Supplementary Information

Stereoselective synthesis of allylic sulfones via palladium-catalyzed hydrosulfonylation of cyclopropenes

Suliang Wang,^{‡a} Xuening Li,^{‡a} Jian Song^{*a,b} and Xianjie Fang^{*a}

*E-mail: fangxj@hznu.edu.cn

^aKey Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education,

Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry

and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou

311121, China

^bCollege of Chemistry and Chemical Engineering, Central South University, Changsha 410083,

China

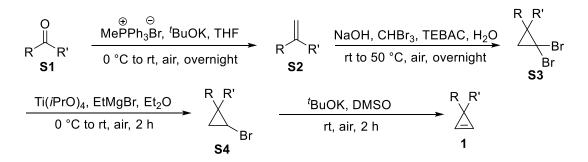
[‡]These authors contributed equally: Suliang Wang, Xuening Li

Table of Contents

1. General Information	
2. Preparation of Substrates	S3
3. General Procedure	S5
4. Scale-up Experiment	S6
5. Data for Products	S7
6. Deuterium Reactions	S34
7. Proposed Mechanism	\$37
8. X-ray Structure of Compound 3aa	\$38
9. References	S40
10. NMR Spectra	S41

1. General Information

All regents used were purchased commercially without further purification. Pd(dba)₂ was purchased from Energy Chemical. Solvent was purified using solvent purification system (Vigor YJC-7). The air and moisture sensitive manipulations were carried out with standard Schlenk technique or in a nitrogen-filled glovebox (Vigor).


NMR spectrum: The NMR spectra were recorded on a Bruker 400 MHz or 500 MHz instrument and chemical shifts are reported in ppm relative to the residual deuterated solvents. Chemical shifts (δ) are given in ppm and calibrated using the signal of residual undeuterated solvent as internal reference (δ H = 7.26 ppm or 0.00 ppm, and δ C = 77.16 ppm. Coupling constants (*J*) are reported in Hz and apparent splitting patterns are designated using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

Mass spectroscopy: High resolution mass spectra (HRMS) were measured on electrospray spectrometer Waters Micromass Q-TOF Premier Mass Spectrometer.

Chromatography: Column chromatography was performed using 300-400 mesh silica gels.

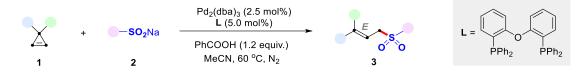
2. Preparation of Substrates

General procedure A^[1-6]:

S1 to S2: Wittig reactions were performed to synthesized different alkenes S2 from corresponding ketones S1 when unsaturated compounds S2 cannot be purchased commercially. To a stirred solution of S1 (1.0 equiv.) in THF (0.5 M) at 0 °C was added methyltriphenylphosphonium bromide (1.5 equiv.). The mixture was further stirred for 5 minutes at the same temperature and then 'BuOK (2.0 equiv.) was added in three portions. The reaction mixture was allowed to warm to room temperature and stirred overnight. After the reaction, saturated NH₄Cl aqueous solution was added slowly and extracted with ethyl acetate for three times. The combined organic layers was dried over anhydrous Na₂SO₄. After evaporation under reduced pressure, the crude product was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to obtain alkene S2.

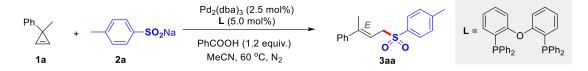
S2 to S3: To a round-bottomed flask equipped with a magnetic stirring bar was added **S2** (1.0 equiv.), TEBAC (0.02 equiv.) and CHBr₃ (1.5 equiv.) at room temperature. After stirring for 10 minutes, NaOH aqueous solution (15.0 equiv., 25 M) was added through a dropper at the same temperature. The reaction mixture was then transferred to a preheated oil bath at 50 °C and stirred overnight. After the reaction, the dark viscous mixture was quenched with saturated NH₄Cl aqueous solution and extracted with dichloromethane for three times. Combine all organic phases, dried over anhydrous Na₂SO₄ and remove the solvent under vacuum. The residue was then purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to obtain **S3**.

S3 to S4: In an oven-dried three-necked round-bottomed flask equipped with a stirring bar, **S3** (1.0 equiv.) and Ti(ⁱPrO)₄ (5.0 mol%) were dissolved in Et₂O (0.5 M) at room temperature under argon atmosphere. The mixture was then cooled down to 0 $^{\circ}$ C, followed by slow addition of EtMgBr (3 M in Et₂O, 1.2 equiv.). After 2 hours, the reaction was quenched by addition of saturated NH₄Cl aqueous solution. The mixture was extracted with ethyl acetate for three times and organic layers were combined, followed by the addition of excess of anhydrous Na₂SO₄. The crude product was then purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) toobtain **S4**.

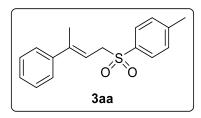

S4 to 1: To a stirred solution of S4 (1.0 equiv.) in DMSO (0.5 M), 'BuOK (1.5 equiv.) was added in three portions at room temperature. After 2 hours, saturated NH₄Cl aqueous solution was added to quench the reaction. The mixture was then extracted with ethyl acetate for three times and organic phases were combined. After drying over anhydrous Na_2SO_4 , the solvent was then removed under reduced pressure, followed by the purification by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to obtain desired cyclopropene 1.

General procedure B^[7]:

$$RSO_2CI + Na_2SO_3 + NaHCO_3 \xrightarrow{H_2O} RSO_2Na$$


Add sulfonyl chloride, sodium sulfinate, sodium bicarbonate and water successively to a 50 mL round-bottomed flask. Then the whole system was placed in a pan of oil at 80 °C for 8 h. After the reaction, the round-bottom flask was cooled to room temperature by air, anhydrous ethanol was added to the flask, and then the anhydrous ethanol was removed by steam under a water bath heated at 70 °C, and then anhydrous ethanol was added to the flask, and the mixture was pumped and filtered to collect the filtrate. The solvent was removed by vacuum distillation and white solid was obtained. The product was further purified by recrystallization.

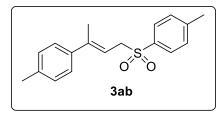
3. General Procedure


In a N₂-filled glovebox, $Pd_2(dba)_3$ (2.5 mol%), L1 (5.0 mol%), and MeCN (2.0 mL) were added to an oven-dried 4 mL screw-cap vial. The resulting mixture was stirred for 1-2 minutes, and then 1 (0.3 mmol, 1.5 equiv.), 2 (0.2 mmol, 1.0 equiv.) and PhCOOH (0.24 mmol, 1.2 equiv.) were added successively. The vial was taken out of the glovebox and heated at 60 °C for 12 hours. Subsequently, the reaction was cooled down to room temperature and the reaction mixture was concentrated under reduced pressure. Purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired product **3**.

4. Scale-up Experiment

In a N₂-filled glovebox, Pd₂(dba)₃ (2.5 mol%), **L1** (5 mol%), and MeCN (100 mL) were added to an oven-dried 350 mL screw-cap vial. The resulting mixture was stirred for 1-2 minutes, and then **1a** (15 mmol, 1.5 equiv.), **2a** (10 mmol, 1.0 equiv.) and PhCOOH (12 mmol, 1.2 equiv.) were added successively. The vial was taken out of the glovebox and heated at 60 °C for 12 hours. Subsequently, the reaction was cooled down to room temperature and the reaction mixture was concentrated under reduced pressure. Purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to afford the desired product **3aa** (2.63g, 92% yield, E/Z > 20/1).

5. Data for Products

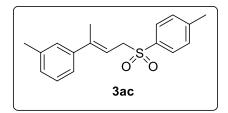

(E)-1-methyl-4-((3-phenylbut-2-en-1-yl)sulfonyl)benzene (3aa)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3aa** was obtained as white solid (56.2 mg, 98% yield, E/Z > 20/1).

¹H NMR (400 MHz, CDCl₃) δ 7.76-7.65 (m, 2H), 7.28-7.17 (m, 7H), 5.69-5.59 (m, 1H), 3.91 (d, *J* = 8.1 Hz, 2H), 2.36 (s, 3H), 1.62 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.7, 144.4, 142.3, 135.7, 129.7, 128.6, 128.4, 127.9, 125.9, 113.4, 56.8, 21.7, 16.0.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{17}H_{18}O_2S]^+$ 309.0920, found 309.0920.

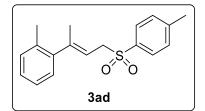

(*E*)-1-methyl-4-((3-(p-tolyl)but-2-en-1-yl)sulfonyl)benzene (3ab)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ab** was obtained as white solid (51.0 mg, 85% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.3 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 5.73-5.66 (m, 1H), 3.98 (d, *J* = 8.1 Hz, 2H), 2.44 (s, 3H), 2.35 (s, 3H), 1.67 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.7, 144.2, 139.4, 137.8, 135.6, 129.7, 129.1, 128.6, 125.7, 112.6, 56.8, 21.7, 21.1, 16.0.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{18}H_{20}O_2S]^+$ 323.1076, found 323.1074.

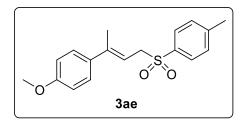

(*E*)-1-methyl-3-(4-tosylbut-2-en-2-yl)benzene (3ac)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ac** was obtained as yellow solid (51.0 ng, 85% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.84-7.68 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.24-6.97 (m, 4H), 5.77-5.63 (m, 1H), 3.98 (d, *J* = 8.1 Hz, 2H), 2.43 (s, 3H), 2.35 (s, 3H), 1.68 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.7, 144.5, 142.3, 138.0, 135.7, 129.7, 128.7, 128.6, 128.3, 126.7, 123.0, 113.2, 56.8, 21.7, 21.5, 16.1.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₈H₂₀O₂S]⁺ 323.1076, found 323.1080.

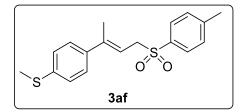

(*E*)-1-methyl-2-(4-tosylbut-2-en-2-yl)benzene (3ad)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ad** was obtained as yellow solid (49.0 mg, 82% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.21-7.05 (m, 3H), 7.00-6.88 (m, 1H), 5.33-5.244 (m, 1H), 3.99 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H), 2.15 (s, 3H), 1.69 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 146.4, 144.8, 143.8, 136.0, 134.4, 130.2, 129.8, 128.5, 127.6, 127.3, 125.7, 115.1, 56.3, 21.7, 19.7, 18.3.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{18}H_{20}O_2S]^+$ 323.1076, found 323.1078.

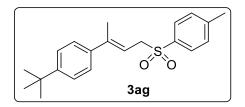

(*E*)-1-methoxy-4-(4-tosylbut-2-en-2-yl)benzene (3ae)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ae** was obtained as yellow solid (55.0 mg, 87% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl3) δ 7.88-7.64 (m, 2H), 7.44-7.12 (m, 4H), 6.87-6.80 (m, 2H), 5.72-5.54 (m, 1H), 3.98 (d, *J* = 8.2 Hz, 2H), 3.81 (s, 3H), 2.44 (s, 3H), 1.67 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.4, 144.7, 143.7, 135.7, 134.6, 129.7, 128.6, 127.0, 113.7, 113.6, 111.7, 56.8, 55.3, 21.7, 16.0.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₈H₂₀O₃S]⁺ 339.1025, found 339.1024.

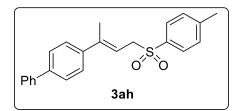

(E)-methyl(4-(4-tosylbut-2-en-2-yl)phenyl)sulfane (3af)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3af** was obtained as white solid (53.5 mg, 81% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.80-7.71 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.25-7.16 (m, 4H), 5.74-5.66 (m, 1H), 3.98 (d, *J* = 8.1 Hz, 2H), 2.48 (s, 3H), 2.44 (s, 3H), 1.69 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.7, 143.6, 138.8, 138.4, 135.7, 129.7, 128.5, 126.2, 112.8, 56.8, 21.7, 15.9, 15.7.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{18}H_{20}BrO_2S_2]^+$ 355.0797, found 355.0798.


(*E*)-1-(tert-butyl)-4-(4-tosylbut-2-en-2-yl)benzene (3ag)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ag** was obtained as white solid (49.0 mg, 72% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.44-7.14 (m, 6H), 5.78-5.63 (m, 1H), 3.99 (d, *J* = 8.1 Hz, 2H), 2.44 (s, 3H), 1.68 (s, 3H), 1.32 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 151.0, 144.7, 144.1, 139.3, 135.7, 129.7, 128.6, 125.6, 125.3, 112.7, 56.8, 34.6, 31.3, 21.7, 15.9.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{21}H_{26}O_2S]^+$ 365.1546, found 365.1547.

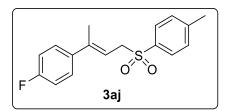
(*E*)-4-(4-tosylbut-2-en-2-yl)-1,1'-biphenyl (3ah)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ah** was obtained as white solid (28.3 mg, 39% yield, E/Z > 20/1).

¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H), 7.64-7.52 (m, 4H), 7.51-7.29 (m, 7H), 5.83-5.72 (m, 1H), 4.02 (d, J = 8.1 Hz, 2H), 2.45 (s, 3H), 1.75 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 144.8, 143.9, 141.1, 140.7, 140.5, 135.7, 129.8, 128.9, 128.6, 127.5, 127.1, 127.0, 126.3, 113.4, 56.8, 21.7, 16.0.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{23}H_{22}O_2S]^+$ 385.1233, found 385.1128.

(*E*)-1-methyl-4-((3-(4-(trifluoromethyl)phenyl)but-2-en-1-yl)sulfonyl)benzene (3ai)


According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ai** was obtained as yellow solid (58.0 mg, 82% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.83-7.63 (m, 2H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.29 (dd, *J* = 18.2, 8.0 Hz, 4H), 5.76-5.62 (m, 1H), 3.93 (d, *J* = 8.1 Hz, 2H), 2.38 (s, 3H), 1.68 (s, 3H).

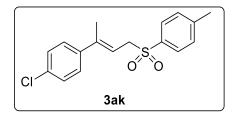
¹³**C NMR** (100 MHz, CDCl₃) δ 145.7, 145.0, 143.3, 135.7, 129.8, 128.5, 126.2, 125.4, 125.4, 115.5, 56.6, 21.7, 16.0.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -62.54.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₈H₁₇F₃O₂S]⁺ 377.0794, found 377.0794.

(E)-1-fluoro-4-(4-tosylbut-2-en-2-yl)benzene (3aj)

According to the general procedure, the product was purified through column

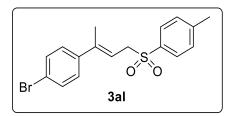

chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3aj** was obtained as white solid (50.0 mg, 82% yield, E/Z > 20/1).

¹H NMR (400 MHz, CDCl₃) δ 7.81-7.69 (m, 2H), 7.38-7.19 (m, 4H), 7.08-6.90 (m, 2H), 5.71-5.62 (m, 1H), 3.98 (d, *J* = 8.1 Hz, 2H), 2.45 (s, 3H), 1.71 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 144.8, 143.4, 138.3, 135.7, 129.8, 128.5, 127.5, 127.4,

115.35, 115.1, 113.3, 56.7, 21.7, 16.2.

¹⁹**F** NMR (471 MHz, CDCl₃) δ -114.33.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₇H₁₇FO₂S]⁺ 327.0825, found 327.0823.

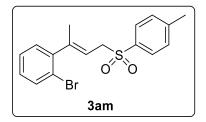

(E)-1-chloro-4-(4-tosylbut-2-en-2-yl)benzene (3ak)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ak** was obtained as white solid (57.0 mg, 89% yield, E/Z > 20/1).

¹H NMR (400 MHz, CDCl₃) δ 7.81-7.69 (m, 2H), 7.40-7.16 (m, 6H), 5.76-5.64 (m, 1H), 3.98 (d, *J* = 8.1 Hz, 2H), 2.45 (s, 3H), 1.70 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.9, 143.3, 140.6, 135.7, 133.7, 129.8, 128.5, 128.5, 127.2, 113.9, 56.7, 21.7, 16.0.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₇H₁₇ClO₂S]⁺ 343.0530, found 343.0531.

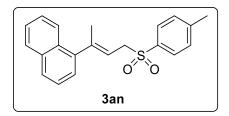

(E)-1-bromo-4-(4-tosylbut-2-en-2-yl)benzene (3al)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3al** was obtained as white solid (58.0 mg, 80% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.82-7.66 (m, 2H), 7.50-7.39 (m, 2H), 7.33 (d, *J* = 7.9 Hz, 2H), 7.21-7.10 (m, 2H), 5.77-5.65 (m, 1H), 3.98 (d, *J* = 8.1 Hz, 2H), 2.45 (s, 3H), 1.70 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.8, 143.3, 141.1, 135.7, 131.5, 129.8, 128.5, 127.5, 121.9, 114.0, 56.7, 21.7, 15.9.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₇H₁₇BrO₂S]⁺ 387.0025, found 387.0020.

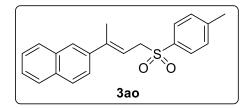

(*E*)-1-bromo-2-(4-tosylbut-2-en-2-yl)benzene (3am)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3am** was obtained as yellow solid (65.0 mg, 89% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.90-7.76 (m, 2H), 7.51 (dd, J = 8.0, 1.2 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H), 7.30-7.22 (m, 1H), 7.17-7.09 (m, 1H), 7.04 (dd, J = 7.5, 1.8 Hz, 1H), 5.43-5.30 (m, 1H), 3.99 (d, J = 8.0 Hz, 2H), 2.45 (s, 3H), 1.74 (s, 3H). ¹³**C NMR** (100 MHz CDCl₂) δ 145.9, 144.8, 144.6, 135.9, 132.8, 129.8, 129.6, 128.9

¹³C NMR (100 MHz, CDCl₃) δ 145.9, 144.8, 144.6, 135.9, 132.8, 129.8, 129.6, 128.9, 128.6, 127.4, 121.5, 116.7, 56.2, 21.7, 17.9.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₇H₁₇BrO₂S]⁺ 387.0025, found 387.0026.

