Supporting Information

Copper-Photocatalyzed Atom Transfer Radical Addition of Thiosulfonates

to Alkenes

Ben Ma,* Zheng Zhao, Min Ma, Rui Zhang and Jingya Yang*

^a College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070,

People's Republic of China

E-mail: maben@nwnu.edu.cn; yangjy@nwnu.edu.cn

List of Contents

1. General information	S1
2. Experimental Procedures	S2
3. Table S1. Optimization of reaction conditions	S5
4. Unsuccessful products.	S7
5. Characterization data for all compounds.	S7
6. Mechanistic Studies.	S49
7. DFT computational Study	S56
8. Late-stage modification	S67
9. Crystallographic structure determination (8k CCDC 2401953)	S69
10. Supplementary references.	S75
11. Cope of NMR Spectra	S76

1. General information

Unless otherwise noted, materials were either purchased from commercial suppliers and used as received or prepared via literature procedures. Solvents were deoxygenated and dried by thoroughly sparging with argon followed by passage through an activated column in a solvent purification system. All manipulations of air-sensitive materials were carried out in oven-dried glassware using standard Schlenk under N₂ atmosphere.

¹H NMR and ¹³C NMR spectra were recorded on a Varian Mercury-400 Plus or Bruker (500MHz) AVANCE-NEO or Agilent Technologies DD2 (600 MHz) spectrometer in CDCl₃ or DMSO-*d*₆. Chemical shifts (δ) for NMR were quoted in parts per million (ppm) referenced to 0.0 pm for tetramethylsilane or 2.50 ppm for the solvent residual peak of DMSO-*d*₆. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants, *J*, were reported in Hertz unit (Hz). ¹³C NMR spectra were recorded on a Bruker 500 (125 MHz) or Agilent Technologies DD2 (150 MHz) spectrometer in CDCl₃ or DMSO-*d*₆, and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of CDCl₃ or 39.5 ppm of DMSO-*d*₆.

High-resolution mass spectra (HRMS) (ESI) were obtained with Bruker Daltonics APEXII 47 e FT-ICR, Agilent QTOF 700 or Agilent 1200 spectrometer. Accurate masses from high-resolution mass spectra were reported for the molecular ion [M]⁺, [M+H]⁺ or [M+Na]⁺. Melting points were measured on an XT4A apparatus (uncorrected). Silicycle SiliaFlash® P60 silica gel (particle size 40–63 µm) was used for flash chromatography. Analytical thin layer chromatography was conducted with glass TLC plates (silica gel 60 F254), and spots were visualized under UV light or after treatment with standard TLC stains.

Unless otherwise noted, all photochemical reactions were carried out in dry Schlenk tube with magnetic stirring bar. The 40 W Bule LED lamps employed in this work were bought from Kessil Lighting 1689 Regatta Blvd, Richmond, CA 94804; wavelength (427 nm); The setup of photocatalytic reaction as illustrated in **Figure S1**. The distance from the light source to the irradiation vessel center is about 6.0 cm. The temperature is controlled by a fan. No filter was used in this reaction.

Figure S1. Photocatalytic Reaction Setup and Light Characteristics of 40 W Blue LED.

2. Experimental Procedures

2.1 General procedure for the preparation of sodium sulfonates.¹

$$\begin{array}{c} O \\ R_{1}-\overset{O}{\overset{}_{S}-CI} \\ \overset{O}{\overset{}_{U}} \end{array} \xrightarrow{\begin{array}{c} Na_{2}SO_{3} (2.0 \text{ equiv.}) \\ NaHCO_{3} (2.0 \text{ equiv.}) \\ H_{2}O, 80 \ ^{\circ}C, 4 \text{ h} \end{array} \xrightarrow{\begin{array}{c} O \\ R_{1}-\overset{O}{\overset{}_{S}} \end{array} O \\ R_{1}-\overset{O}{\overset{}_{S}} ONa \end{array}$$

According to the reported literature¹. In a clean 50 mL round-bottomed flask with a magnetic stirrer, anhydrous sodium sulfite (10 mmol, 2.0 equiv.), anhydrous sodium bicarbonate (10 mmol, 2.0 equiv.), and 5.0 mL of distilled H_2O (1.0 M). The corresponding sulfuryl chloride (5.0 mmol, 1.0 equiv.) was then added to the above mixture. The resulting mixture was stirred at 80 °C for 4 hours. After cooling to room temperature, the volatiles were removed on a rotary evaporator and the resulting solid was washed repeatedly with anhydrous ethanol. The combined ethanol washings were evaporated under reduced pressure to give the target sodium sulfite as an amorphous solid.

2.2 General procedure for the synthesis of disulfide.²

Thiophenol (10 mmol, 2.0 equiv.), potassium carbonate (10mmol, 2.0 equiv.) and 20.0 mL acetonitrile (0.5 M) were added to a clean 50 mL round-bottled flask. After the mixture was stirred at room temperature for 2 hours, the reaction mixture was extracted with ethyl acetate for 3 times. The composite organic layer was washed with water, dried with anhydrous sodium sulfate, concentrated

under reduced pressure. The pure target product was separated on silica gel by flash column chromatography using petroleum ether/ethyl acetate as eluent.

2.3 General procedure for the synthesis of thiosulfonates.³

$$R^{,S}ONa + R^{,S}S^{,R} \xrightarrow{I_2(2 \text{ equiv.})} R^{,S}S^{,R}$$

In a dry 100 mL round-bottomed flask, disulfide (1 equiv.), sodium sulfonate (3.2 equiv.), I_2 (2 equiv.) and dichloromethane (0.25 M) were added. The resulting mixture was mixed at room temperature for 4-6 hours, after the disulfide was consumed, sodium thiosulfate aqueous solution was added to quench the mixture, and the mixture was washed with salt water. The organic phase was dried with anhydrous sodium sulfate, filtered, and distilled under vacuum, and the corresponding product was obtained by silica gel (petroleum ether/ethyl acetate =20/1) column chromatography.

2.3 General procedure for the synthesis of *rac*-BINAP-Cu(MeCN)PF₆.

Prepared according to a reported reaction condition⁴: To an oven-dried 100 mL flask was added $Cu(MeCN)_4PF_6$ (745 mg, 2.00 mmol, 1.00 equiv), *rac*-BINAP (1.24 g, 2.00 mmol, 1.00 equiv), and 50 mL dry THF. The solution was allowed to stir at room temperature for 3 hours. Approximately 80 mL of dry hexanes was added to precipitate a white solid. There resulting solid was collected by vacuum filtration and dried under reduced pressure to give *rac*-BINAP-Cu(MeCN)PF₆ as a white solid in 89% yield (1.44 g).

¹H NMR (400 MHz, DMSO- d_6) δ 7.90 (s, 4H), 7.64 (d, J = 8.7 Hz, 3H), 7.57 (s, 7H), 7.30 (t, J = 7.6 Hz, 2H), 7.18 (d, J = 6.3 Hz, 4H), 7.07 (d, J = 13.0 Hz, 4H), 6.68 (d, J = 7.6 Hz, 3H), 6.56 (q, J = 8.7, 7.6 Hz, 7H), 2.06 (s, 3H).

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -72.26, -74.16.

³¹P NMR (162 MHz, DMSO-d₆) δ -0.59, -135.50, -139.90, -144.30, -148.69, -153.09.

2.4 Experimental procedures for copper(I) photocatalyzed 1,2-thiosulfonylation of olefins with thiosulfonates.

Corresponding olefins 1 (0.10 mmol), thiosulfonates 2 (0.20 mmol, 2.0 equiv.) and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%) was sequentially added in a dry Schlenk tube equipped with a magnetic stirrer bar. The tube was capped with a rubber septum, and then it was evacuated and backfilled with nitrogen (3 cycles). *N*,*N*-Dimethylacetamide (DMA) (2.0 mL) was added via syringe, and the resulting mixture was degassed via three freeze-pump-thaw cycles. Under efficient stirring, the reaction mixture was then irradiated by 40-watt blue-LED lamps (427 nm) with fans at rt for 24 h. After irradiation, the reaction mixture was quenched with NH₄Cl (aq) and subjected to three extractions using ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure, and the product was isolated by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to provide the pure target product **3**, **4 or 6**, and directly analyzed by ¹H NMR.

2.5 Experimental procedures for copper(I) photocatalyzed 1,7-thiosulfonylation of 1,6-alkynes with thiosulfonates.

 $X = O, NTs, CH_2$ R, R' = Aryl, Alkyl

Corresponding alkynes 7 (0.10 mmol), thiosulfonates 2 (0.20 mmol, 2.0 equiv.) and $Cu(BINAP)(MeCN)PF_6$ (7.86 mg, 3.0 mol%) was sequentially added in a dry Schlenk tube equipped with a magnetic stirrer bar. The tube was capped with a rubber septum, and then it was evacuated and backfilled with nitrogen (3 cycles). *N*,*N*-Dimethylacetamide (DMA) (2.0 mL) was added via syringe, and the resulting mixture was degassed via three freeze-pump-thaw cycles. Under efficient stirring, the reaction mixture was then irradiated by 40-watt blue-LED lamps (427 nm) with fans at rt for 12 h. After

irradiation, the reaction mixture was quenched with hydrochloric acid (1.0 M) and subjected to three extractions using ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure, and the product was isolated by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to provide the pure target product **8**, and directly analyzed by ¹H NMR.

2.6 Procedure for the gram-scale synthesis of 3a.

Alkene **1a** (5.0 mmol, 0.90 g), thiosulfonate **2a** (10.0 mmol, 2.78 g) and Cu(BINAP)(MeCN)PF₆ (10.9 mg, 0.25 mol%) was sequentially added in a dry 100 mL Schlenk tube equipped with a magnetic stirrer bar. The tube was capped with a rubber septum, and then it was evacuated and backfilled with nitrogen (3 cycles). *N*, *N*-dimethylacetamide (DMA) (50 mL) was added via syringe, and the resulting mixture was degassed via three freeze-pump-thaw cycles. Under efficient stirring, the reaction mixture was then irradiated by 40-watt blue-LED lamps (427 nm) with fan at rt for 72 h. After irradiation, the reaction mixture was quenched with NH₄Cl (aq) and subjected to three extractions using ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure, and the product was isolated by flash column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to provide the desired product **3a** in 76% yield.

3. Table S1. Optimization of reaction conditions.^a

			Me	S,
Ph	+ Ts ^{-S}	BINAP-Cu(MeCN)PF ₆ (3 mo Blue LEDs, DMA, r.t., 24	^{1%)} h Ph	Ts
1a	2a	"standard conditions"		3a
Entry	Change from the "stan	dard conditions"	3a (%) ^b	Conversion of $1a (\%)^b$
1	none		82 (80)	100
2	without Cu(BINAP	P)(MeCN)PF ₆	<1	0
3	without Blue light		0	0

4	without BINAP	8	12
5	without Cu(MeCN) ₄ PF ₆	<1	<1
6	Under an atmosphere of air	<1	5
7	use of 2.0 mol% Cu(BINAP)(MeCN)PF ₆	74	90
8	16 h	70	85
9	CuI, instead of Cu(MeCN) ₄ PF ₆	17	35
10	CuCN, instead of Cu(MeCN) ₄ PF ₆	22	35
11	Cu(OTf) ₂ , instead of Cu(MeCN) ₄ PF ₆	32	67
12	Cu(OAc) ₂ , instead of Cu(MeCN) ₄ PF ₆	44	78
13	1a:2a = 1:1	35	96
14	1a:2a = 1:1.5	54	100
15	1a:2a = 1:3	76	100
16	1a:2a = 2:1	30	65
17	Dmp and Xantphos, instead of BINAP	26	45
18	Xantphos, instead of BINAP	<1	5
19	DPEphos, instead of BINAP	<1	7
20	dppe, instead of BINAP	<1	6
21	dppp, instead of BINAP	<1	5
22	BINOL, instead of BINAP	<1	6
23	bpy, instead of BINAP	5	10
24	dmp, instead of BINAP	<1	6
25	1,10-phen, instead of BINAP	<1	8
26	DMF, instead of DMA	34	56
27	Acetonitrile, instead of DMA	<1	<1
28	Dichloromethane, instead of DMA	39	58
29	Chloroform, instead of DMA	33	70
30	THF, instead of DMA	51	82
31	Acetone, instead of DMA	10	31
32	1,4-dioxane, instead of DMA	36	75
33	DMSO, instead of DMA	24	64
34	DME, instead of DMA	18	38
35	Ethanol, instead of DMA	trace	<5
36	Ethyl acetate, instead of DMA	52	83
37	H ₂ O, instead of DMA	<1	<1

38	V_{H2O}/V_{DMA} (1:10), instead of DMA	<1	<5
39	white LED, instead of blue LED	15	30
40	green LED, instead of blue LED	<1	12
41	Violet LED, instead of blue LED	68	100
42	15 W blue LED	15	56
43	5 W blue LED	<5	<5
44	fac-Ir(ppy) ₃ , instead of Cu(BINAP)(MeCN)PF ₆	21	100
45	4CzIPN, instead of Cu(BINAP)(MeCN)PF ₆	9	20
46	Eosin Y, instead of Cu(BINAP)(MeCN)PF ₆	22	46
47	Fluorescein, instead of Cu(BINAP)(MeCN)PF ₆	34	76

^{*a*} Reaction condition: **1** (0.1 mmol), **2** (0.20 mmol, 2.0 equiv.), Cu(BINAP)(MeCN)PF₆ (3.0 mol%) and degassed DMA (2.0 mL) at room temperature under irradiation with 40 W blue LED (427 nm) for 24 h. ^{*b*}NMR yield, determined using ¹H NMR analysis with CH₂Br₂ as an internal standard. The value in parentheses is isolated yield. BINAP, 2,2'-bis(dipenylphosphino)-1,1-binaphthalene; Xantphos, 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; DMP, 2,9-Dimethyl-1,10-phenanthroline; DPEphos, (Oxydi-2,1-phenylene)bis(diphenylphosphine); Dppe, 1,2-Bis(diphenylphosphino)ethane; Dpp, 1,3-Bis(diphenylphosphino)propane; BINOL, 1,1'-Bi-2-naphthol; bpy, 2,2'-Bipyridine; 1,10-phen, 1,10-Phenanthroline.

4. Unsuccessful products.

5. Characterization data for all compounds.

(1-([1,1'-biphenyl]-4-yl)-2-tosylethyl)(*p*-tolyl)sulfane (3a). The title compound was synthesized according to the General Procedure from 4-vinyl-1,1'-biphenyl (54.1 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **3a** was obtained as a white solid (110.1 mg, 80% yield); mp: 121~122 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.50 (d, *J* = 7.2 Hz, 2H), 7.45 – 7.30 (m, 7H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 6.8 Hz, 4H), 7.04 (d, *J* = 8.0 Hz, 2H), 4.61 (dd, *J* = 10.8, 3.6 Hz, 1H), 3.85 (dd, *J* = 14.8, 10.8 Hz, 1H), 3.66 (dd, *J* = 14.4, 3.6 Hz, 1H), 2.34 (s, 3H), 2.26 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 144.2, 140.7, 140.4, 138.8, 136.4, 136.3, 133.9, 130.0, 129.4, 128.9, 128.8, 128.4, 127.9, 127.4, 127.0, 126.9, 60.6, 47.5, 21.5, 21.2.

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₂₇O₂S₂⁺: 459.1447; found: 459.1447.

p-Tolyl(1-(*p*-tolyl)-2-tosylethyl)sulfane (3b).⁵ The title compound was synthesized according to the General Procedure from 1-methyl-4-vinylbenzene (35.5 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 15:1~10:1), product **3b** was obtained as a white solid (92.8 mg, 78% yield); mp: 118~119 °C.

¹H NMR (600 MHz, CDCl₃): δ 7.40 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 7.8 Hz, 2H), 7.07 (t, J = 7.8 Hz, 4H), 6.93 (dd, J = 19.2, 8.4 Hz, 4H), 4.52 (dd, J = 10.8, 3.6 Hz, 1H), 3.77 (dd, J = 15.0, 10.8 Hz, 1H), 3.59 (dd, J = 15.0, 3.6 Hz, 1H), 2.36 (s, 3H), 2.33 (s, 3H), 2.26 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 144.1, 138.5, 137.6, 136.4, 134.4, 133.6, 129.9, 129.3, 129.2, 129.1, 127.9, 127.8, 60.6, 47.3, 21.5, 21.2, 21.1.

(1-(4-Methoxyphenyl)-2-tosylethyl)(*p*-tolyl)sulfane (3c).⁵ The title compound was synthesized according to the General Procedure from 1-methoxy-4-vinylbenzene (40.3 mg, 0.3 mmol), S-(*p*-tolyl) 4-

methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), product **3c** was obtained as a white solid (90.4 mg, 73% yield); mp: 147~148 °C.

¹**H** NMR (600 MHz, CDCl₃): δ 7.39 (d, *J* = 7.8 Hz, 2H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.08 (dd, *J* = 14.4, 7.8 Hz, 4H), 6.97 (d, *J* = 8.4 Hz, 2H), 6.63 (d, *J* = 7.8 Hz, 2H), 4.54 (d, *J* = 10.8 Hz, 1H), 3.74 (br, 4H), 3.59 (d, *J* = 15.0 Hz, 1H), 2.35 (s, 3H), 2.32 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 159.1, 144.1, 138.5, 136.4, 133.6, 129.9, 129.4, 129.3, 129.2, 129.0, 127.9, 113.8, 60.7, 55.2, 47.0, 21.5, 21.1.

(1-(4-Phenoxyphenyl)-2-tosylethyl)(*p*-tolyl)sulfane (3d). The title compound was synthesized according to the General Procedure from 1-phenoxy-4-vinylbenzene (58.9 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $10:1\sim5:1$), product 3d was obtained as a white solid (85.4 mg, 60% yield); mp: $123\sim124^{\circ}$ C.

¹**H NMR** (600 MHz, CDCl₃): δ 7.45 (d, *J* = 7.8 Hz, 2H), 7.36 – 7.34 (m, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 7.16 – 7.11 (m, 3H), 7.08 (d, *J* = 7.8 Hz, 2H), 7.01 – 6.96 (m, 4H), 6.74 (dd, *J* = 6.6, 2.4 Hz, 2H), 4.57 (dd, *J* = 10.8, 3.6 Hz, 1H), 3.78 (dd, *J* = 14.4, 10.8 Hz, 1H), 3.62 (dd, *J* = 15.0, 3.6 Hz, 1H), 2.39 (s, 3H), 2.34 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 156.9, 156.7, 144.3, 138.8, 136.5, 133.9, 132.1, 130.0, 129.8, 129.5, 129.3, 129.0, 128.0, 123.6, 119.1, 118.4, 60.6, 47.1, 21.6, 21.2.

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₈H₂₇O₃S₂⁺: 475.1396; found: 475.1397.

(1-(4-(*tert*-Butyl)phenyl)-2-tosylethyl)(*p*-tolyl)sulfane (3e). The title compound was synthesized according to the General Procedure from 1-(*tert*-butyl)-4-vinylbenzene (48.1 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86

mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $10:1 \sim 5:1$), product **3e** was obtained as a white solid (94.7 mg, 72% yield); mp: $110 \sim 111$ °C.

¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, J = 8.4 Hz, 2H), 7.26 - 7.22 (m, 2H), 7.09 (d, J = 8.4 Hz, 4H), 7.02 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H), 4.58 (dd, J = 10.8, 3.2 Hz, 1H), 3.87 - 3.81 (m, 1H), 3.61 (dd, J = 14.8, 3.6 Hz, 1H), 2.34 (s, 3H), 2.32 (s, 3H), 1.25 (s, 9H).

¹³**C NMR** (150 MHz, CDCl₃): δ 150.8, 143.8, 138.6, 136.5, 134.0, 133.6, 130.0, 129.4, 129.3, 127.9, 127.5, 125.3, 60.5, 47.3, 34.4, 31.3, 21.5, 21.2.

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₆H₃₁O₂S₂⁺: 439.1760; found: 439.1762.

(1-Phenyl-2-tosylethyl)(p-tolyl)sulfane (3f).⁵ The title compound was synthesized according to the General Procedure from styrene (31.2 mg, 0.3 mmol), S-(p-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **3f** was obtained as a white solid (83.8 mg, 73% yield); mp: 108~109 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, J = 8.4 Hz, 2H), 7.18 – 7.04 (m, 11H), 4.55 (dd, J = 10.4, 3.6 Hz, 1H), 3.80 (dd, J = 14.8, 10.4 Hz, 1H), 3.63 (dd, J = 14.8, 3.6 Hz, 1H), 2.35 (s, 3H), 2.33 (s, 3H).
¹³C NMR (150 MHz, CDCl₃): δ 144.2, 138.7, 137.6, 136.3, 133.8, 130.0, 129.4, 129.0, 128.4, 127.9, 127.7, 60.6, 47.6, 21.5, 21.2.

(1-(4-Fluorophenyl)-2-tosylethyl)(*p*-tolyl)sulfane (3g).⁵ The title compound was synthesized according to the General Procedure from 1-fluoro-4-vinylbenzene (36.6 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $15:1\sim10:1$), product 3g was obtained as a white solid (94.9 mg, 79% yield); mp: $121\sim122$ °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.41 (d, *J* = 8.0 Hz, 2H), 7.17 – 7.06 (m, 6H), 7.02 – 6.98 (m, 2H), 6.82 – 6.76 (m, 2H), 4.55 (dd, *J* = 10.8, 4.0 Hz, 1H), 3.74 (dd, *J* = 14.8, 10.8 Hz, 1H), 3.62 (dd, *J* = 14.8, 4.0 Hz, 1H), 2.37 (s, 3H), 2.33 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 162.1 (d, *J* = 245.55 Hz), 144.5, 138.9, 136.3, 133.9, 133.4 (d, *J* = 3.15 Hz), 130.0, 129.6 (d, *J* = 8.25 Hz), 129.5, 128.6, 127.9, 115.3 (d, *J* = 21.45 Hz), 60.6, 46.9, 21.5, 21.1.

