Supporting Information

Rh(III)-Catalyzed domino annulation strategy to synthesize

benzo[c]naphthyridinones from 3-diazooxindoles and isoxazolones

Man Miao,^{a#} Zhenjie Qi,^{c#} Fengkai Sun,^a Hui Yuan,^a Xiao-Bing Lan,^a Ping Zheng,^a Jian-Qiang Yu,^a

Xiaoli Guo,*^a Jian Zhang,*^{a,b} and Zhenyu An*^a

^{*a*} Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; E-mail: anzy@nxmu.edu.cn; gxl2018666@163.com

^b Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; E-mail: jian.zhang@sjtu.edu.cn

^c School of Resource & Environment and Safety Engineering, Jining University, Qufu 273100, China

Experimental Section	S2
The process of optimizing reaction conditions	S4
Gram-scale synthesis	S6
The X-ray data of 3aa	S7
DFT Calculations	S9
Reference	
The data of product	
Copies of NMR spectra	

General Information

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on Bruker 400M in CDCl₃. All ¹H NMR, ¹³C NMR and ¹⁹F NMR chemical shifts were given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. All compounds were further characterized by HRMS; copies of their ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were provided. Products were purified by flash chromatography on 200-300 mesh silica gels. All melting points were determined without correction. All reagents were purchased commercially and used as received, unless otherwise noted.

Experimental Section

1. General procedure for the synthesis of diazooxindoles.¹

Step-I: NaH (60% dispersion in mineral oil, 12.0 mmol) was added to a solution of isatin (10.0 mmol) in DMF (55 mL) at 0 °C under Air. The mixture was stirred for 20 min at 0 °C and then a solution of halogenated reagents in DMF (15 mL) was added. The reaction mixture was allowed to warm to room temperature and stirred for 2 h. The reaction was quenched by addition of water (5 mL) and solvent was evaporated. The crude product was suspended in sat. NH₄Cl solution (50 mL) and extracted with EtOAc. Combined organic layers were dried over Na₂SO₄, concentrated and purified by column chromatography on silica gel with PE/EA (5:1) as eluent to provide the crude product as an orange solid.

Step-II: Alkyl protected isatin (10 mmol) and tosylhydrazine (12 mmol) were dissolved in THF (30 mL). The reaction mixture was refluxed for 2 h and then allowed to reach room temperature. A solution of the obtained tosylhydrazone was treated with 0.2 M NaOH water solution (0.2 M, 10 mL) at room temperature. The reaction mixture

was stirred for approximately 2 h, then neutralized by addition of dry-ice, diluted with brine and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography on silica gel with PE/EA (5:1) as eluent to provide diazooxindoles as an orange solid.

2. General procedure for the synthesis of 3-aryl-5-isoxazolones.²

To a suspension of sodium hydride (60% in mineral oil, 5 equiv.) and diethyl carbonate (10 mmol, 2.0 equiv.) in THF (10 mL) was added a solution of substituted acetophenone (5 mmol, 1.0 equiv.) in THF (10 mL) dropwise under reflux. The mixture was refluxed overnight then quenched with H₂O. The mixture was extracted with ethyl acetate for 3 times, and the combined organic phase was washed with brine, dried with anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified on a silica gel column to afford substituted ethyl benzoylacetate (petroleum ether/ethyl acetate, 20:1, v/v). To a mixture of ethyl benzoylacetate (3 mmol, 1.0 equiv.), hydroxylamine hydrochloride (6mmol, 2.0 equiv.) and potassium carbonate (1.5 mmol, 0.5 equiv.) in ethanol/water (10 mL, v/v = 1:1) was stirred at room temperature overnight. The solid was filtered, washed with water and extracted three times with ether. The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified on a silica gel column to afford substituted solution and potassium carbonate (1.5 mmol, 0.5 equiv.) in ethanol/water (10 mL, v/v = 1:1) was stirred at room temperature overnight. The solid was filtered, washed with water and extracted three times with ether. The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified on a silica gel column to afford substituted 3-arylisoxazol-5-ones (petroleum ether/ethyl acetate, 3:1, v/v).

3. General procedure for the synthesis of 6-methyl-2,4diphenylbenzo[c][2,7]naphthyridin-5(6H)-one.

A mixture of 3-diazo-1-methylindolin-2-one **1a** (0.2 mmol, 1 equiv.), 3phenylisoxazol-5(4*H*)-one **2a** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under nitrogen atmosphere for 10 h (TLC monitored). Upon completion of the reaction, the reaction mixture was extracted with saturated brine (10 mL) and ethyl acetate (3×15 mL). The combined organic phase was dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and the crude product was purified by column chromatography, eluting with petroleum ether/ethyl acetate (4 : 1) to afford the desired product **3aa**.

The process of optimizing reaction conditions

Table	S1 .	Scr	eening	of	the	catal	lyst	a
							•/	

$\bigvee_{N_2}^{N_2} O$	+ (1) (2) $(2$	$\frac{2 \text{ mol\%}}{2 \text{ equiv.}}$ $\frac{2 \text{ equiv.}}{2, N_2, 10 \text{ h}}$ $\frac{1}{3aa}$
Entry	Catalyst	$\operatorname{Yield}^{b}(\%)$
1	[Cp*RhCl2]2	71
2	[Cp*NiCl ₂] ₂	18
3	[Cp*RuCl ₂] ₂	trace
4	[Cp*CoCl ₂] ₂	33
5	[Cp*IrCl ₂] ₂	38
6	Rh ₂ (OAc) ₄	48
7	[Cp*Rh(MeCN) ₃ (SbF ₆) ₂]	38
8	PdCl ₂	trace
9	Pd[(PPh ₃)Cl] ₂	38
10	Pd(OAc) ₂	67
11	Zn(OAc) ₂	trace
12	Ru(PPh ₃) ₃ Cl ₂	50
13	Ru ₃ (CO) ₁₂	trace
14	$AgSbF_6$	trace
15	AgOAc	trace
16	Fe(OTf) ₂	28
17	Fe(OTs) ₃	30

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.5 mmol), catalyst (2 mol%), Cu(OAc)₂ (2 equiv.), and DCE (3 mL) in sealed tube, N₂, 120 °C for 10 h. ^{*b*} Isolated yield. Entry in bold highlights optimized reaction conditions, and the reaction time was monitored by TLC.

Table S2. Screening of the additive^{*a*}

	$ \begin{array}{c} & N_{2} \\ & $	[Cp*RhCl ₂] ₂ (2 mol%) additive (x equiv.) DCE,120 °C, N ₂ ,10 h	
Entry	Additive	Equiv.	$\operatorname{Yield}^{b}(\%)$
1	Cu(OAc) ₂	2	71
2	Cu(OAc) ₂ ·H ₂ O	2	69
3	CuCl ₂	2	64
4	CuBr ₂	2	62
5	Cu ₂ O	2	63
6	CuBr	2	66
7	CuCl	2	75
8	CuI	2	67
9	Cu(OTf) ₂	2	64
10	CuCl	1	70
11	CuCl	3	69
12	CuCl	1.5	73
13	CuCl	2.5	71

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.5 mmol), [Cp*RhCl₂]₂ (2 mol%), additive (2 equiv.), and DCE (3 mL) in sealed tube, N₂, 120 °C for 10 h. ^{*b*} Isolated yield. Entry in bold highlights optimized reaction conditions, and the reaction time was monitored by TLC.

Table S3. Screening of the solvent ^a

Solvent	Yield ^b (%)	
DCE	75	
DCM	68	
CHCl ₃	66	
HFIP	trace	
PhCl	38	
PhMe	40	
NMP	28	
DMSO	28	
EtOAc	71	
MeOH	trace	
DCE/EtOAc (2:1)	80	
DCE/EtOAc (1:1)	76	
	Solvent DCE DCM CHCl ₃ HFIP PhCl PhMe NMP DMSO EtOAc MeOH DCE/EtOAc (2:1) DCE/EtOAc (1:1)	Solvent Yield ^b (%) DCE 75 DCM 68 CHCl ₃ 66 HFIP trace PhCl 38 PhMe 40 NMP 28 DMSO 28 EtOAc 71 MeOH trace DCE/EtOAc (2:1) 80 DCE/EtOAc (1:1) 76

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.5 mmol), [Cp*RhCl₂]₂ (2 mol%), CuCl (2 equiv.), and solvent (3 mL) in sealed tube, N₂, 120 °C for 10 h. ^{*b*} Isolated yield. Entry in bold highlights optimized reaction conditions, and the reaction time was monitored by TLC.

Table S4. Screening of the temperature ^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.5 mmol), [Cp*RhCl₂]₂ (2 mol%), CuCl (2 equiv.), and DCE/EtOAc (2:1) (3 mL) in sealed tube, N₂, 120 °C for 10 h. ^{*b*} Isolated yield. Entry in bold highlights optimized reaction conditions, and the reaction time was monitored by TLC.

Table S5. Screening of the atmosphere ^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.5 mmol), [Cp*RhCl₂]₂ (2 mol%), CuCl (2 equiv.), and DCE/EtOAc (2:1) (3 mL) in sealed tube, atmosphere, 120 °C for 10 h. ^{*b*} Isolated yield. Entry in bold highlights optimized reaction conditions, and the reaction time was monitored by TLC.

Gram-scale synthesis

A mixture of 3-diazo-1-methylindolin-2-one **1a** (5.0 mmol 1 equiv.), 3phenylisoxazol-5(4*H*)-one **2a** (12.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.1 mmol), CuCl (10 mmol 2.0 equiv.), DCE/EtOAc (15 mL) were stirred at 120 °C under nitrogen atmosphere for 10 h (TLC monitored). Upon completion of the reaction, the reaction mixture was extracted with saturated brine and ethyl acetate. The combined organic phase was dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and the crude product was purified by column chromatography, eluting with petroleum ether/ethyl acetate (4 : 1) to afford the desired product **3aa**. When starting from **1a** (5.0 mmol), the desired product **3aa** was isolated in 70% yield without a significant decrease in reaction yield.

Figure S1. Gram-scale synthesis

The X-ray data of 3aa (CCDC 2381305)

An amount of 20 mg **3aa** were dissolved in dichloromethane/ethyl acetate (8:1) on the brown small reagent bottle (5 mL), which acted as good solvent, and a layer of ether was injected on the dichloromethane of tetrahydrofuran, and the cap is covered with a thin film, white crystals will be presented after seven days.

The crystal was kept at 273.15 K during data collection. Using Olex2³, the structure was solved with the XT⁴ structure solution program using Intrinsic Phasing and refined with the XL⁵ refinement package using Least Squares minimisation. Nonhydrogen atoms were refined with anisotropic displacement parameters during the final cycles. All hydrogen atoms were placed by geometrical considerations and were added to the structure factor calculations.

Figure S2. X-ray crystal structure of compound 3aa, thermal ellipsoids

are drawn at 30% probability level

Table S6. Crystal data and str	ucture refinement for 3aa.
Identification code	3aa
Empirical formula	$C_{25}H_{18}N_2O$
Formula weight	362.41
Temperature/K	273.15
Crystal system	orthorhombic
Space group	P212121
a/Å	5.80080(10)
b/Å	12.5114(3)
c/Å	24.7796(5)
α /°	90
β /°	90
γ /°	90
Volume/Å3	1798.41(6)
Z	4
ρ calcg/cm3	1.339
μ / mm-1	0.647
F(000)	760.0
Crystal size/mm3	$0.22 \times 0.2 \times 0.18$
Radiation	CuK α ($\lambda = 1.54178$)
2Θ range for data collection/°	7.134 to 132.982

Index ranges	-4 \leq h \leq 6, -14 \leq k \leq
Reflections collected	10687
Independent reflections	3078 [Rint = 0.0704, Rsigma =
Data/restraints/parameters	3078/0/25431
Goodness-of-fit on F2	1.028
Final R indexes [I>= 2σ (I)]	R1 = 0.0471, wR2 = 0.1226
Final R indexes [all data]	R1 = 0.0538, $wR2 = 0.1266$
Largest diff. peak/hole / e Å-3	0.17/-0.28
Flack parameter	0.5(2)

DFT Calculations

Computational details

The theoretical calculations were performed using Gaussian 16 program.⁶ The structures involved in this study were optimized, frequency calculations were conducted, and transition states were located at the B3LYP⁷ level of theory with a hybrid basis set. The 6-31G(d) basis set was applied to all C, H, O, and N atoms, while the SDD basis set was used for the Rhodium (Rh) atoms. Dispersion corrections were included using DFT-D3 to ensure the accuracy of the calculations. To avoid the basis set superposition error, no geometric constraints were applied during the structure optimizations. Thermodynamic corrections for all structures involved in the reaction pathway were conducted at 393 K using the Shermo⁸ program. All thermodynamic properties were computed under simulated conditions of 393 K and 101 kPa. For all transition state exhibited only one imaginary frequency. Intrinsic Reaction Coordinate (IRC) calculations were also carried out for all transition states to verify the validity of the transition structures.

Geometry of optimized compounds.

