Supporting Information for

In situ generated cobalt(I) catalyst for the efficient synthesis of novel pyridines: Revisiting the mechanism of [2+2+2] cycloadditions

Susana García-Abellán,[‡] Asier Urriolabeitia,[‡] Victor Polo, *[†] Manuel Iglesias *[‡]

[‡] Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de

Zaragoza-C.S.I.C., C/Pedro Cerbuna 12, Facultad de Ciencias, 50009-Zaragoza, Spain.

[†] Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Departamento de

Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain.

Table of contents

1. Experimental details	S2
2. General procedure for [2+2+2] cycloaddition reaction	S2
3. Characterization of pyridines	S3
4. Crude ¹ H-NMR spectra of [2+2+2] cycloaddition reactions	S9
5. NMR spectra of isolated pyridines	S15
6. Stoichiometric study	S44
7. DFT calculations	S47
8. References	S60

1. Experimental details

The syntheses of the Co(III) complexes were carried out under an inert atmosphere using Schlenk techniques. The complexes were stored under an inert atmosphere in a Schlenk flask or in an MBraun dry box. The organic solvents were previously dried and distilled under argon or obtained from a solvent purification system (SPS) and collected under an inert atmosphere. All other starting materials were purchased from commercial suppliers and without purification. The used further complexes $[CoCp(CH_3CN)_2(PMePh_2)][BF_4]_2^{[1]}$ and [CoCp*(CH₃CN)(dppe)][BF₄]₂ were synthesized from [CoCp*(CH₃CN)₃][BF₄]₂^[2] following procedures analogous to those described in the literature.

The NMR spectra were recorded at 298 K on Bruker Avance 300 MHz, Bruker ARX 300 MHz, and Bruker Avance 400 MHz spectrometers. Chemical shifts, expressed in ppm, were referenced to the residual peaks of the deuterated solvents (¹H and ¹³C). Coupling constants (*J*) are expressed in Hz. Spectral assignments were achieved through a combination of ¹H-¹H COSY, ¹³C{¹H} APT, ¹H-¹³C HSQC, and ¹H-¹³C HMBC experiments. High-resolution electrospray ionization mass spectra (HRMS) were acquired using a Bruker MicroTOF-Q quadrupole time-of-flight spectrometer.

2. General procedure for [2+2+2] cycloaddition reaction

0.0075 mmol of cobalt precatalyst and 0.3 mL of C_6D_6 are introduced in an NMR tube. Then, 15 µL (0.015 mmol) of a NaBEt₃H solution in THF (1 M) is added. After gently shaking the mixture, allowing the gases to escape under an argon flow, 0.15 mmol of alkyne and 0.45 mmol of nitrile are added (the optimized alkyne-nitrile stoichiometry is 1:3, but experiments were also conducted using 0.15 and 0.9 mmol of nitrile). The NMR tube was then sealed under argon and heated to the appropriate temperature. The reaction progress was monitored by ¹H NMR spectroscopy, and conversion was determined by integrating the representative signals of the products relative to an internal standard (1,3,5-triazine, 0.05 mmol).

The cycloaddition products were isolated using a puriFlash® 215 column with ethyl acetate and hexane as eluents. The mixture of 2,4-dibenzyl-6-(4-methoxyphenyl)pyridine (**py-7a**) and 3,6-dibenzyl-2-(4-methoxyphenyl)pyridine (**py-7b**) was isolated by distillation.

3. Characterization of pyridines

2,4-dibencyl-6-methylpyridine (py-1a). ¹H NMR, ¹H-¹H COSY (C₆D₆, 400 MHz): δ

p-Tol

7.29-7.23 (m, 2H, CH_{Ar}), 7.14-7.00 (m, 6H, CH_{Ar}), 6.95-6.87 (m, 2H, CH_{Ar}), 6.64 (s, 1H, CH_{Py-3}), 6.50 (s, 1H, CH_{Py-5}), 4.07 (s, 2H, $C_{Py-2}CH_2$), 3.46 (s, 2H, $C_{Py-4}CH_2$), 2.36 (s, 3H, $C_{Py-6}CH_3$). ¹³C{¹H} NMR APT, ¹H-¹³C HSQC, ¹H-¹³C HMBC (C₆D₆, 101 MHz): δ 161.0 (s, $C_{Py-4}CH_2$)

2), 158.4 (s, C_{Py-6}), 150.5 (s, C_{Py-4}), 140.6 (s, $C_{Py-2}CH_2C_{Ar}$), 139.9 (s, $C_{Py-4}CH_2C_{Ar}$), 129.5 (s, CH_{Ar}), 129.3 (s, CH_{Ar}), 128.8 (s, CH_{Ar}), 128.7 (s, CH_{Ar}), 126.4 (s, CH_{Ar}), 121.3 (s, CH_{Py-5}), 120.7 (s, CH_{Py-3}), 45.1 (s, $C_{Py-2}CH_2$), 41.3 (s, $C_{Py-4}CH_2$), 24.5 (s, $C_{Py-6}CH_3$). HRMS (ESI⁺) *m/z* Calc. for $[C_{20}H_{20}N]^+$ 274.1596, found 274.1583.

3,6-dibencyl-2-methylpyridine (py-1b). ¹H NMR, ¹H-¹H COSY (C₆D₆, 400 MHz): δ **a** 7.29-7.23 (m, 2H, CH_{Ar}), 7.14-7.00 (m, 6H, CH_{Ar}), 6.95-6.87 (m, 3H, CH_{Ar}+ CH_{Py-4}), 6.65 (d, ³J_{H-H} = 7.4, 1H, CH_{Py-5}), 4.12 (s, 2H, C_{Py-6}CH₂), 3.55 (s, 2H, C_{Py-3}CH₂), 2.40 (s, 3H, C_{Py-2}CH₃). ¹³C {¹H} NMR APT, ¹H-¹³C HSQC, ¹H-¹³C HMBC (C₆D₆, 101 MHz): δ 158.7 (s, C_{Py-6}), 156.9 (s, C_{Py-2}), 140.6 (s, C_{Py-6}CH₂C_{Ar}), 139.9 (s, C_{Py-3}CH₂C_{Ar}), 137.6 (s, CH_{Py-4}), 131.3 (s, CH_{Py-3}), 129.6 (s, CH_{Ar}), 129.1 (s, CH_{Ar}), 128.8 (s, CH_{Ar}), 128.7 (s, CH_{Ar}), 126.7 (s, CH_{Ar}), 126.5 (s, CH_{Ar}), 120.5 (s, CH_{Py-5}), 44.8 (s, C_{Py-6}CH₂), 38.5 (s, C_{Py-3}CH₂), 22.7 (s, C_{Py-2}CH₃). HRMS (ESI⁺) *m/z* Calc. for [C₂₀H₂₀N]⁺ 274.1596, found 274.1583.

