Stable Sulfonate Esters as C1-Synthons for Cyclopropanation Reaction to Access Antimicrobial Active 3,3'-Spirocyclopropyloxindoles

Yijie Long,^{a,+} Pinpin Feng,^{a,+} Hongyan Long,^{a*} Yi Huang,^a and Xingxing Wu^{a*}

[a] State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.

*These authors contributed equally to this work

*Correspondence: E-mail: <u>wuxx@gzu.edu.cn; gs.hylong24@gzu.edu.cn</u>

Table of Contents

1.	General InformationPage S2
2.	Experimental SectionPage S3
(1)	General procedure for preparation of substrates and productsPage S3
(2)	Supplementary results of condition optimizationPage S10
(3)	Structure determination of $3c$ and $3f$ via X-ray crystallographic analysisPage S12
(4)	Biological activity studiesPage S16
3.	Characterization data of the substrates 1 and products 3Page S18
(1)	Characterization of substrates and productsPage S18
(2)	Characterization of the products 3 Page S23
(3)	ReferencesPage S40
4.	Copies of ¹ H, ¹⁹ F, and ¹³ C spectraPage S41
5.	HPLC traces of the obtained chiral productsPage S80

1. General information

Commercially available materials purchased from J&K or Aladdin were used as received. THF was distilled over sodium. Unless otherwise specified, all reactions were carried out under an atmosphere of nitrogen in 10.0 mL dry Schlenk tube. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker (400 MHz) spectrometer or on a JEOL-ECX-500 (500 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm, δ) relative to tetramethylsilane (δ = 0.00) or chloroform ($\delta = 7.26$, singlet). ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets); m (multiplets), and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker (400 MHz) spectrometer. Fluorine (¹⁹F) nuclear magnetic resonance (¹⁹F NMR) spectra were recorded on a Bruker (AVANCE III HD 376 MHz) spectrometer. The melting points (m.p.) of the title compounds were determined when left untouched on a XT-4-MP apparatus from Beijing Tech. Instrument Co. (Beijing, China). High resolution mass spectral analysis (HRMS) was performed on a quadrupole/electrostatic field orbitrap mass spectrometer. Absolute configuration of the products was determined by X-ray crystallography. HPLC analyses were measured on Waters systems with Empower 3 system controller, Alliance 2695, and 2998 Diode Array Waters 2489 UV/Vis detector. Chiralcel brand chiral columns from Daicel Chemical Industries were used with models IA, IB, or IC or in 4.6 x 250 mm size. The racemic products used to determine the er values were synthesized using racemic catalyst. Optical rotations were measured on a Insmark IP-digi Polarimeter in a 1 dm cuvette at 25 °C. The concentration (c) is given in g/100 mL. Analytical thin-layer chromatography (TLC) was carried out pre-coated silica gel plate (0.2 mm thickness). Visualization was performed using a UV lamp^[1].

2. Experimental Section

(1) General procedure for preparation of substrates and products

General procedure 1 for preparation of substrates 1:

Step 1. An oven dried clean round bottom flask was charged with magnetic stirbar, substituted benzyl chloride (10.0 mmol) and thiourea (10.0 mmol, 760 mg). 10.0 mL of Absolute ethanol was added and refluxed at 96 °C. After 3 h the reaction was taken out and the solvent was evaporated under reduced pressure to obtain a white solid (thiourea salt). The obtained solid salt was suspended in 14 mL of CH₃CN and 3 mL 2N HCl was then added to it. The mixture was stirred at 0 °C for 15 min. N-chlorosuccinimide (NCS) (40.0 mmol, 5.34 g) was added in portions to the suspension in order to obtain a clear solution. The solution was stirred for another 30 min at room temperature. The solution was evaporated under reduced pressure to remove the CH₃CN. The remaining aqueous portion was extracted with ethyl acetate. The organic portion was dried over anhydrous Na₂SO₄ and the crude mixture was evaporated and purified by column chromatography over silica gel with ethyl acetate/petroleum ether as the eluent. Quantitative yield.

Step 2. To an ice-cold solution of 2-hydroxy-5-methoxybenzonitrile (5.0 mmol) and triethylamine (1.5 equiv., 1.04 mL) in 10 mL dichloromethane under nitrogen atmosphere, substituted benzyl sulfonyl chloride was added portionwise. Stirring was continued for additional 20 minutes, after that the ice bath was removed and the reaction mixture was left for vigorous stirring at room temperature for overnight. CH₂Cl₂ was removed under reduced pressure. The residual was diluted and extracted with ethyl acetate (3×20.0 mL) and brine solution (3×10.0 mL). The organic layer was collected and dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvent, the

crude mixture was purified by column chromatography over neutral alumina with petroleum ether/ethyl acetate (85/15, v/v) as the eluent.

It is also worth noting that we failed to examine the scope with respect to sulfonates bearing heterocycles or electron-donating groups due to the difficulty to obtain these substrates **1**. The protocols to prepare the sulfonyl chlorides as key building blocks of sulfonates **1** were demonstrated as below.

(C) Protocol 3

Attempts to prepare substrates S7a-S7b with electron-donating groups:

(A) Protocol 1

General procedure 2 for preparation of products 3:

To an oven-dried 10.0 mL screw cap vial equipped with a magnetic stir bar were added **1** (0.11 mmol, 1.1 equiv.), **2** (0.1 mmol, 1.0 equiv.) and NaH (0.15 mmol, 1.5 equiv.) in THF (1.0 mL) and the reaction was stirred at r.t. for 6 h under nitrogen atmosphere. Then the mixture was concentrated under reduced pressure. The resulting crude residue was purified by column chromatography over silica gel (Petroleum ether / EtOAc = 30:1) to afford the desired products **3**.

General procedure 3 for the catalytic asymmetric reactions:

To an oven-dried 10.0 mL screw cap vial equipped with a magnetic stir bar were added **1a** (0.044 mmol, 1.1 equiv.), **2** (0.04 mmol, 1.0 equiv.), Cat. **A** (0.004 mmol, 10 mol%) and NaOH (0.06 mmol, 1.5 equiv.) in Toluene/H₂O = 5:1 (1.0 mL) and the reaction was stirred at r.t. for 5 d under nitrogen atmosphere. Then the mixture was concentrated under reduced pressure. The resulting crude residue was purified by column chromatography over silica gel (Petroleum ether / EtOAc = 30:1) to afford the desired chiral products **3**.

Gram-scale synthesis of products 3a:

To an oven-dried 100.0 mL screw cap vial equipped with a magnetic stir bar were added **1a** (3.52 mmol, 1.1 equiv.) in THF (35.0 mL). After cooling down to 0 °C, NaH (4.80 mmol, 1.5 equiv.) was added to the mixture in batches, followed by addition of **2a** (3.20 mmol, 1.0 equiv.) at 0 °C. Then, the reaction was stirred at r.t. for 12 h under nitrogen atmosphere. Then the mixture was concentrated under reduced pressure. The resulting crude residue was purified by column chromatography over silica gel (Petroleum ether / EtOAc = 20:1) to afford the desired products *trans*-**3a** (0.98 g, 75% yield, d.r. = 10:1).

Scheme S1. Proposed mechanism

Building upon previous reports and our preliminary studies on the reaction (Figure S1), a plausible mechanism was illustrated in Scheme S1A. The process begins with the NaH-mediated formation of a carbon anion intermediate **I** from sulfonate **1**. Subsequently, a Michael addition to the alkylidene oxindole **2** would result in the formation of intermediate **II**. Annulation through intramolecular attack on the sulfonyl moiety and elimination of the phenolate anion would lead to intermediate **III**. Then a spontaneous SO₂ extrusion proceeds to produce the final product **3**, probably owing to the lability of the four-membered sulfonate (path a). In our preliminary mechanistic studies, the generation of the reaction mixture during the progress of the model reaction. However, it should be noted that our attempts to isolate it were not successful. Notably, the formation of the 4-membered ring might also proceed through the formation of sulfene intermediates via path b, which were generated in situ under strong basic

conditions. Additionally, the stereochemical course of the observed diastereoselectivity could be explained by the favoured trans-configuration of the initial Michael addition.

Furthermore, based on previous studies on the PTC asymmetric catalysis,^[2-4] a plausible stereochemical model to account for the developed enantioselective catalytic transformation of **1a** and **2** to form **3a-3d**, **3i** was illustrated in Scheme 1B. The transition state involved an ion-pair interaction between the substrate and PTC catalyst **A** through multiple hydrogen-bonding interactions.