¹⁹F NMR (376 MHz, CDCl₃): δ -113.96 - -114.03 (m).

(1-(4-Chlorophenyl)-2-tosylethyl)(*p*-tolyl)sulfane (3h).⁵ The title compound was synthesized according to the General Procedure from 1-chloro-4-vinylbenzene (41.6 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $20:1 \sim 10:1$), product **3h** was obtained as a white solid (102.6 mg, 82% yield); mp: $130 \sim 131$ °C.

¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 7.12 – 7.04 (m, 6H), 6.94 (d, J = 8.4 Hz, 2H), 4.51 (dd, J = 10.8, 4.0 Hz, 1H), 3.73 (dd, J = 14.8, 10.8 Hz, 1H), 3.62 (dd, J = 14.8, 4.0 Hz, 1H), 2.39 (s, 3H), 2.33 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 144.6, 139.0, 136.2, 136.1, 134.0, 133.6, 130.0, 129.5, 129.3, 128.5, 128.4, 127.9, 60.5, 47.1, 21.5, 21.2.

(1-(4-Bromophenyl)-2-tosylethyl)(*p*-tolyl)sulfane (3i). The title compound was synthesized according to the General Procedure from 1-bromo-4-vinylbenzene (54.9 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $20:1 \sim 10:1$), product **3i** was obtained as a white solid (110.7 mg, 80% yield); mp: $119 \sim 120^{\circ}$ C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.37 (d, *J* = 8.4 Hz, 2H), 7.21 – 7.15 (m, 4H), 7.09 (dd, *J* = 11.2, 8.0 Hz, 4H), 6.89 – 6.85 (m, 2H), 4.50 (dd, *J* = 10.8, 3.6 Hz, 1H), 3.73 (dd, *J* = 14.4, 10.8 Hz, 1H), 3.61 (dd, *J* = 14.4, 3.6 Hz, 1H), 2.39 (s, 3H), 2.33 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 144.6, 139.0, 136.6, 136.1, 134.0, 131.4, 130.0, 129.6, 129.5, 128.4, 127.8, 121.7, 60.4, 47.1, 21.5, 21.2.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{22}H_{22}BrO_2S_2^+$: 461.0239; found: 461.0238.

p-Tolyl(2-tosyl-1-(4-(trifluoromethyl)phenyl)ethyl)sulfane (3j).⁵ The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 15:1~10:1), product **3j** was obtained as a white solid (116.2 mg, 86% yield); mp: 140~141°C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.34 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.19 –7.16 (m, 2H), 7.08 (dd, *J* = 8.4, 2.8 Hz, 4H), 7.03 (d, *J* = 8.0 Hz, 2H), 4.58 (dd, *J* = 11.2, 3.6 Hz, 1H), 3.80 (dd, *J* = 14.8, 10.8 Hz, 1H), 3.67 (dd, *J* = 14.8, 3.6 Hz, 1H), 2.33 (s, 3H), 2.32 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 144.6, 141.6, 139.1, 136.0, 134.2, 130.1, 129.7 (q, *J* = 32.4 Hz), 129.5, 128.3, 128.0, 127.8, 125.2 (q, *J* = 3.75 Hz), 123.8 (q, *J* = 270.60 Hz), 60.2, 47.4, 21.3, 21.1.

¹⁹F NMR (376 MHz, CDCl3): δ -62.638.

Methyl-4-(1-(*p***-tolylthio)-2-tosylethyl)benzoate** (**3k**).⁵ The title compound was synthesized according to the General Procedure from methyl 4-vinylbenzoate (48.7 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $20:1\sim10:1$), product **3k** was obtained as a white solid (108.4 mg, 82% yield); mp: $127\sim128$ °C.

¹H NMR (400 MHz, CDCl₃): δ 7.40 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 7.12 - 7.01 (m, 6H), 6.82 (d, J = 8.8 Hz, 2H), 4.56 (dd, J = 10.4, 3.6 Hz, 1H), 3.76 (dd, J = 14.8, 10.4 Hz, 1H), 3.63 (dd, J = 14.8, 4.0 Hz, 1H), 2.35 (s, 3H), 2.33 (s, 3H), 2.27 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 168.8, 150.1, 144.5, 138.8, 136.1, 135.1, 133.9, 130.0, 129.6, 128.8, 128.7, 127.8, 121.4, 60.6, 47.1, 21.5, 21.2, 21.1.

(4-(1-(*p*-Tolylthio)-2-tosylethyl)phenyl)methanol (31).⁵ The title compound was synthesized according to the General Procedure from (4-vinylphenyl)methanol (40.2 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $15:1\sim10:1$), product **31** was obtained as a white solid (82.9 mg, 67% yield); mp: $132\sim133$ °C.

¹**H NMR** (600 MHz, CDCl₃): δ 7.40 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 7.8 Hz, 2H), 7.09 (t, *J* = 9.0 Hz, 4H), 7.05 (d, *J* = 8.4 Hz, 4H), 4.56 (s, 2H), 4.55 (d, *J* = 3.6 Hz, 1H), 4.53 (d, *J* = 3.6 Hz, 1H), 3.78 (dd, *J* = 14.7, 10.5 Hz, 1H), 3.60 (dd, *J* = 15.0, 3.6 Hz, 1H), 2.34 (s, 3H), 2.31 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 144.3, 140.6, 138.6, 136.7, 136.0, 133.5, 129.9, 129.4, 128.9, 127.9, 127.8, 126.9, 64.5, 60.4, 47.2, 21.4, 21.1

4,4,5,5-Tetramethyl-2-(4-(1-(*p***-tolylthio)-2-tosylethyl)phenyl)-1,3,2-dioxaborolane (3m).** The title compound was synthesized according to the General Procedure from 4,4,5,5-tetramethyl-2-(4-vinylphenyl)-1,3,2-dioxaborolane (69.0 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $20:1 \sim 10:1$), product **3m** was obtained as a white solid (76.3 mg, 50% yield); mp: $154 \sim 155$ °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.51 (d, *J* = 7.6 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.07 – 6.98 (m, 6H), 4.53 (dd, *J* = 10.8, 3.6 Hz, 1H), 3.80 (dd, *J* = 14.8, 10.4 Hz, 1H), 3.62 (dd, *J* = 14.8, 4.0 Hz, 1H), 2.33 (s, 3H), 2.33 (s, 3H), 1.34 (s, 12H).

¹³C NMR (150 MHz, CDCl₃): δ 144.2, 140.4, 138.7, 136.1, 134.8, 133.8, 130.0, 129.4, 128.8, 127.9, 127.2, 83.8, 60.3, 47.8, 24.9, 24.8, 21.5, 21.2.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{28}H_{34}BO_4S_2^+$: 509.1986; found: 509.1985.

(1-(2-Methoxyphenyl)-2-tosylethyl)(*p*-tolyl)sulfane (3n). The title compound was synthesized according to the General Procedure from 1-methoxy-2-vinylbenzene (40.3 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), product **3n** was obtained as a white solid (89.1 mg, 72% yield); mp: 138~139°C.

¹**H** NMR (600 MHz, CDCl₃): δ 7.41 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.10 (td, *J* = 7.8, 1.8 Hz, 1H), 7.06 – 7.05 (m, 4H), 6.93 (dd, *J* = 7.2, 1.8 Hz, 1H), 6.71 (t, *J* = 7.8 Hz, 1H), 6.62 (d, *J* = 8.4 Hz, 1H), 4.87 (dd, *J* = 10.8, 3.6 Hz, 1H), 4.06 (dd, *J* = 15.0, 10.8 Hz, 1H), 3.72 (s, 3H), 3.62 (dd, *J* = 15.0 3.6 Hz, 1H), 2.34 (s, 3H), 2.32 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 156.6, 144.0, 138.2, 136.0, 133.4, 129.9, 129.8, 129.1, 128.8, 127.9, 127.6, 125.6, 120.4, 110.7, 59.5, 55.3, 42.9, 21.5, 21.1.

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₂₅O₃S₂⁺: 413.4210; found: 413.4210.

p-Tolyl(1-(*o*-tolyl)-2-tosylethyl)sulfane (30).⁵ The title compound was synthesized according to the General Procedure from 1-methyl-2-vinylbenzene (35.5 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **30** was obtained as a white solid (84.5 mg, 71% yield); mp: 109~110 °C.

¹**H** NMR (600 MHz, CDCl₃): δ 7.35 (d, *J* = 7.8 Hz, 2H), 7.21 (d, *J* = 7.8 Hz, 2H), 7.09 (d, *J* = 7.8 Hz, 2H), 7.05 – 7.00 (m, 4H), 6.84 – 6.80 (m, 2H), 4.81 (dd, *J* = 10.8, 3.6 Hz, 1H), 3.88 (dd, *J* = 15.0, 10.8 Hz, 1H), 3.63 (dd, *J* = 15.0, 3.6 Hz, 1H), 2.38 (s, 3H), 2.34 (s, 3H), 2.33 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 144.1, 138.8, 136.3, 136.2, 135.1, 133.9, 130.5, 130.0, 129.4, 129.1, 127.7, 127.4, 126.0, 60.1, 43.1, 21.5, 21.2, 19.4.

(1-(2-Chlorophenyl)-2-tosylethyl)(*p*-tolyl)sulfane (3p). The title compound was synthesized according to the General Procedure from 1-chloro-2-vinylbenzene (41.6 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **3p** was obtained as a white solid (97.6 mg, 78% yield); mp: 128~129 °C.

¹**H** NMR (600 MHz, CDCl₃): δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.26 – 7.25 (m, 1H), 7.17 (d, *J* = 7.8 Hz, 2H), 7.11 – 7.05 (m, 5H), 7.01 – 6.96 (m, 2H), 5.00 (d, *J* = 10.8 Hz, 1H), 3.92 – 3.87 (m, 1H), 3.64 (dd, *J* = 15.0, 3.6 Hz, 1H), 2.35 (s, 3H), 2.33 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 144.0, 138.9, 135.7, 135.0, 134.0, 133.8, 130.0, 129.8, 129.5, 128.7, 128.5, 128.0, 126.7, 60.6, 29.7, 21.5, 21.2.

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₂₂ClO₂S₂⁺: 439.1760; found: 439.1762.

p-Tolyl(1-(*m*-tolyl)-2-tosylethyl)sulfane (3q). The title compound was synthesized according to the General Procedure from 1-chloro-2-vinylbenzene (53.5 mg, 0.3 mmol), S-(*p*-tolyl) 4- methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **3q** was obtained as a white solid (88.0 mg, 74% yield); mp: 135~136 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.38 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.07 (t, *J* = 8.8 Hz, 4H), 7.03 -7.00 (m, 1H), 6.93 - 6.87 (m, 2H), 6.75 (s, 1H), 4.52 (dd, *J* = 10.4, 3.6 Hz, 1H), 3.80 (dd, *J* = 14.8, 10.8 Hz, 1H), 3.60 (dd, *J* = 14.8, 3.6 Hz, 1H), 2.34 (s, 3H), 2.33 (s, 3H), 2.15 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 144.1, 138.6, 138.0, 137.1, 136.3, 133.7, 130.0, 129.3, 129.2, 128.5, 128.4, 128.3, 127.9, 125.2, 60.5, 47.6, 21.5, 21.2, 21.1.

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₂₅O₂S₂⁺: 397.1290; found: 397.1291.

(1-(3-Fluorophenyl)-2-tosylethyl)(*p*-tolyl)sulfane (3r). The title compound was synthesized according to the General Procedure from 1-fluoro-3-vinylbenzene (36.6 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **3r** was obtained as a white solid (94.9 mg, 79% yield); mp: 151~152 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.12 - 7.06 (m, 5H), 6.86 - 6.80 (m, 2H), 6.69 - 6.66 (m, 1H), 4.52 (dd, *J* = 10.8, 4.0 Hz, 1H), 3.74 (dd, *J* = 14.8, 10.8 Hz, 1H), 3.62 (dd, *J* = 14.8, 4.0 Hz, 1H), 2.36 (s, 3H), 2.33 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 162.5 (d, *J* = 245.40 Hz), 144.5, 140.2 (d, *J* = 7.05 Hz), 139.0, 136.1, 134.0, 130.0, 129.9 (d, *J* = 8.25 Hz), 129.5, 128.4, 127.9, 123.8 (d, *J* = 2.85 Hz), 114.8 (d, *J* = 20.55 Hz), 114.6 (d, *J* = 19.5 Hz), 60.4, 47.3, 21.5, 21.2.

¹⁹**F NMR** (376 MHz, CDCl3): δ -62.638.

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₂₂FO₂S₂⁺: 401.1040; found: 401.1040.

(1-(3,4-Difluorophenyl)-2-tosylethyl)(*p*-tolyl)sulfane (3s). The title compound was synthesized according to the General Procedure from 1,2-difluoro-4-vinylbenzene (42.0 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86

mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **3s** was obtained as a white solid (80.4 mg, 64% yield); mp: 118~119 °C.

¹**H** NMR (600 MHz, CDCl₃): δ 7.44 (d, *J* = 8.0 Hz, 2H), 7.16 (s, 2H), 7.07 (d, *J* = 7.8 Hz, 2H), 6.91 (q, *J* = 9.1 Hz, 1H), 6.82 – 6.77 (m, 1H), 6.79 – 6.74 (m, 1H), 4.49 (dd, *J* = 10.7, 3.7 Hz, 1H), 3.68 (dd, *J* = 14.7, 10.7 Hz, 1H), 3.61 (dd, *J* = 14.7, 3.7 Hz, 1H), 2.38 (s, 3H), 2.33 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 144.8, 139.2, 136.2, 134.8, 134.1, 130.1, 129.5, 128.1, 127.8, 124.3, 124.3, 124.3, 124.3, 124.2, 117.1, 117.0, 116.8, 116.7, 60.5, 46.8, 21.5, 21.2.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{22}H_{21}F_2O_2S_2^+$: 419.0946; found: 419.0946.

4-Methyl-5-(1-(*p***-tolylthio)-2-tosylethyl)thiazole (3t).**⁶ The title compound was synthesized according to the General Procedure from 4-methyl-5-vinylthiazole (37.5 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), product **3t** was obtained as a white solid (96.9 mg, 80% yield); mp: 129~130 °C.

¹**H** NMR (600 MHz, CDCl₃): δ 8.41 (s, 1H), 7.45 (d, *J* = 6.6 Hz, 2H), 7.16 (t, *J* = 7.8 Hz, 4H), 7.06 (d, *J* = 9.0 Hz, 2H), 4.89 (dd, *J* = 10.8, 4.2 Hz, 1H), 3.70 (dd, *J* = 15.0, 3.6 Hz, 1H), 3.63 (dd, *J* = 14.4, 10.2 Hz, 1H), 2.36 (s, 3H), 2.32 (s, 3H), 2.18 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 151.2, 151.2, 144.7, 139.6, 136.2, 134.6, 130.7, 130.1, 129.6, 127.9, 127.7, 62.8, 40.8, 21.5, 21.2, 15.0.

4-(1-(*p***-Tolylthio)-2-tosylethyl)pyridine (3u).⁵** The title compound was synthesized according to the General Procedure from 4-vinylpyridine (31.5 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg,

3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), product **3u** was obtained as a white solid (96.9 mg, 60% yield); mp: $120 \sim 121$ °C.

¹**H NMR** (500 MHz, CDCl₃): δ 8.34 (d, *J* = 5.5 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.13 (dd, *J* = 13.0, 8.0 Hz, 4H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 6.0 Hz, 2H), 4.46 (dd, *J* = 10.5, 4.0 Hz, 1H), 3.76 (dd, *J* = 14.8, 10.3 Hz, 1H), 3.66 (dd, *J* = 14.5, 4.0 Hz, 1H), 2.37 (s, 3H), 2.31 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 149.7, 146.9, 144.9, 139.4, 135.9, 134.3, 130.0, 129.6, 127.8, 127.5, 122.7, 59.7, 46.7, 21.5, 21.1.

(1-Phenyl-2-tosylpropyl)(*p*-tolyl)sulfane (3v).⁵ The title compound was synthesized according to the General Procedure from prop-1-en-1-ylbenzene (35.5 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **3v** was obtained as a white solid (86.8 mg, 73% yield); mp: 108~109°C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.26 - 7.22 (m, 4H), 7.19 - 7.14 (m, 3H), 7.07 (d, *J* = 8.4 Hz, 2H), 6.95 (d, *J* = 8.0 Hz, 2H), 4.82 (d, *J* = 4.8 Hz, 1H), 3.56 - 3.50 (m, 1H), 2.41 (s, 3H), 2.24 (s, 3H), 1.53 (d, *J* = 6.8 Hz, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 144.4, 140.1, 137.4, 135.4, 132.5, 130.2, 129.6, 129.5, 129.0, 128.4, 128.3, 127.4, 66.1, 53.4, 21.6, 21.0, 10.8.

(2-Phenyl-1-tosylpropan-2-yl)(*p*-tolyl)sulfane (3w).⁵ The title compound was synthesized according to the General Procedure from 1H-indene (34.8 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **3w** was obtained as a white solid (88.8 mg, 75% yield); mp: 123~124 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 5.6 Hz, 1H), 7.21 - 7.16 (m, 4H), 7.07 (d, J = 8.4 Hz, 3H), 6.97 (d, J = 8.0 Hz, 2H), 4.97 (t, J = 2.0 Hz, 1H), 3.89 (d, J = 8.8 Hz, 1H), 3.43 (d, J = 17.6 Hz, 1H), 3.21 (dd, J = 17.6, 8.4 Hz, 1H), 2.39 (s, 3H), 2.30 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 144.6, 140.2, 140.1, 138.2, 134.3, 133.4, 129.7, 129.6, 128.9, 128.6, 128.4, 127.3, 125.0, 124.3, 69.2, 53.1, 31.7, 21.5, 21.1.

(2-Phenyl-1-tosylpropan-2-yl)(*p*-tolyl)sulfane (3x).⁵ The title compound was synthesized according to the General Procedure from ethene-1,1-diyldibenzene (54.1 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **3x** was obtained as a white solid (92.2 mg, 67% yield); mp: 145~146 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.38 (dd, *J* = 7.6, 2.0 Hz, 4H), 7.19 (d, *J* = 7.2 Hz, 6H), 7.13 - 7.11 (m, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 7.6 Hz, 2H), 6.78 - 6.76 (m, 2H), 4.30 (s, 2H), 2.34 (s, 3H), 2.28 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 143.4, 140.8, 139.8, 138.6, 137.1, 129.7, 129.3, 129.2, 127.4, 127.3, 127.2, 126.8, 66.6, 60.7, 21.4, 21.1.

(2-Phenyl-1-tosylpropan-2-yl)(*p*-tolyl)sulfane (3y).⁵ The title compound was synthesized according to the General Procedure from prop-1-en-2-ylbenzene (35.5 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **3y** was obtained as a white solid (86.8 mg, 73% yield); mp: 163~164 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.32 (d, *J* = 8.0 Hz, 2H), 7.18 (dd, *J* = 16.0, 7.6 Hz, 4H), 7.09 - 7.03 (m, 7H), 4.19 (d, *J* = 14.8 Hz, 1H), 3.64 (d, *J* = 14.8 Hz, 1H), 2.34 (s, 6H), 1.99 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 143.8, 140.1, 140.0, 137.5, 137.4, 129.6, 129.4, 127.9, 127.6, 127.1, 127.0, 126.9, 66.9, 51.7, 24.6, 21.4, 21.2.

(*E*)-(1-Phenyl-2-tosylvinyl)(*p*-tolyl)sulfane (3z).⁶ The title compound was synthesized according to the General Procedure from Phenylacetylene (30.6 mg, 0.3 mmol), *S*-phenyl 4methylbenzenesulfonothioate (156.8 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **3z** was obtained as a white solid (92.5 mg, 81% yield); mp: 116~117 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.39 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.30 - 7.20 (m, 8H), 7.08 (d, *J* = 8.0 Hz, 2H), 5.90 (s, 1H), 2.39 (s, 3H), 2.35 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 160.2, 143.3, 141.0, 139.2, 135.3, 133.6, 130.9, 129.4, 129.1, 129.0, 127.8, 127.2, 125.3, 122.2, 21.5, 21.3.

4-(1-(*p***-tolylthio)-2-tosylethyl)phenyl 2-(4-isobutylphenyl)propanoate (3aa).** The title compound was synthesized according to the General Procedure from 4-vinylphenyl 2-(4-isobutylphenyl)propanoate (92.5 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **3aa** was obtained as a white solid (137.3 mg, 78% yield); mp: 121~122 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.35 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.17 - 7.13 (m, 4H), 7.06 (d, *J* = 8.0 Hz, 4H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.72 (dd, *J* = 8.4, 2.4 Hz, 2H), 4.54 (dd, *J* = 10.4, 3.6 Hz, 1H), 3.90 (q, *J* = 7.2 Hz, 1H), 3.74 (dd, *J* = 14.8, 10.8 Hz, 1H), 3.61 (dd, *J* = 14.8, 4.0 Hz, 1H), 2.47 (d, *J* = 7.2 Hz, 2H), 2.31 (s, 3H), 2.25 (s, 3H), 1.90 - 1.83(m, 1H), 1.60 - 1.58 (m, 3H), 1.26 (br, 1H), 0.91 (d, *J* = 6.4 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃): δ 172.7, 150.3, 144.4, 140.8, 138.8, 137.1, 136.1, 134.9, 133.9, 123.0, 129.5, 129.5, 129.5, 128.7, 127.7, 127.1, 121.2, 121.2, 60.6, 47.1, 45.2, 31.5, 30.1, 22.6, 22.3, 21.3, 21.1, 18.4, 14.1.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₅H₃₉O₄S₂⁺: 397.1290; found: 397.1291.

decahydro-17H-cyclopenta[a]phenanthren-17-one (**3ab**).⁵ The title compound was synthesized according to the General Procedure from (8R,9S,13S,14S)-13-methyl-3-vinyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (84.12 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), product **3ab** was obtained as a purple solid (117.3 mg, 70% yield, dr 1:1).