Cartesian coordinates of the computed structures:

INT-I

0.363028
0.386738
0.387682
0.30801
-977.474676
-977.450966
-977.450022
-977.529694

С	-2.38401133	0.62742293	-0.00095585
С	-3.40545640	-0.37303797	-0.00056698
С	-4.75415937	-0.05108622	0.00024642
С	-5.10225400	1.30960392	0.00070954
С	-4.12256776	2.30739039	0.00032814
С	-2.76375570	1.97211449	-0.00049288
С	-1.11124473	-0.05604483	-0.00173930
Н	-5.52181526	-0.81971427	0.00055829
Н	-6.15304603	1.58663026	0.00136455
Н	-4.42028255	3.35239777	0.00067671
Н	-2.00334315	2.74886889	-0.00087088
С	-1.43609424	-1.47863467	-0.00180676
0	-0.56119874	-2.38532178	-0.00213172
С	-3.49351867	-2.92024667	-0.00054231
Н	-4.12312128	-3.03022212	-0.89197683
Н	-2.73127072	-3.70245529	-0.00098934
Н	-4.12192765	-3.03009059	0.89175427
Rh	0.77140371	-0.27381571	-0.00094777
С	3.08058242	-0.58158587	-0.01619792
С	2.68122841	0.13012681	1.15950086
С	2.66799803	0.16059109	-1.16811613
С	1.99310011	1.33527945	0.74056388
С	1.98411666	1.35428080	-0.70954753
Ν	-2.80809599	-1.64712276	-0.00108930
С	3.80155382	-1.89988142	-0.03774414
Н	3.54274438	-2.48458977	-0.92559835
Н	4.89063630	-1.75475954	-0.04335795
Н	3.55485076	-2.50689516	0.83848440
С	2.94529252	-0.19332139	-2.59994254
Н	2.17047965	0.19640511	-3.26694075
Н	3.90715475	0.22493792	-2.93100496
Н	2.99271459	-1.27677630	-2.74529332
С	1.52782279	2.49119677	-1.57725515
Н	0.72177132	3.05786435	-1.10356317
Н	2.35668993	3.18696824	-1.77256083
Н	1.15789864	2.13460833	-2.54280119
С	1.54446305	2.44778709	1.64309523
Н	1.18589720	2.06489717	2.60283979
Н	2.37423824	3.13980310	1.84767928
Н	0.73217145	3.02507855	1.19354148

С	2.97292194	-0.26264615	2.57832263
Н	3.01841491	-1.34973381	2.69423598
Н	3.93956932	0.14379783	2.91008418
Н	2.20656523	0.11126835	3.26391176

2	a
_	

0.142307
0.151521
0.152465
0.136778
-552.326507
-552.317294
-552.316350
-552.362037

С	3.03778271	-1.09086460	0.00039446
С	1.65474431	-1.19855126	0.00035441
С	0.85556214	-0.04350792	0.00002170
С	1.47522086	1.21262512	-0.00031620
С	2.86390078	1.31532277	-0.00020647
С	3.64778039	0.16545554	0.00000296
Н	3.64571533	-1.98822672	0.00056162
Н	1.17564371	-2.16938485	0.00074352
Н	0.87590532	2.11583299	-0.00041774
Н	3.33089324	2.29334632	-0.00038278
Н	4.72883403	0.24460083	-0.00009485
С	-0.60917367	-0.14733240	0.00002187
С	-1.57946160	0.99362171	0.00057813
Н	-1.50266294	1.63333623	0.88339491
Н	-1.50203517	1.63495645	-0.88096019
Ν	-1.19807029	-1.29175162	0.00003746
0	-2.60386279	-1.09485653	-0.00029750
С	-2.90413526	0.25186361	-0.00084605
0	-4.02352789	0.66060710	-0.00009444

TS-I

Zero-point correction=	0.506219
Thermal correction to Energy=	0.549891
Thermal correction to Enthalpy=	0.541834
Thermal correction to Gibbs Free Energy=	0.453763
Sum of electronic and zero-point Energies=	-1529.768412

Sum of electronic and thermal Energies=	-1529.723745
Sum of electronic and thermal Enthalpies=	-1529.722871
Sum of electronic and thermal Free Energies=	-1529.811671

Rh	-0.52804988	-0.92255885	0.35368959
Ν	1.16360787	-0.13764730	0.43118426
С	2.22380369	0.36655640	-0.07275518
С	3.25837034	1.00270028	0.80018433
С	4.55799861	1.27948679	0.33206126
С	2.94612666	1.32889834	2.13699287
С	5.51397269	1.85910055	1.17494045
Н	4.83006811	1.03534218	-0.68922000
С	3.89881314	1.91115789	2.97276175
Н	1.94257151	1.12229915	2.49220943
С	5.19114779	2.17932415	2.49737877
Н	6.51167300	2.06063424	0.79385382
Н	3.63350777	2.16349121	3.99589113
Н	5.93223624	2.63426362	3.14878517
С	-1.20148331	0.87267956	-0.34150766
С	-1.98184939	1.87493496	0.32021038
С	-2.27694381	2.91868995	-0.64160474
С	-2.48675764	2.03732278	1.62803324
С	-3.03305738	4.04117131	-0.31495029
С	-3.24922893	3.16810762	1.95386981
С	-3.52599079	4.16306532	0.99864149
Н	-3.24016999	4.80972570	-1.05645859
Н	-3.62904773	3.28159366	2.96789590
Н	-4.11727301	5.03330810	1.27336670
С	-0.99805844	1.29235441	-1.67359287
0	-0.37166158	0.74557910	-2.67764234
Ν	-1.67997613	2.55298127	-1.83923152
С	-1.68726347	3.28609141	-3.08153973
Н	-2.70611113	3.42342845	-3.47448444
Н	-1.22624563	4.27959293	-2.97580837
Н	-1.10488142	2.69214457	-3.79192710
Н	-2.26776174	1.28706604	2.38493349
С	-0.68005731	-3.17143012	-0.26827242
С	-1.73250704	-2.31765706	-0.83877888
С	-0.82067764	-3.15914264	1.14045778
С	-2.58454932	-1.87735890	0.25951070
С	-1.98472799	-2.32611921	1.47079974
С	0.34518188	-3.90942348	-1.07677303

Н	1.10621474	-4.36635103	-0.43777947
Н	-0.12512506	-4.71178318	-1.66486436
Н	0.87253348	-3.24378493	-1.76599450
С	-1.99318161	-2.12929550	-2.30893714
Н	-3.06967210	-2.10476539	-2.51912343
Н	-1.53974834	-1.19513607	-2.67551881
Н	-1.55975023	-2.95552693	-2.88535183
С	-3.86683638	-1.11347142	0.10598686
Н	-4.05782954	-0.46264817	0.96373645
Н	-3.82425919	-0.46608305	-0.77304121
Н	-4.72242639	-1.79742367	-0.00493253
С	0.02661513	-3.87946024	2.14940795
Н	0.23220231	-3.24943092	3.02260439
Н	-0.46625111	-4.79331250	2.51557294
Н	0.99200925	-4.17046364	1.72487564
С	-2.51544814	-2.10643933	2.85704244
Н	-3.10929142	-1.18960340	2.91271139
Н	-3.15941801	-2.94204518	3.17305169
Н	-1.70466299	-2.02338298	3.58884155
С	2.44217137	0.37223775	-1.59435864
Н	1.43285700	0.35773805	-2.07391381
Н	2.92933422	1.29848863	-1.90801101
С	3.23566741	-0.78642987	-2.09825507
0	3.07700658	-1.99012334	-1.85326722
0	4.26259824	-0.38933427	-2.96301434
Н	4.72049349	-1.19444701	-3.29193463

INT-II

Zero-point co	Zero-point correction=		0.505269
Thermal corre	Thermal correction to Energy=		0.539893
Thermal corre	Thermal correction to Enthalpy=		0.540837
Thermal corre	Thermal correction to Gibbs Free Energy=		0.437716
Sum of electro	Sum of electronic and zero-point Energies=		-1529.778418
Sum of electro	Sum of electronic and thermal Energies=		-1529.743795
Sum of electro	Sum of electronic and thermal Enthalpies=		-1529.742850
Sum of electro	onic and thermal Free I	Energies=	-1529.845971
51	0.44505050	0.05.000555	
Rh	-0.447/97/852	-0.85689575	0.04159566

Rh	-0.44797852	-0.83689373	0.04159566
Ν	1.30767220	0.14519206	0.25671705
С	2.27706238	-0.14960541	-0.51892597
С	3.60535917	0.52355936	-0.27055791

С	4.82884481	-0.11811703	-0.52560594
С	3.64342922	1.82371559	0.26311234
С	6.04555368	0.50824736	-0.24440690
Н	4.83380972	-1.12398626	-0.93612167
С	4.85590015	2.45525412	0.53119228
Н	2.70163748	2.32833081	0.44974161
С	6.06630505	1.79981489	0.28298909
Н	6.97862985	-0.01601309	-0.44149428
Н	4.85811754	3.46731065	0.93112486
Н	7.01291255	2.29311062	0.49301301
С	2.22311623	-1.16513592	-1.66147562
Н	3.10117332	-1.09853909	-2.30708490
Н	2.21323283	-2.17810462	-1.22947220
С	0.98972065	-1.04949231	-2.58492890
0	1.16028188	-1.13921790	-3.80137023
0	-0.17291770	-0.90923145	-2.02490367
С	-1.40819990	0.88168349	-0.19425454
С	-1.14659670	2.21045030	0.25948115
С	-2.16162577	3.08862967	-0.25403879
С	-0.15136781	2.76064435	1.09259517
С	-2.17523888	4.45055966	0.02481674
С	-0.16733096	4.12628959	1.37987431
С	-1.16227370	4.96346071	0.84996195
Н	-2.94846902	5.10075394	-0.37717470
Н	0.60222644	4.55043353	2.02130251
Н	-1.15420583	6.02642773	1.08243667
С	-2.66975948	0.96898948	-0.95830510
0	-3.37173094	0.08891490	-1.46858989
Ν	-3.05012748	2.33944865	-0.99900195
С	-4.23976408	2.81584272	-1.65320357
Н	-4.93536107	3.28460732	-0.94161428
Н	-4.00326883	3.54747633	-2.43822871
Н	-4.72142688	1.94600876	-2.10613833
Н	0.61911560	2.10216175	1.47620007
С	-0.49774101	-3.19142840	0.49377799
С	-1.86136176	-2.70100850	0.35045532
С	0.10109643	-2.52814608	1.59008329
С	-2.09074530	-1.75078606	1.37874348
С	-0.85612710	-1.57287937	2.11603885
С	0.11061806	-4.24707707	-0.38580095
Н	1.17783684	-4.37928398	-0.18197551
Н	-0.37714153	-5.22109326	-0.23597970

Н	0.00435873	-3.98876280	-1.44588691
С	-2.85491086	-3.18322381	-0.66774734
Н	-3.44824638	-4.03128616	-0.29106112
Н	-3.53324010	-2.37683043	-0.95723237
Н	-2.34688509	-3.51232791	-1.57995352
С	-3.40289192	-1.09200788	1.69479462
Н	-3.25606468	-0.11451522	2.16462608
Н	-3.99514269	-0.93952150	0.78934327
Н	-3.98800658	-1.71093865	2.39164705
С	1.48438138	-2.72400846	2.14180324
Н	2.01277416	-1.76762236	2.22422185
Н	1.45078312	-3.17581011	3.14375027
Н	2.08631372	-3.37957831	1.50480455
С	-0.66521310	-0.76311379	3.36707962
Н	-1.34903737	0.09078261	3.39616052
Н	-0.84025336	-1.36082122	4.27606261
Н	0.35354844	-0.36493714	3.42279571

TS-II

Zero-point correction=	0.507259
Thermal correction to Energy=	0.541022
Thermal correction to Enthalpy=	0.541966
Thermal correction to Gibbs Free Energy=	0.460892
Sum of electronic and zero-point Energies=	-1529.392090
Sum of electronic and thermal Energies=	-1529.358327
Sum of electronic and thermal Enthalpies=	-1529.357382
Sum of electronic and thermal Free Energies=	-1529.458457

Rh	-0.69884287	-0.75372575	-0.04602984
Ν	1.29169237	-0.45854606	0.22850633
С	2.15057904	-0.38265451	-0.73083159
С	3.61135655	-0.27739487	-0.36805528
С	4.60206111	0.01540002	-1.32599543
С	4.02391648	-0.45446601	0.96939902
С	5.95014715	0.12449861	-0.96211358
Η	4.32199736	0.16794414	-2.36162107
С	5.36662276	-0.35095473	1.33248296
Η	3.25786985	-0.67151504	1.70499331
С	6.34189812	-0.06020588	0.36712805
Н	6.69283112	0.35542435	-1.72151599
Н	5.65697623	-0.49695262	2.37000835
Н	7.38826438	0.02131356	0.64884951

С	1.81197968	-0.35714957	-2.22629187
Н	1.92848609	0.66152846	-2.61866440
Н	2.50718585	-1.01557573	-2.76265693
С	-1.06033410	1.19507714	-0.02851108
С	-0.30779238	2.34258609	0.40474186
С	-1.03233282	3.53519452	0.04918408
С	0.91906438	2.48543197	1.08327519
С	-0.55084774	4.81026446	0.33315554
С	1.40177949	3.76574669	1.37674988
С	0.68058115	4.91454167	1.00330015
Н	-1.10670586	5.69905556	0.04994715
Н	2.35097516	3.87480374	1.89368887
Н	1.07757582	5.89944477	1.23533174
С	-2.30787428	1.73558900	-0.60662055
0	-3.33724473	1.15268553	-1.04625100
Ν	-2.21984278	3.15688174	-0.56610466
С	-3.23736136	4.03440396	-1.10094807
Н	-3.65724903	4.68833712	-0.32389191
Н	-2.84050008	4.66248412	-1.90935776
Н	-4.02930856	3.39626792	-1.49971000
Н	1.47447107	1.59520552	1.35223341
С	-1.53696444	-3.10935384	0.24200763
С	-2.65613616	-2.13903393	0.20080811
С	-0.68091870	-2.75954997	1.29264268
С	-2.51388843	-1.24908572	1.28542920
С	-1.19494450	-1.51100209	1.89149604
С	-1.37241471	-4.22044294	-0.74641855
Н	-0.62522751	-4.94747394	-0.41312719
Н	-2.31954881	-4.75142859	-0.90682158
Н	-1.02842961	-3.79398839	-1.69776681
С	-3.78601130	-2.18263984	-0.78473393
Н	-4.62533604	-2.79292182	-0.41581851
Н	-4.14319970	-1.17078171	-0.99319944
Н	-3.45059934	-2.61004992	-1.73426725
С	-3.52279198	-0.26007406	1.78532515
Н	-3.03952028	0.59948700	2.26024528
Н	-4.13940563	0.11977892	0.96819673
Η	-4.17815100	-0.73032096	2.53471305
С	0.60416800	-3.41314353	1.70114127
Н	1.44225064	-2.71690793	1.56944085
Н	0.58116079	-3.71938722	2.75678652
Н	0.81113792	-4.29926134	1.09438767

С	-0.66706428	-0.91028128	3.15991072
Н	-1.06243736	0.09737411	3.31674321
Н	-0.93630148	-1.52187876	4.03531756
Η	0.42396983	-0.83531163	3.11805422
С	0.38052528	-0.84665690	-2.50215262
0	-0.48632062	0.00660899	-2.90089887
0	0.16228261	-2.10720096	-2.26397727

INT-III

Thermal correction to Energy= 0	.520892
Thermal correction to Enthalpy= 0.	521836
Thermal correction to Gibbs Free Energy= 0.4	452302
Sum of electronic and zero-point Energies= -	1341.164110
Sum of electronic and thermal Energies=	-1341.131497
Sum of electronic and thermal Enthalpies= -	1341.130553
Sum of electronic and thermal Free Energies= -	1341.230087

