Supporting Information

Highly Chemo- and Site-selective C(sp²)-H Bond Functionalization of Aniline and Phenol Derivatives with Aryl/Aryl Diazo Compounds

Yu-Zhu Wang,^a Xiaoyan Wei, Yinuo Chen, Yueyue Liu and Lu Liu^{*abc}

^aSchool of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China

^bShanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, P. R. China

^cSchool of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China

E-mail : <u>lliu@chem.ecnu.edu.cn</u>

Contents

1. General Information	
2. Optimization of reaction conditions	
3. General procedure for the synthesis of compounds	S5
4. Gram scale reaction and synthetic spplication	S25
5. References	S28
6. NMR and HRMS spectra of new compounds	S28

1. General Information

Unless otherwise noted, all reactions were carried out in standard Schlenk techniques with magnetic stirring bar under air. Materials obtained from commercial suppliers were used directly without further purification. ¹H NMR spectra were recorded on a BRUKER 500 (500 MHz) or BRUKER 600 (600 MHz) spectrometer in CDCl₃. Chemical shifts are reported in ppm with tetramethylsilane (TMS: 0 ppm) with the solvent resonance as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, quint = quintus, sext = sextus, sept = septimum, m = multiplet), coupling constants (Hz), and integration. ¹³C{¹H} NMR spectra were recorded on a BRUKER 500 (126 MHz) or BRUKER 600 (151 MHz) spectrometer in CDCl₃ with complete proton decoupling. Chemical shifts are reported in ppm with the deuterium solvent as the internal standard (e.g. CDCl₃: 77.0 ppm). HRMS spectra were recorded on BRUKER maXis impact, Source type is electrospray ionization (ESI-TOF).

Anhydrous toluene were distilled from sodium and benzophenone to use. Anhydrous hexane, Bi(OTf)₃, and (PhO)₂POOH were purchased from Energy Chemical Company and used directly.

Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed on silica gel 60 (particle size 200-400 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate (PE/EtOAc) or petroleum ether/ diethyl ether (PE/ DCM). Without special instructions, heating reactions are carried out through an oil bath.

2. Optimization of reaction conditions

Table S1. Optimization of reaction conditions with N-isopropyl aniline^a

^{iPr} N ⁺ H H 1a	+ N ₂	[M] (5 n solver OMe	il nol%) nt, T	Pr N ⁺	+ OMe	rh	+ F DMe	Arwy Ph
				3a			7. 11/0	y sh
Entry	[M]	Solvent	T/ °C	t/h	Additive	39	$\frac{11010}{3a^2}$	<u>%)°</u> 3a''
1	Bi(OTf)₃	DCM	30	8		52	0	45
2	$Bh_2(OAc)_4$	DCM	30			0	0	97
3	Ph ₃ PAuOTf	DCM	30			0	21	74
4	AgOTf	DCM	30			0	11	87
5	$B(C_6F_5)_3$	DCM	30	2		42	12	41
6	$Sc(OTf)_3$	DCM	30	12		32	7	56
7	HOTf	DCM	30			0	93	2
8	(PhO) ₂ PO ₂ H	DCM	30	36		0	8	88
9	Bi(OTf) ₃	hexane	30	48		58	0	40
10	Bi(OTf) ₃	toluene	30	14		50	0	47
11	Bi(OTf) ₃	THF	30	48		0	0	94
12	Bi(OTf) ₃	MeCN	30	36		0	0	96
13	Bi(OTf) ₃	hex:tol	30	14		63	0	32
14	Bi(OTf) ₃	hex:tol	40	12		63	0	32
15	Bi(OTf) ₃	hex:tol	50	122		60	0	37
17 ^c	Bi(OTf)3	hex:tol	40	12	(PhO) ₂ PO ₂ H	79	0	12
18	Bi(OTf) ₃	hex:tol	40	12	$C_6H_5CO_2H$	62	0	33
19^{d}	Bi(OTf) ₃	hex:tol	40	12	(PhO) ₂ PO ₂ H	75	0	22
20^e	Bi(OTf) ₃	hex:tol	40	12	(PhO) ₂ PO ₂ H	77	0	25
21^{f}	Bi(OTf) ₃	hex:tol	40	12	$(PhO)_2PO_2H$	75	0	23

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (0.1 mmol) and [M] (5 mol %), solvent (2.0 mL), at 30 °C for 24h; ^{*b*}Yields were determined by crude ¹H NMR using CH₂Br₂ as internal standard. ^{*c*}(PhO)₂PO₂H (10 mol%). ^{*d*}(PhO)₂PO₂H (5 mol%). ^{*e*}(PhO)₂PO₂H (15 mol%). ^{*f*}(PhO)₂PO₂H (20 mol%)

Table S2. Unsuccessful results.

3. General procedure for the synthesis of compounds

General procedure for synthesis aniline compounds

General procedure: aniline **1a** (108.1 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%) and (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) were introduced into a dried glass tube under Argon protection, and add 1mL dry hexane and 1mL dry toluene as solvent, then the diazo **2a** (89.7 mg, 0.4 mmol, 1.0 equiv) was dissolved in 2 ml of hexane and add dropwise in 10 min at 40 °C. After the addition, continue to react for 12 h consumed diazo completely determined by TLC analysis. The mixture was purified by column chromatography on silica gel using PE/EtOAc = 20:1 as the eluent and concentrated to obtain the product **3a** (101.8 mg, 79%). Unless otherwise specified, the synthesis of other aniline compounds refers to this method.

General procedure for synthesis phenol compounds

General procedure: phenol **1i** (97.7 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%) and (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) were introduced into a dried glass tube under Argon protection, and add 1mL dry hexane and 1mL dry toluene as solvent, then the diazo **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) was dissolved in 2 ml of hexane and add dropwise in 10 min at room temperature. After the addition, continue to react for 1 minute consumed diazo completely determined by TLC analysis. The mixture was purified by column chromatography on silica gel using PE/EtOAc =

30:1 as the eluent and concentrated to obtain the product **3i** (96.3 mg, 75%). Unless otherwise specified, the synthesis of other phenol compounds refers to this method.

1) N-isopropyl-4-((4-methoxyphenyl)(phenyl)methyl)aniline (3a)

iPrHN

The general procedure was followed using **1a** (108.1 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2a** (89.7 mg, 0.4 mmol, 1.0 equiv) at 40 °C, TLC ($R_f = 0.4$, PE/EtOAc = 20:1). After purification by column chromatography (PE/EtOAc = 30:1),

3a (102.3 mg, 77%) was obtained as colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, *J* = 6.2 Hz, 2H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.11 (d, *J* = 7.6 Hz, 2H), 7.03 (d, *J* = 8.3 Hz, 2H), 6.88 (d, *J* = 8.1 Hz, 2H), 6.80 (d, *J* = 8.2 Hz, 2H), 6.50 (d, *J* = 8.1 Hz, 2H), 5.38 (s, 1H), 3.77 (s, 3H), 3.58 (hept, *J* = 6.3 Hz, 1H), 3.39 (br, 1H), 1.19 (d, *J* = 6.2 Hz, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.8, 145.8, 145.0, 136.9, 132.7, 130.3, 130.1, 129.3, 128.1, 125.9, 113.5, 113.0, 55.2, 55.2, 44.3, 23.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₃H₂₆NO 332.2009, found 332.2006.

2) 2-chloro-N-isopropyl-4-((4-methoxyphenyl)(phenyl)methyl)aniline (3b)

The general procedure was followed using **1b** (135.2 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2a** (89.7 mg, 0.4 mmol, 1.0 equiv) at 40 °C, TLC ($R_f = 0.42$, PE/EtOAc = 20:1). After

purification by column chromatography (PE/EtOAc = 30:1), **3b** (95.2 mg, 65%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 7.3 Hz, 1H), 7.26 (s, 1H), 7.22-7.17 (m, 1H), 7.10 (d, *J* = 7.1 Hz, 2H), 7.01 (d, *J* = 8.6 Hz, 2H), 6.98 (d, *J* = 2.1 Hz, 1H), 6.85 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.82 (d, *J* = 8.7 Hz, 2H), 6.58 (d, *J* = 8.4 Hz, 1H), 5.35 (s, 1H), 3.78 (s, 3H), 3.62 (p, *J* = 6.3 Hz, 1H), 1.23 (d, *J* = 6.3 Hz, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 157.9, 144.4, 141.5, 136.2, 130.2, 129.9, 129.2, 128.6, 128.2, 126.1, 118.9, 113.6, 111.4, 55.2, 54.8, 44.2, 22.9; HRMS (ESITOF) m/z: [M+H]⁺ calculated for C₂₃H₂₅CINO 366.1619, found 366.1614.

3) 3-chloro-*N*-isopropyl-4-((4-methoxyphenyl)(phenyl)methyl)aniline (3c)

The general procedure was followed using **1c** (135.2 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2a** (89.7 mg, 0.4 mmol, 1.0 equiv) at 40 °C, TLC ($R_f = 0.45$, PE/EtOAc = 20:1). After purification by column chromatography (PE/EtOAc = 30:1),

3c (114.2 mg, 78%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.26 (t, *J* = 7.7 Hz, 2H), 7.19 (t, *J* = 7.3 Hz, 1H), 7.07 (d, *J* = 7.5 Hz, 2H), 6.98 (d, *J* = 8.3 Hz, 2H), 6.81 (d, *J* = 8.5 Hz, 2H), 6.67 (d, *J* = 8.5 Hz, 1H), 6.59 (d, *J* = 2.1 Hz, 1H), 6.36 (dd, *J* = 8.5, 2.5 Hz, 1H), 5.77 (s, 1H), 3.77 (s, 3H), 3.55 (hept, *J* = 6.3 Hz, 1H), 3.46 (br, 1H), 1.18 (d, *J* = 6.2 Hz, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.9, 146.8, 143.9, 135.6, 135.0, 131.4, 130.4, 129.8, 129.4, 128.1, 126.1, 113.6, 113.3, 111.6, 55.2, 51.7, 44.3, 22.9; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₃H₂₅ClNO 366.1619, found 366.1614.

4) N-cyclopentyl-4-((4-methoxyphenyl)(phenyl)methyl)aniline (3d)

The general procedure was followed using **1d** (128.9 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2a** (89.7 mg, 0.4 mmol, 1.0 equiv) at 40 °C, TLC (R_f = 0.41, PE/EtOAc = 20:1). After purification by column chromatography (PE/EtOAc =

30:1), **3d** (103.2 mg, 72%) was obtained as colorless oil. 1 H

NMR (500 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.17 (t, *J* = 6.6 Hz, 1H), 7.11 (d, *J* = 7.7 Hz, 2H), 7.03 (d, *J* = 7.4 Hz, 2H), 6.88 (d, *J* = 6.8 Hz, 2H), 6.80 (d, *J* = 6.9 Hz, 2H), 6.52 (d, *J* = 8.4 Hz, 2H), 5.38 (s, 1H), 3.77 (s, 3H), 3.76 – 3.71 (quint, J = 5.5 Hz, 1H), 3.63 (br, 1H), 2.03 – 1.94 (m, 2H), 1.75 – 1.66 (m, 2H), 1.63 – 1.57 (m, 2H), 1.49 – 1.41 (m, 2H); ¹³C NMR{¹H} (126 MHz, CDCl₃) δ 157.8, 146.3, 145.0, 136.9, 132.7, 130.3, 130.0, 129.3, 128.1, 125.9, 113.5, 113.0, 55.2, 55.2, 54.8, 33.6, 24.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₅H₂₈NO 358.2165, found 358.2160.