¹**H NMR** (600 MHz, CDCl₃): δ 7.36 – 7.31 (m, 2H), 7.26 – 7.19 (m, 2H), 7.09 – 7.00 (m, 5H), 6.91-6.86 (m, 1H), 6.70 – 6.65 (m, 1H), 4.53 – 4.47 (m, 1H), 3.83 – 3.77 (m, 1H), 3.59 – 3.53 (m, 1H), 2.74 – 2.67 (m, 1H), 2.62 – 2.44 (m, 3H), 2.33 – 2.30 (m, 6H), 2.17 – 2.08 (m, 2H), 2.04 – 1.91 (m, 4H), 1.60 – 1.57 (m, 1H), 1.50 – 1.42 (m, 4H), 0.92 – 0.87 (m, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 220.29(220.26), 143.56(143.51), 139.22(139.21), 138.30(138.28), 136.28(136.27), 136.19(136.17), 134.13(134.09), 133.23(133.20), 129.80, 129.20(129.19), 128.95(128.94), 128.07(127.88), 127.62(127.61), 125.31(125.24), 125.21(125.13), 60.25(60.19), 50.21(50.18), 47.64(47.63), 47.05(47.01), 44.07, 37.84(37.77), 35.57(31.31), 28.89(28.87), 26.17(26.13), 25.44(25.38), 21.43(21.37), 21.34(21.31), 20.95, 13.67(13.64).

(1R,2S,5S)-2-Isopropyl-5-methylcyclohexyl 4-((R)-1-(*p*-tolylthio)-2-tosylethyl)benzoate (3ac). The title compound was synthesized according to the General Procedure from (1R,2S,5S)-2-isopropyl-5-methylcyclohexyl 4-vinylbenzoate (85.9 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), product **3ac** was obtained as a white solid (120.3 mg, 71% yield); mp: 131~132 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.09-7.06 (m, 6H), 4.92 (td, *J* = 10.9, 4.4 Hz, 1H), 4.56 (dd, *J* = 10.8, 3.6 Hz, 1H), 3.79 (dd, *J* = 14.4, 10.6 Hz, 1H), 3.65 (dd, *J* = 14.4, 3.6 Hz, 1H), 2.33 (s, 6H), 2.11 (d, *J* = 12.8 Hz, 1H), 1.94 (td, *J* = 6.9, 2.7 Hz, 1H), 1.74 (d, *J* = 12.0 Hz, 2H), 1.60 - 1.52 (m, 3H), 1.15 - 1.05 (m, 2H), 0.94 (q, *J* = 3.6 Hz, 6H), 0.80 (d, *J* = 6.8 Hz, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 165.6, 144.6, 142.6, 139.1, 136.1, 134.0, 130.2, 130.1, 129.6, 129.5, 128.3, 127.9, 127.8, 74.9, 60.3, 47.5, 47.2, 41.0, 34.3, 31.4, 26.5, 23.6, 22.0, 21.5, 21.2, 20.8, 16.5.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{33}H_{41}O_4S_2^+$: 565.2441; found: 565.2441.

Phenyl(2-tosyl-1-(4-(trifluoromethyl)phenyl)ethyl)sulfane (4a). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S*-phenyl 4-methylbenzenesulfonothioate (156.8 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **4a** was obtained as a purple solid (113.9 mg, 87% yield); mp: 119 ~ 120 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.36 (d, *J* = 8.0 Hz, 2H), 7.32-7.26 (m, 7H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 7.6 Hz, 2H), 4.66 (dd, *J* = 10.8, 3.6 Hz, 1H), 3.82 (dd, *J* = 14.8, 10.8 Hz, 1H), 3.68 (dd, *J* = 14.8, 3.8 Hz, 1H), 2.33 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 144.7, 141.5, 136.0, 133.6, 131.8, 129.9 (q, *J* = 31.7 Hz), 129.5, 129.4, 128.8, 128.3, 127.8, 125.3 (q, *J* = 4.5 Hz), 123.8 (q, *J* = 274.8 Hz), 60.3, 47.1, 21.3.

¹⁹**F NMR** (376 MHz, CDCl₃): δ - 62.68.

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₂₀F₃O₂S₂⁺: 437.0851; found: 437.0850.

(4-Ethylphenyl)(2-tosyl-1-(4-(trifluoromethyl)phenyl)ethyl)sulfane (4b). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S*-phenyl 4-ethylbenzenesulfonothioate (278.7 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **4b** was obtained as a white solid (122.6 mg, 88% yield); mp: 146 ~147 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.32 (dd, *J* = 15.2, 8.0 Hz, 4H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.11 (t, *J* = 8.0 Hz, 4H), 7.04 (d, *J* = 7.6 Hz, 2H), 4.60 (dd, *J* = 10.8, 3.6 Hz, 1H), 3.84-3.78 (m, 1H), 3.67 (dd, *J* = 11.2, 3.6 Hz, 1H), 2.63 (q, *J* = 7.6 Hz, 2H), 2.33 (s, 3H), 1.23 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 145.5, 144.6, 141.5, 136.0, 134.2, 129.6 (q, J = 33.5 Hz), 129.5, 129.0, 128.3, 128.3, 127.8, 125.2 (q, J = 3.3 Hz), 123.9 (q, J = 292.0 Hz), 60.3, 47.4, 28.5, 21.3, 15.3.
¹⁹F NMR (376 MHz, CDCl₃): δ - 62.68.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{24}H_{24}F_3O_2S_2^+$: 465.1164; found: 465.1165.

(4-Chlorophenyl)(2-tosyl-1-(4-(trifluoromethyl)phenyl)ethyl)sulfane (4c). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S*-(4-chlorophenyl) 4-methylbenzenesulfonothioate (179.3 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **4c** was obtained as a white solid (124.3 mg, 88% yield); mp: 129 ~ 130 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.35 (dd, *J* = 19.2, 8.0 Hz, 4H), 7.21 (dd, *J* = 18.8, 8.8 Hz, 4H), 7.08 (q, *J* = 8.0 Hz, 4H), 4.62 (dd, *J* = 10.8, 3.6 Hz, 1H), 3.81 (dd, *J* = 14.8, 10.8 Hz, 1H), 3.66 (dd, *J* = 14.8, 3.6 Hz, 1H), 2.33 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 144.8, 141.3, 135.9, 135.2, 135.0, 130.2, 130.0 (q, *J* = 32.9 Hz), 129.6, 129.5, 128.3, 127.8, 125.3 (q, *J* = 3.8 Hz), 123.8 (q, *J* = 272.1 Hz), 60.2, 47.3, 21.3.

¹⁹**F NMR** (376 MHz, CDCl₃): δ - 62.68.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{22}H_{19}ClF_3O_2S_2^+$: 471.0462; found: 471.0463.

(2-Chlorophenyl)(2-tosyl-1-(4-(trifluoromethyl)phenyl)ethyl)sulfane (4d). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S*-(2-chlorophenyl) 4-methylbenzenesulfonothioate (179.3 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product 4d was obtained as a white solid (114.4 mg, 81% yield); mp: 149~150 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.42 - 7.31 (m, 6H), 7.26 - 7.15 (m, 4H), 7.06 (d, *J* = 8.0 Hz, 2H), 4.82 (dd, *J* = 11.2, 3.2 Hz, 1H), 3.89 (dd, *J* = 14.4, 11.0 Hz, 1H), 3.64 (dd, *J* = 14.8, 3.2 Hz, 1H), 2.33 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 144.7, 140.9, 137.6, 135.8, 134.7, 131.1, 130.4, 129.9, 129.8 (q, *J* = 30.1 Hz), 129.6, 128.3, 127.8, 127.5, 125.4 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 271.7 Hz), 60.1, 45.6, 21.3.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -62.00.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{22}H_{19}ClF_3O_2S_2^+$: 471.0462; found: 471.0463.

2-((2-Tosyl-1-(4-(trifluoromethyl)phenyl)ethyl)thio)thiophene (4e). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S*-(thiophen-2-yl) 4-methylbenzenesulfonothioate (162.2 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **4e** was obtained as a purple solid (94.3 mg, 71% yield); mp: 149 ~ 150 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.41 (dd, *J* = 4.4, 2.4 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.05 (t, *J* = 7.3 Hz, 4H), 6.98 – 6.95 (m, 2H), 4.50 (dd, *J* = 10.8, 4.0 Hz, 1H), 3.83 (dd, *J* = 14.8, 10.8 Hz, 1H), 3.75 (dd, *J* = 14.7, 4.0 Hz, 1H), 2.33 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 144.7, 141.0, 137.1, 135.9, 132.1, 129.7 (q, *J* = 38.4 Hz), 129.5, 129.3, 128.3, 128.0, 127.8, 125.2 (q, *J* = 3.8 Hz), 123.8 (q, *J* = 260.0 Hz), 59.9, 49.4, 21.3.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -62.68.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{20}H_{18}F_3O_2S_3^+$: 437.0851; found: 427.0850.

(2-Tosyl-1-(4-(trifluoromethyl)phenyl)ethyl)(trifluoromethyl)sulfane (4f). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S*-(trifluoromethyl) 4-methylbenzenesulfonothioate (153.8 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **4f** was obtained as a white solid (70.7 mg, 55% yield); mp: 120 ~ 121 °C.

¹**H NMR** (600 MHz, CDCl₃): δ 7.44 – 7.42 (m, 4H), 7.27 – 7.26 (m, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 4.91 (dd, *J* = 10.5, 3.9 Hz, 1H), 3.90 (dd, *J* = 14.7, 10.5 Hz, 1H), 3.80 (dd, *J* = 15.0, 4.2 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 145.1, 140.1, 135.8, 130.6 (q, *J* = 50.9 Hz), 129.5, 128.4 (q, *J* = 295.0 Hz), 128.4, 128.2, 125.9 (q, *J* = 3.9 Hz), 123.6 (q, *J* = 248.7 Hz), 60.8, 43.1, 21.4.

¹⁹F NMR (376 MHz, CDCl₃): δ -39.85, -62.88.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{17}H_{15}F_6O_2S_2^+$: 429.0412; found: 429.0412.

Butyl(2-tosyl-1-(4-(trifluoromethyl)phenyl)ethyl)sulfane (4g). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S*-butyl 4-methylbenzenesulfonothioate (146.6 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on

silica gel (petroleum ether/ethyl acetate = 10:1), product **4g** was obtained as a white solid (55.2 mg, 45% yield); mp: $113 \sim 114$ °C.

¹**H NMR** (500 MHz, CDCl₃): δ 7.44 – 7.41 (m, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 4.35 (dd, *J* = 10.0, 4.0 Hz, 1H), 3.75 (dd, *J* = 15.0, 10.5 Hz, 1H), 3.66 (dd, *J* = 14.5, 4.0 Hz, 1H), 2.34 (s, 3H), 2.33 – 2.29 (m, 1H), 1.50 – 1.43 (m, 2H), 1.35 – 1.25 (m, 3H), 0.84 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 144.6, 143.0, 136.2, 129.7 (q, *J* = 32.5 Hz), 129.5, 128.2, 127.8, 125.3 (q, *J* = 3.7 Hz), 123.8 (q, *J* = 272.6 Hz), 61.0, 43.0, 31.2, 30.9, 21.8, 21.3, 13.5.

¹⁹**F NMR** (471 MHz, CDCl₃): δ -62.65.

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₂₄F₃O₂S₂⁺: 417.1164; found: 417.1165.

2-((2-Tosyl-1-(4-(trifluoromethyl)phenyl)ethyl)thio)thiophene (4h). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S*-phenyl benzenesulfonothioate (150.2 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product 4h was obtained as a white solid (92.5 mg, 73% yield); mp: 125 ~ 126 °C.

¹**H NMR** (600 MHz, CDCl₃): δ 7.53 - 7.50 (m, 2H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.32 - 7.25 (m, 7H), 7.15 (d, *J* = 8.4 Hz, 2H), 4.68 (dd, *J* = 10.8, 3.6 Hz, 1H), 3.83 (dd, *J* = 14.4, 10.8 Hz, 1H), 3.70 (dd, *J* = 15.0, 3.6 Hz, 1H).

¹³**C NMR** (151 MHz, CDCl₃): δ 141.5, 139.1, 133.6, 133.5, 131.8, 130.0 (q, *J* = 32.0 Hz), 129.4, 129.0, 128.8, 128.3, 127.8, 125.4 (q, *J* = 3.7 Hz), 123.8 (q, *J* = 271.9 Hz), 60.3, 47.1.

¹⁹**F NMR** (376 MHz, CDCl₃): δ - 62.79.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{21}H_{18}F_3O_2S_2^+$: 423.0695; found: 423.0695.

p-Tolyl(1-(4-(trifluoromethyl)phenyl)-2-((4-(trifluoromethyl)phenyl)sulfonyl)ethyl)sulfane (4i). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-(trifluoromethyl)benzenesulfonothioate (199.4 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **4i** was obtained as a purple solid (109.0 mg, 72% yield); mp: 112 ~ 113 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.59 (d, *J* = 7.6 Hz, 2H), 7.52 (d, *J* = 7.2 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 7.6 Hz, 2H), 7.10 (d, *J* = 5.6 Hz, 4H), 4.59 (d, *J* = 8.0 Hz, 1H), 3.89 - 3.80 (m, 1H), 3.72 (d, *J* = 15.2 Hz, 1H), 2.34 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 142.6, 141.2, 139.6, 135.2 (q, *J* = 33.0 Hz), 134.3, 130.2, 130.1 (q, *J* = 32.4 Hz), 128.4, 128.3, 127.8, 126.0 (q, *J* = 3.7 Hz), 125.4 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 129.0 Hz), 122.8 (q, *J* = 128.9 Hz), 60.3, 47.4, 21.2.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -62.91, -63.54.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{23}H_{18}F_6O_2S_2^+$: 505.0725; found: 505.0725.

(2-((4-(*tert*-Butyl)phenyl)sulfonyl)-1-(4-(trifluoromethyl)phenyl)ethyl)(*p*-tolyl)sulfane (4j). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-(*tert*-butyl)benzenesulfonothioate (192.3 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **4j** was obtained as a purple solid (115.0 mg, 78% yield); mp: 112~113 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.40 (d, *J* = 8.0 Hz, 2H), 7.30 (dd, *J* = 16.0, 8.0 Hz, 4H), 7.14 – 7.07 (m, 6H), 4.62 (dd, *J* = 11.2, 3.6 Hz, 1H), 3.82 (t, *J* = 12.4 Hz, 1H), 3.69 (d, *J* = 13.2 Hz, 1H), 2.33 (s, 3H), 1.27 (s, 9H).

¹³C NMR (150 MHz, CDCl₃): δ 157.6, 141.7, 139.2, 136.1, 134.1, 130.1, 129.8 (q, J = 32.6 Hz),
128.3, 128.1, 127.6 125.9, 125.3 (q, J = 3.8 Hz), 123.8 (q, J = 271.1 Hz), 60.2, 47.4, 35.1, 30.8, 21.2.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -62.44.

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₆H₂₈F₃O₂S₂⁺: 493.1477; found: 493.1476.

(2-(Butylsulfonyl)-1-(4-(trifluoromethyl)phenyl)ethyl)(*p*-tolyl)sulfane (4k). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S*-(*p*-tolyl) butane-1-sulfonothioate (144.6 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product 4k was obtained as a purple solid (103.7 mg, 83% yield); mp: 111~112 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.59 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.27 - 7.22 (m, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 4.69 (dd, *J* = 10.0, 4.4 Hz, 1H), 3.58 (dd, *J* = 14.6, 9.8 Hz, 1H), 3.46 (dd, *J* = 14.8, 4.4 Hz, 1H), 2.58 - 2.43 (m, 2H), 2.33 (s, 3H), 1.67 - 1.52 (m, 2H), 1.27 - 1.18 (m, 2H), 0.80 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 143.0, 139.4, 134.1, 130.3 (q, *J* =31.9 Hz), 130.2, 128.4, 128.2, 125.8 (q, *J* =3.8 Hz), 123.7 (q, *J* = 270.8 Hz), 57.6, 54.1, 47.4, 23.7, 21.5, 21.2, 13.3.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -62.72.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{20}H_{24}F_3O_2S_2^+$: 417.1164; found: 417.1166.

(2-(Ethylsulfonyl)-1-(4-(trifluoromethyl)phenyl)ethyl)(p-tolyl)sulfane (4l). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S*-(*p*-tolyl) ethanesulfonothioate (129.8 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **4l** was obtained as a purple solid (104.9 mg, 90% yield); mp: 114 ~ 115 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 4.70 (q, *J* = 4.5 Hz, 1H), 3.58 (dd, *J* = 14.8, 9.6 Hz, 1H), 3.48 (dd, *J* = 14.8, 4.6 Hz, 1H), 2.70 - 2.54 (m, 2H), 2.33 (s, 3H), 1.21 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 142.9, 139.3, 134.0, 130.4 (q, *J* = 33.6 Hz), 130.2, 128.3, 128.1, 125.8(q, *J* = 3.7 Hz), 123.8(q, *J* = 272.3 Hz), 56.8, 48.7, 47.2, 21.1, 6.3.

¹⁹**F** NMR (376 MHz, CDCl₃): δ - 62.64.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{18}H_{20}F_3O_2S_2^+$: 389.0851; found: 389.0852.

(2-(Methylsulfonyl)-1-(4-(trifluoromethyl)phenyl)ethyl)(*p*-tolyl)sulfane (4m). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S-p*-tolyl methanesulfonothioate (121.4 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate =10:1), product **4m** was obtained as a purple solid (92.1 mg, 82% yield); mp: 115~116 °C.

¹**H NMR** (600 MHz, CDCl₃): δ 7.60 (d, *J* = 8.1 Hz, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.23 (d, *J* = 7.8 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 4.68 (dd, *J* = 9.6, 4.8 Hz, 1H), 3.62 (dd, *J* = 14.4, 9.6 Hz, 1H), 3.55 (dd, *J* = 15.0, 4.7 Hz, 1H), 2.53 (s, 3H), 2.33 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 142.8, 139.5, 134.2, 130.6 (q, *J* = 32.6 Hz), 130.2, 128.4, 128.0, 125.9 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 273.6 Hz), 59.8, 47.5, 42.5, 21.2.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -62.66.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{17}H_{18}F_3O_2S_2^+$: 375.0695; found: 375.0695.

(2-(Cyclopropylsulfonyl)-1-(4-(trifluoromethyl)phenyl)ethyl)(*p*-tolyl)sulfane (4n). The title compound was synthesized according to the General Procedure from 1-(trifluoromethyl)-4-vinylbenzene (51.6 mg, 0.3 mmol), *S*-(p-tolyl) cyclopropanesulfonothioate (137.0 mg, 0.60 mmol, 2.0 equiv.), and

Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **4n** was obtained as a purple solid (90.1 mg, 75% yield); mp: $123\sim124$ °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 7.6 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 7.7 Hz, 2H), 7.11 (d, *J* = 7.6 Hz, 2H), 4.72 (dd, *J* = 10.0, 4.4 Hz, 1H), 3.69 (dd, *J* = 14.4, 10.0 Hz, 1H), 3.57 (dd, *J* = 14.8, 4.4 Hz, 1H), 2.34 (s, 3H), 1.89 - 1.85 (m, 1H), 1.09 (s, 2H), 0.78 (d, *J* = 8.0 Hz, 2H).

¹³**C NMR** (150 MHz, CDCl₃): δ 143.3, 139.3, 134.2, 130.5 (q, *J* = 36.2 Hz), 130.2, 128.5, 128.4, 125.7 (q, *J* = 3.8 Hz) 123.9 (q, *J* = 295.5 Hz), 58.9, 47.4, 31.1, 21.1, 5.3, 5.2.

¹⁹**F NMR** (376 MHz, CDCl₃): δ - 62.62.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₂₀F₃O₂S₂⁺: 461.0239; found:461.0239.

(4-Phenyl-1-tosylbutan-2-yl)(*p*-tolyl)sulfane (6a).⁷ The title compound was synthesized according to the General Procedure from but-3-en-1-ylbenzene (39.7 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6a** was obtained as a colorless oil (87.5 mg, 71% yield).

¹**H NMR** (400 MHz, CDCl₃): δ 7.34 (dd, *J* = 16.2, 7.8 Hz, 4H), 7.27 - 7.23 (m, 3H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.96 (dd, *J* = 13.2, 8.0 Hz, 4H), 3.32 - 3.19 (m, 2H), 3.15 - 3.10 (m, 1H), 2.97 - 2.90 (m, 1H), 2.86 - 2.78 (m, 1H), 2.54 - 2.45 (m, 1H), 2.42 (s, 3H), 2.30 (s, 3H), 1.89 - 1.74 (m, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 144.4, 140.8, 137.9, 135.5, 132.9, 129.8, 129.7, 128.8, 128.7, 128.4, 128.0, 126.1, 60.5, 42.1, 34.3, 32.4, 21.6, 21.1.

(4-Phenyl-1-((4-(trifluoromethyl)phenyl)sulfonyl)butan-2-yl)(*p*-tolyl)sulfane (6b). The title compound was synthesized according to the General Procedure from but-3-en-1-ylbenzene (39.7 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-(trifluoromethyl)benzenesulfonothioate (199.4 mg, 0.60 mmol, 2.0 equiv.), and

Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6b** was obtained as a white solid (101.7 mg, 73% yield); mp: $105\sim106$ °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.39 – 7.35 (m, 2H), 7.34 – 7.28 (m, 3H), 6.94 – 6.89 (m, 4H), 3.29 – 3.28 (m, 2H), 2.99 – 2.83 (m, 3H), 2.61 – 2.53 (m, 1H), 2.30 (s, 3H), 1.91 – 1.82 (m, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 141.4, 140.6, 138.4, 135.0 (q, *J* = 33.4 Hz), 133.3, 13.0, 129.0, 128.6, 128.6, 128.5, 126.3, 126.0 (q, *J* = 3.7 Hz), 123.1 (q, *J* = 274.5 Hz), 60.2, 42.3, 34.2, 32.4, 21.0.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -63.18.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{24}H_{24}F_3O_2S_2^+$:505.0725; found:505.0726.