HRMS (ESI, m/z): Calculated for $C_{24}H_{25}NaNO_7S^+$ [M + Na]⁺, 494.1243, found: 494.1236.

Figure S1. HRMS spectrum of intermediate III

(2) Supplementary results of condition optimization

Table S1. Condition optimization for the enantioselective synthesis of $3a^a$

	NO S O	+ EtO_2C Cat. Bas Boc	(10 mol%) e (1.5 equiv.) olvent, r.t.	D ₂ C Ph Ph Boc	
	1a	2a		3a	
Cat.			whe		νţν
Ť, ľ	Ar Ar = ' ,OH Br	CF3	\mathbf{k}	NO2	F F F
		(A) (B)	(C)	(D)	(E)
, N	Ar Ar =		F F F		, is CF ₃
MeO	Br ⁻	NO ₂	F		ĊF3
	N	(F) (G)	(H)	(I)	(L)
Entry	Cat.	Solvent	Base	Yield $(\%)^b$	E.r. ^c
1	J	toluene	NaOH	-	35:65
2	J	toluene	KOH	<10	37:63
3	J	toluene:H ₂ O (5:1)	NaOH	-	30:70
4	Α	toluene:H ₂ O (5:1)	NaOH	58	79:21
5	В	toluene:H ₂ O (5:1)	NaOH	-	62:38
6	С	toluene:H ₂ O (5:1)	NaOH	20	69:31
7	D	toluene:H ₂ O (5:1)	NaOH	-	70:30
8	Ε	toluene:H ₂ O (5:1)	NaOH	-	65:35
9	F	toluene:H ₂ O (5:1)	NaOH	39	67:33
10	G	toluene:H ₂ O (5:1)	NaOH	14	68:32
11	Н	toluene:H ₂ O (5:1)	NaOH	64	75:25
12	Ι	toluene:H ₂ O (5:1)	NaOH	75	38:62

^{*a*}General conditions: **1a** (0.044 mmol, 1.1 equiv.), **2a** (0.04 mmol, 1.0 equiv.), Cat. (10 mol%), base (0.06 mmol, 1.5 equiv.), and solvent (1.0 mL) at r.t. for 5 d; ^{*b*}Determined by ¹H NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard, isolated yield of major isomer; ^{*c*}The e.r. values were determined via HPLC on chiral stationary phase.

	^O Co ^R + ^{EtO₂C N Bo 2a}	Cat. A (10 mol%) =O NaOH (1.5 equiv.) Toluene/H ₂ O, c r.t., 5 d	EtO ₂ C N Boc 3a	Ar Cat. A N N N N $Ar = 3,5-(CF_3)_2C_6H_3$
S	0 0 10a	0,0 S ⁰ 0 ₂ N S10b	0,0 S 0,Ph	0 0 S 1a"
Entry	Sulfonate	Yiled of 3a (%)	D.r. of $3a^b$	E.r. of 3a (%) ^c
1	S10a	22	2:1	88:12
2	S10b	35	2:1	63:37
3	1 a'	trace	n.d.	n.d.
4	1a''	trace	n.d.	n.d.

Table S2. Screening of the enantioselective annulation with various sulfonates^a

^{*a*}General conditions: sulfonates (0.044 mmol, 1.1 equiv.), **2a** (0.04 mmol, 1.0 equiv.), Cat. **A** (10 mol%), NaOH (0.06 mmol, 1.5 equiv.), and toluene/H₂O (5:1, 1.0 mL) at r.t. for 5 d; ^{*b*}Determined by ¹H NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard, isolated yield of major isomer; ^{*c*}The e.r. values were determined via HPLC on chiral stationary phase.

(3) Structure determination of 3c and 3f via X-ray crystallographic analysis.

(a) X-ray crystallographic analysis of 3c

Product **3c** was crystallized as colorless crystal *via* evaporation of a petroleum ether / ethyl acetate solution, and its absolute configuration was determined by x-ray structure analysis. CCDC 2405965 (**3c**) contains the supplementary crystallographic data that can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data request/cif.

Compound	3c
Empirical formula	C ₂₄ H ₂₄ ClNO ₅
Formula weight	441.89
Temperature/K	297
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	10.2458(5)
b/Å	9.6613(4)
c/Å	22.6816(10)
α/°	90
β/°	92.990(2)
γ/°	90
Volume/Å ³	2242.14(17)
Ζ	4
ρ _{calc} g/cm ³	1.309
µ/mm ⁻¹	1.803

F(000)	928.0		
Crystal size/mm ³	0.56 imes 0.44 imes 0.23		
Radiation	$CuK\alpha \ (\lambda = 1.54184)$		
2O range for data collection/°	7.806 to 136.682		
Index ranges	$-12 \le h \le 12, -11 \le k \le 8, -27 \le 1 \le 27$		
Reflections collected	19906		
Independent reflections	4077 [R _{int} = 0.0378, R _{sigma} = 0.0337]		
Data/restraints/parameters	4077/0/285		
Goodness-of-fit on F ²	1.091		
Final R indexes [I>=2σ (I)]	$R_1 = 0.0414, wR_2 = 0.1144$		
Final R indexes [all data]	$R_1 = 0.0433, wR_2 = 0.1158$		
Largest diff. peak/hole / e Å ⁻³	0.24/-0.29		
Flack parameter	0.02(6)		

(b) X-ray crystallographic analysis of 3f

Product **3f** was crystallized as colorless crystal *via* evaporation of a petroleum ether / ethyl acetate solution, and its absolute configuration was determined by x-ray structure analysis. CCDC 2405966 (**3f**) contains the supplementary crystallographic data that can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data request/cif.

Compound	3f		
Empirical formula	C ₂₅ H ₂₇ NO ₅		
Formula weight	421.47		
Temperature/K	297		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
a/Å	10.2635(4)		
b/Å	9.5914(4)		
c/Å	22.8353(9)		
a/°	90		
β/°	93.370(2)		
γ/°	90		
Volume/Å ³	2244.05(16)		
Z	4		
$\rho_{calc}g/cm^3$	1.248		
µ/mm ⁻¹	0.706		
F(000)	896.0		
Crystal size/mm ³	0.65 imes 0.33 imes 0.25		

Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2O range for data collection/°	11.95 to 136.59
Index ranges	$-10 \le h \le 12, -11 \le k \le 11, -27 \le l \le 24$
Reflections collected	28723
Independent reflections	4070 [$R_{int} = 0.0436$, $R_{sigma} = 0.0358$]
Data/restraints/parameters	4070/0/286
Goodness-of-fit on F ²	1.062
Final R indexes [I>=2σ (I)]	$R_1 = 0.0458, wR_2 = 0.1227$
Final R indexes [all data]	$R_1 = 0.0472, wR_2 = 0.1238$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.18
Flack parameter	0.02(6)

(3) Biological activity studies.

Antibacterial activity of compounds 3a-w against *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) and *Xanthomonas axonopodis*. pv. *citri* (*Xac*):

Antibacterial activities of the title compounds against *Xoo* and *Xac* were evaluated by using the turbidimeter test. Thiodiazole-copper was used as the positive controls. The compound was dissolved in 150.0 μ L of dimethylformamide and diluted with 0.1% (*V* / *V*) Tween-20 to prepare the solutions on a concentration of 100 μ g/mL. 1.0 mL of the above solution was added to the non-toxic nutrient broth (NB: 1.5 g of beef extract, 2.5 g of peptone, 0.5 g of yeast powder, 5.0 g of glucose and 500 mL of distilled water, pH = 7.0 ~ 7.2) liquid medium in a 4.0 mL tube. Then, 40.0 μ L of NB solution containing *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) or *Xanthomonas axonopodis*. pv. *citri* (*Xac*) was added to 5.0 mL of the NB solution containing the test compound. The inoculated test tube was incubated at (28 ± 1) °C under continuous shaking at 200 rpm for 24 h. The culture growth was monitored by measuring the optical density at 595 nm (OD₅₉₅) and expressed as corrected turbidity. The relative inhibitory rate was calculated as follows:

 $I(\%) = (C_{\text{tur}} - T_{\text{tur}}) / C_{\text{tur}} \times 100\%$

 C_{tur} : the corrected turbidity value of bacterial growth on untreated NB;

 T_{tur} : the corrected turbidity value of bacterial growth on treated NB;

I: The relative inhibitory rate^[5].