> **2-methyl-4,6-di**(*p*-tolyl)pyridine (py-2a). ¹H NMR (CDCl₃, 300 *p*-Tol MHz): δ 8.00-7.92 (m, 2H, CH_{Ar}), 7.71 (s, 1H, CH_{Py}), 7.64-7.58 (m, 2H, CH_{Ar}), 7.34-7.29 (m, 5H, CH_{Ar}+ CH_{Py}), 2.70 (s, 3H, C_{Py-6}CH₃), 2.45 (s, 3H, CH_{3-Tol}), 2.44 (s, 3H, CH_{3-Tol}). HRMS (ESI⁺) *m/z* Calc.

for $[C_{20}H_{20}N]^+$ 274.1596, found 274.1586. The NMR data agree with those reported in the literature.^[3]

2-methyl-3,6-di(*p*-tolyl)pyridine (py-2b). ¹H NMR (CDCl₃, 300 MHz): δ 8.00-7.92 *p*-Tol (m, 2H, CH_{Ar}), 7.64-7.58 (m, 4H, CH_{Ar}+ CH_{Py}), 7.34-7.29 (m, 4H, CH_{Ar}), 2.61 (s, 3H, C_{Py-2}CH₃), 2.45 (s, 3H, CH₃-Tol), 2.44 (s, 3H, CH₃-Tol). HRMS (ESI⁺) *m*/*z* Calc. for [C₂₀H₂₀N]⁺ 274.1596,

found 274.1586. The NMR data agree with those reported in the literature.^[4]

2,4-dibutyl-6-methylpyridine (py-3a). ¹H NMR, ¹H-¹H COSY (C₆D₆, 300 MHz): δ

6.63 (s, 1H, CH_{Py-5}), 6.55 (s, 1H, CH_{Py-3}), 2.82 (t, ${}^{3}J_{H-H} = 7.6$, 2H, $C_{Py-2}CH_{2}$), 2.50 (s, 3H, $C_{Py-6}CH_{3}$), 2.29 (t, ${}^{3}J_{H-H} = 7.6$, 2H, $C_{Py-4}CH_{2}$), 1.89-1.78 (m, 2H, $C_{Py-2}CH_{2}CH_{2}$), 1.46-1.31 (m, 4H, $C_{Py-4}CH_{2}CH_{2}+C_{Py-2}(CH_{2})_{2}CH_{2}$), 1.28-1.14 (m, 2H, $C_{Py-4}(CH_{2})_{2}CH_{2}$), 0.90

(t, ${}^{3}J_{\text{H-H}} = 7.4$, 3H, C_{Py-2}(CH₂)₃CH₃), 0.84 (t, ${}^{3}J_{\text{H-H}} = 7.4$, 3H, C_{Py-4}(CH₂)₃CH₃). ${}^{13}C\{{}^{1}\text{H}\}$ NMR APT, ${}^{1}\text{H}-{}^{13}\text{C}$ HSQC, ${}^{1}\text{H}-{}^{13}\text{C}$ HMBC (C₆D₆, 75 MHz): δ 162.1 (s, C_{Py-2}), 158.0 (s, C_{Py-6}), 151.6 (s, C_{Py-4}), 120.6 (s, CH_{Py-5}), 119.9 (s, CH_{Py-3}), 38.5 (s, C_{Py-2}CH₂), 35.2 (s, C_{Py-4}CH₂), 33.0 (s, C_{Py-4}CH₂CH₂), 32.5 (s, C_{Py-2}CH₂CH₂), 24.6 (s, C_{Py-6}CH₃), 23.0 (s, C_{Py-2}(CH₂)₂CH₂), 22.7 (s, C_{Py-4}(CH₂)₂CH₂), 14.2 (s, C_{Py-2}(CH₂)₃CH₃), 14.1 (s, C_{Py-4}(CH₂)₃CH₃). HRMS (ESI⁺) *m/z* Calc. for [C₁₄H₂₄N]⁺ 206.1909, found 206.1911.

3,6-dibutyl-2-methylpyridine (py-3b). ¹H NMR, ¹H-¹H COSY (C₆D₆, 400 MHz): δ 7.03 (d, ³J_{H-H} = 7.7, 1H, CH_{Py-4}), 6.73 (d, ³J_{H-H} = 7.7, 1H, CH_{Py-5}), 2.86-2.78 (m, 2H, C_{Py-6}CH₂), 2.51 (s, 3H, C_{Py-2}CH₃), 2.34-2.26 (m,

^(*) N ^(*) 2H, C_{Py-3}CH₂), 1.88-1.77 (m, 2H, C_{Py-6}CH₂CH₂), 1.45-1.30 (m, 4H, C_{Py-3}CH₂CH₂+C_{Py-6}(CH₂)₂CH₂), 1.27-1.14 (m, 2H, C_{Py-3}(CH₂)₂CH₂), 0.90 (t, ${}^{3}J_{H-H} = 7.3$, 3H, C_{Py-6}(CH₂)₃CH₃), 0.84 (t, ${}^{3}J_{H-H} = 7.3$, 3H, C_{Py-3}(CH₂)₃CH₃). ${}^{13}C{}^{1}H{}$ NMR APT, ${}^{1}H{}^{-13}C$ HSQC, ${}^{1}H{}^{-13}C$ HMBC (C₆D₆, 101 MHz): δ 159.1 (s, C_{Py-6}), 156.1 (s, C_{Py-2}), 132.7 (s, C_{Py-3}), 136.4 (s, CH_{Py-4}), 120.1 (s, CH_{Py-5}), 38.1 (s, C_{Py-6}CH₂), 32.9 (s, C_{Py-3}CH₂), 32.4 (s, C_{Py}CH₂CH₂), 32.3 (s, C_{Py}CH₂CH₂), 22.4 (s, C_{Py}(CH₂)₂CH₂), 22.8 (s, C_{Py}(CH₂)₂CH₂), 22.4 (s, C_{Py-2}CH₃), 14.2 (s, C_{Py}(CH₂)₃CH₃), 14.1 (s, C_{Py}(CH₂)₃CH₃). HRMS (ESI⁺) *m/z* Calc. for [C₁₄H₂₄N]⁺ 206.1909, found 206.1911.

2,4-dicyclopropyl-6-methylpyridine (py-4a). ¹H NMR, ¹H-¹H COSY (C₆D₆, 400

MHz): δ 6.54 (s, 1H, CH_{Py-5}), 6.34 (s, 1H, CH_{Py-3}), 2.36 (s, 3H, C_{Py-6}CH₃), 1.83-1.77 (m, 1H, C_{Py-2}CH), 1.47-1.40 (m, 1H, C_{Py-4}CH), 1.37-1.35 (m, 2H, C_{Py-2}CH(CH₂)₂), 0.84-0.77 (m, 2H, C_{Py-2}CH(CH₂)₂), 0.68-0.64 (m, 2H, C_{Py-4}CH(CH₂)₂), 0.57-0.52 (m, 2H, C_{Py-4}CH(CH₂)₂). ¹³C{¹H} NMR APT, ¹H-¹³C HSQC, ¹H-¹³C

HMBC (C₆D₆, 101 MHz): δ 162.0 (s, C_{Py-2}), 157.9 (s, C_{Py-6}), 153.1 (s, C_{Py-4}), 117.1 (s, CH_{Py-5}), 116.3 (s, CH_{Py-3}), 24.6 (s, C_{Py-6}CH₃), 17.5 (s, C_{Py-2}CH), 15.0 (s, C_{Py-4}CH), 9.7 (bs, C_{Py-2}(CH(CH₂)₂+C_{Py-4}(CH(CH₂)₂). HRMS (ESI⁺) *m/z* Calc. for [C₁₂H₁₆N]⁺ 174.1283, found 174.1277.