(1-((4-(*tert*-Butyl)phenyl)sulfonyl)-4-phenylbutan-2-yl)(*p*-tolyl)sulfane (6c). The title compound was synthesized according to the General Procedure from but-3-en-1-ylbenzene (39.7 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-(tert-butyl)benzenesulfonothioate (192.3 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6c** was obtained as a colorless oil (104.6 mg, 77% yield).

¹**H NMR** (400 MHz, CDCl₃): δ 7.40 (dd, *J* = 18.8, 8.8 Hz, 4H), 7.33 – 7.30 (m, 2H), 7.23 (d, *J* = 6.8 Hz, 3H), 6.98 (s, 4H), 3.35 – 3.12 (m, 3H), 2.97 – 2.90 (m, 1H), 2.86 – 2.79 (m, 1H), 2.55 – 2.43 (m, 1H), 2.31 (s, 3H), 1.89 – 1.79 (m, 1H), 1.35 (s, 9H).

¹³**C NMR** (150 MHz, CDCl₃): δ 157.4, 140.9, 137.8, 132.7, 129.9, 129.0, 128.9, 128.8, 128.4 127.8, 126.1, 126.1, 60.4, 42.0, 35.2, 34.2, 32.4, 31.1, 21.1.

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₇H₃₃O₂S₂⁺: 453.1916; found:453.1917.

(4-Chlorophenyl)(4-phenyl-1-tosylbutan-2-yl)sulfane (6d). The title compound was synthesized according to the General Procedure from but-3-en-1-ylbenzene (39.7 mg, 0.3 mmol), *S*-(4-chlorophenyl) 4-methylbenzenesulfonothioate (179.3 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product 6d was obtained as a yellow solid (87.9 mg, 68% yield); mp: 87~88 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.37 - 7.23 (m, 7H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.09 - 7.05 (m, 2H), 6.97 - 6.92 (m, 2H), 3.30 - 3.19 (m, 2H), 3.16 - 3.09 (m, 1H), 2.97 - 2.91 (m, 1H), 2.86 - 2.78 (m, 1H), 2.59 - 2.51 (m, 1H), 2.43 (s, 3H), 1.91 - 1.82 (m, 1H).

¹³**C NMR** (150 MHz, CDCl₃): δ 144.7, 140.5, 135.2, 133.8, 133.5, 131.4, 129.7, 129.2, 128.8, 128.5, 128.0, 126.2, 60.4, 42.3, 34.4, 32.4, 21.6.

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₂₄ClO₂S₂⁺: 431.0901; found:431.0901.

(2-Chlorophenyl)(4-phenyl-1-tosylbutan-2-yl)sulfane (6e). The title compound was synthesized according to the General Procedure from but-3-en-1-ylbenzene (39.7 mg, 0.3 mmol), *S*-(2-chlorophenyl) 4-methylbenzenesulfonothioate (179.3 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $5:1\sim3:1$), product **6e** was obtained as a white solid (80.2 mg, 62% yield); mp: 83~84 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 8.4 Hz, 2H), 7.34 - 7.17 (m, 8H), 7.13 (td, *J* = 7.6, 1.6 Hz, 1H), 7.00 (td, *J* = 7.6, 1.6 Hz, 1H), 6.89 (dd, *J* = 8.0, 1.6 Hz, 1H), 3.44 (tt, *J* = 9.8, 2.8 Hz, 1H), 3.37 - 3.22 (m, 2H), 2.99 - 2.93 (m, 1H), 2.86 - 2.77 (m, 1H), 2.64 - 2.53 (m, 1H), 2.43 (s, 3H), 2.01 - 1.90 (m, 1H).

¹³**C NMR** (150 MHz, CDCl₃): δ 144.7, 140.6, 135.7, 135.5, 132.6, 131.5, 130.1, 129.8, 128.7, 128.4, 128.1, 127.9, 127.3, 126.1, 60.2, 40.3, 34.6, 32.4, 21.6.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{23}H_{24}ClO_2S_2^+$: 431.0901; found:431.0903.

Methyl(4-phenyl-1-tosylbutan-2-yl)sulfane (6f). The title compound was synthesized according to the General Procedure from but-3-en-1-ylbenzene (39.7 mg, 0.3 mmol), *S*-methyl 4-methylbenzenesulfonothioate (121.4 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6f** was obtained as a colorless oil (51.2 mg, 51% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.29 (dd, *J* = 8.0, 2.6 Hz, 4H), 7.22 (d, *J* = 7.2 Hz, 1H), 7.18 (d, *J* = 6.7 Hz, 2H), 3.42 – 3.28 (m, 2H), 2.89 – 2.81 (m, 2H), 2.75 – 2.68 (m, 1H), 2.44 (s, 3H), 2.32 – 2.23 (m, 1H), 1.95 (s, 3H), 1.88 – 1.79 (m, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 144.8, 141.0, 129.9, 129.0, 128.6, 128.4, 128.0, 126.0, 61.4, 40.1, 34.8, 32.5, 21.6, 13.1.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₂₂O₂S₂⁺: 334.1056; found: 334.1057.

(1-(Methylsulfonyl)-4-phenylbutan-2-yl)(*p*-tolyl)sulfane (6g). The title compound was synthesized according to the General Procedure from but-3-en-1-ylbenzene (39.7 mg, 0.3 mmol), *S*-*p*-tolyl methanesulfonothioate (121.4 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6g** was obtained as a colorless oil (64.2 mg, 64% yield).

¹**H NMR** (400 MHz, CDCl₃): δ 7.33 – 7.27 (m, 4H), 7.23 – 7.20 (m, 3H), 7.14 (d, J = 7.6 Hz, 2H), 3.52 – 3.46 (m, , 1H), 3.30 (dd, J = 14.4, 4.8 Hz, 1H), 3.18 – 3.12 (m, 1H), 3.01 – 2.93 (m, 1H), 2.88 – 2.83 (m, 1H), 2.80 (s, 3H), 2.39 – 2.20 (m, 1H), 2.34 (s, 3H), 1.98 – 1.89 (m, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 140.7, 138.6, 133.6, 130.2, 128.6, 128.5, 128.4, 126.2, 59.3, 42.8, 42.0, 35.3, 32.5, 21.1.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{18}H_{23}O_2S_2^+$: 335.1134; found: 335.1134.

p-Tolyl(1-tosylhexan-2-yl)sulfane (6h).⁷ The title compound was synthesized according to the General Procedure from hex-1-ene (25.2 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate

(167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6h** was obtained as a colorless oil (70.7 mg, 65% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.65 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 3.38 - 3.31 (m, 2H), 3.23 (dd, *J* = 14.4, 9.6 Hz, 1H), 2.45 (s, 3H), 2.32 (s, 3H), 2.07- 1.97 (m, 1H), 1.64 - 1.52 (m, 2H), 1.47 - 1.26 (m, 3H), 0.90 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 144.6, 137.8, 136.4, 132.9, 129.9, 129.8, 129.2, 127.9, 60.6, 43.1, 32.9, 28.6, 22.3, 21.6, 21.1, 13.9.

p-Tolyl(1-tosyldodecan-2-yl)sulfane (6i). The title compound was synthesized according to the General Procedure from dodec-1-ene (50.5 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate =20:1), product **6i** was obtained as a colorless oil (96.5 mg, 72% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.65 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 7.6 Hz, 2H), 3.35 – 3.31 (m, 2H), 3.23 (dd, *J* = 14.4, 9.6 Hz, 1H), 2.44 (s, 3H), 2.32 (s, 3H), 2.05 – 1.97 (m, 1H), 1.58 – 1.53 (m, 2H), 1.45 – 1.42 (m, 1H), 1.27 (s, 14H), 0.89 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 137.8, 136.4, 132.3, 129.8, 129.7, 129.2, 127.9, 127.5, 60.5, 43.2, 33.2, 31.9, 29.6, 29.5, 29.4, 29.3, 29.1, 26.4, 22.6, 21.6, 21.2, 14.1.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{26}H_{39}O_2S_2^+$: 447.2386; found: 447.2386.

p-Tolyl-2-tosylcyclopentyl)sulfane (6j).⁸ The title compound was synthesized according to the General Procedure from cyclopentene (20.4 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification

by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6j** was obtained as a colorless oil (62.4 mg, 60% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.99 (d, *J* = 7.6 Hz, 2H), 3.85 - 3.82 (m, 1H), 3.44 - 3.40 (m, 1H), 2.45 (s, 3H), 2.32 (s, 3H), 2.28 - 2.07 (m, 3H), 1.92 - 1.86 (m, 2H), 1.79 - 1.72 (m, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 144.4, 137.7, 135.2, 132.8, 130.1, 129.7, 129.6, 128.5, 69.6, 48.4, 33.3, 25.9, 24.5, 21.6, 21.1.

p-Tolyl(2-tosylcyclohexyl)sulfane (6k).⁸ The title compound was synthesized according to the General Procedure from cyclohexene (24.6 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6k** was obtained as a colorless oil (68.1 mg, 63% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.61 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 3H), 7.05 (dt, *J* = 8.0, 2.0 Hz, 2H), 6.98 (d, *J* = 8.0 Hz, 1H), 3.72 (q, *J* = 3.9 Hz, 1H), 3.07 – 3.04 (m, 1H), 2.46 (s, 3H), 2.41 – 2.39 (m, 1H), 2.32 (s, 3H), 2.19 – 2.10 (m, 1H), 2.08 – 2.03 (m, 1H), 1.97 – 1.88 (m, 1H), 1.80 – 1.75 (m, 1H), 1.65 – 1.52 (m, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 144.3, 137.4, 135.3, 132.1, 130.2, 129.8, 129.6, 128.5, 62.7, 43.1, 27.6, 21.6, 21.5, 21.3, 21.1, 20.9.

p-Tolyl(3-tosylbicyclo[2.2.1]heptan-2-yl)sulfane (6l).⁸ The title compound was synthesized according to the General Procedure from bicyclo[2.2.1]hept-2-ene (28.3 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6l** was obtained as a colorless oil (64.8 mg, 58% yield).
¹**H** NMR (500 MHz, CDCl₃): δ 7.77 (d, *J* = 8.5 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 3.72 – 3.69 (m, 1H), 2.82 (d, *J* = 4.5 Hz, 1H), 2.67 (dd, *J* = 6.5, 1.5 Hz, 1H), 2.44 (s, 3H), 2.34 – 2.32 (m, 1H), 2.31 (s, 3H), 2.13 – 2.07 (m, 1H), 2.00 – 1.97 (m, 1H), 1.69 – 1.62 (m, 1H), 1.45 – 1.38 (m, 2H), 1.24 – 1.19 (m, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 144.5, 137.4, 135.6, 132.4, 131.0, 129.7, 129.6, 128.6, 72.3, 51.9, 41.3, 39.4, 36.6, 29.4, 22.2, 21.6, 21.0.

(1-(3,4-Dimethoxyphenyl)-3-tosylpropan-2-yl)(*p*-tolyl)sulfane (6m).⁸ The title compound was synthesized according to the General Procedure from 4-allyl-1,2-dimethoxybenzene (53.5 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6m** was obtained as a colorless oil (93.2 mg, 68% yield).

¹**H** NMR (500 MHz, CDCl₃): δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.28 – 7.26 (m, 2H), 7.06 (d, *J* = 7.5 Hz, 2H), 6.99 (d, *J* = 9.0 Hz, 2H), 6.81 (s, 3H), 3.87 (s, 3H), 3.86 (s, 3H), 3.61 – 3.56 (m, 1H), 3.33 (dd, *J* = 14.6, 9.0 Hz, 1H), 3.26 (td, *J* = 14.5, 4.2 Hz, 2H), 2.97 (dd, *J* = 14.3, 7.8 Hz, 1H), 2.43 (s, 3H), 2.30 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 148.7, 147.8, 144.6, 137.8, 136.2, 132.7, 129.8, 129.7, 129.2, 127.8, 121.8, 112.8, 110.9, 58.8, 55.8, 44.4, 38.9, 21.5, 21.0.

(6-Chloro-1-tosylhexan-2-yl)(*p*-tolyl)sulfane (6n). The title compound was synthesized according to the General Procedure from 6-chlorohex-1-ene (35.6 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6n** was obtained as a colorless oil (66.7 mg, 56% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 3.53 (t, *J* = 6.2 Hz, 2H), 3.34 (dd, *J* = 14.8, 2.8Hz, 2H), 3.22 (dd, *J* = 14.8, 10.4 Hz, 1H), 2.44 (s, 3H), 2.32 (s, 3H), 2.09 - 2.04 (m, 1H), 1.81 - 1.73 (m, 3H), 1.62 - 1.57 (m, 2H).

¹³C NMR (150 MHz, CDCl₃): δ 144.7, 138.0, 136.2, 133.0, 129.9, 129.8, 128.7, 127.8, 60.4. 44.6, 42.9, 32.2, 32.0, 23.8, 21.6, 21.0.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{20}H_{26}ClO_2S_2^+$: 397.1057; found: 397.1057.

5-(*p***-Tolylthio**)-**6-tosylhexan-1-ol (60).** The title compound was synthesized according to the General Procedure from hex-5-en-1-ol (30.1 mg, 0.3 mmol), S-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **60** was obtained as a colorless oil (69.2 mg, 61% yield).

¹**H** NMR (600 MHz, CDCl₃): δ 7.64 (d, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 5.4 Hz, 2H), 7.10 (d, *J* = 7.8 Hz, 2H), 7.01 (d, *J* = 8.4 Hz, 2H), 3.64 – 3.62 (m, 2H), 3.38 – 3.31 (m, 2H), 3.25 (dd, *J* = 14.4, 9.6 Hz, 1H), 2.43 (s, 3H), 2.31 (s, 3H), 2.22 – 2.13 (m, 1H), 2.08 – 2.03 (m, 1H), 1.71 – 1.52 (m, 5H).

¹³C NMR (150 MHz, CDCl₃): δ 144.6, 137.8, 136.0, 132.8, 129.7, 129.6, 128.8, 127.7, 62.1, 60.2, 42.9, 32.6, 31.9, 22.4, 21.5, 20.9.

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₂₇O₃S₂⁺: 379.1396; found: 379.1397.

Methyl 10-(*p*-tolylthio)-11-tosylundecanoate (6p). The title compound was synthesized according to the General Procedure from methyl undec-10-enoate (59.5 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $5:1\sim3:1$), product **6p** was obtained as a colorless oil (105.8 mg, 74% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.65 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 7.6 Hz, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 3.67 (s, 3H), 3.38 – 3.30 (m, 2H), 3.22 (dd, *J* = 14.4, 10.0 Hz, 1H), 2.45 (s, 3H), 2.33 (s, 3H), 2.30 (d, *J* = 7.6 Hz, 2H), 2.06 – 1.98 (m, 1H), 1.65 – 1.52 (m, 4H), 1.43 (br, 1H), 1.29 (s, 8H).

¹³C NMR (150 MHz, CDCl₃): δ 174.3, 144.6, 137.8, 136.4, 132.9, 129.9, 129.8, 129.2, 127.9, 60.5, 51.4, 43.1, 34.1, 33.1, 29.2, 29.1, 29.0, 26.4, 24.9, 21.6, 21.1.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{26}H_{37}O_4S_2^+$: 477.2128; found:477.2129.

5-(*p***-Tolylthio**)-**6-tosylhexyl palmitate (6q).** The title compound was synthesized according to the General Procedure from hex-5-en-1-yl palmitate (101.6 mg, 0.3 mmol), *S*-(*p*-tolyl) 4- methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6q** was obtained as a colorless oil (127.7 mg, 69% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.65 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 4.07 (t, *J* = 6.0 Hz, 2H), 3.37 - 3.34 (m, 1H), 3.31 (d, *J* = 2.8 Hz, 1H), 3.21 (dd, *J* = 14.4, 10.0 Hz, 1H), 2.45 (s, 3H), 2.33 (s, 3H), 2.30 (d, *J* = 7.6 Hz, 1H), 2.11 - 2.05 (m, 1H), 1.71 - 1.57 (m, 7H), 1.29 - 1.25 (m, 25H), 0.89 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 173.9, 144.7, 138.0, 136.4, 133.0, 129.9, 129.8, 128.9, 127.9, 63.9, 60.5, 43.0, 34.4, 32.8, 31.9, 29.7, 29.7, 29.6, 29.6, 29.5, 29.3, 29.3, 29.2, 28.2, 25.0, 23.0, 22.7, 21.6, 21.1, 14.1.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{36}H_{57}O_4S_2^+$: 617.3693; found:617.3694.

5-(*p***-Tolylthio**)-**6-tosylhexyl 4-**([**1**,**1'-biphenyl**]-**4-**y**l**)-**4-**oxobutanoate (**6r**). The title compound was synthesized according to the General Procedure from hex-5-en-1-yl 4-([1,1'-biphenyl]-4-yl)-4-oxobutanoate (100.9 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol,

2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6r** was obtained as a colorless oil (103.3 mg, 56% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 8.06 (t, *J* = 1.2 Hz, 1H), 8.05 (t, *J* = 1.2 Hz, 1H), 7.68 – 7.63 (m, 4H), 7.62 – 7.60 (m, 2H), 7.47 – 7.44 (m, 2H), 7.41 – 7.38 (m, 1H), 7.29 (dd, *J* = 5.6, 0.4 Hz, 2H), 7.12 – 7.10 (m, 2H), 7.02 (dd, *J* = 5.6, 0.4 Hz, 2H), 4.13 – 4.11 (m, 2H), 3.36 (t, *J* = 4.6 Hz, 3H), 3.32 (dd, *J* = 9.6 2.0 Hz, 1H), 3.22 (dd, *J* = 9.6, 6.8 Hz, 1H), 2.81 (t, *J* = 4.4 Hz, 2H), 2.44 (s, 3H), 2.32 (s, 3H), 2.10 – 2.05 (m, 1H), 1.71 – 1.66 (m, 2H), 1.63 – 1.61 (m, 2H), 1.56 – 1.53 (m, 1H).

¹³**C NMR** (150 MHz, CDCl₃): δ 197.7, 172.9, 145.8, 144.7, 139.8, 138.0, 136.4, 135.3, 133.0, 129.9, 129.8, 128.9, 128.6, 128.2, 127.9, 127.2, 64.4, 60.5, 43.0, 33.5, 32.8, 28.4, 28.2, 23.0, 21.6, 21.1.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₆H₃₉O₅S₂⁺: 615.2233; found:615.2234.

5-(*p***-Tolylthio**)-**6-tosylhexyl 4-**(*N*,*N***-diethylsulfamoyl**)**benzoate** (**6s**). The title compound was synthesized according to the General Procedure from hex-5-en-1-yl 4-(*N*,*N*-diethylsulfamoyl)benzoate (101.8 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (61.2 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), product **6s** was obtained as a yellow oil (96.9 mg, 50% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 8.18 (d, *J* = 8.8 Hz, 2H), 7.88 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.11 (dd, *J* = 6.4, 2.0 Hz, 2H), 7.03 (d, *J* = 7.6 Hz, 2H), 4.37 (t, *J* = 5.8 Hz, 2H), 3.45 – 3.39 (m, 1H), 3.35 (dd, *J* = 14.4, 2.8 Hz, 1H), 3.23 (dd, *J* = 14.4, 10.0 Hz, 1H), 3.12 – 3.08 (m, 4H), 2.45 (s, 3H), 2.33 (s, 3H), 2.20 – 2.14 (m, 1H), 1.86 – 1.79 (m, 3H), 1.71 – 1.65 (m, 2H), 1.58 – 1.50 (m, 4H), 0.87 (t, *J* = 7.4 Hz, 6H).

¹³**C NMR** (150 MHz, CDCl₃): δ 165.2, 144.8, 144.2, 138.1, 136.4, 133.7, 132.9, 130.2, 130.0, 129.9, 128.8, 127.9, 127.0, 65.3, 60.5, 49.9, 42.9, 32.8, 28.2, 23.1, 21.9, 21.6, 21.1, 11.1.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₃H₄₅NO₆S₃⁺: 646.2325; found: 646.2325.

(*E*)-3-(Phenyl(*p*-tolylthio)methylene)-2-(tosylmethyl)-2,3-dihydrobenzofuran (8a). The title compound was synthesized according to the General Procedure from 1-(phenylethynyl)-2-(vinyloxy)benzene (66.1 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $5:1\sim3:1$), product 8a was obtained as a colorless oil (127.2 mg, 85% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.21 – 7.15 (m, 5H), 7.07 – 6.98 (m, 3H), 6.92 (d, *J* = 8.4 Hz, 2H), 6.62 (d, *J* = 8.0 Hz, 1H), 6.52 (t, *J* = 7.6 Hz, 1H), 6.24 (d, *J* = 7.6 Hz, 1H), 6.03 (d, *J* = 9.2 Hz, 1H), 4.04 (dt, *J* = 14.8, 1.4 Hz, 1H), 3.61 (dd, *J* = 14.8, 9.6 Hz, 1H), 2.43 (s, 3H), 2.21 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 162.7, 144.3, 137.9, 137.6, 137.4, 136.8, 132.2, 130.9, 129.5, 129.4, 128.9, 128.8, 128.76, 128.75, 128.1, 128.0, 126.1, 124.6, 121.2, 110.8, 79.6, 58.9, 21.6, 21.0.

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₀H₂₇O₃S₂⁺: 499.1396; found:499.1396.

(*E*)-3-(((4-Fluorophenyl)thio)(phenyl)methylene)-2-(tosylmethyl)-2,3-dihydrobenzofuran (8b). The title compound was synthesized according to the General Procedure from 1-(phenylethynyl)-2-(vinyloxy)benzene (66.1 mg, 0.3 mmol), *S*-(4-fluorophenyl) 4-methylbenzenesulfonothioate (169.4 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **8b** was obtained as a colorless oil (126.7 mg, 84% yield).