	Inhibition rate/% (100 µg/mL)			Inhibition rate/% (100 µg/mL)	
Compound	Хоо	Xac	Compound	Хоо	Xac
3c	0	19.2 ± 3.4	31	19.5 ± 6.1	32.1 ± 5.5
3d	0	43.1 ± 3.1	3 n	0	51.1 ± 3.8
3f	0	48.6 ± 3.2	3у	23.9 ± 1.6	51.9 ± 5.0
3g	19.5 ± 3.2	41.1 ±5.3	3s	73.1 ± 1.6	36.6 ± 5.8
3h	30.3 ± 1.7	55.2 ± 1.3	3t	0	49.3 ± 6.7
3i	51.2 ± 6.5	72.5 ± 1.2	3 u	0	48.4 ± 4.1
3у	0	43.2 ± 6.9	3 v	0	20.1 ± 3.2
3s	0	55.7 ± 4.6	3r	58.8 ± 1.1	55.9 ± 1.0
3z	0	60.4 ± 2.4	3z	0	16.2 ± 2.5
\mathbf{TC}^{b}	64.0 ± 1.9	40.6 ± 6.6	\mathbf{BT}^{b}	46.8 ± 6.0	49.4 ± 8.7

 Table S3. Inhibition rate of compound 3 against Xoo and Xac^a

^{*a*}All data were average data of three replicates; ^{*b*} Commercial bactericide, used as the positive control.

TC = Thiodiazole-copper, BT = Bismerthiazol

3. Characterization data of the substrates 1 and products 3-4

(1) Characterization of substrates products

(Note: substrates 2 were prepared according to previous reports^[6])

4-Nitrophenyl phenylmethanesulfonate (1a):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 5/1), Colorless solid, m.p. 104.0-106.5 °C.

¹**H NMR (400 MHz, CDCl**₃) δ: 8.26 – 8.16 (m, 2H), 7.54 – 7.37 (m, 5H), 7.24 – 7.13 (m, 2H), 4.61 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 153.5, 146.1, 130.9, 129.7, 129.2, 126.6, 125.5, 122.7, 57.7.

HRMS (ESI, m/z): Mass calculated for $C_{13}H_{11}NO_5S$ [M-H]⁺, 292.0358; found 292.0285.

4-Nitrophenyl (4-fluorophenyl)methanesulfonate (1b):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 5/1). Colorless solid, m.p. 92.5-94.5 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ*: 8.31 – 8.21 (m, 2H), 7.51 – 7.40 (m, 2H), 7.29 – 7.21 (m, 2H), 7.19 – 7.09 (m, 2H), 4.58 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 164.8, 162.3, 153.2, 146.2, 132.8, 132.7, 125.6, 122.7, 122.5, 122.4, 116.5, 116.3, 56.9.

HRMS (ESI, m/z): Mass calculated for $C_{13}H_{10}FNO_5S$ [M-H]⁺, 310.0264; found 310.0910.

4-Nitrophenyl (4-chlorophenyl)methanesulfonate (1c):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 5/1). Yellow solid, m.p. 85.1-90.8 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ*: 8.30 – 8.21 (m, 2H), 7.47 – 7.37 (m, 4H), 7.29 – 7.24 (m, 2H), 4.57 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 153.2, 146.2, 136.1, 132.2, 129.5, 125.7, 125.7, 122.7, 56.9.

HRMS (ESI, m/z): Mass calculated for $C_{13}H_9CINO_5S$ [M-H]⁺, 325.9968; found 325.9895.

4-Nitrophenyl (4-bromophenyl)methanesulfonate (1d):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 5/1). Colorless solid, m.p. 117.5-121.2 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ*: 8.31 – 8.20 (m, 2H), 7.65 – 7.52 (m, 2H), 7.38 – 7.31 (m, 2H), 7.31 – 7.21 (m, 2H), 4.55 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 153.2, 146.2, 132.5, 132.4, 125.7, 125.6, 124.3, 122.7, 57.0.

HRMS (ESI, m/z): Mass calculated for $C_{13}H_{10}BrNO_5S$ [M-H]⁺, 369.9463; found 369.9390.

4-Nitrophenyl (4-nitrophenyl)methanesulfonate (1e):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 5/1). Yellow solid, m.p. 142.3-144.7 °C.

¹**H NMR (400 MHz, CDCl**₃) δ: 8.39 – 8.23 (m, 4H), 7.73 – 7.66 (m, 2H), 7.36 – 7.29 (m, 2H), 4.70 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 152.8, 148.7, 146.4, 133.5, 131.9, 125.8, 124.3, 122.7, 56.8.

HRMS (ESI, m/z): Mass calculated for $C_{13}H_{10}N_2O_7S$ [M-H]⁺, 337.0209; found 337.0140.

4-Nitrophenyl (4-(tert-butyl)phenyl)methanesulfonate (1f):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 5/1). Colorless crystal, m.p. 103.6-105.2 °C.

¹**H NMR (400 MHz, CDCl**₃) δ: 8.23 – 8.15 (m, 2H), 7.47 – 7.42 (m, 2H), 7.42 – 7.35 (m, 2H), 7.21 – 7.13 (m, 2H), 4.58 (s, 2H), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ: 153.7, 153.1, 146.0, 130.6, 126.2, 125.5, 123.4, 122.7, 57.5, 34.8, 31.2.

HRMS (ESI, m/z): Mass calculated for $C_{17}H_{19}NO_5S$ [M-H]⁺, 348.0984; found 348.0911.

4-Nitrophenyl (3-chlorophenyl)methanesulfonate (1g):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 5/1). Colorless solid, m.p. 98.7-100.5 °C.

¹**H NMR (400 MHz, CDCl**₃) δ: 8.29 – 8.22 (m, 2H), 7.50 – 7.42 (m, 2H), 7.42 – 7.34 (m, 2H), 7.27 (dd, *J* = 6.8, 2.4 Hz, 3H), 4.57 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 153.2, 135.1, 130.9, 130.5, 130.0, 129.0, 128.4, 125.7, 122.7, 57.0.

HRMS (ESI, m/z): Mass calculated for $C_{13}H_{10}CINO_5S$ [M-H]⁺, 325.9968; found 325.9895.

4-Nitrophenyl (3-bromophenyl)methanesulfonate (1h):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 5/1). Colorless solid, m.p. 115.4-119.2 °C.

¹H NMR (400 MHz, CDCl₃) δ: 8.29 – 8.21 (m, 2H), 7.64 – 7.56 (m, 2H), 7.41 (dt, J = 7.7, 1.5 Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H), 7.29 – 7.23 (m, 2H), 4.56 (s, 2H).
¹³C NMR (101 MHz, CDCl₃) δ: 153.2, 146.2, 133.8, 132.9, 130.7, 129.5, 128.7, 125.7,

123.0, 122.7, 57.0.

HRMS (ESI, m/z): Mass calculated for $C_{13}H_{10}BrNO_5S$ [M-H]⁺, 369.9463; found 369.9390.

4-Nitrophenyl (2-fluorophenyl)methanesulfonate (1i):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 5/1). Colorless solid, m.p. 93.4-96.3 °C.

¹**H NMR (400 MHz, CDCl₃)** *δ*: 8.32 – 8.17 (m, 2H), 7.60 – 7.40 (m, 2H), 7.36 – 7.11 (m, 4H), 4.69 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ: 162.49, 160.00, 153.41, 146.13, 132.68, 132.66, 131.96, 131.88, 125.58, 124.91, 124.87, 122.53, 116.23, 116.02, 114.48, 114.34, 50.81, 50.77.

HRMS (ESI, m/z): Mass calculated for $C_{13}H_{10}FNO_5S$ [M-H]⁺, 310.0264; found 310.0191.

(2) Characterization of the products 3

1'-(Tert-butyl) 2-ethyl (*trans*)-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-1',2-dicarboxylate (3a):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Colorless crystal, m.p. 122.4-126.8 °C, d.r. = 10:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (81%, 33.0 mg). ¹H NMR (400 MHz, CDCl₃) δ : 7.87 (dt, *J* = 8.2, 0.8 Hz, 1H), 7.29 (dd, *J* = 5.2, 1.9 Hz, 3H), 7.23 – 7.12 (m, 3H), 6.79 (td, *J* = 7.6, 1.1 Hz, 1H), 5.95 (dd, *J* = 7.6, 1.3 Hz, 1H), 4.36 – 4.18 (m, 2H), 3.98 – 3.89 (m, 1H), 3.06 (d, *J* = 8.4 Hz, 1H), 1.66 (s, 9H), 1.30 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 171.5, 166.7, 149.2, 140.0, 132.6, 129.8, 128.6, 128.0, 127.7, 124.7, 123.6, 120.8, 114.8, 84.5, 61.7, 39.8, 38.5, 38.3, 28.2, 14.2.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{25}NNaO_5$ [M+Na]⁺, 430.1630; found 430.1625.