5) *N*-cyclohexyl-4-((4-methoxyphenyl)(phenyl)methyl)aniline (3e)

The general procedure was followed using **1e** (140.2 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2a** (89.7 mg, 0.4 mmol, 1.0 equiv) at 40 °C, TLC (R_f = 0.41, PE/EtOAc = 20:1). After purification by column chromatography (PE/EtOAc = 30:1),

3e (108.7 mg, 73%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.27 – 7.22 (m, 2H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.11 (d, *J* = 7.8 Hz, 2H), 7.02 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 7.0 Hz, 2H), 6.80 (d, *J* = 8.7 Hz, 2H), 6.50 (d, *J* = 7.0 Hz, 2H), 5.37 (s, 1H), 3.77 (d, *J* = 1.5 Hz, 3H), 3.46 (br, 1H), 3.24 – 3.15 (m, 1H), 2.07 – 1.98 (m, 2H), 1.76 – 1.69 (m, 2H), 1.41 – 1.06 (m, 6H); ¹³C {¹H}NMR (126 MHz, CDCl₃) δ 157.8, 145.7, 145.1, 136.9, 132.6, 130.3, 130.1, 129.3, 128.1, 125.9, 113.5, 112.9, 55.2, 55.1, 51.8, 33.5, 25.9, 25.0; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₆H₃₀NO 372.2322, found 372.2319.

6) 4-((4-methoxyphenyl)(phenyl)methyl)-N-phenylaniline (3f)

The general procedure was followed using **1f** (138.4 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2a** (89.7 mg, 0.4 mmol, 1.0 equiv) at 40 °C, TLC (R_f = 0.39, PE/EtOAc = 20:1). After purification by column chromatography (PE/EtOAc = 30:1),

3f (96.8 mg, 72%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.17 (m, 5H), 7.12 (d, *J* = 7.2 Hz, 2H), 7.05 – 7.02 (m, 4H), 6.98 (s, 4H), 6.89 (t, *J* = 7.4 Hz, 1H), 6.82 (d, *J* = 8.8 Hz, 2H), 5.64 (br, 1H), 5.43 (s, 1H), 3.77 (s, 3H); ¹³C NMR {¹H} (126 MHz, CDCl₃) δ 157.9, 144.6, 143.3, 141.2, 137.0, 136.4, 130.3, 130.2, 129.3, 129.3, 128.2, 126.1, 120.7, 117.8, 117.5, 113.6, 55.3, 55.2; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₆H₂₄NO 366.1852, found 366.1840.

7) 2-methoxy-4-((4-methoxyphenyl)(phenyl)methyl)-N-methylaniline (3g)

 NHMe
 The general procedure was followed using 1g (109.7 mg, 0.8 mmol,

 OMe
 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%),

 (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and 2a (89.7 mg,

 3g 0.4 mmol, 1.0 equiv) at 40 °C, TLC ($R_f = 0.32$, PE/EtOAc = 20:1).

After purification by column chromatography (PE/EtOAc = 30:1), **3g** (97.8 mg, 71%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.22 (m, 2H), 7.18 (t, *J* = 6.6 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 2H), 7.03 (d, *J* = 8.3 Hz, 2H), 6.81 (d, *J* = 7.2 Hz, 2H), 6.56 (d, *J* = 7.9 Hz, 1H), 6.53 (s, 1H), 6.49 (d, *J* = 7.9 Hz, 1H), 5.41 (s, 1H), 4.12 (br, 1H), 3.77 (s, 3H), 3.70 (s, 3H), 2.82 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 157.8, 146.8, 145.0, 137.6, 136.9, 132.3, 130.3, 129.3, 128.1, 126.9, 121.9, 113.5, 110.7, 108.9, 55.6, 55.3, 55.2, 30.4.; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₂H₂₄NO₂ 334.1802, found 334.1795.

8) 2-(tert-butyl)-4-((4-methoxyphenyl)(phenyl)methyl)-N-methylaniline (3h)

NHMeThe general procedure was followed using **1h** (130.5 mg, 0.8 mmol,
13.1 mg, 0.02 mmol, 5.0 mol%),
(PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2a** (89.7 mg,
0.4 mmol, 1.0 equiv) at 40 °C, TLC ($R_f = 0.32$, PE/EtOAc = 20:1).

After purification by column chromatography (PE/EtOAc = 30:1), **3h** (103.7 mg, 72%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.22 (m, 3H), 7.16 (t, *J* = 7.3 Hz, 1H), 7.11 (d, *J* = 6.9 Hz, 2H), 7.03 (d, *J* = 8.6 Hz, 2H), 7.00 (d, *J* = 2.2 Hz, 1H), 6.83 (dd, *J* = 8.3, 2.2 Hz, 1H), 6.80 (d, *J* = 8.7 Hz, 2H), 6.57 (d, *J* = 8.3 Hz, 1H), 5.39 (s, 1H), 3.68 (br, 1H), 3.76 (s, 3H), 2.87 (s, 3H), 1.33 (s, 9H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 157.7, 145.6, 145.3, 137.2, 133.1, 132.2, 130.3, 129.3, 128.1, 127.7, 127.5, 126.8, 113.4, 110.9, 55.5, 55.2, 34.1, 31.3, 29.9; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₅H₃₀NO 360.2322, found 360.2317.

9) 2-((4-methoxyphenyl)(phenyl)methyl)-N-phenylnaphthalen-1-amine (3i)

The general procedure was followed using **1i** (175.4 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2a** (89.7 mg, 0.4 mmol, 1.0 equiv) at 40 °C, TLC ($R_f = 0.32$, PE/EtOAc

= 20:1). After purification by column chromatography (PE/EtOAc = 30:1), **3i** (150.7 mg, 86%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.05 (dd, *J* = 7.8, 2.0 Hz, 1H), 8.00 (dd, *J* = 7.9, 2.0 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.29 – 7.27 (m, 1H), 7.26 – 7.17 (m, 5H), 7.12 (d, *J* = 7.1 Hz, 2H), 7.03 (d, *J* = 8.7 Hz, 2H), 6.95 (d, *J* = 7.6 Hz, 2H), 6.90 – 6.78 (m, 4H), 6.17 (s, 1H), 5.87 (br, 1H), 3.77 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 158.0, 144.9, 144.2, 137.6, 136.0, 135.1, 132.8, 130.5, 129.5, 129.2, 128.3, 127.6, 126.2, 126.2, 125.2, 125.0, 122.4, 120.2, 117.1, 115.5, 113.7, 55.1, 52.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₃₀H₂₅NNaO 438.1826, found 438.1828.

10) methyl (4-((4-methoxyphenyl)(phenyl)methyl)phenyl)carbamate (3j)

The general procedure was followed using **1j** (120.9 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2a** (89.7 mg, 0.4 mmol, 1.0 equiv) at 40 °C, TLC ($R_f = 0.28$, PE/EtOAc = 20:1).

After purification by column chromatography (PE/EtOAc = 30:1), **3j** (44.4 mg, 30%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.24 (m, 4H), 7.22 – 7.16 (m, 1H), 7.09 (d, *J* = 7.4 Hz, 2H), 7.04 (d, *J* = 8.5 Hz, 2H), 7.01 (d, *J* = 8.7 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 6.59 (br, 1H), 5.45 (s, 1H), 3.77 (s, 3H), 3.75 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 158.0, 154.0, 144.2, 139.4, 136.0, 135.9, 130.2, 129.9, 129.2, 128.2, 126.2, 113.6, 55.3, 55.2, 52.3; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₂H₂₁NNaO₃ 370.1417, found 370.1414.

11) N-isopropyl-4-(phenyl(p-tolyl)methyl) aniline (3m)

The general procedure was followed using **1a** (108.1 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2c** (83.2 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.3$, PE/DCM = 2:1). After purification by column chromatography (PE/DCM =

3:1), **3m** (94.6 mg, 70%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.22 (m, 2H), 7.17 (t, *J* = 7.3 Hz, 1H), 7.11 (d, *J* = 7.2 Hz, 2H), 7.07 (d, *J* = 7.9 Hz, 2H), 7.00 (d, *J* = 8.1 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 6.50 (d, *J* = 8.6 Hz, 2H), 5.39 (s, 1H), 3.58 (hept, *J* = 6.3 Hz, 1H), 2.31 (s, 3H), 1.18 (d, *J* = 6.3 Hz, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 145.77, 144.9, 141.7, 135.4, 132.5, 130.1, 129.3, 129.2, 128.5, 128.1, 125.9, 113.0, 55.6, 44.2, 23.0, 20.9; HRMS (ESI-TOF) m/z: [M+Na]+ calculated for C₂₃H₂₅NNa 338.1885, found 338.1882.

12) 4-benzhydryl-N-isopropylaniline (3n)

The general procedure was followed using **1a** (108.1 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2d** (77.6 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.5$, PE/DCM = 2:1). After purification by column chromatography (PE/DCM = 3:1), **3n** (54.2 mg,

45%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 8.4 Hz, 2H), 7.27 (t, *J* = 7.5 Hz, 3H), 7.20 (t, *J* = 7.3 Hz, 1H), 7.11 – 7.07 (m, 2H), 6.99 (d, *J* = 8.4 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 6.50 (d, *J* = 8.5 Hz, 2H), 5.37 (s, 1H), 3.59 (hept, *J* = 6.3 Hz, 1H), 1.19 (d, *J* = 6.3 Hz, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 143.8, 131.2, 131.1, 130.1, 129.2, 128.2, 126.2, 113.0, 55.4, 44.2, 23.0; HRMS (ESI-TOF) m/z: [M+H]⁻ calculated for C₂₂H₂₃N 301.1830, found 301.1834.

13) 4-((4-bromophenyl)(phenyl)methyl)-N-isopropylaniline (30)

The general procedure was followed using **1a** (108.1 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2e** (108.8 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC (R_f = 0.5, PE/DCM

= 2:1). After purification by column chromatography (PE/DCM = 3:1), **30** (104.1 mg, 37%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.26 (t, *J* = 7.5 Hz, 4H), 7.18 (t, *J* = 7.3 Hz, 2H), 7.12 (d, *J* = 7.2 Hz, 4H), 6.89 (d, *J* = 8.4 Hz, 2H), 6.51 (d, *J* = 8.6 Hz, 2H), 5.43 (s, 1H), 3.58 (hept, *J* = 6.3 Hz, 1H), 1.19 (d, *J* = 6.3 Hz, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 145.7, 144.6, 132.3, 130.2, 129.3, 129.3, 128.6, 128.1, 128.0, 127.8, 126.0, 113.0, 55.9, 44.3, 23.0; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₂H₂₂BrNNa 402.0833, found 402.0837.