Rh	-1.00631731	-0.14835681	-0.30340729
С	2.46536933	-3.35693368	1.47262305
С	1.82835883	-2.42765070	0.64833105
С	1.96524736	-2.49918541	-0.74819298
С	2.73257714	-3.54504272	-1.28799341
С	3.36383104	-4.47751197	-0.46306043
С	3.23486023	-4.38685987	0.92462280
Н	2.35909202	-3.27082682	2.55203053
Н	1.23321641	-1.63227917	1.08517113
Н	2.81881363	-3.62339686	-2.36820466
Н	3.94947696	-5.28119780	-0.90636269
Н	3.72348314	-5.11340141	1.57109528
С	1.30617576	-1.49342889	-1.65851860
С	2.00725415	-1.01472244	-2.72493017
Н	3.04342705	-1.29414234	-2.88326335
Н	1.56208609	-0.29946255	-3.40865187
Ν	-0.01280314	-1.24298220	-1.40971369
С	-2.52570580	-0.62950211	1.36075846
С	-3.03292951	-1.32753682	0.19122468
С	-2.60070395	0.77504719	1.09645592
С	-3.35149997	-0.36485983	-0.79140183
С	-3.05044991	0.94880403	-0.25068351
С	-2.15702038	-1.25391080	2.67700253
Н	-2.99546551	-1.21723528	3.39149049

Η	-1.88101593	-2.30620625	2.55149081
Н	-1.29823189	-0.73956128	3.11691208
С	-3.16779764	-2.81781956	0.05945404
Н	-4.13256522	-3.17725501	0.44901797
Н	-3.09375221	-3.13425715	-0.98595386
Н	-2.37620555	-3.33742580	0.60892029
С	-2.31519918	1.86799184	2.08773445
Н	-1.99212558	2.78669843	1.58703372
Н	-3.21191439	2.11080463	2.67873546
Н	-1.52012110	1.57315742	2.77735087
С	-3.34829824	2.25880624	-0.92402244
Н	-4.38685326	2.58329835	-0.74752808
Н	-2.68916611	3.05211320	-0.55841943
Н	-3.20734257	2.19359799	-2.00827049
С	-3.89687915	-0.63251435	-2.16529283
Н	-3.59815945	-1.62117472	-2.52833857
Н	-4.99700100	-0.59056064	-2.18462016
Н	-3.52949447	0.10309446	-2.88901208
С	0.46756315	1.06314294	0.23526500
С	1.16044630	2.06624672	-0.52329034
С	2.09106214	2.74777328	0.32671784
С	1.06234512	2.48032564	-1.86234318
С	2.89264469	3.78781503	-0.12975126
С	1.86305563	3.52519914	-2.32881040
Н	0.36572708	1.96816443	-2.52032932
С	2.76953971	4.17195797	-1.47486634
Н	3.59355809	4.29279376	0.53121861
Н	1.78893534	3.83916736	-3.36801304
Н	3.38737310	4.98285417	-1.85565662
С	1.02210949	1.16035601	1.59319879
0	0.76722696	0.51902004	2.62813996
С	2.77776985	2.55786063	2.74466463
Н	3.85402896	2.40818643	2.57547622
Н	2.61764726	3.60910807	3.02681271
Н	2.44966551	1.91209703	3.56292996
Ν	2.00237316	2.19213340	1.59053844

TS-III

Zero-point correction=	0.482938
Thermal correction to Energy=	0.514636
Thermal correction to Enthalpy=	0.515580
Thermal correction to Gibbs Free Energy=	0.46257

Sum of electronic and zero-point Energies=			-1303.022657
Sum of electronic and thermal Energies=			-1302.990959
Sum of electronic and thermal Enthalpies=			-1302.990014
Sum of electronic and thermal Free Energies=			-1303.087025
С	-2.94454956	4.04061180	-0.91201193
С	-1.95947600	3.91492295	0.06948867
С	-1.02686279	2.86895290	0.01297207
С	-1.08209838	1.92900759	-1.04352410
С	-2.07582280	2.08795693	-2.01969102
С	-3.00533340	3.12585220	-1.96318737
С	-0.05148348	0.78359782	-1.09251350
С	1.37017265	1.28475930	-0.48671345
С	2.22570579	-0.43457609	-0.30794629
Ν	-0.04167714	2.72041557	1.02247791
С	-0.15868894	3.49213220	2.25764914
Н	0.01126582	4.56052670	2.07642486
Н	-1.15585767	3.36305557	2.69128488
Н	0.59945694	3.12506667	2.94667775
0	1.91337817	1.81463514	1.77371439
С	1.08385169	1.91861891	0.87746979
С	3.71415062	-0.44448220	-0.39371404
С	4.38118001	-1.65314413	-0.66349831
С	4.48040983	0.71937537	-0.22019672
С	5.76835473	-1.69399948	-0.76529209
Н	3.78576158	-2.55138883	-0.79136681
С	5.87189366	0.67634106	-0.31849236
Н	3.99334209	1.65477450	0.03087864
С	6.52098707	-0.52738111	-0.59532998
Н	6.26638101	-2.63633179	-0.97996030
Н	6.44872813	1.58604039	-0.17257746
Н	7.60461963	-0.55863160	-0.67560543
Ν	1.36339561	-1.33266044	-0.17449627
Rh	-0.46723249	-0.99176909	-0.39938032
Н	0.11259096	0.46257007	-2.13746609
Н	1.95140486	1.97838228	-1.12093978
Н	-2.10852788	1.37392665	-2.84034017
Н	-3.76196535	3.22426197	-2.73679396
Н	-3.65430392	4.86101150	-0.85267429
Н	-1.91703702	4.64420977	0.87010073
С	-0.93076727	-2.59374680	1.16776972
С	-1.61899752	-2.98283672	0.00545674
С	-1.38058013	-1.24299217	1.50230714

С	-2.58317400	-1.93207621	-0.34615937
С	-2.48822963	-0.89802150	0.60705918
С	-0.99717884	-0.50456772	2.75003572
Н	-1.19865777	0.56580878	2.66039098
Н	-1.57139794	-0.88336577	3.60878290
Н	0.06565201	-0.62857823	2.97499757
С	-3.38829106	0.29118902	0.75402918
Η	-2.84565841	1.16801312	1.11687379
Η	-3.85128053	0.57076777	-0.19577774
Η	-4.19300586	0.07573985	1.47125252
С	-3.56176529	-2.02779623	-1.48066395
Η	-4.40674906	-2.68013341	-1.21793509
Η	-3.96968444	-1.04763657	-1.74262481
Η	-3.09771758	-2.44846378	-2.37943846
С	-1.45364597	-4.26013865	-0.76523186
Η	-0.54311362	-4.79080413	-0.47633546
Η	-2.30577455	-4.93305297	-0.59645849
Η	-1.39961606	-4.07299195	-1.84357628
С	0.15426437	-3.33135311	1.89488295
Н	-0.06616478	-3.39842857	2.96722317
Н	0.26949409	-4.35009381	1.51491289
Н	1.11780181	-2.82027810	1.77347955

INT-IV

Zero-point correction=	0.495452
Thermal correction to Energy=	0.526103
Thermal correction to Enthalpy=	0.527048
Thermal correction to Gibbs Free Energy=	0.433729
Sum of electronic and zero-point Energies=	-1341.166686
Sum of electronic and thermal Energies=	-1341.136035
Sum of electronic and thermal Enthalpies=	-1341.135091
Sum of electronic and thermal Free Energies=	-1341.228409
Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=	-1341.136035 -1341.135091 -1341.228409

С	-2.94454956	4.04061180	-0.91201193
С	-1.95947600	3.91492295	0.06948867
С	-1.02686279	2.86895290	0.01297207
С	-1.08209838	1.92900759	-1.04352410
С	-2.07582280	2.08795693	-2.01969102
С	-3.00533340	3.12585220	-1.96318737
С	-0.09443091	0.83132894	-1.09047203
С	1.25974040	1.22436827	-0.47613439
С	2.05624400	-0.06829022	-0.34642250

Ν	-0.04167714	2.72041557	1.02247791
С	-0.15868894	3.49213220	2.25764914
Н	0.01126582	4.56052670	2.07642486
Н	-1.15585767	3.36305557	2.69128488
Н	0.59945694	3.12506667	2.94667775
0	1.91337817	1.81463514	1.77371439
С	1.08385169	1.91861891	0.87746979
С	3.54468883	-0.07819633	-0.43219026
С	4.21171823	-1.28685826	-0.70197452
С	4.31094804	1.08566125	-0.25867293
С	5.59889294	-1.32771361	-0.80376830
Н	3.61629980	-2.18510296	-0.82984302
С	5.70243187	1.04262694	-0.35696857
Н	3.82388031	2.02106037	-0.00759757
С	6.35152529	-0.16109523	-0.63380619
Н	6.09691922	-2.27004592	-1.01843651
Н	6.27926634	1.95232626	-0.21105367
Н	7.43515784	-0.19234572	-0.71408164
Ν	1.38933918	-1.16143730	-0.24202469
Rh	-0.58381777	-1.06689740	-0.37480536
Н	0.06964354	0.51030119	-2.13542462
Н	1.79023183	1.95504075	-1.11322412
Н	-2.10852788	1.37392665	-2.84034017
Н	-3.76196535	3.22426197	-2.73679396
Н	-3.65430392	4.86101150	-0.85267429
Н	-1.91703702	4.64420977	0.87010073
С	-1.04735255	-2.66887511	1.19234468
С	-1.73558280	-3.05796504	0.03003170
С	-1.49716541	-1.31812048	1.52688210
С	-2.69975928	-2.00720452	-0.32158441
С	-2.60481491	-0.97314982	0.63163414
С	-1.11376412	-0.57969604	2.77461067
Н	-1.31524305	0.49068047	2.68496594
Н	-1.68798322	-0.95849409	3.63335786
Н	-0.05093327	-0.70370654	2.99957253
С	-3.50487634	0.21606070	0.77860414
Н	-2.96224369	1.09288481	1.14144875
Н	-3.96786581	0.49563945	-0.17120278
Н	-4.30959114	0.00061153	1.49582748
С	-3.67835057	-2.10292455	-1.45608899
Н	-4.52333434	-2.75526172	-1.19336013
Н	-4.08626972	-1.12276488	-1.71804985

Η	-3.21430286	-2.52359209	-2.35486350
С	-1.57023124	-4.33526697	-0.74065690
Η	-0.65969890	-4.86593245	-0.45176050
Н	-2.42235983	-5.00818129	-0.57188354
Н	-1.51620134	-4.14812027	-1.81900132
С	0.03767909	-3.40648143	1.91945791
Н	-0.18275006	-3.47355689	2.99179813
Η	0.15290881	-4.42522213	1.53948785
Н	1.00121653	-2.89540642	1.79805451

Zero-point correction=	0.652197
Thermal correction to Energy=	0.694336
Thermal correction to Enthalpy=	0.695280
Thermal correction to Gibbs Free Energy=	0.574796
Sum of electronic and zero-point Energies=	-1893.964343
Sum of electronic and thermal Energies=	-1893.922205
Sum of electronic and thermal Enthalpies=	-1893.921260
Sum of electronic and thermal Free Energies=	-1894.041744

С	-2.46574421	0.48598410	4.32189579
С	-2.08395959	-0.67672070	3.65318833
С	-0.98364152	-0.67631534	2.78124462
С	-0.26367702	0.52475494	2.56030779
С	-0.65452518	1.66731179	3.27400027
С	-1.74429951	1.66594778	4.14247838
С	0.89001334	0.54761494	1.62543726
С	1.56640645	-0.82586180	1.51677462
С	2.47557202	-0.78497889	0.29886396
Ν	-0.60494738	-1.86561945	2.11738123
С	-1.48037834	-3.03978372	2.17693386
Н	-1.51548055	-3.44048655	3.19749842
Н	-2.48675215	-2.77355539	1.84894430
Н	-1.05772825	-3.79102013	1.51350290
0	0.84961006	-3.00581435	0.77990401
С	0.57478305	-1.98715162	1.40767541
С	3.72662817	-1.60057593	0.22706368
С	4.69956485	-1.30065661	-0.74299437
С	3.97823693	-2.65674509	1.11728900
С	5.88445545	-2.02681943	-0.81643530
Н	4.50567199	-0.48900505	-1.43615205

С	5.16713452	-3.38431571	1.04381345
Н	3.22958150	-2.93937064	1.84796480
С	6.12624035	-3.07215435	0.08026078
Н	6.62412587	-1.77627139	-1.57293563
Н	5.33832522	-4.20201797	1.73926642
Н	7.05248252	-3.63837688	0.02529632
Ν	2.16419778	0.01240606	-0.65109073
Rh	0.53890931	1.19840179	-0.37757914
Ν	-0.90622518	-0.07567735	-0.62135257
С	-2.09102336	-0.46460027	-0.82734522
С	-2.37131128	-1.61332262	-1.74421048
С	-1.38878716	-2.59786363	-1.94783045
С	-3.58729748	-1.70874655	-2.44003117
С	-1.62327290	-3.64973104	-2.83037318
Н	-0.45720386	-2.54434062	-1.39373382
С	-3.81293380	-2.76033967	-3.32925280
Н	-4.36240013	-0.95996440	-2.30145897
С	-2.83246068	-3.73364695	-3.52682537
Н	-0.85951588	-4.40995794	-2.96948459
Н	-4.75614043	-2.81723512	-3.86626014
Н	-3.01113887	-4.55575432	-4.21480718
С	-0.06469342	2.73770599	-2.09968401
С	1.34334837	2.57000582	-2.09766978
С	-0.45498078	3.32332640	-0.83128165
С	1.83831274	3.00813441	-0.80520039
С	0.72692013	3.52989994	-0.06052113
Н	1.62703745	1.28810208	1.95251475
Н	2.13990537	-1.02989203	2.43862924
Н	-0.07468448	2.57505517	3.14261332
Н	-2.01768471	2.57005011	4.67966570
Н	-3.31941047	0.45724518	4.99358733
Н	-2.64966761	-1.58542585	3.81364715
С	-1.83258807	3.81118696	-0.48102308
Н	-2.03753322	3.72005664	0.59038003
Н	-1.95622940	4.87001845	-0.75100462
Н	-2.60553542	3.25209440	-1.01606719
С	0.82285777	4.29820500	1.22431938
Н	1.11496250	5.33841698	1.02195037
Н	-0.13272642	4.32545210	1.75431042
Н	1.57575963	3.88027775	1.90042290
С	3.29005001	3.09747430	-0.43386516
Н	3.77374923	3.94810060	-0.93418342

Н	3.42420075	3.23053495	0.64416540
Н	3.82165890	2.18693681	-0.72701652
С	2.21270606	2.01548275	-3.18388257
Н	2.96224435	2.75195826	-3.50168455
Н	2.74027182	1.12533991	-2.81835235
Н	1.63088769	1.72926767	-4.06440313
С	-1.00664715	2.43648162	-3.23035060
Н	-0.54002608	1.79489261	-3.98202941
Н	-1.90906335	1.92420753	-2.88041314
Н	-1.32828233	3.36012786	-3.73072032
С	-3.26483705	0.30912785	-0.20253968
Н	-2.86178663	0.90402355	0.62370417
Н	-3.68629563	1.00697454	-0.93406465
С	-4.38390165	-0.54436509	0.35982008
0	-4.26046880	-1.54655211	1.02767267
0	-5.60088376	-0.02792674	0.05309277
Н	-6.25735460	-0.61365587	0.47754642

