d, J = 296.7 Hz), 129.7 (d, J = 2.2 Hz), 118.1 (d, J = 13.2 Hz), 113.6 (d, J = 1.9 Hz), 61.8, 14.2, 13.4.

¹⁹F NMR (376 MHz, CDCl₃) δ –125.86 (s).

HRMS (ESI) *m/z*: Calcd for C₉H₁₁FNO₃⁺ [M+H] ⁺: 200.0717; found: 200.0715.

Ethyl (Z)-4-fluoro-5-oxo-2-propylidene-2,5-dihydro-1*H*-pyrrole-3-carboxylate 29.7 mg as a colorless solid, melting point: 126.1–127.5 °C (68% yield, flash column

chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 6.37 (t, *J* = 8.0 Hz, 1H), 4.36 (q, *J* = 7.2 Hz, 2H), 2.43–2.36 (m, 2H), 1.38 (t, *J* = 7.2 Hz, 3H), 1.14 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 161.92 (d, J = 28.1 Hz), 160.51 (d, J = 4.5 Hz), 154.10 (d, J = 296.7 Hz), 128.28 (d, J = 2.0 Hz), 125.00 (d, J = 13.1 Hz), 113.63 (d, J = 1.5 Hz), 61.78, 21.28, 14.24, 13.81.

¹⁹F NMR (376 MHz, CDCl₃) δ –125.51 (s).

HRMS (ESI) m/z: Calcd for C₁₀H₁₃FNO₃⁺ [M + H]⁺: 214.0874; found: 214.0871.

Methyl (Z)-2-ethylidene-4-fluoro-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate

24.0 mg as a colorless solid, melting point: 81.6–84.1 °C, (65% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V). ¹H NMR (400 MHz, CDCl₃) δ 10.26 (s, 1H), 6.49–6.40 (m, 1H), 3.90 (s, 3H), 2.02 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, J = 28.1 Hz), 160.9 (d, J = 4.4 Hz), 154.2 (d, J = 296.9 Hz), δ 129.56 (d, J = 2.1 Hz), 118.4 (d, J = 13.1 Hz), 113.2, 52.5, 13.5. ¹⁹F NMR (376 MHz, CDCl₃) δ –125.52 (s). HRMS (ESI) *m/z*: Calcd for C₈H₉FNO₃⁺ [M + H]⁺: 186.0561; found: 186.0559.

Methyl (Z)-2-butylidene-4-fluoro-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxylate

30.2 mg as a colorless solid, melting point: 124.5-125.6 °C (71% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 1H), 6.40 (t, J = 8.4 Hz, 1H), 3.90 (s, 3H),

2.39–2.33 (m, 2H), 1.57–1.53 (m, 2H), 0.95 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.8 (d, J = 28.1 Hz), 160.9 (d, J = 4.4 Hz), 154.2 (d, J = 297.3 Hz), 128.8 (d, J = 2.1 Hz), 123.6 (d, J = 13.1 Hz), 113.2, 52.5, 29.7, 22.5, 13.8.

¹⁹F NMR (376 MHz, CDCl₃) δ –125.29 (s).

HRMS (ESI) m/z: Calcd for C₁₀H₁₃FNO₃⁺ [M + H]⁺: 214.0874; found: 214.0875.

Methyl (*Z*)-4-fluoro-2-(2-methylpropylidene)-5-oxo-2,5-dihydro-1*H*-pyrrole-3-ca rboxylate

22.6 mg as a colorless solid, melting point: 169.7-171.3 °C (63% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 1H), 6.25 (d, *J* = 10.4 Hz, 1H), 3.90 (s, 3H), 2.89-2.80 (m, 1H), 1.13 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 161.8 (d, J = 28.1 Hz), 160.9 (d, J = 4.4 Hz), 154.2 (d, J = 297.2 Hz), 130.3 (d, J = 13.0 Hz), 126.9 (d, J = 2.1 Hz), 113.4 (d, J = 1.6 Hz), 52.5, 27.7, 22.8.

¹⁹F NMR (376 MHz, CDCl₃) δ –125.04 (s).