3,6-dicyclopropyl-2-methylpyridine (py-4b). ¹H NMR, ¹H-¹H COSY (C₆D₆, 400

MHz): δ 6.82 (d, ${}^{3}J_{\text{H-H}}$ = 7.8, 1H, $CH_{\text{Py-4}}$), 6.72 (d, ${}^{3}J_{\text{H-H}}$ = 7.8, 1H, $CH_{\text{Py-5}}$), 2.55 (s, 3H, $C_{\text{Py-2}}CH_3$), 1.89-1.83 (m, 1H, $C_{\text{Py-6}}CH$), 1.47-1.40 (m, 1H, $C_{\text{Py-3}}CH$), 1.33-1.30 (m, 2H, $C_{\text{Py-6}}CH(CH_2)_2$), 0.84-0.77 (m, 2H, $C_{\text{Py-6}}CH(CH_2)_2$), 0.57-0.52 (m, 2H, $C_{\text{Py-3}}CH(CH_2)_2$),

0.33-0.30 (m, 2H, $C_{Py-3}CH(CH_2)_2$). ¹³C{¹H} NMR APT, ¹H-¹³C HSQC, ¹H-¹³C HMBC (C₆D₆, 101 MHz): δ 159.2 (s, C_{Py-2}), 145.0 (s, C_{Py-6}), 133.2 (s, CH_{Py-4}), 132.8 (s, C_{Py-3}), 119.0 (s, CH_{Py-5}), 22.8 (s, $C_{Py-2}CH_3$), 17.1 (s, $C_{Py-6}CH$), 12.9 (s, $C_{Py-3}CH$), 9.8 (bs, $C_{Py-6}(CH(CH_2)_2)$, 6.6 (bs, $C_{Py-3}(CH(CH_2)_2)$). HRMS (ESI⁺) *m/z* Calc. for [C₁₂H₁₆N]⁺ 174.1283, found 174.1277.

2,4-bis(methoxymethyl)-6-methylpyridine (py-5a). ¹H NMR, ¹H-¹H COSY (C₆D₆,

400 MHz): δ 7.37 (s, 1H, CH_{Py-3}), 6.80 (s, 1H, CH_{Py-5}), 4.62 (s, 2H, C_{Py-2}CH₂), 4.05 (s, 2H, C_{Py-4}CH₂), 3.19 (s, 3H, C_{Py-2}CH₂OCH₃), 3.05 (s, 3H, C_{Py-4}CH₂OCH₃), 2.44 (s, 3H, C_{Py-6}CH₃). ¹³C{¹H} NMR APT, ¹H-¹³C HSQC, ¹H-¹³C HMBC (C₆D₆, 101 MHz): δ

159.1 (s, C_{Py-2}), 158.0 (s, C_{Py-6}), 148.6 (s, C_{Py-4}), 119.7 (s, CH_{Py-5}), 116.2 (s, CH_{Py-3}), 76.0 (s, $C_{Py-2}CH_2$), 73.2 (s, $C_{Py-4}CH_2$), 58.4 (s, $C_{Py-2}CH_2OCH_3$), 58.1 (s, $C_{Py-4}CH_2OCH_3$), 24.4 (s, $C_{Py-6}CH_3$). HRMS (ESI⁺) *m*/*z* Calc. for $[C_{10}H_{16}NO_2]^+$ 182.1181, found 182.1210.

3,6-bis(methoxymethyl)-2-methylpyridine (py-5b). ¹H NMR, ¹H-¹H COSY (C₆D₆,

400 MHz): δ 7.44 (d, ${}^{3}J_{\text{H-H}}$ = 7.8, 1H, CH_{Py-4}), 7.31 (d, ${}^{3}J_{\text{H-H}}$ = 7.8, 1H, CH_{Py-5}), 4.61 (s, 2H, C_{Py-6}CH₂), 4.02 (s, 2H, C_{Py-3}CH₂), 3.18 (s, 3H, C_{Py-6}CH₂OCH₃), 3.04 (s, 3H, C_{Py-6}CH₂OCH₃)), 3.04 (s, 3H, C_{Py-6}CH₂OCH₃)))

 $_{3}$ CH₂OCH₃), 2.45 (s, 3H, C_{Py-2}CH₃). 13 C{¹H} NMR APT, ¹H- 13 C HSQC, ¹H- 13 C HMBC (C₆D₆, 101 MHz): δ 156.7 (s, C_{Py-6}), 156.2 (s, C_{Py-2}), 136.1 (s, CH_{Py-4}), 130.1 (s, C_{Py-3}), 118.3 (s, CH_{Py-5}), 75.9 (s, C_{Py-6}CH₂), 71.9 (s, C_{Py-3}CH₂), 58.4 (s, C_{Py-6}CH₂OCH₃), 57.9 (s, C_{Py-3}CH₂OCH₃), 21.8 (s, C_{Py-2}CH₃). HRMS (ESI⁺) *m*/*z* Calc. for [C₁₀H₁₆NO₂]⁺ 182.1181, found 182.1210.

2,4-dibencyl-6-phenylpyridine (py-6a). ¹H NMR, ¹H-¹H COSY (C₆D₆, 400 MHz): δ Bn 8.19-8.12 (m, 2H, CH_{Ar}), 7.30-7.22 (m, 6H, CH_{Ar}+ CH_{Py-5}), 7.15-6.99 (m, 6H, CH_{Ar}), 6.96-6.91 (m, 2H, CH_{Ar}), 6.73 (s, 1H, CH_{Py-3}), 4.12 (s, 2H, C_{Py-2}CH₂), 3.52 (s, 2H, C_{Py-4}CH₂). ¹³C{¹H} NMR APT, ¹H-¹³C HSQC, ¹H-¹³C HMBC (C₆D₆, 101 MHz): δ 161.4 (s, C_{Py-2}), 157.3 (s, C_{Py-6}), 151.2 (s, C_{Py-4}), 140.4 (s, $C_{Py-2}CH_2C_{Ar}$), 140.1 (s, $C_{Py-6}C_{Ar}$), 139.7 (s, $C_{Py-4}CH_2C_{Ar}$), 129.5 (s, CH_{Ar}), 129.3 (s, CH_{Ar}), 129.0 (s, CH_{Ar}), 128.9 (s, CH_{Ar}), 128.8 (s, CH_{Ar}), 128.8 (s, CH_{Ar}), 127.5 (s, CH_{Ar}), 126.8 (s, CH_{Ar}), 126.5 (s, CH_{Ar}), 122.3 (s, CH_{Py-3}), 118.5 (s, CH_{Py-5}), 45.2 (s, $C_{Py-2}CH_2$), 41.4 (s, $C_{Py-4}CH_2$). HRMS (ESI⁺) *m/z* Calc. for [$C_{25}H_{22}N$]⁺ 336.1752, found 336.1739.