INT-V

Zero-point correction=	0.649521
Thermal correction to Energy=	0.691716
Thermal correction to Enthalpy=	0.692660
Thermal correction to Gibbs Free Energy=	0.570373
Sum of electronic and zero-point Energies=	-1894.035351
Sum of electronic and thermal Energies=	-1893.993156
Sum of electronic and thermal Enthalpies=	-1893.992211
Sum of electronic and thermal Free Energies=	-1894.110931

С	-2.41857764	0.25299823	4.35895455
С	-2.02983104	-0.87438138	3.63427000
С	-0.95173383	-0.81898421	2.73726750
С	-0.25059457	0.39834920	2.55027501
С	-0.65090592	1.50575212	3.31496835
С	-1.72272725	1.45183168	4.20536138
С	0.88294291	0.47178803	1.59815594
С	1.59965438	-0.88227577	1.44515436
С	2.50416590	-0.76030950	0.21900019
Ν	-0.56032203	-1.97156765	2.01885654
С	-1.44299057	-3.13594769	2.00021661
Н	-1.46902861	-3.62792913	2.98299046
Н	-2.45048637	-2.82600480	1.71547672
Н	-1.04209264	-3.83411700	1.26863990

0	0.97471356	-3.12214230	0.79064198
С	0.65059928	-2.07646084	1.34938418
С	3.77716163	-1.54461286	0.11644404
С	4.74263778	-1.18007253	-0.84082226
С	4.07020708	-2.62902160	0.96053437
С	5.95163048	-1.86153805	-0.94334177
Н	4.51099071	-0.35017305	-1.50054643
С	5.28464232	-3.31202488	0.85987262
Н	3.32629424	-2.96958870	1.67093676
С	6.23493706	-2.93217544	-0.08806610
Н	6.68018934	-1.55597287	-1.69225909
Н	5.48174284	-4.15246135	1.52269053
Н	7.18055146	-3.46489181	-0.16549628
Ν	2.19808154	0.09789156	-0.67698620
Rh	0.55394107	1.21051557	-0.36139411
Ν	-0.53029492	-0.41709001	-0.92681169
С	-1.79225921	-0.57214496	-0.93838353
С	-2.35636830	-1.73383283	-1.71567173
С	-1.56855395	-2.88394663	-1.90889772
С	-3.62729268	-1.69475220	-2.31253128
С	-2.04355679	-3.95461474	-2.66139357
Н	-0.58434773	-2.91178314	-1.45223689
С	-4.09774195	-2.76494509	-3.07927020
Н	-4.25922868	-0.81799617	-2.19373033
С	-3.31027496	-3.90212952	-3.25539892
Н	-1.42123497	-4.83842414	-2.78633567
Н	-5.08214436	-2.70466089	-3.53997137
Н	-3.67664505	-4.73868934	-3.84689339
С	-0.41767900	2.83221364	-1.85716932
С	0.96889248	2.68224104	-2.14775552
С	-0.55499960	3.35500323	-0.52423163
С	1.71068459	3.13066781	-0.99546948
С	0.77495511	3.54469745	-0.00445676
Н	1.61187370	1.20632519	1.96486328
Н	2.20648050	-1.09538336	2.34707305
Н	-0.09334867	2.43081108	3.19746104
Н	-2.00399922	2.33377857	4.77670172
Н	-3.26001670	0.18326525	5.04438466
Н	-2.57821544	-1.79889137	3.76540275
С	-1.81452997	3.85037609	0.13325593
Н	-1.84359769	3.59984074	1.20054827
Н	-1.91736501	4.94471062	0.05334168

Н	-2.70897062	3.41160922	-0.31903806
С	1.11934663	4.22632458	1.29071874
Н	1.38836921	5.28114870	1.12797378
Н	0.27480766	4.21449170	1.98618537
Н	1.96929159	3.75075128	1.79394424
С	3.20825263	3.20973276	-0.92118388
Η	3.60428698	3.98899905	-1.58976013
Н	3.54919125	3.44322161	0.09325386
Η	3.65864294	2.25351595	-1.21139956
С	1.58192057	2.17774364	-3.42256972
Н	2.09552701	2.97807434	-3.97777184
Η	2.31536564	1.39040094	-3.21041498
Н	0.82336072	1.74875376	-4.08538275
С	-1.52767700	2.54385432	-2.83340271
Η	-1.59727017	1.47579925	-3.07127041
Н	-2.49937507	2.86224064	-2.44314433
Η	-1.36670865	3.08052080	-3.77811717
С	-2.80442259	0.39273922	-0.27156671
Н	-2.25425550	0.90286158	0.52722854
Η	-3.13726337	1.16262005	-0.97383557
С	-4.02557729	-0.23534157	0.34998736
0	-4.07947369	-1.22692373	1.04779917
0	-5.16529605	0.46882332	0.06352757
Н	-5.87654267	-0.01347431	0.52665215

TS-V

513
716
361
71
.125052
3.953652
3.952161
.201921

C	2.35563419	-0.18438298	4.61159418
С	1.83924792	0.91877974	3.92861442
С	0.86210055	0.75818903	2.93458126
С	0.39375539	-0.53843368	2.60641989
С	0.90991350	-1.62091366	3.33372576
С	1.88520870	-1.46345166	4.31931124
С	-0.62390246	-0.71457828	1.54395487

С	-1.55731649	0.50351509	1.42474656
С	-2.25143113	0.31084694	0.16172430
Ν	0.33720049	1.88191101	2.26131673
С	1.02824465	3.16037758	2.36242337
Н	0.93250459	3.59326936	3.36818207
Н	2.08865828	3.02690167	2.12765015
Н	0.57112311	3.83661171	1.64320094
0	-1.29817665	2.87412357	1.02422339
С	-0.82876371	1.84454100	1.50262209
С	-3.63533343	0.88294759	0.10238549
С	-4.52905307	0.43745871	-0.88944116
С	-4.09829884	1.84201890	1.01892582
С	-5.83229764	0.92118151	-0.95663148
Н	-4.16696270	-0.29513637	-1.60359849
С	-5.40681556	2.32679474	0.95270620
Н	-3.41611102	2.24536343	1.75802148
С	-6.28371572	1.86809736	-0.03058782
Н	-6.50291784	0.55657803	-1.73275732
Н	-5.73680858	3.07496195	1.67096993
Н	-7.30298108	2.24575628	-0.08036940
Ν	-1.82522311	-0.38700098	-0.86740719
Rh	0.03342737	-1.12953942	-0.45068132
Ν	0.74184253	0.72490081	-0.62580939
С	2.03350689	1.07833502	-0.59312629
С	2.36285113	2.34108123	-1.35682631
С	1.38062499	3.32860907	-1.54802381
С	3.63578968	2.55522747	-1.90960317
С	1.67556727	4.49946364	-2.24609037
Н	0.39241519	3.15652994	-1.13346024
С	3.92882469	3.72508066	-2.61384735
Н	4.39628796	1.78655125	-1.79926061
С	2.95025881	4.70661132	-2.78266423
Н	0.90313859	5.25536498	-2.37335614
Н	4.92139878	3.86468668	-3.03873419
Н	3.17525758	5.61830493	-3.33263040
С	3.04094968	0.47729153	0.15360102
С	1.50538660	-2.33604580	-1.88699510
С	0.16404227	-2.46206526	-2.36387418
С	1.59363996	-2.97220522	-0.60355624
С	-0.58357576	-3.20347484	-1.37785313
С	0.28111639	-3.51444045	-0.25969206
Н	-1.23267114	-1.60084769	1.76401407

Н	-2.26282330	0.53049247	2.27814758
Н	2.82634980	-0.40861931	0.73833008
Н	0.52762721	-2.61256397	3.10753513
Η	2.26534056	-2.33005718	4.85564506
Н	3.11443131	-0.03314328	5.37594506
Н	2.20012491	1.90944108	4.18045068
С	2.85378765	-3.22168177	0.17796050
Н	2.69376976	-3.11928684	1.25794295
Η	3.25380074	-4.23352598	0.00091175
Η	3.63564352	-2.50860215	-0.09976755
С	-0.05698019	-4.37005852	0.92949726
Η	-0.05261162	-5.43891964	0.666794532
Н	0.66884352	-4.23526579	1.73696753
Н	-1.04982186	-4.14155098	1.33340235
С	-2.02291456	-3.60646000	-1.52490725
Н	-2.15615722	-4.34527703	-2.32042515
Η	-2.41021626	-4.05232534	-0.60038713
Н	-2.64560946	-2.73515691	-1.75675310
С	-0.40452033	-1.97234719	-3.66523468
Η	-0.60158478	-2.79996364	-4.36439318
Η	-1.34917269	-1.44233174	-3.49922792
Η	0.27587326	-1.27480022	-4.16350800
С	2.65803689	-1.72094366	-2.62377211
Η	2.31267365	-1.09467748	-3.45581360
Η	3.25944356	-1.08538188	-1.96720176
Η	3.31733113	-2.49513923	-3.04854748
С	4.38908914	1.18189275	0.39375949
0	5.37904109	0.80548427	1.01961837
0	4.44414199	2.40273633	-0.19612727

INT-VI

Zero-point correction=	:		0.621248
Thermal correction to	Energy=		0.660347
Thermal correction to	Enthalpy=		0.661291
Thermal correction to	Gibbs Free Ene	rgy=	0.548957
Sum of electronic and	zero-point Ener	gies=	-1704.854255
Sum of electronic and	thermal Energie	es=	-1704.815156
Sum of electronic and	thermal Enthalp	oies=	-1704.814212
Sum of electronic and	thermal Free Er	nergies=	-1704.926545
a	0.05560410	0 10 10 0000	1 (11 50 110

C	2.35563419	-0.18438298	4.61159418
С	1.83924792	0.91877974	3.92861442

~			
C	0.86210055	0.75818903	2.93458126
C	0.39375539	-0.53843368	2.60641989
C	0.90991350	-1.62091366	3.33372576
C	1.88520870	-1.46345166	4.31931124
С	-0.62390246	-0.71457828	1.54395487
С	-1.55731649	0.50351509	1.42474656
С	-2.32552964	0.32579848	0.11387739
Ν	0.33720049	1.88191101	2.26131673
С	1.02824465	3.16037758	2.36242337
Н	0.93250459	3.59326936	3.36818207
Н	2.08865828	3.02690167	2.12765015
Н	0.57112311	3.83661171	1.64320094
0	-1.29817665	2.87412357	1.02422339
С	-0.82876371	1.84454100	1.50262209
С	-3.71811424	0.85760754	-0.04069645
С	-4.54151316	0.35999675	-1.06798072
С	-4.25770221	1.82885834	0.81937193
С	-5.85085624	0.80550178	-1.22320525
Н	-4.12010357	-0.38206249	-1.73849375
С	-5.57239005	2.27529733	0.66478614
Н	-3.62980054	2.27143516	1.58369821
С	-6.37915046	1.76519158	-0.35263907
Н	-6.46609100	0.40091702	-2.02497570
Н	-5.96240612	3.03391742	1.34075611
Н	-7.40332735	2.11303855	-0.47125821
Ν	-1.79282440	-0.37684505	-0.81089974
Rh	0.02908098	-1.14651762	-0.42915075
Ν	0.73749615	0.70792261	-0.60427882
С	2.02916050	1.06135682	-0.57159572
С	2.35850475	2.32410303	-1.33529573
С	1.37627861	3.31163087	-1.52649324
С	3.63144329	2.53824927	-1.88807260
C	1.67122089	4.48248544	-2.22455980
Н	0.38806881	3.13955174	-1.11192967
C	3.92447831	3.70810246	-2.59231677
H	4.39194158	1.76957305	-1.77773004
C	2.94591243	4.68963312	-2.76113366
H	0.89879221	5.23838678	-2.35182557
H	4 91705240	3.84770848	-3.01720362
H	3 17091120	5.60132673	-3.31109982
C	3 03660329	0.46031333	0.17513159
- Н	3 98813348	0.95762786	0.34460994
	2.70012210	0.20102100	0.01100771

С	1.50538660	-2.33604580	-1.88699510	
С	0.16404227	-2.46206526	-2.36387418	
С	1.59363996	-2.97220522	-0.60355624	
С	-0.58357576	-3.20347484	-1.37785313	
С	0.29423013	-3.51569645	-0.30245533	
Н	-1.23267114	-1.60084769	1.76401407	
Н	-2.26282330	0.53049247	2.27814758	
Н	2.82200342	-0.42559751	0.75986066	
Н	0.52762721	-2.61256397	3.10753513	
Н	2.26534056	-2.33005718	4.85564406	
Н	3.11443131	-0.03314328	5.37594506	
Η	2.20012491	1.90944108	4.18045068	
С	2.85378765	-3.22168177	0.17796050	
Н	2.69376976	-3.11928684	1.25794095	
Н	3.25380074	-4.23352598	0.00091975	
Н	3.63564352	-2.50860215	-0.09976055	
С	-0.03649612	-4.39415609	0.87206229	
Н	-0.02699829	-5.45813428	0.59035996	
Н	0.69047125	-4.26982643	1.68018230	
Η	-1.02960536	-4.17826576	1.28318736	
С	-2.02291456	-3.60646000	-1.52290725	
Н	-2.15615722	-4.34527703	-2.32742515	
Н	-2.41021626	-4.05232534	-0.60038713	
Н	-2.64560946	-2.73515691	-1.75775310	
С	-0.40452033	-1.97234719	-3.66523468	
Н	-0.60158478	-2.79996364	-4.36439318	
Н	-1.34917269	-1.44233174	-3.49622792	
Н	0.27587326	-1.27480022	-4.16350800	
С	2.65803689	-1.72094366	-2.62777211	
Н	2.31267365	-1.09467748	-3.45581360	
Н	3.25944356	-1.08538188	-1.96820176	
Н	3.31733113	-2.49513923	-3.04854748	

TS-VI

Zero-point correction=	0.620151
Thermal correction to Energy=	0.661469
Thermal correction to Enthalpy=	0.661377
Thermal correction to Gibbs Free Energy=	0.589376
Sum of electronic and zero-point Energies=	-1704.861819
Sum of electronic and thermal Energies=	-1704.895563
Sum of electronic and thermal Enthalpies=	-1704.891959
Sum of electronic and thermal Free Energies=	-1704.928841

