Supporting Information

Palladium(II)-Catalyzed Enantioselective Desymmetrizative Ring Opening of Oxabicyclic Alkenes with Alkynylanilines: Efficient Access to Enantioenriched Functionalized Cyclohexenes

Binhong Tan,^a Junjie Meng,^a Qianru Liu,^a Shixin Chen,^a Mingyue Xue,^d Yue Zhang,^{*c} Yuping Zhang^{*b} and Zhaodong Li^{*a,c}

^aCollege of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China; Email: scaulizhaodong@scau.edu.cn.

^bPlant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China; Email: zhangyp@gdppri.cn.

^cSchool of Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China. Email: zhangyyy333@163.com.

^dSchool of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, 524048 Zhanjiang, China.

Corresponding Authors:

scaulizhaodong@scau.edu.cn. zhangyp@gdppri.cn. zhangyyy333@163.com.

Table of Contents

1. General Information
2. Optimization of Reaction Conditions
3. Preparation of Oxabicyclic Alkenes and Alkynylanilines
4. General Experimental Procedure for Palladium(II)-Catalyzed
Enantioselective Desymmetrizative Ring Opening of Oxabicyclic
Alkenes with Alkynylanilines
5. Synthetic Applications
6. List of Failed ExamplesS18
7. Characterization Data for New Substrates
8. Characterization Data for New Products
9. NMR Spectra of New Substrates
10. NMR Spectra of New Products
11. HPLC Trace
12. X-Ray Single Crystal Data for Compound 3, 36
13. References

1. General Information

(1) Analytical Methods

¹H and ¹³C NMR spectra were measured on a Bruker AV-400 spectrometer instrument (400 MHz for ¹H, 101 MHz for ¹³C NMR ,376 MHz for ¹⁹F NMR spectroscopy) using Chloroform-*d* as the solvent. The following abbreviations (or combinations thereof) were used to explain chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), integration, and coupling constants (*J*) in hertz (Hz). All high-resolution mass spectra (HRMS) were obtained on a Waters Quatro Macro triple quadrupole mass spectrometer. High-pressure liquid chromatography (HPLC) was performed on Shimadzu Nexera LC-16 a chiral column as noted for each compound. Enantiomer excess was determined by HPLC analysis employing FLM Chiral INA and NY(2) column. The X-ray source used for the single crystal X-ray diffraction analysis compound **3** and **36** was Cu K α (λ = 1.54184). The thermal ellipsoid was drawn at the 50% probability level for compound **3** and **36**.

(2) Materials

All solvents, ligands and reagents mentioned in this text were commercially available and bought from Bide pharm or Leyan and used as received without purification. Analytical thin-layer chromatography was performed on 0.20 mm silica gel plates (GF254) using UV light as a visualizing agent. Flash column chromatography was carried out using silica gel (300-400 mesh) with the indicated solvent system. All reactions were conducted in oven-dried Schlenk tubes. All the reaction temperatures reported are oil bath temperature.

2. Optimization of Reaction Conditions

Table S1. Optimization of Pd catalyst

OCH ₃ +	Pd catalyst (5 mol%) K2CO3 (2 equiv) L1 (6 mol%) EA (c: 0.2 M) 50 °C, 12 h	H ₃ CO H ₃ CO	$(Cy)_2 P \xrightarrow{Fe}_{L1} P({}^tBu)_2$
1a (0.2 mmol)	2a (1.5 equiv)	3	i
Entry	Pd catalyst (5 mol%)	Yield (%)	ee (%)
1 ^a	$Pd_2(dba)_3$	52	93
2	Pd(dppe)Cl ₂	48	93
3	$Pd(OAc)_2$	31	93
4	PdCl ₂ (bpy)	51	92
5	$Pd(TFA)_2$	51	93
6	Pd(dba) ₂	62	93
7	Pd(PhCN) ₂ Cl ₂	43	93
8	$Pd(acac)_2$	NR	/
9	Pd(CH ₃ CN) ₂ Cl ₂	28	92
10	Pd(dppf)Cl ₂	27	91
11	PdCl ₂	34	92
12	Pd(PPh ₃) ₄	19	90
13	PdCl ₂ (PPh ₃) ₂	28	92
14 ^a	$Pd_2(allyl)_2Cl_2$	Trace	/
15	Pd(CF ₃ COCHCOCF ₃) ₂	32	92
16	$Pd(^{t}Bu_{3}P)_{2}$	32	92

^aPd catalyst (2.5 mol%).

O OCH ₃ OCH ₃	+ NHTs	Pd(dba) ₂ (5 mol%) Base (2 equiv) L1 (6 mol%) EA (c: 0.2 M) 50 °C, 12 h	H ₃ CO H ₃ CO	$(Cy)_2 P Fe \stackrel{i}{\overset{i}{\underset{Fe}{\overset{f}{\underset{C}{}{}{}{}{}{}{$
1a (0.2 mmol)	2a (1.5 equiv)		3	`'

Table S2. Optimization of Base

Entry	Base (2 equiv)	Yield (%)	ee (%)
1	Cs_2CO_3	67	90
2	Na ₂ CO ₃	NR	/
3	K ₂ CO ₃	62	93
4	Li ₂ CO ₃	NR	/
5	КОН	38	94
6	NaOH	NR	/
7	KHCO ₃	NR	/
8	CH ₃ COOK	NR	/
9	KF	trace	/
10	'BuOK	trace	/
11	CsF	45	91
12	K ₃ PO ₄	42	95
13	Na ₂ HPO ₄	NR	/
14	NEt ₃	Trace	/
15	Pyridine	NR	/
16	DBU	Trace	/
17	Imidazole	NR	/
18	TMEDA	Trace	/
19	TMG	Trace	/
20	DIPEA	NR	/
21	CH ₃ COONa	NR	/
22	^t BuONa	44	90
23	KH ₂ PO ₄	NR	/

OCH3	NHTs	Pd(dba) ₂ (5 mol%) K ₃ PO ₄ (2 equiv) L1 (6 mol%) Solvent (c: 0.2 M) 50 °C, 12 h	H ₃ CO H ₃ CO	$(Cy)_2 P \xrightarrow{i}_{F_e} P({}^{t}Bu)_2$
1a (0.2 mmol)	2a (1.5 equiv)		3	ر

Table S3. Optimization of Solvent

Entry	Solvent (<i>c</i> : 0.2 M)	Yield (%)	ee (%)
1	DMF	14	90
2	DMA	trace	/
3	THF	30	95
4	DMSO	NR	/
5	1,4-Dioxane	31	95
6	DME	NR	/
7	CH ₃ CN	12	93
8	PhMe	23	93
9	PhCF ₃	30	94
10	PhCl	30	94
11	Acetone	36	95
12	Mesitylene	29	93
13	MeOH	NR	/
14	EtOH	Trace	/
15	DCM	31	95
16	EA	42	95
17	DCE	29	95
18	MTBE	39	93
19	Hexane	NR	/
20	Cyclohexane	17	90
21	CPME	40	94
22	CHCl ₃	17	95
23	TFE	NR	/

Table S4. Optimization of Reaction Time

0 0CH ₃ + 0CH ₃ + 1a (0.2 mmol)	Pd(dba) ₂ (5 mol%) K ₃ PO ₄ (2 equiv) L1 (6 mol%) EA (c: 0.2 M) 50 °C reaction time (h) 2a (1.5 equiv)	H ₃ CO H ₃ CO 3	$(Cy)_2 P \xrightarrow[Fe]{Fe} \tilde{C}H_3$ L1
Entry	Reaction Time (h)	Yield (%)	ee (%)
1	12	42	95
2	24	65	95

Table S5 Optimization of 2a

1a (0.2 mmol)	Pd(dba) ₂ (5 mol%) K ₃ PO ₄ (2 equiv) L1 (6 mol%) EA (c: 0.2 M) 50 °C, 24 h 2a (X equiv)	H ₃ CO H ₃ CO 3	$(Cy)_2 P \xrightarrow{F_e} F_e^{tBu} \xrightarrow{E} CH_3$
Entry	2a (X equiv)	Yield (%)	ee (%)
1	1.5	65	95
2	2.0	75	95
3	2.5	89	95
4	3.0	89	95

Table S6 Optimization of L1

ОСН3		Pd(dba) ₂ (5 mol%) K ₃ PO ₄ (2 equiv) L1 (X mol%)	OH NTs	(Cy) ₂ P Fe
OCH3	+	EA (c: 0.2 M)		CH ₃
	NHTs	50 0, 24 11		L1
1a (0.2 mmol)	2a (2.5 equiv)		3	ι

Entry	L1 (X mol%)	Yield (%)	ee (%)
1	6	89	95
2	10	80	95
3	20	76	95

Table S7 Optimization of K₃PO₄

Entry	K ₃ PO ₄ (X equiv)	Yield (%)	ee (%)
1	1.5	80	95
2	2.0	89	95
3	2.5	92	95
4	3.0	94	94

Table S8 Optimization of Temperature

Entry	Temperature	Yield (%)	ee (%)
1	40 °C	91	96
2	50 °C	92	95
3	60 °C	93	93

Table S9 Optimization of Chiral Ligands

NMe₂ ′PPh₂ Fe

cas: 55700-44-2 L19, NR

^tBu ^tBu

Fe

Ŵе

cas: 849924-44-3 L8, 82% yield, 91% ee

cas: 649559-65-9 L11, trace

cas: 849924-74-9 L14, NR

cas: 223121-07-1 L17, NR

cas: 2256046-71-4 L20, NR

cas: 246231-77-6 L6, 22% yield, -44% ee

cas: 155830-69-6 L9, 91% yield, 88% ee

cas: 162291-01-2 L12, NR

cas: 1221746-31-1 L15, NR

cas: 1003012-96-1 L18, NR

cas: 162412-87-5 L21, NR

Attention:

All yields are isolated yields.

All enantiomeric excesses were determined by HPLC analysis on a chiral stationary phase.

3. Preparation of Oxabicyclic Alkenes and Alkynylanilines

3.1 Preparation of Oxabicyclic Alkenes List of Oxabicyclic Alkenes $0 \rightarrow 0$ CH₃ $1a \rightarrow 1b \rightarrow 1c \rightarrow 1d$

1a-1c^[1], **1d**^[2] are known compounds in literature. They were prepared according to the following general procedure.

In a two-necked flask, distilled furan (70 ml, 0.93 mol) was added to maleic anhydride (18 g, 0.18 mol). The reaction mixture was vigorously stirred at room temperature overnight, Then, the reaction was filtered, and the solid residue was dry under vacuum to afford the desired product **M1** as white powder (90% yield).

In a 250 mL two-necked flask, LiAlH₄ (0.759 g, 20 mmol) in powder was suspended in dry THF (20 mL) and stirred at -10 °C while a solution of **M1** (1.661 g, 10 mmol) in dry THF (50 mL) was added. The reaction mixture was allowed to warm up to room temperature and was stirred for 4 h. Then, the reaction mixture was cooled at 0°C and was quenched by successively dropwise addition of water (0.8 mL), followed by aqueous solution of NaOH (0.8 mL, 15 wt. %), and water (2.4 mL). The reaction mixture was stirred for additional 15 min at room temperature and was then filtered through Celite pad, washing with EA. The solvent was removed under vacuum to afford the desired product **M2** as a pale-yellow oil (85% yield).

To a suspension of dry sodium hydride (2.5 equiv.) in dry THF a solution of M2 in solution in THF was added dropwise at 0 °C. The reaction mixture was stirred 30 min at r.t. after the end of gas evolution before adding iodine substitutes or dimethylcarbamoyl chloride (2.5 equiv.) followed by two hours stirring at R.T. The reaction was quenched by addition of brine 20 ml and the product was extracted with 3

 \times 50 mL of EA. After drying over magnesium sulfate and evaporation of solvent under reduced pressure, the residue was purified by silica gel flash chromatography (PE/EA) to afford the oxabicyclic alkenes.

3.2 Preparation of Alkynylanilines

 $2a \sim 2a - 2^{[3,6,7]}$ are known compounds in literatures. 2a - 3 were prepared according to the following general procedure.

4-ethynylbenzoic acid (1.0 equiv.), cholesterol (1.2 equiv.), EDCI (1.2 equiv.) and DMAP (1.2 equiv.) were added into DCM under air atmosphere. After stirring for 12 h, the mixture was poured into water and extracted with DCM 3 times. The combined organic phases were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel with EA/PE as an eluent to give S_1 .

A Schlenk-tube equipped with a magnetic stir bar was charged with S_1 (1.0 equiv.), PdCl₂(PPh₃)₂ (2 mol%), CuI (1 mol%) and then evacuated and backfilled with N₂ for 3 times. Afterwards, Et₃N, phenylacetylene (1.3 equiv.) were added consecutively under N₂ atmosphere. After stirring for 12 h, the mixture was extracted with DCM, and the combined organic phases were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel with EA/PE as an eluent to give S₂.

TsCl (1.3 equiv.) was added to a solution of S_2 in DCM (40 mL) under R.T. and then pyridine (3.0 equiv.) was added to the solution under air atmosphere. After stirring for 12 h, the mixture was diluted with DCM, washed with HCl (6 M), saturated NaHCO₃ solution and brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel with EA/PE as an eluent to give the corresponding 2-alkynylaniline **2v**. 4. General Experimental Procedure for Palladium(II)-Catalyzed Enantioselective Desymmetrizative Ring Opening of Oxabicyclic Alkenes with Alkynylanilines

(1) General Experimental Procedure A

A Schlenk-tube equipped with a magnetic stir bar was charged with 2alkynylaniline (2.5 equiv., 0.5 mmol), Pd(dba)₂ (5 mol%, 0.01 mmol), L1 (6 mol%, 0.012 mmol), K₃PO₄ (2.5 equiv., 0.5 mmol). Then, EA (1.0 mL) and oxabicyclic alkenes (0.2 mmol) were added consecutively under air atmosphere. The tight tube was stirred at 40 °C for 24 h. After 24 h, the resulting mixture was extracted with DCM (3 × 15 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated. The crude product was purified by column chromatography on silica gel to give the product 3~9, 11~13, 15~26, 28~32.

(2) General Experimental Procedure for 1 mmol Synthesis of 3

A Schlenk-tube equipped with a magnetic stir bar was charged with 2alkynylaniline 2a(2.5 equiv., 2.5 mmol), $Pd(dba)_2$ (5 mol%, 0.05 mmol), L1 (6 mol%, 0.06 mmol), K₃PO₄ (2.5 equiv., 2.5 mmol). Then, EA (5.0 mL) and oxabicyclic alkenes 1a(1.0 mmol) were added consecutively under air atmosphere. The tight tube was stirred at 40 °C for 48 h. After 48 h, the resulting mixture was extracted with DCM (3 × 20 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated. The crude product was purified by column chromatography on silica gel to give the product 3(473.0 mg, 89% yield, 96% ee).