3,6-dibencyl-2-phenylpyridine (py-6b). ¹H NMR, ¹H-¹H COSY (C₆D₆, 400 MHz): δ Bn 7.61 (d, ³*J*_{H-H} = 6.8, 1H, *CH*_{Py-5}), 7.20-7.18 (m, 3H, *CH*_{Ar}), 7.15-6.99 (m, 12H, *CH*_{Ar}), 6.85 (d, ³*J*_{H-H} = 6.8, 1H, *CH*_{Py-4}), 4.17 (s, 2H, *C*_{Py-6}*CH*₂), 3.83 (s, 2H, *C*_{Py-3}*CH*₂). ¹³C{¹H} NMR APT, ¹H-¹³C HSQC, ¹H-¹³C HMBC (C₆D₆, 101 MHz): δ 159.1 (s, *C*_{Py-6}), 158.7 (s, *C*_{Py-2}), 141.4 (s, *C*_{Py-2}*C*_{Ar}), 141.0 (s, *C*_{Py-3}*CH*₂*C*_{Ar}), 140.3 (s, *C*_{Py-6}*CH*₂*C*_{Ar}), 139.1 (s, *C*H_{Ar}), 132.0 (s, *C*H_{Ar}), 132.0 (s, *C*H_{Ar}), 131.2 (s, *C*_{Py-3}), 129.8 (s, *C*H_{Ar}), 129.6 (s, *C*H_{Py-5}), 129.2 (s, *C*H_{Py-4}), 128.2 (s, *C*H_{Ar}), 126.5 (s, *C*H_{Ar}), 126.4 (s, *C*H_{Ar}), 121.6 (s, *C*H_{Ar}), 45.0 (s, *C*_{Py-6}*C*H₂), 38.5 (s, *C*_{Py-3}*C*H₂). HRMS (ESI⁺) *m/z* Calc. for [C₂₅H₂₂N]⁺ 336.1752, found 336.1739.

2,4-dibencyl-6-(4-methoxyphenyl)pyridine (py-7a). ¹H NMR, ¹H-¹H COSY (C₆D₆,

400 MHz): δ 8.18-8.13 (m, 2H, CH_{Ar}), 7.32-7.28 (m, 2H, CH_{Ar}), 7.26 (s, 1H, CH_{Py-5}), 7.15-7.01 (m, 6H, CH_{Ar}), 6.98-6.93 (m, 2H, CH_{Ar}), 6.87-6.84 (m, 2H, CH_{Ar}), 6.71 (s, 1H, CH_{Py-3}), 4.14 (s, 2H, C_{Py-2}CH₂), 3.55 (s, 2H, C_{Py-4}CH₂), 3.29 (s, 3H, OCH₃).

¹³C{¹H} NMR APT, ¹H-¹³C HSQC, ¹H-¹³C HMBC (C₆D₆, 101 MHz): δ 161.3 (s, *C*_{Py-2}), 161.0 (s, *C*_{*ipso*}O), 157.1 (s, *C*_{Py-6}), 151.1 (s, *C*_{Py-4}), 140.6 (s, *C*_{Py-2}CH₂*C*_{Ar}), 139.8 (s, *C*_{Py-4}CH₂*C*_{Ar}), 132.7 (s, *C*_{Py-6}*C*_{Ar}), 131.2 (s, *C*H_{Ar}), 129.6 (s, *C*H_{Ar}), 129.3 (s, *C*H_{Ar}), 128.9 (s, *C*H_{Ar}), 128.8 (s, *C*H_{Ar}), 126.7 (s, *C*H_{Ar}), 126.5 (s, *C*H_{Ar}), 121.6 (s, *C*H_{Py-3}), 117.8 (s, *C*H_{Py-5}), 114.3 (s, *C*H_{Ar}), 54.8 (s, OCH₃), 45.2 (s, *C*_{Py-2}CH₂), 41.5 (s, *C*_{Py-4}CH₂). HRMS (ESI⁺) *m/z* Calc. for [C₂₆H₂₄NO]⁺ 366.1858, found 366.1870.

3,6-dibencyl-2-(4-methoxyphenyl)pyridine (py-7b). ¹H NMR, ¹H-¹H COSY (C₆D₆, **Bn Bn Ch Ch**

2H, $C_{Py-6}CH_2$), 3.90 (s, 2H, $C_{Py-3}CH_2$), 3.29 (s, 3H, OCH₃). ¹³C{¹H} NMR APT, ¹H-¹³C HSQC, ¹H-¹³C HMBC (C₆D₆, 101 MHz): δ 160.0 (s, $C_{ipso}O$), 159.1 (s, C_{Py-6}), 158.5 (s, C_{Py-2}), 141.3 (s, $C_{Py-3}CH_2C_{Ar}$), 140.5 (s, $C_{Py-6}CH_2C_{Ar}$), 139.2 (s, CH_{Py-4}), 133.8 (s, $C_{Py-2}C_{Ar}$), 131.1 (s, CH_{Ar}), 130.9 (s, C_{Py-3}), 129.6 (s, CH_{Ar}), 129.2 (s, CH_{Ar}), 128.8 (s, CH_{Ar}),

128.7 (s, CH_{Ar}), 126.5 (s, CH_{Ar}), 126.4 (s, CH_{Ar}), 121.2 (s, CH_{Py-5}), 113.8 (s, CH_{Ar}), 54.8 (s, OCH_3), 45.0 (s, $C_{Py-6}CH_2$), 38.7 (s, $C_{Py-3}CH_2$). HRMS (ESI⁺) m/z Calc. for $[C_{26}H_{24}NO]^+$ 366.1858, found 366.1870.