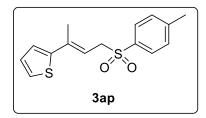

(*E*)-1-(4-tosylbut-2-en-2-yl)naphthalene (3an)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3an** was obtained as white solid (59.0 mg, 89% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.88-7.72 (m, 4H), 7.66-7.60 (m, 1H), 7.51-7.34 (m, 5H), 7.14 (dd, *J* = 7.1, 1.3 Hz, 1H), 5.53-5.42 (m, 1H), 4.09 (d, *J* = 8.1 Hz, 2H), 2.45 (s, 3H), 1.89 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.5, 144.7, 142.1, 136.0, 133.6, 130.6, 129.9, 128.6, 128.4, 127.7, 126.0, 125.9, 125.5, 125.4, 124.6, 116.4, 56.5, 21.7, 19.3.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₂₁H₂₀O₂S]⁺ 359.1076, found 359.1073.

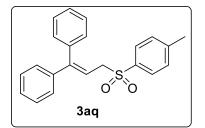


(*E*)-2-(4-tosylbut-2-en-2-yl)naphthalene (3ao)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ao** was obtained as white solid (59.0 mg, 89% yield, E/Z > 20/1).

¹H NMR (400 MHz, CDCl₃) δ 7.86-7.65 (m, 6H), 7.52-7.40 (m, 3H), 7.33 (d, J = 8.0 Hz, 2H), 5.94-5.81 (m, 1H), 4.05 (d, J = 8.1 Hz, 2H), 2.44 (s, 3H), 1.83 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 144.8, 144.2, 139.4, 135.7, 133.2, 133.0, 129.8, 128.6, 128.2, 128.0, 127.6, 126.4, 126.2, 124.2, 124.0, 113.9, 56.9, 21.7, 16.1.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{21}H_{20}O_2S]^+$ 359.1076, found 359.1075.

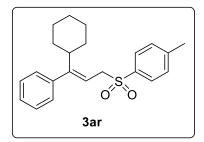

(*E*)-2-(4-tosylbut-2-en-2-yl)thiophene (3ap)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ap** was obtained as white solid (42.0 mg, 72% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.82-7.71 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.20 (dd, *J* = 4.9, 1.3 Hz, 1H), 7.06-6.93 (m, 2H), 5.88-5.78 (m, 1H), 3.97 (d, *J* = 8.1 Hz, 2H), 2.44 (s, 3H), 1.76 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.7, 144.8, 137.7, 135.6, 129.8, 128.6, 127.5, 125.0, 124.1, 111.5, 56.6, 21.7, 15.9.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{15}H_{16}O_2S_2]^+$ 315.0484, found 315.0488.

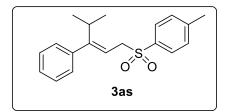


(3-tosylprop-1-ene-1,1-diyl)dibenzene (3aq)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3aq** was obtained as white solid (68 mg, 98% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.72-7.58 (m, 2H), 7.40-7.06 (m, 10H), 6.80-6.58 (m, 2H), 6.13 (t, *J* = 7.9 Hz, 1H), 3.90 (d, *J* = 7.9 Hz, 2H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 149.6, 144.7, 140.9, 137.8, 135.7, 129.7, 129.3, 128.5, 128.3, 128.3, 128.3, 127.8, 127.5, 114.2, 77.4, 77.1, 76.7, 57.6, 21.7.
HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₂₂H₂₀O₂S]⁺ 371.1076, found 371.1080.

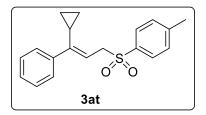

(E)-1-((3-cyclohexyl-3-phenylallyl)sulfonyl)-4-methylbenzene (3ar)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ar** was obtained as yellow solid (37 mg, 52% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.71-7.58 (m, 2H), 7.45-7.09 (m, 5H), 6.60-6.38 (m, 2H), 5.68-5.39 (m, 1H), 3.60 (d, *J* = 7.7 Hz, 2H), 2.49 (s, 3H), 2.16-1.96 (m, 1H), 1.82-1.51 (m, 5H), 1.28-0.98 (m, 5H).

¹³**C NMR** (100 MHz, CDCl₃) δ 156.1, 144.5, 139.0, 135.6, 129.5, 128.8, 128.0, 128.0, 127.0, 111.4, 57.0, 46.5, 31.8, 26.4, 26.1, 21.7.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{22}H_{26}O_2S]^+$ 377.1546, found 377.1547.

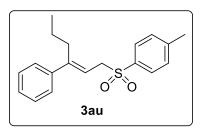

(*E*)-1-methyl-4-((4-methyl-3-phenylpent-2-en-1-yl)sulfonyl)benzene (3as)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3as** was obtained as yellow solid (50,0 mg, 80% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.70-7.57 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.24-7.11 (m, 3H), 6.55-6.45 (m, 2H), 5.59-5.47 (m, 1H), 3.60 (d, *J* = 7.7 Hz, 2H), 2.48 (s, 3H), 0.95 (d, *J* = 6.9 Hz, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 156.7, 144.6, 138.6, 135.6, 129.5, 128.8, 128.1, 128.0, 127.1, 111.2, 57.0, 36.5, 21.7, 21.3.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{19}H_{22}O_2S]^+$ 337.1233, found 337.1236.

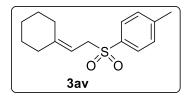

(*E*)-1-((3-cyclopropyl-3-phenylallyl)sulfonyl)-4-methylbenzene (3at)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3at** was obtained as white solid (49.0 mg, 79% yield, E/Z = 1.5/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.76-7.64 (m, 2H), 7.56-7.46 (m, 3H), 7.32-7.00 (m, 15H), 6.56-6.43 (m, 3H), 5.61-5.52 (m, 1H), 5.47-5.36 (m, 2H), 4.10 (d, *J* = 8.0 Hz, 2H), 3.53 (d, *J* = 7.8 Hz, 3H), 2.43-2.26 (m, 8H), 1.55-1.40 (m, 2H), 1.26-1.10 (m, 2H), 0.62-0.45 (m, 5H), 0.32-0.18 (m, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 151.9, 149.7, 144.7, 144.5, 140.7, 137.4, 135.9, 135.8, 129.7, 129.6, 128.6, 128.3, 128.0, 127.9, 127.4, 127.4, 127.3, 116.4, 110.9, 57.0, 56.6, 21.69, 18.7, 11.3, 6.5, 5.6.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{19}H_{20}O_2S]^+$ 335.1076, found 335.1077.

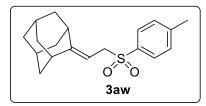

(E)-1-methyl-4-((3-phenylhex-2-en-1-yl)sulfonyl)benzene (3au)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3au** was obtained as white solid (53.0 mg, 84% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.84-7.72 (m, 2H), 7.40-7.15 (m, 7H), 5.60 (t, *J* = 8.0 Hz, 1H), 4.00 (d, *J* = 8.1 Hz, 2H), 2.44 (s, 3H), 2.20-2.07 (m, 2H), 1.15-0.94 (m, 2H), 0.71 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 149.3, 144.8, 141.6, 135.7, 129.7, 129.6, 128.6, 128.4, 128.20, 127.7, 127.7, 126.5, 113.9, 56.6, 31.8, 21.7, 21.332, 13.8.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{19}H_{22}O_2S]^+$ 337.1233, found 337.1235.

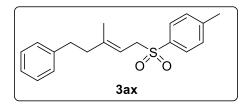

1-((2-cyclohexylideneethyl)sulfonyl)-4-methylbenzene (3av)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3av** was obtained as white solid (32 mg, 61% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 5.13 (t, *J* = 8.0 Hz, 1H), 3.79 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H), 2.07 (t, *J* = 5.6 Hz, 2H), 1.86-1.74 (m, 2H), 1.52-1.36 (m, 4H), 1.17 (t, *J* = 6.1 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 150.2, 144.4, 135.7, 129.5, 128.7, 107.3, 55.3, 37.2, 28.8, 28.1, 27.0, 26.3, 21.7.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{15}H_{120}O_2S]^+$ 287.1076, found 287.1076.


(5R,7R,E)-2-(2-tosylethylidene)adamantane (3aw)

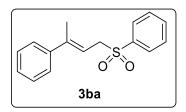
According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3aw** was obtained as white solid (47.0 mg, 71% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.9 Hz, 2H), 7.33 (d, *J* = 7.9 Hz, 2H), 5.08 (t, *J* = 8.0 Hz, 1H), 3.80 (d, *J* = 8.0 Hz, 2H), 2.61-2.28 (m, 5H), 1.85-1.56 (m, 9H), 1.22 (d, *J* = 12.5 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 157.9, 144.4, 135.8, 129.5, 128.7, 102.5, 54.9, 40.7, 39.4, 38.3, 36.8, 32.6, 28.1, 21.6.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{19}H_{24}O_2S]^+$ 339.1389, found 339.1392.

(*E*)-1-methyl-4-((3-methyl-5-phenylpent-2-en-1-yl)sulfonyl)benzene (3ax)

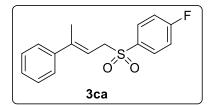

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ax** was obtained as white solid (42.0 mg, 76% yield, E/Z = 2/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.83-7.62 (m, 3H), 7.39-6.98 (m, 11H), 5.30-5.09 (m, 1.5H), 3.78 (d, *J* = 8.0 Hz, 2H), 3.59 (d, *J* = 7.9 Hz, 1H), 2.76-2.58 (m, 2H), 2.53-2.37 (m, 5H), 2.30 (dd, *J* = 9.7, 6.5 Hz, 2H), 2.07 (dd, *J* = 9.2, 6.7 Hz, 1H), 1.77 (d, *J* = 1.4 Hz, 1.5H), 1.39 (d, *J* = 1.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.7, 145.1, 144.6, 144.5, 141.5, 141.4, 135.9, 135.7, 129.7, 129.6, 128.6, 128.5, 128.4, 128.3, 128.3, 126.1, 126.0, 111.7, 111.0, 56.1, 55.7,

41.5, 34.1, 33.9, 33.7, 23.7, 21.7, 21.7, 16.4.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{19}H_{22}O_2S]^+$ 337.1233, found 337.1234.


(*E*)-((3-phenylbut-2-en-1-yl)sulfonyl)benzene (3ba)

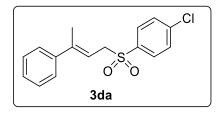
According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ba** was obtained as white solid (53.0 mg, 96% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.95-7.83 (m, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.37-7.22 (m, 5H), 5.77-5.68 (m, 1H), 4.01 (d, *J* = 8.2 Hz, 2H), 1.68 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.6, 142.2, 138.6, 133.8, 129.1, 128.6, 128.4, 128.0, 125.8, 113.2, 56.7, 16.0.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₆H₁₆O₂S]⁺ 295.0763, found 295.0761.

(*E*)-1-fluoro-4-((3-phenylbut-2-en-1-yl)sulfonyl)benzene (3ca)

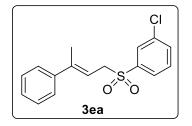

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ca** was obtained as white solid (54.0 mg 93% yield, E/Z > 20/1).

¹H NMR (400 MHz, CDCl₃) δ 8.04-7.74 (m, 2H), 7.48-7.03 (m, 7H), 5.82-5.62 (m, 1H), 4.01 (d, J = 8.1 Hz, 2H), 1.71 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.2, 164.6, 144.8, 142.0, 134.6, 134.6, 131.5, 131.4, 128.5, 128.1, 125.8, 116.5, 116.3, 113.1, 56.8, 16.0.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -103.33.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₆H₁₅FO₂S]⁺ 313.0669, found 313.0666.

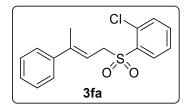

(*E*)-1-chloro-4-((3-phenylbut-2-en-1-yl)sulfonyl)benzene (3da)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3da** was obtained as white solid (54.0 mg, 88% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.6 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.40-7.22 (m, 5H), 5.80-5.65 (m, 1H), 4.02 (d, *J* = 8.1 Hz, 2H), 1.74 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.9, 142.0, 140.6, 137.1, 130.1, 129.4, 128.5, 128.1, 125.8, 112.9, 56.8, 16.1.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₆H₁₅ClO₂S]⁺ 329.0373, found 329.0373.

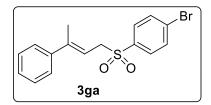

(*E*)-1-chloro-3-((3-phenylbut-2-en-1-yl)sulfonyl)benzene (3ea)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ea** was obtained as white solid (55.0 mg, 90% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.63 (d, *J* = 9.1 Hz, 1H), 7.49 (t, *J* = 7.9 Hz, 1H), 7.37-7.23 (m, 5H), 5.78-5.62 (m, 1H), 4.02 (d, *J* = 8.1 Hz, 2H), 1.74 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.2, 142.1, 140.3, 135.5, 133.9, 130.4, 128.7, 128.5, 128.08, 126.7, 125.9, 112.8, 56.7, 16.2.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₆H₁₅ClO₂S]⁺ 329.0373, found 329.0372.


(E)-1-chloro-2-((3-phenylbut-2-en-1-yl)sulfonyl)benzene (3fa)

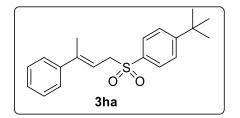
According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3fa** was obtained as white solid (53.0 mg, 87% yield, E/Z > 20/1).

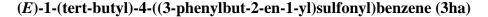
¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (d, J = 7.2 Hz, 1H), 7.56 (d, J = 3.6 Hz, 2H), 7.48-7.39 (m, 1H), 7.33- 7.18 (m, 5H), 5.80-5.61 (m, 1H), 4.35 (d, J = 8.0 Hz, 2H), 1.91 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.2, 142.2, 136.4, 134.8, 132.7, 132.4, 131.9, 128.3, 127.94, 127.4, 125.9, 112.6, 54.6, 16.4.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₆H₁₅ClO₂S]⁺ 329.0373, found 329.0374.

(E)-1-bromo-4-((3-phenylbut-2-en-1-yl)sulfonyl)benzene (3ga)

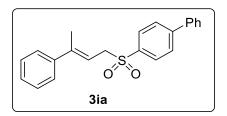

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ga** was


obtained as white solid (58.0 mg, 83% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.89-7.58 (m, 4H), 7.35-7.24 (m, 5H), 5.75-5.66 (m, 1H), 4.01 (d, *J* = 8.2 Hz, 2H), 1.74 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.0, 142.0, 137.6, 132.4, 130.1, 129.2, 128.5, 128.1, 125.8, 112.9, 56.7, 16.1.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{16}H_{15}BrO_2S]^+$ 372.9868, found 372.9867.

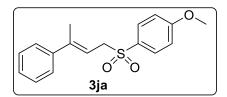


According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ha** was obtained as white solid (58.0 mg, 88% yield, E/Z > 20/1).

¹H NMR (400 MHz, CDCl₃) δ 7.93-7.74 (m, 2H), 7.59-7.48 (m, 2H), 7.40-7.21 (m, 5H), 5.83-5.64 (m, 1.5 Hz, 1H), 3.99 (d, *J* = 8.1 Hz, 2H), 1.69 (s, 3H), 1.35 (s, 9H).
¹³C NMR (100 MHz, CDCl₃) δ 157.8, 144.5, 142.3, 135.6, 128.4, 128.4, 127.9, 126.1, 125.9, 113.5, 56.8, 35.3, 31.1, 16.0.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{20}H_{24}O_2S]^+$ 351.1389, found 351.1390.

(E)-4-((3-phenylbut-2-en-1-yl)sulfonyl)-1,1'-biphenyl (3ia)

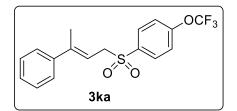

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ia** was

obtained as white solid (51.0 mg, 73% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.5 Hz, 2H), 7.74 (d, *J* = 6.6 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.52-7.41 (m, 3H), 7.36-7.23 (m, 5H), 5.86-5.68 (m, 1H), 4.05 (d, *J* = 8.1 Hz, 2H), 1.74 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 146.7, 144.7, 142.2, 139.1, 137.2, 129.1, 129.1, 128.8, 128.44, 128.0, 127.7, 127.4, 125.9, 113.3, 56.9, 16.1.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₂₂H₂₀O₂S]⁺ 371.1076, found 371.1075.



(*E*)-1-methoxy-4-((3-phenylbut-2-en-1-yl)sulfonyl)benzene (3ja)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ja** was obtained as white solid (60.0 mg, 99% yield, E/Z > 20/1).

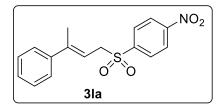
¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.8 Hz, 2H), 7.37-7.24 (m, 5H), 6.99 (d, J = 8.9 Hz, 2H), 5.78-5.68 (m, 1H), 3.99 (d, J = 8.2 Hz, 2H), 3.87 (s, 3H), 1.71 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 163.8, 144.3, 142.3, 130.7, 130.2, 128.4, 127.9, 125.9, 114.3, 113.6, 56.9, 55.7, 16.0.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{17}H_{18}O_3S]^+$ 325.0869, found 325.0870.