HRMS (ESI) m/z: Calcd for C₁₀H₁₃FNO₃⁺ [M + H]⁺: 214.0874; found: 214.0871.

iso-Propyl 4-fluoro-2-methylene-5-oxo-2,5-dihydro-1*H*-pyrrole-3-carboxylate

22.1 mg as a colorless solid, melting point: 126.7-127.1 °C (53% yield, flash column chromatography eluent, petroleum ether/ethyl acetate = 3/1, V/V).

¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 5.91 (d, J = 1.2 Hz, 1H), 5.28 (t, J = 1.6 Hz, 1H), 5.25–5.19 (m, 1H), 1.37-1.35 (d, J = 6.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 160.9 (d, J = 29.2 Hz), 159.4 (d, J = 4.4 Hz), 155.1 (d, J = 300.9 Hz), 134.8 (d, J = 2.9 Hz), 113.7 (d, J = 1.5 Hz), 103.9 (d, J = 13.4 Hz), 69.8, 21.7.

¹⁹F NMR (376 MHz, CDCl₃) δ –121.54 (s).

HRMS (ESI) m/z: Calcd for C₉H₁₁FNO₃⁺ [M + H]⁺: 200.0717; found: 200.0719.

5. Unsuccessful substrates in the reaction

Unsuccessful substrates in the reaction are as shown in the following Scheme.

6. X-Ray structure and data for 3q and 5e

6.1 Crystallographic data and molecular structure of 3q (CCDC: 2411565)

General procedure for crystal culture of 3q: To a test tube (15 mL) with added 3q (20 mg), dichloromethane (1.0 mL) was added slowly to make it dissolve completely. After it dissolved, a mixture of petroleum ether (2.0 mL) and EtOAc (3.0 mL) was added. Then, the test tube was sealed with a rubber stopper, and connected to air with a syringe needle. Finally, the tube was put in a dry and ventilated place to make the organic solvent to volatilize slowly. After a few days, the crystal of 3q was obtained. The X-ray crystal structure of 3q was shown in Figure S2.

Figure S2 ORTEP diagram of 3q with thermal displacement parameters drawn at 50% probability.

Bond precision	: $C-C = 0.0061$	A	Wavelengt	ch=0.71073
Cell:	a=8.385(6) alpha=104.306(12)	b=10.583	(8)	c=11.061(8) gamma=105.172(11)
Temperature:	296 К			<u> </u>
	Calculated		Reported	d
Volume	865.0(11)		865.0(1	1)
Space group	P -1		P-1	
Hall group	-P 1		?	
Moiety formula	C18 H21 N O5		?	
Sum formula	C18 H21 N O5		C18 H21	N 05
Mr	331.36		331.36	
Dx,g cm-3	1.272		1.272	
Z	2		2	
Mu (mm-1)	0.093		0.093	
F000	352.0		352.0	
F000'	352.19			
h,k,lmax	9,12,13		9,12,13	
Nref	3052		2998	
Tmin, Tmax	0.976,0.981		0.976,0	.981
Tmin'	0.976			
Correction method= # Reported T Limits: Tmin=0.976 Tmax=0.981 AbsCorr = MULTI-SCAN				
Data completen	ess= 0.982	Theta(m	nax)= 25.0	000
R(reflections)	= 0.0678(1720)			wR2(reflections)= 0.1729(2998)
S = 1.057	Npar	= 217		

6.2 Crystallographic data and molecular structure of 5e (CCDC: 2411690)

General procedure for crystal culture of **5e**: To a test tube (15 mL) with added **5e** (30 mg), dichloromethane (1.0 mL) was added slowly to make it dissolve completely. After it dissolved, a mixture of petroleum ether (2.0 mL) and EtOAc (3.0 mL) was added. Then, the test tube was sealed with a rubber stopper, and connected to air with a syringe needle. Finally, the tube was put in a dry and ventilated place to make the organic solvent to volatilize slowly. After a few days, the crystal of **5e** was obtained The X-ray crystal structure of **5e** was shown in Figure **S3**.

Figure S3 ORTEP diagram of 5e with thermal displacement parameters drawn at 50% probability.