General procedure **3** for synthesis of chiral product **3a**, d.r. = 3:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), isolated yield of major isomer (58%, 9.5 mg).

 $[\alpha]_{D}^{25} = +3.521$ (c = 1.0 in CHCl₃).

HPLC analysis: 79:21 e.r. (Chiralcel OD-H, 2:98 *i*-PrOH/*n*-Hexane, 0.8 mL/min), Rt (major) = 12.1 min, Rt (minor) = 9.5 min.

1'-(Tert-butyl) 2-ethyl (*trans*)-5'-fluoro-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3b):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl

acetate = 30/1). Colorless solid, m.p. 147.6-153.8 °C, d.r. = 10:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined vield (89%, 37.9 mg).

¹**H** NMR (400 MHz, CDCl₃) δ : 7.85 (dd, J = 9.0, 4.6 Hz, 1H), 7.32 (dd, J = 5.1, 1.9 Hz, 3H), 7.17 (ddd, J = 6.3, 3.2, 1.5 Hz, 2H), 6.88 (td, J = 9.0, 2.7 Hz, 1H), 5.67 (dd, J = 8.2, 2.7 Hz, 1H), 4.39 – 4.19 (m, 2H), 3.97 (d, J = 8.5 Hz, 1H), 3.05 (d, J = 8.5 Hz, 1H), 1.65 (s, 9H), 1.30 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 171.05, 166.35, 160.39, 157.97, 149.12, 135.93, 135.91, 132.05, 129.66, 128.82, 128.36, 126.70, 126.61, 116.09, 116.01, 114.26, 114.03, 108.51, 108.25, 84.65, 61.79, 40.12, 38.71, 38.31, 38.29, 28.11, 14.16.

¹⁹F NMR (377 MHz, Chloroform-d) δ: -118.13.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{24}FNNaO_5$ [M+Na]⁺, 448.1536; found 448.1531.

General procedure **3** for synthesis of chiral product **3b**, d.r. = 5:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), isolated yield of major isomer (42%, 7.2 mg).

 $[\alpha]_{D}^{25} = +3.421$ (c = 1.0 in CHCl₃).

HPLC analysis: 82:18 e.r. (Chiralcel OD-H, 2:98 *i*-PrOH/*n*-Hexane, 0.8 mL/min), Rt (major) = 9.9 min, Rt (minor) = 12.5 min.

1'-(Tert-butyl) 2-ethyl (*trans*)-5'-chloro-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3c):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Colorless solid, m.p. 165.7-171.2 °C, d.r. = 5:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (74%, 32.7 mg). **Major isomer:** ¹H NMR (400 MHz, CDCl₃) δ : 7.82 (d, *J* = 8.7 Hz, 1H), 7.33 (dd, *J* = 5.1, 1.9 Hz, 3H), 7.21 – 7.12 (m, 3H), 5.89 (d, *J* = 2.2 Hz, 1H), 4.28 (qd, *J* = 7.2, 4.9

Hz, 2H), 3.96 (dd, *J* = 8.5, 1.1 Hz, 1H), 3.06 (d, *J* = 8.5 Hz, 1H), 1.65 (s, 9H), 1.30 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 170.8, 166.3, 149.0, 138.5, 132.0, 129.7, 129.2, 128.8, 128.4, 127.6, 126.5, 121.0, 116.0, 84.8, 61.8, 40.2, 38.7, 38.1, 28.1, 14.2.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{24}ClNNaO_5$ [M+Na]⁺, 464.1241; found 464.1235.

General procedure **3** for synthesis of chiral product **3**c, d.r. = 3:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), isolated yield of major isomer (46%, 8.1 mg).

 $[\alpha]_{D}^{25} = +3.482$ (c = 1.0 in CHCl₃).

HPLC analysis: 82:18 e.r. (Chiralcel OD-H, 2:98 *i*-PrOH/*n*-Hexane, 0.8 mL/min), Rt (major) = 9.9 min, Rt (minor) = 12.5 min.

1'-(Tert-butyl) 2-ethyl (*trans*)-5'-bromo-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3d):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Yellow solid, m.p. 146.8-148.9 °C, d.r. = 10:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (84%, 40.9 mg). ¹H NMR (400 MHz, CDCl₃) δ : 7.76 (d, *J* = 8.7 Hz, 1H), 7.41 – 7.29 (m, 4H), 7.22 – 7.11 (m, 2H), 6.02 (d, *J* = 2.1 Hz, 1H), 4.34 – 4.21 (m, 2H), 3.96 (d, *J* = 8.7 Hz, 1H), 3.06 (d, *J* = 8.4 Hz, 1H), 1.64 (s, 9H), 1.30 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 170.6, 166.3, 149.0, 138.9, 132.0, 130.5, 129.7, 128.8, 128.4, 126.9, 123.9, 116.7, 116.4, 84.9, 61.8, 40.2, 38.7, 37.9, 28.1, 14.2.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{24}BrNNaO_5 [M+Na]^+$, 508.0736; found 508.0730.

General procedure **3** for synthesis of chiral product **3d**, d.r. = 4:1(The d.r. value was determined via ¹H NMR analysis of the crude mixture), isolated yield of major isomer

(52%, 10.1 mg).

 $[\alpha]_{D}^{25} = +3.482$ (c = 1.0 in CHCl₃).

HPLC analysis: 83:17 e.r. (Chiralcel OD-H, 2:98 *i*-PrOH/*n*-Hexane, 0.8 mL/min), Rt (major) = 10.2 min, Rt (minor) = 12.9 min.

1'-(Tert-butyl) 2-ethyl (*trans*)-5',7'-dimethyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-1',2-dicarboxylate (3e):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Colorless solid, m.p. 120.3-121.6 °C, d.r. > 20:1, (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (56%, 24.4 mg). ¹H NMR (400 MHz, CDCl₃) δ : 7.33 – 7.27 (m, 3H), 7.22 – 7.13 (m, 2H), 6.80 (dt, J = 1.8, 0.8 Hz, 1H), 5.59 – 5.54 (m, 1H), 4.36 – 4.15 (m, 2H), 3.95 – 3.88 (m, 1H), 2.99 (d, J = 8.3 Hz, 1H), 2.21 (s, 3H), 1.98 (s, 3H), 1.64 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 166.8, 133.0, 132.8, 131.3, 129.9, 128.5, 127.9, 125.8, 123.0, 119.3, 84.7, 61.5, 39.3, 38.5, 38.4, 27.8, 20.8, 19.5, 14.2.

HRMS (ESI, m/z): Mass calculated for $C_{26}H_{29}NNaO_5$ [M+Na]⁺, 458.1943; found 458.1938.

1'-(Tert-butyl) 2-ethyl (*trans*)-5'-methyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3f):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Colorless solid, m.p. 137.6-138.1 °C, d.r. = 10:1, (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (67%, 28.2 mg).

¹**H NMR (400 MHz, CDCl**₃) δ : 7.72 (d, J = 8.4 Hz, 1H), 7.30 (qd, J = 4.9, 1.7 Hz, 3H), 7.22 – 7.11 (m, 2H), 7.02 – 6.94 (m, 1H), 5.76 – 5.69 (m, 1H), 4.27 (qt, J = 7.1, 3.8 Hz, 2H), 3.93 (d, J = 8.4 Hz, 1H), 3.02 (d, J = 8.4 Hz, 1H), 2.02 (s, 3H), 1.65 (s, 9H), 1.30 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 171.6, 166.8, 149.2, 137.6, 133.2, 132.7, 129.8, 128.5, 128.1, 128.0, 124.6, 121.6, 114.6, 84.3, 61.7, 39.7, 38.4, 38.3, 28.2, 20.9, 14.2.

HRMS (ESI, m/z): Mass calculated for C₂₅H₂₇NNaO₅ [M+Na]⁺, 444.1787; found 444.1781.

1'-(Tert-butyl) 2-ethyl (*trans*)-6'-chloro-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3g):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Yellow solid, m.p. 112.1-115.9 °C, d.r. = 10:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (89%, 39.33 mg).