Attention:

The procedure for the synthesis of compound **10**, **14** and **27** is similar to **General Experimental Procedure A** at the temperature of **50** °C, the procedure for the synthesis of compound **33** is similar to **General Experimental Procedure A** at the concentration of **0.1 M**.

5. Synthetic Applications

According to a previous reference^[4], to a stirring solution of **3** (106.3 mg, 96% ee, 0.2 mmol, 1.0 equiv.) in DCM (5.0 mL) was slowly added palladium on-activated-charcoal (10%, 40.0 mg) at room temperature. The resulting mixture was stirred at room temperature in an atmosphere of hydrogen gas for 2 hours. The mixture was filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give **34** (98.2 mg, 92% yield, 95% ee).

To a flame-dried Schlenk tube were added **3** (106.3 mg, 96% ee, 0.2 mmol, 1.0 equiv.) and Dess-Martin periodinane (127.2 mg, 0.3 mmol, 1.5 equiv.) under air atmosphere. The resulting mixture was stirred at 50 °C under air atmosphere for 12 hours. The resulting mixture was extracted with DCM (3×15 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated. The crude product was purified by column chromatography on silica gel to give the product **35** (87.0 mg, 82% yield, 95% ee).

According to a previous reference [3], to a flame-dried and N2-purged Schlenk tube

were added compound **3** (106.3 mg, 96%, 0.2 mmol, 1.0 equiv.), and NIS (135.0 mg, 0.6 mmol, 3.0 equiv.). The vial was then sealed, purged and backfilled with N₂ three times before adding MeCN (0.8 mL) and H₂O (0.2 mL) at room temperature. The resulting mixture was stirred at 50°C under N₂ atmosphere for 12 hours. The resulting mixture was extracted with DCM (3×15 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and evaporated. The crude product was purified by column chromatography on silica gel to give the product **36** (50.0 mg, 46% yield, 97% ee).

According to a previous reference^[4], to a stirring solution of **3** (136.8 mg, 96% ee, 0.20 mmol, 1.0 equiv.) in DCM (5.0 mL) was slowly added palladium on-activated-charcoal (10%, 40.0 mg) at room temperature. The resulting mixture was stirred at room temperature in an atmosphere of hydrogen gas for 2 hours. The mixture was filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give **37** (80.9 mg, 80% yield, 96% ee).

6. List of Failed Examples

7. Characterization Data for New Substrates

 (1R, 3S, 8R, 9S, 13R, 14S, 17R)-1, 13-Dimethyl-17-((R)-6-methylheptan-2-yl)-2, 3,

 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17-tetradecahydro-1H

 cyclopenta[a]phenanthren-3-yl

 4. ((2-((4-methylphenyl)sulfonamido)phenyl)ethynyl)benzoate.

White solid, M.p: 133.0~138.0 °C, PE/EA = 10/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.05 (d, J = 8.0 Hz, 1H), 7.71 – 7.57 (m, 3H), 7.50 (d, J = 8.0 Hz, 2H), 7.38 (dd, J = 8.0, 4.0 Hz, 1H), 7.32 (td, J = 8.0, 4.0 Hz, 1H), 7.23 – 7.12 (m, 3H), 7.08 (td, J = 8.0, 4.0 Hz, 1H), 5.43 (d, J = 4.0 Hz, 1H), 4.94 – 4.82 (m, 1H), 2.49 (d, J = 8.0 Hz, 2H), 2.33 (s, 3H), 2.09 – 1.65 (m, 7H), 1.64 – 1.42 (m, 7H), 1.42 – 1.11 (m, 10H), 1.11 – 0.95 (m, 8H), 0.93 (d, J = 4.0 Hz, 3H), 0.86 (dd, J = 8.0, 4.0 Hz, 6H), 0.69 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 165.2, 144.1, 139.5, 137.7, 136.1, 132.2, 131.4, 130.9, 130.1, 129.7, 129.6 127.2, 126.4, 124.8, 122.9, 120.8, 114.3, 95.2, 86.4, 75.0, 56.7, 56.2, 50.1, 42.3, 39.8, 39.5, 38.2, 37.0, 36.7, 36.2, 35.8, 32.0, 31.9, 28.3, 28.0, 27.9, 24.3, 23.9, 22.9, 22.6, 21.6, 21.1, 19.4, 18.8, 11.9.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{49}H_{62}NO_4S^+$: 760.4394; Found: 760.4 390.

8. Characterization Data for New Products

3, 91%, 96% ee

(1*S*, 2*R*, 5*R*, 6*S*)-5, 6-Bis(methoxymethyl)-2-(2-phenyl-1-tosyl-1*H*-indol-3-yl)cyc lohex-3-en-1-ol.

96.7 mg, 91% yield, 96% ee, white solid, M.p: 118.7~123.4 °C, PE/EA = 2/1.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.29 (d, J = 8.0 Hz, 1H), 7.73 – 7.71 (m, 1H), 7.46 – 7.26 (m, 8H), 7.22 – 7.18 (m, 1H), 7.10 (d, J = 8.0 Hz, 2H), 5.78 – 5.73 (m, 1H), 5.69 – 5.65 (m, 1H), 4.30 (d, J = 12.0 Hz, 1H), 3.69 – 3.64 (m, 1H), 3.55 – 3.45 (m, 4H), 3.34 – 3.28 (m, 4H), 2.56 – 2.52 (m, 1H), 2.30 (s, 4H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 144.4, 137.0, 136.9, 135.9, 131.5, 131.1, 129.4, 128.7, 128.2, 127.4, 126.8, 124.3, 123.8, 123.1, 122.6, 115.1, 73.0, 71.4, 68.6, 58.9, 58.8, 41.1, 40.9, 35.7, 21.6.

HRMS (ESI): m/z: [M + Na]⁺ Calcd for C₃₁H₃₃NNaO₅S⁺: 554.1972; Found: 554.1978.

The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 6.391$ min, $t_R(major) = 7.714$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-5, 6-Bis(methoxymethyl)-2-(1-((4-nitrophenyl)sulfonyl)-2-phen yl-1*H*-indol-3-yl)cyclohex-3-en-1-ol.

66.0 mg, 59% yield, 96% ee, yellow solid, M.p: 138.3~142.9 °C, PE/EA = 2/ 1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.27 (d, J = 8.0 Hz, 1H), 8.13 (d, J = 12.0 Hz, 2H), 7.75 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 12.0 Hz, 2H), 7.48 – 7. 40 (m, 3H), 7.36 – 7.27 (m, 3H), 7.22 (d, J = 8.0 Hz, 1H), 5.76 – 5.74 (m, 1H), 5.62 (d, J = 8.0 Hz, 1H), 4.47 (d, J = 8.0 Hz, 1H), 3.67 (d, J = 8.0 Hz, 1H), 3.54 – 3.48 (m, 4H), 3.45 (s, 3H), 3.33 (s, 4H), 2.54 (s, 1H), 2.34 – 2.29 (m, 1H).

¹³C NMR (101 MHz, Chloroform-d) δ 150.4, 143.6, 136.9, 136.6, 131.6, 131.0, 129.1, 128.9, 128.4, 128.1, 127.7, 125.6, 124.9, 124.0, 123.9, 123.2, 115.2, 72.
9, 71.2, 68.5, 58.9, 58.9, 41.1, 40.8, 35.6.

HRMS (ESI): m/z: $[M + Na]^+$ Calcd for $C_{30}H_{30}N_2NaO_7S^+$: 585.1666; Found: 5 85.1673.

The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 7.653$ min, $t_R(major) = 9.047$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-5,6-Bis(methoxymethyl)-2-(2-(p-tolyl)-1-tosyl-1*H*-indol-3yl)cyclohex-3-en-1-ol

99.3 mg, 91% yield, 93% ee, white solid, M.p: 142.3~145.7 °C, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.27 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.32 – 7.26 (m, 1H), 7.21 – 7.17 (m, 5H), 7.11 (d, *J* = 8.0 Hz, 2H), 5.75 (d, *J* = 8.0 Hz, 1H), 5.66 (d, *J* = 8.0 Hz, 1H), 4.26 (d, *J* = 8.0 Hz, 1H), 3.66 (d, *J* = 8.0 Hz, 1H), 3.56 – 3.45 (m, 7H), 3.34 – 3.31 (m, 4H), 2.54 (s, 1H), 2.44 (s, 3H), 2.36 – 2.28 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 144.3, 138.5, 137.1, 137.0, 135.9, 131.2, 129.5, 129.4, 128.5, 128.2, 128.1, 126.8, 124.2, 123.7, 123.0, 122.6, 115.1, 73.0, 71.5, 68.7, 58.9, 58.8, 41.1, 40.9, 35.7, 21.6, 21.5.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{32}H_{36}NO_5S^+$: 546.2309; Found: 546.2296.

The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 7.145$ min, $t_R(major) = 9.054$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-5, 6-Bis(methoxymethyl)-2-(2-(4-methoxyphenyl)-1-tosyl-1*H*-in dol-3-yl)cyclohex-3-en-1-ol.

97.5 mg, 87% yield, 96% ee, yellow oil, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.28 (d, J = 12.0 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 2H), 7.29 (t, J = 12.0, 8.0 Hz, 1H), 7.24 – 7.13 (m, 3H), 7.08 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 5.77 – 5.7 3 (m, 1H), 5.65 (d, J = 8.0 Hz, 1H), 4.30 (d, J = 8.0 Hz, 1H), 3.88 (s, 3H), 3.64 (d, J = 8.0 Hz, 1H), 3.55 – 3.48 (m, 4H), 3.44 (s, 3H), 3.33 – 3.31 (m, 4H), 2.53 (d, J = 4.0 Hz, 1H), 2.36 – 2.28 (m, 4H).

¹³C NMR (101 MHz, Chloroform-d) δ 159.8, 144.3, 136.9, 136.8, 136.1, 131.0, 129.5, 129.4, 128.1, 126.8, 124.2, 123.6, 123.5, 123.0, 122.5, 115.1, 113.0, 73.
0, 71.4, 68.6, 58.9, 58.8, 55.3, 41.1, 40.9, 35.7, 21.6.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{32}H_{36}NO_6S^+$: 562.2258; Found: 562.2248.

The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 9.231$ min, $t_R(major) = 10.848$ min.

Methyl 4-(3-((1*R*, 4*R*, 5*S*, 6*S*)-6-hydroxy-4, 5-bis(methoxymethyl)cyclohex-2-e n-1-yl)-1-tosyl-1*H*-indol-2-yl)benzoate.

95.5 mg, 81% yield, 95% ee, pale yellow solid, M.p: 195.0~199.2 °C, PE/EA = 3/2.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.27 (d, J = 8.0 Hz, 1H), 8.07 (d, J = 8.0 Hz, 2H), 7.72 – 7.70 (m, 1H), 7.44 – 7.30 (m, 5H), 7.23 – 7.19 (m, 1H), 7.10 (d, J = 8.0 Hz, 2H), 5.76 – 5.71 (m, 1H), 5.65 – 5.61 (m, 1H), 4.38 (d, J = 12.0 Hz, 1H), 3.96 (s, 3H), 3.67 – 3.62 (m, 1H), 3.54 – 3.43 (m, 7H), 3. 33 – 3.28 (m, 4H), 2.55 – 2.51 (m, 1H), 2.36 – 2.25 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.9, 144.7, 137.1, 136.5, 135.6, 135.6, 131.1, 130.2, 129.5, 129.0, 128.6, 128.4, 126.7, 124.7, 123.3, 122.8, 115.2, 72.8, 71.3, 68.4, 58.9, 58.8, 52.3, 41.1, 40.8, 35.6, 21.6.

HRMS (ESI): m/z: [M + Na]⁺ Calcd for C₃₃H₃₆NNaO₇S⁺: 612.2026; Found: 612.2029.

The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 20.997 \text{ min}, t_R(major) = 22.955 \text{ min}.$

4-(3-((1*R*, 4*R*, 5*S*, 6*S*)-6-Hydroxy-4, 5-bis(methoxymethyl)cyclohex-2-en-1-yl)-1 -tosyl-1*H*-indol-2-yl)benzonitrile.

70.1 mg, 63% yield, 94% ee, white solid, M.p: 180.6~187.1 °C, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.25 (d, J = 8.0 Hz, 1H), 7.71 – 7.68 (m, 3H), 7.51 – 7.47 (m, 0H), 7.36 – 7.31 (m, 3H), 7.24 – 7.20 (m, 1H), 7.1 1 (d, J = 8.0 Hz, 2H), 5.74 – 5.70 (m, 1H), 5.60 – 5.56 (m, 1H), 4.44 (d, J = 8.0 Hz, 1H), 3.67 – 3.63 (m, 1H), 3.53 – 3.41 (m, 7H), 3.35 – 3.28 (m, 4 H), 2.57 – 2.52 (m, 1H), 2.35 – 2.29 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 144.9, 137.2, 136.7, 135.3, 134.6, 131.1, 131.0, 129.6, 128.7, 128.6, 126.6, 125.4, 125.1, 123.5, 122.7, 118.7, 115.3, 112.3, 72.7, 71.2, 68.1, 58.9, 58.9, 41.1, 40.8, 35.6, 21.6.

HRMS (ESI): m/z: $[M + Na]^+$ Calcd for $C_{32}H_{32}N_2NaO_5S^+$: 579.1924; Found: 5 79.1930.

The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 11.607 \text{ min}, t_R(major) = 13.319 \text{ min}.$

85.4 mg, 85% yield, 93% ee, colorless oil, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.27 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.31 – 7.27 (m, 2H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.90 – 6.76 (m, 2H), 5.78 – 5.74 (m, 1H), 5.66 (d, *J* = 8.0 Hz, 1H), 4.27 (d, *J* = 8.0 Hz, 1H), 3.80 (s, 3H), 3.69 (s, 1H), 3.52 – 3.48 (m, 4H), 3.44 (s, 3H), 3.35 – 3.29 (m, 4H), 2.54 (s, 1H), 2.32 – 2.27 (m, 4H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 158.6, 144.4, 137.0, 136.7, 136.0, 132.7, 131.0, 129.4, 128.4, 128.2, 126.9, 124.3, 123.7, 123.0, 122.7, 117.4, 116.7, 115.1, 114.7, 73.0, 71.4, 68.7, 58.9, 58.8, 55.2, 41.1, 40.9, 35.7, 21.6.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{32}H_{36}NO_6S^+$: 562.2258; Found: 562.2253.

The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 7.385$ min, $t_R(major) = 9.258$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-2-(2-(3-Chlorophenyl)-1-tosyl-1*H*-indol-3-yl)-5, 6bis(methoxymethyl)cyclohex-3-en-1-ol

71.2 mg, 63% yield, 87% ee, white solid, M.p: 154.1~159.2 °C, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.28 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.41 – 7.31 (m, 5H), 7.21 (d, *J* = 8.0 Hz, 1H), 7.20 – 7.12 (m, 3H), 5.74 (s, 1H), 5.64 (s, 1H), 4.34 (s, 1H), 3.66 (s, 1H), 3.55 – 3.49 (m, 4H), 3.44 (s, 3H), 3.33 – 3.26 (m, 4H), 2.54 (s, 1H), 2.34 – 2.29 (m, 4H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 144.7, 137.0, 135.9, 135.1, 133.3, 133.2, 130.8, 129.5, 129.0, 128.8, 128.7, 128.4, 126.8, 124.6, 124.2, 123.2, 122.7, 122.5, 115.1, 72.9, 71.3, 68.4, 68.2, 58.9, 58.8, 41.1, 40.8, 35.7, 21.6.