(*E*)-1-((3-phenylbut-2-en-1-yl)sulfonyl)-4-(trifluoromethoxy)benzene (3ak)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ka** was

obtained as white solid (58.0 mg, 82% yield, E/Z > 20/1).

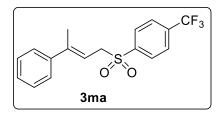

¹H NMR (400 MHz, CDCl₃) δ 8.11-7.87 (m, 2H), 7.45-7.14 (m, 7H), 5.81-5.64 (m, 1H), 4.03 (d, J = 8.1 Hz, 2H), 1.71 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 153.1, 145.0, 141.9, 136.8, 130.9, 128.5, 128.1, 125.8,

121.49, 120.9, 118.9, 112.8, 56.8, 16.0.

¹⁹**F** NMR (471 MHz, CDCl₃) δ -57.69.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₇H₁₅F₃O₃S]⁺ 379.0586, found 379.0584.


(E)-1-nitro-4-((3-phenylbut-2-en-1-yl)sulfonyl)benzene (3la)

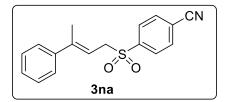
According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3la** was obtained as white solid (39.3 mg, 62% yield, E/Z > 20/1).

¹**H** NMR (500 MHz, CDCl₃) δ 8.31 (d, J = 8.4 Hz, 2H), 8.03 (d, J = 8.4 Hz, 2H), 7.28-7.17 (m, 5H), 5.63 (t, J = 8.2 Hz, 1H), 4.01 (d, J = 8.1 Hz, 2H), 1.69 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 150.9, 145.6, 144.4, 141.6, 130.1, 128.6, 128.3, 125.8, 124.2, 112.1, 56.7, 16.3.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{16}H_{15}NO_4S]^+$ 340.0614, found 340.0617.

(*E*)-1-((3-phenylbut-2-en-1-yl)sulfonyl)-4-(trifluoromethyl)benzene (3ma)

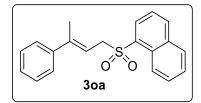

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ma** was

obtained as white solid (65.0 mg, 96% yield, E/Z > 20/1).

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 8.1 Hz, 2H), 7.41-7.21 (m, 5H), 5.76-5.67 (m, 1H), 4.05 (d, J = 8.1 Hz, 2H), 1.73 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 145.3, 142.2, 141.9, 129.3, 128.5, 128.2, 126.3, 126.3, 126.2, 126.2, 125.8, 112.5, 56.7, 16.1.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -63.14.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{17}H_{15}F_3O_2S]^+$ 363.0637, found 363.0635.


(*E*)-4-((3-phenylbut-2-en-1-yl)sulfonyl)benzonitrile (3na)

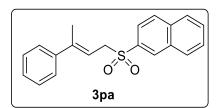
According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3na** was obtained as white solid (32.0 mg, 58% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 2H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.39-7.23 (m, 5H), 5.74-5.66 (m, 1H), 4.06 (d, *J* = 8.1 Hz, 2H), 1.74 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 145.4, 142.8, 141.7, 132.8, 129.4, 128.6, 128.3, 125.8, 117.6, 117.1, 112.2, 56.6, 16.2.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{17}H_{15}NO_2S]^+$ 320.0716, found 320.0712.

(E)-1-((3-phenylbut-2-en-1-yl)sulfonyl)naphthalene (3oa)

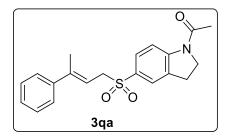

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **30a** was

obtained as yellow solid (58.0 mg, 90% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 8.87 (s, 1H), 8.25 (d, *J* = 8.6 Hz, 1H), 8.12 (d, *J* = 8.1 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.79-7.51 (m, 3H), 7.34-7.08 (m, 5H), 5.74-5.53 (m, 1H), 4.21 (d, *J* = 8.1 Hz, 2H), 1.50 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.7, 142.2, 135.3, 134.2, 133.8, 131.4, 129.2, 129.2, 128.8, 128.3, 127.8, 127.0, 125.8, 124.4, 124.2, 113.3, 56.3, 16.0.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{20}H_{18}O_2S]^+$ 345.0920, found 345.0921.



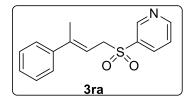
(E)-2-((3-phenylbut-2-en-1-yl)sulfonyl)naphthalene (3pa)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3pa** was obtained as white solid (47.0 mg, 73% yield, E/Z > 20/1).

¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.10-7.82 (m, 4H), 7.74-7.51 (m, 2H), 7.36-7.18 (m, 5H), 5.76 (t, *J* = 8.1 Hz, 1H), 4.09 (d, *J* = 8.1 Hz, 2H), 1.65 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 144.7, 142.2, 135.6, 135.3, 132.2, 130.5, 129.4, 129.3, 129.3, 128.4, 128.0, 127.9, 127.7, 125.9, 123.2, 113.3, 56.9, 16.1.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{20}H_{18}O_2S]^+$ 345.0920, found 345.0919.

(E)-1-(5-((3-phenylbut-2-en-1-yl)sulfonyl)indolin-1-yl)ethan-1-one (3qa)

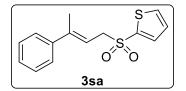

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 3/1). **3qa** was

obtained as yellow solid (58.0 mg, 81% yield, E/Z > 20/1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.5 Hz, 1H), 7.81-7.59 (m, 2H), 7.38-7.22 (m, 5H), 5.80-5.62 (m, 1H), 4.14 (t, *J* = 8.6 Hz, 2H), 3.99 (d, *J* = 8.1 Hz, 2H), 3.21 (t, *J* = 8.6 Hz, 2H), 2.26 (s, 3H), 1.75 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.7, 147.5, 144.4, 142.3, 133.5, 132.9, 132.2, 130.1, 129.3, 128.4, 127.9, 125.8, 124.9, 116.6, 113.5, 56.9, 49.2, 27.4, 24.4, 16.2.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{20}H_{21}NO_3S]^+$ 378.1134, found 378.1131.


(*E*)-3-((3-phenylbut-2-en-1-yl)sulfonyl)pyridine (3ra)

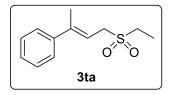
According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ra** was obtained as yellow solid (41.0 mg, 76% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 9.11 (d, *J* = 2.3 Hz, 1H), 8.88 (d, *J* = 4.8 Hz, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 7.49 (dd, *J* = 8.0, 4.8 Hz, 1H), 7.40-7.19 (m, 5H), 5.84-5.63 (m, 1H), 4.07 (d, *J* = 8.1 Hz, 2H), 1.72 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 154.3, 149.5, 145.4, 141.8, 136.4, 135.0, 128.5, 128.2, 125.82, 123.7, 112.4, 57.0, 16.2.

HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₅H₁₅NO₂S]⁺ 296.0716, found 296.0717.

(E)-2-((3-phenylbut-2-en-1-yl)sulfonyl)thiophene (3sa)

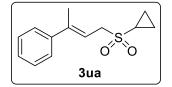

According to the general procedure, the product was purified through column

chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3sa** was obtained as white solid (45 mg, 81% yield, E/Z > 20/1).

¹H NMR (400 MHz, CDCl₃) δ 7.88-7.51 (m, 2H), 7.38-7.21 (m, 5H), 7.19-7.09 (m, 1H), 5.87-5.71 (m, 1.5 Hz, 1H), 4.11 (d, *J* = 8.1 Hz, 2H), 1.79 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 145.2, 142.1, 139.3, 134.6, 134.5, 128.4, 128.0, 127.9,

126.0, 113.2, 57.8, 16.0.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{14}H_{14}O_2S_2]^+$ 301.0327, found 301.0328.

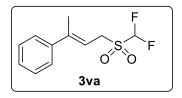

(*E*)-(4-(ethylsulfonyl)but-2-en-2-yl)benzene (3ta)

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ta** was obtained as white solid (38.0 mg, 79% yield, E/Z > 20/1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.44-7.21 (m, 5H), 5.96-5.64 (m, 1H), 3.84 (d, *J* = 8.0 Hz, 2H), 2.93 (q, *J* = 7.5 Hz, 2H), 2.10 (s, 3H), 1.34 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.2, 142.0, 128.5, 128.1, 126.0, 113.1, 52.9, 46.1, 16.7, 6.5.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{12}H_{16}O_2S]^+$ 247.0763, found 247.0763.


(E)-(4-(cyclopropylsulfonyl)but-2-en-2-yl)benzene (3ua)

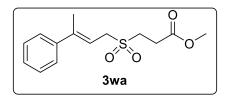
According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3ua** was

obtained as yellow solid (39.0 mg, 83% yield, E/Z > 20/1).

¹H NMR (400 MHz, CDCl₃) δ 7.53-7.21 (m, 5H), 5.96-5.86 (m, 1H), 3.98 (d, *J* = 8.1 Hz, 2H), 2.90-2.38 (m, 1H), 2.18 (s, 3H), 1.31-1.24 (m, 2H), 1.07-0.98 (m, 2H).
¹³C NMR (100 MHz, CDCl₃) δ 144.0, 142.1, 128.5, 128.0, 126.0, 113.3, 54.4, 28.8, 16.7, 4.7.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{13}H_{16}O_2S]^+$ 259.0763, found 259.0765.

(E)-(4-((difluoromethyl)sulfonyl)but-2-en-2-yl)benzene (3va)

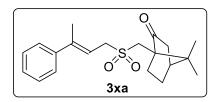

According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3va** was obtained as yellow solid (46.0 mg, 94% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.48-7.28 (m, 5H), 6.18 (t, *J* = 52.8 Hz, 1H), 5.86-5.72 (m, 1H), 4.12 (d, *J* = 8.0 Hz, 2H), 2.19 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 147.0, 141.8, 128.5, 128.3, 126.0, 117.8, 115.0, 112.1, 108.8, 49.2, 16.9.

¹⁹**F** NMR (471 MHz, CDCl₃) δ -122.99.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{11}H_{12}F_2O_2S]^+$ 269.0418, found 269.0418.


methyl (E)-2-((3-phenylbut-2-en-1-yl)sulfonyl)acetate (3wa)

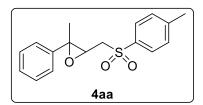
According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 3/1). **3wa** was

obtained as yellow solid (32.0 mg, 59% yield, E/Z > 20/1).

¹H NMR (400 MHz, CDCl₃) δ 7.47-7.25 (m, 5H), 5.95-5.76 (m, 1H), 3.97 (d, *J* = 8.0 Hz, 2H), 3.73 (s, 3H), 3.32 (t, *J* = 7.5 Hz, 2H), 2.89 (t, *J* = 7.6 Hz, 2H), 2.18 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 170.9, 144.9, 141.9, 128.5, 128.2, 126.0, 112.5, 54.34, 52.5, 47.1, 26.5, 16.8.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{14}H_{18}O_4S]^+$ 305.0818, found 305.0807.

(E)-7,7-dimethyl-1-(((3-phenylbut-2-en-1-


yl)sulfonyl)methyl)bicyclo[2.2.1]heptan-2-one (3xa)

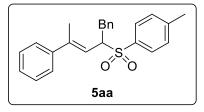
According to the general procedure, the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **3xa** was obtained as yellow solid (57.0 mg, 86% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.67-7.09 (m, 5H), 6.03-5.87 (m, 1H), 4.31 (dd, *J* = 14.2, 8.3 Hz, 1H), 4.03 (dd, *J* = 14.2, 7.6 Hz, 1H), 3.46 (d, *J* = 14.9 Hz, 1H), 2.78 (d, *J* = 14.9 Hz, 1H), 2.49-2.30 (m, 2H), 2.19 (s, 3H), 2.16-1.85 (m, 4H), 1.53-1.41 (m, 1H), 1.06 (s, 3H), 0.88 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 144.5, 142.3, 128.4, 127.9, 126.0, 113.4, 59.2, 56.5, 49.9, 48.7, 42.7, 42.6, 27.1, 25.5, 19.8, 19.7, 16.8.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{20}H_{26}O_3S]^+$ 369.1492, found 369.1495.

2-methyl-2-phenyl-3-(tosylmethyl)oxirane (4aa)

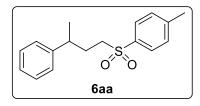

According to literature procedure^[8], Fill a mixture of 3aa (0.1 mmol, 28.6 mg), m-

CPBA (0.2 mmol, 52.9 mg), NaHCO₃ (0.3 mmol, 25.2 mg), DCM (2 mL). Stir the resulting mixture at room temperature overnight. the product was purified through column chromatography on silica gel (petroleum ether/ethyl acetate, 100/0 to 5/1). **4aa** was obtained as white solid (25.7 mg, 90% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.39-6.99 (m, 7H), 3.53-3.29 (m, 2H), 3.14 (t, *J* = 6.0 Hz, 1H), 2.40 (s, 3H), 1.38 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 144.2, 139.8, 135.2, 129.1, 127.4, 127.3, 126.8, 124.0, 59.45, 58.2, 55.5, 20.7, 16.9.

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{17}H_{18}O_3S]^+$ 325.0864, found 325.0869.


(*E*)-(2-tosylpent-3-ene-1,4-diyl)dibenzene (5aa)

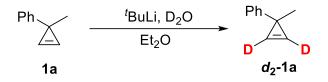
According to literature procedure^[9],**3aa** (57.2 mg, 0.2 mmol) was dissolved in 2 mL THF. The solution was cooling to -78 °C. ⁿBuLi (1 equiv, 1.6 M in hexane, 0.2 mmol) was added to the mixture under N₂ atmosphere and stirred for 1 h. Benzyl bromide (34.2 mg, 0.2 mmol 1 equiv) was added to the mixture and the reaction was stirred at 0 °C for 2 h. The reaction was warmed to room temperature and quenched by 2 mL saturated NH₄Cl solution. After extraction with EtOAc, the organic layer was dried over anhydrous Na₂SO₄ and filtered. The solvent of the filtrate was removed under vacuum. The crude product was purified by flash column chromatography on silica gel with PE/EA to provide **5aa** as white solid (53.5 mg, 71% yield, E/Z > 20/1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.84-7.71 (m, 2H), 7.32-7.11 (m, 12H), 5.63-5.48 (m, 1H), 4.18-4.03 (m, 1H), 3.76-3.57 (m, 1H), 3.04-2.87 (m, 1H), 2.43 (s, 3H), 1.26 (d, *J* = 1.4 Hz, 3H).

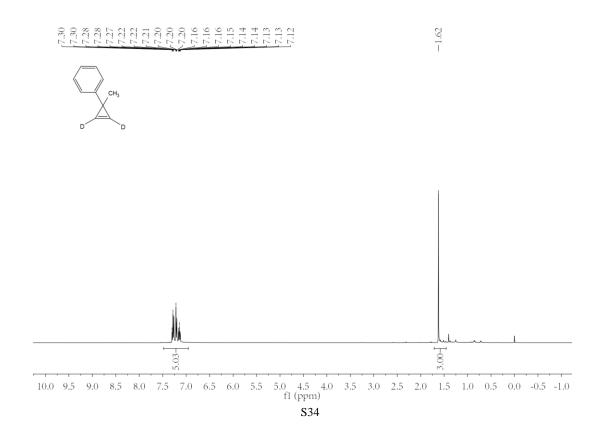
¹³**C NMR** (100 MHz, CDCl₃) δ 144.7, 144.0, 142.5, 137.0, 134.9, 129.6, 129.2, 129.2, 128.5, 128.3, 127.7, 126.8, 125.8, 119.8, 67.0, 34.1, 21.7, 16.1.

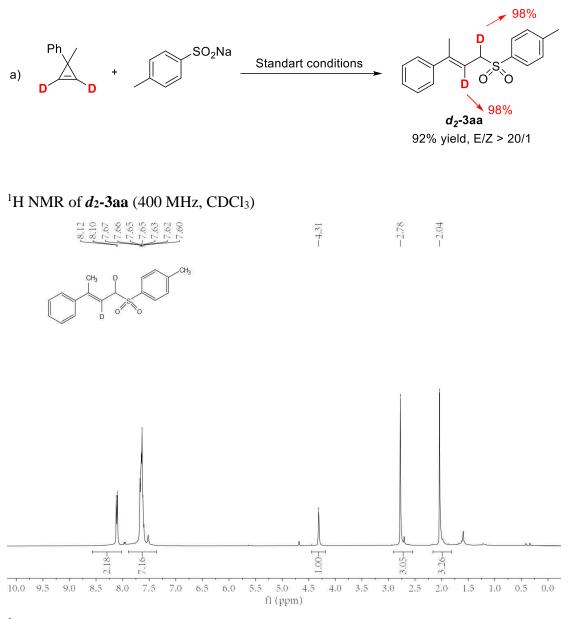
HRMS-ESI (m/z): $[M+Na]^+$ calcd for $[C_{24}H_{24}O_2S]^+$ 399.1389, found 399.1392.