С	3.16495608	1.51833704	-3.61610571
С	2.67946908	0.24334304	-3.31945971
С	1.56011908	0.07403704	-2.48892171
С	0.91738808	1.20888904	-1.93713271
С	1.41723608	2.47560104	-2.27002271
С	2.53007008	2.64463904	-3.09362471
С	-1.04759492	-0.24301096	-1.31712371
С	-1.93877992	-0.45485296	-0.09102571
Ν	1.06773008	-1.21751596	-2.20591671
С	1.88518508	-2.37993296	-2.52759171
Н	1.96266408	-2.53120196	-3.61346571
Н	2.88919008	-2.25784096	-2.10969571
Н	1.40379608	-3.24819196	-2.08245571
0	-0.60199892	-2.60589196	-1.51879071
С	-0.18208592	-1.45961996	-1.63852671
С	-3.27281792	-1.12601896	-0.20862071
С	-4.22043792	-0.96061996	0.81940929
С	-3.64020992	-1.89947896	-1.32243671
С	-5.48435392	-1.53675496	0.73385429
Н	-3.93010692	-0.36935296	1.68206929
С	-4.90998092	-2.47581996	-1.40897771
Н	-2.91127892	-2.09109696	-2.10105671
С	-5.84140892	-2.29624296	-0.38605071
Н	-6.19878192	-1.39077296	1.54221929
Н	-5.16608192	-3.07672096	-2.27960571
Н	-6.83025292	-2.74515296	-0.45543571
Ν	-1.57254692	0.05462704	1.02315529
Н	-1.67278492	-0.11473796	-2.22190071
Н	0.91683308	3.34539304	-1.84886771
Н	2.89363908	3.64323904	-3.32512271
Н	4.03469508	1.62184704	-4.26096271
Н	3.17537708	-0.62100296	-3.74610171
С	-0.24778492	1.04074704	-1.03842371
С	0.12817713	1.48830139	0.28664525
Н	1.11724007	1.84597730	0.48342542
Н	0.04906514	0.46806629	0.59931382
Rh	-1.64475362	2.41876986	-1.14586024
Ν	-1.52976241	3.20279917	0.04810964
С	-0.62568384	2.67710235	0.82696326
С	-0.30782523	3.19774862	2.24099769
С	-0.96242072	4.32788114	2.73168769

С	0.63437946	2.53946107	3.03122295
С	-0.67432164	4.79994546	4.01206885
Н	-1.70462348	4.84708857	2.10814900
С	0.92196241	3.01096243	4.31239132
Η	1.15026636	1.64862140	2.64470721
С	0.26790934	4.14109602	4.80284994
Η	-1.18978274	5.69109036	4.39866573
Η	1.66459615	2.49148592	4.93537890
Η	0.49485722	4.51345237	5.81237545
С	-3.58666899	3.66183042	-2.23862658
С	-4.01233843	2.32084625	-2.09207658
С	-2.52872890	3.68451204	-3.17732687
С	-3.21747680	1.51475386	-2.94020378
С	-2.30055516	2.35754616	-3.61092573
С	-5.14267346	1.82548180	-1.17090516
Η	-5.96145932	2.51323206	-1.20949639
Η	-5.47148249	0.86083415	-1.49684922
Η	-4.78044085	1.75819754	-0.16633542
С	-4.17221532	4.88271142	-1.50501559
Η	-3.42925362	5.64998282	-1.44018888
Η	-5.01914574	5.25106708	-2.04531456
Η	-4.47508707	4.59535842	-0.51982680
С	-3.33051531	-0.01227889	-3.10450002
Η	-4.32268288	-0.26509047	-3.41528906
Η	-2.63017425	-0.34445493	-3.84211881
Η	-3.11722851	-0.48828113	-2.17024598
С	-1.24008238	1.90915112	-4.63363750
Η	-1.66429225	1.92124200	-5.61587973
Η	-0.40493381	2.57707753	-4.59756550
Η	-0.91419938	0.91758673	-4.39805242
С	-1.76028104	4.93442168	-3.64510223
Н	-0.92373166	4.63620792	-4.24188836
Н	-2.40951813	5.55558637	-4.22608899
Н	-1.41367198	5.47991410	-2.79234190
Н	0.11458403	3.33113271	0.41568748

INT-VII

Zero-point correction=	0.623354
Thermal correction to Energy=	0.662561
Thermal correction to Enthalpy=	0.663505
Thermal correction to Gibbs Free Energy=	0.547937
Sum of electronic and zero-point Energies=	-1704.862792

Sum of electronic and thermal Energies=	-1704.823584
Sum of electronic and thermal Enthalpies=	-1704.822640
Sum of electronic and thermal Free Energies=	-1704.938208

С	2.84980500	1.82921400	-3.64034300
С	2.36431800	0.55422000	-3.34369700
С	1.24496800	0.38491400	-2.51315900
С	0.60223700	1.51976600	-1.96137000
С	1.10208500	2.78647800	-2.29426000
С	2.21491900	2.95551600	-3.11786200
С	-1.36274600	0.06786600	-1.34136100
С	-2.25393100	-0.14397600	-0.11526300
Ν	0.75257900	-0.90663900	-2.23015400
С	1.57003400	-2.06905600	-2.55182900
Н	1.64751300	-2.22032500	-3.63770300
Н	2.57403900	-1.94696400	-2.13393300
Н	1.08864500	-2.93731500	-2.10669300
0	-0.91715000	-2.29501500	-1.54302800
С	-0.49723700	-1.14874300	-1.66276400
С	-3.58796900	-0.81514200	-0.23285800
С	-4.53558900	-0.64974300	0.79517200
С	-3.95536100	-1.58860200	-1.34667400
С	-5.79950500	-1.22587800	0.70961700
Н	-4.24525800	-0.05847600	1.65783200
С	-5.22513200	-2.16494300	-1.43321500
Н	-3.22643000	-1.78022000	-2.12529400
С	-6.15656000	-1.98536600	-0.41028800
Н	-6.51393300	-1.07989600	1.51798200
Н	-5.48123300	-2.76584400	-2.30384300
Н	-7.14540400	-2.43427600	-0.47967300
Ν	-1.88769800	0.36550400	0.99891800
Н	-1.98793600	0.19613900	-2.24613800
Н	0.60168200	3.65627000	-1.87310500
Н	2.57848800	3.95411600	-3.34936000
Н	3.71954400	1.93272400	-4.28520000
Н	2.86022600	-0.31012600	-3.77033900
С	-0.56293600	1.35162400	-1.06266100
С	0.12817713	1.48830139	0.28664525
Н	1.11724007	1.84597730	0.48342542
Н	0.04906514	0.46806629	0.59931382
Rh	-1.64475362	2.41876986	-1.14586024
Ν	-1.52976241	3.20279917	0.04810964

С	-0.62568384	2.67710235	0.82696326
С	-0.30782523	3.19774862	2.24099769
С	-0.96242072	4.32788114	2.73168769
С	0.63437946	2.53946107	3.03122295
С	-0.67432164	4.79994546	4.01206885
Н	-1.70462348	4.84708857	2.10814900
С	0.92196241	3.01096243	4.31239132
Н	1.15026636	1.64862140	2.64470721
С	0.26790934	4.14109602	4.80284994
Н	-1.18978274	5.69109036	4.39866573
Н	1.66459615	2.49148592	4.93537890
Н	0.49485722	4.51345237	5.81237545
С	-3.58666899	3.66183042	-2.23862658
С	-4.01233843	2.32084625	-2.09207658
С	-2.52872890	3.68451204	-3.17732687
С	-3.21747680	1.51475386	-2.94020378
С	-2.30055516	2.35754616	-3.61092573
С	-5.14267346	1.82548180	-1.17090516
Н	-5.96145932	2.51323206	-1.20949639
Н	-5.47148249	0.86083415	-1.49684922
Н	-4.78044085	1.75819754	-0.16633542
С	-4.17221532	4.88271142	-1.50501559
Н	-3.42925362	5.64998282	-1.44018888
Н	-5.01914574	5.25106708	-2.04531456
Н	-4.47508707	4.59535842	-0.51982680
С	-3.33051531	-0.01227889	-3.10450002
Н	-4.32268288	-0.26509047	-3.41528906
Н	-2.63017425	-0.34445493	-3.84211881
Н	-3.11722851	-0.48828113	-2.17024598
С	-1.24008238	1.90915112	-4.63363750
Н	-1.66429225	1.92124200	-5.61587973
Н	-0.40493381	2.57707753	-4.59756550
Н	-0.91419938	0.91758673	-4.39805242
С	-1.76028104	4.93442168	-3.64510223
Н	-0.92373166	4.63620792	-4.24188836
Н	-2.40951813	5.55558637	-4.22608899
Н	-1.41367198	5.47991410	-2.79234190
Н	0.11458403	3.33113271	0.41568748

NH₃

Zero-point correction=

Thermal correction to Energy=

0.034550 (Hartree/Particle) 0.037411

Thermal corr	ection to Enthalpy=		0.038355	
Thermal corr	ection to Gibbs Free Er	nergy=	0.016511	
Sum of electr	onic and zero-point En	ergies=	-56.512768	
Sum of electr	onic and thermal Energy	gies=	-56.509907	
Sum of electr	onic and thermal Entha	alpies=	-56.508963	
Sum of electr	onic and thermal Free	Energies=	-56.530807	
Ν	-0.00000000 -0.	00000000 0	.11633156	
Н	0.00000000 ().94117953 -	0.27144032	
Н	-0.81508538 -0	.47058977 -0	0.27144032	
Н	0.81508538 -0).47058977 -	0.27144032	
CO ₂				
Zero-point co	orrection=		0.011591 (Hartree/Partic	ele)
Thermal corr	ection to Energy=		0.014234	
Thermal corr	ection to Enthalpy=		0.015178	
Thermal corr	ection to Gibbs Free Er	nergy=	-0.009120	
Sum of electr	onic and zero-point En	ergies=	-188.572751	
Sum of electr	onic and thermal Energ	gies=	-188.570109	
Sum of electr	onic and thermal Entha	alpies=	-188.569165	
Sum of electr	onic and thermal Free	Energies=	-188.593462	
С	0.00000000	0.00000000	0.00000000	
0	0.00000000	0.0000000	0 1.16569984	
0	0.00000000	0.0000000	00 -1.16569984	
3aa				
Zero-point co	prrection= 0.36366			
Thermal corr	ection to Energy=		0.385067	
Thermal corr	ection to Enthalpy=		0.386011	
Thermal corr	ection to Gibbs Free Er	nergy=	0.539451	
Sum of electr	onic and zero-point En	ergies=	-1148.181254	
Sum of electr	onic and thermal Energy	gies=	-1148.159848	
Sum of electr	onic and thermal Entha	alpies=	-1148.158903	
Sum of electr	onic and thermal Free	Energies=	-1148.233059	
С	4.40546642	-3.23053955	-0.33453107	
С	4.42623285	-1.87344052	-0.05725570	
С	3.22788774	-1.14182053	0.04270548	
С	1.99343227	-1.80806975	-0.14028734	
С	2.01045371	-3.18443327	-0.41997164	
С	3.19315357	-3.89634304	-0.51872993	
С	0.75447763	-1.03596979	-0.05643191	
С	0.81871189	0.36457410	0.10282098	
С	-0.39984799	1.10027448	0.04208449	
С	-1.65285361	-0.85517839	-0.01457352	
---	-------------	-------------	-------------	
С	-0.50932643	-1.63626130	-0.12978086	
Н	5.34223885	-3.77096735	-0.40870270	
Н	5.37677391	-1.38025019	0.08052304	
Н	1.07583397	-3.70667135	-0.57460738	
Н	3.17452512	-4.95651556	-0.73972367	
Н	-0.60503777	-2.70265260	-0.26683948	
Ν	3.25241412	0.21962357	0.33870589	
С	2.10263262	1.02158566	0.43327085	
0	2.19310409	2.18166921	0.79824567	
Ν	-1.58054846	0.48770719	0.02329601	
С	-3.01535175	-1.44597996	0.02425979	
С	-4.12060979	-0.67016094	-0.35354375	
С	-3.23402905	-2.76692472	0.44069827	
С	-5.40267783	-1.20734769	-0.33318512	
Н	-3.95106334	0.35336901	-0.66083780	
С	-4.51827323	-3.30150055	0.46461521	
Н	-2.40267956	-3.37521483	0.77740760	
С	-5.60711858	-2.52513256	0.07325027	
Н	-6.24552981	-0.59606106	-0.63588426	
Н	-4.66971370	-4.32191054	0.79837664	
Н	-6.60778307	-2.94211280	0.09120157	
С	-0.49572679	2.58550338	-0.05994245	
С	-1.42093795	3.26824281	0.73588764	
С	0.23212100	3.30085073	-1.01660722	
С	-1.59029762	4.64317482	0.60229686	
Н	-2.00354353	2.71134187	1.45902384	
С	0.04595775	4.66985480	-1.16624310	
Н	0.93882382	2.78262767	-1.65345292	
С	-0.85917903	5.34795566	-0.35080256	
Н	-2.29870440	5.16234281	1.23829576	
Н	0.61033857	5.20982179	-1.91830189	
Н	-0.99611552	6.41790491	-0.46183024	
С	4.53007768	0.87316335	0.63013247	
Н	5.02186624	0.39511095	1.48082862	
Н	5.19081718	0.83003209	-0.23925402	
Н	4.31480778	1.90867294	0.87298171	

Reference

(1) (a) He, C.; Zhou, G.; Yang, G.; Wang, F.; Lu, C.; Nie, J.; Ma, C. Borane-Catalyzed Coupling of Diazooxindoles and Difluoroenoxysilanes to Tetrasubstituted Monofluoroalkenes. *Org. Lett.* **2024**, *26*, 5539-5543. (b) Qi, D.; Bai, J.; Song, Z.; Li, B.; Yang, C.; Guo, L.; Xia, W. Photoinduced synthesis of functionalized oxacyclic spirooxindoles via ring expansion. *Org. Lett.* **2023**, *25*, 506-511.

(2) (a) Jurberg, I. D. An aminocatalyzed stereoselective strategy for the formal α -propargylation of ketones. *Chem-Eur. J.* **2017**, *23*, 9716-9720. (b) Wan, T.; Pi, C.; Wu, Y.; Cui, X. Rh (III)-catalyzed [4+2] annulation of 3-aryl-5-isoxazolone with maleimides or maleic ester. *Org. Lett.* **2020**, *22*, 6484-6488.

(3) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339-341.

(4) Sheldrick, G. M. SHELXT–Integrated space-group and crystal-structure determination. *Acta Cryst.* **2015**, *71*, 3-8.

(5) Sheldrick, G. M. A short history of SHELX. Acta Cryst. 2008, 64, 112-122.

(6) Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Uranyl extraction by N, N-dialkylamide ligands studied by static and dynamic DFT simulations. In *Gaussian 09*, Gaussian Inc Wallingford, 2009.

(7) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. *J. Phys. Chem.* **1994**, *98*, 11623-11627.