¹**H NMR (400 MHz, CDCl**₃) *δ*: 7.95 (d, *J* = 1.9 Hz, 1H), 7.30 (dd, *J* = 5.1, 1.9 Hz, 3H), 7.16 (ddd, *J* = 6.4, 2.7, 0.9 Hz, 2H), 6.77 (dd, *J* = 8.2, 2.0 Hz, 1H), 5.85 (d, *J* = 8.1 Hz, 1H), 4.36 – 4.20 (m, 2H), 3.94 (dt, *J* = 8.4, 0.9 Hz, 1H), 3.06 (d, *J* = 8.4 Hz, 1H), 1.66 (s, 9H), 1.30 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 171.0, 166.4, 148.9, 140.8, 133.6, 132.3, 129.7, 128.8, 128.2, 123.7, 123.1, 121.5, 115.6, 85.0, 61.8, 40.0, 38.5, 38.0, 28.1, 14.2.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{24}ClNNaO_5$ [M+Na]⁺, 464.1241; found 464.1235.

1'-(Tert-butyl) 2-ethyl (*trans*)-6'-bromo-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3h):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Yellow solid, m.p. 125.1-126.8 °C, d.r. = 10:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (78 %, 37.9 mg).

¹**H NMR (400 MHz, CDCl**₃) δ : 8.10 (d, J = 1.8 Hz, 1H), 7.30 (dd, J = 5.1, 1.9 Hz, 3H), 7.20 – 7.11 (m, 2H), 6.92 (dd, J = 8.2, 1.8 Hz, 1H), 5.79 (d, J = 8.1 Hz, 1H), 4.28 (p, J= 7.2 Hz, 2H), 3.97 – 3.91 (m, 1H), 3.06 (d, J = 8.4 Hz, 1H), 1.66 (s, 9H), 1.30 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 170.8, 166.4, 148.9, 140.9, 132.2, 129.7, 128.8, 128.2, 126.6, 123.6, 121.9, 121.5, 118.4, 85.0, 61.8, 40.0, 38.5, 38.1, 28.1, 14.2.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{24}BrNNaO_5$ [M+Na]⁺, 508.0736; found 508.0730.

1'-(Tert-butyl) 2-ethyl (*trans*)-7'-methoxy-2'-oxo-3 phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3i):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Yellow oil, d.r. = 5:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (70%, 30.6 mg).

Major isomer: ¹**H NMR (400 MHz, CDCl₃)** *δ*: 7.35 – 7.27 (m, 3H), 7.22 – 7.16 (m, 2H), 6.80 – 6.68 (m, 2H), 5.59 (dd, J = 7.2, 1.4 Hz, 1H), 4.34 – 4.16 (m, 2H), 3.97 – 3.91 (m, 1H), 3.84 (s, 3H), 3.04 (d, *J* = 8.4 Hz, 1H), 1.62 (s, 9H), 1.28 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 171.6, 166.6, 145.6, 132.8, 129.8, 128.6, 128.0, 126.8, 124.1, 113.7, 111.5, 84.4, 61.6, 55.8, 39.2, 38.6, 38.2, 27.7, 14.2.

HRMS (ESI, m/z): Mass calculated for C₂₅H₂₇NNaO₆ [M+Na]⁺, 460.1736; found 460.1731.

General procedure **3** for synthesis of chiral product **3f**, d.r. = 2:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), isolated yield of major isomer (47%, 8.22 mg).

 $[\alpha]_{D}^{25} = +3.541$ (c = 1.0 in CHCl₃).

HPLC analysis: 79:21 e.r. (Chiralcel OD-H, 2:98 *i*-PrOH/*n*-Hexane, 0.8 mL/min), Rt (major) = 23.3 min, Rt (minor) = 29.4 min.

1'-(Tert-butyl) 2-ethyl (*trans*)-7'-fluoro-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3j):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Colorless solid, m.p. 132.9-137.8 °C, d.r. = 8:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (78%, 33.2 mg). ¹H NMR (400 MHz, CDCl₃) δ : 7.31 (dd, J = 5.1, 2.0 Hz, 3H), 7.18 (ddd, J = 6.5, 2.7, 0.9 Hz, 2H), 6.95 (ddd, J = 11.3, 8.5, 1.1 Hz, 1H), 6.75 (ddd, J = 8.4, 7.6, 4.4 Hz, 1H), 5.75 (dd, J = 7.6, 1.1 Hz, 1H), 4.36 – 4.20 (m, 2H), 3.97 (dt, J = 8.5, 1.0 Hz, 1H), 3.08 (d, J = 8.4 Hz, 1H), 1.63 (s, 9H), 1.30 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 170.91, 166.30, 149.71, 147.55, 147.22, 132.28, 129.77, 128.69, 128.19, 127.97, 127.94, 126.74, 126.64, 124.61, 124.54, 116.75, 116.71, 116.20, 116.00, 85.11, 61.84, 40.06, 38.74, 27.73, 14.16.

¹⁹F NMR (**377 MHz, Chloroform-***d*) δ: -119.90.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{24}FNNaO_5$ [M+Na]⁺, 448.1536; found 448.1531.

1'-(Tert-butyl) 2-ethyl (*trans*)-7'-chloro-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3k):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Colorless solid, m.p. 107.7-109.9 °C, d.r. = 12:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (79%, 34.9 mg). ¹H NMR (400 MHz, CDCl₃) δ : 7.30 (dd, J = 5.1, 1.9 Hz, 3H), 7.22 – 7.13 (m, 3H), 6.71 (dd, J = 8.2, 7.6 Hz, 1H), 5.84 (dd, J = 7.6, 1.1 Hz, 1H), 4.36 – 4.17 (m, 2H), 4.00 – 3.94 (m, 1H), 3.08 (d, J = 8.4 Hz, 1H), 1.65 (s, 9H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 171.4, 166.2, 148.1, 137.0, 132.2, 129.8, 129.4, 128.7, 128.2, 128.0, 124.2, 119.4, 118.3, 85.6, 61.8, 39.7, 38.6, 38.3, 27.7, 14.2.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{24}ClNNaO_5$ [M+Na]⁺, 464.1241; found 464.1235.

1'-(Tert-butyl) 2-ethyl (*trans*)-7'-bromo-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3l):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Colorless solid, m.p. 95.5-96.9 °C, d.r. > 20:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (72%, 35.0 mg). ¹H NMR (400 MHz, CDCl₃) δ : 7.34 (dd, J = 8.2, 1.1 Hz, 1H), 7.30 (dd, J = 5.1, 1.9 Hz, 3H), 7.18 (ddd, J = 6.4, 3.3, 1.6 Hz, 2H), 6.64 (t, J = 7.9 Hz, 1H), 5.88 (dd, J = 7.6, 1.1 Hz, 1H), 4.37 – 4.17 (m, 2H), 3.97 (dd, J = 8.5, 1.1 Hz, 1H), 3.07 (d, J = 8.4 Hz, 1H), 1.66 (s, 9H), 1.29 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 171.6, 166.2, 148.0, 138.6, 132.6, 132.2, 129.8, 128.7, 128.3, 128.2, 124.5, 119.9, 106.1, 85.6, 61.8, 39.8, 38.6, 38.4, 27.8, 14.2.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{24}BrNNaO_5$ [M+Na]⁺, 508.0736; found 508.0730.

Di-tert-butyl (*trans*)-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-1',2dicarboxylate (3m):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Yellow oil, d.r. = 5:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (91%, 36.0 mg).

Major isomer: ¹**H NMR (400 MHz, CDCl₃)** *δ*: 7.87 (dt, *J* = 8.3, 0.8 Hz, 1H), 7.30 – 7.11 (m, 6H), 6.78 (td, *J* = 7.6, 1.0 Hz, 1H), 5.93 (dd, *J* = 7.7, 1.3 Hz, 1H), 3.88 (dd, *J* = 8.4, 0.9 Hz, 1H), 2.99 (d, *J* = 8.5 Hz, 1H), 1.65 (s, 9H), 1.50 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ: 165.7, 132.9, 129.8, 128.6, 127.9, 127.5, 123.5, 120.8, 114.7, 84.2, 82.2, 39.9, 39.7, 38.3, 28.2, 28.1.

HRMS (ESI, m/z): Mass calculated for $C_{26}H_{29}NNaO_5$ [M+Na]⁺, 458.1938; found 458.1938.