1-methyl-4-((3-phenylbutyl)sulfonyl)benzene (6aa)

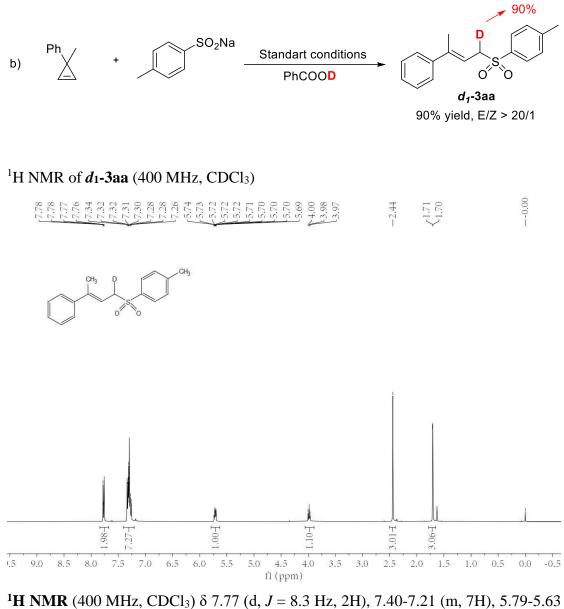

According to literature procedure^[10], Fill a mixture of 3aa (0.1 mmol, 28.6 mg), 10 wt% Pd/C (0.01 mmol, 10.6 mg), methanol (3 mL) and ethyl acetate (1.5 mL) with a H₂ balloon. Stir the resulting mixture at room temperature overnight. Then, the reaction mixture was filtered, and concentrated under vacuum to afford 6aa as white solid (25.7 mg, 90% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.69-7.60 (m, 2H), 7.29-7.10 (m, 5H), 7.02-6.97 (m, 2H), 2.98-2.74 (m, 2H), 2.71-2.60 (m, 1H), 2.37 (s, 3H), 2.03-1.77 (m, 2H), 1.17 (d, *J* = 6.9 Hz, 3H).


¹³**C NMR** (100 MHz, CDCl₃) δ 143.8, 143.6, 135.1, 128.8, 127.7, 127.0, 125.8, 125.6, 53.7, 37.8, 29.5, 21.3, 20.6.


HRMS-ESI (m/z): [M+Na]⁺ calcd for [C₁₇H₂₀O₂S]⁺ 311.1076, found 311.1079.

6. Deuterium Reactions



The substrate d_2 -1a was synthesized based on the reported literature.^[11] To a stirring solution of cyclopropene 1a (258 mg, 1.98 mmol, 1.0 equiv.) in dry Et₂O (7 mL) at - 78 °C was added dropwise a solution of ^{*t*}BuLi (2.91 mL of 1.7M solution in Pentane, 4.95 mmol, 2.5 equiv.). The yellow solution was stirred for 30 min at -78 °C and 30 min at 0 °C, where it turned deep red. The mixture was again cooled to -78 °C and was quenched with dry CD₃OD (402 µL, 9.90 mmol, 5.0 equiv.), which led to complete discoloration. The reaction was warmed to room temperature, diluted with D₂O (5 mL) and extracted with Et₂O (3 x 5 mL). The combined organic layers were washed with water (5 mL), brine (5 mL), dried with MgSO₄, filtered and concentrated under vacuum. Purification by flash chromatography (Eluent: Pentane) afforded *d*₂-1a as a colorless liquid (155 mg, 59% yield, 98.5% D). ¹H NMR (400 MHz, CDCl₃) δ 7.48-6.95 (m, 5H), 1.62 (s, 3H).

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.9 Hz, 2H), 7.90-7.36 (m, 7H), 4.31 (s, 1H), 2.78 (s, 3H), 2.04 (s, 3H).

(m, 1H), 3.98 (t, J = 7.4 Hz, 1H), 2.44 (s, 3H), 1.70 (d, J = 1.4 Hz, 3H).

7. Proposed Mechanism

The proposed mechanism is shown in Figure S1 based on the results presented above and previous studies^[12]. The reaction initiates with Pd(0) species, which undergoes oxidative addition with PhCOOH to give an intermediate **II**. Intermediate **II** subsequently undergoes ligand exchange with R-SO₂Na **2** to give Pd(II) species **III**. The palladium cyclopropane complex **IV** was gave by hydropalladation of cyclopropene **1** with species **III**. This pivotal intermediate **IV** undergoes β -carbon elimination, it forms the ring-opening π -allylpalladium intermediate **V**. The lone pair of electrons on the sulfur atom attacks π -allylpalladium complexes provides the target product **3** and regenerates the Pd catalyst.

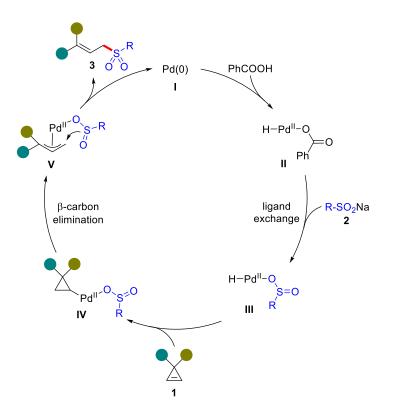
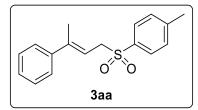
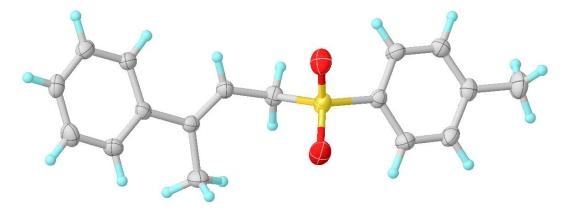
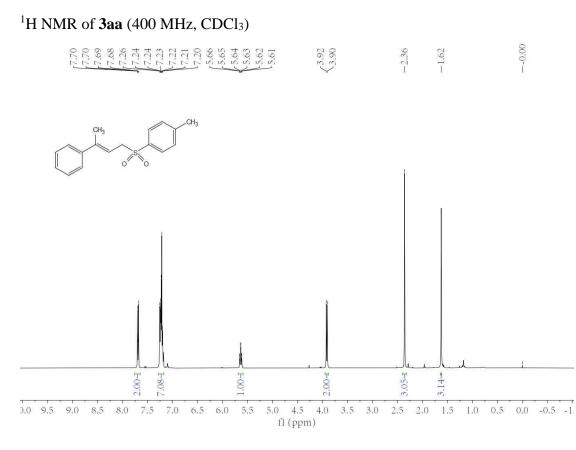




Figure S1 Proposed Mechanism

8. X-ray Structure of Compound 3aa

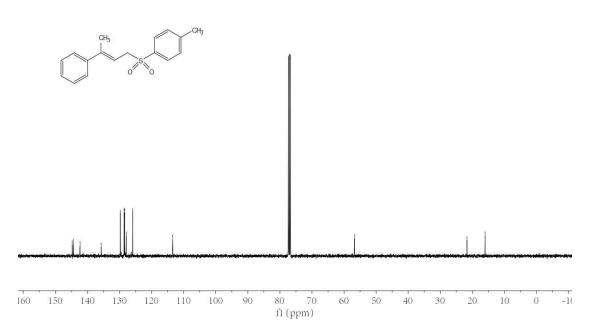
Single crystal of **3aa** (CCDC 2405802) was obtained by recrystallization from ethyl acetate. X-ray crystallographic data were collected using a Bruker APEX-II CCD diffractometer, equipped with a sealed tube Cu-K α radiation (λ =1.54178 Å) at low temperature or at ambient temperature under liquid N₂ flow. The crystal structure was solved with the Superflip, structure solution program using Charge Flipping and refined by direct methods using SHELXL-2018/3 and with full–matrix least squares on F^2 using SHELXL-2018/3. All the non–hydrogen atoms were refined anisotropically.

Table S1 Crystal data and structure refinement for 3aa.

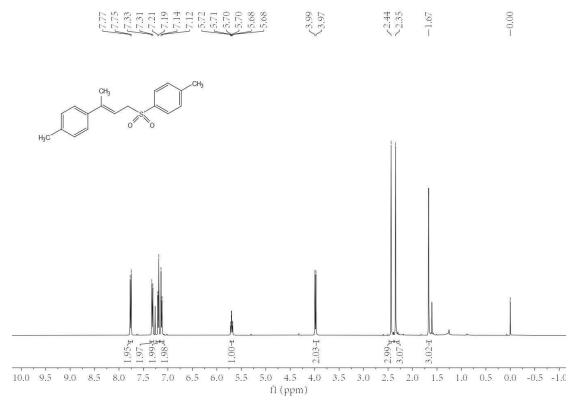

Identification code	mo240831b
Empirical formula	$C_{17}H_{18}O_2S$
Formula weight	286.37
Temperature/K	304.00
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	5.6166(2)
b/Å	7.9642(3)
c/Å	33.1774(9)

α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	1484.08(9)
Z	4
$\rho_{calc}g/cm^3$	1.282
μ/mm^{-1}	0.217
F(000)	608.0
Crystal size/mm ³	0.1 imes 0.1 imes 0.08
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	7.094 to 61.046
Index ranges	$-8 \leqslant h \leqslant 7, -9 \leqslant k \leqslant 11, -47 \leqslant l \leqslant 33$
Reflections collected	21439
Independent reflections	4411 [$R_{int} = 0.0668, R_{sigma} = 0.0567$]
Data/restraints/parameters	4411/0/183
Goodness-of-fit on F ²	1.096
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0616, wR_2 = 0.1318$
Final R indexes [all data]	$R_1 = 0.0853, wR_2 = 0.1434$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.40/-0.23
Flack parameter	0.06(4)

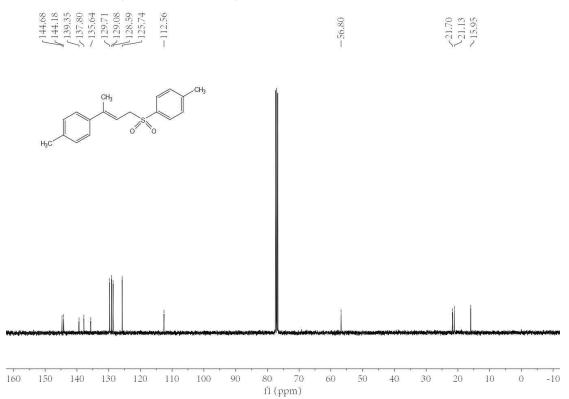
9. References


- [1] D. H. T. Phan, K. G. M. Kou, V. M. Dong, J. Am. Chem. Soc. 2010, 132, 16354-16355.
- [2] A. Parra, L. Amenos, M. Guisan-Ceinos, A. Lopez, J. L. Garcia Ruano, M. Tortosa, J. Am. Chem. Soc. 2014, 136, 15833-15836.
- [3] P. Guo, W. Sun, Y. Liu, Y.-X. Li, T.-P. Loh, Y. Jiang, Org. Lett. 2020, 22, 5978-5983.
- [4] W. Sherrill, R. Kim, M. Rubin, *Tetrahedron* 2008, **64**, 8610-8617.
- [5] L. Zhang, M. Oestreich, Chem. Eur. J. 2019, 28, 14304-14307.
- [6] M. A. Smith, H. G. Richey, Organometallics. 2007, 26, 609-616.
- [7] S. Cai, D. Ge, L. Sun, W. Rao, X. Wang, Z. Shen, X. Chu, *Green Chem.* 2021, 23, 935-941.
- [8] C. Liu, Y. Li, Q. Zhang, Chin. J. Org. Chem. 2023, 43, 1091-1101.
- [9] C. Liu, Q. Wang, Angew Chem Int Ed. 2018, 57, 4727-4731.
- [10] Y. Ding, J. Long, X. Fang, Org. Chem. Front. 2021, 8, 5852-5857.
- [11] X. Bugaut, F. Liu, F. Glorius, J. Am. Chem. Soc. 2011, 133, 8130-8133.
- [12] J. Wu, B. Wang, J. Zou, X. Guo, W. Chang, L. Liu, X. Cao, J. Li, Org. Lett. 2025, 27, 1350-1355.

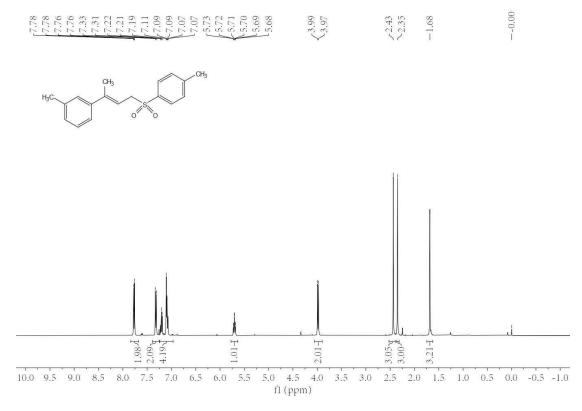
10. NMR Spectra



¹³C NMR of 3aa (100 MHz, CDCl₃)


r144.72 144.41 -142.29 r135.71 r135.71 r128.57 -128.39 r128.39 r128.39 r125.87	-113.44	-56.77	-21.69
	1		

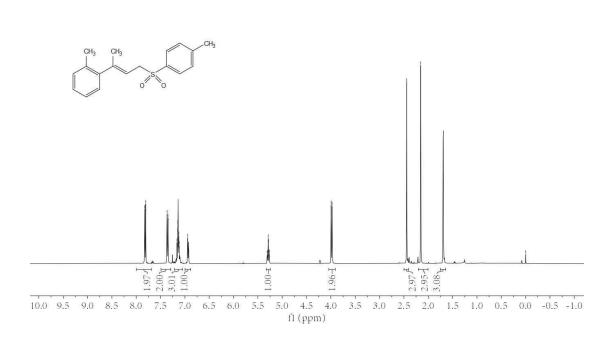
¹H NMR of **3ab** (400 MHz, CDCl₃)



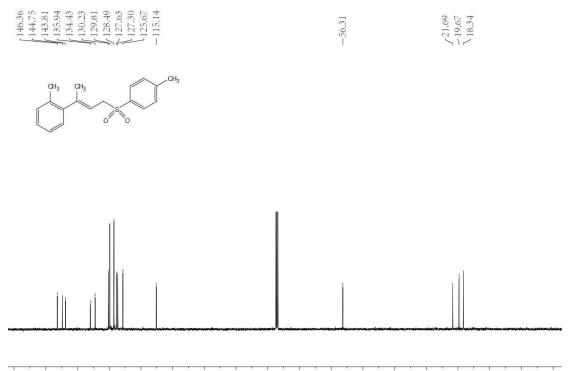
¹³C NMR of **3ab** (100 MHz, CDCl₃)

S42

¹H NMR of **3ac** (400 MHz, CDCl₃)

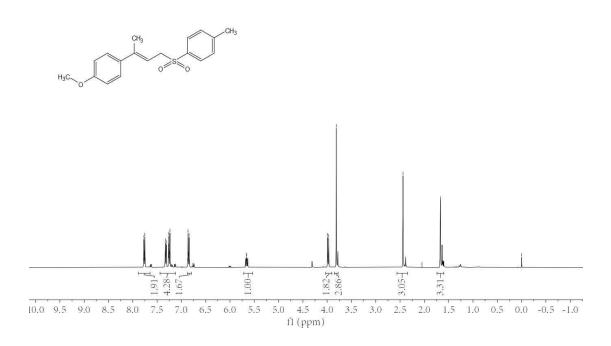


¹³C NMR of **3ac** (100 MHz, CDCl₃)


-113.20	- 56.78	$\chi^{21.70}_{21.52}$ $\sim_{16.07}$
H ₃ C CH ₃		
160 150 140 130 120 110 100 90	80 70 60 50 40 fl (ppm)	30 20 10 0 -10

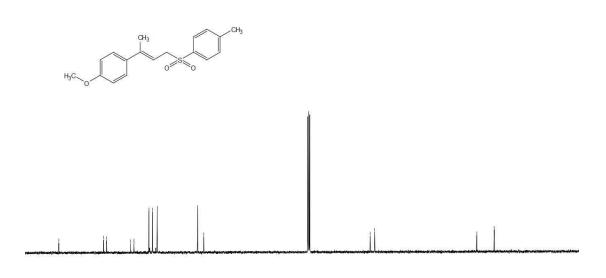
¹H NMR of **3ad** (400 MHz, CDCl₃)

 $\begin{array}{c} 7.33\\ 7.37\\ 7.35\\ 7.35\\ 7.35\\ 7.15\\ 7.15\\ 7.15\\ 7.12\\ 7.12\\ 7.12\\ 6.95\\ 7.12\\$


¹³C NMR of **3ad** (100 MHz, CDCl₃)

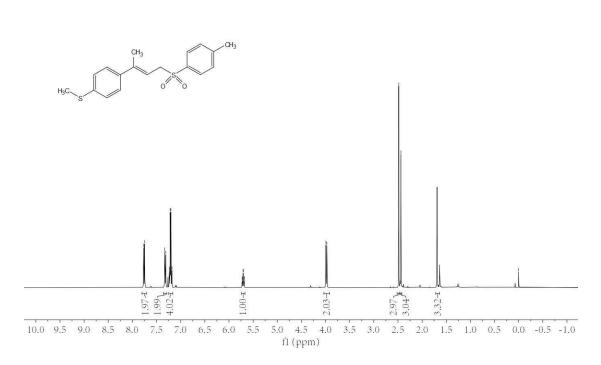
-10 . 40 fl (ppm)

¹H NMR of 3ae (400 MHz, CDCl₃)


7.77 7.77 7.77 7.7.7 7.7.7 7.7.3 7.7.3 7.7.3 7.7.3 7.7.2 6.86 6.86 6.86 6.86 6.86 6.86 6.86 6.86 6.86 6.86 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.65 5.75 5.65 5.65 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.555.55

---0.00

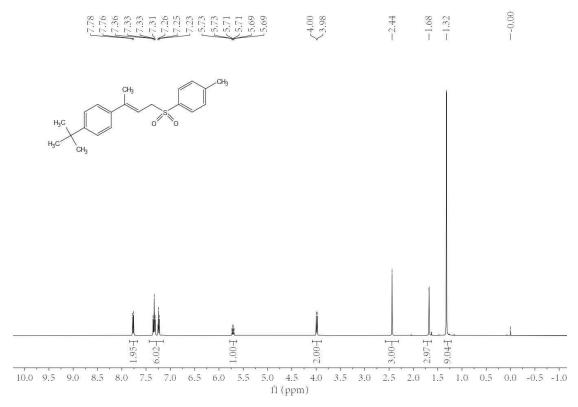
¹³C NMR of **3ae** (100 MHz, CDCl₃)