HRMS (ESI): m/z: [M + H]⁺ Calcd for C₃₁H₃₃ClNO₅S ⁺: 556.1762; Found: 556.1764.

The product was analyzed by HPLC to determine the enantiomeric excess: 87% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 6.232$ min, $t_R(major) = 7.252$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-5, 6-Bis(methoxymethyl)-2-(2-(*o*-tolyl)-1-tosyl-1*H*-indol-3yl)cyclohex-3-en-1-ol

94.4 mg, 86% yield, 81% ee, white solid, M.p: 169.0~171.2 °C, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.32 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 8.3 Hz, 1H), 7.37 – 7.28 (m, 3H), 7.22 – 7.11 (m, 4H), 6.89 (d, J = 8.0 Hz, 1H), 5.80 – 5.71 (m, 2H), 4.25 (d, J = 12.0 Hz, 1 H), 3.53 – 3.48 (m, 4H), 3.42 – 3.35 (m, 5H), 3.29 (s, 3H), 2.52 (s, 1H), 2.3 4 (s, 3H), 2.22 – 2.18 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 144.4, 140.9, 136.7, 136.4, 136.1, 131.2, 131.1, 131.0, 129.7, 129.4, 129.3, 129.1, 128.3, 127.0, 124.7, 124.1, 122.8, 122.6, 122.3, 114.8, 73.0, 71.3, 67.1, 58.8, 41.0, 40.9, 35.5, 21.6, 20.4.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{32}H_{36}NO_5S^+$: 546.2309; Found: 546.2312.

The product was analyzed by HPLC to determine the enantiomeric excess: 81% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 5.871$ min, $t_R(major) = 9.359$ min.

12, 89%, 98% ee

(1*S*, 2*R*, 5*R*, 6*S*)-5, 6-Bis(methoxymethyl)-2-(5-methyl-2-phenyl-1-tosyl-1*H*-ind ol-3-yl)cyclohex-3-en-1-ol.

97.1 mg, 89% yield, 98% ee, white solid, M.p: 162.0~167.4 °C, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.13 (d, J = 8.0 Hz, 1H), 7.50 (s, 1H), 7.45 - 7.34 (m, 6H), 7.29 - 7.24 (m, 1H), 7.13 - 7.08 (m, 3H), 5.77 - 5.73 (m, 1H), 5.64 - 5.61 (m, 1H), 4.34 (d, J = 8.0 Hz, 1H), 3.65 (s, 1H), 3.57 -3.48 (m, 4H), 3.46 (s, 3H), 3.33 (s, 3H), 3.30 - 3.27 (m, 1H), 2.56 - 2.50 (m, 1H), 2.39 (s, 3H), 2.31 - 2.26 (m, 4H).

¹³C NMR (101 MHz, Chloroform-d) δ 144.3, 137.0, 135.9, 135.2, 132.4, 132.0, 131.3, 129.5, 129.4, 128.6, 128.0, 127.4, 126.8, 125.7, 123.7, 122.6, 114.8, 73.
0, 71.3, 68.6, 58.9, 58.8, 41.1, 40.8, 35.6, 21.6.

HRMS (ESI): m/z: $[M + Na]^+$ Calcd for $C_{32}H_{35}NNaO_5S^+$: 568.2128; Found: 5 68.2163.

The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 6.607$ min, $t_R(major) = 8.399$ min.

13, 96%, 93% ee

(1*S*, 2*R*, 5*R*, 6*S*)-2-(5-Methoxy-2-phenyl-1-tosyl-1*H*-indol-3-yl)-5, 6-bis(methoxy methyl)cyclohex-3-en-1-ol.

108.2 mg, 96% yield, 93% ee, white solid, M.p: 147.1~150.8 °C, PE/EA = 2/ 1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.15 (d, J = 8.0 Hz, 1H), 7.45 – 7.37 (m, 3H), 7.36 – 7.31 (m, 3H), 7.30 – 7.26 (m, 1H), 7.22 (d, J = 4.0 Hz, 1H), 7.10 (d, J = 8.0 Hz, 2H), 6.91 (dd, J = 12.0, 4.0 Hz, 1H), 5.78 – 5.74 (m, 1 H), 5.65 (dd, J = 12.0, 4.0 Hz, 1H), 4.32 (d, J = 4.0 Hz, 1H), 3.79 (s, 3H), 3.66 (s, 1H), 3.55 – 3.46 (m, 4H), 3.42 (s, 3H), 3.33 (s, 3H), 3.29 – 3.26 (m, 1H), 2.58 – 2.50 (m, 1H), 2.35 – 2.26 (m, 4H).

¹³C NMR (101 MHz, Chloroform-d) δ 156.0, 144.3, 137.8, 135.7, 132.2, 131.7, 131.5, 129.4, 129.3, 128.7, 128.2, 127.4, 126.8, 124.0, 116.0, 113.0, 105.6, 73.
0, 71.5, 68.7, 58.9, 58.8, 55.4, 41.1, 40.8, 35.6, 21.6.

HRMS (ESI): m/z: $[M + Na]^+$ Calcd for $C_{32}H_{35}NNaO_6S^+$: 584.2077; Found: 5 84.2084.

The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 8.282$ min, $t_R(major) = 9.707$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-5, 6-Bis(methoxymethyl)-2-(2-phenyl-1-tosyl-5-(trifluoromethy l)-1*H*-indol-3-yl)cyclohex-3-en-1-ol.

128.1 mg, 80% yield, 92% ee, white solid, M.p: 158.1~162.1 °C, PE/EA = 2/ 1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.40 (d, J = 8.0 Hz, 1H), 8.07 (s, 1H), 7.53 (d, J = 8.0 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.42 – 7.38 (m, 2H), 7.36 – 7.34 (m, 2H), 7.29 (d, J = 8.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 5.83 – 5.79 (m, 1H), 5.66 – 5.62 (m, 1H), 4.77 (d, J = 8.0Hz, 1H), 3.62 – 3.58 (m, 1H), 3.55 – 3.44 (m, 7H), 3.32 (s, 3H), 3.28 – 3.26 (m, 1H), 2.57 – 2.53 (m, 1H), 2.34 – 2.27 (m, 4H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 144.9, 138.4, 138.2, 135.8, 131.4 (d, *J* = 40.4 Hz), 130.8, 130.7, 129.6, 129.1 (d, *J* = 10.1 Hz), 128.7, 127.6, 126.9, 126.2, 125.0 (q, *J* = 30.3 Hz), 123.6, 123.5, 120.8 (q, *J* = 10.1 Hz), 120.5 (q, *J* = 10.1 Hz), 115.2, 72.8, 70.9, 68.1, 58.9, 58.8, 40.9, 40.6, 35.5, 21.6.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -61.1.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{32}H_{33}F_3NO_5S^+$: 600.2026; Found: 600.20 17.

The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 5.428$ min, $t_R(major) = 5.955$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-2-(5-Fluoro-2-phenyl-1-tosyl-1*H*-indol-3-yl)-5, 6-bis(methoxym ethyl)cyclohex-3-en-1-ol.

82.4 mg, 75% yield, 93% ee, white solid, M.p: 135.3~139.8 °C, PE/EA = 2/1.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.22 (q, J = 4.0 Hz, 1H), 7.46 – 7.37 (m, 4H), 7.34 – 7.30 (m, 3H), 7.27 – 7.24 (m, 1H), 7.11 – 7.09 (m, 2H), 7.0 2 (td, J = 12.0, 4.0 Hz, 1H), 5.80 – 5.76 (m, 1H), 5.63 – 5.59 (m, 1H), 4.55 (d, J = 12.0 Hz, 1H), 3.64 – 3.60 (m, 1H), 3.55 – 3.45 (m, 7H), 3.32 (s, 3H), 3.27 – 3.24 (m, 1H), 2.56 – 2.51 (m, 1H), 2.33 (s, 3H), 2.31 – 2.25 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 159.4 (d, J = 232.3 Hz), 144.6, 138.5, 135.7, 133.3, 132.4 (d, J = 10.1 Hz), 131.1, 129.4, 129.1, 128.9, 128.6, 127.5, 126.8, 123.7 (d, J = 10.1 Hz), 116.1 (d, J = 10.1 Hz), 112.1 (d, J = 30.3 Hz), 108.4 (d, J = 30.3 Hz), 72.9, 71.1, 68.4, 58.9, 53.5, 41.0, 40.6, 35.5, 21.6.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -120.3.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{31}H_{33}FNO_5S^+$: 550.2058; Found: 550. 2016.

The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min,254 nm), $t_R(minor) = 6.882$ min, $t_R(major) = 8.913$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-2-(5-Chloro-2-phenyl-1-tosyl-1*H*-indol-3-yl)-5, 6-bis(methoxym ethyl)cyclohex-3-en-1-ol.

64.5 mg, 57% yield, 95% ee, white solid, M.p: 144.8~150.3 °C, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.20 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 4.0 Hz, 1H), 7.49 – 7.35 (m, 3H), 7.36 – 7.29 (m, 3H), 7.24 (s, 2H), 7.14 – 7.07 (m, 2H), 5.83 – 5.75 (m, 1H), 5.65 – 5.57 (m, 1H), 4.62 (d, J = 8.0 Hz, 1H), 3.61 – 3.45 (m, 8H), 3.32 (s, 3H), 3.27 – 3.24 (m, 1H), 2.31 – 2.25 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 144.7, 138.1, 135.7, 135.3, 132.5, 131.0, 129.5, 129.2, 128.9, 128.6, 127.5, 126.8, 124.3, 123.2, 122.5, 116.1, 72.8, 70.9, 68.2, 59.0, 58.9, 41.0, 40.5, 35.5, 21.6.

HRMS (ESI): m/z: $[M + Na]^+$ Calcd for $C_{31}H_{32}ClNNaO_5S^+$: 588.1582; Found: 588.1605.

The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 6.228$ min, $t_R(major) = 8.053$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-2-(5-Bromo-2-phenyl-1-tosyl-1*H*-indol-3-yl)-5, 6-bis(methoxym ethyl)cyclohex-3-en-1-ol.

68.2 mg, 56% yield, 96% ee, white solid, M.p: 171.8~175.6 °C, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.14 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 4.0 Hz, 1H), 7.46 – 7.36 (m, 4H), 7.33 – 7.27 (m, 3H), 7.25 – 7.20 (m, 1H), 7.12 (d, J = 8.0 Hz, 2H), 5.81 – 5.77 (m, 1H), 5.59 (d, J = 8.0 Hz, 1H), 4.6 3 (d, J = 12.0 Hz, 1H), 3.60 – 3.44 (m, 8H), 3.32 (s, 3H), 3.26 – 3.24 (m, 1H), 2.53 (d, J = 4.0 Hz, 1H), 2.33 (s, 3H), 2.31 – 2.25 (m, 1H).

¹³C NMR (101 MHz, Chloroform-d) δ 144.7, 137.9, 135.7, 135.7, 133.0, 130.9, 129.5, 129.2, 128.9, 128.6, 127.5, 126.9, 126.8, 125.6, 123.1, 116.5, 116.5, 72.
8, 70.9, 68.1, 59.1, 58.9, 40.9, 40.5, 35.5, 21.6.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{31}H_{33}BrNO_5S^+$: 610.1257; Found: 610.12 68.

The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 6.157$ min, $t_R(major) = 8.786$ min.

Methyl 3-((1*R*, 4*R*, 5*S*, 6*S*)-6-hydroxy-4, 5-bis(methoxymethyl)cyclohex-2-en-1 -yl)-2-phenyl-1-tosyl-1*H*-indole-5-carboxylate.

99.5 mg, 84% yield, 97% ee, pale yellow solid, M.p: 136.4~141.1 °C, PE/EA = 3/2.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.46 (d, J = 4.0 Hz, 1H), 8.32 (d, J = 12.0 Hz, 1H), 7.99 (dd, J = 8.0, 4.0 Hz, 1H), 7.46 – 7.34 (m, 5H), 7.33 – 7. 27 (m, 1H), 7.25 – 7.19 (m, 1H), 7.09 (d, J = 8.0 Hz, 2H), 5.83 – 5.78 (m, 1H), 5.65 – 5.62 (m, 1H), 4.73 (d, J = 8.0 Hz, 1H), 3.90 (s, 3H), 3.65 – 3.6 0 (m, 1H), 3.58 – 3.45 (m, 7H), 3.32 (s, 3H), 3.30 – 3.27 (m, 1H), 2.58 – 2. 51 (m, 1H), 2.32 – 2.26 (m, 4H).

¹³C NMR (101 MHz, Chloroform-d) δ 167.5, 144.8, 139.6, 137.9, 135.8, 130.9, 130.8, 129.5, 129.1, 128.9, 128.6, 127.5, 126.9, 125.4, 125.2, 125.0, 124.1, 114.6, 72.9, 70.9, 68.2, 59.1, 58.9, 51.9, 41.0, 40.7, 35.6, 21.6.

HRMS (ESI): m/z: $[M + Na]^+$ Calcd for $C_{33}H_{35}NNaO_7S^+$: 612.2026; Found: 6 12.2032.

The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min,250 nm), $t_R(minor) = 7.863$ min, $t_R(major) = 10.054$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-2-(6-Chloro-2-phenyl-1-tosyl-1*H*-indol-3-yl)-5, 6-bis(methoxym ethyl)cyclohex-3-en-1-ol.

96.8 mg, 86% yield, 95% ee, pale yellow solid, M.p: 103.6~108.6 °C, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.33 (d, J = 4.0 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.46 – 7.33 (m, 5H), 7.31 – 7.27 (m, 1H), 7.24 – 7.20 (m, 1H), 7.17 (dd, J = 8.0, 4.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 5.78 – 5.74 (m, 1 H), 5.64 – 5.60 (m, 1H), 4.42 (d, J = 12.0 Hz, 1H), 3.66 – 3.57 (m, 1H), 3. 53 – 3.45 (m, 4H), 3.44 (s, 3H), 3.32 (s, 3H), 3.27 – 3.22 (m, 1H), 2.57 – 2.4 9 (m, 1H), 2.34 (s, 3H), 2.30 – 2.24 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 144.8, 137.3, 137.3, 135.8, 130.9, 130.1, 129.5, 129.1, 128.9, 128.5, 127.5, 126.9, 123.6, 123.5, 123.4, 115.1, 72.9, 71.3, 68.4, 58.9, 58.9, 41.0, 40.7, 35.6, 21.6.