2,4-dibencyl-6-ciclohexylpyridine (py-8a). ¹H NMR, ¹H-¹H COSY (C₆D₆, 400 MHz):

δ 7.31-7.25 (m, 2H, CH_{Ar} + CH_{Py-3}), 7.14-7.08 (m, 4H, CH_{Ar}), 7.05-7.00 (m, 2H, CH_{Ar}), 6.89-6.94 (m, 2H, CH_{Ar}), 6.70-6.64 (m, 2H, CH_{Ar} + CH_{Py-5}), 4.10 (s, 2H, $C_{Py-2}CH_2$), 3.53 (s, 2H, $C_{Py-4}CH_2$), 2.71-2.62 (m, 1H, CH_{Cy}), 2.01-1.94 (m, 2H, CH_{2Cy}), 1.78-1.66 (m, 4H,

CH_{2Cy}), 1.33-1.19 (m, 4H, CH_{2Cy}). ¹³C {¹H} NMR APT, ¹H-¹³C HSQC, ¹H-¹³C HMBC (C₆D₆, 101 MHz): δ 166.6 (s, C_{Py-6}), 160.9 (s, C_{Py-2}), 150.7 (s, C_{Py-4}), 140.7 (s, C_{Py-2}CH₂C_{Ar}), 139.9 (s, C_{Py-4}CH₂C_{Ar}), 129.5 (s, CH_{Ar}), 129.3 (s, CH_{Py-3}), 128.9 (s, CH_{Ar}), 128.7 (s, CH_{Ar}), 126.7 (s, CH_{Ar}), 126.4 (s, CH_{Ar}), 121.2 (s, CH_{Ar}), 119.3 (s, CH_{Py-5}), 46.8 (s, CH_{Cy}), 45.2 (s, C_{Py-2}CH₂), 41.5 (s, C_{Py-4}CH₂), 33.3 (s, CH_{2Cy}), 27.0 (s, CH_{2Cy}), 26.5 (s, CH_{2Cy}). HRMS (ESI⁺) *m/z* Calc. for [C₂₅H₂₈N]⁺ 342.2222, found 342.2209.

3,6-dibencyl-2-ciclohexylpyridine (py-8b). ¹H NMR, ¹H-¹H COSY (C₆D₆, 400 MHz):

Bn δ 7.29-7.24 (m, 2H, CH_{Ar}), 7.14-7.11 (m, 2H, CH_{Ar}), 7.09-7.07 (m, 2H, CH_{Ar}), 7.05-7.02 (m, 2H, CH_{Ar}), 6.99-6.96 (m, 2H, CH_{Ar}), 6.94 (d, ³J_{H-H} = 7.8, 1H, CH_{Py-4}), 6.62 (d, ³J_{H-H} = 7.8, 1H, CH_{Py-5}), 4.14 (s, 2H, C_{Py-6}CH₂), 3.75 (s, 2H, C_{Py-3}CH₂), 2.95-2.86 (m, 1H, CH_{Cy}), 2.16-2.01 (m, 2H, CH_{2Cy}), 1.82-1.70 (m, 4H, CH_{2Cy}), 1.34-1.22 (m, 4H, CH_{2Cy}). ¹³C {¹H} NMR APT, ¹H- ¹³C HSQC, ¹H-¹³C HMBC (C₆D₆, 101 MHz): δ 164.0 (s, C_{Py-2}), 158.9 (s, C_{Py-6}), 140.9 (s, C_{Py-3}CH₂C_{Ar}), 140.7 (s, C_{Py-6}CH₂C_{Ar}), 138.3 (s, CH_{Py-4}), 130.2 (s, C_{Py-3}), 129.6 (s, CH_{Ar}), 129.1 (s, CH_{Ar}), 128.8 (s, CH_{Ar}), 128.7 (s, CH_{Ar}), 126.5 (s, CH_{Ar}), 126.4 (s, CH_{Ar}), 120.2 (s, CH_{2Cy}), 25.0 (s, C_{Py-6}CH₂), 42.5 (s, CH_{Cy}), 38.1 (s, C_{Py-3}CH₂), 32.7 (s, CH_{2Cy}), 27.2 (s, CH_{2Cy}), 26.6 (s, CH_{2Cy}). HRMS (ESI⁺) *m*/z Calc. for [C₂₅H₂₈N]⁺ 342.2222, found 342.2209.

Bn

Bn

Bn

2,4-dibencyl-6-(*tert*-butyl)pyridine (py-9a). ¹H NMR, ¹H-¹H COSY (C₆D₆, 400 MHz): δ 7.31-7.24 (m, 2H, CH_{Ar}), 7.14-6.92 (m, 8H, CH_{Ar}), 6.94 (s, 1H, CH_{Py-5}), 6.65 (s, 1H, CH_{Py-3}), 4.06 (s, 2H, C_{Py-2}CH₂), 3.53 (s, 2H, C_{Py-4}CH₂), 1.41 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR APT, ¹H-¹³C HSQC, ¹H-¹³C HMBC (C₆D₆, 101 MHz): δ

169.2 (s, C_{Py-6}), 160.6 (s, C_{Py-2}), 151.0 (s, C_{Py-4}), 141.0 (s, $C_{Py-2}CH_2C_{Ar}$), 140.1 (s, $C_{Py-4}CH_2C_{Ar}$), 129.5 (s, CH_{Ar}), 129.2 (s, CH_{Ar}), 128.8 (s, CH_{Ar}), 128.7 (s, CH_{Ar}), 126.7 (s,

CH_{Ar}), 126.4 (s, CH_{Ar}), 120.7 (s, CH_{Py-3}), 117.0 (s, CH_{Py-5}), 45.2 (s, C_{Py-2}CH₂), 41.6 (s, C_{Py-4}CH₂), 37.8 (s, C(CH₃)₃), 30.4 (s, C(CH₃)₃). HRMS (ESI⁺) m/z Calc. for [C₂₃H₂₆N]⁺ 316.2065, found 316.2072.

2,3,4,5-tetraethyl-6-methylpyridine (py-10). ¹H NMR, ¹H-¹H COSY (C₆D₆, 300 MHz): δ 2.83 (q, ³*J*_{H-H} = 7.5, 2H, C_{Py-2}C*H*₂), 2.56 (s, 3H, C_{Py-6}C*H*₃), 2.50-2.35 (m, 6H, C_{Py-3}C*H*₂+C_{Py-4}C*H*₂+C_{Py-5}C*H*₂), 1.45 (t, ³*J*_{H-H} = 7.5, 3H, C_{Py-2}CH₂C*H*₃), 1.06-0.90 (m, 9H, C_{Py-3}CH₂C*H*₃+C_{Py-4}CH₂C*H*₃+C_{Py-5}CH₂C*H*₃). ¹³C{¹H} NMR APT,

¹H-¹³C HSQC, ¹H-¹³C HMBC (C₆D₆, 75 MHz): δ 157.9 (s, *C*_{Py-2}), 153.6 (s, *C*_{Py-6}), 147.8 (s, *C*_{Py-4}), 132.3 (s, *C*H_{Py-5}), 131.6 (s, *C*H_{Py-3}), 28.3 (s, *C*_{Py-2}*C*H₂), 22.7 (s, *C*_{Py-6}*C*H₃), 22.1 (s, *C*_{Py-4}*C*H₂), 21.8 (s, *C*_{Py-m}*C*H₂), 21.6 (s, *C*_{Py-m}*C*H₂), 15.6 (s, *C*_{Py-m}*C*H₂*C*H₃), 15.5 (s, *C*_{Py-m}*C*H₂*C*H₃), 14.5 (s, *C*_{Py-4}*C*H₂*C*H₃), 14.3 (s, *C*_{Py-2}*C*H₂*C*H₃). HRMS (ESI⁺) *m/z* Calc. for [C₁₄H₂₄N]⁺ 206.1909, found 206.1897.