14) 4-((4-ethoxyphenyl)(4-(trifluoromethyl)phenyl)methyl)-N-isopropylaniline(3p)

The general procedure was followed using **1a** (108.1 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2h** (122.5 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.2$, PE/DCM = 2:1). After purification by column

chromatography (PE/DCM = 3:1), **3p** (92.3 mg, 56%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 8.0 Hz, 2H), 7.24 – 7.18 (m, 2H), 7.00 – 6.96 (m, 2H), 6.87 – 6.84 (m, 2H), 6.83 – 6.78 (m, 2H), 6.51 (dd, *J* = 8.5, 1.1 Hz, 2H), 5.41 (s, 1H), 3.99 (q, *J* = 6.9 Hz, 2H), 1.39 (t, *J* = 6.9 Hz, 3H), 1.19 (d, *J* = 6.3 Hz, 6H).; ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.4, 149.2, 146.02, 135.7, 131.6, 130.2, 130.0, 129.6, 128.8 (q, *J* = 31.8 Hz), 125.8 (q, *J* = 3.8 Hz), 125.0, 125.0, 125.0, 124.9, 124.3 (q, *J* = 271.6 Hz), 114.2, 113.0, 63.3, 54.9, 44.2, 23.0, 14.8; HRMS (ESI-TOF) m/z: [M-H]⁻ calculated for C₂₅H₂₆F₃NO 412.1996, found 412.1996. **15) 4-((4-chlorophenyl)(phenyl)methyl)-2,6-dimethylphenol (4a)**

The general procedure was followed using **1i** (97.7 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.4$, PE/EtOAc = 30:1). After purification by column chromatography

(PE/EtOAc = 50:1), **3i** (96.3 mg, 75%) was obtained as colorless oil. ¹H NMR (500

MHz, CDCl₃) δ 7.29 – 7.17 (m, 6H), 7.07 (d, *J* = 7.2 Hz, 2H), 7.02 (d, *J* = 8.5 Hz, 2H), 6.68 (s, 2H), 5.37 (s, 1H), 4.54 (s, 1H), 2.17 (s, 6H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 150.7, 143.8, 143.0, 135.0, 131.9, 130.7, 129.4, 129.2, 128.3, 126.3, 122.9, 55.4, 16.0; HRMS (ESI-TOF) m/z: [M-H]⁻ calculated for C₂₁H₁₈ClO 321.1052, found 321.1060.

16) 4-((4-chlorophenyl)(phenyl)methyl)-2,6-diisopropylphenol (4b)

OH iPr iPr cl

The general procedure was followed using **1j** (142.6 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.4$, PE/EtOAc = 30:1). After

purification by column chromatography (PE/EtOAc = 50:1), **4b**(119.2 mg, 79%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.17 (m, 5H), 7.08 (d, J = 7.6 Hz, 2H), 7.03 (d, J = 8.2 Hz, 2H), 6.75 (s, 2H), 5.43 (s, 1H), 4.69 (s, 1H), 3.09 (hept, J = 6.9 Hz, 2H), 1.17 (d, J = 6.9 Hz, 12H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 148.5, 144.1, 143.3, 135.0, 133.5, 131.8, 130.7, 129.3, 128.3, 126.3, 124.5, 56.0, 27.3, 22.7, 22.7; HRMS (ESI-TOF) m/z: [M-H]⁻ calculated for C₂₅H₂₆ClO 377.1678, found 377.1678.

17) 2-(tert-butyl)-4-((4-chlorophenyl)(phenyl)methyl)phenol (4c)

The general procedure was followed using **1k** (120.2 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.43$, PE/EtOAc = 30:1). After purification by column chromatography

(PE/EtOAc = 50:1), **4c** (103.6 mg, 74%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.17 (m, 5H), 7.08 (d, *J* = 7.6 Hz, 2H), 7.03 (d, *J* = 9.3 Hz, 3H), 6.71 (d, *J* = 7.9 Hz, 1H), 6.57 (d, *J* = 8.1 Hz, 1H), 5.43 (s, 1H), 4.74 (s, 1H), 1.33 (s, 9H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 152.7, 144.0, 143.1, 136.0, 135.2, 131.9, 130.7, 129.3, 128.3, 127.5, 126.3, 116.3, 55.7, 34.5, 29.5; HRMS (ESI-TOF) m/z: [M-H]⁻ calculated for C₂₃H₂₂ClO 349.1365, found 349.1368.

18) 5-((4-chlorophenyl)(phenyl)methyl)-[1,1'-biphenyl]-2-ol (4d)

The general procedure was followed using **11** (136.2 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.43$, PE/EtOAc = 30:1). After

purification by column chromatography (PE/EtOAc = 50:1), **4d**(107.8 mg, 73%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.38 (m, 5H), 7.31 – 7.22 (m, 5H), 7.11 (d, *J* = 7.1 Hz, 2H), 7.07 (d, *J* = 8.5 Hz, 2H), 6.98 (d, *J* = 2.3 Hz, 1H), 6.96 (dd, *J* = 8.3, 2.4 Hz, 1H), 6.90 (d, *J* = 8.2 Hz, 1H), 5.48 (s, 1H), 5.15 (s, 1H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 151.0, 143.8, 142.7, 136.9, 135.8, 132.1, 131.0, 130.7, 129.9, 129.3, 129.0, 128.4, 127.9, 126.5, 115.8, 55.5; HRMS (ESI-TOF) m/z: [M-H]⁻ calculated for C₂₅H₁₈ClO 369.1052, found 369.1052.

19) 4-((4-chlorophenyl)(phenyl)methyl)-3,5-dimethoxyphenol (4e)

The general procedure was followed using **1m** (123.2 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.43$, PE/EtOAc = 30:1). After

purification by column chromatography (PE/EtOAc = 50:1), **4e**(128.2 mg, 85%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.23 (m, 5H), 7.19 – 7.14 (m, 4H), 6.12 (d, J = 2.4 Hz, 1H), 6.02 (d, J = 2.8 Hz, 2H), 4.80 (s, 1H), 3.75 (s, 3H), 3.70 (s, 3H); ¹³C {¹H} NMR (126 MHz, CDCl₃) δ 160.3, 158.8, 155.9, 142.1, 140.8, 132.3, 130.4, 128.8 128.7, 128.6, 126.9, 110.4, 94.7, 91.9, 55.8, 55.2, 44.4; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₁H₁₉ClNaO₃ 377.0915, found 377.0907.

20) 4-((4-chlorophenyl)(phenyl)methyl)-2-methoxyphenol (4f)

The general procedure was followed using **1n** (99.3 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.35$, PE/EtOAc = 30:1). After purification by column chromatography (PE/EtOAc = 50:1), 4f (93.0 mg, 72%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.17 (m 6H), 7.09 (d, J = 9.7 Hz, 2H), 7.04 (d, J = 9.8 Hz, 2H), [6.83 (d, J = 10.3 Hz, 0.77H) (C4), 6.76 (d, J = 10.4 Hz, 0.26H) (C5)], [6.68 (s, 0.25H) (C5), 6.60 (s, 0.78H) (C4)], [6.56 (d, J = 10.0 Hz, 0.23H) (C5), 6.54 (d, J = 10.0 Hz, 0.80H) (C4)], [5.55 (s, 0.25H) (C5), 5.52 (s, 0.75H) (C4)], [5.44 (s, 0.76H) (C4), 5.41 (s, 0.27H) (C5)], [3.86 (s, 0.77H) (C5), 3.76 (s, 2.36H) (C4)]; ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) : [146.4 (C5), 145.5 (C4)], [145.1 (C5), 144.2 (C4)], [143.6 (C4), 143.5 (C5)], [142.7 (C4), 142.6 (C5)], [136.7 (C5), 135.3 (C4)], [132.1 (C4), 130.7 (C5)], [132.0 (C5), 129.2 (C4)], [128.63 (C4), 128.58 (C5)], 128.38 (C4), 128.36 (C4), 127.9 (C4), 126.49(C5), 126.47(C5), 126.4 (C5), [122.1 (C4), 120.8 (C5)], [115. 6 (C5), 114.1 (C4)], [111.9 (C5), 110.4 (C4)], 55.9 (C5), 55.84 (C5), 55.78 (C4), 55.5 (C4); HRMS (ESI-TOF) m/z: [M-H]⁻ calculated for C₂₀H₁₆ClO₂ 323.0844, found 323.0844.

21) 1-((4-chlorophenyl)(phenyl)methyl)naphthalen-2-ol (4g)¹

The general procedure was followed using **10** (115.3 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.2$, PE/DCM = 2:1). After

purification by column chromatography (PE/DCM = 3:1), **4g** (110.1 mg, 80%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃): δ 7.91 (d, *J* = 10.5 Hz, 1H), 7.77 (d, *J* = 10.0 Hz, 1H), 7.72 (d, *J* = 11.0 Hz, 1H), 7.39 (t, *J* = 9.8 Hz, 1H), 7.32-7.26 (m, 6H), 7.22-7.17 (m, 4H), 7.04 (d, *J* = 11.0 Hz, 1H), 6.37 (s, 1H), 5.12 (s, 1H); 1H NMR spectrum is consistent with literature reports.

22) 1-((4-chlorophenyl)(phenyl)methyl)-6-methoxynaphthalen-2-ol (4h)

The general procedure was followed using **1p** (139.2 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.23$,

PE/DCM = 2:1). After purification by column chromatography (PE/DCM = 3:1), **4h** (112.2 mg, 75%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 9.3 Hz, 1H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.32 (t, *J* = 7.3 Hz, 2H), 7.27 (d, *J* = 8.5 Hz, 3H), 7.25 – 7.16 (m, 4H), 7.11 (d, *J* = 2.7 Hz, 1H), 7.07 (dd, *J* = 9.2, 2.7 Hz, 1H), 7.02 (d, *J* = 8.8 Hz, 1H), 6.32 (s, 1H), 4.89 (s, 1H), 3.86 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.7, 150.9, 141.5, 140.1, 132.8, 130.7, 130.4, 129.2, 129.0, 128.8, 128.5, 128.4, 127.3, 124.4, 120.3, 120.2, 119.1, 107.2, 55.3, 48.0; HRMS (ESI-TOF) m/z: [M-H]⁻ calculated for C₂₄H₁₈ClO₂ 373.1001, found 373.1005.

23) 6-bromo-1-((4-chlorophenyl)(phenyl)methyl)naphthalen-2-ol (4i)²

The general procedure was followed using **1q** (178.5 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.25$, PE/DCM = 2:1). After

purification by column chromatography (PE/DCM = 3:1), **4i** (148.2 mg, 88%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 2.2 Hz, 1H), 7.76 (d, *J* = 9.1 Hz, 1H), 7.63 (d, *J* = 8.9 Hz, 1H), 7.44 (dd, *J* = 9.1, 2.1 Hz, 1H), 7.33 (d, *J* = 7.7 Hz, 2H), 7.29 (d, *J* = 8.5 Hz, 3H), 7.21 – 7.14 (m, 4H), 7.07 (d, *J* = 8.9 Hz, 1H), 6.31 (s, 1H), 5.11 (s, 1H); 1H NMR spectrum is consistent with literature reports.