-159.41 -159.41 -135.72 -135.72 -135.72 -135.72 -135.63 -113.63 -113.63 -111.67	∠56.84 ∼55.33	-21.69	-15.95
--	------------------	--------	--------

70 -10 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹H NMR of **3af** (400 MHz, CDCl₃)

-0.00

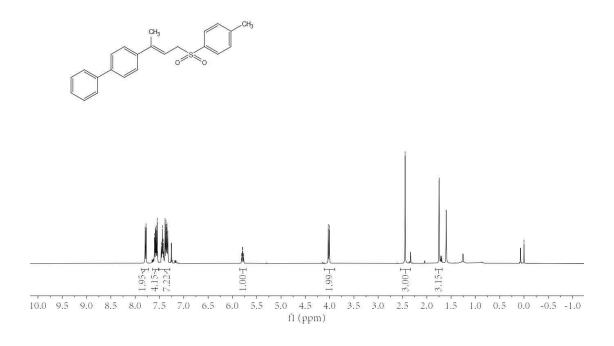


¹³C NMR of **3af** (100 MHz, CDCl₃)

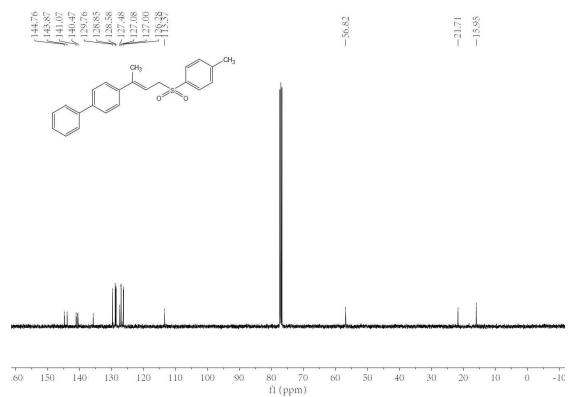
$\int_{-112.82}^{144.74} \int_{-128.44}^{144.74} \int_{-128.54}^{138.37} \int_{-128.54}^{126.24} \int_{-112.82}^{126.24}$	-56.79	~21.69 ζ ^{15.85} 15.68
H ₃ C _S CH ₃ CH ₃		
160 150 140 130 120 110 100 90 80	70 60 50 40	30 20 10 0 -10

fl (ppm) **S46**

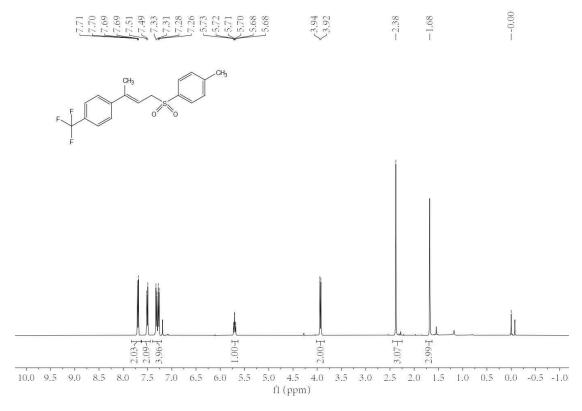
¹H NMR of **3ag** (400 MHz, CDCl₃)


¹³C NMR of **3ag** (100 MHz, CDCl₃)

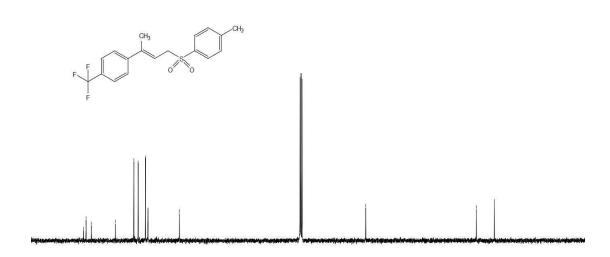
$\int_{125,30}^{150,99} \int_{144,05}^{144,05} \int_{129,72}^{144,05} \int_{129,72}^{139,29} \int_{125,30}^{7} \int_{125,30}^{125,35} \int_{-112,68}^{-112,68} dx^{-1}$	56.80	-34.56 -31.30	-21.70 -15.90	
H ₃ C CH ₃ CH ₃ CH ₃				
H ₃ C CH ₃				
u İ				


-10 Ó fl (ppm)

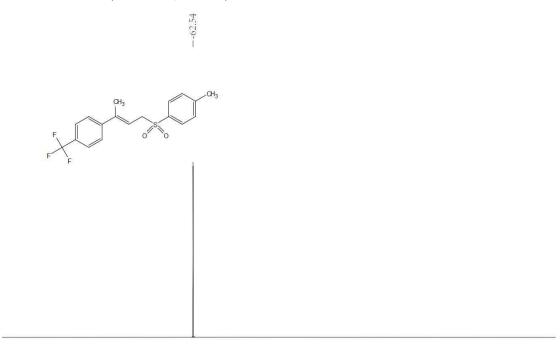
S47


¹H NMR of **3ah** (400 MHz, CDCl₃)

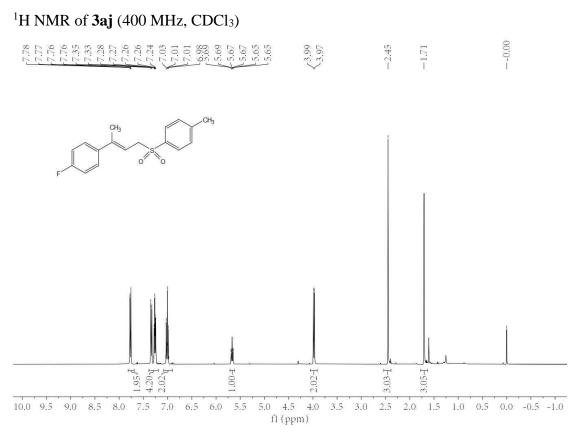
¹³C NMR of **3ah** (100 MHz, CDCl₃)



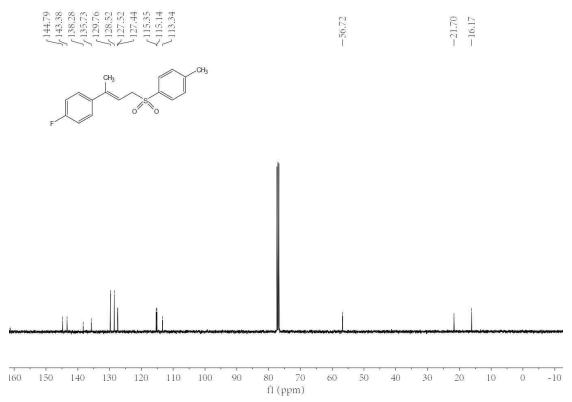
¹H NMR of **3ai** (400 MHz, CDCl₃)


¹³C NMR of **3ai** (100 MHz, CDCl₃)

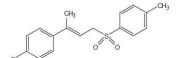
	145.71 144.95 143.67 135.67 135.67 135.67 135.67 125.41 125.41 125.41 125.41 125.37 115.46	- 56.64	-21.70	-16.04
--	--	---------	--------	--------

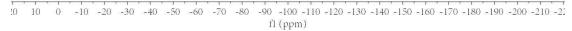


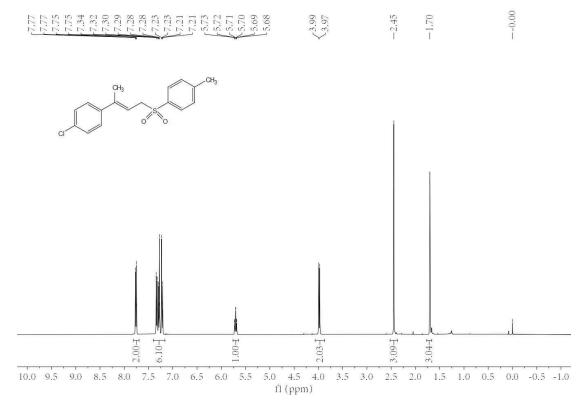
-10 fl (ppm)


¹⁹F NMR of **3ai** (471 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

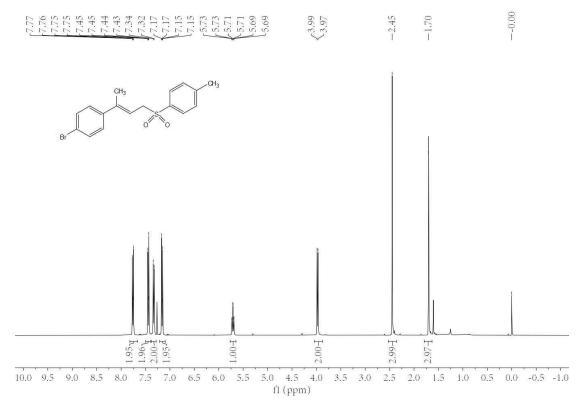



¹³C NMR of **3aj** (100 MHz, CDCl₃)

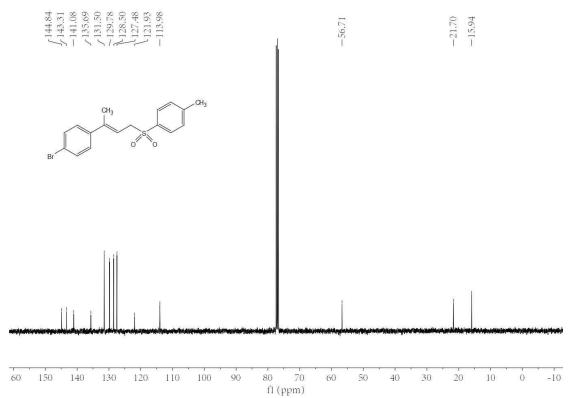

¹⁹F NMR of **3aj** (471 MHz, CDCl₃)

--114.33

¹H NMR of **3ak** (400 MHz, CDCl₃)

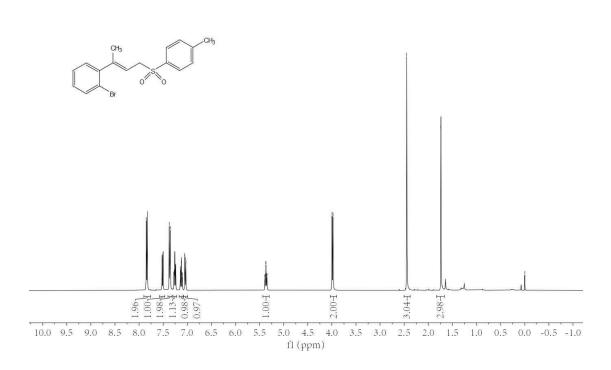


¹³C NMR of **3ak** (100 MHz, CDCl₃)

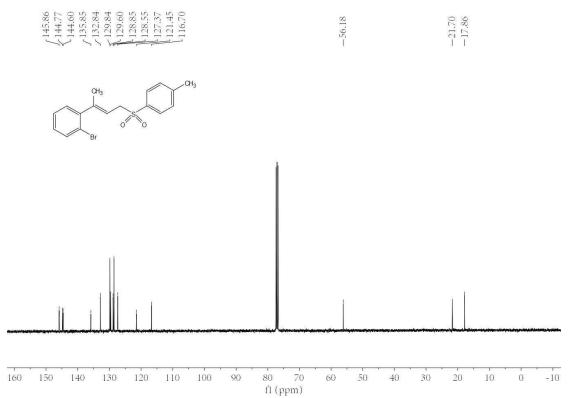

NMR OF JAK (100 MHZ, CDCI3)		
f144.85 f144.61 f135.69 f135.69 f135.74 f128.50 f127.15 -113.91	-56.70	-21.71
CH3 CH3 CH3 CH3 CH3 CH3		

-10 Ò fl (ppm)

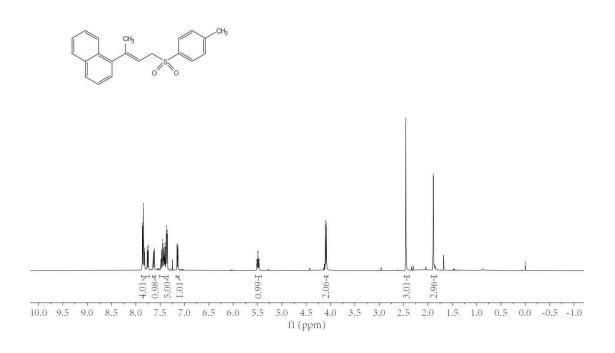
¹H NMR of **3al** (400 MHz, CDCl₃)



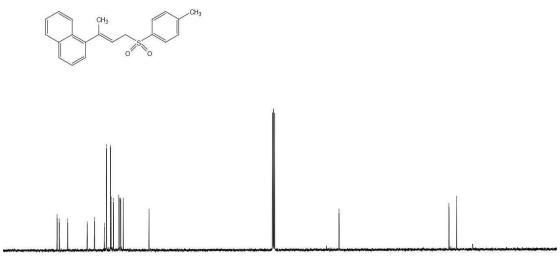
¹³C NMR of **3al** (100 MHz, CDCl₃)



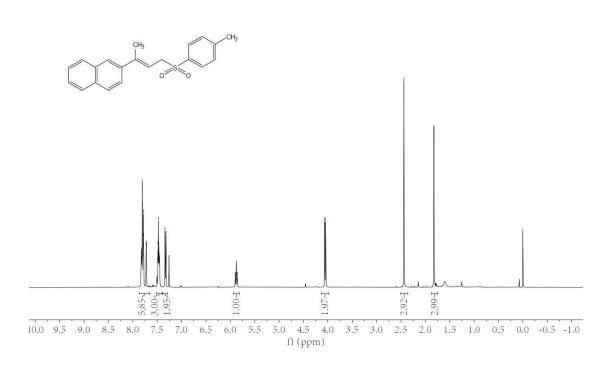
¹H NMR of **3am** (400 MHz, CDCl₃)


--0.00

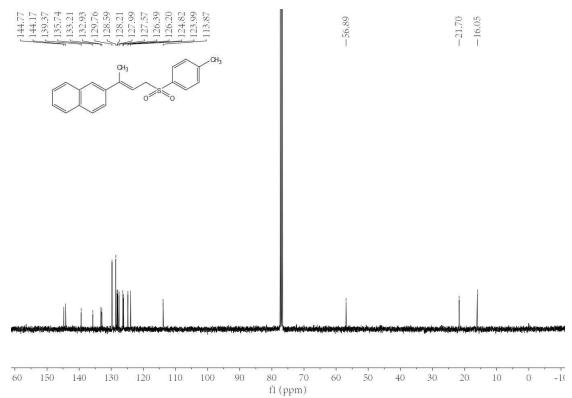
¹³C NMR of **3am** (100 MHz, CDCl₃)



¹H NMR of **3an** (400 MHz, CDCl₃)

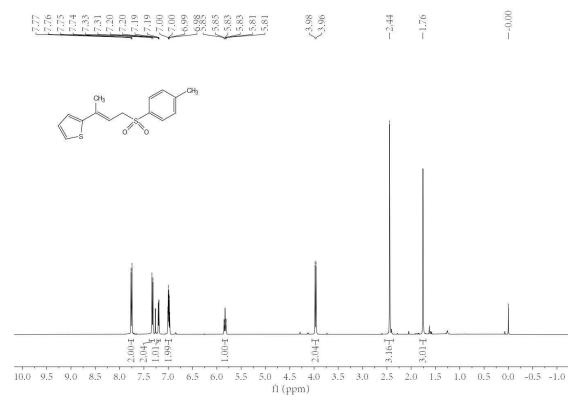

¹³C NMR of **3an** (100 MHz, CDCl₃)

145.46 144.78 144.78 135.95 135.95 135.95 135.95 135.95 125.86 125.86 125.86 125.48 125.48 125.48 125.58	-56.45	~21.73

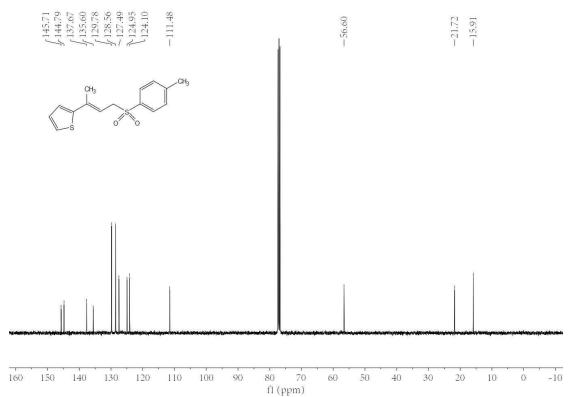


-10 fl (ppm)

¹H NMR of **3ao** (400 MHz, CDCl₃)

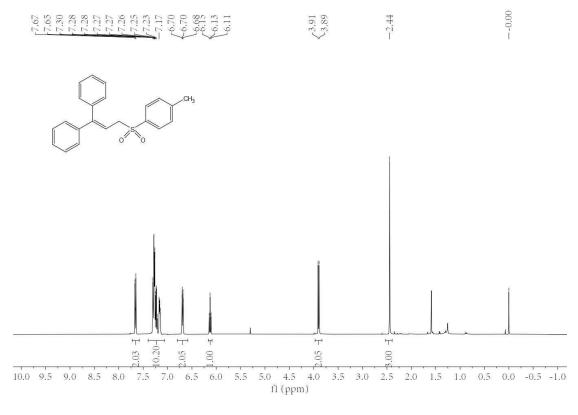


¹³C NMR of **3ao** (100 MHz, CDCl₃)