Ethyl (*trans*)-2-oxo-3'-phenyl-2H-spiro[benzofuran-3,1'-cyclopropane]-2'carboxylate (3n):

EtO₂C Ph

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Yellow solid, m.p. 94.5-96.6 °C, d.r. = 3:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (62%, 17.4 mg). **Major isomer:** ¹H NMR (400 MHz, CDCl₃) δ : 7.33 (dd, J = 5.0, 1.9 Hz, 3H), 7.20 (ddt, J = 6.5, 3.6, 1.8 Hz, 3H), 7.13 (dd, J = 8.1, 1.1 Hz, 1H), 6.81 (td, J = 7.6, 1.1 Hz,

1H), 5.99 (dd, *J* = 7.6, 1.3 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 4.01 (dd, *J* = 8.3, 1.1 Hz, 1H), 3.13 (d, *J* = 8.3 Hz, 1H), 1.31 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 173.0, 166.1, 153.8, 129.6, 128.8, 128.4, 128.4, 123.7, 121.3, 110.6, 62.0, 39.5, 38.2, 14.2.

HRMS (ESI, m/z): Mass calculated for $C_{19}H_{16}NaO_4$ [M+H]⁺, 331.0946; found 331.0941.

Ethyl (*trans*)-2'-oxo-3-phenyl-1'-tosylspiro[cyclopropane-1,3'-indoline]-2carboxylate (30):

Purification by flash column chromatography on silica gel (petroleum ether / ethyl acetate = 30/1). Colorless crystal, m.p. 218.7-219.6 °C, d.r. >10:1, (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (60%, 27.7mg).

¹**H NMR (400 MHz, CDCl₃)** δ : 7.90 (dd, J = 14.4, 8.2 Hz, 3H), 7.27 – 7.12 (m, 6H), 7.03 – 6.97 (m, 2H), 6.72 (t, J = 7.6 Hz, 1H), 5.84 (d, J = 7.7 Hz, 1H), 4.07 (qd, J = 7.1, 4.3 Hz, 2H), 3.79 (d, J = 8.4 Hz, 1H), 2.93 (d, J = 8.4 Hz, 1H), 2.35 (s, 3H), 1.08 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 171.59, 166.32, 145.87, 139.63, 135.61, 132.29, 129.99, 129.96, 128.92, 128.45, 128.36, 128.28, 124.95, 124.33, 121.52, 113.82, 61.96, 40.20, 38.11, 21.97, 14.27, 1.29.

HRMS (ESI, m/z): Mass calculated for C₂₆H₂₃NNaO₅S [M+Na]⁺, 484.1189; found 484.1190.

Ethyl (*trans*)-1'-acetyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-2carboxylate (3p):

EtO₂C Ph Ph Ph Ph

Purification by flash column chromatography on silica gel (petroleum ether / ethyl

acetate = 30/1). Colorless crystal, m.p. 85.8-88.2 °C, d.r. = 5:1, (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (64%, 22.36mg).

¹**H** NMR (400 MHz, CDCl₃) δ: 8.29 – 8.13 (m, 1H), 7.26 – 7.06 (m, 6H), 6.77 (td, J =7.7, 1.1 Hz, 1H), 5.90 (dd, J = 7.7, 1.3 Hz, 1H), 4.21 (qd, J = 7.2, 2.2 Hz, 2H), 3.88 (d, J = 8.4 Hz, 1H), 3.03 (d, J = 8.5 Hz, 1H), 2.65 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ: 173.24, 166.33, 154.06, 132.18, 129.87, 129.04, 128.67, 128.62, 123.92, 121.61, 110.91, 62.27, 39.72, 38.47, 36.13, 14.44. HRMS (ESI, m/z): Mass calculated for C₂₁H₁₉NNaO₄ [M+Na]⁺, 372.1206; found 372.1206.

Ethyl (*trans*)-1'-methyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-2carboxylate (3q):

Purification by flash column chromatography on silica gel (petroleum ether / ethyl acetate = 30/1). Colorless crystal, m.p. 110.3-112.8 °C, d.r. = 4:1, (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (70%, 22.5 mg). ¹H NMR (400 MHz, CDCl₃) δ : 7.34 – 7.23 (m, 3H), 7.18 (ddd, *J* = 7.6, 4.4, 1.2 Hz, 3H), 6.86 (d, *J* = 7.7 Hz, 1H), 6.70 (td, *J* = 7.6, 1.0 Hz, 1H), 5.99 (dd, *J* = 7.6, 1.2 Hz, 1H), 4.26 (qd, *J* = 7.1, 4.2 Hz, 2H), 3.92 (d, *J* = 8.2 Hz, 1H), 3.07 (d, *J* = 8.3 Hz, 3H), 1.30 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 172.63, 166.79, 143.62, 132.93, 129.29, 128.14, 127.40, 127.09, 125.29, 121.30, 120.68, 107.61, 61.12, 37.71, 37.54, 36.62, 26.26, 13.82.

HRMS (ESI, m/z): Mass calculated for $C_{20}H_{19}NNaO_3$ [M+Na]⁺, 344.1257; found 344.1256.

1'-(Tert-butyl) 3-ethyl (*trans*)-2-(4-(tert-butyl)phenyl)-2'-oxospiro[cyclopropane-1,3'-indoline]-1',3-dicarboxylate (3r):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Yellow solid, m.p. 132.7-137.4 °C, d.r. = 5:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (53 %, 24.6 mg).

Major isomer: ¹**H NMR (400 MHz, CDCl₃)** δ : 7.89 – 7.83 (m, 1H), 7.34 – 7.28 (m, 2H), 7.19 (td, J = 7.9, 1.3 Hz, 1H), 7.13 – 7.07 (m, 2H), 6.79 (td, J = 7.6, 1.0 Hz, 1H), 6.00 (dd, J = 7.7, 1.3 Hz, 1H), 4.36 – 4.18 (m, 2H), 3.91 (d, J = 8.4 Hz, 1H), 3.05 (d, J = 8.4 Hz, 1H), 1.66 (s, 9H), 1.29 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ: 171.5, 166.8, 151.1, 149.2, 140.0, 129.5, 129.4, 127.6, 125.5, 124.8, 123.6, 120.9, 114.8, 84.4, 61.6, 39.7, 38.6, 38.4, 34.6, 31.3, 28.2, 14.2.
HRMS (ESI, m/z): Mass calculated for C₂₈H₃₃NNaO₅ [M+Na]⁺, 486.2256; found 486.2251.

1'-(Tert-butyl) 2-ethyl (*trans*)-3-(4-fluorophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3s):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Yellow solid, m.p. 108.4-112.6 °C, d.r. = 4:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (75%, 31.9 mg). **Major isomer:** ¹H NMR (400 MHz, CDCl₃) δ : 7.88 (dt, J = 8.2, 0.8 Hz, 1H), 7.22 (td, J = 7.9, 1.3 Hz, 1H), 7.18 – 7.10 (m, 2H), 7.04 – 6.95 (m, 2H), 6.82 (td, J = 7.6, 1.0 Hz, 1H), 5.94 (dd, J = 7.7, 1.3 Hz, 1H), 4.36 – 4.18 (m, 2H), 3.88 (dq, J = 8.3, 1.1 Hz, 1H), 3.01 (d, J = 8.4 Hz, 1H), 1.66 (s, 9H), 1.30 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 171.30, 166.51, 163.59, 161.13, 149.13, 140.02, 131.54, 131.45, 128.50, 128.47, 127.84, 124.38, 123.71, 120.78, 115.77, 115.55, 114.92, 84.56, 61.75, 38.93, 38.63, 38.23, 28.13, 14.17.

¹⁹F NMR (**377** MHz, Chloroform-*d*) δ: -113.45.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{24}FNNaO_5$ [M+Na]⁺, 448.1536; found 448.1531.

1'-(Tert-butyl) 2-ethyl (*trans*)-3-(4-chlorophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3t):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Pink solid, m.p. 154.2-157.9 °C, d.r. = 7:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (73%, 32.26 mg).

Major isomer: ¹**H NMR (400 MHz, CDCl₃)** *δ*: 7.88 (dt, *J* = 8.2, 0.8 Hz, 1H), 7.31 – 7.25 (m, 2H), 7.22 (td, *J* = 7.9, 1.3 Hz, 1H), 7.13 – 7.08 (m, 2H), 6.84 (td, *J* = 7.6, 1.0 Hz, 1H), 5.96 (dd, *J* = 7.7, 1.3 Hz, 1H), 4.35 – 4.18 (m, 2H), 3.90 – 3.83 (m, 1H), 3.01 (d, *J* = 8.3 Hz, 1H), 1.66 (s, 9H), 1.30 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 171.2, 166.4, 149.1, 140.0, 134.0, 131.2, 131.2, 128.9, 127.9, 124.3, 123.8, 120.8, 115.0, 84.6, 61.8, 38.9, 38.4, 38.2, 28.1, 14.2.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{24}ClNNaO_5$ [M+Na]⁺, 464.1241; found 464.1235.