HRMS(ESI): m/z: $[M + Na]^+$ Calcd for $C_{31}H_{32}ClNNaO_5S^+$: 588.1582; Found: 5 88.1599.

The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 5.715$ min, $t_R(major) = 6.192$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-2-(6-Fluoro-2-phenyl-1-tosyl-1*H*-indol-3-yl)-5, 6-bis(methoxym ethyl)cyclohex-3-en-1-ol.

66.0 mg, 60% yield, 95% ee, white solid, M.p: 160.1~162.2 °C, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.03 (dd, J = 12.0, 4.0 Hz, 1H), 7.65 (d, J = 16.0 Hz, 1H), 7.46 – 7.34 (m, 5H), 7.29 (d, J = 4.0 Hz, 1H), 7.22 (d, J = 4.0 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 6.96 (dt, 1H), 5.78 – 5.74 (m, 1 H), 5.66 – 5.62 (m, 1H), 4.43 (d, J = 8.0 Hz, 1H), 3.66 – 3.61 (m, 1H), 3.54 – 3.44 (m, 7H), 3.32 (s, 3H), 3.27 – 3.24 (m, 1H), 2.55 – 2.51 (m, 1H), 2.34 (s, 3H), 2.31 – 2.25 (m, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 160.7 (d, J = 240.4 Hz), 144.7, 137.1 (d, J = 10.1 Hz), 137.0 (d, J = 10.1 Hz), 135.7, 131.1, 129.5, 129.3, 128.6 (d, J = 40.4 Hz), 127.5, 127.3 (d, J = 10.1 Hz), 126.9, 123.5, 123.4, 111.3 (d, J = 20.2 Hz), 102.3 (d, J = 30.3 Hz), 72.9, 71.3, 68.5, 58.9, 58.9, 41.1, 40.8, 3 5.6, 21.6.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -117.4.

HRMS (ESI): m/z: [M + H]⁺ Calcd for C₃₁H₃₃FNO₅S⁺: 550.2058; Found: 550.2063.

The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 254 nm), $t_R(minor) = 6.128$ min, $t_R(major) = 6.985$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-5, 6-Bis(methoxymethyl)-2-(7-methyl-2-phenyl-1-tosyl-1*H*-indol-3-yl)cyclohex-3-en-1-ol

19.7 mg, 18% yield, 89% ee, white solid, M.p: 151.6~152.5 °C, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.46 – 7.44 (m, 1H), 7.38 – 7.37 (m, 3H), 7.28 – 7.24 (m, 2H), 7.16 – 7.15 (m, 2H), 6.97 (dd, *J* = 32.0, 8.0 Hz, 4H), 5.74 – 5.69 (m, 1H), 5.40 (d, *J* = 8.0 Hz, 1H), 3.56 – 3.45 (m, 6H), 3.44 (s, 3H), 3.39 (s, 3H), 3.34 (d, *J* = 8.0 Hz, 1H), 2.82 (s, 3H), 2.53 (s, 1H), 2.36 – 2.27 (m, 4H).

¹³**C NMR** (101 MHz, Chloroform-*d* Chloroform-*d*) δ 144.2, 140.7, 140.4, 135.6, 133.6, 132.0, 130.6, 130.0, 128.5, 128.4, 128.4, 128.3, 128.2, 128.1, 127.6, 127.0, 124.9, 120.9, 72.8, 72.0, 68.9, 58.9, 58.9, 41.1, 40.4, 35.7, 21.7, 21.5.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{32}H_{36}NO_5S^+$: 546.2309; Found: 546.2301.

The product was analyzed by HPLC to determine the enantiomeric excess: 89% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 10.701 \text{ min}, t_R(major) = 11.577 \text{ min}.$

Methyl 4-(3-((1*R*, 4*R*, 5*S*, 6*S*)-6-hydroxy-4, 5-bis(methoxymethyl)cyclohex-2-en-1-yl)-5-methyl-1-tosyl-1*H*-indol-2-yl)benzoate.

79.7 mg, 66% yield, 96% ee, white solid, M.p: 156.7~161.5 °C, PE/EA = 3/2.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.14 (d, *J* = 12.0 Hz, 1H), 8.08 (d, *J* = 8.0 Hz, 2H), 7.5 – 7.5 (m, 1H), 7.5 – 7.3 (m, 4H), 7.15 – 7.08 (m, 3H), 5.75 – 5.71 (m, 1H), 5.61 – 5.57 (m, 1H), 4.41 (d, *J* = 12.0 Hz, 1H), 3.96 (s, 3H), 3.65 – 3.61 (m, 1H), 3.55 – 3.45 (m, 7H), 3.32 (s, 3H), 3.29 – 3.25 (m, 1H), 2.55 – 2.51 (m, 1H), 2.39 (s, 3H), 2.31 – 2.26 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.9, 144.5, 136.6, 135.8, 135.5, 135.4, 132.7, 131.4, 130.1, 129.5, 129.1, 128.6, 128.2, 126.7, 126.1, 124.7, 122.7, 114.9, 72.8, 71.2, 68.3, 58.9, 58.8, 52.3, 41.0, 40.8, 35.6, 21.6.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{34}H_{38}NO_7S^+$: 604.2364; Found: 604.2370.

The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 7.847$ min, $t_R(major) = 8.782$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-2-(5-Bromo-2-(4-methoxyphenyl)-1-tosyl-1*H*-indol-3-yl)-5, 6-b is(methoxymethyl)cyclohex-3-en-1-ol.

80.7 mg, 63% yield, 96% ee, yellow oil, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.14 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 4.0 Hz, 1H), 7.36 (dd, J = 8.0, 4.0 Hz, 1H), 7.31 (d, J = 12.0 Hz, 2H), 7.23 – 7.16 (m, 1H), 7.14 – 7.09 (m, 3H), 6.92 (d, J = 8.0 Hz, 2H), 5.81 – 5.77 (m, 1H), 5.61 – 5.58 (m, 1H), 4.60 (d, J = 12.0 Hz, 1H), 3.88 (s, 3H), 3.59 – 3.46 (m, 8H), 3.32 (s, 3H), 3.27 – 3.24 (m, 1H), 2.56 – 2.51 (m, 1H), 2.33 – 2.26 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 160.0, 144.6, 137.9, 135.8, 135.6, 133.0, 129.5, 129.3, 128.6, 126.8, 126.8, 125.4, 122.9, 122.9, 116.5, 116.5, 113.1, 112.9, 72.8, 70.9, 68.1, 59.1, 58.9, 55.3, 41.0, 40.6, 35.5, 21.6.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{32}H_{35}BrNO_6S^+$: 640.1363; Found: 640.13 73.

The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 7.477$ min, $t_R(major) = 8.836$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-2-(6-Fluoro-2-(4-methoxyphenyl)-1-tosyl-1*H*-indol-3-yl)-5, 6-b is(methoxymethyl)cyclohex-3-en-1-ol.

102.6 mg, 89% yield, 97% ee, white solid, M.p: 97.4~101.2 °C, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.02 (dd, J = 8.0, 4.0 Hz, 1H), 7.63 (d d, J = 8.0, 4.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.23 – 7.16 (m, 1H), 7.10 (d, J = 8.0 Hz, 3H), 6.97 – 6.89 (m, 3H), 5.78 – 5.73 (m, 1H), 5.65 – 5.62 (m, 1H), 4.40 (d, J = 12.0 Hz, 1H), 3.87 (s, 3H), 3.65 – 3.59 (m, 1H), 3.54 – 3.46 (m, 4H), 3.44 (s, 3H), 3.32 (s, 3H), 3.28 – 3.23 (m, 1H), 2.58 – 2.50 (m, 1H), 2.33 – 2.26 (m, 4H).

¹³C NMR (101 MHz, Chloroform-d) δ 160.6 (d, J = 242.4 Hz), 159.9, 144.6, 137.0 (d, J = 10.1 Hz), 137.0, 135.9, 129.5, 129.3, 128.4, 127.3 (d, J = 10.1 Hz), 126.9, 123.3, 123.2 (d, J = 20.2 Hz), 112.9 (d, J = 20.2 Hz), 111.2 (d, J = 2 0.2 Hz), 102.3 (d, J = 30.3 Hz), 72.9, 71.3, 68.5, 58.9, 58.9, 55.3, 41.1, 40.8, 35.6, 21.6.

¹⁹F NMR (376 MHz, Chloroform-d) δ -117.6.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{32}H_{35}FNO_6S^+$: 580.2164; Found: 580. 2177.

The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 6.765$ min, $t_R(major) = 7.516$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-5, 6-Bis(methoxymethyl)-2-(2-(thiophen-2-yl)-1-tosyl-1*H*-indol -3-yl)cyclohex-3-en-1-ol.

96.8 mg, 90% yield, 91% ee, white solid, M.p: 122.1~128.0 °C, PE/EA = 4/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.31 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.50 – 7.47 (m, 3H), 7.36 – 7.32 (m, 1H), 7.24 – 7.20 (m, 1H), 7.15 – 7.10 (m, 3H), 7.05 – 7.04 (m, 1H), 5.83 – 5.78 (m, 1H), 5.74 – 5.70 (m, 1H), 4.38 (d, J = 8.0 Hz, 1H), 3.76 (s, 1H), 3.59 – 3.52 (m, 4H), 3.47 (s, 3H), 3.45 – 3.42 (m, 1H), 3.36 (s, 3H), 2.61 – 2.56 (m, 1H), 2.41 – 2.35 (m, 4H).

¹³C NMR (101 MHz, Chloroform-d) δ 144.5, 137.3, 135.9, 131.6, 131.2, 130.5, 129.5, 129.1, 128.7, 128.3, 126.9, 126.7, 126.4, 124.8, 123.0, 122.8, 115.0, 73.
0, 71.4, 68.8, 58.9, 58.9, 41.2, 41.1, 35.7, 21.6.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{29}H_{32}NO_5S_2^+$: 538.1716; Found: 538.1716.

The product was analyzed by HPLC to determine the enantiomeric excess: 91% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 254 nm), $t_R(minor) = 8.880$ min, $t_R(major) = 10.610$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-2-(5-Chloro-2-(thiophen-2-yl)-1-tosyl-1*H*-indol-3-yl)-5,6-bis(me thoxymethyl)cyclohex-3-en-1-ol.

86.5 mg, 76% yield, 92% ee, white solid, M.p: 108.1~113.0 °C, PE/EA = 4/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.21 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 4.0 Hz, 1H), 7.49 – 7.47 (m, 1H), 7.42 – 7.40 (m, 2H), 7.27 – 7.24 (m, 1H), 7.12 (d, J = 8.0 Hz, 2H), 7.10 – 7.08 (m, 1H), 7.03 – 7.01 (m, 1H), 5.84 – 5.79 (m, 1H), 5.65 – 5.61 (m, 1H), 4.64 (d, J = 12.0 Hz, 1H), 3.71 – 3.67 (m, 1H), 3.58 – 3.48 (m, 7H), 3.39 – 3.36 (m, 1H), 3.33 (s, 3H), 2.59 – 2.54 (m, 1H), 2.38 – 2.32 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 144.8, 135.7, 135.7, 131.9, 131.8, 130.5, 129.9, 129.6, 129.0, 128.7, 128.6, 128.5, 126.9, 126.5, 126.1, 124.8, 122.6, 116.0, 72.8, 70.9, 68.3, 59.0, 58.9, 41.0, 40.9, 35.5, 21.6.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{29}H_{31}CINO_5S_2^+$: 572.1327; Found: 57 2.1331.

The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 7.383$ min, $t_R(major) = 9.143$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-2-(2-cyclopropyl-1-tosyl-1*H*-indol-3-yl)-5, 6-bis(methoxymethy l)cyclohex-3-en-1-ol.

82.4 mg, 83% yield, 81% ee, yellow oil, PE/EA = 5/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.11 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.22 – 7.09 (m, 4H), 5.85 – 5.81 (m, 1H), 5.70 – 5.67 (m, 1H), 4.15 (d, J = 8.0 Hz, 1H), 4.03 (s, 1H), 3.84 (d, J = 8.0 Hz, 1H), 3.63 – 3.54 (m, 4H), 3.45 (s, 3H), 3.38 (s, 3H), 2.69 – 2.62 (m, 1H), 2.57 – 2.49 (m, 1H), 2.33 (s, 3H), 1.97 – 1.90 (m, 1H), 1.06 – 0.96 (m, 2H), 0.79 – 0.74 (m, 1H), 0.50 – 0.45 (m, 1H).

¹³C NMR (101 MHz, Chloroform-d) δ 144.2, 138.4, 137.1, 136.9, 131.1, 129.7, 129.5, 128.2, 126.3, 124.0, 123.9, 122.7, 122.6, 114.7, 72.9, 71.7, 68.1, 59.0, 4
1.6, 40.7, 35.9, 21.6, 8.6, 8.5, 8.3.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{28}H_{34}NO_5S^+$: 496.2152; Found: 496.2 160.

The product was analyzed by HPLC to determine the enantiomeric excess: 81% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 8.955$ min, $t_R(major) = 10.181$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-5, 6-Bis((benzyloxy)methyl)-2-(2-phenyl-1-tosyl-1*H*-indol-3-yl) cyclohex-3-en-1-ol.

122.5 mg, 89% yield, 94% ee, white solid, M.p: 89.3~93.7 °C, PE/EA = 5/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.34 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.52 – 7.31 (m, 18H), 7.14 (d, J = 8.0 Hz, 2H), 7.04 (t, J = 8.0 Hz, 1H), 5.84 – 5.80 (m, 1H), 5.73 (d, J = 8.0 Hz, 1H), 4.63 – 4.35 (m, 5 H), 3.76 (d, J = 8.0 Hz, 1H), 3.60 (d, J = 4.0 Hz, 4H), 3.37 (s, 1H), 2.66 (s, 1H), 2.43 – 2.35 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 144.5, 138.4, 137.0, 136.9, 136.1, 131.6, 130.9, 129.5, 129.3, 128.8, 128.7, 128.4, 128.4, 128.4, 128.2, 127.9, 127.7, 127.5, 126.9, 124.3, 123.8, 123.0, 122.8, 115.0, 73.6, 73.2, 70.6, 68.9, 68.8, 41.4, 4 0.9, 35.6, 21.6.

HRMS (ESI): m/z: $[M + Na]^+$ Calcd for C₄₃H₄₁NNaO₅S⁺: 706.2598; Found: 706.2 627.

The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 7.746$ min, $t_R(major) = 9.454$ min.

(1*S*, 2*R*, 5*R*, 6*S*)-5, 6-Bis((allyloxy)methyl)-2-(5-methyl-2-phenyl-1-tosyl-1*H*-indol-3-yl)cyclohex-3-en-1-ol.