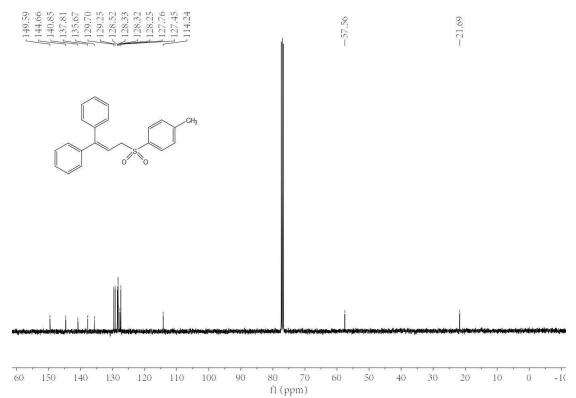


S56

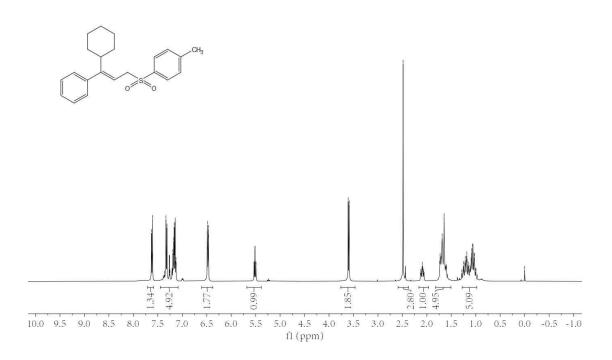
¹H NMR of **3ap** (400 MHz, CDCl₃)

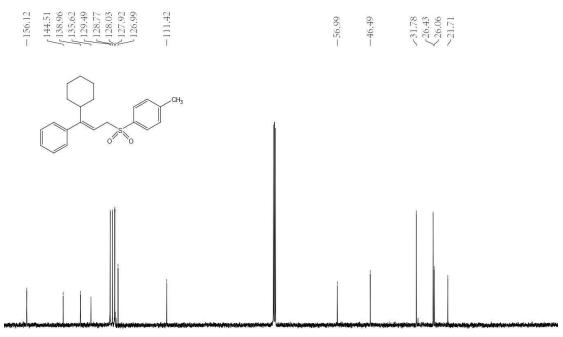


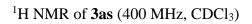
¹³C NMR of **3ap** (100 MHz, CDCl₃)



S57

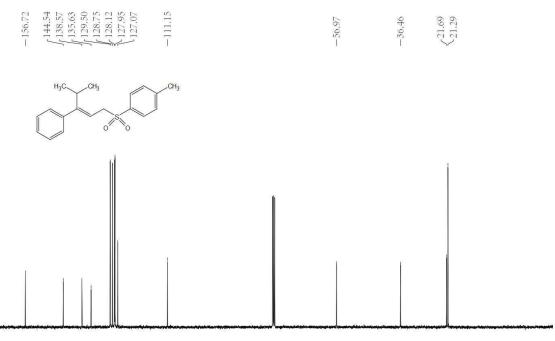

¹H NMR of **3aq** (400 MHz, CDCl₃)

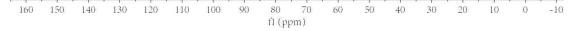

¹³C NMR of **3aq** (100 MHz, CDCl₃)

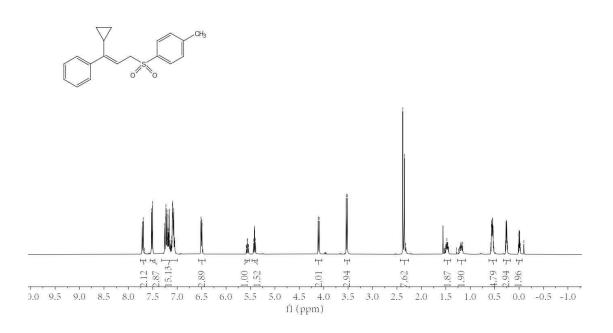

¹H NMR of **3ar** (400 MHz, CDCl₃)

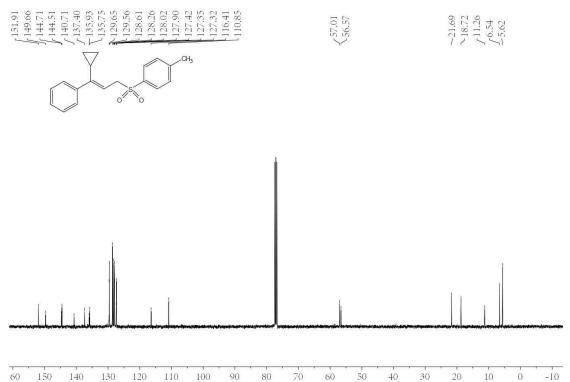


¹³C NMR of **3ar** (100 MHz, CDCl₃)




-10 fl (ppm)


¹³C NMR of **3as** (100 MHz, CDCl₃)



¹H NMR of **3at** (400 MHz, CDCl₃)

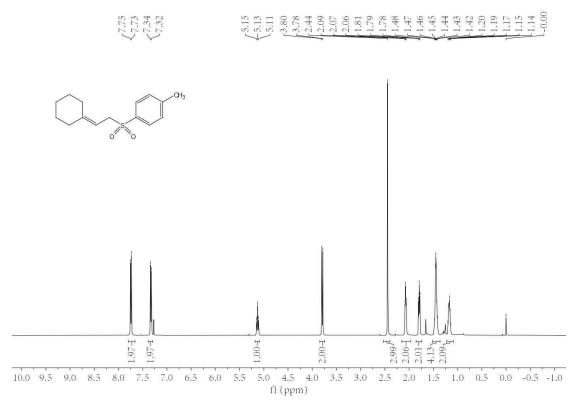
7.72 7.75 7.557.55


¹³C NMR of **3at** (100 MHz, CDCl₃)

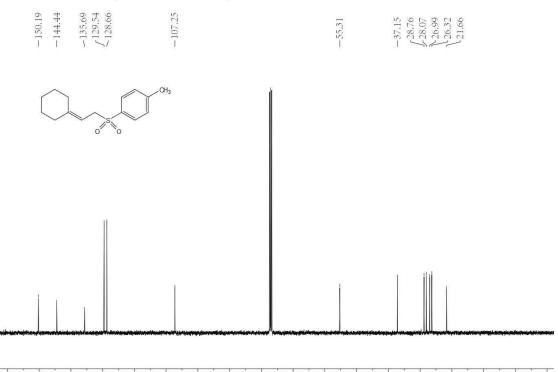
fl (ppm) **S61**

¹H NMR of **3au** (400 MHz, CDCl₃)

7,7.79 7,7.79 7,7.79 7,7.78 7,7.78 7,7.78 7,7.78 7,7.79 7,7.79 7,7.72 7,777 7,772

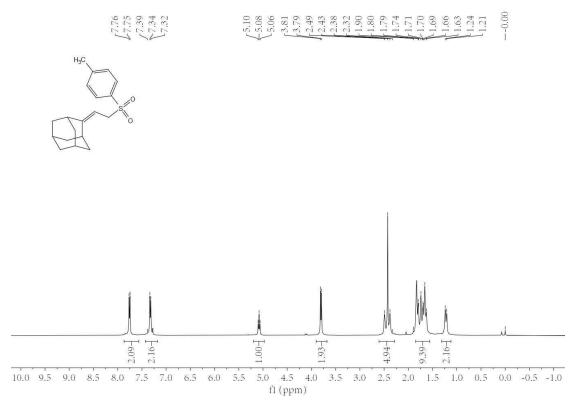


¹³C NMR of **3au** (100 MHz, CDCl₃)

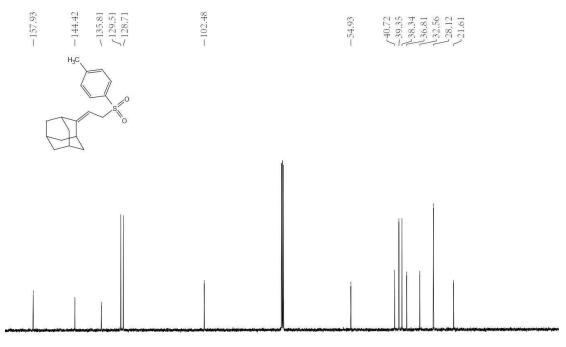

$-\frac{149.30}{5135.67}$ $-\frac{114.77}{5135.67}$ $-\frac{1128.60}{1127.74}$ $-\frac{128.20}{127.68}$	- 56,60	-31.78	Γ21.70 -13.81 -13.81
CH3 0 S 0 CH3			

.60 150 70 0 -10 140 130 120 110 100 90 80 60 50 40 30 20 10 fl (ppm)

¹H NMR of **3av** (400 MHz, CDCl₃)

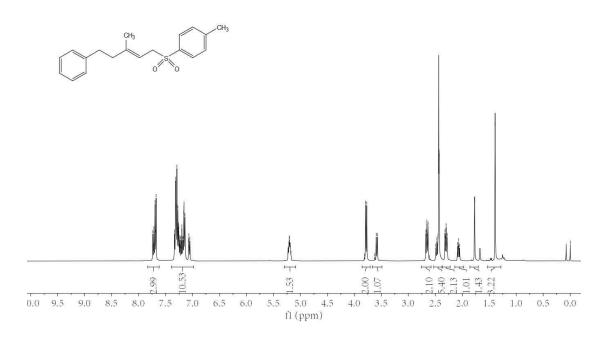


¹³C NMR of **3av** (100 MHz, CDCl₃)

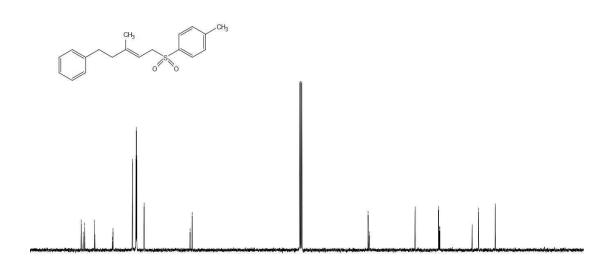


-10 fl (ppm)

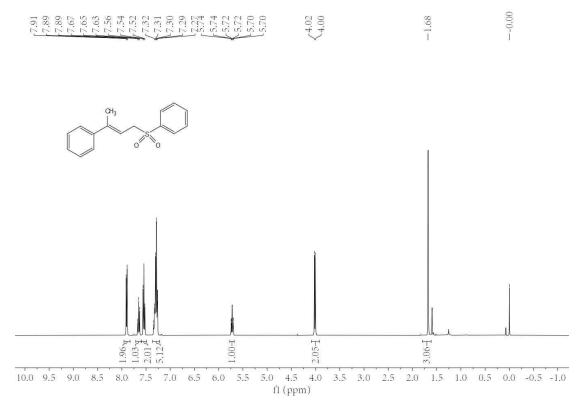
¹H NMR of **3aw** (400 MHz, CDCl₃)



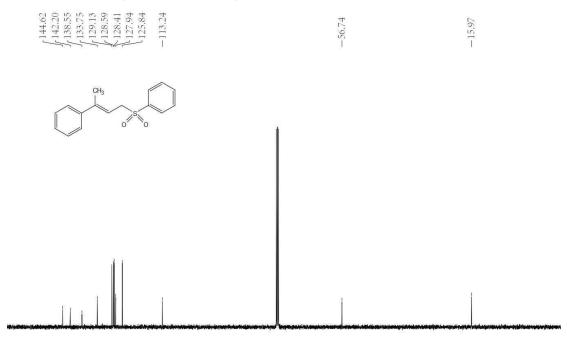
¹³C NMR of **3aw** (100 MHz, CDCl₃)


-10 Ó fl (ppm)

¹H NMR of **3ax** (400 MHz, CDCl₃)

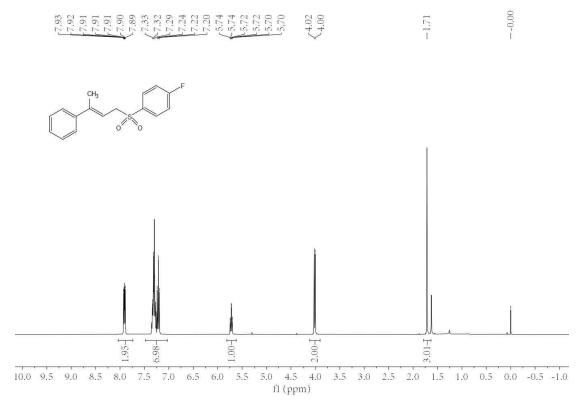

¹³C NMR of **3ax** (100 MHz, CDCl₃)

145.65 144.58 144.58 144.58 144.58 144.58 144.58 121.35 128.58 128.	56.12 55.74 55.74 55.74 741.45 33.912 33.51 23.55 23.55 23.55 21.70 21.69 V16.41
--	--

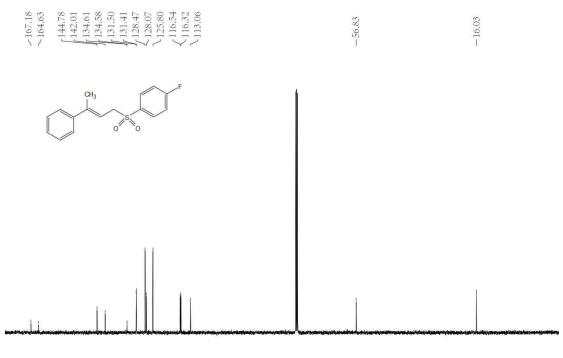


-1(fl (ppm)

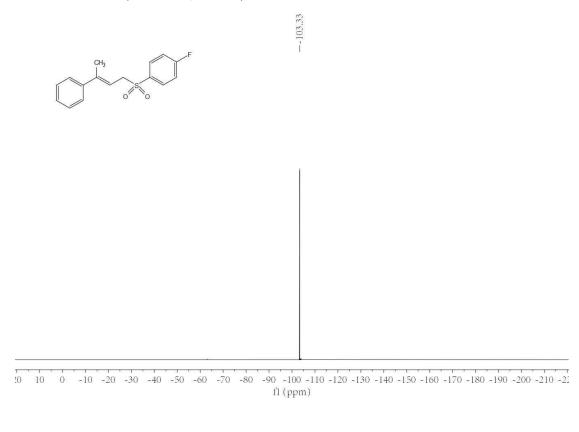
¹H NMR of **3ba** (400 MHz, CDCl₃)



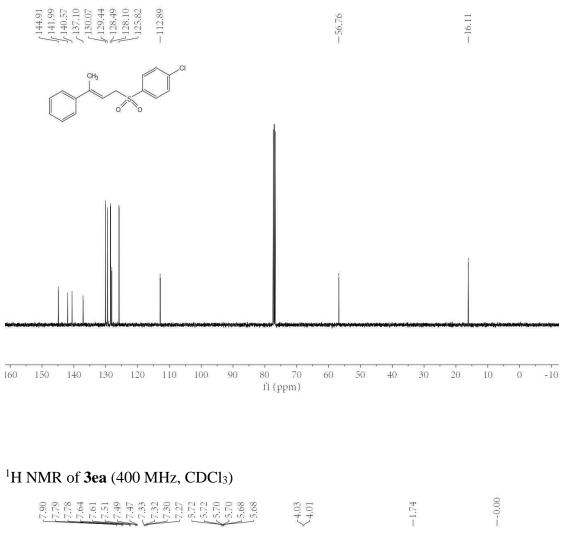
¹³C NMR of **3ba** (100 MHz, CDCl₃)

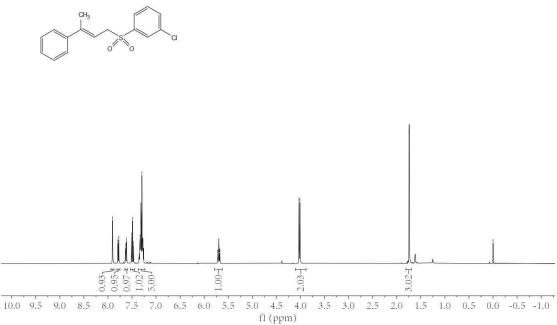


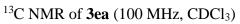
-10 fl (ppm)

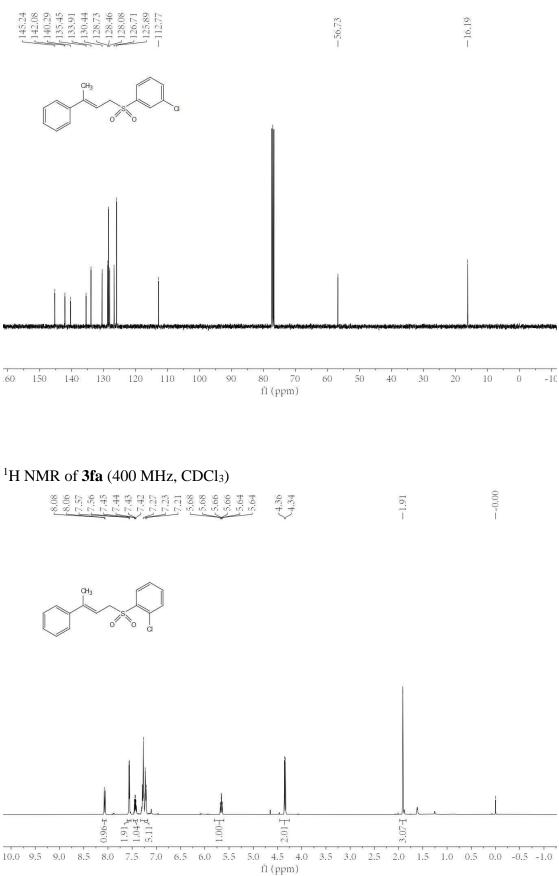

¹H NMR of **3ca** (400 MHz, CDCl₃)