24) methyl 5-((4-chlorophenyl)(phenyl)methyl)-6-hydroxy-2-naphthoate (4j)

The general procedure was followed using **1r** (161.8 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.1$,

PE/DCM = 1:1). After purification by column chromatography (PE/DCM = 1:1), **4j** (122.2 mg, 76%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 8.53

(s, 1H), 7.99 - 7.93 (m, 2H), 7.85 (d, J = 8.9 Hz, 1H), 7.34 (t, J = 7.0 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 7.23 - 7.16 (m, 4H), 7.12 (d, J = 8.8 Hz, 1H), 6.37 (s, 1H), 5.29 (s, 1H), 3.95 (s, 3H); $^{13}C{^{1}H}$ NMR (126 MHz, CDCl₃) δ 167.1, 154.7, 141.0, 139.6, 133.1, 131.8, 131.3, 130.4, 129.4, 129.2, 128.8, 128.7, 127.6, 126.4, 124.9, 123.0, 120.5, 120.0, 52.1, 47.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₅H₁₉ClNaO₃ 425.0915, found 425.0905.

25) 1-((4-chlorophenyl)(phenyl)methyl)-7-methoxynaphthalen-2-ol (4k)

The general procedure was followed using **1s** (139.4 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.23$,

PE/DCM = 3:1). After purification by column chromatography (PE/DCM = 3:1), **4k** (119.7 mg, 80%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (t, *J* = 9.5 Hz, 2H), 7.34 – 7.30 (m, 3H), 7.29 – 7.26 (m, 2H), 7.25 – 7.15 (m, 4H), 7.14 (s, 1H), 6.97 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.90 (d, *J* = 8.8 Hz, 1H), 6.30 (s, 1H), 5.05 (s, 1H), 3.68 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.3, 153.0, 141.7, 140.3, 134.6, 132.7, 130.5, 130.2, 129.5, 129.1, 129.0, 128.9, 127.2, 126.0, 119.2, 116.7, 115.1, 103.1, 55.1, 47.9; HRMS (ESI-TOF) m/z: [M-H]⁻ calculated for C₂₄H₁₈ClO₂ 373.1001, found 373.1005.

26) 2-((4-chlorophenyl)(phenyl)methyl)naphthalen-1-ol (4l)⁴

The general procedure was followed using **1t** (115.3 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.3$, PE/DCM = 2:1). After

purification by column chromatography PE/DCM = 3:1), **4l** (83.9 mg, 61%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃): δ 8.14- 8.12 (m, 1H), 7.83-7.81 (m, 1H), 7.52-7.50 (m, 2H), 7.43-7.32 (m, 6H), 7.20 (d, *J* = 9.4 Hz, 2H), 7.15 (d, *J* = 9.8 Hz, 2H), 7.00 (d, *J* = 10.6 Hz, 1H), 5.89 (s, 1H), 5.23 (s, 1H); 1H NMR spectrum is consistent with literature reports.

27) 1-((4-methoxyphenyl)(phenyl)methyl)naphthalen-2-ol (4m)²

The general procedure was followed using **10** (115.3 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2a** (89.6 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.23$,

PE/DCM = 2:1). After purification by column chromatography (PE/DCM = 3:1), **4m** (78,9 mg, 58%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.6 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 8.2 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.31 (q, *J* = 6.9, 6.2 Hz, 3H), 7.28 – 7.23 (m, 3H), 7.15 (d, *J* = 7.9 Hz, 2H), 7.06 (d, *J* = 8.8 Hz, 1H), 6.86 (d, *J* = 7.7 Hz, 2H), 6.34 (s, 1H), 5.24 (s, 1H), 3.77 (s, 3H); 1H NMR spectrum is consistent with literature reports.

28) 1-(phenyl(*p*-tolyl)methyl)naphthalen-2-ol (4n)

The general procedure was followed using **10** (115.3 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2c** (83.2 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.3$,

PE/DCM = 2:1). After purification by column chromatography (PE/DCM = 3:1), **4n** (102.4 mg, 79%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.6 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.9 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 1H), 7.32 (q, *J* = 7.4 Hz, 3H), 7.28 – 7.23 (m, 3H), 7.13 (s, 3H), 7.06 (d, *J* = 8.9 Hz, 1H), 6.36 (s, 1H), 5.20 (s, 1H), 2.32 (s, 3H); 1H NMR spectrum is consistent with literature reports.

29) 1-benzhydrylnaphthalen-2-ol (4o)¹

The general procedure was followed using **1o** (115.3 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2d** (77.6 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.4$, PE/DCM = 2:1). After

purification by column chromatography (PE/DCM = 3:1), **40** (97.9 mg, 73%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.7 Hz, 1H),

7.39 (t, *J* = 8.2 Hz, 2H), 7.35 – 7.22 (m, 12H), 7.08 – 7.03 (m, 1H), 6.41 (s, 1H), 5.17 (s, 1H); 1H NMR spectrum is consistent with literature reports.

30) 1-((4-bromophenyl)(phenyl)methyl)naphthalen-2-ol (4p)

The general procedure was followed using **10** (115.3 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2e** (108.8 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.35$,

PE/DCM = 2:1). After purification by column chromatography (PE/DCM = 3:1), **4p** (134.4 mg, 87%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 8.7 Hz, 1H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.73 (d, *J* = 8.9 Hz, 1H), 7.42 (d, *J* = 6.8 Hz, 2H), 7.39 (d, *J* = 8.6 Hz, 1H), 7.34 – 7.29 (m, 3H), 7.27 (d, *J* = 6.3 Hz, 1H), 7.21 (d, *J* = 7.2 Hz, 2H), 7.13 (d, *J* = 7.4 Hz, 2H), 7.05 (d, *J* = 8.8 Hz, 1H), 6.35 (s, 1H), 5.05 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 152.5, 141.4, 140.5, 133.2, 132.0, 130.8, 129.9, 129.6, 129.2, 128.9, 128.8, 127.4, 126.9, 123.3, 122.7, 121.0, 119.8, 119.7, 47.9; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₃H₁₅BrNaO 409.0198, found 409.0191.

31) 1-((3-chlorophenyl)(phenyl)methyl)naphthalen-2-ol (4q)

The general procedure was followed using **10** (115.3 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2f** (91.2 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.3$,

PE/DCM = 2:1). After purification by column chromatography (PE/DCM = 3:1), **4q** (93.6 mg, 68%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.6 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 8.9 Hz, 1H), 7.42 (t, *J* = 7.7 Hz, 1H), 7.36 – 7.31 (m, 3H), 7.30 – 7.20 (m, 6H), 7.16 – 7.13 (m, 1H), 7.07 (d, *J* = 8.8 Hz, 1H), 6.38 (s, 1H), 5.06 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 152.6, 143.7, 141.2, 134.9, 133.3, 130.1, 129.9, 129.6, 129.3, 129.2, 128.9, 128.8, 127.4, 127.3, 127.2, 126.9, 123.3, 122.7, 119.7, 119.6, 48.2; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₃H₁₇ClNaO 367.0860, found 367.0842.

32) 1-((2-chlorophenyl)(phenyl)methyl)naphthalen-2-ol (4r)

The general procedure was followed using **1o** (115.3 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2g** (91.2 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.3$, PE/DCM = 2:1). After purification by column chromatography (PE/DCM = 3:1), **4r** (112.9

mg, 82%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 8.7 Hz, 1H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.73 (d, *J* = 8.9 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.44 – 7.39 (m, 1H), 7.34 – 7.26 (m, 5H)), 7.15 – 7.11 (m, 3H), 7.05 (dd, *J* = 8.9, 1.5 Hz, 1H), 6.71 (s, 1H), 5.16 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 153.2, 140.7, 138.5, 134.6, 133.4, 1307, 130.0, 129.9, 129.6, 129.5, 128.7, 128.6, 128.5, 127.6, 127.5, 127.1, 123.3, 122.6, 119.8, 119.2, 46.2; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₂H₁₇ClNaO₂Se 450.9980, found 450.9961.

33) 1-((4-ethoxyphenyl)(4-(trifluoromethyl)phenyl)methyl)naphthalen-2-ol (4s)

The general procedure was followed using **10** (115.3 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2h** (122.5 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.25$, PE/DCM = 2:1). After

purification by column chromatography (PE/DCM = 3:1), **4s** (135.1 mg, 80%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) ¹H NMR (500 MHz, Chloroform-*d*) δ 7.96 – 7.88 (m, 1H), 7.79 (dd, *J* = 8.3, 4.1 Hz, 1H), 7.75 (dd, *J* = 8.9, 3.8 Hz, 1H), 7.56 (dd, *J* = 8.2, 4.2 Hz, 2H), 7.45 – 7.37 (m, 3H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.15 – 7.03 (m, 3H), 6.87 (dq, *J* = 8.7, 2.7, 2.1 Hz, 2H), 6.40 (s, 1H), 5.15 (s, 1H), 4.01 (q, *J* = 7.0 Hz, 2H), 1.40 (t, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl3) δ 158.3, 152.6, 146.1, 133.2, 132.6, 129.9, 129.9, 129.7, 129.7, 128.8 (q, *J* = 31.8 Hz), 126.9, 125.8 (q, *J* = 3.8 Hz), 124.3 (q, *J* = 271.6 Hz), 123.3, 123.1, 122.6, 119.7, 119.7, 115.3, 63.5, 47.5, 14.8; HRMS (ESI-TOF) m/z: [M-H]⁻ calculated for C₂₆H₂₀F₃O₂ 421.1421, found 421.1432.

34) 1-(phenyl(thiophen-2-yl)methyl)naphthalen-2-ol (4t)

The general procedure was followed using **1o** (115.3 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2i** (80.4 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.4$, PE/DCM = 2:1). After purification by column chromatography (PE/DCM = 3:1), **4t** (93.6

mg, 74%) was obtained as white semi-solid. ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.6 Hz, 1H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.74 (d, *J* = 8.8 Hz, 1H), 7.41 (d, *J* = 7.1 Hz, 1H), 7.37 – 7.31 (m, 5H), 7.28 (d, *J* = 4.8 Hz, 2H), 7.09 (d, *J* = 8.8 Hz, 1H), 6.96 – 6.92 (m, 1H), 6.83 (d, *J* = 3.3 Hz, 1H), 6.56 (s, 1H), 5.50 (s, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 152.8, 146.0, 141.4, 132.8, 129.9, 129.5, 129.0, 128.8, 128.4, 127.4, 127.0, 127.0, 126.9, 126.0, 123.3, 122.5, 119.9, 119.8, 43.8; HRMS (ESI-TOF) m/z: [M-H]⁻ calculated for C21H15OS 315.0849, found 315.0853.

35) 1-chloro-4-((4-methoxyphenyl)(phenyl)methyl)benzene (5a)³

The general procedure was followed using **1u** (86.4 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.6$, PE/EtOAc = 50:1). After

purification by column chromatography (PE/EtOAc = 80:1), **5a** (99.8 mg, 81%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.18 (m, 5H), 7.08 (d, *J* = 7.4 Hz, 2H), 7.03 (d, *J* = 8.1 Hz, 2H), 6.99 (d, *J* = 8.3 Hz, 2H), 6.82 (d, *J* = 8.4 Hz, 2H), 5.46 (s, 1H), 3.77 (s, 3H); 1H NMR spectrum is consistent with literature reports. **36) 4-((4-chlorophenyl)(phenyl)methyl)-1,2-dimethoxybenzene (5b)**⁵

The general procedure was followed using **1v** (110.5 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.5$, PE/EtOAc = 50:1). After

purification by column chromatography (PE/EtOAc = 80:1), **5a** (94.7 mg, 70%) was obtained as white solid; m .p. 75.4-77.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.20

(m, 5H), 7.09 (d, *J* = 7.6 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 6.78 (d, *J* = 8.2 Hz, 1H), 6.63 (s, 1H), 6.57 (d, *J* = 8.1 Hz, 1H), 5.46 (s, 1H), 3.85 (s, 3H), 3.76 (s, 3H); 1H NMR spectrum is consistent with literature reports.