¹**H NMR** (400 MHz, CDCl₃): δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.22 (s, 3H), 7.15 - 7.10 (m, 4H), 7.03 (t, *J* = 7.2 Hz, 1H), 6.81 (t, *J* = 8.8 Hz, 2H), 6.60 (d, *J* = 8.0 Hz, 1H), 6.52 (t, *J* = 7.4

Hz, 1H), 6.22 (d, *J* = 7.6 Hz, 1H), 6.06 (dd, *J* = 9.6, 2.0 Hz, 1H), 4.00 (dd, *J* = 14.6, 2.2 Hz, 1H), 3.63 (dd, *J* = 14.8, 9.2 Hz, 1H), 2.44 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 162.5, 162.4 (d, *J* = 249.2 Hz), 144.6, 137.3 (d, *J* = 157.0 Hz), 137.2, 134.6, 134.5, 130.5, 129.6, 129.4, 128.6, 128.5, 128.3, 127.7, 126.9 (d, *J* = 3.0 Hz), 123.7, 123.6, 120.9, 115.9 (d, *J* = 22.7 Hz), 111.0, 80.4, 59.9, 21.6.

¹⁹**F NMR** (376 MHz, CDCl₃): δ -113.04 - -113.13 (m).

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₉H₂₄FO₃S₂⁺: 503.1145; found:503.1146.

(*E*)-3-(((4-Chlorophenyl)thio)(phenyl)methylene)-2-(tosylmethyl)-2,3-dihydrobenzofuran (8c). The title compound was synthesized according to the General Procedure from 1-(phenylethynyl)-2-(vinyloxy)benzene (66.1 mg, 0.3 mmol), *S*-(4-chlorophenyl) 4-methylbenzenesulfonothioate (179.3 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **8c** was obtained as a colorless oil (138.6 mg, 89% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.25 – 7.19 (m, 5H), 7.12 – 7.03 (m, 5H), 6.61 (d, *J* = 8.0 Hz, 1H), 6.54 (t, *J* = 7.6 Hz, 1H), 6.30 (dd, *J* = 8.0, 1.3 Hz, 1H), 6.03 (dd, *J* = 9.4, 1.8 Hz, 1H), 3.96 (dd, *J* = 14.8, 2.0 Hz, 1H), 3.63 (dd, *J* = 14.8, 9.6 Hz, 1H), 2.44 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 162.7, 144.6, 139.6, 137.1, 136.9, 133.6, 132.8, 130.8, 130.7, 129.6, 129.4, 128.9, 128.6, 128.5, 128.4, 126.5, 123.7, 123.6, 121.0, 111.1, 80.6, 60.0, 21.6.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{29}H_{24}ClO_3S_2^+$: 519.0850; found: 519.0850.

(*E*)-3-((Methylthio)(phenyl)methylene)-2-(tosylmethyl)-2,3-dihydrobenzofuran (8d). The title compound was synthesized according to the General Procedure from 1-(phenylethynyl)-2-

(vinyloxy)benzene (66.1 mg, 0.3 mmol), S-methyl 4-methylbenzenesulfonothioate (121.4 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **8d** was obtained as a colorless oil (95.1 mg, 75% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.47 - 7.39 (m, 3H), 7.36 (d, *J* = 8.4 Hz, 3H), 7.27 (br, 1H), 6.98 (t, *J* = 7.2 Hz, 1H), 6.56 (d, *J* = 7.2 Hz, 1H), 6.49 (t, *J* = 7.6 Hz, 2H), 6.08 (d, *J* = 9.2 Hz, 1H), 5.95 (d, *J* = 9.6 Hz, 1H), 3.96 (dd, *J* = 14.8, 2.0 Hz, 1H), 3.49 (dd, *J* = 14.6, 9.8 Hz, 1H), 2.47 (s, 3H), 1.88 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 162.0, 144.5, 137.3, 136.3, 134.3, 129.7, 129.6, 129.5, 129.4, 129.2, 129.1, 128.5, 124.1, 123.1, 120.8, 110.8, 80.1, 59.2, 21.7, 15.2.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{24}H_{23}O_3S_2^+$: 445.0903; found: 445.0903.

(*E*)-2-(((4-Fluorophenyl)sulfonyl)methyl)-3-(((4-fluorophenyl)thio)(phenyl)methylene)-2,3dihydrobenzofuran (8e). The title compound was synthesized according to the General Procedure from 1-(phenylethynyl)-2-(vinyloxy)benzene (66.1 mg, 0.3 mmol), *S*-(4-fluorophenyl) 4fluorobenzenesulfonothioate (161.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **8e** was obtained as a white solid (130.7 mg, 86% yield); mp: 153~154 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 8.05 – 7.98 (m, 2H), 7.23 – 7.20 (m, 5H), 7.16 – 7.11 (m, 4H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.82 (t, *J* = 8.8 Hz, 2H), 6.55 - 6.51 (m, 2H), 6.22 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.07 (dd, *J* = 9.4, 1.8 Hz, 1H), 4.03 (dd, *J* = 14.8, 2.0 Hz, 1H), 3.65 (dd, *J* = 14.8, 9.6 Hz, 1H).

¹³**C NMR** (150 MHz, CDCl₃): δ 165.8 (d, *J* = 256.7 Hz), 162.5 (d, *J* = 249.2 Hz), 162.3, 137.0 (d, *J* = 99.7 Hz), 136.3 (d, *J* = 3.0 Hz), 134.7, 134.6, 131.4 (d, *J* = 10.6 Hz), 130.6, 129.4, 128.6, 128.4, 128.1, 126.7 (d, *J* = 4.53 Hz), 123.7, 123.6, 121.2, 116.2 (d, *J* = 36.2 Hz), 116.0 (d, *J* = 34.7 Hz), 110.8, 80.4, 59.9.

¹⁹**F NMR** (376 MHz, CDCl3): δ -103.62 - -103.69 (m), -112.87--112.94 (m).

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₈H₂₁F₂O₃S₂⁺: 475.0096; found:475.0098.

(E)-2-(((4-(tert-Butyl)phenyl)sulfonyl)methyl)-3-(phenyl(p-tolylthio)methylene)-2,3-

dihydrobenzofuran (8f). The title compound was synthesized according to the General Procedure from 1-(phenylethynyl)-2-(vinyloxy)benzene (66.1 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-(*tert*-butyl)benzenesulfonothioate (192.3 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **8f** was obtained as a colorless oil (146.0 mg, 90% yield).

¹**H NMR** (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.8 Hz, 2H), 7.54 (d, *J* = 8.8 Hz, 2H), 7.22 - 7.17 (m, 5H), 7.04 - 6.98 (m, 3H), 6.92 (d, *J* = 7.6 Hz, 2H), 6.57 (d, J = 8.0 Hz, 1H), 6.53 - 6.49 (m, 1H), 6.23 (dd, *J* = 8.0, 0.8 Hz, 1H), 6.03 (dd, *J* = 9.6, 2.0 Hz, 1H), 4.03 (dd, *J* = 14.6, 1.8 Hz, 1H), 3.62 (dd, *J* = 14.4, 9.6 Hz, 1H), 2.22 (s, 3H), 1.33 (s, 9H).

¹³**C NMR** (150 MHz, CDCl₃): δ 162.6, 157.5, 138.1, 137.7, 137.3, 137.0, 132.1, 130.4, 129.5, 129.4, 128.5, 128.3, 128.2, 128.1, 128.0, 126.0, 123.9, 123.6, 120.8, 110.9, 80.5, 59.9, 35.2, 31.1, 21.0.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{33}H_{33}O_3S_2^+$: 541.1866; found: 541.1867.

(*E*)-2-((Ethylsulfonyl)methyl)-3-(phenyl(*p*-tolylthio)methylene)-2,3-dihydrobenzofuran (8g). The title compound was synthesized according to the General Procedure from 1-(phenylethynyl)-2-(vinyloxy)benzene (66.1 mg, 0.3 mmol), *S*-(*p*-tolyl) ethanesulfonothioate (129.8 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **8g** was obtained as a colorless oil (111.3 mg, 85% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.25 (d, *J* = 8.8 Hz, 5H), 7.11 (dd, *J* = 20.4, 8.4 Hz, 3H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.86 (d, *J* = 8.0 Hz, 1H), 6.59 (t, *J* = 8.0 Hz, 1H), 6.29 (d, *J* = 7.6 Hz, 1H), 6.14 (dd, *J* = 10.0, 2.0 Hz, 1H), 3.88 (dt, *J* = 15.2, 1.6 Hz, 1H), 3.47 (dd, *J* = 14.8, 10.0 Hz, 1H), 3.39 - 3.19 (m, 2H), 2.22 (s, 3H), 1.43 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 162.2, 137.9, 137.2, 137.0, 132.5, 130.5, 129.6, 129.5, 129.1, 128.5, 128.2, 128.0, 124.1, 123.9, 121.3, 110.8, 80.8, 55.5, 49.5, 21.0, 6.7.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{25}H_{25}O_3S_2^+$: 437.1240; found:437.1239.

(Z)-3-((4-(tert-Butyl)phenyl)(methylthio)methylene)-2-((methylsulfonyl)methyl)-2,3-

dihydrobenzofuran (8h). The title compound was synthesized according to the General Procedure from 1-((4-(tert-butyl)phenyl)ethynyl)-2-(vinyloxy)benzene (82.9 mg, 0.3 mmol), S-methyl methanesulfonothioate (75.7 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product**8h**was obtained as a colorless oil (102.7 mg, 85% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 8.26 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.50 – 7.47 (m, 2H), 7.28 – 7.25 (m, 3H), 7.23 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.03 (td, *J* = 7.6, 1.2 Hz, 1H), 6.87 (d, *J* = 7.2 Hz, 1H), 5.76 (dd, *J* = 10.4, 1.6 Hz, 1H), 3.06 (dd, *J* = 14.8, 10.4 Hz, 1H), 2.79 (s, 3H), 1.95 (s, 3H), 1.34 (s, 9H).

¹³**C NMR** (150 MHz, CDCl₃): δ 161.8, 152.1, 133.5, 132.4, 131.8, 130.1, 128.5, 126.5, 126.2, 125.0, 121.4, 110.3, 80.0, 58.1, 42.5, 34.8, 31.2, 15.4.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{22}H_{27}O_3S_2^+$: 403.1396; found:403.1395.

(Z)-3-((4-(tert-Butyl)phenyl)(p-tolylthio)methylene)-2-(tosylmethyl)-2,3-dihydrobenzofuran

(8i). The title compound was synthesized according to the General Procedure from 1-((4-(tert-

butyl)phenyl)ethynyl)-2-(vinyloxy)benzene (82.9 mg, 0.3 mmol), *S*-(*p*-tolyl) 4methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **8i** was obtained as a white solid (141.5 mg, 85% yield); mp: 153-154 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 8.39 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.26-7.17 (m, 5H), 7.10-7.05 (m, 4H), 6.94 (t, *J* = 8.0 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 2H), 6.68 (d, *J* = 8.0 Hz, 1H), 5.91 (dd, *J* = 10.0, 2.0 Hz, 1H), 3.16 (dd, *J* = 14.8, 10.0 Hz, 1H), 3.02 (dd, *J* = 14.4, 2.0 Hz, 1H), 2.43 (s, 3H), 2.20 (s, 3H), 1.29 (s, 9H).

¹³C NMR (150 MHz, CDCl₃): δ 162.7, 151.2, 144.3, 137.6, 137.1, 137.0, 136.5, 135.1, 131.8, 130.8, 129.4, 129.3, 129.2, 128.5, 128.2, 126.1, 125.6, 124.7, 121.1, 110.7, 79.7, 58.7, 34.6, 31.2, 21.6, 21.0.

HRMS (ESI): m/z $[M+H]^+$ calcd for $C_{34}H_{35}O_3S_2^+$: 555.2022; found:555.2022.

(*E*)-3-(*p*-tolyl(*p*-tolylthio)methylene)-2-(tosylmethyl)-2,3-dihydrobenzofuran (8j). The title compound was synthesized according to the General Procedure from 1-(*p*-tolylethynyl)-2-(vinyloxy)benzene (70.3 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **8j** was obtained as a colorless oil (118.4 mg, 77% yield).

¹**H** NMR (400 MHz, CDCl₃): δ 7.86 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.09 - 6.99 (m, 7H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.62 (d, *J* = 8.4 Hz, 1H), 6.54 (t, *J* = 7.6 Hz, 1H), 6.33 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.00 (dd, *J* = 9.6, 2.0 Hz, 1H), 4.03 (dd, *J* = 14.8, 2.0 Hz, 1H), 3.60 (dd, *J* = 14.8, 9.6 Hz, 1H), 2.43 (s, 3H), 2.29 (s, 3H), 2.23 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 162.6, 144.5, 138.5, 138.0, 137.3, 137.2, 134.3, 131.5, 130.4, 129.6, 129.5, 129.2, 129.1, 128.8, 128.5, 127.9, 124.0, 123.7, 120.8, 110.9, 80.6, 60.0, 21.6, 21.3, 21.0.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{31}H_{29}O_3S_2^+$: 513.1553; found:513.1534.

(*E*)-2-((Phenylsulfonyl)methyl)-3-((phenylthio)(*p*-tolyl)methylene)-2,3-dihydrobenzofuran (8k).⁹ The title compound was synthesized according to the General Procedure from 1-(*p*-tolylethynyl)-2-(vinyloxy)benzene (70.3 mg, 0.3 mmol), *S*-(*p*-tolyl) benzenesulfonothioate (158.6 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product 8k was obtained as a white solid (138.1 mg, 95% yield); mp: 152-153 °C.

¹**H NMR** (400 MHz, CDCl₃): δ 7.97 (d, *J* = 7.2 Hz, 2H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 2H), 7.13 (br, 7H), 7.03 (t, *J* = 6.0 Hz, 3H), 6.55 (t, *J* = 7.6 Hz, 2H), 6.38 (d, *J* = 9.6 Hz, 1H), 6.03 (dd, *J* = 9.6, 2.0 Hz, 1H), 4.04 (dd, *J* = 14.8, 2.0 Hz, 1H), 3.63 (dd, *J* = 14.8, 9.6 Hz, 1H), 2.28 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 162.6, 140.2, 139.1, 138.2, 134.2, 133.5, 132.5, 131.2, 130.5, 129.3, 129.2, 128.9, 128.8, 128.4, 127.3, 127.2, 123.8, 123.7, 120.9, 110.9, 80.6, 59.9, 21.3.

(*E*)-3-((4-Chlorophenyl)(*p*-tolylthio)methylene)-2-(tosylmethyl)-2,3-dihydrobenzofuran (81). The title compound was synthesized according to the General Procedure from 1-((4-chlorophenyl)ethynyl)-2-(vinyloxy)benzene (76.4 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **81** was obtained as a white solid (132.7 mg, 83% yield); mp: 189-190 °C.

¹**H** NMR (600 MHz, CDCl₃): δ 7.85 (d, *J* = 7.8 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 7.8 Hz, 2H), 7.14 (br, 2H), 7.06 (t, *J* = 7.8 Hz, 1H), 7.00 (d, *J* = 7.8 Hz, 2H), 6.95 (d, *J* = 7.8 Hz, 2H), 6.62 (d, *J* = 8.4 Hz, 1H), 6.57 (t, *J* = 7.8 Hz, 1H), 6.31 (dd, *J* = 7.8, 1.8 Hz, 1H), 6.02 (dd, *J* = 9.3, 2.1 Hz, 1H), 4.00 (dd, *J* = 14.7, 2.1 Hz, 1H), 3.62 (dd, *J* = 14.7, 9.3 Hz, 1H), 2.43 (s, 3H), 2.42 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 162.7, 144.6, 138.9, 137.9, 137.2, 135.8, 134.0, 132.0, 130.8, 130.7, 129.7, 129.6, 128.8, 128.5, 128.1, 126.5, 123.6, 123.5, 121.0, 111.2, 80.6, 59.9, 21.6, 21.1.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{30}H_{26}ClO_3S_2^+$:498.1318; found:498.1320.

(*E*)-2-((Methylsulfonyl)methyl)-3-((methylthio)(phenyl)methylene)-1-tosylindoline (8m). The title compound was synthesized according to the General Procedure from 4-methyl-*N*-(2-(phenylethynyl)phenyl)-*N*-vinylbenzenesulfonamide (112.0 mg, 0.3 mmol), *S*-methyl methanesulfonothioate (75.7 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **8l** was obtained as a yellow solid (109.3 mg, 70% yield); mp: 111-112 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.26 – 7.20 (m, 3H), 7.18 – 7.13 (m, 2H), 6.89 (s, 3H), 6.78 (td, *J* = 7.6, 1.2 Hz, 1H), 6.08 (d, *J* = 6.4 Hz, 1H), 5.64 (dd, *J* = 7.6, 2.8 Hz, 1H), 3.69 (dd, *J* = 15.4, 7.8 Hz, 1H), 3.57 (dd, *J* = 15.4, 1.8 Hz, 1H), 3.25 (s, 3H), 2.45 (s, 3H), 2.22 (s, 3H).

¹³**C NMR** (150 MHz, CDCl₃): δ 144.6, 143.7, 138.0, 136.1, 133.8, 133.0, 132.5, 131.3, 129.7, 129.4, 129.2, 128.3, 127.9, 126.1, 124.0, 119.9, 63.5, 58.8, 43.0, 21.6, 21.1.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{25}H_{26}NO_4S_2^+$: 500.1018; found: 500.1018.

(*E*)-3-(Phenyl(*p*-tolylthio)methylene)-1-tosyl-2-(tosylmethyl)indoline (8n)⁹. The title compound was synthesized according to the General Procedure from 4-methyl-*N*-(2-(phenylethynyl)phenyl)-*N*-vinylbenzenesulfonamide (112.0 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **8n** was obtained as a yellow solid (132.7 mg, 88% yield, E/Z > 20:1); mp: 90-91 °C.

¹**H** NMR (400 MHz, CDCl₃): δ 7.66 (d, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.26 – 7.24 (m, 4H), 7.16 (d, *J* = 8.0 Hz, 3H), 7.09 – 7.05 (m, 1H), 6.90 (s, 3H), 6.71 – 6.70 (m, 1H), 6.07 (d, *J* = 6.8 Hz, 1H), 5.47 (dd, *J* = 6.0, 3.2 Hz, 1H), 4.14 (dd, *J* = 15.2, 6.0 Hz, 1H), 3.99 (dd, *J* = 15.2, 3.2 Hz, 1H), 2.43 (s, 3H), 2.39 (s, 3H), 2.21 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 144.2, 140.8, 137.8, 137.1, 136.6, 134.5, 133.5, 132.5, 131.2, 130.6, 129.6, 129.4, 129.3, 129.0, 128.2, 128.1, 127.8, 127.4, 127.2, 125.0, 123.8, 118.5, 63.2, 58.9, 21.6, 21.5, 21.1.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{25}H_{26}NO_4S_2^+$: 652.1644; found: 652.1644.

2-Methyl-3-(phenyl(p-tolylthio)methylene)-2-(tosylmethyl)-2,3-dihydro-1H-

benzo[d]pyrrolo[1,2-a]imidazole (80). The title compound was synthesized according to the General Procedure from 1-(2-methylallyl)-2-(phenylethynyl)-1H-benzo[d]imidazole (81.7 mg, 0.3 mmol), *S*-(*p*-tolyl) 4-methylbenzenesulfonothioate (167.0 mg, 0.60 mmol, 2.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (7.86 mg, 3.0 mol%). After purification by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), product **80** was obtained as a pink solid (140.4 mg, 85% yield, E/Z = 1.4:1); mp: 155-156 °C.

¹**H** NMR (600 MHz, CDCl₃): δ 7.97 – 7.96 (m, 0.43H), 7.75 (d, *J* = 8.3 Hz, 1H), 7.48 (d, *J* = 8.4 Hz 0.45H) 7.45 (d, *J* = 8.2 Hz, 1.13H), 7.36 – 7.34 (m, 0.81H), 7.31 – 7.26 (m, 4.42H), 7.23 (d, *J* = 8.0 Hz, 1.22H), 7.19 – 7.11 (m, 2.77H), 7.09 – 7.06 (m, 2.39H), 7.01 (d, *J* = 8.0 Hz, 1.24H), 7.01 (d, *J* = 6.2 Hz, 1.01H), 6.88 (d, *J* = 7.9 Hz, 1.16H), 5.00 (d, *J* = 10.8 Hz, 0.48H), 4.81 (d, *J* = 11.1 Hz, 0.67H), 4.44 (d, *J* = 14.4Hz, 0.46H) 4.14 – 4.07 (m, 1.60H), 3.26 – 3.16 (m, 1.22H), 2.42 (s, 1H), 2.41 (s, 1.6H), 2.19 (s, 1.2H), 2.17 (s, 1.63H), 2.02 (s, 1.22H), 1.39 (s, 1.70H).

¹³C NMR (150 MHz, CDCl₃): δ 155.1(149.2), 148.6, 144.9(144.6), 143.28, 139.77, 138.59, 137.9(137.7), 136.7(136.6), 134.9, 132.5, 131.8(131.7), 130.4(130.3), 130.0(129.8), 129.4(128.9), 128.1(128.0), 127.8(127.7), 127.5, 127.3, 126.8, 125.0, 122.9(122.6), 122.4(122.2), 120.9(120.8), 109.6(109.3), 63.5(61.5), 53.6(53.3), 50.4(50.3), 26.7(26.3), 21.6(21.5), 21.1(21.0).

HRMS (ESI): m/z [M+H]⁺ calcd for C₃₃H₃₁N₂O₂S₂⁺: 551.1821; found: 551.1821.