1'-(Tert-butyl) 3-ethyl (*trans*)-2-(4-bromophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',3-dicarboxylate (3u):

EtO₂C Boc
Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Colorless solid, m.p. 159.8-161.9 °C, d.r. = 4:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (84%, 40.9 mg). **Major isomer:** ¹H NMR (400 MHz, CDCl₃) δ : 7.88 (dt, *J* = 8.2, 0.8 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.22 (td, *J* = 7.9, 1.3 Hz, 1H), 7.12 – 7.00 (m, 2H), 6.84 (td, *J* = 7.6, 1.0 Hz, 1H), 5.97 (dd, *J* = 7.7, 1.3 Hz, 1H), 4.35 – 4.19 (m, 2H), 3.85 (dd, *J* = 8.4, 1.0 Hz, 1H), 3.01 (d, *J* = 8.4 Hz, 1H), 1.65 (s, 9H), 1.30 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 171.2, 166.4, 149.1, 140.0, 131.8, 131.8, 131.5, 127.9, 124.2, 123.8, 122.1, 120.8, 115.0, 84.6, 61.8, 39.0, 38.4, 38.2, 28.1, 14.2.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{24}BrNNaO_5 [M+Na]^+$, 508.0736; found 508.0730.

1'-(Tert-butyl) 2-ethyl (*trans*)-3-(4-nitrophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3v):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Colorless solid, m.p. 132.6-135.6 °C, d.r. = 4:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (85%, 38.5 mg). **Major isomer:** ¹H NMR (400 MHz, CDCl₃) δ : 8.18 (d, J = 8.7 Hz, 2H), 7.90 (dt, J = 8.3, 0.8 Hz, 1H), 7.41 – 7.33 (m, 2H), 7.24 (td, J = 7.9, 1.3 Hz, 1H), 6.83 (td, J = 7.6, 1.0 Hz, 1H), 5.92 (dd, J = 7.7, 1.3 Hz, 1H), 4.39 – 4.21 (m, 2H), 3.99 – 3.89 (m, 1H), 3.09 (d, J = 8.4 Hz, 1H), 1.66 (s, 9H), 1.31 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 170.8, 166.0, 149.0, 147.6, 140.2, 140.2, 130.9, 128.3, 123.9, 123.9, 123.6, 120.5, 115.2, 84.8, 62.0, 38.7, 38.3, 38.0, 28.1, 14.2.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{24}N_2NaO_7$ [M+Na]⁺, 475.1481; found 475.1475.

1'-(Tert-butyl) 2-ethyl (trans)-2'-oxo-3-(m-tolyl)spiro[cyclopropane-1,3'

indoline]-1',2-dicarboxylate (3w):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Yellow oil, d.r. = 9:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (70%, 29.5 mg).

¹**H NMR** (**400 MHz, CDCl**₃) *δ*: 7.87 (dt, *J* = 8.3, 0.7 Hz, 1H), 7.22 – 7.14 (m, 2H), 7.09 (ddd, *J* = 7.6, 2.0, 1.1 Hz, 1H), 7.00 (dq, *J* = 1.9, 1.0 Hz, 1H), 6.97 – 6.92 (m, 1H), 6.80 (td, *J* = 7.6, 1.1 Hz, 1H), 5.99 (dd, *J* = 7.6, 1.3 Hz, 1H), 4.37 – 4.16 (m, 2H), 3.99 – 3.81 (m, 1H), 3.04 (d, *J* = 8.4 Hz, 1H), 2.29 (s, 3H), 1.66 (s, 9H), 1.30 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 171.5, 166.8, 149.2, 140.0, 138.3, 132.5, 130.5, 128.8, 128.5, 127.6, 126.8, 124.8, 123.6, 120.9, 114.8, 84.4, 61.7, 39.8, 38.5, 38.3, 28.2, 21.3, 14.2.

HRMS (ESI, m/z): Mass calculated for C₂₅H₂₇NNaO₅ [M+Na]⁺, 444.1787; found 444.1781.

1'-(Tert-butyl) 2-ethyl (*trans*)-3-(3-chlorophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3x):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Colorless oil, d.r. = 8:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (68%, 30.1 mg).

¹**H NMR (400 MHz, CDCl₃)** δ : 7.94 – 7.81 (m, 1H), 7.30 – 7.17 (m, 4H), 7.03 (dq, *J* = 7.4, 1.3 Hz, 1H), 6.84 (td, *J* = 7.6, 1.0 Hz, 1H), 5.99 (dd, *J* = 7.7, 1.3 Hz, 1H), 4.27 (qd, *J* = 7.1, 4.9 Hz, 2H), 3.94 – 3.81 (m, 1H), 3.03 (d, *J* = 8.3 Hz, 1H), 1.66 (s, 9H), 1.30 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 166.3, 134.7, 134.5, 129.9, 129.8, 128.3, 128.1, 128.0, 124.2, 123.8, 120.8, 115.0, 84.6, 61.8, 39.0, 38.2, 28.1, 14.2.

HRMS (ESI, m/z): Mass calculated for $C_{24}H_{24}ClNNaO_5$ [M+Na]⁺, 464.1241; found 464.1235.

1'-(Tert-butyl) 3-ethyl (*trans*)-2-(3-bromophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',3-dicarboxylate (3y):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Yellow oil, d.r. = 5:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (77%, 37.5 mg).

Major isomer: ¹**H NMR (400 MHz, CDCl**₃) δ: 7.88 (dt, *J* = 8.3, 0.7 Hz, 1H), 7.43 (ddt, *J* = 8.0, 1.9, 0.9 Hz, 1H), 7.37 (q, *J* = 1.5 Hz, 1H), 7.23 (td, *J* = 7.9, 1.3 Hz, 1H), 7.16 (t, *J* = 7.8 Hz, 1H), 7.07 (ddt, *J* = 7.7, 1.9, 1.0 Hz, 1H), 6.84 (td, *J* = 7.6, 1.0 Hz,

1H), 5.99 (dd, J = 7.7, 1.3 Hz, 1H), 4.27 (qd, J = 7.1, 4.5 Hz, 2H), 3.88 (dd, J = 8.3, 0.9 Hz, 1H), 3.02 (d, J = 8.3 Hz, 1H), 1.66 (s, 9H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 171.1, 166.3, 149.1, 140.0, 135.0, 132.7, 131.2, 130.2, 128.6, 128.0, 124.1, 123.8, 122.6, 120.8, 115.0, 84.6, 61.8, 38.9, 38.2, 38.2, 28.1, 14.2. HRMS (ESI, m/z): Mass calculated for C₂₄H₂₄BrNNaO₅ [M+Na]⁺, 508.0736; found

508.0730.

1'-(Tert-butyl) 2-ethyl (*trans*)-3-(2-fluorophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3z):

Purification by flash column chromatography over silica gel (petroleum ether / ethyl acetate = 30/1). Colorless oil, d.r. > 20:1 (The d.r. value was determined via ¹H NMR analysis of the crude mixture), combined yield (75%, 31.9 mg).

¹**H** NMR (400 MHz, CDCl₃) δ : 7.88 (dt, J = 8.2, 0.7 Hz, 1H), 7.34 – 7.24 (m, 2H), 7.18 (dtd, J = 24.0, 7.5, 1.3 Hz, 2H), 6.94 (ddd, J = 9.6, 8.4, 1.2 Hz, 1H), 6.79 (td, J =7.6, 1.0 Hz, 1H), 5.96 (dd, J = 7.7, 1.3 Hz, 1H), 4.29 (qd, J = 7.1, 4.5 Hz, 2H), 3.79 (dd, J = 8.4, 1.2 Hz, 1H), 3.05 (d, J = 8.4 Hz, 1H), 1.66 (s, 9H), 1.31 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ: 171.16, 166.48, 163.30, 160.82, 149.14, 140.06, 130.82, 130.78, 130.12, 130.04, 127.87, 124.57, 124.15, 124.12, 123.64, 120.48, 120.34, 119.85, 115.84, 115.63, 114.96, 84.47, 61.77, 37.77, 37.75, 37.70, 34.40, 34.38, 28.14, 14.17.

¹⁹F NMR (**377 MHz, Chloroform-***d*) δ: -114.20.