2,3,4,5-tetraethyl-6-phenylpyridine (py-11). ¹H NMR (CDCl₃, 300 MHz): δ 7.55-7.49 (m, 1H, CH_{Ar}), 7.48-7.40 (m, 4H, CH_{Ar}), 7.39-7.34 (m, 1H, CH_{Ar}), 2.85 (q, ³J_{H-H} = 7.5, 2H, CH₂), 2.73 (q, ³J_{H-H} = 7.5, 2H, CH₂), 2.72 (q, ³J_{H-H} = 7.5, 2H, CH₂), 2.57 (q, ³J_{H-H} = 7.5, 2H, CH₂), 1.29 (t, ³J_{H-H} = 7.5, 3H, CH₃), 1.24 (t, ³J_{H-H} = 7.5, 3H,

CH₃), 1.22 (t, ${}^{3}J_{\text{H-H}} = 7.5$, 3H, CH₃), 0.99 (t, ${}^{3}J_{\text{H-H}} = 7.5$, 3H, CH₃). HRMS (ESI⁺) m/zCalc. for [C₁₉H₂₆N]⁺ 268.2065, found 268.2058. The NMR data agree with those reported in the literature.^[5]

4. Crude ¹H-NMR spectra of [2+2+2] cycloaddition reactions

Figure S1. Crude ¹H NMR spectrum in C₆D₆ using s-triazine as internal standard (Table 4; Entry 1).

Figure S2. Crude ¹H NMR spectrum in C₆D₆ using s-triazine as internal standard (Table 4; Entry 2).

Figure S3. Crude ¹H NMR spectrum in C₆D₆ using s-triazine as internal standard (Table 4; Entry 3).

Figure S4. Crude ¹H NMR spectrum in C₆D₆ using s-triazine as internal standard (Table 4; Entry 4).

Figure S5. Crude ¹H NMR spectrum in C₆D₆ using s-triazine as internal standard (Table 4; Entry 5).

Figure S6. Crude ¹H NMR spectrum in C₆D₆ using s-triazine as internal standard (Table 5; Entry 1).

Figure S7. Crude ¹H NMR spectrum in C₆D₆ using s-triazine as internal standard (Table 5; Entry 2).

Figure S8. Crude ¹H NMR spectrum in C₆D₆ using s-triazine as internal standard (Table 5; Entry 5).

Figure S9. Crude ¹H NMR spectrum in C₆D₆ using s-triazine as internal standard (Table 5; Entry 6).

Figure S10. Crude ¹H NMR spectrum in C₆D₆ using s-triazine as internal standard (Table 6; Entry 1).

Figure S11. Crude ¹H NMR spectrum in C₆D₆ using s-triazine as internal standard (Table 4; Entry 2).

5. NMR spectra of isolated pyridines

Figure S12. ¹H NMR spectrum of the mixture of 2,4-dibenzyl-6-methylpyridine and 3,6-dibenzyl-2-methylpyridine in C₆D₆.

Figure S13. ¹³C{¹H} NMR APT spectrum of the mixture of 2,4-dibenzyl-6methylpyridine and 3,6-dibenzyl-2-methylpyridine in C₆D₆.

Figure S14. ¹H-¹H COSY spectrum of the mixture of 2,4-dibenzyl-6-methylpyridine and 3,6-dibenzyl-2-methylpyridine in C₆D₆.

Figure S15. ¹H-¹³C HSQC spectrum of the mixture of 2,4-dibenzyl-6-methylpyridine and 3,6-dibenzyl-2-methylpyridine in C₆D₆.

Figure S16. ¹H-¹³C HMBC spectrum of the mixture of 2,4-dibenzyl-6-methylpyridine and 3,6-dibenzyl-2-methylpyridine in C_6D_6 .

Figure S17. ¹H NMR spectrum of the mixture of 2-methyl-4,6-di(*p*-tolyl)pyridine and 2-methyl-3,6-di(*p*-tolyl)pyridine in CDCl₃.

Figure S18. ¹H NMR spectrum of 2,4-dibutyl-6-methylpyridine in C₆D₆.

Figure S19. ${}^{13}C{}^{1}H$ NMR APT spectrum of 2,4-dibutyl-6-methylpyridine in C₆D₆.

Figure S20. ¹H-¹H COSY spectrum of 2,4-dibutyl-6-methylpyridine in C₆D₆.

Figure S21. ¹H-¹³C HSQC spectrum of 2,4-dibutyl-6-methylpyridine in C₆D₆.

Figure S22. ¹H-¹³C HMBC spectrum of 2,4-dibutyl-6-methylpyridine in C₆D₆.

Figure S23. ¹H NMR spectrum of 3,6-dibutyl-2-methylpyridine in C₆D₆.

Figure S24. ¹³C $\{^{1}H\}$ NMR APT spectrum of 3,6-dibutyl-2-methylpyridine in C₆D₆.

Figure S25. ¹H-¹H COSY spectrum of 3,6-dibutyl-2-methylpyridine in C₆D₆.

Figure S26. ¹H-¹³C HSQC spectrum of 3,6-dibutyl-2-methylpyridine in C₆D₆.

Figure S27. ¹H-¹³C HMBC spectrum of 3,6-dibutyl-2-methylpyridine in C₆D₆.

Figure S28. ¹H NMR spectrum of the mixture of 2,4-dicyclopropyl-6-methylpyridine and 3,6-dicyclopropyl-2-methylpyridine in C₆D₆.

Figure S29. ¹³C{¹H} NMR APT spectrum of the mixture of 2,4-dicyclopropyl-6methylpyridine and 3,6-dicyclopropyl-2-methylpyridine in C₆D₆.

Figure S30. ¹H-¹H COSY spectrum of the mixture of 2,4-dicyclopropyl-6methylpyridine and 3,6-dicyclopropyl-2-methylpyridine in C₆D₆.

Figure S31. ¹H-¹³C HSQC spectrum of the mixture of 2,4-dicyclopropyl-6methylpyridine and 3,6-dicyclopropyl-2-methylpyridine in C₆D₆.

Figure S32. ¹H-¹³C HMBC spectrum of the mixture of 2,4-dicyclopropyl-6methylpyridine and 3,6-dicyclopropyl-2-methylpyridine in C₆D₆.

Figure S33. ¹H NMR spectrum of the mixture of 2,4-bis(methoxymethyl)-6methylpyridine and 3,6-bis(methoxymethyl)-2-methylpyridine in C₆D₆.

Figure S34. ¹³C{¹H} NMR APT spectrum of the mixture of 2,4-bis(methoxymethyl)-6methylpyridine and 3,6-bis(methoxymethyl)-2-methylpyridine in C₆D₆.

Figure S35. ¹H-¹H COSY spectrum of the mixture of 2,4-bis(methoxymethyl)-6methylpyridine and 3,6-bis(methoxymethyl)-2-methylpyridine in C₆D₆.

Figure S36. ¹H-¹³C HSQC spectrum of the mixture of 2,4-bis(methoxymethyl)-6methylpyridine and 3,6-bis(methoxymethyl)-2-methylpyridine in C₆D₆.