(8) Lu, T.; Chen, Q. Shermo: A general code for calculating molecular thermochemistry properties. *Comput. Theor. Chem.* **2021**, *1200*, 113249.

The data of product

6-Methyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3aa)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2a** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3aa** was obtained as a pale yellow solid (58.2 mg, 80% yield) after purification by column chromatography on silica gel with

petroleum ether/ethyl acetate (4:1), melting point: 198-201 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.45 (s, 1 H), 8.40 (d, *J* = 8.0 Hz, 1 H), 8.21 (d, *J* = 7.6 Hz, 2 H), 7.65-7.58 (m, 3 H), 7.52-7.45 (m, 6 H), 7.40-7.33 (m, 2 H), 3.67 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.4, 160.3, 157.2, 143.1, 142.7, 139.9, 138.5, 131.9, 129.8, 128.9, 128.6, 127.9, 127.6, 124.2, 122.5, 117.6, 116.9, 115.2, 110.3, 30.0; **HRMS** (ESI) calcd for C₂₅H₁₉N₂O [M+H]⁺ 363.1492, found: 363.1489.

6,7-Dimethyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3ba)

The reaction was performed with **1b** (0.2 mmol, 1 equiv.), **2a** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ba** was obtained as a pale yellow solid (49.8 mg, 66% yield) after purification by column chromatography on silica gel with

petroleum ether/ethyl acetate (4:1), melting point: 198-201 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.35 (s, 1 H), 8.20-8.15 (m, 3H), 7.71-7.68 (m, 2 H), 7.51-7.37 (m, 7 H), 7.26-7.22 (m, 1 H), 3.61 (s, 3 H), 2.60 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.9, 162.7, 157.5, 143.4, 142.5, 141.6, 138.6, 135.5, 129.8, 129.2, 128.9, 128.3, 127.8, 127.6, 126.9, 123.3, 121.8, 120.5, 117.1, 110.2, 38.3, 23.0; **HRMS** (ESI) calcd for C₂₆H₂₁N₂O [M+H]⁺ 377.1648; found: 377.1645.

7-Fluoro-6-methyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3ca)

The reaction was performed with **1c** (0.2 mmol, 1 equiv.), **2a** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ca** was obtained as a pale yellow solid (40.4 mg, 53% yield) after purification by column chromatography on silica gel with

petroleum ether/ethyl acetate (4:1), melting point: 248-251 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.40 (s, 1 H), 8.22-8.17 (m, 3H), 7.65-7.62 (m, 2 H), 7.53-7.47 (m, 6 H), 7.40-7.26 (m, 2 H), 3.82 (d, *J* = 8.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.3, 160.8, 157.6, 152.2, 149.8, 142.6, 142.4 (d, *J* = 2.5 Hz, 1 C), 138.3, 130.0, 129.4 (d, *J* = 6.9 Hz, 1 C), 128.9 (d, *J* = 9.9 Hz, 1 C), 128.3, 127.6 (d, *J* = 13.7 Hz, 1 C), 123.0 (d, *J* = 8.5 Hz, 1 C), 121.0 (d, *J* = 2.5 Hz, 1 C), 119.9 (d, *J* = 3.4 Hz, 1 C), 119.3, 119.1, 117.0, 110.4, 34.4 (d, *J* = 15.6 Hz, 1 C); ¹⁹F NMR (377 MHz, CDCl₃, ppm): δ = -119.0; HRMS (ESI) calcd for C₂₅H₁₈FN₂O [M+H]⁺ 381.1398; found: 381.1397.

7-Bromo-6-methyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3da)

The reaction was performed with **1d** (0.2 mmol, 1 equiv.), **2a** (0.5 mmol 2.5 equiv.), [Cp*RhCl₂]₂ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3da** was obtained as a pale yellow solid (51.1 mg, 58% yield) after purification by column chromatography on silica gel with

petroleum ether/ethyl acetate (4:1), melting point: 258-260 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.35 (s, 1 H), 8.23-8.17 (m, 3 H), 7.58-7.44 (m, 10 H), 3.61 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.4, 160.0, 157.5, 142.8, 142.0, 140.8, 138.3, 130.0, 128.9, 128.6, 128.1, 127.6, 127.6, 126.1, 125.6, 125.5, 118.2, 116.7, 116.6, 110.0, 30.1; HRMS (ESI) calcd for C₂₅H₁₈BrN₂O [M+H]⁺ 441.0597; found: 441.0593.

8-Fluoro-6-methyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3ea)

mg,

The reaction was performed with **1e** (0.2 mmol, 1 equiv.), 2a (0.5 mmol 2.5 equiv.), [Cp*RhCl₂]₂ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 $^{\rm o}C$ under N_2 for 10 h (TLC monitored). The product 3ea was obtained as a pale yellow solid (43.4 57% vield) after purification

by

column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 255-258 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.43-8.38 (m, 2 H), 8.20 (d, J = 6.4 Hz, 2 H), 7.59-7.57 (m, 2 H), 7.54-7.46 (m, 6 H), 7.11-7.07 (m, 2 H), 3.64 (s, 3 H); ¹³C **NMR** (100 MHz, CDCl₃, ppm): δ 166.0, 163.5 (d, J = 4.7 Hz, 1 C), 160.3, 157.4, 142.9, 142.2, 141.7 (d, J = 10.7 Hz, 1 C), 138.4, 129.9, 128.7 (d, J = 33.1 Hz, 1 C), 128.1, 127.6 (d, J = 4.0 Hz, 1 C), 126.5, 126.4, 116.3, 114.1 (d, J = 2.5 Hz, 1 C), 110.3, 110.1, 102.3 (d, J = 26.5 Hz, 1 C), 30.3; ¹⁹F NMR (377 MHz, CDCl₃, ppm): $\delta = -105.9$; **HRMS** (ESI) calcd for C₂₅H₁₈FN₂O [M+H]⁺ 381.1398; found: 381.1397

8-Chloro-6-methyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3fa)

The reaction was performed with **1f** (0.2 mmol, 1 equiv.), 2a (0.5 mmol 2.5 equiv.), [Cp*RhCl₂]₂ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product 3fa was obtained as a pale yellow solid (50.0 mg, 63% vield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 274-278 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.39 (s, 1 H), 8.33 (d, J = 8.8 Hz, 1 H), 8.20 (d, J = 6.4 Hz, 2 H), 7.59-7.57 (m, 2 H), 7.53-7.46 (m, 6 H), 7.40-7.39 (m, 1 H), 7.35-7.32 (m, 1 H), 3.65 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.5, 160.1, 157.5, 142.8, 142.0, 140.8, 138.3, 137.9, 130.0, 128.9, 128.6, 128.1, 127.6, 127.6, 125.5, 122.8, 116.6, 116.2, 115.2, 110.1, 30.1; **HRMS** (ESI) calcd for C₂₅H₁₈ClN₂O [M+H]⁺ 397.1102; found: 397.1103.

6,9-Dimethyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3ga)

The reaction was performed with 1g (0.2 mmol, 1 equiv.), 2a (0.5 mmol 2.5 equiv.), [Cp*RhCl₂]₂ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product 3ga was obtained as a pale yellow solid (52.8 mg, 70% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 204-208 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.42 (s, 1 H), 8.23-8.20 (m, 2 H), 8.15 (s, 1 H), 7.60-7.58 (m, 2 H), 7.52-7.41 (m, 7 H), 7.26-7.24 (m, 1 H), 3.62 (s, 3 H), 2.50 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.3, 160.1, 156.9, 143.2, 142.6, 138.6, 137.8, 132.9, 132.0, 129.8, 128.8, 128.7, 127.9, 127.6, 127.6, 124.2, 117.4, 117.1, 115.1, 110.2, 30.0, 20.9; HRMS (ESI) calcd for C₂₆H₂₁N₂O [M+H]⁺ 377.1648; found: 377.1645.

9-Methoxy-6-methyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3ha)

The reaction was performed with **1h** (0.2 mmol, 1 equiv.), **2a** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ha** was obtained as a pale yellow solid (55.8 mg, 71% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1),melting point: 256-259 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.37 (s, 1 H), 8.21-8.19 (m, 2 H), 7.83 (d, *J* = 2.8 Hz, 1 H), 7.59-7.57 (m, 2 H), 7.53-7.44 (m, 6 H), 7.33-7.31 (m, 1 H), 7.25-7.22 (m, 1 H), 3.95 (s, 3 H), 3.64 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.4, 159.8, 157.1, 155.1, 143.2, 142.3, 138.6, 134.3, 129.8, 128.8, 128.6, 127.9, 127.6,

127.6, 118.8, 118.5, 117.2, 116.3, 110.3, 108.0, 55.9, 30.1; **HRMS** (ESI) calcd for C₂₆H₂₁N₂O₂ [M+H]⁺ 393.1598; found: 393.1595.

9-Fluoro-6-methyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3ia)

The reaction was performed with **1i** (0.2 mmol, 1 equiv.), **2a** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ia** was obtained as a pale yellow solid (40.4 mg, 53% yield) after purification by column chromatography on

silica gel with petroleum ether/ethyl acetate (4:1), melting point: 272-275 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.36 (s, 1 H), 8.23-8.21 (m, 2 H), 8.10-8.07 (m, 1 H), 7.60-7.58 (m, 2 H), 7.54-7.47 (m, 6 H), 7.40-7.38 (m, 2 H), 3.68 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.5, 159.9, 159.5, 157.4, 157.1, 142.8, 141.8 (d, *J* = 2.9 Hz, 1 C), 138.2, 136.4 (d, *J* = 1.8 Hz, 1 C), 130.0, 128.8 (d, *J* = 22.9 Hz, 1 C), 128.1, 127.6 (d, *J* = 2.1 Hz, 1 C), 119.3 (d, *J* = 23.1 Hz, 1C), 118.9 (d, *J* = 7.5 Hz, 1 C), 117.1, 116.8 (d, *J* = 7.9 Hz, 1 C), 110.3, 110.3, 110.0, 30.3; ¹⁹F NMR (377 MHz, CDCl₃, ppm): δ = -120.1; HRMS (ESI) calcd for C₂₅H₁₈FN₂O [M+H]⁺ 381.1398; found: 381.1397.

9-Chloro-6-methyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3ja)

64%

mg,

The reaction was performed with **1j** (0.2 mmol, 1 equiv.), **2a** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ja** was obtained as a pale yellow solid (50.8

after

purification

by

column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 282-284 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.38-8.35 (m, 2 H), 8.22 (d, *J* = 6.4 Hz, 2 H), 7.61-7.46 (m, 9 H), 7.34 (d, *J* = 8.8 Hz, 1 H), 3.66 (s, 3 H); ¹³C NMR (100

yield)

MHz, CDCl₃, ppm): δ 163.5, 159.9, 157.5, 142.8, 141.5, 138.4, 138.2, 131.7, 130.0, 128.9, 128.6, 128.2, 128.1, 127.6, 123.9, 119.0, 117.0, 116.6, 110.1, 30.2; **HRMS (ESI)** calcd for C₂₅H₁₈ClN₂O [M+H]⁺ 397.1102; found: 397.1103.

9-Bromo-6-methyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3ka)

63%

mg,

The reaction was performed with **1k** (0.2 mmol, 1 equiv.), **2a** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ka** was obtained as a pale yellow solid (55.5

purification

by

column

after

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 250-253 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.39 (s, 1 H), 8.26-8.19 (m, 3 H), 7.58-7.46 (m, 10 H), 3.64 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.5, 160.1, 157.5, 142.8, 142.0, 140.8, 138.3, 130.0, 128.9, 128.6, 128.1, 127.6, 127.6, 126.2, 125.6, 125.5, 118.2, 116.6, 110.0, 30.2; **HRMS** (ESI) calcd for C₂₅H₁₈BrN₂O [M+H]⁺441.0597; found: 441.0594.

vield)

6-Methyl-2,4-diphenyl-9-(trifluoromethyl)benzo[c][2,7]naphthyridin-5(6H)-one (3la)

The reaction was performed with **11** (0.2 mmol, 1 equiv.), **2a** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3la** was obtained as a pale yellow solid (61.3 mg, 71% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 254-256 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.37 (s, 1 H), 8.24-8.22 (m, 3 H), 7.60-7.26 (m, 10 H), 3.69 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.6, 160.0, 157.6, 144.2, 144.2, 142.7, 141.6, 138.5, 138.2, 130.1, 128.9, 128.6, 128.1, 127.6, 124.7,

120.6 (q, J = 256.1 Hz, 1 C), 118.7, 117.0, 116.9, 116.6, 110.1, 30.3; ¹⁹F NMR (377 MHz, CDCl₃, ppm): $\delta = -58.0$; HRMS (ESI) calcd for C₂₆H₁₈F₃N₂O [M+H]⁺ 431.1366; found: 431.1366.

10-Chloro-6-methyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3na)

The reaction was performed with **1n** (0.2 mmol, 1 equiv.), **2a** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3na** was obtained as a pale yellow solid (49.3 mg, 62% yield) after purification by column chromatography on silica gel with

petroleum ether/ethyl acetate (4:1), melting point: 278-281 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.54 (s, 1 H), 8.22 (d, *J* = 6.8 Hz, 2 H), 7.64-7.62 (m, 2 H), 7.54-7.44 (m, 8 H), 7.37-7.35 (m, 1 H), 3.66 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.9, 159.8, 156.6, 143.2, 141.8, 141.7, 138.5, 133.3, 130.7, 129.9, 128.9, 128.9, 128.2, 127.6, 127.7, 126.5, 117.7, 116.1, 115.1, 114.0, 31.1; HRMS (ESI) calcd for C₂₅H₁₈ClN₂O [M+H]⁺ 397.1102; found: 397.1103.

6-Ethyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3oa)

The reaction was performed with **1o** (0.2 mmol, 1 equiv.), **2a** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3oa** was obtained as a pale yellow solid (52.7 mg, 70% yield) after purification by column chromatography on silica gel with

petroleum ether/ethyl acetate (4:1), melting point: 207-210 °C; ¹**H** NMR (400 MHz, CDCl₃, ppm): 8.46 (d, *J* = 6.8 Hz, 2 H), 8.25-8.22 (m, 2 H), 7.68-7.62 (m, 3 H), 7.55-7.43 (m, 7 H), 7.38-7.34 (m, 1 H), 4.38-4.33 (m, 2 H), 1.35 (t, *J* = 4.8 Hz, 3 H); ¹³**C** NMR (100 MHz, CDCl₃, ppm): δ 163.2, 159.8, 157.1, 143.1, 142.7, 138.8, 138.6, 131.9,

129.8, 128.9, 128.8, 128.0, 127.6, 124.5, 122.3, 117.9, 117.0, 115.1, 110.1, 37.7, 12.6; **HRMS** (ESI) calcd for C₂₆H₂₁N₂O [M+H]⁺ 377.1648; found: 377.1645.