37) 1-((4-chlorophenyl)(phenyl)methyl)-2,4-dimethoxybenzene (5c)

The general procedure was followed using **1w** (110.5 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.5$, PE/EtOAc = 50:1). After

purification by column chromatography (PE/EtOAc = 80:1), **5c**(105.5 mg, 78%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.27 – 7.17 (m, 5H), 7.05 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 6.5 Hz, 2H), 6.69 (d, *J* = 8.5 Hz, 1H), 6.46 (s, 1H), 6.39 (d, *J* = 8.4 Hz, 1H), 5.78 (s, 1H), 3.78 (s, 3H), 3.68 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 159.6, 157.9, 143.7, 142.8, 131.7, 130.7, 130.6, 129.3, 128.2, 126.1, 124.7, 103.8, 98.7, 55.5, 55.3, 48.6; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₁H₁₉ClNaO₂ 361.0966, found 361.0957.

38) 2-((4-chlorophenyl)(phenyl)methyl)-1,3,5-trimethoxybenzene (5d)⁶

The general procedure was followed using **1x** (134.5 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg,

G 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.43$, PE/EtOAc = 50:1). After purification by column chromatography (PE/EtOAc = 80:1), **5d** (119.3 mg, 81%) was obtained as white solid; m. p. 103.2-104.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.25–7.20 (m, 2H), 7.19–7.14 (m, 5H), 7.13–7.09 (m, 2H), 6.14 (s, 2H), 6.00 (s, 1H), 3.80 (s, 3H), 3.59 (s, 6H). 1H NMR spectrum is consistent with literature reports.

39) 5-((4-chlorophenyl)(phenyl)methyl)-2-methoxy-1,1'-biphenyl (5e)

The general procedure was followed using **1y** (136.2 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0

equiv) at room temperature, TLC ($R_f = 0.5$, PE/EtOAc = 50:1). After purification by column chromatography (PE/EtOAc = 80:1), **5e** (116.8 mg, 76%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 7.4 Hz, 2H), 7.45 (t, J = 6.6 Hz, 2H), 7.40 – 7.31 (m, 6H), 7.21 (d, J = 7.3 Hz, 2H), 7.16 (d, J = 7.8 Hz, 3H), 7.08 (d, J = 8.5 Hz, 1H), 6.98 (dd, J = 8.5, 2.3 Hz, 1H), 5.59 (s, 1H), 3.87 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 155.1, 143.6, 142.7, 138.3, 135.7, 132.1, 131.8, 130.7, 130.6 129.5, 129.3, 129.2, 128.4, 127.9, 126.9, 126.5, 111.1, 55.6, 55.5; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₆H₂₁ClNaO 407.1173, found 407.1160.

40) 1-((4-chlorophenyl)(phenyl)methyl)-2-methoxynaphthalene (5f)²

The general procedure was followed using **1z** (126.6 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2b** (91.3 mg, 0.4 mmol, 1.0 equiv) at room temperature, TLC ($R_f = 0.5$, PE/EtOAc

= 50:1). After purification by column chromatography (PE/EtOAc = 80:1), **5f** (103.1 mg, 72%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.89 – 7.85 (m, 1H), 7.81 (d, *J* = 9.0 Hz, 1H), 7.80 – 7.76 (m, 1H), 7.33 – 7.27 (m, 3H), 7.26 – 7.21 (m, 2H), 7.21 – 7.16 (m, 5H), 7.14 (d, *J* = 8.3 Hz, 2H), 6.49 (s, 1H), 3.60 (s, 3H); 1H NMR spectrum is consistent with literature reports.

41) 4-((4-methoxyphenyl)(phenyl)methyl)-N,N-dimethylaniline (5g)⁷

The general procedure was followed using **1aa** (96.9 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2a** (89.6 mg, 0.4 mmol, 1.0 equiv) at 40 °C, TLC ($R_f = 0.4$, PE/EtOAc = 50:1).

After purification by column chromatography (PE/EtOAc = 80:1), **5g** (96.4 mg, 76%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, *J* = 7.5 Hz, 2H), 7.20 – 7.15 (m, 1H), 7.11 (d, *J* = 7.3 Hz, 2H), 7.03 (d, *J* = 8.6 Hz, 2H), 6.96 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.6 Hz, 2H), 6.66 (d, *J* = 8.5 Hz, 2H), 5.41 (s, 1H), 3.77 (s, 3H), 2.91 (s, 6H); 1H NMR spectrum is consistent with literature reports.

42) 3-((4-methoxyphenyl)(phenyl)methyl)-1*H*-indole (5h)²

The general procedure was followed using **1ab** (93.6 mg, 0.8 mmol, 2.0 equiv), Bi(OTf)₃ (13.1 mg, 0.02 mmol, 5.0 mol%), (PhO)₂POOH (10.0 mg, 0.04 mmol, 10.0 mol%) and **2a** (89.6 mg, 0.4 mmol, 1.0 equiv) at 40 °C, TLC ($R_f = 0.5$, PE/EtOAc = 30:1). After purification by column chromatography

(PE/EtOAc = 50:1), **5h** (102.6 mg, 81%) was obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.91 (br, 1H), 7.33 (d, *J* = 8.2 Hz, 1H), 7.27 – 7.11 (m, 9H), 6.98 (t, *J* = 7.5 Hz, 1H), 6.81 (d, *J* = 8.3 Hz, 2H), 6.54 (s, 1H), 5.61 (s, 1H), 3.77 (s, 3H); 1H NMR spectrum is consistent with literature reports.

4. Gram scale reaction and synthetic spplication

4.1 Gram scale preparation of 6e

naphthol **10** (1.4 g, 10.0 mmol, 2.0 equiv), Bi(OTf)₃ (32.8 mg, 0.05 mmol, 1.0 mol%) and (PhO)₂POOH (25.0 mg, 0.10 mmol, 2.0 mol%) were introduced into a dried glass tube under Argon protection, and add 5 mL dry hexane and 5 mL dry toluene as solvent, then the diazo **2e** (1.4 g, 5.0 mmol, 1.0 equiv) was dissolved in 10 ml of hexane and add dropwise in 10 min at room temperature. After the addition, continue to react for 5 minute consumed diazo completely determined by TLC analysis. The mixture was purified by column chromatography on silica gel using PE/DCM = 3:1 as the eluent and concentrated to obtain the product **4p** (1.6 g, 85%).

4.2 Synthetic Application

4p (154.4 mg, 0.4 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (14.0 mg, 0.02 mmol, 5 mol%), CuI (3.8 mg, 0.02 mmol, 5 mol%) and trimethylsilylacetylene (78.6 mg, 0.8 mmol, 2.0 equiv) were introduced into a 25 mL dried Schlenk tube under N₂ protection. Then add 2mL dry Et₃N as solvent and react at 80 °C for 3 hours. Consumed completely determined by TLC analysis (R_f = 0.52, PE/EtOAc = 20:1). Concentrate the solvent and then the mixture was purified by column chromatography on silica gel using PE/EtOAc (30:1) as the eluent and concentrated to obtain the product **6** (121.8 mg, 75%) as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.6 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.8 Hz, 1H), 7.49 – 7.42 (m, 3H), 7.39 – 7.34 (m, 3H), 7.34 – 7.31 (m,, 1H), 7.29 – 7.22 (m, 4H), 7.10 (d, *J* = 8.9 Hz, 1H), 6.43 (s, 1H), 5.12 (s, 1H), 0.29 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 152.6, 142.2, 141.3, 133.3, 132.6, 132.0, 130.8,

129.8, 129.2, 128.9, 128.7, 127.3, 126.9, 123.3, 122.8, 121.9, 119.8, 119.7, 104.7, 94.5, 48.4. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₈H₂₆NaOSi 429.1645, found 429.1647.

4p (154.4 mg, 0.4 mmol, 1.0 equiv), Pd(PPh₃)₄ (46.2 mg, 0.04 mmol, 10 mol%), Na₂CO₃ (84.8 mg, 0.8 mmol, 2.0 equiv) and phenylboronic acid (91.2 mg, 0.6 mmol, 1.5 equiv) were introduced into a 25mL dried Schlenk tube under N₂ protection. Then add 4.0 mL solvent (toluene: H₂O = 1:1) and react at 100°C in oil bath for 4 hours. Consumed completely determined by TLC analysis (R_f = 0.23, PE/EtOAc = 10:1). Concentrate the solvent and then the mixture was purified by column chromatography on silica gel using PE/EtOAc (10:1) as the eluent and concentrated to obtain the product **7** (131.5 mg, 79%) as colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.7 Hz, 1H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.74 (d, *J* = 8.8 Hz, 1H), 7.50 (dd, *J* = 8.2, 5.7 Hz, 4H), 7.44 – 7.39 (m, 1H), 7.36 – 7.30 (m, 3H), 7.29 (d, *J* = 8.1 Hz, 5H), 7.08 (d, *J* = 8.8 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 2H), 6.43 (s, 1H), 5.23 (s, 1H), 3.82 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 152.8, 141.6, 139.8, 139.6, 129.7, 129.6, 129.4, 129.2, 129.0, 128.7, 128.0, 127.3, 127.2, 126.9, 123.2, 122.8, 120.1, 119.8, 114.2, 55.3, 48.2. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₃₀H₂₄NaO₂ 439.1669, found 439.1678.

4p (154.4 mg, 0.4 mmol, 1.0 equiv), nPrI (101.9mg, 0.6 mmol, 1.5 equiv) and Cs₂CO₃ (46.2 mg, 0.8 mmol, 2.0 equiv) were introduced into a 50 mL glass bottle under air. Then add 2.0 mL DMF and react at r.t. for 6 hours. Consumed completely determined

by TLC analysis ($R_f = 0.4$, PE/EtOAc = 20:1). Concentrate the solvent and then the mixture was purified by column chromatography on silica gel using PE/EtOAc (40:1) as the eluent and concentrated to obtain the product **8** (170.3 mg, 99%) as colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 9.4 Hz, 1H), 7.80 – 7.75 (m, 2H), 7.33 (d, J = 8.5 Hz, 2H), 7.30 – 7.26 (m, 3H), 7.25 – 7.14 (m, 5H), 7.09 (d, J = 8.4 Hz, 2H), 6.49 (s, 1H), 3.83 (t, J = 6.6 Hz, 2H), 1.50 (h, J = 7.0 Hz, 2H), 0.86 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.72, 142.90, 142.79, 133.19, 131.00, 130.89, 129.65, 129.33, 129.00, 128.67, 128.11, 126.22, 125.95, 124.41, 124.29, 123.13, 114.99, 70.82, 47.20, 22.59, 10.55. HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₆H₂₃BrNaO 453.0824, found 453.0838.