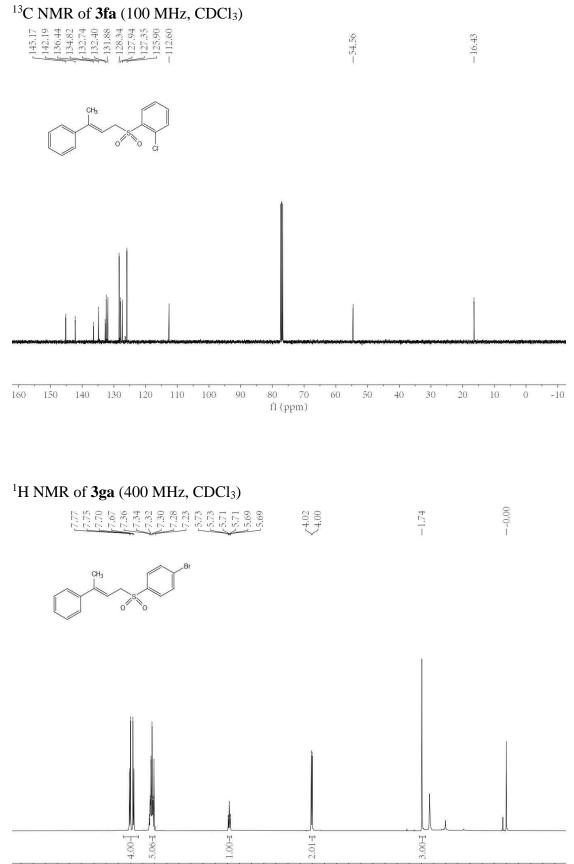
¹³C NMR of **3ca** (100 MHz, CDCl₃)

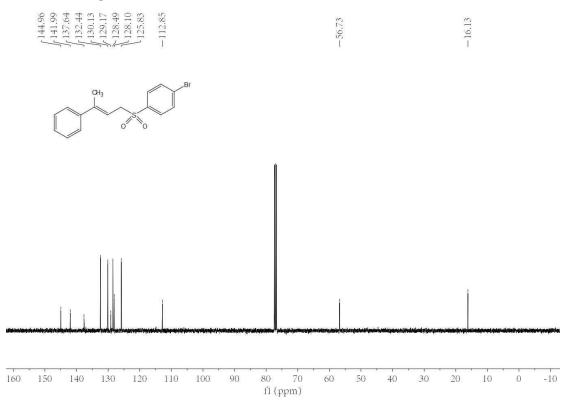


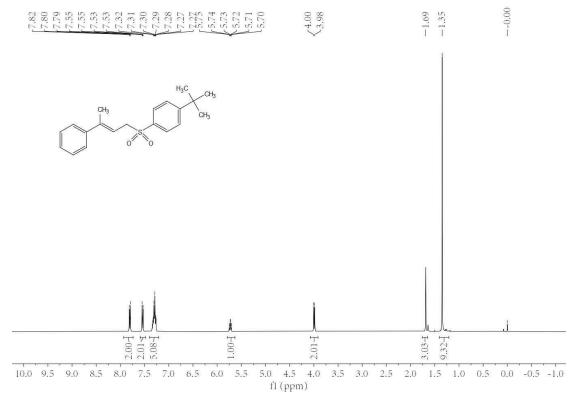

-10 fl (ppm)



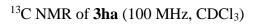

¹H NMR of **3da** (400 MHz, CDCl₃) --0.00 -1.74 4.034.01 -5.69 -5.69 7.84 7.82 7.52 7.50 7.35 7.34 .32 3 5.73 2.7 1.964 1.98₄ 5.094 3.05H F00" 2.034 10.0 9.5 9.0 8.5 8.0 7.5 7.0 4.5 1.5 1.0 0.5 0.0 -0.5 -1.0 6.5 6.0 5.5 5.0 4.0 3.5 3.0 2.5 2.0 fl (ppm)

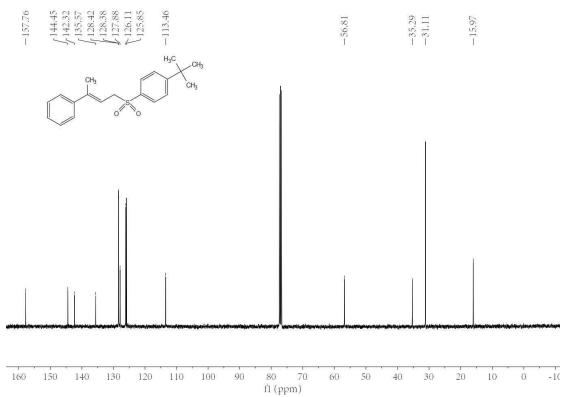

¹³C NMR of **3da** (100 MHz, CDCl₃)



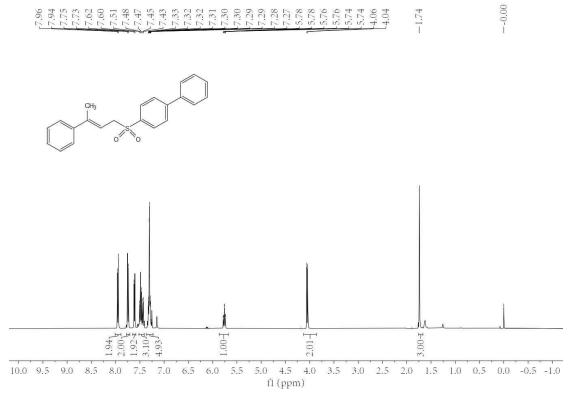


10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

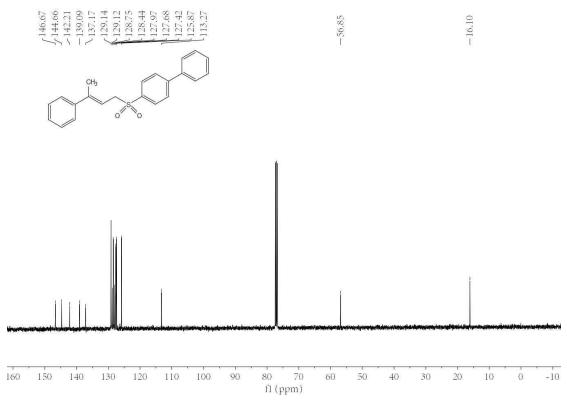

^{13}C NMR of **3ga** (100 MHz, CDCl₃)

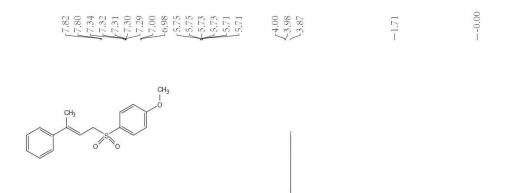


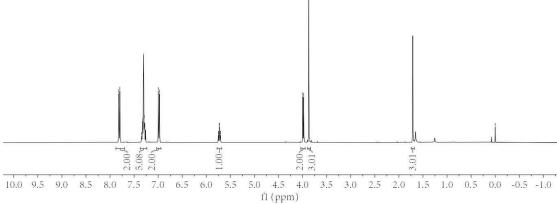
¹H NMR of **3ha** (400 MHz, CDCl₃)



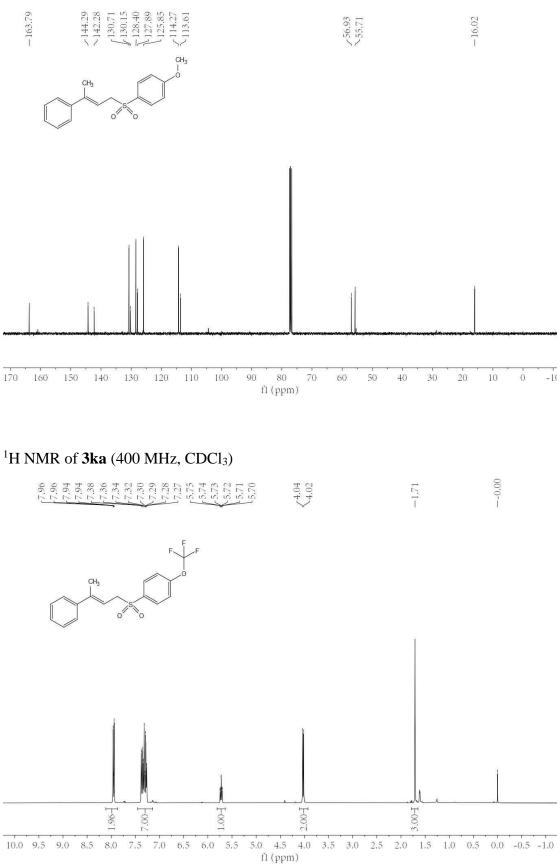
S72




¹H NMR of **3ia** (400 MHz, CDCl₃)

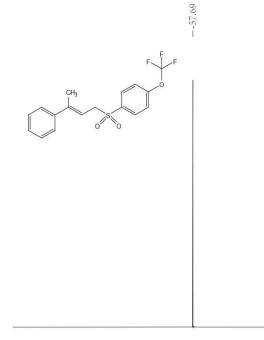


¹³C NMR of **3ia** (100 MHz, CDCl₃)


¹H NMR of **3ja** (400 MHz, CDCl₃)

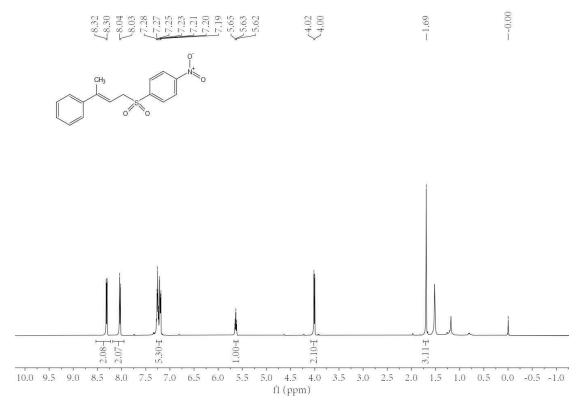
S74

¹³C NMR of **3ja** (100 MHz, CDCl₃)

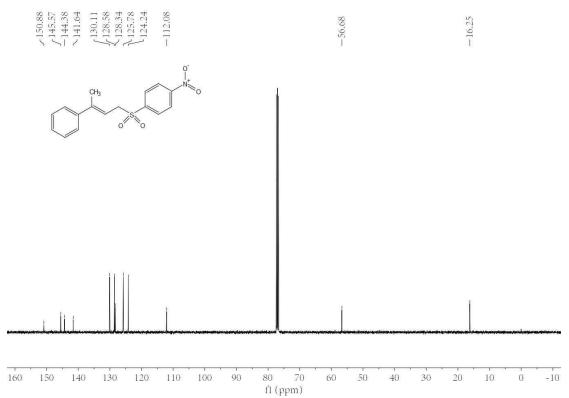


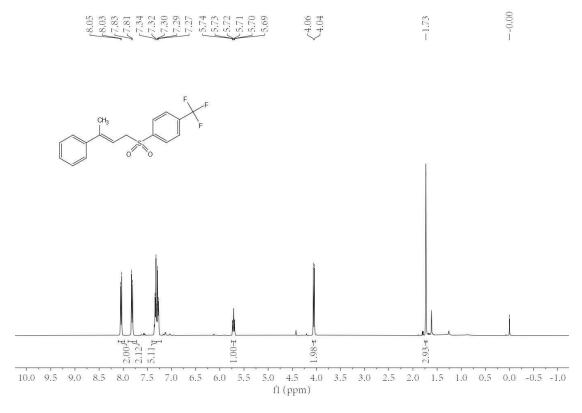
S75

¹³C NMR of 3ka (100 MHz, CDCl₃)

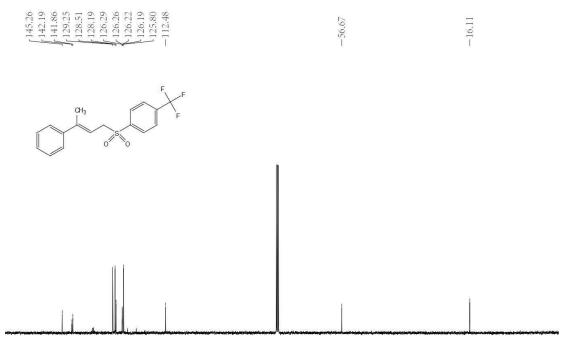


¹⁹F NMR of 3ka (471 MHz, CDCl₃)

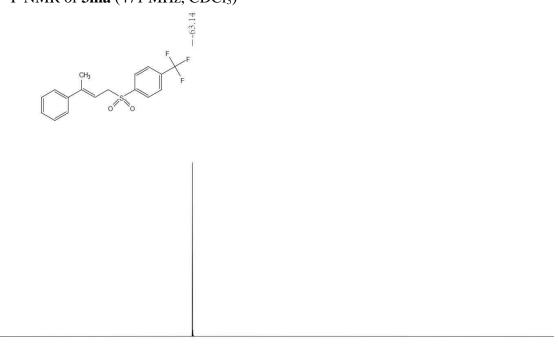



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

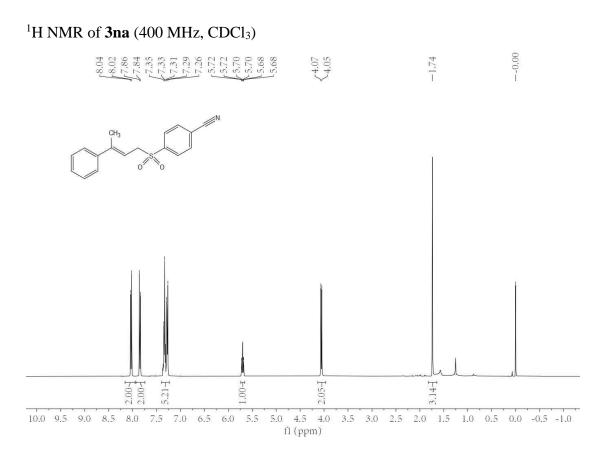
¹H NMR of **3la** (500 MHz, CDCl₃)



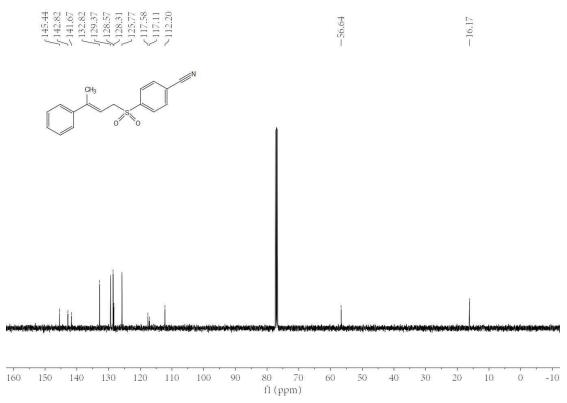
¹³C NMR of **3la** (100 MHz, CDCl₃)



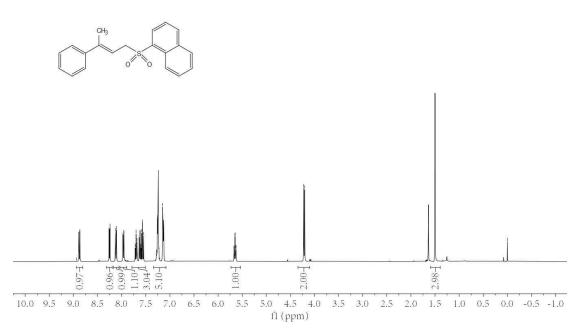
¹³C NMR of **3ma** (100 MHz, CDCl₃)

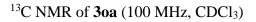


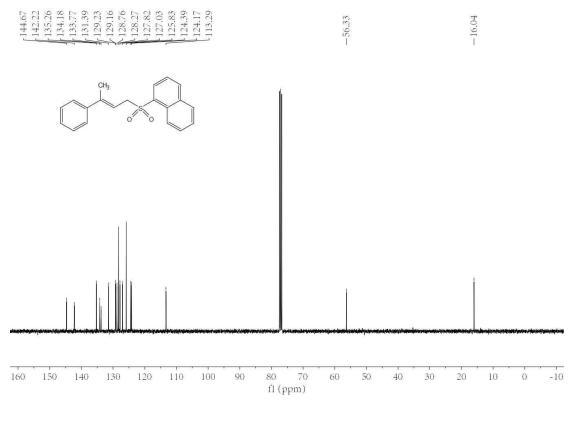
-10 fl (ppm)


¹⁹F NMR of **3ma** (471 MHz, CDCl₃)

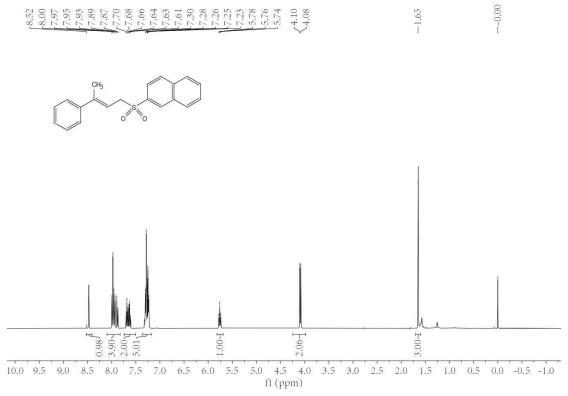
20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2. fl (ppm)