6-Isopropyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3pa)

The reaction was performed with **1p** (0.2 mmol, 1 equiv.), **2a** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3pa** was obtained as a pale yellow solid (56.3 mg, 72% yield) after purification by column chromatography on silica gel with

petroleum ether/ethyl acetate (4:1), melting point: 182-186 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.42-8.40 (m, 2 H), 8.22-8.20 (m, 2 H), 7.64-7.59 (m, 4 H), 7.53-7.44 (m, 6 H), 7.34-7.29 (m, 1 H), 5.39 (br s, 1 H), 1.62 (d, *J* = 7.2 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.8, 161.0, 156.9, 142.8, 142.7, 139.2, 138.7, 131.2, 129.7, 128.9, 128.8, 128.1, 127.6, 127.6, 124.6, 122.0, 118.3, 118.0, 115.8, 109.9, 47.35, 19.8; HRMS (ESI) calcd for C₂₇H₂₃N₂O [M+H]⁺ 391.1805; found: 391.1800.

6-Allyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3qa)

The reaction was performed with 1q (0.2 mmol, 1 equiv.), 2a (0.5 mmol 2.5 equiv.), [Cp*RhCl₂]₂ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product 3qa was obtained as a pale yellow solid (56.0 mg, 72% yield) after purification by column chromatography on silica gel with

petroleum ether/ethyl acetate (4:1), melting point: 221-224 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.50-8.44 (m, 2 H), 8.23 (d, *J* = 6.8 Hz, 2 H), 7.65-7.60 (m, 3 H), 7.55-7.35 (m, 8 H), 7.97-7.88 (m, 1 H), 5.22-5.12 (m, 2 H), 4.95 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.4, 159.9, 157.3, 142.9, 142.8, 139.2, 138.5, 132.1, 131.7, 129.8, 128.9, 128.8, 128.1, 127.8, 127.6, 124.2, 122.5, 117.8, 116.9, 116.8, 115.9, 110.2, 45.0; **HRMS** (ESI) calcd for C₂₇H₂₁N₂O [M+H]⁺ 389.1648; found: 389.1639.

6-Benzyl-2,4-diphenylbenzo[c][2,7]naphthyridin-5(6H)-one (3ra)

The reaction was performed with 1r (0.2 mmol, 1 equiv.), 2a (0.5 mmol 2.5 equiv.), [Cp*RhCl₂]₂ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ra** was obtained as a pale yellow solid (61.5 mg, 70% yield) after purification by column chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 196-199 °C;

¹**H NMR** (400 MHz, CDCl₃, ppm): δ 8.54 (s, 1 H), 8.47 (d, *J* = 8.0 Hz, 1 H), 8.28 (d, J = 7.2 Hz, 2 H), 7.68-7.67 (m, 2 H), 7.59-7.46 (m, 7 H), 7.37-7.22 (m, 7 H), 5.59-5.58 (m, 2 H); ¹³**C NMR** (100 MHz, CDCl₃, ppm): δ 163.5, 160.5, 157.4, 143.1, 142.8, 139.2, 138.5, 136.4, 131.8, 130.1, 128.9, 128.6, 128.8, 128.1, 127.6, 127.2, 126.5, 124.2, 122.6, 117.9, 116.8, 116.2, 110.2, 46.2; **HRMS** (ESI) calcd for C₃₁H₂₃N₂O [M+H]⁺ 439.1805; found: 439.1802.

6-Methyl-2,4-diphenylbenzo[c][2,7]naphthyridine-5(6H)-thione (3ua)

A mixture of compound **3aa** and P_2S_5 in toluene was stirred at 110 °C overnight, and then cooled to room temperature. The solvent was removed and the residue was diluted with EtOAc, washed with sat. NaCl solution. The organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo, and the

residue was purified by prep-TLC to afford the desired compounds **3ua**. melting point: 216-219 °C; ¹**H NMR** (400 MHz, CDCl₃, ppm): δ 8.50 (s, 1 H), 8.45 (d, *J* = 8.0 Hz, 1 H), 8.22 (d, *J* = 7.2 Hz, 2 H), 7.70-7.66 (m, 1 H), 7.60-7.58 (m, 2 H), 7.55-7.37 (m, 8 H), 3.70 (s, 3 H); ¹³**C NMR** (100 MHz, CDCl₃, ppm): δ 163.3, 160.2, 157.1, 142.8, 139.9, 138.3, 132.0, 129.9, 128.9, 128.6, 128.0, 127.7, 127.6, 124.3, 122.6, 117.6, 117.0, 115.2, 110.5, 30.1; **HRMS** (ESI) calcd for C₂₅H₁₉N₂S [M+H]⁺ 379.1264; found: 379.1268.

6-Methyl-2,4-diphenyl-5,6-dihydrobenzo[c][2,7]naphthyridine (3va)

Add LiAlH₄ (0.2 mmol) to a solution of the reactant **3aa** (0.2 mmol, 1 equiv) in dried THF (2 mL) and stir the mixture at 60 °C for 2 hours. Once the conversion is complete, as indicated by TLC, add NaHCO₃ solution (2 mL) to the residue. Extract the mixture with ethyl acetate (15 mL), wash the collected

organic layer with brine, dry it with MgSO₄, filter, and concentrate under vacuum. Finally, purify the product **3va** by flash column chromatography on silica gel using a mixture of acetone and petroleum ether. melting point: 189-192 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.12 (d, *J* = 7.6 Hz, 2 H), 8.00 (s, 1 H), 7.88 (d, *J* = 7.6 Hz, 1 H), 7.63 (d, *J* = 7.2 Hz, 2 H), 7.53-7.36 (m, 7 H), 6.98-6.94 (m, 1 H), 6.79 (d, *J* = 8.0 Hz, 1 H), 4.29 (s, 2 H), 2.87 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 154.9, 154.5, 147.1, 140.2, 138.7, 135.9, 135.8, 130.1, 128.1, 127.7, 127.6, 127.4, 127.2, 125.9, 123.6, 120.7, 117.8, 111.6, 111.5, 50.9, 37.5; HRMS (ESI) calcd for C₂₅H₂₁N₂ [M+H]⁺ 349.1699; found: 349.1696.

6-Methyl-2,4-di-o-tolylbenzo[c][2,7]naphthyridin-5(6H)-one (3ab)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2b** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ab** was obtained as a pale yellow solid (56.3 mg, 72% yield) after purification by column chromatography on silica gel with

petroleum ether/ethyl acetate (4:1), melting point: 190-193 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.27-8.24 (m, 1 H), 8.13 (s, 1 H), 7.58-7.54 (m, 1 H), 7.46-7.44 (m, 1 H), 7.33-7.11 (m, 9 H), 3.58 (s, 3 H), 2.34 (s, 3 H), 2.06 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.0, 161.0, 156.0, 143.2, 141.9, 140.0, 139.9, 136.3, 134.5, 132.1, 131.0, 129.7, 129.6, 128.9, 127.5, 127.2, 126.0, 125.5, 124.3, 122.6, 117.4, 115.2, 114.5,

30.0, 20.5, 19.9; **HRMS** (ESI) calcd for $C_{27}H_{23}N_2O$ [M+H]⁺ 391.1805; found: 391.1800.

2,4-Bis(2-methoxyphenyl)-6-methylbenzo[c][2,7]naphthyridin-5(6H)-one (3ac)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2c** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ac** was obtained as a pale yellow solid (64.1 mg, 71% yield) after purification by column chromatography on silica gel with

petroleum ether/ethyl acetate (4:1), melting point: 208-211 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.66 (s, 1 H), 8.29-8.27 (m, 1 H), 7.97-7.95 (m, 1 H), 7.56-7.52 (m, 1 H), 7.37-7.25 (m, 5 H), 7.05-6.96 (m, 3 H), 6.90-6.88 (m, 1 H), 3.89 (s, 3 H), 3.60 (d, J = 14.4 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 160.3, 159.8, 157.4, 156.9, 156.0, 140.9, 139.9, 133.1, 131.9, 131.4, 130.5, 129.1, 129.0, 128.3, 124.3, 122.3, 121.3, 120.7, 118.2, 117.9, 115.5, 114.9, 111.6, 110.6, 55.9, 55.6, 29.9; HRMS (ESI) calcd for C₂₇H₂₃N₂O₃ [M+H]⁺ 423.1703 found: 423.1698.

6-Methyl-2,4-di-m-tolylbenzo[c][2,7]naphthyridin-5(6H)-one (3ad)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2d** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ad** was obtained as a pale yellow solid (60.2 mg, 77% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 193-195 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.29-8.26 (m, 2 H), 8.01 (d, *J* = 6.4 Hz, 2 H), 7.53-7.49 (m, 1 H), 7.41-7.39 (m, 2 H), 7.27-7.14 (m, 6 H), 3.56 (s, 3 H), 2.35 (s, 3 H), 2.31 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.2, 160.3, 157.0, 142.6, 140.3, 140.1, 140.0, 137.6, 135.7, 131.7, 129.5, 128.7, 128.4, 127.5, 124.2, 122.4, 117.8, 116.7, 115.1, 109.5, 30.0, 21.6, 21.4; **HRMS** (ESI) calcd for C₂₇H₂₃N₂O [M+H]⁺ 391.1805; found: 391.1800.

2,4-Bis(3-methoxyphenyl)-6-methylbenzo[c][2,7]naphthyridin-5(6H)-one (3ae)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2e** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ae** was obtained as a pale yellow solid (62.6 mg, 74% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 212-215 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.45-8.39 (m, 2 H), 7.79-7.76 (m, 2 H), 7.67-7.63 (m, 1 H), 7.44-7.34 (m, 4 H), 7.17-7.13 (m, 2 H), 7.03-7.00 (m, 2 H), 3.90 (s, 3 H), 3.87 (s, 3 H), 3.68 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.0, 160.1, 160.0, 159.0, 156.9, 144.4, 142.6, 140.0, 139.9, 131.9, 129.8, 128.5, 124.2, 122.5, 121.3, 120.0, 117.6, 117.1, 115.4, 115.1, 114.3, 113.4, 113.2, 110.5, 55.5, 55.3, 30.0; **HRMS** (ESI) calcd for C₂₇H₂₃N₂O₃ [M+H]⁺ 423.1703; found: 423.1692.

2,4-Bis(3-chlorophenyl)-6-methylbenzo[c][2,7]naphthyridin-5(6H)-one (3af)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2f** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3af** was obtained as a pale yellow solid (52.6 mg, 61% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 294-296 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.43-8.41 (m, 2 H), 8.23-8.19 (m, 2 H), 7.70-7.66 (m, 1 H), 7.59-7.55 (m, 2 H), 7.44-7.37 (m, 2 H), 7.23-7.14 (m, 4 H), 3.70 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 165.3, 164.0, 162.9, 162.3, 161.6, 160.2, 156.1, 142.9, 139.9, 138.9, 134.5, 134.5, 132.1, 130.6, 130.5, 129.5, 129.4, 124.2, 122.7, 117.5, 116.8, 116.0, 115.8, 115.3, 114.7, 114.5, 110.0, 30.1; **HRMS** (ESI) calcd for C₂₅H₁₇Cl₂N₂O [M+H]⁺ 431.0712; found: 431.0705.

2,4-Bis(4-ethylphenyl)-6-methylbenzo[c][2,7]naphthyridin-5(6H)-one (3ah)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2h** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ah** was obtained as a pale yellow solid (58.7 mg, 70% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 206-209 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.40-8.37 (m, 2 H), 8.13 (d, *J* = 8.4 Hz, 2 H), 7.64-7.60 (m, 1 H), 7.53 (d, *J* = 8.0 Hz, 2 H), 7.38-7.30 (m, 6 H), 3.67 (s, 3 H), 2.78-2.69 (m, 4 H), 1.33-1.26 (m, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.3, 160.4, 157.2, 146.3, 143.8, 142.6, 140.5, 139.9, 136.1, 131.7, 128.8, 128.4, 127.6, 127.1, 124.2, 122.4, 117.8, 116.7, 115.1, 109.6, 30.0, 28.8, 28.8, 15.5, 15.3; **HRMS** (ESI) calcd for C₂₉H₂₇N₂O [M+H]⁺ 419.2118; found: 419.2118.

2,4-Bis(4-isopropylphenyl)-6-methylbenzo[c][2,7]naphthyridin-5(6H)-one (3ai)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2i** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ai** was obtained as a pale yellow solid (60.7 mg, 68% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 216-219 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.46-8.43 (m, 2 H), 8.14 (d, *J* = 8.4 Hz, 2 H), 7.70-8.66 (m, 1 H), 7.58 (d, *J* = 8 Hz, 2 H), 7.46-7.35 (m, 6 H), 3.73 (s, 3 H), 3.05-3.00 (m, 2 H), 1.36-1.32 (m, 12 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 164.4, 160.4, 157.3, 150.9, 148.4, 142.7, 140.4, 140.2, 136.2, 131.7, 128.9, 127.7, 126.9, 125.7,

124.2, 122.5, 117.8, 116.5, 115.1, 109.7, 34.2, 33.9, 30.1, 24.0, 23.9; **HRMS** (ESI) calcd for C₃₁H₃₁N₂O [M+H]⁺ 447.2431; found: 447.2420.

2,4-Bis(4-methoxyphenyl)-6-methylbenzo[c][2,7]naphthyridin-5(6H)-one (3aj)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2j** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3aj** was obtained as a pale yellow solid (64.3 mg, 76% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 218-221 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.40-8.35 (m, 2 H), 8.20 (d, *J* = 8.8 Hz, 2 H), 7.64-7.57 (m, 3 H), 7.41-7.35 (m, 2 H), 7.03-7.00 (m, 4 H), 3.88 (s, 6 H), 3.70 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.7, 161.2, 160.5, 159.6, 156.6, 142.7, 139.9, 135.5, 131.6, 131.1, 130.4, 129.1, 124.1, 122.4, 117.8, 116.1, 116.1, 114.2, 113.0, 108.7, 55.4, 55.3, 30.0; HRMS (ESI) calcd for C₂₇H₂₃N₂O₃ [M+H]⁺ 423.1703 found: 423.1692.