101.6 mg, 85% yield, 97% ee, white solid, M.p: $63.3 \sim 66.6$ °C, PE/EA = 5/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.16 (d, J = 12.0 Hz, 1H), 7.50 (s, 1H), 7.45 – 7.35 (m, 5H), 7.34 – 7.22 (m, 2H), 7.13 – 7.08 (m, 3H), 5.97 – 5.85 (m, 2H), 5.79 – 5.75 (m, 1H), 5.68 (dd, J = 12.0, 4.0 Hz, 1H), 5.31 (dd, J = 16.0, 4.0 Hz, 1H), 5.27 – 5.21 (m, 2H), 5.16 (dd, J = 8.0, 4.0 Hz, 1H), 4.36 (d, J = 12.0 Hz, 1H), 4.13 – 4.05 (m, 2H), 4.00 – 3.92 (m, 2H), 3.67 (d, J = 12.0 Hz, 1H), 3.63 – 3.53 (m, 4H), 3.28 (s, 1H), 2.63 – 2.55 (m, 1H), 2.38 (s, 3H), 2.34 – 2.29 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 144.3, 137.0, 136.0, 135.2, 134.8, 133.6, 132.4, 131.7, 131.2, 129.4, 129.4, 128.6, 128.2, 127.4, 126.8, 125.7, 123.7, 122.5, 118.2, 116.8, 114.8, 72.3, 72.0, 70.5, 68.8, 68.8, 41.3, 40.9, 35.6, 21.6, 21.5.

HRMS (ESI): m/z: $[M + Na]^+$ Calcd for $C_{36}H_{39}NNaO_5S^+$: 620.2441; Found: 6 20.2444.

The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 5.332$ min, $t_R(major) = 6.260$ min.

((1*S*, 2*R*, 5*R*, 6*S*)-5-(6-Fluoro-2-phenyl-1-tosyl-1*H*-indol-3-yl)-6-hydroxycyclohe x-3-ene-1,2-diyl)bis(methylene) bis(dimethylcarbamate).

118.4 mg, 83% yield, 96% ee, white solid, M.p: 191.4~195.3 °C, PE/EA = 1/ 1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 12.0 Hz, 1H), 7.68 (q, *J* = 4.0 Hz, 1H), 7.44 – 7.34 (m, 5H), 7.15 (dd, *J* = 28.0, 8.0 Hz, 4H), 6.98 (t, *J* = 8.0 Hz, 1H), 5.89 (d, *J* = 8.0 Hz, 1H), 5.62 (d, *J* = 8.0 Hz, 1H), 4.46 – 4.4 2 (m, 1H), 4.36 – 4.27 (m, 2H), 4.20 – 4.16 (m, 1H), 3.81 (s, 1H), 3.33 (s, 1H), 2.90 – 2.83 (m, 12H), 2.62 (s, 1H), 2.35 (s, 3H), 2.12 (q, *J* = 8.0 Hz, 1 H), 1.91 (s, 1H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 162.1 (d, J = 242.4 Hz), 156.6, 156.5, 145.0, 137.7 (d, J = 10.1 Hz), 137.1 (d, J = 20.2 Hz), 135.5, 130.8, 129.5, 1 29.0, 127.9, 127.8, 127.0, 126.6, 123.3 (d, J = 10.1 Hz), 121.9, 111.8 (d, J = 30.3 Hz), 102.4 (d, J = 20.2 Hz), 69.1, 66.1, 64.7, 40.5, 40.4, 36.5, 36.4, 35.9, 35.8, 35.2, 21.6.

¹⁹F NMR (376 MHz, Chloroform-*d*) δ -116.1.

HRMS (ESI): m/z: $[M + Na]^+$ Calcd for $C_{35}H_{38}FN_3NaO_7S^+$: 686.2307; Found: 686.2323.

The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee

(FLM NY(2) Hexane/*i*-PrOH = 85/15, flow rate: 1.0 mL/min, 254 nm), $t_R(minor) =$ 39.522 min, $t_R(major) = 54.163$ min.

(1*S*, 2*R*)-2-Isopropyl-5-methylcyclohexyl 4-(3-((1*R*, 4*R*, 5*S*, 6*S*)-6-hydroxy-4, 5 -bis(methoxymethyl)cyclohex-2-en-1-yl)-1-tosyl-1*H*-indol-2-yl)benzoate.

111.3 mg, 78% yield, 96% de, white solid, M.p: 105.4~112.7 °C, PE/EA = 2/ 1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.26 (d, J = 8.0 Hz, 1H), 8.08 (s, 2H), 7.73 (d, J = 8.0 Hz, 1H), 7.48 – 7.37 (m, 4H), 7.33 (t, J = 8.0 Hz, 1H), 7.1 9 (t, J = 8.0 Hz, 1H), 7.09 (d, J = 8.0 Hz, 2H), 5.76 – 5.73 (m, 1H), 5.62 (d, J = 8.0 Hz, 1H), 4.99 (td, J = 12.0, 4.0 Hz, 1H), 4.38 (d, J = 12.0 Hz, 1 H), 3.65 (d, J = 8.0 Hz, 1H), 3.54 – 3.46 (m, 4H), 3.43 (s, 3H), 3.33 (s, 3H), 3.30 (s, 1H), 2.53 (s, 1H), 2.37 – 2.26 (m, 4H), 2.19 (d, J = 12.0 Hz, 1H), 2.0 9 – 2.05 (m, 1H), 1.75 (d, J = 8.0 Hz, 2H), 1.63 – 1.57 (m, 2H), 1.21 – 1.1 0 (m, 2H), 0.96 (t, J = 8.0 Hz, 7H), 0.84 (d, J = 8.0 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.9, 144.7, 137.1, 136.3, 135.8, 135.5, 131.2, 130.9, 129.5, 129.0, 128.6, 128.4, 126.8, 124.9, 124.7, 123.3, 122.9, 115.2, 75.0, 72.9, 71.3, 68.4, 58.9, 58.8, 47.3, 41.1, 41.0, 40.8, 35.6, 34.3, 31.5, 26. 3, 23.5, 22.1, 21.6, 20.9, 16.4.

HRMS (ESI): m/z: $[M + Na]^+$ Calcd for $C_{42}H_{51}NNaO_7S^+$: 736.3278; Found: 7 36.3282.

The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 13.556 \text{ min}, t_R(major) = 11.151 \text{ min}.$

(1*R*, 3*S*, 8*R*, 9*S*, 13*R*, 14*S*, 17*R*)-1, 13-Dimethyl-17-((*R*)-6-methylheptan-2-yl)-2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17-tetradecahydro-1*H*-cyclopenta[a]phenanthren-3-yl 4-(3-((1*R*, 4*R*, 5*S*, 6*S*)-6-hydroxy-4, 5-bis(methoxymethyl)c yclohex-2-en-1-yl)-1-tosyl-1*H*-indol-2-yl)benzoate

60.9 mg, 65% yield, 93% de, white solid, M.p: 201.1~207.6 °C, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.26 (d, J = 8.0 Hz, 1H), 8.07 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.42 – 7.30 (m, 5H), 7.19 (t, J = 8.0 Hz, 1H), 7.12 (d, J = 8.0 Hz, 2H), 5.76 – 5.72 (m, 1H), 5.61 (d, J = 12.0 Hz, 1H), 5.46 (d, J = 4.0 Hz, 1H), 4.95 – 4.87 (m, 1H), 4.37 (d, J = 12.0 Hz, 1H), 3.63 (d, J = 8.0 Hz, 1H), 3.54 – 3.46 (m, 4H), 3.43 (s, 3H), 3.32 (s, 3 H), 3.28 (s, 1H), 2.57 – 2.47 (m, 3H), 2.32 – 2.26 (m, 4H), 2.06 – 1.93 (m, 4H), 1.88 – 1.45 (m, 9H), 1.42 – 1.19 (m, 7H), 1.17 – 1.13 (m, 3H), 1.12 – 1.08 (m, 4H), 1.07 – 0.98 (m, 4H), 0.93 (d, J = 4.0 Hz, 3H), 0.88 (dd, J = 8.0, 4.0 Hz, 6H), 0.70 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.8, 144.6, 139.7, 137.1, 136.3, 135.7, 135.6, 131.1, 130.9, 129.5, 129.0, 128.6, 128.4, 126.8, 124.7, 124.7, 123.3, 122.9, 122.8, 115.2, 74.8, 72.9, 71.3, 68.4, 58.9, 58.8, 56.7, 56.2, 50.1, 42.4, 41.1, 40.8, 39.8, 39.5, 38.3, 37.1, 36.7, 36.2, 35.8, 35.6, 32.0, 31.9, 28.3, 28.0, 28.0, 24.3, 23.9, 22.9, 22.6, 21.6, 21.1, 19.4, 18.8, 11.9.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{59}H_{78}NO_7S^+$: 944.5494; Found: 944.5 460.

The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 5.322$ min, $t_R(major) = 5.783$ min.

(1*S*, 2*S*, 3*R*, 6*R*)-2, 3-Bis(methoxymethyl)-6-(2-phenyl-1-tosyl-1*H*-indol-3-yl)cyc lohexan-1-ol.

98.1 mg, 92% yield, 95% ee, white solid, M.p: 86.2~92.7 °C, PE/EA = 2/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.31 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.45 – 7.27 (m, 7H), 7.25 – 7.17 (m, 2H), 7.08 (d, J = 8.0 Hz, 2H), 3.76 (s, 1H), 3.63 – 3.51 (m, 2H), 3.49 – 3.39 (m, 6H), 3.30 (s, 3H), 2. 57 (dt, J = 12.0, 4.0 Hz, 1H), 2.33 (s, 3H), 2.30 – 2.19 (m, 1H), 2.00 – 1.80 (m, 3H), 1.44 – 1.34 (m, 1H), 1.25 – 1.20 (m, 1H).

¹³C NMR (101 MHz, Chloroform-d) δ 144.4, 137.0, 136.7, 136.0, 131.9, 130.3,

129.3, 128.6, 127.2, 126.9, 125.2, 124.4, 123.2, 122.1, 115.3, 73.6, 73.5, 71.2, 59.0, 58.9, 43.6, 42.5, 34.1, 29.8, 22.1, 21.6.

HRMS (ESI): m/z: $[M + Na]^+$ Calcd for $C_{31}H_{35}NNaO_5S^+$: 556.2128; Found: 5 56.2131.

The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 7.706$ min, $t_R(major) = 9.152$ min.

(2*R*, 5*R*, 6*S*)-5, 6-Bis(methoxymethyl)-2-(2-phenyl-1-tosyl-1*H*-indol-3-yl)cyclohe x-3-en-1-one.

87.0 mg, 82% yield, 96% ee, pale yellow solid, M.p: 96.5~99.8 °C, PE/EA = 8/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.29 (d, J = 12.0 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.45 – 7.29 (m, 7H), 7.22 – 7.15 (m, 2H), 7.08 (d, J = 8.0 Hz, 2H), 5.92 – 5.88 (m, 1H), 5.65 (dd, J = 8.0, 4.0 Hz, 1H), 4.09 (s, 1H), 3.80 – 3.76 (m, 1H), 3.55 – 3.51 (m, 1H), 3.45 (d, J = 4.0 Hz, 2H), 3.32 (d, J = 4.0 Hz, 6H), 3.12 – 3.07 (m, 2H), 2.31 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 204.7, 144.5, 139.1, 137.1, 135.7, 130.8, 129.4, 129.4, 129.2, 128.9, 127.5, 126.8, 124.6, 123.3, 121.4, 119.1, 115.3, 71.
6, 68.7, 59.0, 58.6, 49.1, 48.0, 41.8, 21.6.

HRMS (ESI): m/z: $[M + Na]^+$ Calcd for $C_{31}H_{31}NNaO_5S^+$: 552.1815; Found: 5 52.1817.

The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (FLM INA Hexane/*i*-PrOH = 90/10, flow rate: 1.0 mL/min, 250 nm), $t_R(minor) = 6.598$ min, $t_R(major) = 7.705$ min.

36, 46%, 98% ee

(1*R*, 2*R*, 3*R*, 4*S*, 4a*R*, 5a*S*, 10c*R*)-3-(Methoxymethyl)-5a-phenyl-6-tosyl-1, 2, 3, 4, 4a, 5a, 6, 10c-octahydro-10b*H*-1, 4-(epoxymethano)benzofuro[2, 3-*b*]indole-2, 10b-diol.

50.0 mg, 46% yield, 98% ee, white solid, M.p: $184.3 \sim 188.6$ °C, PE/EA = 1/1.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.33 – 7.27 (m, 4H), 7.25 – 7.21 (m, 3H), 7.12 (d, J = 8.0 Hz, 2H), 7.03 (t, J = 8.0 Hz, 1H), 4.30 (d, J = 8.0 Hz, 1H), 4.12 (dd, J = 8.0, 4.0 Hz, 1H), 4.06 (d, J = 4.0 Hz, 1H), 3.94 (dd, J = 8.0, 4.0 Hz, 1H), 3.73 (d, J = 8.0 Hz, 1H), 3.61 (s, 1H), 3.58 – 3.55 (m, 2H), 3.39 (s, 3H), 2.63 (d, J = 12.0 Hz, 1H), 2.35 (s, 3H), 2.23 (s, 1H), 2.08 (s, 1H), 1.53 (q, J = 8.0 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 143.6, 140.0, 137.4, 136.5, 132.7, 129.7, 129.2, 128.6, 128.1, 127.2, 126.1, 123.6, 123.5, 112.9, 112.5, 91.4, 76.7, 73.2, 70.5, 68.9, 59.4, 59.2, 48.9, 42.9, 32.5, 21.5.

HRMS (ESI): m/z: $[M + H]^+$ Calcd for $C_{30}H_{32}NO_7S^+$: 550.1894; Found: 550.1 904.

The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (FLM INA Hexane/*i*-PrOH = 80/20, flow rate: 1.0 mL/min, 272 nm), $t_R(minor) = 15.823 \text{ min}, t_R(major) = 12.376 \text{ min}.$

((1*R*, 2*S*, 3*S*, 4*R*)-3-Hydroxy-4-(2-phenyl-1-tosyl-1*H*-indol-3-yl)cyclohexane-1, 2diyl)dimethanol.

80.9 mg, 80% yield, 96% ee, white solid, M.p: 195.0~196.7 °C, MeOH/DCM = 1/10.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.35 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.33 (m, 6H), 7.27 – 7.25 (m, 1H), 7.24 – 7.20 (m, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 4.10 – 4.06 (m, 1H), 3.99 (s, 1H), 3.86 – 3.69 (m, 3H), 2.78 (s, 3H), 2.59 (d, *J* = 16.0 Hz, 1H), 2.41 – 2.33 (m, 4H), 1.91 (s, 1H), 1.84 (d, *J* = 16.0 Hz, 1H), 1.64 (s, 1H), 1.48 – 1.41 (m, 1H), 1.33 – 1.26 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 144.6, 137.0, 135.9, 131.5, 129.9, 129.4, 128.8, 127.5, 126.9, 124.7, 124.1, 123.4, 122.2, 115.4, 74.4, 65.6, 65.0, 44.5, 42.5, 37.6, 30.6, 22.1, 21.6.