6. Mechanistic Studies.

6.1 Radical Inhibition Experiment.

Alkene **1a** (0.30 mmol), thiosulfonate **2a** (0.6 mmol, 2.0 equiv.), TEMPO (140.6 mg, 0.9 mmol, 3.0 equiv.), and Cu(BINAP)(MeCN)PF₆ (3.0 mol%) was sequentially added in a dry Schlenk tube equipped with a magnetic stirrer bar. The tube was capped with a rubber septum, and then it was evacuated and backfilled with nitrogen (3 cycles). *N*, *N*-dimethylacetamide (DMA) (6.0 mL) was added via syringe, and the resulting mixture was degassed via three freeze-pump-thaw cycles. Under efficient stirring, the reaction mixture was then irradiated by 40-watt blue-LED lamps (427nm) with fan at rt for 24 h. After irradiation, the reaction mixture was rapidly extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The mixture was analyzed by ¹H NMR and ESI-HRMS. The reaction was inhibited to varying degrees, with the target product obtained in yields of 20%. Trapping product (**Figure S2**) were detected by ESI-HRMS.

Figure S2

6.2 Radical capture experiment.

Acrylamide **8** (0.30 mmol), thiosulfonate **2a** (0.6 mmol, 2.0 equiv.) and Cu(BINAP)(MeCN)PF₆ (3.0 mol%) were successively added to a dry Schlenk tube equipped with a magnetic stirring rod. The tube is covered with a rubber diaphragm, then vacuumed and backfilled with nitrogen (3 cycles). *N*,*N*-dimethylacetamide (DMA) (6.0 mL) was added through a syringe and the resulting mixture was degassed through three freeze-pump-thawing cycles. Under high efficiency agitation, the reaction mixture was irradiated at room temperature for 24 h with a 40 W blue led lamp (427 nm) and a fan. After irradiation, the reaction mixture was rapidly extracted with ethyl acetate for 3 times. The bonded organic layer is washed with salt water, dried on anhydrous sodium sulfate, and concentrated under reduced pressure. The product was analyzed by ¹H NMR and **9** with a yield of 45% was obtained.¹⁰ (*E*)-*N*-(2-tosylvinyl)benzamide. White solid (40.7 mg, 45% yield), m.p. 105–107 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.02 (d, *J* = 10.8 Hz, 1H), 8.11 (dd, *J* = 13.7, 10.8 Hz, 1H), 7.85 (d, *J* = 5.6 Hz, 2H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.30 – 7.24 (m, 2H), 6.46 (d, *J* = 13.7 Hz, 1H), 2.40 (s, 3H).

6.3 Radical capture experiment.

Scrambling experiment between thiosulfonates 2a and 2l.

Thiosulfonate **2a** (0.1 mmol), **2l** (0.1 mmol) and Cu(BINAP)(MeCN)PF₆ (3.0 mol%) were successively added to a dry Schlenk tube equipped with a magnetic stirring rod. The tube is covered with a rubber diaphragm, then vacuumed and backfilled with nitrogen (3 cycles). *N*,*N*-dimethylacetamide (DMA) (2.0 mL) was added through a syringe and degassed through three freezer pump-thawing cycles. Under the condition of high efficiency stirring, the reaction mixture was irradiated at room temperature for 24 h with a 40 W blue led lamp (427 nm) and a fan. After irradiation, the reaction mixture was

extracted with ethyl acetate for 3 times. The composite organic layer was washed with brine, dried with anhydrous sodium sulfate, concentrated under reduced pressure, and directly analyzed by ¹H NMR. No cross products are detected.

Scrambling experiment between thiosulfonates 2a and disulfide 11.

Thiosulfonate **2a** (0.3 mmol, 1 equiv.), disulfide (0.3 mmol, 1 equiv.) and Cu(BINAP)(MeCN)PF₆ (3.0 mol%) were successively added to a dry Schlenk tube equipped with a magnetic stirring rod. The tube is covered with a rubber diaphragm, then vacuumed and backfilled with nitrogen (3 cycles). *N*,*N*-dimethylacetamide (DMA) (2.0 mL) was added through a syringe and degassed through three freezer pump-thawing cycles. Under the condition of high efficiency stirring, the reaction mixture was irradiated at room temperature for 24 h with a 40 W blue led lamp (427 nm) and a fan. After irradiation, the reaction mixture was extracted with ethyl acetate for 3 times. The composite organic layer was washed with brine, dried with anhydrous sodium sulfate, concentrated under reduced pressure, and purified with petroleum ether/ethyl acetate as eluent was separated on silica gel by flash column chromatography, which was directly analyzed by ¹H NMR. No cross product is detected.

Scrambling experiment between thiosulfonates 2a, disulfide 11, alkene 1f and 5a.

Alkene **1f** (0.30 mmol), **5a** (0.30 mmol), thiosulfonate **2a** (0.9 mmol, 3 equiv.), disulfide **11** (0.9 mmol, 3 equiv.), and Cu(BINAP)(MeCN)PF₆ (3.0 mol%) were successively added to a dry Schlenk tube equipped with a magnetic stirring rod. The tube is covered with a rubber diaphragm, then vacuumed and backfilled with nitrogen (3 cycles). *N*,*N*-dimethylacetamide (DMA) (6.0 mL) was added through a

syringe and degassed through three freezer pump-thawing cycles. Under the condition of high efficiency stirring, the reaction mixture was irradiated at room temperature for 24 h with a 40 W blue led lamp (427 nm) and a fan. After irradiation, the reaction mixture was extracted with ethyl acetate for 3 times. The composite organic layer was washed with brine, dried with anhydrous sodium sulfate, concentrated under reduced pressure, and purified with petroleum ether/ethyl acetate as eluent was separated on silica gel by flash column chromatography, which was directly analyzed by ¹H NMR. No cross products are detected. **6.4 UV-Vis absorption spectra.**

Figure S3. UV-Vis absorption spectra of 1a, 2a, pc and their combination.

The below reactants were added sequentially in graduated test tube and the added DMA solution was fixed to the graduated line to obtain a series of mixtures at a concentration of 1×10^{-4} M. The UV-visible absorption spectra were determined using a 1 cm cuvette in a UV-2800A spectrophotometer and the spectral data were recorded from 260~800 nm (**Figure S3**).

The results show that only solutions of the complex $Cu(MeCN)(BINAP)PF_6$ and solutions containing the complex show significant absorption in the blue range in the visible region, whereas the other substrates and their mixtures show no absorption in the visible region.

Figure S4. Determination of the resting state of Cu complex by UV-vis spectroscopy. After 24 h under standard reaction conditions, the *d*-*d* transition of Cu(II) between 500-800 nm was not distinctly observed when compared to the UV-Vis spectra of the pre-reaction system. Additionally, High-resolution mass spectrometry detected a signal at m/z = 849, it is predicted that the resting state of the Cu complex may BINAP-Cu^I(S-4-ToI)(MeCN) (**Figure S5**).

Figure S5

Note: 1a: Alkene, 2a: Thiosulfonate, pc: catalyst Cu(MeCN)(BINAP)PF₆.

6.6 Fluorescence Quenching Experiments.

Luminescence quenching experiments have been carried out in order to clarify the interaction between the excited state complex Cu(MeCN)(BINAP)PF₆ and substrates **1a** and **2a**.

Experimental methods: 0.3 mL of Cu(MeCN)(BINAP)PF₆ solution at a concentration of 10⁻⁴ mol/L

was taken in a cuvette, followed by the addition of a gradient volume of substrate 1a or 2a (10⁻⁴ mol/L), and then the volume of the solution was allowed to Constant volume to 3.0 mL to obtain samples to be tested at different concentration gradients. **Note**: No filters were used in any of the tests.

Fluorescence emission spectra were collected using HITACHI F-4500 for all experiments. All solutions were excited at $\lambda = 290$ nm, the slit width was set to 10 nm, and the sampling (scanning) interval was set to 10 nm. The emission spectra were recorded at wavelengths ranging from 560 to 600 nm, with the maximum emission peak at $\lambda = 575$ nm. (Figure S6 and Figure S7).

The results show that the fluorescence intensity of the catalyst decreases with the increase of substrate concentration 2a, and the Stern-Volmer constant is $1.011uM^{-1}$, while the fluorescence of the catalyst is almost unaffected by the alkenes concentration (1a), with a Stern-Volmer constant of $0.080uM^{-1}$. According to the Stern-Volmer constant, the fluorescence of the excited catalyst cannot be quenched by alkenes (1a), but can be quenched by thiosulfonates (2a).

Figure S6. (a) complex Cu(MeCN)(BINAP)PF₆ emission quenching by 1a; (b) Stern-Volmer plots.

Figure S7. (a) complex Cu(MeCN)(BINAP)PF₆ emission quenching by 2a; (b) Stern-Volmer plots.

6.7 Cyclic Voltammetry Experiments.

Cyclic voltammograms (CVs) were performed on a CHI760E electrochemistry workstation. Regular 3-electrode systems were used. Measurements were recorded in a DMA solution of Bu₄NPF₆ (0.1 M) at a scan rate of 100 mV/s under the protection of N₂ at room temperature using a glassy carbon disk (d = 0.5 cm) as a working electrode and a platinum wire as a counter electrode. An Ag/AgCl (3 M KCl) electrode was used as a reference electrode in all the experiments, and its potential (0.59 V vs. Fc⁺/Fc) was calibrated with the ferrocenium/ferrocene (Fc⁺/Fc) redox couple (**Figure S8**).

According to the emission spectrum of the catalyst, the triplet state energy corresponding to the maximum emission wavelength of 575 nm is 2.16 eV, and combined with the redox potential of its ground state, $E^{0}1/2(Cu^{II}/Cu^{I}) = -0.22 V$ (vs Ag/AgCl in DMA), the estimated redox potential of the catalyst in the excited state is $Eox(Cu^{II}/Cu^{I*}) = E^{0}1/2(Cu^{II}/Cu^{I}) - ET = -0.22 - 2.16 = -2.38 V$ (vs. Ag/AgCl in DMA).¹⁰ The above estimates indicate that the catalyst in the excited state exhibits good reducing power and has the ability to reduce the thiosulfonate to sulfonyl radicals (**Figure S9~S11**)¹¹.

Figure S8. CV of ferrocenium [peak potential E_p (Fc+/Fc) = 0.59 V] in DMA.

Figure S9. CV of [(BINAP)Cu(MeCN)][PF₆] $E^{0}_{1/2}$ (Cu^{II}/Cu^I) = (1.52-1.96)/2 = -0.22 V (vs Ag/AgCl in DMA).

Figure S10. CV of thiosulfonate (2a) $E_p^{0/-1}(1a) = -1.15 \text{ V}$ (vs Ag/AgCl in DMA). E = -1.58 V (1,2-

Figure S11. CV of sodium 4-vinylbiphenyl (1a) $E_p^{ox}(1a) = 1.68 V$ (vs Ag/AgCl in DMA).

7. DFT computational study for 1,7-thiosulfonylation.

7.1 Computational details.

All the calculations were performed using the Gaussian 09 programs. All of the structures were fully optimized with the B3LYP method and 6-31+G(d) basis set. Grimmes's DFT-D3 dispersion correction was used to describe the van der waals interaction. The solvation energy corrections calculated at the M052x/6-31G(d) level with the SMD solvation model for DMA minus electronic energy in gas phase. The thermal correction to Gibbs free energy calculated by B3LYP/6-31+G(d) at 273.15K in gas phase. The B3LYP/6-31+G(d) calculated imaginary frequencies for the transition states in gas phase. The Single point energy calculated by B3LYP –D3/6-311++G(d,p) level of theory. Vibrational frequency calculations were performed to ensure that a transition state has only one imaginary frequency and a local minimum has no imaginary frequency. Transition states connecting relevant minima were further examined by running intrinsic reaction coordinate (IRC) calculations.

Geometry E(B3LYP-G3/ G(corr-solv)^[b] G(corr-ther)^[c] IF^[d] 6-311++G(d,p)^[a] 1 -692.3043814 -0.0151539 0.183664 2 -819.6923353 -0.0133161 0.088368 1-a-ts -1511.999392 -0.0325102 0.291449 -238.11 1-a-ts-P -1512.002719 -0.0342351 0.293190 1-b-ts -1512.000310 -0.0288755 0.292272 -271.12 1-b-ts-P -1512.009902 -0.0278676 0.294724 -173.23 1-c-ts -1511.989758 -0.0319797 0.292376 1-c-ts-P -1511.990628 -0.0324088 0.292506

7.2 B3LYP absolute calculation energies (Hartree), energy corrections (Hartree), and imaginary frequency (cm-1)

^[a]The single point energy calculated at the B3LYP-G3/6-311++G(d,p) level. ^[b]The solvation energy corrections calculated at the M052x/6-31G(d) level with the SMD solvation model for DMA minus electronic energy in the gas phase. ^[c]The thermal correction to Gibbs free energy calculated by B3LYP/6-31+G(d) at 273.15K in the gas phase. ^[d]The B3LYP/6-31+G(d) calculated imaginary frequencies for the transition states in the gas phase.

7.3 Free energy profiles for the reaction pathways

Figure S12. Computed free energy profiles for the three tentative reaction pathways at the B3LYP-

G3/6-311++G(d,p)//SMD(DMSO)-M052x/631G(d)//B3LYP/6-31+G(d) level. The relative free energies are given in kcal/mol. The preferred pathway is shown in blue.

Density functional theory (DFT) calculations were used to study the reaction mechanisms. The detailed information for the reaction mechanism is shown in Figure S10. Reactions of compound 7 with sulfonyl radical **A** resulted in the generation of products **Pa**, **Pb**, and **Pc** via the transition states **1-a-ts**, **1-b-ts**, and **1-c-ts** with an energy barrier of only 15.0/10.2/8.0 kcal/mol, respectively. From a thermodynamic perspective, the reaction pathway leading to product **Pa** through transition state **1-a-ts** is the most favorable, aligning with the experimental results.

7.4 Cartesian coordinates

B3LYP/6-31+G(d) geometries for all the optimized compounds and transition states

7

	Х	У	Z
С	3.94678200	0.26013300	-0.26483100
С	2.56076000	0.40136700	-0.20183400
С	1.72567200	-0.72282000	0.00001800
С	2.34497000	-1.98097400	0.17158900
С	3.72882300	-2.11854100	0.11912900
С	4.53325500	-0.99606400	-0.10719100
Н	4.54820200	1.14757500	-0.43734800
Н	1.71142300	-2.84852500	0.33069300
Н	4.17895600	-3.09894500	0.24774400
Н	5.61418500	-1.09589700	-0.15526900
С	0.30599400	-0.61616000	-0.00147000
С	-0.90965200	-0.55117300	-0.01248100
С	-2.33129700	-0.44025900	-0.03167500
С	-2.94311200	0.81484600	-0.23388100
С	-3.14656400	-1.57677500	0.14928400
С	-4.33253200	0.92376200	-0.25465000
Н	-2.31705600	1.69124500	-0.37348800
С	-4.53527900	-1.45738300	0.12757800
Н	-2.68007300	-2.54526500	0.30479000
С	-5.13348700	-0.20905600	-0.07414200
Н	-4.79231000	1.89604100	-0.41254500
Н	-5.15268300	-2.34097300	0.26787700
Н	-6.21656000	-0.11977700	-0.09108800

0	2.04941200	1.66378300	-0.42484500
С	1.26412500	2.24577300	0.54377400
С	0.69250100	3.43486200	0.35179700
Η	0.79988200	3.97631800	-0.58292800
Η	0.10744900	3.88129500	1.14772900
Η	1.17754100	1.67742000	1.46649300

A

	Х	У	Z
С	0.31748000	-1.21952200	-0.08058100
С	-0.36268200	0.00000800	-0.09055700
С	0.31736500	1.21950300	-0.08067300
С	1.71082000	1.20667300	-0.01984800
С	2.42847000	0.00012200	0.01275400
С	1.71083800	-1.20654500	-0.01972500
Η	-0.23279000	-2.15473200	-0.09831800
Η	2.24872600	2.15157700	0.00304700
Η	2.24888400	-2.15138000	0.00333400
Η	-0.23284100	2.15475800	-0.09841900
С	3.93558600	-0.00005100	0.10811600
Н	4.25879000	-0.00581300	1.15789800
Η	4.36809300	-0.88442800	-0.37154500
Η	4.36772100	0.88965200	-0.36185900
S	-2.16962300	0.00001100	-0.23999500
0	-2.66627600	1.30295900	0.28943800
0	-2.66620800	-1.30307600	0.28917000

1-a-ts

	Х	У	Z
С	0.55608300	3.03170200	0.09674300
С	1.39081100	1.91496700	0.09664400
С	2.79667600	2.03426200	0.12983700
С	3.33876300	3.33564300	0.18025100
С	2.51363700	4.45784800	0.19777600
С	1.12362300	4.30669500	0.15384500
Η	-0.51865700	2.89517500	0.00990200
Η	4.41868300	3.44471100	0.20871400
Η	2.95474400	5.44996100	0.23631300
Η	0.47647300	5.17933600	0.14469100
С	3.63816800	0.88711500	0.12128400
С	4.37815200	-0.07957600	0.11752400

С	5.23304700	-1.22080200	0.10871800
С	4.69172900	-2.51853500	-0.00605600
С	6.63197200	-1.07299400	0.21347500
С	5.52911100	-3.63268900	-0.01478700
Н	3.61549100	-2.63689100	-0.08998400
С	7.46172100	-2.19301400	0.20390000
Н	7.05451500	-0.07628300	0.30123300
С	6.91528700	-3.47569100	0.09017000
Н	5.09904900	-4.62693000	-0.10510200
Н	8.53809600	-2.06474700	0.28493000
Н	7.56519300	-4.34679900	0.08240600
0	0.86514100	0.63482900	0.00155000
С	-0.19549800	0.30922300	0.77600200
С	-1.05903200	-0.70340200	0.36480900
Н	-0.70488600	-1.39839800	-0.39373400
Н	-1.70699600	-1.12646600	1.12884300
С	-4.76638100	-1.55147000	-0.89389700
С	-4.24394800	-0.38426000	-0.33175700
С	-4.89899000	0.26479200	0.71830600
С	-6.09893700	-0.26150300	1.19738100
С	-6.64983400	-1.43251100	0.65203000
С	-5.96819600	-2.06220600	-0.40101500
Н	-4.25396700	-2.03121100	-1.72223100
Н	-6.62115800	0.25191800	2.00194300
Н	-6.38710600	-2.96061500	-0.84896400
Н	-4.48912400	1.18303800	1.12777200
С	-7.93455800	-2.00890300	1.19967100
Н	-8.62047300	-1.21977700	1.52678700
Н	-8.45081400	-2.62005800	0.45191300
Н	-7.73748400	-2.65075000	2.06911200
S	-2.65221800	0.24351400	-0.91446100
0	-2.60644800	1.69633700	-0.59344400
0	-2.47282000	-0.22582400	-2.31343500
Н	-0.38351400	0.94769400	1.63435500

Pa

	Х	У	Z
С	1.10049700	-3.51913700	-0.02964400
С	1.62090700	-2.22606400	-0.09395100
С	2.98954900	-1.97176800	0.15061900
С	3.81895800	-3.07183200	0.45117500

С	3.30803200	-4.36656600	0.50276700
С	1.94784800	-4.58904900	0.26465500
Η	0.03630700	-3.67943700	-0.17160500
Н	4.87247000	-2.88731800	0.63857500
Н	3.96665200	-5.19856100	0.73535300
Н	1.53738600	-5.59331800	0.32331900
С	3.51857900	-0.65250700	0.08896800
С	3.99853200	0.46537000	0.04065600
С	4.54890200	1.77939400	-0.01855800
С	3.73032700	2.88512900	-0.33133700
С	5.91947400	1.99795000	0.23425600
С	4.27067300	4.16864400	-0.38885900
Η	2.67441000	2.72223200	-0.52602100
С	6.45132600	3.28507100	0.17481900
Η	6.55504500	1.15107700	0.47617100
С	5.63121400	4.37467100	-0.13656900
Η	3.62824500	5.01150200	-0.63104100
Η	7.50921400	3.43858100	0.37222400
Η	6.04918500	5.37692500	-0.18207500
0	0.82125600	-1.13055400	-0.34522400
С	-0.20106400	-1.22929400	-1.23571100
С	-1.32998800	-0.32435000	-1.05197500
Η	-1.05006800	0.59102400	-0.52258100
Η	-1.83561700	-0.09266000	-1.99387100
С	-3.94550800	1.07269600	1.14622900
С	-3.98048200	0.13952100	0.10633300
С	-4.97757500	0.18854200	-0.87131800
С	-5.94774900	1.18900000	-0.80100200
С	-5.93854500	2.13985400	0.23161900
С	-4.92416700	2.06531400	1.19962100
Н	-3.17580100	1.00611600	1.90924900
Η	-6.72908000	1.22630000	-1.55683700
Н	-4.90351500	2.78938100	2.01109500
Н	-5.00246800	-0.55833200	-1.65906400
С	-7.01400900	3.19711200	0.31976600
Η	-7.85180300	2.85043600	0.93980700
Н	-6.63388200	4.11955100	0.77181200
Η	-7.41811800	3.44224800	-0.66814800
S	-2.69691400	-1.11720000	0.00473300
0	-3.22253200	-2.25227500	-0.78376900

0	-2.15288500	-1.33481600	1.35931900
Н	-0.21902200	-2.08560700	-1.90005400

1-b-ts

	Х	У	Z
С	-4.71851500	-0.80525200	-0.77875900
С	-3.39431100	-0.38613700	-0.86265500
С	-2.89163700	0.62530300	-0.00319300
С	-3.78224200	1.19396200	0.94725200
С	-5.09849400	0.76503300	1.03385000
С	-5.57036100	-0.23496400	0.17042000
Н	-5.07436600	-1.57426400	-1.45728800
Н	-3.40459400	1.96584800	1.61024400
Н	-5.76233500	1.20593300	1.77197200
Н	-6.60385700	-0.56491800	0.22987000
С	-1.56849500	1.07435800	-0.09839500
С	-0.36027500	1.38292800	0.01981500
С	0.72765700	2.19735700	-0.50033100
С	1.40907500	3.11644400	0.31771700
С	1.09400100	2.07537700	-1.85432600
С	2.42797900	3.90592400	-0.21728800
Н	1.14179200	3.19973400	1.36595300
С	2.11470400	2.86730900	-2.37979400
Н	0.56918800	1.36204800	-2.48311400
С	2.78441200	3.78490600	-1.56397200
Н	2.94439200	4.61785000	0.42143900
Н	2.38680000	2.76755500	-3.42751000
Н	3.57909900	4.40186500	-1.97559500
0	-2.55769200	-0.86893700	-1.85053600
С	-2.22572800	-2.20377600	-1.89289700
С	-2.40398900	-3.12154700	-0.94008700
Н	-2.86031700	-2.90284700	0.01920600
Н	-2.07296200	-4.13739400	-1.12710600
С	1.40798900	-2.14228700	0.34021800
С	1.77168800	-0.96651500	1.00113500
С	3.10124700	-0.54242600	1.04633900
С	4.08137700	-1.32808300	0.43857900
С	3.75179600	-2.52215500	-0.22098100
С	2.40337000	-2.91208200	-0.26173700
Н	0.36804400	-2.45240000	0.30905700
Н	5.11995900	-1.00699200	0.47962500