Bond precision:	C-C = 0.0025 A	Wavelength=1.54178		
Cell:	a=5.0040(1)	b=9.2021(2)	c=12.2894(3)	
Temperature:	alpha=71.305(1) 655 K	beta=80.810(1)	gamma=83.848(1)	
5				
	Calculated	Reported	1	
Volume	528.21(2)	528.21(2	2)	
Space group	P -1	P -1		
Hall group	-P 1	-P 1		
Moiety formula	C10 H12 F N O3	C10 H12	F N O3	
Sum formula	C10 H12 F N O3	C10 H12	F N O3	
Mr	213.21	213.21		
Dx,g cm-3	1.340	1.341		
Z	2	2		
Mu (mm-1)	0.943	0.943		
F000	224.0	224.0		
F000'	224.83			
h,k,lmax	6,11,14	6,11,14		
Nref	1919	1864		
Tmin, Tmax	0.805,0.820	0.577,0.	753	
Tmin'	0.805			
Correction method= # Reported T Limits: Tmin=0.577 Tmax=0.753 AbsCorr = ?				
Data completeness= 0.971 Theta(max)= 68.227				
R(reflections) = S = 1.045	0.0482(1716) Npar= 13	39	wR2(reflections)= 0.1355(1864)	

7. Mechanism investigation

7.1 Control experiments (Scheme S1)

Scheme S1. Control experiments

7.2 Radical trapping experiments

A 10 mL oven-dried reaction vessel equipped with a magnetic stirrer bar was charged with ethyl (*E*)-3-(dimethylamino)acrylate **1a** (28.3 mg, 0.2 mmol), bromodifluoroacetate **2a** (121.8 mg, 0.6 mmol), $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (2.24 mg, 0.002 mmol, 1 mol%), TEMPO (126 mg, 0.8 mmol, 4.0 equiv) or BHT (176 mg, 0.8 mmol, 4.0 equiv) and dimethyl sulfoxide (DMSO, 2.0 mL). The reaction vessel was exposed to blue LEDs (450–455 nm, 2×3 W) irradiation at room temperature in N₂ with stirring for 4 h. After completion of the reaction, HRMS analysis of this reaction crude mixture showed that the corresponding TEMPO/ BHT-adduct was detected (Figure S4).

Figure S4. Radical trapping experiments

7.3¹⁸O-Labeling experiments

For further study on the reaction mechanism, the ¹⁸O isotope labeling experiment was conducted under the standard conditions with 10 equiv of $H_2^{18}O$. As expected, ¹⁸O/¹⁶O-labled product **3a** (**3a**-¹⁸O:**3a**-¹⁶O \approx 5:2) was obtained (Figure S5). This result indicated that the oxygen atom in the newly constructed carbonyl group originated from water.

Figure S5. HRMS analysis of ¹⁸O-labeling experiments

8. References

[1] X. X. Li, C. You, S. L. Li, H. Lv and X. M. Zhang, Org. Lett. 2017, 19, 5130–5133.

- [2] Y. C. Yuan, W. J. Hou, D. Zhang-Negrerie, K. Zhao and Y. F. Du, *Org. Lett.* 2014, 16, 5410–5413.
- [3] Z.-W. Chen, L. Zheng and J. Liu, Eur. J. Org. Chem. 2019, 2019, 3051–3060.
- [4] N. N. Zhou, Z. L. Li and Z. X. Xie, Org. Chem. Front. 2015, 2, 1521–1530.
- [5] T. Songsichan, J. Promsuk, V. Rukachaisirikul and J. Kaeobamrung, Org. Biomol. Chem. 2014, 12, 4571–4575.
- [6] Y. Zhang, X. Y. Zhao, C. Zhuang, S. L. Wang, D. Zhang-Negrerie and Y. F. Du, Adv. Synth. Catal. 2018, 360, 2107–2112.
- [7] X. Geng, Z. Xu, Y. Cai and L. Wang, Org. Lett. 2021, 23, 8343-8347.
- [8] B. Du, C.M. Chan, P. Y. Lee, L. H. Cheung, X. Xu, Z. Lin and W. Y. Yu, Nat. Commun. 2021, 12, 412.
- [9] J. Huo, X. Geng, W. Li, P. Zhang and L. Wang, Adv. Synth. Catal. 2022, 364, 3539–3543.
- [10] C. Jiang, J. Wu, J. Han, K. Chen, Y. Qian, Z. Zhang and Y. Jiang, Chem. Commun. 2021, 57, 5710–5713.
- [11] D. Hu, L. Yang and J. Wan, Green. Chem. 2020, 22, 6773–6777.
- [12] J. Huo, X. Geng, W. Li, P. Zhang and L. Wang, Org. Lett. 2023, 25, 512–516.
9. NMR Spectra of products