3a (132.8mg, 0.4 mmol, 1.0 equiv), AcCl (62.8mg, 0.8 mmol, 2.0 equiv) and Et₃N (80.9 mg, 0.8 mmol, 2.0 equiv) were introduced into a 50 mL glass bottle under air. Then add 2.0 mL DCM and react at r.t. for 3 hours. Consumed completely determined by TLC analysis ($R_f = 0.5$, PE/EtOAc = 20:1). Concentrate the solvent and then the mixture was purified by column chromatography on silica gel using PE/EtOAc (20:1) as the eluent and concentrated to obtain the product **9** (150.5 mg, 95%) as colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (t, *J* = 7.5 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 7.16 – 7.09 (m, 4H), 7.01 (dd, *J* = 11.1, 8.5 Hz, 4H), 6.85 (d, *J* = 8.7 Hz, 2H), 5.53 (s, 1H), 4.99 (hept, *J* = 6.8 Hz, 1H), 3.79 (s, 3H), 1.75 (s, 4H), 1.04 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 170.04, 158.17, 144.34, 143.72, 137.30, 135.53, 130.25, 130.05, 129.90, 129.24, 128.40, 126.45, 113.79, 55.55, 55.20, 45.73, 23.54, 20.99; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₅H₂₇NNaO₂ 396.1939, found 396.1942.

5. References

- Ash, J.; Ahmed, E.; Le, N.; Huang, H.; Kang, J. Y., Catalytic, regioselective Friedel–Crafts alkylation of beta-naphthol. *New J. Chem.* 2024, *48*, 4224-4228.
- [2] Yang, G.-P.; Dilixiati, D.; Yang, T.; Liu, D.; Yu, B.; Hu, C.-W., Phosphomolybdic acid as a bifunctional catalyst for Friedel–Crafts type dehydrative coupling reaction. *Appl. Organomet. Chem.* **2018**, *32*, e4450.
- [3] Lee, M.; Davies, H. M. L., Enantioselective Synthesis of Triarylmethanes via Intermolecular C–H Functionalization of Cyclohexadienes with Diaryldiazomethanes. Org. Lett. 2023, 25, 4000-4004.
- [4] Sankar, R.; Bhattacharya, D.; Arulananda Babu, S., Synthesis of 1-Naphthol-based Unsymmetrical Triarylmethanes: Heck-type Desulfitative Reaction of Arylsulfonyl Chlorides with Tetralone-derived Chalcones. *Asian J. Org. Chem.* 2021, 10, 576-581.
- [5] Sato, Y.; Aoyama, T.; Takido, T.; Kodomari, M., Direct alkylation of aromatics using alcohols in the presence of NaHSO4/SiO2. *Tetrahedron* 2012, 68, 7077-7081.
- [6] Courant, T.; Lombard, M.; Boyarskaya, D. V.; Neuville, L.; Masson, G., Tritylium assisted iodine catalysis for the synthesis of unsymmetrical triarylmethanes. *Org. Biomol. Chem.* 2020, *18*, 6502-6508.
- [7] Chen, X.; Tan, Y.; Berionni, G.; Ofial, A. R.; Mayr, H., Di- and Triarylmethylium Ions as Probes for the Ambident Reactivities of Carbanions Derived from 5-Benzylated Meldrum's Acid. *Chem. Eur. J.* 2014, 20, 11069-11077.

6. NMR and HRMS spectra of new compounds

 Analysis Info
 Acquisition Date
 2/13/2023 3:26:01 PM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-47_P1-A-9_01_37904.d
 Operator
 ECNU-Chem

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-47
 Instrument
 maXis impact
 282001.00122

 Acquisition Parameter
 Acquisition Parameter
 ECNU-Chem
 Distrument
 Maxis impact
 282001.00122

Bruker Compass DataAnalysis 4.1 printed: 2/13/2023 4:05:12 PM

23 4:05:12 PM by: ECNU-Chem

Bruker Compass DataAnalysis 4.1 printed: 3/24/2023 12:13:01 PM by: ECNU-Chem Page 1 of 1

Analysis Info Acquisition Date 3/24/2023 11:33:20 AM D:\Data\chem. dep\liulu\WYZ-6-84_P1-B-5_01_39420.d Tune_pos_low_LC with calibration_2min_20210727.m WYZ-6-84 Analysis Name Method Sample Name Comment ECNU-Chem maXis impact 282001.00122 Operator Instrument 1 - 141

Acquisition Par	ameter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste
Intens 2					+MS_0.3min #19
×106					+1·15, 0.5min #15
2.5					
201		4			

3c

Bruker Compass DataAnalysis 4.1 printed: 3/24/2023 12:11:43 PM by: ECNU-Chem Page 1 of 1

Analysis Info Acquisition Date 2/13/2023 3:29:09 PM D:\Data\chem. dep\liulu\WYZ-6-48_P1-F-1_01_37905.d Tune_pos_low_LC with calibration_2min_20210727.m WYZ-6-48 Analysis Name Method Sample Name Comment ECNU-Chem maXis impact 282001.00122 Operator Instrument

Acquisition Par	cquisition Parameter										
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar						
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C						
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min						
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste						

 Analysis Info
 Acquisition Date
 2/13/2023 1:19:07 PM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-49_P1-E-1_01_37866.d
 Area
 Area

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-49
 Instrument
 maXis impact
 282001.00122

Acquisition Parameter										
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar					
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C					
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min					
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste					

Bruker Compass DataAnalysis 4.1

printed: 2/13/2023 1:55:14 PM

 Analysis Info
 Acquisition Date
 2/13/2023 1:22:15 PM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-12_P1-E-2_01_37867.d
 Operator
 ECNU-Chem

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-12
 Instrument
 maXis impact
 282001.00122

Acquisition Par	cquisition Parameter										
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar						
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C						
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min						
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste						

Bruker Compass DataAnalysis 4.1 printed: 2/13/2023 2:00:58 PM by: ECNU-Chem

 Analysis Info
 Acquisition Date
 3/27/2023 1:46:45 PM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-28_P1-A-2_01_39491.d
 Acquisition Date
 3/27/2023 1:46:45 PM

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-28
 Instrument
 maXis impact
 282001.00122

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 2:20:48 PM by: ECNU-Chem

 Analysis Info
 Acquisition Date
 3/24/2023 11:49:03 AM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-85_P1-C-3_01_39425.d
 Operator
 ECNU-Chem

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-85
 Instrument
 maXis impact
 282001.00122

Acquisition Para	ameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar	
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min	
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste	

Bruker Compass DataAnalysis 4.1 printed: 3/24/2023 12:17:34 PM by: ECNU-Chem

n Page 1 of 1

Analysis Info

Scan Begin Scan End

 Analysis Name
 D:\Data\chem. dep\liulu\LYY-2-89_P2-E-2_01_60281.d

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m

 Sample Name
 LYY-2-89

 Comment

Acquisition Date 3/10/2025 2:21:54 PM

Operator ECNU-Chem Instrument maXis impact 282001.00122

Acquisition Parameter Source Type ESI Focus Active

Bruker Compass DataAnalysis 4.1 pr

printed: 3/10/2025 2:51:29 PM

 Analysis Info
 Acquisition Date
 3/10/2025 2:18:45 PM

 Analysis Name
 D:\Data\chem. dep\liulu\LYY-2-85_P2-E-1_01_60280.d
 Acquisition Date
 3/10/2025 2:18:45 PM

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 LYY-2-85
 Distribution (Comment)
 Distribution (Comment)

Acquisition Parameter Source Type ESI Ion Polarity Positive Set Nebulizer 1.5 Bar Focus Active Set Capillary 4500 V Set Dry Heater 180 °C Scan Begin 50 m/z Set End Plate Offset -500 V Set Dry Gas 6.0 l/min Scan End 1350 m/z Set Collision Cell RF 700.0 Vpp Set Divert Valve Waste

Bruker Compass DataAnalysis 4.1 prin

printed: 3/10/2025 2:50:33 PM

Analysis In Analysis Na	i fo ime	D:\Data\c dep\liulu\'	hem. WYZ-6-	112_P1-D	2_01_39	9486.dT	une_neg_lo	Acc	quisition Date	3/27/202	3 11:56:35 AM
Method Sample Nai Comment	ne	LC with WYZ-6-1	calibrati 12	on_2min_:	2021072	7.m		Op	erator E trument r	ECNU-Che maXis impa	m ict 282001.00122
Acquisition	Paramet	ter									
Source Type Focus Scan Begin Scan End		ESI Active 50 m/z 1350 m/z		Ion P Set C Set E Set C	olarity Capillary End Plate Collision C	Offset ell RF	Negative 3500 V -500 V 650.0 Vpp		Set Nebulize Set Dry Hea Set Dry Gas Set Divert V	er ater 3 'alve	1.5 Bar 180 °C 6.0 I/min Waste
Intens. x10 ⁶											-MS, 0.3min #19
3					0887	1000					
2					307	309.0863	1090.0				
0		295)	305	3	10	315	320	325	m/z
#	m/z	Res	S/N		1%	FWHM					
	307.0887	37222	5679.4	1601848	100.0	0.0083					
2	308.0923	32733	1112.4	313816	19.6	0.0094					
3	309.0863	33442	1812.8	511448	31.9	0.0092					
4	310.0901	23040	212.6	60100	3.8	0.0135					
Meas 307.0	s. m/z #	Ion For	mula	m/z 3 07 0895	err [ppm	n] mSi	gma Sco	re rdb	e Conf	N-Rule	
	0.00		0.000								

Bruker Compass DataAnalysis 4.1 printed: 3/27/

printed: 3/27/2023 11:59:39 AM by: ECNU-Chem

Analysis Info D:\Data\chem. Acquisition Date 3/24/2023 11:05:04 AM Analysis Name depUiulu/WYZ-6-123_P1-A-3_01_39411.dTune_pos_low_ Method LC with calibration_2min_20210727.m ECNU-Chem maXis impact 282001.00122 Operator WYZ-6-123 Sample Name Instrument Comment Acquisition Parameter lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF Positive 4500 V -500 V 700.0 Vpp Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve 1.5 Bar 180 °C 6.0 I/min Waste Source Type Focus ESI Active 50 m/z 1350 m/z Scan Begin Scan End Intens. x10⁴ 336.1352 +MS, 0.2min #14 1.5 337.1384 1.0 0.5 0.0 328 330 332 334 336 338 346

Bruker Compass DataAnalysis 4.1

printed: 3/24/2023 3:39:08 PM

Analysis Info Analysis Name	D:\D	ata\chen	n. 7-6-100		01 306	68 dTun			Acquisition D	ate 3/30/2	2023 5:11:56 F	PM
Method Sample Name Comment	C wit	th calibra	ation_2	min_2021)727.m	00.0101	L.	Operator ECNU-Chem Instrument maXis impact 282001.				
Acquisition P	aramet	er										
Source Type Focus Scan Begin Scan End		ESI Active 50 m/z 1350 m/z		lon Set Set Set	Polarity Capillar End Pla Collisior	y te Offset n Cell RF	Positive 4500 V -500 V 700.0 Vpp		Set Neb Set Dry Set Dry Set Dive	ulizer Heater Gas ert Valve	1.5 Bar 180 °C 6.0 I/min Waste	
Intens. x10 ⁶											+MS, 0.2m	in #14
1.25					2	,						
1.00					1							
0.75					401							
0.50						189	24					
0.25						402.1	33.122					
0.00					٨,	,L			,,	, , •		
	396		398	400)	402	404	4	406	408	410	m/z
#	m/z	Res.	S/N		1%	FWHM						
1 40	1.1153	25153	924.5	697616	100.0	0.0159						
2 40	2.1189	18567	226.5	171112	24.5	0.0217						
3 40	3.1222	15092	32.4	24480	3.5	0.0267						
Meas. n	n/z #	Ion For	mula	m/z	err [p	om] mS	igma Score	e rdb	e Conf N	-Rule		