2,4-Bis(4-fluorophenyl)-6-methylbenzo[c][2,7]naphthyridin-5(6H)-one (3ak)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2k** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ak** was obtained as a pale yellow solid (44.7 mg, 56% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 254-258 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.41-8.39 (m, 2 H), 8.21-8.18 (m, 2 H), 7.69-7.65 (m, 1 H), 7.58-7.55 (m, 2 H), 7.43-7.36 (m, 2 H), 7.21-7.13 (m, 4 H), 3.68 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 164.1 (d, *J* = 248.5 Hz, 1 C), 162.8 (d, *J* = 245.4 Hz, 1 C), 162.3, 160.2, 156.1, 142.9, 139.9, 138.8 (d, *J* = 3.5 Hz, 1 C), 134.5

(d, J = 2.9 Hz, 1 C), 132.0, 130.6 (d, J = 8.0 Hz, 1 C), 129.5 (d, J = 8.4 Hz, 1 C), 124.2, 122.6, 117.5, 116.8, 115.9 (d, J = 21.4 Hz, 1 C), 115.2, 114.6 (d, J = 21.5 Hz, 1 C), 109.9, 30.0; ¹⁹F NMR (377 MHz, CDCl₃, ppm): $\delta = -111.3$, -114.2; HRMS (ESI) calcd for C₂₅H₁₇F₂N₂O [M+H]⁺ 399.1303; found: 399.1297.

2,4-Bis(4-chlorophenyl)-6-methylbenzo[c][2,7]naphthyridin-5(6H)-one (3al)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2l** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3al** was obtained as a pale yellow solid (54.3 mg, 63% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 283-286 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.39-8.34 (m, 2 H), 8.08 (d, J = 8.8 Hz, 2 H), 7.62-7.60 (m, 1 H), 7.46-7.31 (m, 8 H), 3.63 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.2, 160.1, 156.0, 142.9, 141.3, 139.8, 136.7, 136.2, 134.1, 132.2, 130.1, 129.1, 128.8, 127.9, 124.2, 122.7, 117.4, 117.1, 115.3, 110.3, 30.1; HRMS (ESI) calcd for C₂₅H₁₇Cl₂N₂O [M+H]⁺ 431.0712; found: 431.0705.

2,4-Bis(4-bromophenyl)-6-methylbenzo[c][2,7]naphthyridin-5(6H)-one (3am)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2m** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3am** was obtained as a pale yellow solid (64.3 mg, 62% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 253-255 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.47-8.43 (m, 2 H), 8.33-8.32 (m, 1 H), 8.13 (d, *J* = 8.0 Hz, 1 H), 7.72-7.67 (m, 2 H), 7.62-7.57 (m, 2 H), 7.48-7.34 (m, 6 H), 3.70 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 161.9, 159.9, 155.8, 144.8,

142.9, 140.4, 139.9, 132.8, 132.3, 131.4, 131.0, 130.5, 130.4, 129.0, 127.4, 126.2, 124.3, 123.2, 122.7, 121.7, 117.4, 117.3, 115.3, 110.9, 30.1; **HRMS** (ESI) calcd for C₂₅H₁₇Br₂N₂O [M+H]⁺ 518.9702; found: 518.9702.

6-Methyl-2,4-bis(4-(trifluoromethyl)phenyl)benzo[c][2,7]naphthyridin-5(6H)-one (3an)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2n** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3an** was obtained as a pale yellow solid (64.7 mg, 65% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 254-256 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.58 (s, 1 H), 8.48-8.46 (m, 1 H), 8.33-8.31 (m, 2 H), 7.80-7.67 (m, 7 H), 7.48-7.42 (m, 2 H), 3.72 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.2, 159.9, 155.9, 146.4, 143.1, 141.6, 139.9, 132.4, 131.9, 130.0, 129.8, 128.9, 127.9, 125.9 (q, *J* = 3.8 Hz, 1 C), 125.4, 124.6 (q, *J* = 3.9 Hz, 1 C), 124.3, 122.9, 117.6, 117.3, 115.4, 111.4, 30.1; ¹⁹F NMR (377 MHz, CDCl₃, ppm): δ = -62.4, -62.7; HRMS (ESI) calcd for C₂₇H₁₇F₆N₂O [M+H]⁺ 499.1240; found: 499.1243.

2,4-Di([1,1'-biphenyl]-4-yl)-6-methylbenzo[c][2,7]naphthyridin-5(6H)-one (3ao)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2o** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ao** was obtained as a pale yellow solid (70.1 mg, 68% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 192-195 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.54-8.46 (m, 2 H), 8.33 (d, *J* = 8.0 Hz, 2 H), 7.71-7.67 (m, 11 H), 7.51-7.35 (m, 9 H), 3.73 (s, 3 H); ¹³C NMR (100 MHz,

CDCl₃, ppm): δ 163.0, 160.4, 156.8, 142.8, 142.6, 142.1, 141.3, 140.7, 140.4, 139.9, 137.3, 131.9, 129.3, 128.9, 128.7, 128.0, 127.7, 127.6, 127.3, 127.2, 126.5, 124.3, 122.6, 117.7, 116.9, 115.2, 110.1, 30.1; **HRMS** (ESI) calcd for C₃₇H₂₇N₂O [M+H]⁺ 515.2118; found: 515.2120.

2,4-Bis(3,4-dimethylphenyl)-6-methylbenzo[c][2,7]naphthyridin-5(6H)-one (3aq)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2q** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3aq** was obtained as a pale yellow solid (55.3 mg, 66% yield) after purification by column chromatography on

silica gel with petroleum ether/ethyl acetate (4:1), melting point: 196-199 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.35-8.33 (m, 2 H), 7.93-7.85 (m, 2 H), 7.58-7.54 (m, 1 H), 7.32-7.26 (m, 3 H), 7.21-7.14 (m, 3 H), 3.60 (s, 3 H), 2.28-2.25 (m, 12 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.4, 160.4, 157.3, 142.5, 141.0, 140.0, 138.6, 137.1, 136.3, 136.2, 135.8, 131.7, 130.1, 129.6, 128.9, 128.7, 126.2, 125.1, 124.2, 122.4, 117.8, 116.7, 115.1, 109.6, 30.0, 20.1, 20.0, 19.9, 19.8; **HRMS** (ESI) calcd for C₂₉H₂₇N₂O [M+H]⁺ 419.2118; found: 419.2118.

2,4-Bis(3,5-dichlorophenyl)-6-methylbenzo[c][2,7]naphthyridin-5(6H)-one (3ar)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2r** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3ar** was obtained as a pale yellow solid (63.7 mg, 64% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 215-218 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.39-8.34 (m, 2 H), 8.08 (d, *J* = 8.8 Hz, 2 H), 7.64-7.60 (m, 1 H), 7.46-7.37 (m, 6 H), 3.63 (s, 3 H); ¹³C NMR (100 MHz,

CDCl₃, ppm): δ 163.5, 159.9, 157.6, 142.8, 141.5, 138.9, 138.2, 134.5, 130.0, 128.9, 128.6, 128.1, 127.8, 127.6, 126.9, 119.4, 117.0, 116.9, 115.6, 110.1, 30.1; **HRMS** (ESI) calcd for C₂₅H₁₅Cl₄N₂O [M+H]⁺ 498.9933; found: 498.9921.

6-Methyl-2,4-di(naphthalen-1-yl)benzo[c][2,7]naphthyridin-5(6H)-one (3as)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2s** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3as** was obtained as a pale yellow solid (62.9 mg, 68% yield) after purification by column chromatography on silica

gel with petroleum ether/ethyl acetate (4:1), melting point: 194-198 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.47 (s, 1 H), 8.36 (d, *J* = 6.8 Hz, 1 H), 8.22-8.19 (m, 1 H), 7.92-7.87 (m, 4 H), 7.80-7.78 (m, 1 H), 7.65-7.30 (m, 11 H), 3.57 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.5, 160.1, 159.7, 142.1, 141.3, 140.1, 137.9, 134.0, 133.4, 132.2, 131.9, 131.3, 129.6, 128.5, 128.2, 127.8, 126.9, 126.0, 125.9, 125.5, 125.4, 125.4, 125.2, 124.8, 124.4, 122.6, 118.7, 117.4, 115.9, 115.2, 30.0; HRMS (ESI) calcd for C₃₃H₂₃N₂O [M+H]⁺ 463.1805; found: 463.1804.

6-Methyl-2,4-di(thiophen-2-yl)benzo[c][2,7]naphthyridin-5(6H)-one (3at)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2t** (0.5 mmol 2.5 equiv.), [Cp*RhCl₂]₂ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3at** was obtained as a pale yellow solid (47.2 mg, 63% yield) after

purification by column chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 191-194 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.16 (d, *J* = 6.8 Hz, 1 H), 8.05 (s, 1 H), 7.78-7.74 (m, 2 H), 7.57-7.53 (m, 1 H), 7.48-7.44 (m, 2 H), 7.29-7.23 (m, 2 H), 7.14-7.11 (m, 2 H), 3.63 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 159.9, 155.5, 151.9, 144.2, 143.9, 143.1, 139.6, 131.9, 130.5, 129.2, 128.4,

128.3, 127.0, 126.2, 124.1, 122.4, 117.3, 115.9, 114.9, 107.7, 30.0; **HRMS** (ESI) calcd for C₂₁H₁₅N₂OS₂ [M+H]⁺ 375.0620; found: 375.0619.

6-Methyl-2,4-di(thiophen-3-yl)benzo[c][2,7]naphthyridin-5(6H)-one (3au)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2u** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3au** was obtained as a pale yellow solid (48.0 mg, 64% yield) after

purification by column chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 248-251 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.33 (d, *J* = 8.0 Hz, 1 H), 8.25 (s, 1 H), 8.16-8.15 (m, 1 H), 7.82-7.80 (m, 1 H), 7.71-7.70 (m, 1 H), 7.66-7.62 (m, 1 H), 7.44-7.33 (m, 5 H), 3.70 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 160.1, 158.1, 153.4, 143.4, 142.8, 141.5, 139.8, 131.9, 129.5, 126.6, 126.4, 125.8, 125.2, 124.2, 123.5, 122.5, 117.5, 116.7, 115.1, 109.7, 30.0; HRMS (ESI) calcd for C₂₁H₁₅N₂OS₂ [M+H]⁺ 375.0620; found: 375.0619.

2,4-Bis(2,6-dichloro-5-fluoropyridin-3-yl)-6-methylbenzo[c][2,7]naphthyridin-5(6H)-one (3av)

The reaction was performed with **1a** (0.2 mmol, 1 equiv.), **2v** (0.5 mmol 2.5 equiv.), $[Cp*RhCl_2]_2$ (2 mol%, 0.004 mmol), CuCl (0.4 mmol, 2.0 equiv.), DCE/EtOAc (3 mL) were stirred at 120 °C under N₂ for 10 h (TLC monitored). The product **3av** was obtained as a pale yellow solid (66.4 mg, 62% yield) after purification by column

chromatography on silica gel with petroleum ether/ethyl acetate (4:1), melting point: 216-219 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.85 (s, 1 H), 8.40 (d, *J* = 7.6 Hz, 1 H), 8.08 (d, *J* = 7.6 Hz, 1 H), 7.79-7.75 (m, 1 H), 7.57 (d, *J* = 7.2 Hz, 1 H), 7.52-7.45 (m, 2 H), 3.74 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 159.4, 156.9, 154.6 (d, *J* = 249.4 Hz, 1 C), 154.1 (d, *J* = 259.2 Hz, 1 C), 153.3, 142.5, 142.0 (d, *J* = 3.4 Hz, 1 C), 141.8 (d, J = 3.3 Hz, 1 C), 140.0, 138.6 (d, J = 21.1 Hz, 1 C), 138.5 (d, J = 3.2 Hz, 1 C), 136.5 (d, J = 21.1 Hz, 1 C), 134.7 (d, J = 3.1 Hz, 1 C), 133.3, 129.0 (d, J = 21.4 Hz, 1 C), 126.3 (d, J = 21.5 Hz, 1 C), 124.6, 123.6, 119.0, 117.3, 116.7, 115.7, 30.3; ¹⁹F NMR (377 MHz, CDCl₃, ppm): $\delta = -120.8$, -122.2; HRMS (ESI) calcd for C₂₃H₁₁Cl₄F₂N₄O [M+H]⁺ 536.9650; found: 536.9658.

Copies of NMR spectra

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3aa**

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3ba**

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3ca**

¹³C-NMR spectrum (CDCl₃, 100 MHz) of **3ca**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3fa**

 $^1\text{H-NMR}$ spectrum (CDCl₃, 400 MHz) of 3ga

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3ha**

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3ia**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)
¹H-NMR spectrum (CDCl₃, 400 MHz) of **3na**

¹³C-NMR spectrum (CDCl₃, 100 MHz) of **3na**

¹H-NMR spectrum (CDCl₃, 400 MHz) of **30a**

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3pa**

-1

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3ra**

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3ua**

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3va**

0.5

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3ac**

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3af**

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3ah**

-15.535

¹³C-NMR spectrum (CDCl₃, 100 MHz) of **3ah** $\begin{cases} 13C-NMR spectrum (CDCl₃, 100 MHz) of$ **3ah**(100 MHz) of**3ah**(100 MHz) o

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3ai**

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3ak**

¹³C-NMR spectrum (CDCl₃, 100 MHz) of **3ak**

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3am**

8.472 8.472 8.451 8.451 8.451 8.451 8.451 8.451 8.451 8.451 8.451 8.451 8.147 8.147 8.147 8.147 8.147 8.147 7.502 7.501 7.502 7.501 7.502 7.502 7.502 7.502 7.502 7.502 7.559 7.559 7.559 7.559 7.559 7.557 7.559 7.559 7.559 7.557 7.559 7.557 7.559 7.557 7.559 7.557 7.559 7.557 7.559 7.559 7.557 7.557 7.559 7.559 7.557 7.557 7.557 7.557 7.557 7.559 7.557 7.557 7.557 7.557 7.557 7.559 7.557 7.557 7.557 7.557 7.557 7.559 7.557 7.557 7.559 7.557 7.557 7.557 7.557 7.557 7.559 7.557 7.557 7.557 7.559 7.557 7.559 7.557 7.557 7.557 7.559 7.557 7.559 7.557 7.557 7.559 7.559 7.557 7.559 7.559 7.557 7.559 7.559 7.557 7.557 7.559 7.557 7.559 7.557 7.559 7.7557 7.559 7.7557 7.7559 7.7559 7.7559 7.7559 7.7559 7.7559 7.7559 7.7559 7.7559 7.7559 7.7559 7.7559 7.7559 7.7559 7.7559 7.7557 7.7559 7.75569 7.75577 7.7559 7.7559 7.75569 7.

S91

¹⁹F-NMR spectrum (CDCl₃, 377 MHz) of **3an**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3ao**

¹³C-NMR spectrum (CDCl₃, 100 MHz) of **3ao**

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3aq**

 $^{13}\text{C-NMR}$ spectrum (CDCl₃, 100 MHz) of 3aq

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3as**

¹³C-NMR spectrum (CDCl₃, 100 MHz) of **3as**

f1 (ppm)

¹H-NMR spectrum (CDCl₃, 400 MHz) of **3au**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ¹H-NMR spectrum (CDCl₃, 400 MHz) of **3av**

¹⁹F-NMR spectrum (CDCl₃, 377 MHz) of **3av**