e (11) Taking Spectrum of Compound 36 (100 MHz, CDC)3

 $^{13}C\{^{1}H\}$ NMR Spectrum of Compound 3c (100 MHz, CDCl_3)

 $^{13}C\{^{1}H\}$ NMR Spectrum of Compound 3d (100 MHz, CDCl_3)

¹³C{¹H} NMR Spectrum of Compound **3e** (100 MHz, CDCl₃)

¹³C{¹H} NMR Spectrum of Compound **3f** (100 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR Spectrum of Compound $\boldsymbol{3g}~(100~\text{MHz}, \text{CDCl}_3)$

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectrum of Compound 3k (100 MHz, CDCl_3)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectrum of Compound 3l (100 MHz, CDCl_3)

¹³C{¹H} NMR Spectrum of Compound **30** (100 MHz, CDCl₃)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectrum of Compound 3q (100 MHz, CDCl_3)

 $^{13}C\{^{1}H\}$ NMR Spectrum of Compound **3r** (100 MHz, CDCl₃)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectrum of Compound **3s** (100 MHz, CDCl₃)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectrum of Compound 4a (100 MHz, CDCl_3)

 $^{19}F\{^{1}H\}$ NMR Spectrum of Compound 4b (376 MHz, CDCl_3)

¹³C{¹H} NMR Spectrum of Compound **4c** (100 MHz, CDCl₃)

¹H NMR Spectrum of Compound **4d** (400 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR Spectrum of Compound 4e (100 MHz, CDCl₃)

¹H NMR Spectrum of Compound 4f (400 MHz, CDCl₃)

 $^{19}\mathrm{F}\left\{^{1}\mathrm{H}\right\}$ NMR Spectrum of Compound 4f (376 MHz, CDCl_3)

¹H NMR Spectrum of Compound **4h** (400 MHz, CDCl₃)

¹⁹F{¹H} NMR Spectrum of Compound **4h** (376 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR Spectrum of Compound 4i (100 MHz, CDCl_3)

¹H NMR Spectrum of Compound 4j (400 MHz, CDCl₃)

 $^{19}F\{^1H\}$ NMR Spectrum of Compound 4j (376 MHz, CDCl_3)

 $^{13}C\{^{1}H\}$ NMR Spectrum of Compound 4k (100 MHz, CDCl_3)

¹H NMR Spectrum of Compound **4I** (400 MHz, CDCl₃)

 $^1\mathrm{H}$ NMR Spectrum of Compound 4n (400 MHz, CDCl_3)

 $^{19}F\{^{1}H\}$ NMR Spectrum of Compound 4n (376 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR Spectrum of Compound 40 (100 MHz, CDCl_3)

¹⁹F{¹H} NMR Spectrum of Compound **5a** (376 MHz, CDCl₃)

 $^{13}C\{^1H\}$ NMR Spectrum of Compound 5b (100 MHz, CDCl_3)

¹⁹F{¹H} NMR Spectrum of Compound **5c** (376 MHz, CDCl₃)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR Spectrum of Compound 5d (100 MHz, CDCl_3)

¹H NMR Spectrum of Compound 5e (400 MHz, CDCl₃)

 $^{19}\mathrm{F}\{^{1}\mathrm{H}\}$ NMR Spectrum of Compound **5e** (376 MHz, CDCl_3)

 $^{19}F\{^1H\}$ NMR Spectrum of Compound $\mathbf{5f}\,(376\text{ MHz},\text{CDCl}_3)$