HRMS (ESI): m/z: $[M + Na]^+$ Calcd for $C_{29}H_{31}NNaO_5S^+$: 528.1815; Found: 5

28.1815.

The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (FLM INA Hexane/*i*-PrOH = 80/20, flow rate: 1.0 mL/min, 272 nm), $t_R(minor) = 6.815$ min, $t_R(major) = 7.739$ min.

9. NMR Spectra of New Substrates

10. NMR Spectra of New Products

fl (ppm)

¹⁹F NMR (376 MHz, Chloroform-d)

fl (ppm)
¹⁹F NMR (376 MHz, Chloroform-d)

¹⁹F NMR (376 MHz, Chloroform-d)

¹⁹F NMR (376 MHz, Chloroform-d)

fl (ppm)

¹⁹F NMR (376 MHz, Chloroform-d)

11. HPLC Trace

Peak#	Retention	Area	Area(%)
1	7.653	56605	1.878
2	9.047	2958010	98.122

13762730

97.435

22.955

2

Peak#	Retention	Area	Area(%)
1	11.607	432970	3.091
2	13.319	13574261	96.909

Peak#	Retention	Area	Area(%)
1	7.385	138352	3.358
2	9.258	3981111	96.642

Peak#	Retention	Area	Area(%)
1	5.871	453371	9.315
2	9.359	4413600	90.685

Peak#	Retention	Area	Area(%)
1	6.607	86931	1.020
2	8.399	8434969	98.980

Peak#	Retention	Area	Area(%)
1	8.271	1553944	49.702
2	9.747	1572598	50.298

Peak#	Retention	Area	Area(%)
1	8.282	177599	3.360
2	9.707	5107912	96.640

Peak#	Retention	Area	Area(%)
1	5.428	570520	3.962
2	5.955	13830255	96.038

Peak#	Retention	Area	Area(%)
1	6.234	126537	50.074
2	8.082	126162	49.926

Peak#	Retention	Area	Area(%)
1	6.228	15325	2.276
2	8.053	657929	97.724

0-1			10 11 min
Peak#	Retention	Area	Area(%)
1	6.157	480205	1.974
2	8.786	23851619	98.026

S116

Peak#	Retention	Area	Area(%)
1	7.836	528852	50.539
2	8.807	517570	49.461

7682532

97.702

8.836

2

Peak#	Retention	Area	Area(%)
1	7.862	5532086	49.912
2	9.722	5551592	50.088

 Peak#
 Retention
 Area
 Area(%)

 1
 7.746
 1008866
 2.818

 2
 9.454
 34786396
 97.182

Peak#	Retention	Area	Area(%)
1	5.315	405290	46.042
2	5.782	474974	53.958

Peak#	Retention	Area	Area(%)
1	7.760	300037	50.839
2	9.235	290135	49.161

9.152

915208

97.327

2

Peak#	Retention	Area	Area(%)
1	6.567	10624194	49.895
2	7.646	10668992	50.105

reak#	Ketention	Alea	Alea(70)
1	12.601	337664	49.204
2	15.885	348584	50.796

Peak#	Retention	Area	Area(%)
1	12.376	2804892	98.845
2	15.823	32779	1.155

530448

98.065

7.739

2

12. X-Ray Single Crystal Data for Compound 3, 36

(a) X-Ray Single Crystal Data for Compound 3

Method for single crystal cultivation: The single crystal for compound **3** were obtained by volatilization of *iso* propanol.

The thermal ellipsoid was drawn at the 50% probability level.

Identification code	3
Empirical formula	C ₃₁ H ₃₃ NO ₅ S
Formula weight	531.64
Temperature/K	100.00(10)

Crystal system	monoclinic
Space group	P2 ₁
a/Å	12.2559(3)
b/Å	8.42474(12)
c/Å	13.6053(3)
α/°	90
β/°	110.755(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1313.61(5)
Z	2
$\rho_{calc}g/cm^3$	1.344
µ/mm ⁻¹	1.442
F(000)	564.0
Crystal size/mm ³	$0.1\times0.08\times0.06$
Radiation	Cu Ka (λ = 1.54184)
2Θ range for data collection/°	6.948 to 146.74
Index ranges	$-15 \le h \le 15, -10 \le k \le 9, -16 \le l \le 16$
Reflections collected	16806
Independent reflections	4304 [$R_{int} = 0.0465, R_{sigma} = 0.0410$]
Data/restraints/parameters	4304/1/347
Goodness-of-fit on F ²	1.061
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0331, wR_2 = 0.0854$
Final R indexes [all data]	$R_1 = 0.0354, wR_2 = 0.0866$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.30
Flack parameter	-0.013(15)

Crystal structure determination of 3

Crystal Data for C₃₁H₃₃NO₅S (M =531.64 g/mol): monoclinic, space group P2₁ (no. 4), a = 12.2559(3) Å, b = 8.42474(12) Å, c = 13.6053(3) Å, $\beta = 110.755(3)^{\circ}$, V = 1313.61(5) Å³, Z = 2, T = 100.00(10) K, μ (Cu K α) = 1.442 mm⁻¹, Dcalc = 1.344 g/cm³, 16806 reflections measured (6.948° $\leq 2\Theta \leq 146.74^{\circ}$), 4304 unique ($R_{int} = 0.0465$, $R_{sigma} = 0.0410$) which were used in all calculations. The final R_1 was 0.0331 (I > 2 σ (I)) and wR_2 was 0.0866 (all data).

orthogona				
Atom	x	У	Z	U(eq)
S 1	2272.1(5)	2249.9(6)	3533.5(4)	20.44(14)
03	3919.0(15)	5462.2(19)	8071.2(13)	21.3(4)
01	3587.8(15)	7730.0(19)	9506.7(13)	21.8(4)
05	3396.0(14)	2327(2)	3447.4(13)	23.6(4)
02	6533.2(15)	8960(2)	9383.3(14)	23.6(4)
O4	1783.9(17)	757(2)	3642.1(15)	26.4(4)
N1	2322.9(18)	3330(2)	4581.6(16)	21.4(4)
C8	1668(2)	3032(3)	5238.5(19)	21.1(5)
C29	938(2)	4922(3)	951(2)	26.0(5)
C20	2449(2)	7970(3)	6536.1(19)	21.5(5)
C19	2767(2)	9012(3)	7316.3(19)	22.1(5)
C16	4300(2)	6446(3)	7395.3(19)	19.5(5)
C23	5896(2)	7570(3)	8935.0(19)	21.7(5)
C21	3952(2)	9227(3)	9228.4(19)	20.4(5)
C15	3301(2)	6813(3)	6353.0(18)	19.4(5)
С9	3611(2)	5591(3)	4330.3(18)	20.3(5)
C1	2934(2)	4782(3)	4904.3(18)	19.6(5)
C30	1713(2)	4247(3)	1857(2)	23.6(5)

Table S10 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for a1. Ueq is defined as 1/3 of the trace of the orthogonalised UIJ tensor.

C2	2739(2)	5333(3)	5763.3(19)	19.8(5)
C28	-253(2)	4575(3)	607(2)	27.6(5)
C17	4869(2)	7989(3)	7942.1(19)	18.7(5)
C4	1404(2)	4278(3)	6745.0(19)	23.3(5)
C22	3832(3)	7669(3)	10614(2)	26.2(5)
C3	1936(2)	4261(3)	5987.4(19)	20.1(5)
C7	881(2)	1821(3)	5223(2)	24.7(5)
C13	3756(3)	7764(3)	3223(2)	27.9(5)
C27	-667(2)	3606(3)	1227(2)	28.6(5)
C14	3124(2)	6919(3)	3717.0(19)	24.7(5)
C12	4881(2)	7305(3)	3339.2(19)	26.5(5)
C11	5375(2)	5999(3)	3964(2)	24.3(5)
C18	3985(2)	9178(3)	8118.7(18)	19.9(5)
C25	1282(2)	3241(3)	2439.5(19)	21.2(5)
C6	361(2)	1884(3)	5975(2)	26.8(6)
C26	95(2)	2936(3)	2148(2)	25.2(5)
C24	7316(2)	8695(3)	10425(2)	27.0(5)
C10	4750(2)	5144(3)	4456.4(19)	22.1(5)
C5	613(2)	3095(3)	6728(2)	26.0(5)
C31	-1055(3)	5218(4)	-433(2)	38.0(7)

Table S11. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...].$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S 1	26.1(3)	17.3(2)	17.5(3)	-2.5(2)	7.2(2)	-0.7(2)
03	29.3(9)	16.0(8)	18.9(8)	1.0(6)	9.0(7)	0.4(7)
01	30.0(9)	18.6(8)	18.2(8)	-0.9(6)	10.2(7)	-1.4(6)
05	23.6(8)	23.9(8)	23.2(8)	-4.4(7)	8.2(7)	0.6(7)
02	25.9(9)	21.5(9)	21.9(9)	-1.5(7)	6.5(7)	-3.2(7)

O4	36.9(10)	17.6(8)	25.6(9)	-3.6(7)	12.2(8)	-3.3(7)
N1	27.9(11)	18.0(9)	18.1(10)	-2.7(8)	7.9(8)	-2.0(8)
C8	23.2(12)	22.2(12)	16.0(11)	2.3(9)	4.7(9)	0.1(9)
C29	32.4(14)	23.7(12)	23.4(13)	0.1(10)	11.6(11)	-0.7(10)
C20	23.4(11)	22.0(11)	18.3(11)	2.5(9)	6.2(9)	4.0(10)
C19	26.9(12)	18.8(11)	20.2(11)	0.8(9)	8.0(10)	4.1(9)
C16	26.6(12)	15.6(11)	17.8(11)	-0.2(8)	9.8(10)	1.0(9)
C23	25.4(11)	18.0(11)	21.0(11)	-0.4(9)	7.3(10)	1.5(9)
C21	26.2(12)	14.8(10)	20.3(11)	-1.8(9)	8.1(10)	-0.4(9)
C15	27.4(12)	14.5(11)	16.1(10)	-0.5(8)	7.4(9)	-0.7(8)
С9	28.7(12)	16.9(10)	14.5(10)	-3.1(8)	6.8(9)	-1.7(9)
C1	23.5(11)	16.7(11)	15.6(10)	-0.2(8)	3.3(9)	-0.7(9)
C30	27.9(13)	23.5(12)	21.0(11)	-4.0(9)	10.5(10)	-3.1(10)
C2	22.0(11)	18.8(11)	16.9(11)	2.0(9)	4.8(9)	0.9(9)
C28	30.7(13)	25.7(12)	24.9(13)	-2.0(10)	7.9(11)	4.3(10)
C17	25.7(11)	15.3(10)	17.1(11)	-0.2(8)	10.0(9)	1.6(9)
C4	25.9(12)	24.2(12)	19.3(11)	0.7(9)	7.4(10)	1.8(10)
C22	39.8(14)	23.3(12)	17.7(12)	-0.4(9)	12.6(11)	-0.1(10)
C3	22.0(11)	19.0(11)	17.5(11)	2.3(9)	4.7(9)	3.0(9)
C7	27.7(12)	22.6(12)	19.7(11)	-0.3(9)	3.1(10)	-0.9(9)
C13	43.4(15)	20.2(11)	20.6(12)	-0.6(9)	12.0(11)	-2.2(10)
C27	24.7(12)	34.3(14)	26.0(13)	-2.8(11)	8.1(11)	-0.2(11)
C14	31.5(13)	21.3(13)	21.0(11)	-2.0(9)	8.7(10)	0.7(9)
C12	39.9(13)	22.0(11)	21.9(11)	-6.6(10)	16.2(10)	-10.9(12)
C11	29.2(13)	22.3(12)	22.4(12)	-7.4(10)	10.6(10)	-5.8(10)
C18	27.0(12)	14.5(10)	18.4(11)	-1.8(9)	8.3(10)	0.6(9)
C25	25.4(12)	19.6(11)	19.4(11)	-4.9(9)	8.7(9)	-1.0(9)
C6	23.8(12)	27.7(14)	26.0(12)	5.0(10)	5.1(10)	-1.6(10)
C26	25.6(12)	28.7(12)	22.9(12)	-1.0(10)	10.7(10)	-2.2(10)

C10 28.0	(12) 20.9(1)				
	(12) 20.7(1)	1) 16.5(11) -1.6(9)	6.6(10)	-0.6(9)
C5 25.80	(12) 30.1(12)	3) 23.7(12) 3.4(10)	10.8(10)	1.4(10)
C31 34.90	(15) 41.4(1)	7) 33.3(16) 8.5(13)	6.7(13)	7.0(13)

Table S12. Bond Lengths for 3.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	05	1.4247(17)	C21	C18	1.525(3)
S 1	O4	1.4231(19)	C15	C2	1.510(3)
S 1	N1	1.674(2)	С9	C1	1.490(3)
S 1	C25	1.762(3)	С9	C14	1.397(3)
03	C16	1.434(3)	C9	C10	1.396(4)
01	C21	1.433(3)	C1	C2	1.355(3)
01	C22	1.429(3)	C30	C25	1.387(3)
02	C23	1.420(3)	C2	C3	1.445(3)
02	C24	1.420(3)	C28	C27	1.392(4)
N1	C8	1.420(3)	C28	C31	1.508(4)
N1	C1	1.421(3)	C17	C18	1.556(3)
C8	C3	1.408(3)	C4	C3	1.402(3)
C8	C7	1.398(3)	C4	C5	1.384(4)
C29	C30	1.384(4)	C7	C6	1.386(4)
C29	C28	1.397(4)	C13	C14	1.388(4)
C20	C19	1.325(4)	C13	C12	1.386(4)
C20	C15	1.512(3)	C27	C26	1.389(4)
C19	C18	1.512(4)	C12	C11	1.391(4)
C16	C15	1.542(3)	C11	C10	1.385(4)
C16	C17	1.537(3)	C25	C26	1.389(4)
C23	C17	1.525(3)	C6	C5	1.401(4)

Atom Atom Atom Angle/° Atom Atom Atom Angle/° 05 **S**1 O4 120.20(11) C29 C30 C25 118.6(2)05 **S**1 N1 107.47(10) C2 C1 C15 123.6(2)O5 **S**1 C25 107.81(11) C1 C2 C3 108.0(2)O4 **S**1 N1 106.38(11) C3 C2 C15 128.3(2)**S**1 108.51(12) 04 C25 C29 C28 C31 119.7(3) N1 **S**1 C25 105.57(11)C27 C28 C29 118.7(2)C22 01 C21 109.98(18) C27 C31 121.5(2)C28 C23 O2 C24 111.93(19) C16 C17 C18 113.45(19) C8 N1 **S**1 125.57(17) C23 C17 C16 108.85(18) C8 N1 C1 108.16(19) C23 C18 C17 114.39(19) C1 N1 **S**1 126.00(16) C5 C4 C3 119.1(2)C3 C8 N1 106.6(2) C8 C3 C2 108.0(2)C7 C8 N1 131.3(2)C4 C3 C8 119.3(2) C7 C8 C3 C4 C3 C2 122.1(2)132.7(2)C30 C29 C6 C7C8 C28 121.3(2)117.1(2)C19 C20 C15 122.3(2) C14 C13 C12 120.3(2)C20 C19 C18 125.1(2) C28 C27 C26 120.8(2)O3 C16 C15 C13 C14 C9 111.9(2) 120.4(2)C16 111.94(18) O3 C17 C11 C12 C13 119.4(2)C16 C17 C15 110.60(19) C10 C11 C12 120.8(2)O2 C23 C17 C19 C18 C21 110.20(18) 110.6(2)01 C21 C18 110.98(18) C19 C18 C17 113.11(19) C20 C15 C16 110.35(19) C21 C18 C17 115.74(19) C2 C15 C20 114.1(2) C30 C25 **S**1 118.95(19) C2 C15 C16 112.79(18) C30 C25 C26 121.5(2)C14 C9 C1 **S**1 118.6(2)C26 C25 119.46(19) 122.0(2) C9 C1 C7 C6 C5 C10 121.9(2)

Table S13 Bond Angles for 3.