HRMS (ESI, m/z): Mass calculated for C₂₄H₂₄FNaNO₄ [M+Na]⁺, 448.1531; found 448.1532.

References

- M.-M. Zhou, J.-J. Liu, R. Deng, Q.-Y. Wang, S.-Q. Wu, P. Zheng, and Y. R. Chi, Construction of Tetrasubstituted Silicon-Stereogenic Silanes via Conformational Isomerization and N-Heterocyclic Carbene Catalyzed Desymmetrization. ACS Catal. 2022, 12, 7781.
- Y. Wang, S. Wang, P. Qiu, L. Fang, K. Wang, Y. Zhang, C. Zhang and T. Zhao, Asymmetric α-Electrophilic Difluoromethylation of β-keto Esters by Phase Transfer Catalysis. Org. Biomol. Chem., 2021, 19, 4788
- C. Yang, W. Zhang, Y. Li, X. Xue, X. Li and J. Cheng, Origin of Stereoselectivity of the Photoinduced Asymmetric Phase-Transfer-Catalyzed Perfluoroalkylation of β-Ketoesters, *J. Org. Chem.*, 2017, 82, 9321.
- Y. Wang, Z. Zheng, M. Lian, H. Yin, J. Zhao, Q. Meng and Z. Gao, Photo-Organocatalytic Enantioselective α-hydroxylation of β-keto Esters and β-keto Amides withOxygen under Phase Transfer Catalysis, *Green Chem.*, 2016, 18, 5493.
- Y.-L. Chen, T.-T. Li, Z.-C. Jin and Y. R. Chi, New Axially Chiral Molecular Scaffolds with Antibacterial Activities against Xanthomonas oryzae pv. oryzae for Protection of Rice. J. Agric. Food Chem. 2022, 70, 6050
- 6. Q. Liu and K. P. Teng, Facile Approach for the Oxidative Enolate Activation of Aliphatic Aldehydes. *J. Org. Chem*, **2023**, *88*, 2404.

4. Copies of ¹H, ¹⁹F and ¹³C NMR spectra

4-Nitrophenyl phenylmethanesulfonate (1a):

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

4-Nitrophenyl (4-fluorophenyl)methanesulfonate (1b):

4-Nitrophenyl (4-bromophenyl)methanesulfonate (1d):

4-Nitrophenyl (4-(tert-butyl)phenyl)methanesulfonate (1f):

.0 10.5 10.0 9.5 6.5 6.0

4-Nitrophenyl (3-bromophenyl)methanesulfonate (1h):

4-Nitrophenyl (2-fluorophenyl)methanesulfonate (1i):

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) 1'-(Tert-butyl) 2-ethyl (*trans*)-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-1',2-dicarboxylate (3a):

1'-(Tert-butyl) 2-ethyl (*trans*)-5'-fluoro-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3b):

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm)

1'-(Tert-butyl) 2-ethyl (*trans*)-5'-bromo-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3d):

1'-(Tert-butyl) 2-ethyl (*trans*)-5',7'-dimethyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-1',2-dicarboxylate (3e):

1'-(Tert-butyl) 2-ethyl (*trans*)-5'-methyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3f):

1'-(Tert-butyl) 2-ethyl (*trans*)-6'-chloro-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3g): 1'-(Tert-butyl) 2-ethyl (*trans*)-6'-bromo-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3h):

1'-(Tert-butyl) 2-ethyl (*trans*)-7'-methoxy-2'-oxo-3 phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3i):

1'-(Tert-butyl) 2-ethyl (trans)-7'-fluoro-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3j):

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm) 1'-(Tert-butyl) 2-ethyl (*trans*)-7'-chloro-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3k):

S62

1'-(Tert-butyl) 2-ethyl (*trans*)-7'-bromo-2'-oxo-3-phenylspiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3l):

Di-tert-butyl (trans)-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-1',2-

dicarboxylate (3m):

Ethyl (trans)-2-oxo-3'-phenyl-2H-spiro[benzofuran-3,1'-cyclopropane]-2'-

carboxylate (3n):

(trans)-2'-oxo-3-phenyl-1'-tosylspiro[cyclopropane-1,3'-indoline]-2-Ethyl carboxylate (30):

 10 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

Ethyl (*trans*)-1'-acetyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-2carboxylate (3p):

Ethyl (*trans*)-1'-methyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-2carboxylate (3q):

1'-(Tert-butyl) 3-ethyl (trans)-2-(4-(tert-butyl)phenyl)-2'-oxospiro[cyclopropane-

1,3'-indoline]-1',3-dicarboxylate (3r):

1'-(Tert-butyl) 2-ethyl (*trans*)-3-(4-fluorophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3s):

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)
1'-(Tert-butyl) 2-ethyl (*trans*)-3-(4-chlorophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3t):

1'-(Tert-butyl) 3-ethyl (*trans*)-2-(4-bromophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',3-dicarboxylate (3u):

1'-(Tert-butyl) 2-ethyl (trans)-3-(4-nitrophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3v):

1'-(Tert-butyl) 2-ethyl (*trans*)-2'-oxo-3-(m-tolyl)spiro[cyclopropane-1,3'-indoline]-1',2-dicarboxylate (3w):

7,7,88 7,7,77,738 7,7,77,738 7,7,77,738 7,7,77,738 7,7,738 7,7,738 7,7,738 7,7,737 7,7,737 7,7,10 8,6,94 6,6,946,6,94 6,6,94 6,6,946,6,94 6,6,94 6,

1'-(Tert-butyl) 2-ethyl (*trans*)-3-(3-chlorophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3x):

1'-(Tert-butyl) 3-ethyl (*trans*)-2-(3-bromophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',3-dicarboxylate (3y):

1'-(Tert-butyl) 2-ethyl (*trans*)-3-(2-fluorophenyl)-2'-oxospiro[cyclopropane-1,3'indoline]-1',2-dicarboxylate (3z):

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

5. HPLC traces of the obtained chiral products

(+)-1'-(Tert-butyl) 2-ethyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-1',2-

dicarboxylate (3a)

HPLC conditions: Chiralcel OD-H (i-PrOH/n-Hexane, 2:98), Flow: 0.8 mL.min-1, Temp: 40 °C.

0

5.0

Peak#	Ret. Time	Area	Height	Area%		
1	9.547	2883020	57736	21.146		
2	12.103	10751105	198372	78.854		
Total		13634124	256108	100.000		

10.0

7.5

12.5

15.0

17.5

20.0

min

(+)-1'-(Tert-butyl) 2-ethyl-5'-fluoro-2'-oxo-3-phenylspiro[cyclopropane-1,3'-

indoline]-1',2-dicarboxylate (3b):

HPLC conditions: Chiralcel OD-H (i-PrOH/n-Hexane, 2:98), Flow: 0.8 mL.min⁻¹, Temp: 40 °C.

mAU

(+)-1'-(Tert-butyl) 2-ethyl-5'-chloro-2'-oxo-3-phenylspiro[cyclopropane-1,3'-

indoline]-1',2-dicarboxylate (3c):

HPLC conditions: Chiralcel OD-H (i-PrOH/n-Hexane, 2:98), Flow: 0.8 mL.min⁻¹, Temp: 40 °C.

Area Height Area% 1 9.882 2723978 76539 81.975 2 598965 18.025 12.527 17667 Total 3322943 94206 100.000

(+)-1'-(Tert-butyl) 2-ethyl-5'-bromo-2'-oxo-3-phenylspiro[cyclopropane-1,3'-

indoline]-1',2-dicarboxylate (3d):

100-

0

8

HPLC conditions: Chiralcel OD-H (*i*-PrOH/*n*-Hexane, 2:98), Flow: 0.8 mL.min⁻¹, Temp: 40 °C. mAU

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area%			
1	10.156	5748026	163577	82.978			
2	12.864	1179108	35070	17.022			
Total		6927134	198647	100.000			

ģ

10

11

12

12.864

13

14

15 min (+)-1'-(Tert-butyl) 2-ethyl-7'-methoxy-2'-oxo-3 phenylspiro[cyclopropane-1,3'-

indoline]-1',2-dicarboxylate (3i):

EtO₂C υPh 0 Boc ÓМе

HPLC conditions: Chiralcel OD-H (i-PrOH/n-Hexane, 2:98), Flow: 0.8 mL.min⁻¹, Temp: 40 °C.

Peak#	Ret. Time	Area	Height	Area%
1	21.351	101518681	876770	49.706
2	26.508	102717603	782586	50.294
Total		204236285	1659357	100.000

3305891

mAU

Total

100.000

44064