Bruker Compass DataAnalysis 4.1 pri

printed: 3/31/2023 2:37:55 PM

Analysis In Analysis Na	ifo D:\ ime de	Data\che	em. YZ-6-11	10_P1-D-7	_01_39	9666.dTur	ne_pos_low_L	Acquisition D	ate 3/30/2	2023 5:05:40	PM
Method Sample Nar Comment	me W	with calib YZ-6-110	ration_	2min_202	10727.r	n		Operator Instrument	ECNU-C maXis in	them npact 282001	.00122
Acquisition	Paramet	ter									
Source Type Focus Scan Begin Scan End		ESI Active 50 m/z 1350 m/z		lon Set Set	Polarity Capillan End Pla Collision	te Offset n Cell RF	Positive 4500 V -500 V 700.0 Vpp	Set Nel Set Dry Set Dry Set Div	Heater Gas ert Valve	1.5 Bar 180 °C 6.0 I/min Waste	
Intens. x10 ⁵ 5 4 3 2 1	405		410	, , ,	415.1078		420	425	430	+MS, 0.2m	in #12
#	m/z	Res.	S/N	Т	1%	FWHM					
1	415.1078	19960	243.6	195480	100.0	0.0208					
2	416.1117	14833	50.3	40404	20.7	0.0281					
3	417.1055	16211	72.2	58088	29.7	0.0257					
4	418.1092	16023	18.2	14660	7.5	0.0261					
Meas 415.1	s.m/z # 078 1	Ion For C25H26	mula F3NO	m/z e 415.1071	err [ppm -1.6	n] mSigr 38.0	na Score rd 1 100.00	b e Conf N 13.5 even	-Rule ok		

Bruker Compass DataAnalysis 4.1 printed: 3/31/2023 2:37:10 PM

2:37:10 PM by: ECNU-Chem

 Analysis Info
 Acquisition Date
 3/27/2023 10:01:17 AM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-25_P1-A-1_01_39469.d
 Operator
 ECNU-Chem

 Method
 Tune_neg_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-25
 Instrument
 maXis impact
 282001.00122

 Comment
 Acquisition Parameter
 Kethod
 Ketho

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 10:06:35 AM by: ECNU-Chem Page 1 of 1

 Analysis Info
 Acquisition Date
 3/27/2023 10:46:08 AM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-38_P1-C-5_01_39481.d
 Operator
 ECNU-Chem

 Method
 Tune_neg_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-38
 Instrument
 maXis impact
 282001.00122

Acquisition Par	ameter					
Source Type	ESI	Ion Polarity	Negative	Set Nebulizer	1.5 Bar	
Focus	Active	Set Capillary	3500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min	
Scan End	1350 m/z	Set Collision Cell RF	650.0 Vpp	Set Divert Valve	Waste	

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 10:51:45 AM by: ECNU-Chem Page 1 of 1

Analysis Info

Acquisition Date 3/27/2023 10:52:26 AM Analysis Name D:\Data\chem. dep\liulu\WYZ-6-26_P1-C-7_01_39483.d Tune_neg_low_LC with calibration_2min_20210727.m WYZ-6-26 ECNU-Chem maXis impact 282001.00122 Method Operator Sample Name Comment Instrument

Acquisition Parameter Negative 3500 V -500 V 650.0 Vpp Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve 1.5 Bar 180 °C 6.0 I/min Waste Source Type Focus ESI Active 50 m/z 1350 m/z Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF Scan Begin Scan End

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 11:50:27 AM by: ECNU-Chem

1.5 Bar 180 °C 6.0 I/min Waste

-MS, 0.3min #15

Page 1 of 1

Analysis Info

Acquisition Date 3/27/2023 10:24:09 AM Analysis Name D:\Data\chem. dep\liulu\WYZ-6-27_P1-A-7_01_39474.d Tune_neg_low_LC with calibration_2min_20210727.m WYZ-6-27 ECNU-Chem maXis impact 282001.00122 Method Operator Sample Name Comment Instrument

Acquisition Parameter Negative 3500 V -500 V 650.0 Vpp Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Source Type Focus ESI Active 50 m/z 1350 m/z Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF Scan Begin Scan End Intens. x10⁵ 369.1051 1.5

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 10:28:13 AM by: ECNU-Chem

Analysis In	fo							Acqui	sition Date 2	/13/2023 3:13:29 PM
Analysis Na Method Sample Nar Comment	me D:\ Tui ne Wi	Data\che ne_pos_ /Z-5-115	em. dep low_LC	Viulu/WY2 with calib	Z-5-115 pration_2	_P1-A-5_ 2min_202	01_37900.d 210727.m	Opera Instru	ator ECN ment maX	IU-Chem (is impact 282001.00122
Acquisition	Paramet	er								
Source Type Focus Scan Begin Scan End		ESI Active 50 m/z 1350 m/z		lon Sei Sei	Polarity Capillar End Pla Collision	y te Offset n Cell RF	Positive 4500 V -500 V 700.0 Vpp		Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.5 Bar 180 °C 6.0 I/min Waste
Intens. x10 ⁶										+MS, 0.2min #11
1.00										
0.75	1					2060.				
0.50						- 377	9936 .0880 908		1 1	
0.25							- 378.(- 379 380.0			
0.001-+	367.5	370	.0	372.5	375.0	377	5 380.0	382.5	385.0	387.5 390.0 m/z
#	m/z	Res.	S/N	I	1%	FWHM				
1	377.0907	25109	319.3	386132	100.0	0.0150				
2	378.0936	17709	67.1	81556	21.1	0.0214				
	379 0880	20014	105.0	128132	33.2	0.0189				

Bruker Compass DataAnalysis 4.1 printed: 2/13/2023 3:54:23 PM

3 3:54:23 PM by: ECNU-Chem

Analysis Info Acquisition Date 3/27/2023 10:33:35 AM Analysis Name D:\Data\chem. dep\liulu\WYZ-6-64_P1-B-3_01_39477.d Tune_neg_low_LC with calibration_2min_20210727.m WYZ-6-64 ECNU-Chem maXis impact 282001.00122 Method Operator Sample Name Comment Instrument Acquisition Parameter Negative 3500 V -500 V 650.0 Vpp Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve 1.5 Bar 180 °C 6.0 I/min Waste Source Type Focus ESI Active 50 m/z 1350 m/z Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF Scan Begin Scan End

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 10:36:38 AM

 Analysis Info
 Acquisition Date
 3/27/2023 10:27:17 AM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-39_P1-B-1_01_39475.d
 Operator
 ECNU-Chem

 Method
 Tune_neg_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-39
 Instrument
 maXis impact
 282001.00122

Acquisition Parameter Source Type ESI Ion Polarity Negative Set Nebulizer 1.5 Bar Focus Active Set Capillary 3500 V Set Dry Heater 180 °C Scan Begin 50 m/z Set End Plate Offset - 500 V Set Dry Gas 6.0 l/min Scan End 1350 m/z Set Collision Cell RF 650.0 Vpp Set Divert Valve Waste Intens

4g

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 10:30:42 AM by: ECNU-Chem Page 1 of 1

Analysis Info

 Analysis Name
 D:\Data\chem. dep\liulu\\WYZ-6-40_P1-C-8_01_39484.d

 Method
 Tune_neg_low_LC with calibration_2min_20210727.m
 Operator

 Sample Name
 WYZ-6-40
 Instrument

Acquisition Date 3/27/2023 11:50:20 AM

or ECNU-Chem ment maXis impact 282001.00122

Acquisition Parameter

Source Type	ESI	Ion Polarity	Negative	Set Nebulizer	1.5 Bar
FOCUS	Active	Set Capillary	3500 V	Set Dry Heater	100 C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	650.0 Vpp	Set Divert Valve	Waste

4h

Bruker Compass DataAnalysis 4.1

printed: 3/27/2023 11:56:05 AM

Acquisition Date 3/27/2023 10:36:44 AM

Analysis Info

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 10:40:08 AM by: ECNU-Chem

Page 1 of 1

m/z

 Analysis Info
 Acquisition Date
 2/13/2023 3:00:55 PM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-43_P1-A-1_01_37896.d
 Operator
 ECNU-Chem

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-43
 Instrument
 maXis impact
 282001.00122

Acquisition Par	ameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar	
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min	
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste	

Bruker Compass DataAnalysis 4.1 printed: 2/13/2023 3:50:46 PM

0:46 PM by: ECNU-Chem

n Page 1 of 1

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 10:24:19 AM by: ECNU-Chem Page 1 of 1

4k

Ana	lysis	Info	
-----	-------	------	--

Source Type Focus

Scan Begin Scan End

Acquisition Date 3/27/2023 10:39:53 AM D:\Data\chem. dep\liulu\WYZ-6-44_P1-B-6_01_39479.d Analysis Name Tune_neg_low_LC with calibration_2min_20210727.m WYZ-6-44 ECNU-Chem maXis impact 282001.00122 Method Operator Sample Name Instrument Comment

Acquisition Parameter Negative 3500 V -500 V 650.0 Vpp Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve 1.5 Bar 180 °C 6.0 I/min Waste ESI Active 50 m/z 1350 m/z Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 10:42:57 AM by: ECNU-Chem

 Analysis Info
 Acquisition Date
 2/13/2023 1:37:57 PM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-59_P1-E-7_01_37872.d
 Operator
 ECNU-Chem

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-59
 Instrument
 maXis impact
 282001.00122

Acquisition Parameter Ion Polarity Positive Set Nebulizer 1.5 Bar Source Type ESI Ion Polarity Positive Set Nebulizer 1.5 Bar Focus Active Set Capillary 4500 V Set Dry Heater 180 °C Scan Begin 50 m/z Set End Plate Offset -500 V Set Dry Gas 6.0 l/min Scan End 1350 m/z Set Collision Cell RF 700.0 Vpp Set Divert Valve Waste

Bruker Compass DataAnalysis 4.1 printed: 2/13/2023 2:08:39 PM by: ECNU-Chem

Analysis Info

Source Type Focus

Acquisition Parameter

Acquisition Date 2/13/2023 1:41:06 PM Analysis Name D:\Data\chem. dep\liulu\WYZ-6-62_P1-E-8_01_37873.d Tune_pos_low_LC with calibration_2min_20210727.m WYZ-6-62 ECNU-Chem Method Operator maXis impact 282001.00122 Sample Name Comment Instrument

	Positive	Set Nebulizer	1.5 Bar	
	4500 V	Set Dry Heater	180 °C	
0//	50014	0.10.0	0.0.1/	