C10	C9	C14	119.1(2)	C25	C26	C27	118.9(2)
N1	C1	C9	124.2(2)	C11	C10	С9	120.0(2)
C2	C1	N1	109.1(2)	C4	C5	C6	120.5(2)
C2	C1	С9	126.6(2)				

Table S14. Torsion Angles for 3.

A	В	С	D	Angle/°	A	В	С	D	Angle/°
S1	N1	C8	C3	-177.32(17)	C23	C17	C18	C19	-153.4(2)
S 1	N1	C8	C7	2.2(4)	C23	C17	C18	C21	-24.4(3)
S 1	N1	C1	С9	1.5(3)	C15	C20	C19	C18	-0.7(4)
S 1	N1	C1	C2	177.88(18)	C15	C16	C17	C23	-176.8(2)
S 1	C25	C26	C27	-173.9(2)	C15	C16	C17	C18	54.6(2)
03	C16	C15	C20	72.3(2)	C15	C2	C3	C8	-178.7(2)
03	C16	C15	C2	-56.5(3)	C15	C2	C3	C4	3.4(4)
03	C16	C17	C23	57.8(2)	С9	C1	C2	C15	-6.9(4)
03	C16	C17	C18	-70.8(2)	С9	C1	C2	C3	173.6(2)
01	C21	C18	C19	67.3(2)	C1	N1	C8	C3	-3.0(2)
01	C21	C18	C17	-63.0(3)	C1	N1	C8	C7	176.4(3)
05	S 1	N1	C8	-148.9(2)	C1	C9	C14	C13	176.0(2)
05	S 1	N1	C1	37.8(2)	C1	C9	C10	C11	-175.5(2)
05	S 1	C25	C30	-16.6(2)	C1	C2	C3	C8	0.8(3)
05	S 1	C25	C26	160.1(2)	C1	C2	C3	C4	-177.1(3)
02	C23	C17	C16	172.31(18)	C30	C29	C28	C27	4.0(4)
02	C23	C17	C18	-59.6(3)	C30	C29	C28	C31	-174.6(3)
04	S 1	N1	C8	-18.9(2)	C30	C25	C26	C27	2.7(4)
04	S 1	N1	C1	167.80(19)	C28	C29	C30	C25	-1.7(4)
04	S 1	C25	C30	-148.21(19)	C28	C27	C26	C25	-0.3(4)
04	S 1	C25	C26	28.4(2)	C17	C16	C15	C20	-53.2(3)
N1	S 1	C25	C30	98.1(2)	C17	C16	C15	C2	177.94(19)

N1	S 1	C25	C26	-85.3(2)	C22	01	C21	C18	165.9(2)
N1	C8	C3	C2	1.4(3)	C3	C8	C7	C6	0.6(4)
N1	C8	C3	C4	179.7(2)	C3	C4	C5	C6	0.9(4)
N1	C8	C7	C6	-178.8(2)	C7	C8	C3	C2	-178.1(2)
N1	C1	C2	C15	176.8(2)	C7	C8	C3	C4	0.1(4)
N1	C1	C2	C3	-2.7(3)	C7	C6	C5	C4	-0.2(4)
C8	N1	C1	C9	-172.8(2)	C13	C12	C11	C10	1.0(4)
C8	N1	C1	C2	3.6(3)	C14	C9	C1	N1	103.5(3)
C8	C7	C6	C5	-0.6(4)	C14	C9	C1	C2	-72.3(3)
C29	C30	C25	S 1	174.88(19)	C14	С9	C10	C11	-1.0(4)
C29	C30	C25	C26	-1.7(4)	C14	C13	C12	C11	-0.7(4)
C29	C28	C27	C26	-2.9(4)	C12	C13	C14	C9	-0.5(4)
C20	C19	C18	C21	-131.3(3)	C12	C11	C10	C9	-0.1(4)
C20	C19	C18	C17	0.4(3)	C25	S 1	N1	C8	96.2(2)
C20	C15	C2	C1	129.2(3)	C25	S 1	N1	C1	-77.0(2)
C20	C15	C2	C3	-51.4(3)	C24	02	C23	C17	166.05(19)
C19	C20	C15	C16	27.6(3)	C10	C9	C1	N1	-82.0(3)
C19	C20	C15	C2	155.8(2)	C10	C9	C1	C2	102.2(3)
C16	C15	C2	C1	-103.9(3)	C10	С9	C14	C13	1.3(4)
C16	C15	C2	C3	75.5(3)	C5	C4	C3	C8	-0.9(4)
C16	C17	C18	C19	-27.7(3)	C5	C4	C3	C2	176.8(2)
C16	C17	C18	C21	101.3(2)	C31	C28	C27	C26	175.6(3)

Table S15. Hydrogen Atom Coordinates (Å×104) and Isotropic DisplacementParameters (Å2×103) for 3.

	, ,			
Atom	x	У	z	U(eq)
Н3	3701.57	6037.25	8471.7	32
H29	1221.17	5634.77	556.08	31
H20	1657.75	7949.22	6075.41	26

H19	2183.59	9707.8	7376.13	26
H16	4908.7	5839.73	7219.3	23
H23A	5603.88	7060.47	9449.67	26
H23B	6414.21	6807.79	8760.58	26
H21A	4737.46	9492.37	9733.4	25
H21B	3405.36	10066.49	9270.99	25
H15	3663.95	7374.47	5898.23	23
H30	2524.6	4467.98	2075.07	28
H17	5206.06	8523.8	7457.79	22
H4	1582.67	5090.04	7262.58	28
H22A	3592.02	6636.11	10799.15	39
H22B	3401.73	8514.08	10813.14	39
H22C	4671.18	7815.27	10988.45	39
H7	711.53	990.35	4718.1	30
H13	3415.83	8661.57	2803.6	33
H27	-1479.77	3401.63	1018.47	34
H14	2355.3	7246.23	3637.59	30
H12	5310.61	7876.52	2995.3	32
H11	6150.1	5690.44	4054.24	29
H18	4256.88	10254.71	7997.19	24
H6	-182.85	1082.96	5979.84	32
H26	-191.35	2279.77	2570.56	30
H24A	7892.41	7893.23	10418.34	41
H24B	6879.31	8320.15	10860.06	41
H24C	7715.92	9688.64	10716.21	41
H10	5096.21	4253.08	4880.13	27
Н5	239.06	3104.49	7232.04	31
H31A	-788.62	6274.66	-548.04	57
H31B	-1850.27	5290.06	-426.39	57

H31C -	-1046.33	4505.68	-999.86	57
--------	----------	---------	---------	----

(b) X-Ray Single Crystal Data for Compound 36

Method for single crystal cultivation: The single crystal for compound **36** were obtained by volatilization of *iso* propanol.

The thermal ellipsoid was drawn at the 50% probability level.

Temperature/K

99.98(11)

Crystal system	tetragonal	
Space group	P4 ₃ 2 ₁ 2	
a/Å	9.61046(4)	
b/Å	9.61046(4)	
c/Å	59.2426(5)	
$lpha/^{\circ}$	90	
β/°	90	
$\gamma/^{\circ}$	90	
Volume/Å ³	5471.71(6)	
Ζ	8	
$\rho_{cale}g/cm^3$	1.334	
μ/mm^{-1}	1.460	
F(000)	2320.0	
Crystal size/mm ³	$0.1\times0.08\times0.06$	
Radiation	Cu Ka ($\lambda = 1.54184$)	
2Θ range for data collection/°	5.968 to 146.89	
Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -73 \le l \le 73$	
Reflections collected	86280	
Independent reflections	5466 [$R_{int} = 0.0588, R_{sigma} = 0.0199$]	
Data/restraints/parameters	5466/0/357	
Goodness-of-fit on F ²	1.032	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0348, wR_2 = 0.0985$	
Final R indexes [all data]	$R_1 = 0.0359, wR_2 = 0.0995$	
Largest diff. peak/hole / e Å ⁻³	1.17/-0.27	
Flack parameter	-0.033(9)	

Crystal structure determination of 36
Crystal Data for C₃₀H₃₁NO₇S (M =549.62 g/mol): tetragonal, space group P43212 (no. 96), a = 9.61046(4) Å, c = 59.2426(5) Å, V = 5471.71(6) Å3, Z = 8, T = 99.98(11) K, μ (Cu K α) = 1.460 mm⁻¹, *Dcalc* = 1.334 g/cm³, 86280 reflections measured (5.968 $\leq 2\Theta \leq 146.89$), 5466 unique ($R_{int} = 0.0588$, $R_{sigma} = 0.0199$) which were used in all calculations. The final R_I was 0.0348 (I > 2 σ (I)) and wR_2 was 0.0995 (all data).

Table S16. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for c2. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
S 1	-178.9(6)	4924.1(6)	6686.9(2)	24.63(15)
01	900.4(15)	4947.2(16)	7198.5(2)	19.3(3)
07	4378.4(16)	5113.2(16)	7112.5(3)	19.7(3)
O2	2925.6(16)	5062.0(16)	7576.4(3)	21.3(3)
O6	-1037.6(18)	5511(2)	6859.7(3)	30.5(4)
05	-639(2)	3742(2)	6560.4(3)	33.2(4)
O4	3678(3)	1358(2)	7621.0(3)	42.2(5)
03	-642(2)	1837(2)	7878.4(3)	42.7(5)
N1	1275(2)	4452(2)	6809.5(3)	21.0(4)
C2	2299(3)	3539(2)	6717.7(4)	22.3(5)
C8	2736(2)	3373(2)	7276.7(4)	19.6(4)
C1	3428(2)	3462(2)	6864.1(4)	19.7(4)
C4	1164(2)	3622(2)	7303.7(4)	20.3(4)
C14	2034(2)	6703(2)	6982.8(4)	19.0(4)
C5	782(2)	3732(2)	7553.3(4)	21.5(5)
C6	1482(2)	5029(2)	7647.8(4)	21.0(4)
C3	1818(2)	5159(2)	7018.9(3)	18.2(4)
C13	4585(3)	2657(2)	6813.2(4)	25.2(5)
C18	1679(3)	9098(2)	7089.9(4)	26.6(5)

С9	3187(2)	4304(2)	7074.4(4)	17.8(4)
C19	1485(2)	7680(2)	7131.0(4)	22.6(5)
C7	3405(2)	3723(2)	7502.8(4)	21.1(4)
C21	1398(3)	2436(2)	7669.0(4)	26.3(5)
C15	2815(3)	7154(2)	6798.6(4)	23.8(5)
C17	2426(3)	9542(2)	6904.4(4)	27.8(5)
C20	2990(3)	2620(2)	7676.4(4)	26.9(5)
C10	2291(3)	2776(3)	6516.7(4)	29.2(5)
C12	4597(3)	1928(3)	6609.8(4)	30.6(6)
C24	182(3)	6271(3)	6491.5(4)	26.0(5)
C22	789(3)	2151(3)	7901.7(4)	31.2(6)
C27	677(3)	8388(3)	6180.8(5)	32.2(6)
C29	846(3)	5967(3)	6289.9(4)	32.0(6)
C28	1088(3)	7026(3)	6137.0(5)	35.1(6)
C16	3010(3)	8568(3)	6759.9(4)	27.9(5)
C11	3465(3)	1988(3)	6466.3(4)	33.2(6)
C26	17(3)	8662(3)	6384.2(5)	39.5(6)
C25	-231(3)	7614(3)	6539.8(5)	37.8(6)
C30	944(3)	9543(3)	6013.8(5)	42.7(7)
C23	-1272(4)	1523(3)	8087.9(5)	46.6(8)

Table S17. Anisotropic Displacement Parameters (Å2×103) for 36. TheAnisotropic displacement factor exponent takes the form: $-2\pi 2[h2a*2U11+2hka*b*U12+...].$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S 1	25.7(3)	30.2(3)	18.1(3)	3.1(2)	-3.9(2)	-4.6(2)
01	19.6(7)	22.2(8)	16.1(7)	3.2(6)	2.4(5)	0.9(6)
O7	20.5(7)	17.9(7)	20.7(7)	-2.0(6)	0.8(6)	-0.7(6)
O2	23.3(8)	20.3(8)	20.4(7)	-2.2(6)	-0.4(6)	-0.2(6)