Н	2.12747200	-3.83425700	-0.76894500
Н	3.36095100	0.37605300	1.56250700
С	4.82460000	-3.38273000	-0.84648900
Н	4.44619900	-3.92468500	-1.72013500
Н	5.68542300	-2.78414500	-1.16328800
Н	5.19181600	-4.13154200	-0.13148000
S	0.48204200	0.06692100	1.73497400
0	1.13925600	0.95618400	2.73352600
Н	-1.75017400	-2.41862200	-2.84450000
0	-0.63409900	-0.82240200	2.14238300

Pb

	Х	У	Z
С	4.57984100	-0.89556300	0.85610300
С	3.24229000	-0.53109200	0.79930500
С	2.78167000	0.45565800	-0.12714200
С	3.75407200	1.04776100	-0.99565300
С	5.08359400	0.66753400	-0.93558000
С	5.50553400	-0.30403100	-0.01162100
Н	4.89350800	-1.64108500	1.58047600
Н	3.41990000	1.79579600	-1.70740300
Н	5.80318300	1.12462900	-1.60911700
Н	6.55121500	-0.59341100	0.03959400
С	1.46200900	0.85231000	-0.16209500
С	0.21321800	1.12861500	-0.39475000
С	-0.63046400	2.11111700	0.34026700
С	-1.39936600	3.08097700	-0.32501300
С	-0.62728700	2.08554400	1.74609400
С	-2.14615300	4.00587800	0.40838900
Н	-1.40717600	3.10730900	-1.40918400
С	-1.37498200	3.01276400	2.47278600
Н	-0.03695200	1.33204500	2.26015700
С	-2.13793000	3.97594800	1.80589700
Н	-2.73203800	4.75593200	-0.11700300
Н	-1.36346100	2.98019000	3.55935500
Н	-2.72088000	4.69861600	2.37130100
0	2.32335100	-1.03053400	1.70502100
С	2.02458300	-2.37351600	1.72858400
С	2.34128700	-3.29970500	0.82083900
Η	2.90762000	-3.08255900	-0.07817000
Н	2.01530900	-4.32133200	0.98326200

С	-1.49242700	-2.06116900	-0.34575600
С	-1.84896100	-0.84907700	-0.94292000
С	-3.16446800	-0.38363700	-0.90216900
С	-4.13433500	-1.15063100	-0.25505300
С	-3.80895300	-2.37314900	0.35133300
С	-2.47593500	-2.81213400	0.29679500
Н	-0.46604000	-2.41207200	-0.39207100
Н	-5.16096700	-0.79263500	-0.22410200
Н	-2.20427000	-3.75892200	0.75869400
Н	-3.42243900	0.55516700	-1.38095600
С	-4.87202900	-3.21384000	1.01882100
Н	-4.46478100	-3.77892200	1.86438900
Н	-5.69871700	-2.59713900	1.38720000
Н	-5.29489900	-3.94162100	0.31301400
S	-0.58423100	0.12942900	-1.76747500
0	-1.26571700	1.07329900	-2.67827600
Н	1.44407300	-2.58928400	2.61991200
0	0.44694800	-0.78913300	-2.27980900

1-c-ts

	Х	У	Z
С	-0.53456400	-3.68652100	-0.58546600
С	-1.04790500	-2.39312300	-0.56024700
С	-2.27107700	-2.09821300	0.08247700
С	-2.94365100	-3.15660200	0.73061200
С	-2.42793900	-4.44959300	0.71704400
С	-1.22573500	-4.71715700	0.05390100
Н	0.41064200	-3.85921100	-1.08927500
Н	-3.88303200	-2.94256700	1.23156300
Н	-2.96520500	-5.24867900	1.22032800
Н	-0.81867200	-5.72435400	0.04121000
С	-2.83400800	-0.78996000	0.06304800
С	-3.33852100	0.31832800	0.04964200
С	-3.92663400	1.61763000	0.02289100
С	-3.40078500	2.62414800	-0.81416200
С	-5.04377900	1.91767800	0.83013700
С	-3.97857700	3.89239500	-0.83930300
Н	-2.54364200	2.39599000	-1.44106500
С	-5.61494500	3.18886000	0.79835000
Η	-5.45316200	1.14676800	1.47643900
С	-5.08597200	4.18049500	-0.03450000

Η	-3.56485700	4.65821900	-1.49049600
Н	-6.47582100	3.40641200	1.42533400
Н	-5.53437400	5.17025700	-0.05721500
0	-0.36492700	-1.41078400	-1.27097300
С	0.22963700	-0.37208000	-0.58062300
С	0.53267900	0.75575400	-1.40238100
Н	0.57947400	0.64070200	-2.47975100
Н	0.85537800	1.68586200	-0.95049800
С	4.05908800	0.40722200	-0.90984000
С	3.26494000	0.13563400	0.20681200
С	3.36298300	0.90706700	1.36644600
С	4.27277900	1.96537800	1.40142300
С	5.08527500	2.26247900	0.29632000
С	4.96312300	1.46832400	-0.85550100
Н	3.98044800	-0.21557700	-1.79545600
Н	4.35689400	2.56475100	2.30523900
Н	5.58874700	1.67887300	-1.72021600
Н	2.75131100	0.66815400	2.23109600
С	6.09278200	3.38675800	0.35519600
Н	5.79057100	4.15996300	1.06941400
Н	7.07590300	3.01341500	0.67234100
Н	6.22458500	3.85938100	-0.62423200
S	2.05929100	-1.20587400	0.13744700
0	1.80319400	-1.64069700	1.53384200
0	2.52864100	-2.17038300	-0.88599000
Н	-0.19426800	-0.17887000	0.40739900

Pc

	Х	У	Z
С	0.39945900	3.96204000	-0.15450800
С	0.86803000	2.65745000	-0.29128700
С	1.95616400	2.18984600	0.48091600
С	2.52506200	3.07532200	1.42356600
С	2.05004000	4.37493100	1.56749000
С	0.98967600	4.82214000	0.77101200
Н	-0.44011700	4.27700100	-0.76439800
Н	3.35867000	2.72309400	2.02391000
Н	2.50825500	5.03954100	2.29468100
Н	0.61299700	5.83564400	0.87763400
С	2.50297000	0.88515500	0.31114800
С	3.00627500	-0.21644200	0.18202200

С	3.59698100	-1.50493600	0.01977200
С	3.29295900	-2.29610500	-1.10794700
С	4.49804400	-2.00786900	0.98156000
С	3.87467600	-3.55315100	-1.26426400
Н	2.60445400	-1.90985900	-1.85383600
С	5.07512800	-3.26606400	0.81673300
Н	4.73718200	-1.40295300	1.85137300
С	4.76640700	-4.04356100	-0.30441300
Н	3.63372400	-4.15125400	-2.13942900
Н	5.76856100	-3.64085600	1.56523700
Н	5.21902300	-5.02362000	-0.43021800
0	0.29812600	1.87290400	-1.28428200
С	-0.34653300	0.67758300	-0.93623500
С	-0.20485100	-0.33520300	-1.97275700
Н	-0.02929300	-0.02416000	-2.99609100
Н	-0.45848500	-1.36712600	-1.76002800
С	-3.59510600	-1.26693100	-0.89528700
С	-2.99969400	-0.33066900	-0.04725100
С	-2.96120000	-0.53339100	1.33534100
С	-3.52132900	-1.69495100	1.86650800
С	-4.12576500	-2.65503300	1.03865000
С	-4.15311200	-2.42199300	-0.34495900
Н	-3.63439000	-1.08037700	-1.96397800
Н	-3.49582500	-1.85427200	2.94225100
Н	-4.62333300	-3.15038600	-1.00175800
Н	-2.51787200	0.21701200	1.98310600
С	-4.75968600	-3.89217500	1.63007600
Н	-4.18329600	-4.26981000	2.48186800
Н	-5.77345400	-3.67566000	1.99296100
Н	-4.84039200	-4.69499400	0.88993600
S	-2.25178600	1.15274700	-0.74474900
0	-2.31954500	2.21931800	0.27768900
0	-2.81937500	1.36001800	-2.09168500
Н	-0.09905500	0.33521800	0.07366100

8. Late-stage modification

8.1 Experimental procedure for synthesis of 13.

According to the literature method¹², **3a** (170.0 mg, 0.37 mmol) was added to CH₂Cl₂ (4 mL) solution containing *m*-CPBA (0.75 mmol, 2 equiv.) and the resulting reaction mixture was stirred at room temperature for 24 h. Subsequently, the reaction was detected with a TLC plate until **3a** was completely consumed. The reaction mixture was concentrated under reduced pressure and extracted with dichloromethane (3×10 mL). The combined organic layer was washed with salt water, dried with anhydrous sodium sulfate, concentrated under reduced pressure, and the crude product was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 3:1) to afford the pure product 4-(1,2-ditosylethyl)-1,1'-biphenyl (**13**). White solid (154.3 mg, 85% yield), m.p.141–142 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.54 – 7.34 (m, 9H), 7.27 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 2H), 7.01 (dd, *J* = 29.6, 7.9 Hz, 4H), 4.62 (dd, *J* = 11.9, 2.5 Hz, 1H), 4.12 (dd, *J* = 14.6, 2.5 Hz, 1H), 3.99 (dd, *J* = 14.5, 11.9 Hz, 1H), 2.40 (s, 3H), 2.26 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃): δ 145.4, 144.7, 141.9, 140.0, 136.1, 133.0, 130.3, 129.6, 129.5, 129.2, 128.9, 128.1, 127.9, 127.8, 126.9, 126.8, 66.1, 54.1, 21.7, 21.5. **HRMS** (ESI): m/z [M+H]⁺ calcd for C₂₈H₂₇O4S₂⁺: 491.1736; found: 491.1736.

8.2 Experimental procedure for synthesis of 14.

According to the literature method¹³, **3a** (91.63 mg, 0.2 mmol) was added to MeOH (3 mL) solution containing TMSCl (2 mmol). Then the solution was cooled to 0 °C, Aqueous 30% H₂O₂ (25 equiv.) were added and the mixture was stirred at room temperature for 12 h. Subsequently, the reaction was detected

with a TLC plate until 3a was completely consumed. the reaction mixture was quenched by adding H₂O (10 mL), concentrated under reduced pressure and extracted with dichloromethane (3×10 mL). The combined organic layer was washed with salt water, dried with anhydrous sodium sulfate, concentrated under reduced pressure, and the crude product was purified by column chromatography on silica gel (petroleum ether: ethyl acetate = 7:1) to afford the pure product. (*E*)-4-(2-tosylvinyl)-1,1'-biphenyl (14). White solid (58.6 mg, 88% yield), m.p.100–101 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 8.4 Hz, 2H), 7.69 (d, *J* = 15.6 Hz, 1H), 7.63 – 7.58 (m, 4H), 7.55 (d, *J* = 8.4 Hz, 2H), 7.45 (t, *J* = 8.0 Hz, 2H), 7.40 – 7.34 (m, 3H), 6.88 (d, *J* = 15.2 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 144.4, 143.9, 141.5, 139.8, 137.8, 131.4, 123.0, 129.0, 128.9, 128.1, 127.7, 127.7, 127.4, 127.1, 21.6.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{21}H_{19}O_2S^+$: 335.1153; found: 335.1152.

8.3 Experimental procedure for synthesis of 15.

AlCl₃ (2 mmol) was added into Et₂O (2 mL) solution containing **3a** (91.63 mg, 0.2 mmol). Then the solution was cooled to 0 °C, LiAlH₄ (2 equiv.) was added, stirred at room temperature for 4 h, and the reaction was tested with TLC plate. The reaction mixture was quenched with NaOH (1 M), concentrated under reduced pressure, and extracted with ethyl acetate (3×10 mL). The organic layer was washed with salt water, dried with anhydrous sodium sulfate, concentrated under reduced pressure, and the crude product was purified on silica gel (petroleum ether: ethyl acetate = 5:1) by column chromatography to obtain the pure product **15** as colorless oil (40.2 mg, 57 % yield). 1-([1,1'-biphenyl]-4-yl)-2-tosylethan-1-ol (**15**)¹⁴. ¹**H NMR** (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.3 Hz, 2H), 7.56 – 7.52 (m, 4H), 7.45 – 7.40 (m, 3H), 7.37 (dd, *J* = 8.4, 1.9 Hz, 4H), 5.31 (d, *J* = 10.1 Hz, 1H), 3.76 (d, *J* = 2.0 Hz, 1H), 3.52 (dd, *J* = 14.3, 10.0 Hz, 1H), 3.37 (dd, *J* = 14.4, 1.9 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 145.3, 141.3, 140.5, 139.6, 136.2, 130.1, 128.8, 128.0, 127.5, 127.1, 126.1, 68.3, 64.0, 21.7.

9. Crystallographic structure determination (8k CCDC 2401953)

Table S2 Crystal data and structure refinement for 8k.

Identification code	8k
Empirical formula	$C_{29}H_{24}O_3S_2$
Formula weight	484.60
Temperature/K	149.98(10)
Crystal system	monoclinic
Space group	P21/n
a/Å	9.6399(2)
b/Å	18.0438(3)
c/Å	14.1965(2)
α /°	90
β /°	100.054(2)
γ /°	90
Volume/Å3	2431.42(7)
Z	4
ρ calcg/cm3	1.324
μ /mm 1	2.217
F(000)	1016.0
Crystal size/mm3	$0.16\times0.15\times0.12$
Radiation	Cu Kα (λ = 1.54184)
2Θ range for data collection/°	8 to 133.188
Index ranges	$-11 \le h \le 11, -21 \le k \le 16, -16 \le l \le 9$
Reflections collected	14634
Independent reflections	4291 [Rint = 0.0363, Rsigma = 0.0346]
Data/restraints/parameters	4291/0/308

Goodness-of-fit on F2	1.036
Final R indexes [I>= 2σ (I)]	R1 = 0.0453, wR2 = 0.1184
Final R indexes [all data]	R1 = 0.0531, wR2 = 0.1233
Largest diff. peak/hole / e Å-3	1.17/-0.38

Table S3 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters

Atom	X	у	Z	U(eq)
S1	8031.4(6)	6421.8(3)	7365.6(4)	27.47(16)
S2	5625.2(6)	4459.3(3)	8305.7(4)	32.55(17)
01	9111.5(16)	6510.2(9)	6791.7(12)	31.4(4)
02	8357.8(18)	4947.8(9)	6110.7(13)	37.0(4)
O3	8442(2)	6219.6(10)	8351.7(13)	39.7(4)
S1	8031.4(6)	6421.8(3)	7365.6(4)	27.47(16)
S2	5625.2(6)	4459.3(3)	8305.7(4)	32.55(17)
O1	9111.5(16)	6510.2(9)	6791.7(12)	31.4(4)
02	8357.8(18)	4947.8(9)	6110.7(13)	37.0(4)
O3	8442(2)	6219.6(10)	8351.7(13)	39.7(4)
C1	4220(2)	3648.9(12)	6736.6(16)	27.0(5)
C2	8521(3)	4198.2(14)	4725.3(18)	34.4(6)
C3	7962(3)	3597.8(14)	4177.7(19)	37.2(6)
C4	6649(2)	4056.8(12)	5673.3(17)	27.7(5)
C5	6464(3)	7463.0(15)	8082(2)	39.2(6)
C6	7853(2)	4403.1(12)	5467.1(18)	30.0(5)
C7	5913(3)	8252.7(15)	6378(2)	49.0(7)
C8	6344(2)	4380.7(12)	6561.0(17)	28.3(5)
С9	4206(3)	2948.2(13)	7138.3(18)	33.5(5)
C10	2178(3)	3309.9(14)	5576.5(17)	32.3(5)
C11	6760(3)	7631.1(14)	6442.4(19)	37.5(6)
C12	6793(2)	5746.4(12)	6806.6(18)	30.1(5)
C13	1184(3)	2008.4(16)	5501(2)	47.7(7)
C14	6102(3)	3454.9(13)	5105.2(17)	32.0(5)
C15	6769(3)	3232.0(14)	4365.7(19)	37.3(6)
C16	7015(2)	7238.9(12)	7294.1(17)	28.8(5)
C17	3541(3)	4500.2(14)	9374.1(18)	36.2(6)
C18	3187(3)	3832.9(13)	5966.4(17)	31.0(5)
C19	1686(3)	5305.9(13)	8058.4(19)	34.6(5)
C20	3907(2)	4692.1(12)	8505.7(17)	29.2(5)
C21	2254(3)	4727.5(16)	9593.3(19)	40.7(6)

 $({\rm \AA}^2 \times 10^3)$ for 8k. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

C22	7454(2)	4978.4(12)	6830.5(18)	29.8(5)	
C23	3229(3)	2430.1(14)	6731.4(19)	38.6(6)	
C24	2213(3)	2595.9(13)	5947.8(18)	32.9(5)	
C25	5336(3)	8473.8(15)	7156(3)	49.5(8)	
C26	2978(3)	5094.4(12)	7841.2(17)	31.5(5)	
C27	5619(3)	8089.3(16)	8004(2)	49.5(8)	
C28	5375(2)	4177.0(12)	7091.7(17)	27.4(5)	
C29	1335(3)	5133.1(14)	8937.9(19)	38.1(6)	

Table S4 Anisotropic Displacement Parameters (${
m \AA2 imes10^3}$) for 8k. The Anisotropic displacement

factor exponent takes the form: $-2\pi 2[h2a*2U11+2hka*b*U12+...]$.

Atom	Un	U22	U33	U23	U13	U12
S 1	28.2(3)	26.8(3)	28.4(3)	-3.0(2)	7.5(2)	-1.2(2)
S2	29.9(3)	40.6(3)	27.3(3)	-2.2(2)	5.3(2)	1.9(2)
01	25.2(8)	33.3(9)	37.3(10)	-5.0(7)	9.5(7)	-2.7(6)
O2	33.0(9)	36.1(9)	46.9(11)	-12.8(8)	20.9(8)	-9.4(7)
O3	46.2(10)	37.9(9)	33.8(10)	1.4(7)	4.0(8)	1.9(8)
C1	26.7(11)	32.1(12)	24.6(12)	-3.7(9)	10.8(10)	-0.6(9)
C2	31.6(13)	36.7(13)	38.7(14)	0.1(10)	16.6(11)	0.0(10)
C3	37.0(14)	43.6(14)	34.6(14)	-4.9(11)	16.3(11)	2.4(11)
C4	27.9(12)	28.1(11)	28.8(12)	-0.6(9)	10.2(10)	0.7(9)
C5	40.7(14)	38.9(14)	42.1(15)	-10.0(11)	18.6(12)	-7.3(11)
C6	27.9(12)	28.7(11)	34.5(13)	-2.5(9)	8.5(10)	-0.4(9)
C7	49.2(16)	33.2(14)	62.5(19)	6.2(13)	3.9(15)	3.6(12)
C8	26.6(12)	26.6(11)	32.5(13)	-2.6(9)	7.3(10)	0.6(9)
C9	36.5(13)	30.9(12)	33.2(13)	1.4(10)	6.2(11)	2.2(10)
C10	31.0(12)	40.1(13)	26.1(12)	-2.2(10)	6.1(10)	3.0(10)
C11	41.9(14)	36.1(13)	36.2(14)	-2.5(10)	11.5(12)	-0.4(11)
C12	27.0(12)	29.7(12)	34.1(13)	-2.2(10)	7.1(10)	-1.4(9)
C13	46.9(16)	49.1(16)	48.7(17)	-13.3(13)	12.9(14)	-17.1(13)
C14	27.4(12)	36.2(13)	34.0(14)	-4.7(10)	9.6(10)	-2.8(10)
C15	35.3(13)	41.3(14)	37.2(14)	-11.4(11)	11.5(11)	-4.0(11)
C16	25.2(11)	26.9(11)	35.7(13)	-6.6(9)	9.0(10)	-6.1(9)
C17	37.8(14)	44.5(14)	26.2(13)	1.6(10)	5.5(11)	3.1(11)
C18	36.8(13)	27.9(11)	31.1(13)	1.4(9)	13.6(11)	2.4(10)
C19	36.3(13)	29.4(12)	38.7(14)	1.3(10)	7.9(11)	3.2(10)
C20	32.2(12)	27.8(11)	28.3(12)	-5.5(9)	7.6(10)	-1.3(9)
C21	39.8(14)	57.3(16)	27.6(13)	-1.7(11)	13.3(11)	-0.9(12)
C22	27.4(12)	30.0(12)	33.4(13)	-2.9(9)	9.3(10)	0.5(9)
C23	49.4(15)	28.8(12)	37.7(14)	2.6(10)	7.7(12)	-0.9(11)
C24	33.2(12)	34.3(13)	34.0(14)	-5.3(10)	14.2(11)	-5.5(10)
-----	----------	----------	----------	-----------	----------	----------
C25	34.9(14)	30.6(13)	85(2)	-8.5(14)	16.6(15)	0.1(11)
C26	38.1(13)	27.9(11)	30.1(13)	0.1(9)	10.6(11)	0.8(10)
C27	42.1(15)	41.5(15)	72(2)	-20.3(15)	29.5(15)	-4.2(12)
C28	26.8(11)	26.6(11)	28.9(12)	0.4(9)	5.3(9)	2.5(9)
C29	32.5(13)	41.8(14)	42.3(15)	-7.1(11)	13.1(12)	2.2(11)