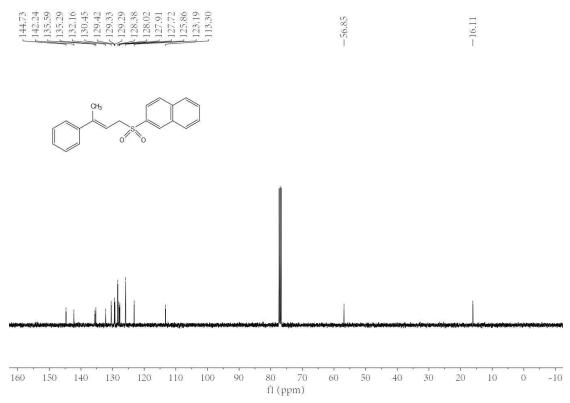


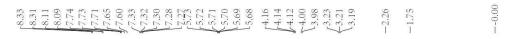

¹³C NMR of **3na** (100 MHz, CDCl₃)

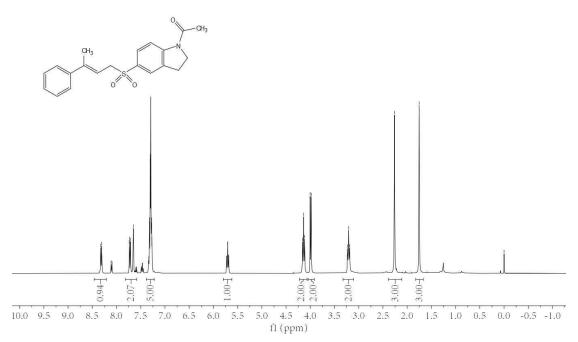


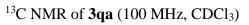
¹H NMR of **30a** (400 MHz, CDCl₃)

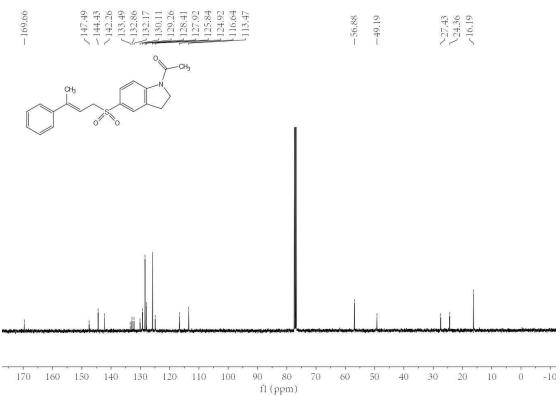




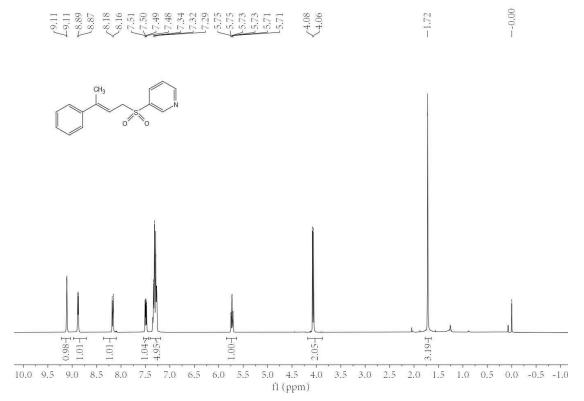

¹H NMR of **3pa** (400 MHz, CDCl₃)

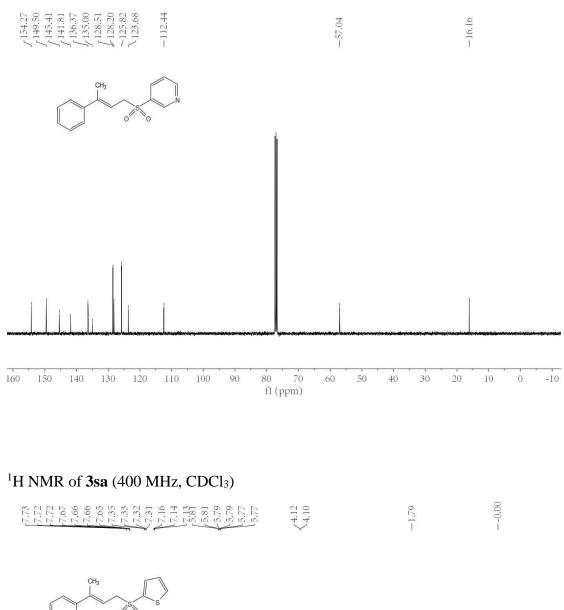


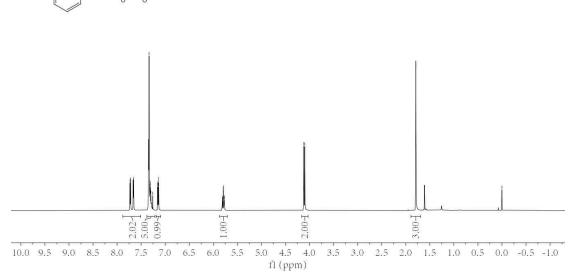

¹³C NMR of **3pa** (100 MHz, CDCl₃)



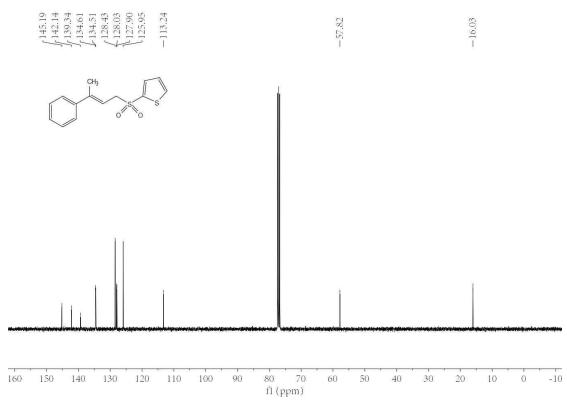
¹H NMR of **3qa** (400 MHz, CDCl₃)

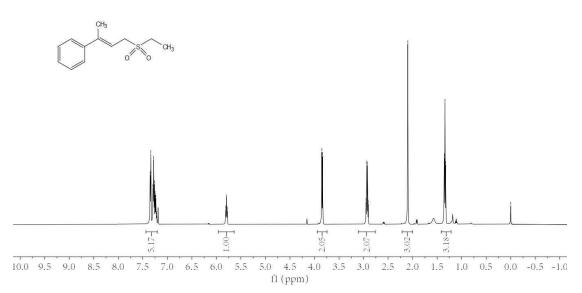




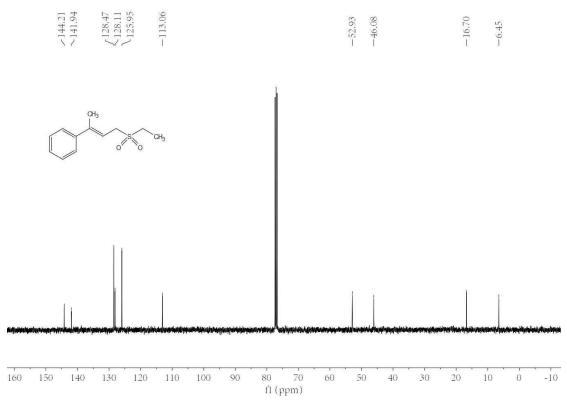


¹H NMR of **3ra** (400 MHz, CDCl₃)

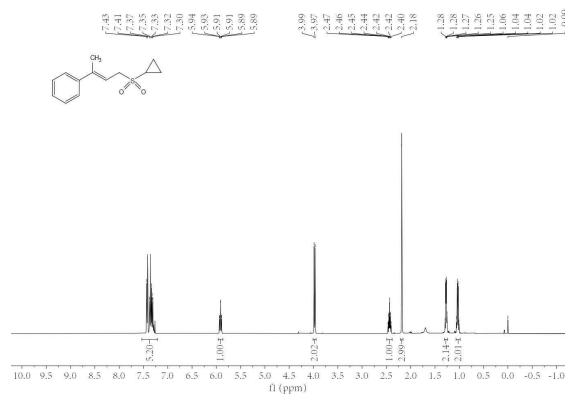

¹³C NMR of **3ra** (100 MHz, CDCl₃)

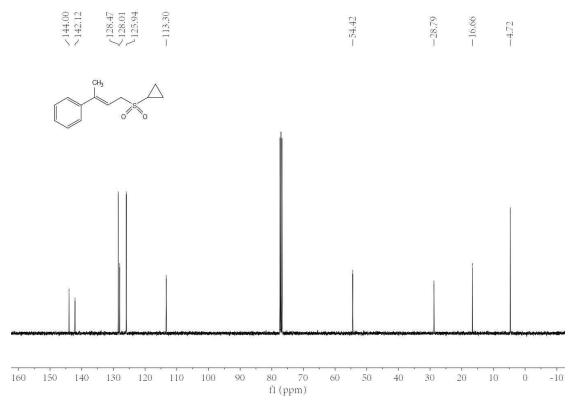

S84

¹³C NMR of **3sa** (100 MHz, CDCl₃)

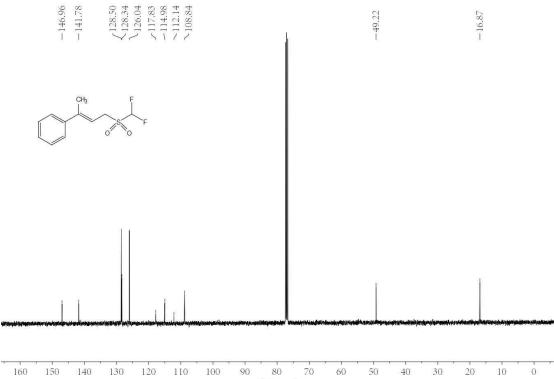


¹H NMR of **3ta** (500 MHz, CDCl₃)

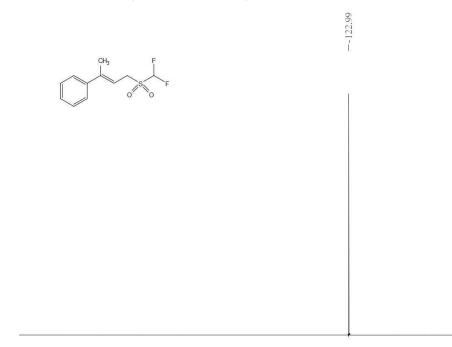

7.35 7.34 7.29 7.25 7.25 7.25 7.22 5.79 5.79 5.79	3.85 3.84 3.84 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	


¹³C NMR of **3ta** (100 MHz, CDCl₃)

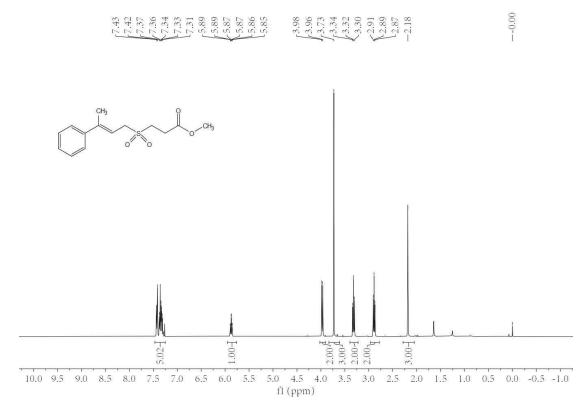

¹H NMR of **3ua** (400 MHz, CDCl₃)


¹³C NMR of **3ua** (100 MHz, CDCl₃)

¹H NMR of **3va** (400 MHz, CDCl₃)



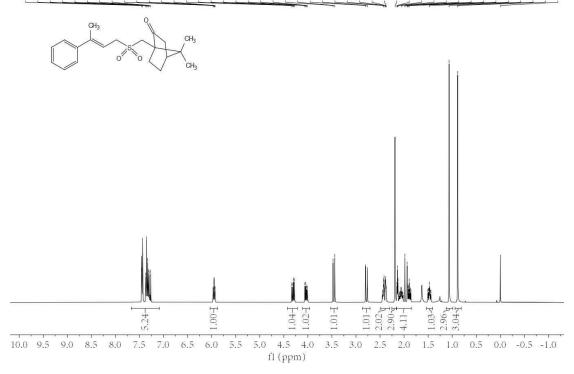
¹³C NMR of **3va** (100 MHz, CDCl₃)



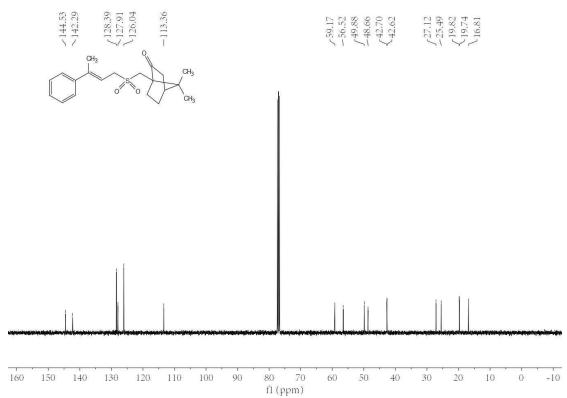
fl (ppm)

¹⁹F NMR of **3va** (471 MHz, CDCl₃)

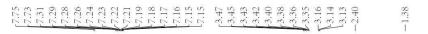
^{20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22} fl (ppm)

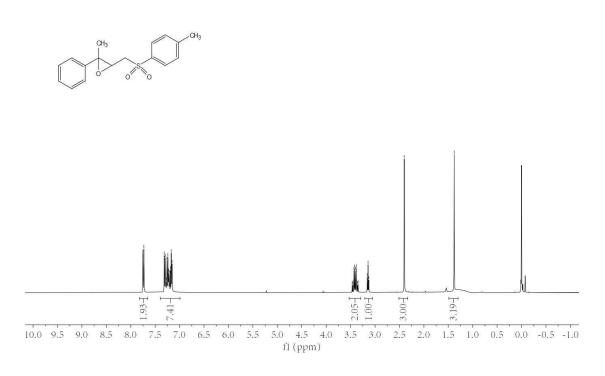


¹³C NMR of **3wa** (100 MHz, CDCl₃)

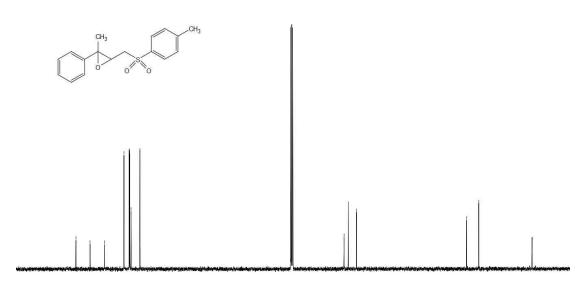

-170.94	\sim 144.91 \sim 141.88 \sim 141.88 \sim 128.47 \sim 125.98 - 112.52 - 112.52	~54.34 ~52.48 ~47.13	-26.54	
	CH3			

-10 fl (ppm)

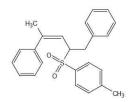

¹H NMR of **3xa** (400 MHz, CDCl₃)

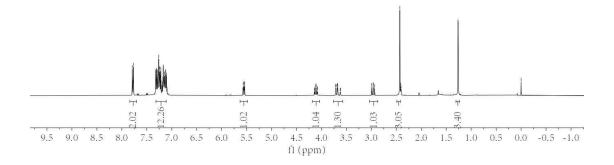


¹³C NMR of 3xa (100 MHz, CDCl₃)

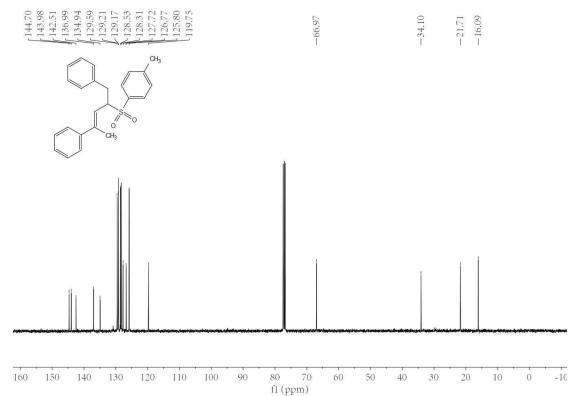

¹H NMR of 4aa (400 MHz, CDCl₃)

¹³C NMR of 4aa (100 MHz, CDCl₃)

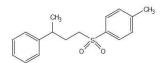

144.24 139.78 135.20 129.06 127.25 126.83 124.01 124.01	59.45 58.15 55.51	20.70 16 96
	\$12	

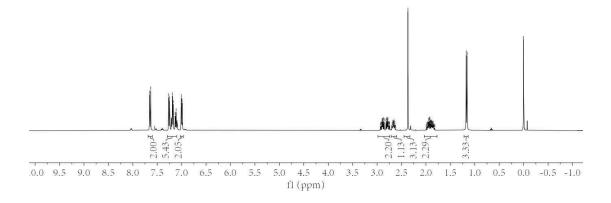


-10 Ó fl (ppm)

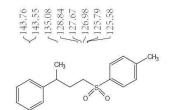

¹H NMR of **5aa** (400 MHz, CDCl₃)

7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.7 7.7.2

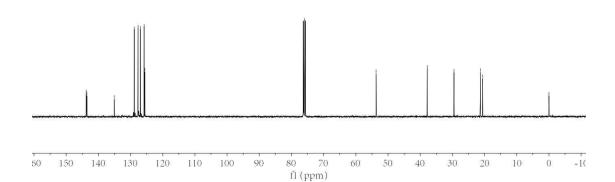




¹³C NMR of **5aa** (100 MHz, CDCl₃)



¹H NMR of 6aa (400 MHz, CDCl₃)



¹³C NMR of 6aa (100 MHz, CDCl₃)