06	22.9(8)	46.7(11)	22.0(8)	4.5(7)	-0.6(6)	2.4(7)
05	39.6(10)	36.9(10)	23.1(8)	1.5(7)	-8.7(7)	-13.3(8)
O4	65.7(14)	29.9(10)	31.0(9)	8.2(8)	7.0(9)	25.1(10)
03	48.4(12)	48.4(12)	31.2(10)	6.4(9)	12.6(9)	-13.2(10)
N1	26.5(10)	21.3(9)	15.2(8)	-0.3(7)	-1.2(7)	-1.3(8)
C2	30.5(12)	16.6(10)	19.7(10)	0.0(8)	4.3(9)	-2.5(9)
C8	26.4(11)	14.9(10)	17.5(10)	-0.4(8)	2.3(8)	1.0(8)
C1	26.5(11)	15.2(10)	17.5(9)	0.4(8)	4.4(9)	-2.3(8)
C4	26.2(11)	17.8(10)	16.9(10)	0.8(8)	1.5(8)	-3.2(8)
C14	18.5(10)	18.7(10)	19.7(10)	1.3(8)	-2.2(8)	1.8(8)
C5	24.1(11)	23.2(11)	17.2(10)	2.0(8)	2.8(8)	-1.1(9)
C6	24.0(10)	20.1(10)	18.8(10)	-0.2(8)	3.0(8)	2.5(9)
C3	20.3(10)	19.5(10)	14.7(9)	-0.4(8)	1.0(8)	-1.2(8)
C13	30.2(12)	20.6(11)	24.8(11)	-1.4(9)	7.6(9)	-0.4(9)
C18	27.0(12)	18.6(11)	34.2(13)	-4.0(10)	-1.7(10)	4.2(9)
C9	20.1(10)	16.6(9)	16.8(10)	0.2(8)	1.4(8)	-0.7(8)
C19	22.8(11)	22.4(11)	22.7(11)	0.0(9)	0.5(9)	2.7(9)
C7	22.8(11)	22.0(11)	18.5(10)	1.1(9)	-0.6(9)	4.3(9)
C21	39.9(14)	18.7(10)	20.1(11)	0.8(9)	7.1(10)	-1.4(10)
C15	26.5(11)	22.3(11)	22.6(11)	1.5(9)	3.6(9)	2.4(9)
C17	29.0(12)	17.2(11)	37.3(13)	3.5(9)	-5.1(10)	0.8(9)
C20	36.8(13)	22.2(11)	21.7(11)	3.4(9)	2.8(10)	9.2(10)
C10	45.3(15)	23.8(12)	18.4(11)	-1.3(9)	0.9(10)	-4.4(10)
C12	40.6(14)	23.0(12)	28.3(12)	-4.2(9)	13.0(11)	2.4(10)
C24	25.9(12)	31.3(12)	20.9(10)	4.6(9)	-5.7(9)	-2.1(10)
C22	44.4(15)	25.6(12)	23.6(12)	4.5(10)	6.2(11)	-0.1(11)
C27	25.2(12)	38.1(14)	33.3(13)	11.1(11)	-8.0(10)	-2.9(11)
C29	39.1(14)	33.6(14)	23.4(11)	0.6(10)	0.3(10)	-3.0(11)
C28	39.2(14)	40.6(15)	25.6(12)	5.7(11)	2.3(11)	-3.0(12)

C16	29.2(12)	23.1(12)	31.4(12)	6.2(10)	2.9(10)	-1.8(9)
C11	54.9(17)	23.9(12)	20.7(11)	-5.4(9)	11.6(11)	-3.8(11)
C26	44.6(16)	32.9(14)	41.1(15)	8.9(12)	-2.4(13)	11.1(12)
C25	44.5(16)	39.0(15)	30.0(13)	5.2(11)	3.2(12)	9.7(12)
C30	36.3(15)	44.7(17)	47.1(17)	20.3(14)	-4.8(13)	-5.7(12)
C23	65(2)	39.2(16)	35.8(15)	5.5(13)	23.9(15)	-6.1(15)

Table S18. Bond Lengths for 36.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	O6	1.4308(18)	C14	C19	1.389(3)
S 1	O5	1.4309(19)	C14	C15	1.394(3)
S 1	N1	1.639(2)	C5	C6	1.523(3)
S 1	C24	1.771(3)	C5	C21	1.539(3)
01	C4	1.440(3)	C3	C9	1.585(3)
01	C3	1.397(2)	C13	C12	1.393(3)
07	С9	1.403(3)	C18	C19	1.397(3)
O2	C6	1.450(3)	C18	C17	1.380(4)
O2	C7	1.434(3)	C7	C20	1.530(3)
O4	C20	1.420(3)	C21	C20	1.541(4)
O3	C22	1.414(4)	C21	C22	1.522(3)
O3	C23	1.414(3)	C15	C16	1.391(3)
N1	C2	1.426(3)	C17	C16	1.387(4)
N1	C3	1.508(3)	C10	C11	1.391(4)
C2	C1	1.392(3)	C12	C11	1.382(4)
C2	C10	1.398(3)	C24	C29	1.385(4)
C8	C4	1.537(3)	C24	C25	1.381(4)
C8	С9	1.557(3)	C27	C28	1.391(4)
C8	C7	1.523(3)	C27	C26	1.387(4)
C1	C13	1.388(3)	C27	C30	1.509(4)

C1	С9	1.504(3) C29	C28	1.382(4)
C4	C5	1.527(3) C26	C25	1.386(4)
C14	C3	1.513(3)		

Table S19. Bond Angles for 36.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O6	S1	05	120.62(12)	C14	C3	С9	115.09(18)
O6	S 1	N1	106.48(10)	C1	C13	C12	118.4(2)
O6	S 1	C24	107.01(12)	C17	C18	C19	120.7(2)
05	S1	N1	106.01(11)	07	С9	C8	114.96(17)
05	S1	C24	107.39(11)	07	С9	C1	107.78(17)
N1	S1	C24	108.96(11)	07	С9	C3	115.06(17)
C3	01	C4	110.34(16)	C8	С9	C3	103.10(17)
C7	02	C6	112.10(17)	C1	С9	C8	111.79(17)
C23	03	C22	112.1(2)	C1	С9	C3	103.63(17)
C2	N1	S1	126.11(16)	C14	C19	C18	119.9(2)
C2	N1	C3	110.65(18)	O2	C7	C8	109.24(17)
C3	N1	S1	122.35(15)	O2	C7	C20	109.46(18)
C1	C2	N1	109.45(19)	C8	C7	C20	109.1(2)
C1	C2	C10	120.5(2)	C5	C21	C20	107.52(19)
C10	C2	N1	130.1(2)	C22	C21	C5	113.6(2)
C4	C8	С9	105.30(17)	C22	C21	C20	112.1(2)
C7	C8	C4	106.81(18)	C16	C15	C14	120.4(2)
C7	C8	С9	115.59(19)	C18	C17	C16	119.5(2)
C2	C1	С9	111.54(19)	O4	C20	C7	108.39(19)
C13	C1	C2	121.2(2)	O4	C20	C21	110.9(2)
C13	C1	С9	127.2(2)	C7	C20	C21	108.64(19)
01	C4	C8	105.41(17)	C11	C10	C2	117.6(2)
01	C4	C5	108.44(17)	C11	C12	C13	120.3(2)

C5	C4	C8	110.32(18)	C29	C24	S 1	120.0(2)
C19	C14	C3	121.4(2)	C25	C24	S 1	119.45(19)
C19	C14	C15	119.3(2)	C25	C24	C29	120.5(2)
C15	C14	C3	119.31(19)	03	C22	C21	108.9(2)
C4	C5	C21	106.46(18)	C28	C27	C30	121.4(3)
C6	C5	C4	107.82(18)	C26	C27	C28	118.1(2)
C6	C5	C21	109.20(19)	C26	C27	C30	120.5(3)
02	C6	C5	109.46(18)	C28	C29	C24	119.2(3)
01	C3	N1	110.03(17)	C29	C28	C27	121.5(3)
01	C3	C14	109.71(17)	C17	C16	C15	120.2(2)
01	C3	C9	106.88(16)	C12	C11	C10	122.0(2)
N1	C3	C14	111.88(17)	C25	C26	C27	121.2(3)
N1	C3	C9	102.94(16)	C24	C25	C26	119.5(3)

Table S20. Torsion Angles for 36.

A	В	С	D	Angle/°	A	В	С	D	Angle/°
S 1	N1	C2	C1	175.98(16)	C14	C15	C16	C17	0.0(4)
S 1	N1	C2	C10	-4.5(4)	C5	C21	C20	O4	-137.78(19)
S 1	N1	C3	01	64.3(2)	C5	C21	C20	C7	-18.7(3)
S 1	N1	C3	C14	-57.9(2)	C5	C21	C22	O3	64.5(3)
S 1	N1	C3	C9	177.97(14)	C6	02	C7	C8	71.6(2)
S 1	C24	C29	C28	178.4(2)	C6	02	C7	C20	-47.9(2)
S 1	C24	C25	C26	-178.2(2)	C6	C5	C21	C20	-44.5(2)
01	C4	C5	C6	-49.8(2)	C6	C5	C21	C22	80.2(3)
01	C4	C5	C21	-166.82(18)	C3	01	C4	C8	31.7(2)
01	C3	C9	O7	-113.89(19)	C3	01	C4	C5	149.84(18)
01	C3	C9	C8	12.1(2)	C3	N1	C2	C1	6.7(2)
01	C3	С9	C1	128.71(17)	C3	N1	C2	C10	-173.8(2)
02	C7	C20	O4	-169.9(2)	C3	C14	C19	C18	-178.7(2)

02	C7	C20	C21	69.4(2)	C3	C14	C15	C16	179.0(2)
06	S 1	N1	C2	164.40(19)	C13	C1	С9	07	49.3(3)
06	S 1	N1	C3	-27.5(2)	C13	C1	С9	C8	-77.9(3)
06	S 1	C24	C29	-171.6(2)	C13	C1	С9	C3	171.7(2)
06	S 1	C24	C25	6.9(3)	C13	C12	C11	C10	0.6(4)
05	S 1	N1	C2	34.8(2)	C18	C17	C16	C15	1.6(4)
05	S 1	N1	C3	-157.08(17)	C9	C8	C4	01	-22.0(2)
05	S 1	C24	C29	-40.8(2)	C9	C8	C4	C5	-138.84(18)
05	S 1	C24	C25	137.7(2)	С9	C8	C7	02	66.9(2)
N1	S 1	C24	C29	73.6(2)	С9	C8	C7	C20	-173.48(18)
N1	S 1	C24	C25	-107.9(2)	С9	C1	C13	C12	178.7(2)
N1	C2	C1	C13	-179.0(2)	C19	C14	C3	01	6.7(3)
N1	C2	C1	C9	2.5(2)	C19	C14	C3	N1	129.1(2)
N1	C2	C10	C11	178.3(2)	C19	C14	C3	C9	-113.9(2)
N1	C3	C9	07	130.20(17)	C19	C14	C15	C16	-1.9(4)
N1	C3	C9	C8	-103.86(18)	C19	C18	C17	C16	-1.2(4)
N1	C3	С9	C1	12.8(2)	C7	02	C6	C5	-18.4(2)
C2	N1	C3	01	-125.90(19)	C7	C8	C4	01	101.42(19)
C2	N1	C3	C14	111.9(2)	C7	C8	C4	C5	-15.4(2)
C2	N1	C3	C9	-12.3(2)	C7	C8	С9	07	14.6(3)
C2	C1	C13	C12	0.4(3)	C7	C8	С9	C1	137.9(2)
C2	C1	C9	07	-132.26(19)	C7	C8	С9	C3	-111.4(2)
C2	C1	C9	C8	100.5(2)	C21	C5	C6	02	68.3(2)
C2	C1	C9	C3	-9.9(2)	C15	C14	C3	01	-174.25(19)
C2	C10	C11	C12	1.3(4)	C15	C14	C3	N1	-51.8(3)
C8	C4	C5	C6	65.2(2)	C15	C14	C3	C9	65.2(3)
C8	C4	C5	C21	-51.9(2)	C15	C14	C19	C18	2.2(3)
C8	C7	C20	O4	70.6(2)	C17	C18	C19	C14	-0.7(4)
C8	C7	C20	C21	-50.1(2)	C20	C21	C22	O3	-173.4(2)

C1	C2	C10	C11	-2.3(3)	C10	C2	C1	C13	1.5(3)
C1	C13	C12	C11	-1.5(4)	C10	C2	C1	С9	-177.1(2)
C4	01	C3	N1	83.5(2)	C24	S 1	N1	C2	-80.5(2)
C4	01	C3	C14	-153.04(17)	C24	S 1	N1	C3	87.62(19)
C4	01	C3	C9	-27.6(2)	C24	C29	C28	C27	-0.2(4)
C4	C8	C9	07	132.23(18)	C22	C21	C20	04	96.6(2)
C4	C8	C9	C1	-104.5(2)	C22	C21	C20	C7	-144.3(2)
C4	C8	C9	C3	6.2(2)	C27	C26	C25	C24	-0.2(5)
C4	C8	C7	O2	-49.9(2)	C29	C24	C25	C26	0.3(4)
C4	C8	C7	C20	69.8(2)	C28	C27	C26	C25	-0.1(4)
C4	C5	C6	O2	-47.0(2)	C26	C27	C28	C29	0.3(4)
C4	C5	C21	C20	71.6(2)	C25	C24	C29	C28	-0.1(4)
C4	C5	C21	C22	-163.7(2)	C30	C27	C28	C29	179.9(3)
C14	C3	C9	07	8.2(3)	C30	C27	C26	C25	-179.7(3)
C14	C3	C9	C8	134.14(19)	C23	03	C22	C21	178.4(2)
C14	C3	С9	C1	-109.20(19)					

Table S21. Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for 36.

	,			
Atom	x	У	Z	U(eq)
H7	4236.23	5653.26	7221.55	30
H4	4027.9	1012.97	7738.25	63
H8	2908.64	2373.06	7239.48	24
H4A	618.45	2867.74	7228.42	24
Н5	-249.34	3774.08	7574	26
H6A	994.73	5870.07	7592.73	25
H6B	1431.89	5019.82	7814.71	25
H13	5349.89	2603.61	6914.38	30
H18	1293.98	9762.86	7190.72	32

H19	977.79	7383.48	7260	27
H7A	4440.62	3738.95	7486.04	25
H21	1190.03	1613.21	7571.32	32
H15	3217.32	6492.18	6699	29
H17	2539.06	10508.15	6875.94	33
H20	3278.95	2929.71	7830.56	32
H10	1511.69	2794.09	6418.15	35
H12	5386.74	1386.7	6569.74	37
H22A	1280.08	1359.12	7972.87	37
H22B	907.76	2978.99	7999.37	37
H29	1131.22	5042.5	6257.04	38
H28	1545.53	6819.79	5998.9	42
H16	3544.12	8868.13	6634.08	33
H11	3489.49	1476.72	6329.14	40
H26	-270.6	9585.82	6417.43	47
H25	-682.45	7818.73	6678.56	45
H30A	1815.03	10016.21	6052.44	64
H30B	174.22	10211.41	6018.98	64
H30C	1015.21	9151.72	5861.47	64
H23A	-2274.83	1395.61	8066.27	70
H23B	-1110.59	2290.05	8193.74	70
H23C	-867.39	666.02	8148.94	70

13. References

[1] A. Lepronier, T. Achard, L. Giordano, A. Tenaglia, G. Buono and H. Clavier, *Adv. Synth. Catal.*, **2016**, *358*, 631–642.

[2] D. Morton, S. Leach, C. Cordier, S. Warriner, and A. Nelson, *Angew. Chem., Int. Ed.*, **2009**, *48*, 104-109.

[3] J. Meng, H. He, Q. Liu, H. Xu, H. Huang, S.-F. Ni and Z. Li, *Angew. Chem., Int. Ed.*, **2024**, *63*, e202315092.

[4] S. Bar, Can. J. Chem., 2010, 88, 605-612.

[5] Y.-H. Wen, F. Yang, S. Li, X. Yao, J. Song, L.-Z. Gong, J. Am. Chem. Soc., 2023, 145, 4199-4207.

[6]I. Kiyofumi, A. Narumi, N. Yuka, Y. Misato and K. Yoshinori, *Org. Lett.* **2012** *14*, 2622-2625.

[7] J. Zhang, M. Guo, Y. Chen, S. Zhang, X. Wang, and J. Chang, *Org. Lett.* 2019 21, 1331-1336.