Figure S37. ¹H-¹³C HMBC spectrum of the mixture of 2,4-bis(methoxymethyl)-6methylpyridine and 3,6-bis(methoxymethyl)-2-methylpyridine in C₆D₆.

0.0 0.5 1.0 :69 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 8.0

Figure S40. ¹H-¹H COSY spectrum of 2,3,4,5-tetraethyl-6-methylpyridine in C₆D₆.

Figure S39. ¹³C{¹H} NMR APT spectrum of 2,3,4,5-tetraethyl-6-methylpyridine in C_6D_6 .

Figure S41. ¹H-¹³C HSQC spectrum of 2,3,4,5-tetraethyl-6-methylpyridine in C₆D₆.

Figure S42. ¹H-¹³C HMBC spectrum of 2,3,4,5-tetraethyl-6-methylpyridine in C₆D₆.

Figure S43. ¹H NMR spectrum of 2,3,4,5-tetraethyl-6-phenylpyridine in CDCl₃.

Figure S44. ¹H NMR spectrum of the mixture of 2,4-dibenzyl-6-phenylpyridine and 3,6-dibenzyl-2-phenylpyridine in C₆D₆.

Figure S45. ¹³C{¹H} NMR APT spectrum of the mixture of 2,4-dibenzyl-6phenylpyridine and 3,6-dibenzyl-2-phenylpyridine in C₆D₆.

Figure S46. ¹H-¹H COSY spectrum of the mixture of 2,4-dibenzyl-6-phenylpyridine and 3,6-dibenzyl-2-phenylpyridine in C₆D₆.

Figure S47. ¹H-¹³C HSQC spectrum of the mixture of 2,4-dibenzyl-6-phenylpyridine and 3,6-dibenzyl-2-phenylpyridine in C₆D₆.

Figure S48. ¹H-¹³C HMBC spectrum of the mixture of 2,4-dibenzyl-6-phenylpyridine and 3,6-dibenzyl-2-phenylpyridine in C₆D₆.

Figure S49. ¹H NMR spectrum of the mixture of 2,4-dibenzyl-6-(4methoxyphenyl)pyridine and 3,6-dibenzyl-2-(4-methoxyphenyl)pyridine in C₆D₆.

Figure S50. ¹³C $\{^{1}H\}$ NMR APT spectrum of the mixture of 2,4-dibenzyl-6-(4-methoxyphenyl)pyridine and 3,6-dibenzyl-2-(4-methoxyphenyl)pyridine in C₆D₆.

Figure S51. ¹H-¹H COSY spectrum of the mixture of 2,4-dibenzyl-6-(4methoxyphenyl)pyridine and 3,6-dibenzyl-2-(4-methoxyphenyl)pyridine in C₆D₆.

Figure S52. ¹H-¹³C HSQC spectrum of the mixture of 2,4-dibenzyl-6-(4methoxyphenyl)pyridine and 3,6-dibenzyl-2-(4-methoxyphenyl)pyridine in C₆D₆.

Figure S53. 1 H- 13 C HMBC spectrum of the mixture of 2,4-dibenzyl-6-(4-methoxyphenyl)pyridine and 3,6-dibenzyl-2-(4-methoxyphenyl)pyridine in C₆D₆.

Figure S54. ¹H NMR spectrum of 2,4-dibenzyl-6-cyclohexylpyridine in C₆D₆.

Figure S55. $^{13}C\{^{1}H\}$ NMR APT spectrum of 2,4-dibenzyl-6-cyclohexylpyridine in

Figure S56. ¹H-¹H COSY spectrum of 2,4-dibenzyl-6-cyclohexylpyridine in C₆D₆.

Figure S57. ¹H-¹³C HSQC spectrum of 2,4-dibenzyl-6-cyclohexylpyridine in C₆D₆.

Figure S58. ¹H-¹³C HMBC spectrum of 2,4-dibenzyl-6-cyclohexylpyridine in C₆D₆.

Figure S59. ¹H NMR spectrum of 3,6-dibenzyl-2-cyclohexylpyridine in C₆D₆.

Figure S60. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR APT spectrum of 3,6-dibenzyl-2-cyclohexylpyridine in $$\mathrm{C}_{6}\mathrm{D}_{6}$.$

Figure S61. ¹H-¹H COSY spectrum of 3,6-dibenzyl-2-cyclohexylpyridine in C₆D₆.

Figure S62. ¹H-¹³C HSQC spectrum of 3,6-dibenzyl-2-cyclohexylpyridine in C₆D₆.

Figure S63. ¹H-¹³C HMBC spectrum of 3,6-dibenzyl-2-cyclohexylpyridine in C₆D₆.

Figure S65. ¹³C{¹H} NMR APT spectrum of 2,4-dibenzyl-6-(*tert*-butyl)pyridine in

 C_6D_6 .

Figure S66. ¹H-¹H COSY spectrum of 2,4-dibenzyl-6-(*tert*-butyl)pyridine in C₆D₆.

Figure S67. ¹H-¹³C HSQC spectrum of 2,4-dibenzyl-6-(*tert*-butyl)pyridine in C₆D₆.

Figure S68. ¹H-¹³C HMBC spectrum of 2,4-dibenzyl-6-(*tert*-butyl)pyridine in C₆D₆.

Figure S69. ¹H NMR (a) and ¹H $\{^{31}P\}$ NMR (b) spectra of the *in situ* reduction of **1** with NaBEt₃H in C₆D₆. Hydride resonances are marked with blue dots.

Figure S70. ¹H NMR spectra of the *in situ* reduction of **1** with NaBEt₃H in C₆D₆. (*a*) ¹H NMR in a sealed tube; (*b*) ¹H NMR after gas release; (*c*) ¹H{³¹P} NMR after gas release. The H₂ peak is marked with a red dot.

Figure S71. ³¹P{¹H} NMR of the *in situ* reduction of 1 with NaBEt₃H in C₆D₆ in a sealed tube.

Figure S72. Full ¹H NMR of the *in situ* reduction of 1 with NaBEt₃H in C₆D₆ after gas release. Peak of the postulated dihydrogen ligand marked with a blue dot at δ –6.46 ppm (²*J*_{P-H} = 21.6 Hz).

Figure 73. Expanded spectra of the *in situ* reduction of **2** with NaBEt₃H in C₆D₆ (a) ¹H NMR in a sealed NMR tube; (b) ¹H NMR after gas release; (c) ¹H{ 31 P} NMR after gas release. Methylene and Cp* methyl signals marked with brown and green dots, respectively.

7. DFT calculations

Table S1. Energetic values for all DFT calculated structures. Geometrical optimizations and analytical frequencies were carried out using the M06L/def2-SVP method, E(M06L/DZ) energetic values. Energies were refined by single point calculations using MN15 exchange-correlation functional and including solvent corrections (SCRF=SMD) and a def2-TZVP basis set, E(MN15/TZ) values. Thermochemical corrections to the Gibbs free energy at 100 °C and 1M standard state, and entropic quasi-harmonic corrections qh-Gcorr(1M,373) were calculated at the M06L/def2-SVP level using the Goodvibes program. All absolute energies in a.u. ΔG are the relative Gibbs free energies (to **A** and isolated molecules, in kcal/mol) were calculated considering the E(MN15/TZ) and Gibbs free energy corrections.