Table S5 Bond Lengths for 8k.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	01	1.4386(17)	C7	C11	1.381(4)
S1	O3	1.4339(18)	C7	C25	1.379(4)
S1	C12	1.791(2)	C8	C22	1.521(3)
S1	C16	1.763(2)	C8	C28	1.350(3)
S2	C20	1.779(2)	С9	C23	1.380(4)
S2	C28	1.773(2)	C10	C18	1.398(3)
O2	C6	1.372(3)	C10	C24	1.390(4)
O2	C22	1.455(3)	C11	C16	1.386(4)
C1	C9	1.388(3)	C12	C22	1.523(3)
C1	C18	1.385(3)	C13	C24	1.513(3)
C1	C28	1.485(3)	C14	C15	1.383(3)
C2	C3	1.387(4)	C17	C20	1.384(3)
C2	C6	1.378(3)	C17	C21	1.392(4)
C3	C15	1.392(4)	C19	C26	1.388(3)
C4	C6	1.393(3)	C19	C29	1.385(4)
C4	C8	1.465(3)	C20	C26	1.387(3)
C4	C14	1.400(3)	C21	C29	1.378(4)
C5	C16	1.380(3)	C23	C24	1.381(4)
C5	C27	1.386(4)	C25	C27	1.376(5)

Table S6 Bond Angles for 8k.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	S1	C12	108.47(10)	C22	C12	S1	111.42(16)
01	S1	C16	108.93(10)	C15	C14	C4	119.0(2)
O3	S1	01	118.51(11)	C14	C15	C3	121.1(2)
O3	S1	C12	107.97(11)	C5	C16	S1	119.2(2)
O3	S1	C16	108.96(11)	C5	C16	C11	121.5(2)
C16	S1	C12	102.88(11)	C11	C16	S1	119.33(18)
C28	S2	C20	104.50(11)	C20	C17	C21	120.1(2)
C6	02	C22	107.97(17)	C1	C18	C10	120.4(2)
С9	C1	C28	120.4(2)	C29	C19	C26	120.6(2)
C18	C1	С9	119.0(2)	C17	C20	S2	118.18(19)

C18	C1	C28	120.5(2)	C17	C20	C26	120.1(2)
C6	C2	C3	116.7(2)	C26	C20	S2	121.59(18)
C2	C3	C15	121.1(2)	C29	C21	C17	119.9(2)
C6	C4	C8	107.5(2)	O2	C22	C8	106.13(18)
C6	C4	C14	118.1(2)	O2	C22	C12	108.57(19)
C14	C4	C8	133.9(2)	C8	C22	C12	111.48(19)
C16	C5	C27	118.6(3)	C9	C23	C24	121.8(2)
O2	C6	C2	122.8(2)	C10	C24	C13	121.3(2)
02	C6	C4	113.2(2)	C23	C24	C10	118.2(2)
C2	C6	C4	123.9(2)	C23	C24	C13	120.4(2)
C25	C7	C11	119.9(3)	C27	C25	C7	120.6(3)
C4	C8	C22	105.14(19)	C20	C26	C19	119.4(2)
C28	C8	C4	129.4(2)	C25	C27	C5	120.3(3)
C28	C8	C22	125.3(2)	C1	C28	S2	118.77(16)
C23	С9	C1	120.0(2)	C8	C28	S2	118.32(18)
C24	C10	C18	120.4(2)	C8	C28	C1	122.4(2)
C7	C11	C16	119.1(2)	C21	C29	C19	119.9(2)

Table S7 Torsion Angles for 8k.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
S1	C12	C22	02	-76.0(2)	C12	S 1	C16	C5	98.7(2)
S1	C12	C22	C8	167.45(16)	C12	S 1	C16	C11	-79.7(2)
S2	C20	C26	C19	-175.61(18)	C14	C4	C6	02	-175.3(2)
01	S 1	C12	C22	67.10(19)	C14	C4	C6	C2	1.4(4)
01	S 1	C16	C5	-146.36(19)	C14	C4	C8	C22	174.1(3)
01	S 1	C16	C11	35.2(2)	C14	C4	C8	C28	-1.2(4)
03	S 1	C12	C22	-62.50(19)	C16	S 1	C12	C22	-177.62(17)
03	S1	C16	C5	-15.7(2)	C16	C5	C27	C25	0.4(4)
03	S 1	C16	C11	165.87(19)	C17	C20	C26	C19	0.4(4)
C1	C9	C23	C24	-2.6(4)	C17	C21	C29	C19	0.8(4)
C2	C3	C15	C14	0.0(4)	C18	C1	С9	C23	4.3(3)
C3	C2	C6	02	174.7(2)	C18	C1	C28	S2	123.0(2)
C3	C2	C6	C4	-1.7(4)	C18	C1	C28	C8	-65.2(3)
C4	C8	C22	02	-2.0(2)	C18	C10	C24	C13	-176.4(2)
C4	C8	C22	C12	116.0(2)	C18	C10	C24	C23	2.6(3)
C4	C8	C28	S2	159.2(2)	C20	S2	C28	C1	-47.0(2)
C4	C8	C28	C1	-12.6(4)	C20	S2	C28	C8	140.80(19)
C4	C14	C15	C3	-0.3(4)	C20	C17	C21	C29	1.1(4)
C6	02	C22	C8	0.7(2)	C21	C17	C20	S2	174.5(2)
C6	02	C22	C12	-119.2(2)	C21	C17	C20	C26	-1.7(4)
C6	C2	C3	C15	1.0(4)	C22	02	C6	C2	-175.8(2)
C6	C4	C8	C22	2.5(2)	C22	02	C6	C4	0.9(3)
C6	C4	C8	C28	-172.8(2)	C22	C8	C28	S2	-15.2(3)

C6	C4	C14	C15	-0.3(4)	C22	C8	C28	C1	173.0(2)
C7	C11	C16	S 1	177.2(2)	C24	C10	C18	C1	-1.0(3)
C7	C11	C16	C5	-1.1(4)	C25	C7	C11	C16	0.0(4)
C7	C25	C27	C5	-1.5(4)	C26	C19	C29	C21	-2.1(4)
C8	C4	C6	02	-2.3(3)	C27	C5	C16	S 1	-177.40(19)
C8	C4	C6	C2	174.4(2)	C27	C5	C16	C11	1.0(4)
C8	C4	C14	C15	-171.1(3)	C28	S2	C20	C17	140.98(19)
C9	C1	C18	C10	-2.5(3)	C28	S2	C20	C26	-42.9(2)
C9	C1	C28	S2	-60.6(3)	C28	C1	С9	C23	-172.2(2)
C9	C1	C28	C8	111.2(3)	C28	C1	C18	C10	174.0(2)
С9	C23	C24	C10	-0.9(4)	C28	C8	C22	02	173.5(2)
C9	C23	C24	C13	178.2(2)	C28	C8	C22	C12	-68.4(3)
C11	C7	C25	C27	1.4(4)	C29	C19	C26	C20	1.5(4)

Table S8 Hydrogen Atom	Coordinates (Å×104)) and Isotropic Displaceme	ent Parameters (Å2×103)

for 8k.				
Atom	X	У	Z	U(eq)
H2	9326.71	4455.71	4595.27	41
H3	8400.24	3433.35	3665.63	45
Н5	6658.7	7193.57	8665.03	47
H7	5728.33	8527.7	5798.97	59
Н9	4869.32	2825.19	7693.16	40
H10	1464.55	3443.34	5054.5	39
H11	7161.01	7474.53	5910.15	45
H12A	5973.8	5732.04	7140.67	36
H12B	6449.81	5892.18	6134.01	36
H13A	384.83	2245.5	5089.94	72
H13B	844.04	1728.1	6006.94	72
H13C	1656.32	1671.1	5118.07	72
H14	5285.31	3203.34	5225.81	38
H15	6406.13	2822.24	3979.43	45
H17	4168.68	4213.24	9821.02	43
H18	3162.93	4317.17	5701.61	37
H19	1037.08	5571.42	7599.88	42
H21	2010.36	4603.01	10193.81	49
H22	8015.87	4876.42	7478.74	36
H23	3256.21	1946.31	6997.93	46
H25	4737.11	8895.44	7104.98	59
H26	3223.7	5223.89	7242.85	38
H27	5234.67	8253.99	8540.05	59

H29	461.3	5294.07	9089.06	46	
H2	9326.71	4455.71	4595.27	41	
Н3	8400.24	3433.35	3665.63	45	
Н5	6658.7	7193.57	8665.03	47	
H7	5728.33	8527.7	5798.97	59	
Н9	4869.32	2825.19	7693.16	40	
H10	1464.55	3443.34	5054.5	39	
H11	7161.01	7474.53	5910.15	45	
H12A	5973.8	5732.04	7140.67	36	

10. Supplementary references.

- [1] Ma, B.; Chen, Z.; Ma, M.; Zhao, Z.; Yang, J. Org. Chem. Front., 2024, 11, 5876-5883.
- [2] Wang, A. M.; Zhou, X.; Xie, Z, W.; Chen, X.; Wu, J. J. Org. Chem. 2019, 89, 14940-14950.
- [3] Xia, H.; Li, D.; Xie, S.; Yan, J.; Li X.; Niu, Y. Green Chem., 2024, 26, 323-329.
- [4] Cai, Y.; Chatterjee, Sagnik.; Ritter, T. J. Am. Chem. Soc., 2023, 145, 13542-13548.
- [5] Jia, T.; Zhou, X.; Peng, Z.; Wang, P. Org. Lett., 2021, 23, 1054–1059.
- [6] Ma, Y.; Qin, W.; Ni, Q.; Jiao, W. Chem. Commun., 2023, 59, 7951-7954.
- [7] Xu, H. J.; Tang, F.; Feng, Y.; Yang, W. Org. Lett., 2024, 26, 236–240.
- [8] Gadde, K.; Mampuys, P.; Guidetti, A.; Vincent, H. Y. C.; Herrebout, W. A.; Doorslaer, S. V.; Tehrani, K. A.; Maes, B. U. W. ACS Catal., 2020, 10, 8765–8779.
- [9] Chen, H.; Yan, Y.; Zhang, N.; Mo, Z.; Xu, Y.; Chen, Y. Org. Lett., 2021, 23, 376–381.
- [10] Chen, L.; Zhou, M.; Shen, Lin.; He, X.; Li, X.; Zhang, X.; Lian, Z. Org. Lett., 2021, 23, 4991– 4996.
- [11] a) Yan, Q.; Cui, W.; Song, X.; Xu, G.; Jiang, M.; Sun, K.; Lv, J.; Yang, D. Org. Lett. 2021, 23, 3663–3668; b) Chen, J.; Liang, Y.; Wang, P.; Li, G.; Zhang, B.; Qian, H.; Huan, X. D.; Guan, W.; Xiao, W.; Chen, J. J. Am. Chem. Soc., 2021, 143, 13382–13392.
- [12] Tan, Z.; Chen, F.; Huang, G.; Li, Y.; Jiang, H.; Zeng, W. Org. Lett., 2023, 25, 2846–2851.
- [13] Tian, Y.; Li, X.; Gao, A.; Liu, X. Nat. Chem., 2023, 16, 466-475.
- [14] Choudhuri, K.; Achar, T.; Mala, P. Adv. Synth. Catal., 2017, 359, 3566-3576.

11. Cope of NMR Spectra

7.453 7.440 7.453 7.454 7.410 7.455 7.195 7.105

-- 0.000

$$\begin{array}{c} & 7.359 \\ & 7.237 \\ & 7.227 \\ & 7.227 \\ & 7.227 \\ & 7.227 \\ & 7.227 \\ & 7.122 \\ & 7.122 \\ & 7.122 \\ & 7.122 \\ & 7.122 \\ & 7.223 \\ & 7.223 \\ & 7.223 \\ & 7.233$$

f1 (ppm)

$\begin{array}{c} 7.419\\ 7.1164\\ 7.1164\\ 7.1164\\ 7.1128\\ 7.1111\\ 7.075\\ 7.0111\\ 7.056\\ 7.056\\ 7.056\\ 7.056\\ 7.056\\ 7.056\\ 7.056\\ 7.036\\ 3.833\\ 3.8$

- 0.000

7.331 7.350 7.199 7.195 7.195 7.195 7.179 7.173 7.177 7.177 7.177 7.177 7.175 7.177 7.175 7.215 7.2257 7.2257 7.2257 7.2257 7.2257 7.2257 7.2257 7.2257 7.2257 7.2257 7.

- 0.000

7.350 7.329 7.329 7.194 7.118 7.118 7.118 7.118 7.118 7.118 7.118 7.118 7.118 7.118 7.118 7.118 7.118 7.1162

- 0.000

30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

chemical shift (ppm)

7.420 7.1188 7.1145 7.114 7.114 7.114 7.114 7.109 7.1005 7.1

- 0.000

7.359 7.359 7.7.032 7.7.032 7.7.033 7.7

----0.000

$$-0.000 \label{eq:constraint} \begin{array}{c} 7.498 \\ 7.7484 \\ 7.7484 \\ 7.7484 \\ 7.7168 \\ 7.7099 \\ 7.0090 \\ 7.000 \\ 7.0090 \\ 7.0090 \\ 7.0090 \\ 7.0090 \\ 7.000 \\ 7.0090 \\ 7.0090 \\ 7.0090 \\ 7.0090 \\ 7.000 \\ 7.0090 \\ 7.0000 \\ 7.0090 \\ 7.0000$$

$$\begin{array}{c} 7.387\\ 7.1911\\ 7.1911\\ 7.1911\\ 7.1091\\ 7.1091\\ 6.873\\ 6.83$$

7.455 7.455 7.175 7.175 7.175 7.175 7.175 7.175 7.175 7.175 7.175 7.170 6.833 6.843 6.843 6.843 6.833 6.843 6.833 6.843 6.833 6.843 6.833 6.843 6.833 6.833 6.833 6.633 6.633 7.121 7.077 7.075 7.175

- 0.000

---62.638

-70 -90 f1 (ppm)

7.444 7.444 7.468 7.160 7.160 7.1450 6.891 6.9129 6.9129 6.9129 6.9129 6.9129 6.9129 6.9129 6.7020 6.884 6.7730 6.7230 7.335000 7.335000 7.3350007.335000

- 0.000

-137.097 -137.114 -137.112 -137.126 -137.126 -137.125 -137.157 -137.152 -137.152 -138.354 -138.354 -138.354 -138.362 -138.362 -138.362 -138.421 -138.421 -138.430 -138.436 -138.436

Me. Ts F

3s (376 MHz, CDCl₃)

-80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)	

$$\begin{array}{c} -8.407\\ -8.451\\ 7.451\\ 7.168\\ 7.169\\ 7.054\\ 7.054\\ 7.056\\$$

ò chemical shift (ppm)

f1 (ppm)

Me S S Ph

3x (400 MHz, CDCl₃)

80 160 140 120 100 80 60 40 20 0 chemical shift (ppm)

7.358 7.7153 7.7153 7.7153 7.7153 7.7153 7.7153 7.7153 7.7153 7.7153 7.7153 7.7153 7.7153 7.7068 6.941 6.941 6.721 6.721 6.721 6.7721 6.7721 7.77217721 7.7721777777777

 $-0.000 \label{eq:constraint} \begin{array}{c} 7.349\\ 7.329\\ 7.329\\ 7.329\\ 7.329\\ 7.329\\ 7.224\\ 7.125\\ 7.125\\ 7.125\\ 7.125\\ 7.125\\ 7.125\\ 7.125\\ 7.125\\ 7.125\\ 7.125\\ 7.125\\ 7.266\\ 2.5328\\ 3.800\\ 3.837\\ 3.837\\ 3.837\\ 3.837\\ 3.837\\ 7.266\\ 2.5328\\ 2.666\\ 2.263\\ 2.666\\ 2.2663\\ 2.2633\\ 2.2663\\ 2.2633\\ 2.2663\\ 2.2633\\ 2.2663\\ 2.2633\\ 2.2663\\ 2.2633\\ 2.2663\\ 2.2633\\ 2.2633\\ 2.2663\\ 2.2633\\$

-2.331 = -

4e (150 MHz, CDCl₃)

80 170 160 chemical shift (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: chemical shift (ppm)

S124

---0.000 7.408 7.388 7.331 7.312 7.312 7.312 7.312 7.291 7.182 7.182 7.163 7.163 7.163 7.163 7.163 7.163 7.163 4.642 4.633 4.614 4.605 3.857 3.857 3.857 3.820 3.704 3.704 - 2.333 - 1.267

80 170 o chemical shift (ppm)

$$\begin{array}{c} 7.587\\ 7.568\\ 7.419\\ 7.419\\ 7.215\\ 7.228\\ 7.115\\ 7.228\\ 7.115\\ 7.228\\ 3.529\\ 3.695\\ 3.695\\ 3.695\\ 3.695\\ 3.695\\ 3.695\\ 3.695\\ 3.565\\ 3.$$

S139

$\begin{array}{c} 7.364\\ 7.364\\ 7.3561\\ 7.3561\\ 7.3561\\ 7.3534\\ 7.325\\ 7.3253\\ 7.3259\\ 7.3255\\ 7.22555\\ 7.2255\\ 7.225555\\ 7.225555\\ 7.225555\\ 7.225555\\ 7.225555\\ 7.225555\\ 7.225555\\ 7.2255555\\ 7.225555\\ 7.2255555\\ 7.2255555\\ 7.2$

7,426 7,426 7,405 7,2318 7,2318 7,2318 7,2318 7,2318 7,2318 7,2318 7,2318 7,2318 7,2318 7,2318 7,2318 7,2318 7,2318 7,2318 7,2318 7,2131 7,2145 7,145 7,145 7,146 7,146 7,146 7,146 7,146 7,146 7,146 7,146 7,146 7,146 7,146 7,146 7,146 8,233 7,146 8,342 7,1106 7,1106 7,1106 7,1106 7,1106 7,1106 7,1106 8,111 7,1106

7.647 7.526 7.526 7.2334 7.2334 7.2334 7.2334 7.2334 7.2334 7.2334 7.2334 7.2334 7.2334 7.2334 7.2334 7.2334 7.2334 7.2334 7.23333 7.23333 7.23333 7.23333 7.23333 7.23333 7.23333 7.23333 7.23333 7.23333 7.23333 7.23333 7.23333 7.23333 7.233333 7.23333 7.23333 7.233333 7.233333 7.233333 7.23333 7.233333

Me_S Ts 6f (400 MHz, CDCl₃)

6h (400 MHz, CDCl₃)

6h (150 MHz, CDCl₃)

chemical shift (ppm)

7.647 7.547 7.268 7.269 6.827 6.827 6.827 6.827 6.827 6.827 7.005 6.827 6.827 7.005 6.827 7.005 6.827 7.005 6.827 7.005 6.827 7.005 6.827 7.005 7.205 7.329 7.2297 7.2297 7.229 7.2297 7.2297 7.2297 7.2297 7.2297 7.2297 7.2297 7.2

---0.000

7.554 7.534 7.534 7.534 7.534 7.534 7.534 7.535 3.550 3.551 3.553 3.553 3.553 3.553 3.553 3.553 3.553 3.553 3.552 3.552 3.552 3.552 3.552 3.552 3.552 3.552 3.552 2.0551 7.774 3.552 3.552 2.0551 7.774 3.552 2.0551 7.774 3.552 2.0551 7.774 7.774 3.552 7.20557 7.20557 7.20557 7.20557 7.20557 7.20557 7.205577 7.20557 7.2055770

7.642 7.529 7.529 7.107 7.107 7.107 7.284 7.2094 7.2006 7.2036 7.094 7.006 7.337 7.005 7.0

7.658 7.637 7.637 7.637 7.637 7.637 7.638 7.637 7.093 7.015 7.093 7.015 7.093 7.015 7.093 7.015 7.093 7.015 7.093 7.015 7.093 7.015 7.093 7.015 7.093 7.015 7.093 7.015 7.093 7.015

8.070 8.059 8.059 8.059 8.059 8.056 7.675 7.675 7.668 7.668 7.668 7.664 7.664 7.664 7.664 7.664 7.665 7.664 7.665 7.664 7.665 7.664 7.665 7.664 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.665 7.653 7.665 7.665 7.653 7.665 7.653 7.665 7.653 7.75533 7.755333 7.755337 7.755337 7.755337 7.755337 7.755337 7.755337 7.755337 7.755337 7.75

$\begin{array}{c} 7.859\\ 7.859\\ 7.233\\ 7.233\\ 7.242\\ 7.242\\ 7.212\\ 7.212\\ 7.266\\ 7.066\\ 7.066\\ 7.065\\ 7.$

-2.00000 - 0.0000 -

$- 0.000 \\ \hline 7.738 \\ \hline 7.718 \\ \hline 7.718 \\ \hline 7.7513 \\ \hline 7.7513 \\ \hline 7.7512 \\ \hline 7.7175 \\ \hline 7.175 \\$

9.032 9.032 9.005 8.116 8.118 8.081 8.081 8.081 7.373 7.355 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.735 7.7418 7.735 7.7418 7.7418 7.7413 7.735 7.7413 7.7413 7.735 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.756 7.7413 7.7413 7.756 7.7413 7.7413 7.7413 7.7413 7.7413 7.756 7.7413 7.756 7.7413 7.7413 7.756 7.7413 7.756 7.7413 7.756 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.7413 7.7414</l

9 (400 MHz, CDCl₃)

----0.000

-2.405

7.362 7.556 7.5556 7.427 7.445 7.445 7.445 7.403 7.403 7.328 7.328 7.328 7.33847.338

----0.000

οн **∠**Ts Ph

15 (400 MHz, CDCl₃)

Pre-Pre-Me

BINAP-Cu(MeCN)PF₆ ¹H NMR (400 MHz, DMSO-d₆)

∕_-72.264 √-74.155 - 2.059

BINAP-Cu(MeCN)PF₆ ¹⁹F NMR (376 MHz, DMSO-d₆)