Bruker Compass DataAnalysis 4.1 printed: 2/13/2023 2:11:25 PM by: ECNU-Chem Page 1 of 1

 Analysis Info
 Acquisition Date
 3/27/2023 10:09:09 AM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-57_P1-A-2_01_39470.d
 Operator
 ECNU-Chem

 Method
 Tune_neg_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-57
 Instrument
 maXis impact
 282001.00122

 Acquisition Parameter
 Acquisition Parameter
 Acquisition Parameter
 Acquisition Parameter

 Meas. m/z
 #
 Ion Formula
 m/z
 err [ppm]
 mSigma
 mSigma
 Score
 rdb
 e⁻ Conf
 N-Rule

 309.1292
 1
 C23H17O
 309.1285
 -2.3
 47.8
 47.8
 74.67
 15.5
 even
 ok

4o

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 10:13:50 AM by: ECNU-Chem Page 1 of 1

Analysis Info

 Analysis Name
 D:\Data\chem. dep\liulu\\WYZ-6-58_P1-E-9_01_37874.d

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m

 Sample Name
 WYZ-6-58

 Comment
 WYZ-6-58

Acquisition Date 2/13/2023 1:44:14 PM

Operator ECNU-Chem Instrument maXis impact 282001.00122

Assuisition Desempt

Acquisition Par	ameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar	
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min	
Scan End	1350 m/z	Set Collision Cell RE	700.0 Vpp	Set Divert Valve	Waste	

Bruker Compass DataAnalysis 4.1 printed: 2/13/2023 2:14:43 PM by: ECNU-Chem

Analysis Info

Acquisition Date 2/13/2023 3:54:15 PM Analysis Name D:\Data\chem. dep\liulu\WYZ-6-60_P2-D-1_01_37913.d Tune_pos_low_LC with calibration_2min_20210727.m WYZ-6-60 Method Sample Name Comment Operator Instrument

ECNU-Chem maXis impact 282001.00122

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste

Bruker Compass DataAnalysis 4.1 printed: 2/13/2023 4:11:42 PM by: ECNU-Chem Page 1 of 1

Analysis Info Acquisition Date 2/13/2023 4:00:32 PM D:\Data\chem. dep\liulu\WYZ-6-63_P2-D-3_01_37915.d Analysis Name Tune_pos_low_LC with calibration_2min_20210727.m WYZ-6-63 Method Sample Name Comment Operator Instrument

ECNU-Chem maXis impact 282001.00122

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar	
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min	
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste	

rdb e⁻Conf N-Rule 14.5 even ok
 Meas.m/z
 #
 Ion Formula
 m/z
 err [ppm]
 mSigma

 445.1368
 1
 C26H21F3NaO2
 445.1386
 4.1
 21.7
 Score 48.61 1

Bruker Compass DataAnalysis 4.1 printed: 2/13/2023 4:14:50 PM by: ECNU-Chem

 Analysis Info
 Acquisition Date
 3/27/2023 10:30:27 AM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-63_P1-B-2_01_39476.d
 Acquisition Date
 3/27/2023 10:30:27 AM

 Method
 Tune_neg_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-63
 maxis impact 282001.00122

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 10:34:05 AM by: ECNU-Chem Page 1 of 1

 Analysis Info
 Acquisition Date
 3/27/2023 11:53:28 AM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-96_P1-D-1_01_39485.d
 Analysis Name
 Operator
 ECNU-Chem

 Method
 Tune_neg_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-96
 Instrument
 maXis impact
 282001.00122

Acquisition Parameter Ion Polarity Negative Set Nebulizer 1.5 Bar Source Type ESI Ion Polarity Negative Set Nebulizer 1.5 Bar Focus Active Set Capillary 3500 V Set Dry Heater 180 °C Scan Begin 50 m/z Set End Plate Offset -500 V Set Dry Gas 6.0 l/min Scan End 1350 m/z Set Collision Cell RF 650.0 Vpp Set Divert Valve Waste

 Meas. m/z
 #
 Ion Formula
 m/z
 err [ppm]
 mSigma
 mSigma
 Score
 rdb
 e⁻ Conf
 N-Rule

 315.0853
 1
 C21H15OS
 315.0849
 -1.3
 31.2
 31.2
 100.00
 14.5
 even
 ok

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 11:58:17 AM by: ECNU-Chem

Ana	lysis	Info
-----	-------	------

Acquisition Date 3/27/2023 11:56:35 AM D:\Data\chem. dep\liulu\WYZ-6-30_P1-D-2_01_39486.d Analysis Name Tune_neg_low_LC with calibration_2min_20210727.m WYZ-6-30 ECNU-Chem maXis impact 282001.00122 Method Operator Sample Name Instrument Comment

Acquisition Parameter Source Type Focus

Bruker Compass DataAnalysis 4.1 printed: 3/27/2023 11:59:39 AM by: ECNU-Chem

CI

5a

Analysis Info

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-31_P1-F-2_01_37877.d

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m

 Sample Name
 WYZ-6-31

 Comment
 WYZ-6-31

Acquisition Date 2/13/2023 1:53:38 PM

Operator ECNU-Chem Instrument maXis impact 282001.00122

- - - - -

Acquisition Par	ameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar	
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min	
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste	

Bruker Compass DataAnalysis 4.1 printed: 2/13/2023 2:17:12 PM by: ECNU-Chem

Analysis	Info
----------	------

Acquisition Date 2/13/2023 1:59:53 PM D:\Data\chem. dep\liulu\WYZ-6-33_P1-F-4_01_37879.d Analysis Name Tune_pos_low_LC with calibration_2min_20210727.m WYZ-6-33 ECNU-Chem maXis impact 282001.00122 Method Operator Sample Name Comment Instrument

Acquisition Parameter Positive 4500 V -500 V 700.0 Vpp Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve 1.5 Bar 180 °C 6.0 I/min Waste Source Type Focus ESI Active 50 m/z 1350 m/z Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF Scan Begin Scan End Intens. x10⁵ +MS, 0.2min #11 391.1059 6 4 393.1031 392.1084 394.1059 2 0 382.5 385.0 387.5 397.5 400.0 402.5 390.0 392.5 395.0 405.0 m/z FWHM 0.0158 0.0225 0.0210 0.0234 m/z 391.1059 392.1084 393.1031 394.1059 **Res.** 24824 17398 18741 16824 S/N 316.8 66.4 100.1 23.7 100.0 21.1 31.8 7.6 # 1 2 3 4 405356 85384 129088 30784

Meas. m/z	#	Ion Formula	m/z	err [ppm]	mSigma		Score	rdb	e ⁻ Conf	N-Rule
391.1059	1	C22H21CINaO3	391.1071	3.3	21.9	3	92.16	11.5	even	o

Bruker Compass DataAnalysis 4.1

printed: 2/13/2023 2:20:33 PM

by: ECNU-Chem Page 1 of 1

Analysis Info

Analysis Name Method Sample Name Comment

Acquisition Date 2/13/2023 4:31:54 PM D:\Data\chem. dep\liulu\WYZ-6-36_P2-F-5_01_37925.d Tune_pos_low_LC with calibration_2min_20210727.m WYZ-6-36 ECNU-Chem maXis impact 282001.00122 Operator Instrument

Page 1 of 1

Acquisition Par	rameter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste

Bruker Compass DataAnalysis 4.1 printed: 2/15/2023 12:32:09 PM by: ECNU-Chem

Analysis Info

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-37_P2-F-6_01_37926.d

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m

 Sample Name
 WYZ-6-37

 Comment
 WYZ-6-37

Acquisition Date 2/13/2023 4:35:02 PM

Operator ECNU-Chem Instrument maXis impact 282001.00122

Acquisition Par	ameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar	
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min	
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste	

Bruker Compass DataAnalysis 4.1 printed: 2/15/2023 12:30:35 PM by: ECNU-Chem Page 1 of 1

 Analysis Info
 Acquisition Date
 2/13/2023 1:25:22 PM

 Analysis Name
 D:\Data\chem. dep\liulu\WYZ-6-46_P1-E-3_01_37868.d
 Acquisition Date
 2/13/2023 1:25:22 PM

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-46
 Instrument
 maXis impact 282001.00122

Bruker Compass DataAnalysis 4.1 printed: 2/13/2023 2:01:59 PM by: ECNU-Chem

n Page 1 of 1

Analysis Info

D:\Data\chem. dep\liulu\WYZ-5-23_P1-A-3_01_39411.d Tune_pos_low_LC with calibration_2min_20210727.m WYZ-5-23 Analysis Name Method Sample Name Comment

Acquisition Date 3/24/2023 11:05:04 AM

ECNU-Chem maXis impact 282001.00122 Operator Instrument

Acquisition Par	ameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar	
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min	
Scan End	1350 m/z	Set Collision Cell RF	700.0 Vpp	Set Divert Valve	Waste	

5h

Bruker Compass DataAnalysis 4.1 printed: 3/24/2023 3:39:08 PM

Page 1 of 1

by: ECNU-Chem

Analysis Info

Analysis Name D:\Data\chem. dep\liulu\\WYZ-6-80_P1-C-4_01_39426.d Method Tune_pos_low_LC with calibration_2min_20210727.m Sample Name WYZ-6-80 Acquisition Date 3/24/2023 11:52:11 AM

Operator ECNU-Chem Instrument maXis impact 282001.00122

Acquisition Parameter

Acquisition Falameter						
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.5 Bar	
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	6.0 l/min	
Scan End	1350 m/z	Set Collision Cell RE	700 0 Vpp	Set Divert Valve	\Maste	

Bruker Compass DataAnalysis 4.1 printed: 3/24/2023 12:18:31 PM by: ECNU-Chem

 Analysis Info
 Acquisition Date
 3/24/2023 11:45:55 AM

 Analysis Name
 D:\Data\chem. dep\liulu\\WYZ-6-79_P1-C-2_01_39424.d
 Coperator
 ECNU-Chem

 Method
 Tune_pos_low_LC with calibration_2min_20210727.m
 Operator
 ECNU-Chem

 Sample Name
 WYZ-6-79
 Instrument
 maXis impact 282001.00122

Acquisition Parameter Ion Polarity Positive Set Nebulizer 1.5 Bar Source Type ESI Ion Polarity 4500 V Set Dry Heater 180 °C Focus Active Set Capiliary 4500 V Set Dry Heater 180 °C Scan Begin 50 m/z Set End Plate Offset -500 V Set Dry Gas 6.0 l/min Scan End 1350 m/z Set Collision Cell RF 700.0 Vpp Set Divert Valve Waste

Bruker Compass DataAnalysis 4.1 printed: 3/24/2023 12:14:42 PM t

by: ECNU-Chem Page 1 of 1

Anal	lysis	Info
------	-------	------

D:\Data\chem. dep\liulu\WYZ-6-94_P1-A-1_01_39490.d Analysis Name Tune_pos_low_LC with calibration_2min_20210727.m WYZ-6-94 Method Sample Name

Acquisition Date 3/27/2023 1:43:36 PM ECNU-Chem Operator

Instrument

maXis impact 282001.00122

Comment Acquisition Parameter

Source Type Focus

Bruker Compass DataAnalysis 4.1

printed: 3/27/2023 2:19:53 PM

by: ECNU-Chem Page 1 of 1