	E(M06L/DZ)	E(MN15/TZ)	qh-Gcorr(1M,373K)	ΔG
Α	-3010.7964	-3011.1431	0.4528	0
В	-2467.2513	-2467.5588	0.4253	13.2
TSBC1	-2467.2365	-2467.5383	0.4289	28.3
TSBC2	-2467.2391	-2467.5366	0.4289	29.4
TSBC3	-2467.2267	-2467.5276	0.4282	34.6
C1	-2467.2736	-2467.5748	0.4305	6.4
C2	-2467.2776	-2467.5809	0.4330	4.2
C3	-2467.2753	-2467.5757	0.4308	6.1
CP(C1)	-2467.2684	-2467.5711	0.4308	8.9
CP(C2)	-2467.2649	-2467.5661	0.4287	10.8
CP(C3)	-2467.2693	-2467.5708	0.4316	9.6
³ C1	-2467.2773	-2467.5775	0.4275	2.9
³ C2	-2467.2799	-2467.5793	0.4289	2.6
³ C3	-2467.2814	-2467.5811	0.4277	0.7
TSCD1-N	-2599.9270	-2600.2295	0.4716	12.6
CP(D1-N)	-2599.9355	-2600.2379	0.4709	6.9
D1-N	-2599.9592	-2600.2645	0.4712	-9.6
TSDE1-N	-2599.9440	-2600.2484	0.4723	1.2
E1-N	-2599.9510	-2600.2527	0.4738	-0.6
TSEF1a-N	-2599.9487	-2600.2491	0.4739	1.8
F1a-N	-2600.0249	-2600.3322	0.4806	-46.2
TSEF1b-N	-2599.9403	-2600.2388	0.4755	9.3
F1b-N	-2600.0184	-2600.3263	0.4807	-42.4
TSCD1-A	-2814.6894	-2814.9740	0.5544	17.2
CP(D1-A)	-2814.6971	-2814.9847	0.5555	11.1
D1-A	-2814.7366	-2815.0189	0.5600	-7.5
TSDE1-A	-2814.7361	-2815.0191	0.5619	-6.4

E1-A	-2814.8606	-2815.1418	0.5681	-79.6
TSCD1-L	-3705.6771	-3705.9695	0.7138	12.2
CP(D1-L)	-3705.6888	-3705.9842	0.7106	0.9
D1-L	-3705.7343	-3706.0349	0.7165	-27.1
B-L	-3705.6589	-3705.9667	0.7082	10.4
TSBC1-L	-3705.5819	-3705.8810	0.7085	64.4
TSBC2-L	-3705.5761	-3705.8713	0.7082	70.3
TSBC3-L	-3705.5716	-3705.8676	0.7075	72.2
D1-L	-3705.7343	-3706.0349	0.7165	-27.1
D2-L	-3705.7214	-3706.0190	0.7181	-16.2
D3-L	-3705.7278	-3706.0287	0.7160	-23.6
TSCF1-N	-2599.9120	-2600.2083	0.4738	27.3
TSDG1-N	-2599.9418	-2600.2395	0.4747	8.3
G1-N	-2599.9649	-2600.2614	0.4750	-5.3
TSGF1-N	-2599.9587	-2600.2580	0.4766	-2.1
CP(F1a-N)	-2600.0074	-2600.3180	0.4780	-38.9
³ G1a-N	-2600.0319	-2600.3422	0.4724	-57.6
HCCCH ₂ Ph	-347.4053	-347.3911	0.0988	
NCMe	-132.6374	-132.6426	0.0192	
P-N	-1238.3758	-1238.3714	0.2509	
2,4,6-pyridine	-827.6446	-827.6035	0.2778	
1,3,5-benzyne	-1042.4718	-1042.4084	0.3626	

Figure S74. DFT calculated Gibbs free energy profile (in kcalmol⁻¹) for the oxidative coupling of bis(benzylacetylene) catalyzed by complex $CoCp^*(P-N)(A)$ without ligand dissociation.

Figure S75. NCI plot of (a) TSBC1, (b) TSBC2, and (c) TSBC3. The plot corresponds to a reduced density gradient of 0.65 au, and is colored in the [-0.03, 0.03] au range of $sign(\lambda 2) \cdot \rho$.

Figure S76. DFT calculated Gibbs energy profile (in kcalmol⁻¹, energies relative to **A** and isolated species) for possible reaction pathways of 1,3-cobaltacyclopentadiene **C1** and acetonitrile leading to 2,4,6-pyridyne.

Figure S77. DFT calculated Gibbs energy profile (in kcalmol⁻¹, energies relative to A and isolated species) for η^4 (F1a-N) to η^6 (³G1a-N) coordination of 2,4,6-pyridine to CoCp* via intersystem crossing point CP(F1a-N).

Figure S78. Geometrical representation for the DFT optimized structures. Hydrogen atoms are hidden. Key distances for TS are shown (in Å).

TSBC1

TSBC2

C1

TSBC3

C2

CP(C1)

CP(C2)

CP(C3)

³C1

³3C2

³C3

TSCD1-N

CP(D1-N)

D1-N

TSDE1-N

E1-N

TSEF1a-N

F1a-N

TSEF1b-N

F1b-N

2.79 2.71

TSCD1-A

CP(D1-A)

TSDE1-A

D1-A

E1-A

TSCD1-L

CP(D1-L)

D1-L

B-L

TSBC2-L

TSBC1-L

TSBC3-L

D1-L

D2-L

D3-L

TSCF1-N

TSDG1-N

G1-N

TSGF1-N

8. References

[1] Fairhurst, G.; White, C. Syntheses of Pentamethylcyclopentadienylcobalt(III) Compounds and Reactions of $[Co(C_5Me_5)(Solvent)_3]X_2$ (Solvent = Acetonitrile or Acetone, $X = BF_4$ or PF₆). *J. Chem. Soc., Dalton Trans.* **1979**, 1524–1530.

[2] Nagasawa, T.; Nagata, T. Synthesis and Electrochemistry of Co(III) and Co(I)
 Complexes Having C₅Me₅ Auxiliary. *Biochimica et Biophysica Acta* 2007, *1767*, 666–670.

[3] Gao, Q.; Yan, H.; Wu, M.; Sun, J.; Yan, X.; Wu, A. Direct Synthesis of 2-Methylpyridines *via* I₂-Triggered [3+2+1] Annulation of Aryl Methyl Ketoxime Acetates with Triethylamine as the Carbon Source. *Org. Biomol. Chem.* **2018**, *16*, 2342–2348.

[4] Wang, K.; Meng, L.-G.; Wang, L. Visible-Light-Promoted [2+2+2] Cyclization of Alkynes with Nitriles to Pyridines Using Pyrylium Salts as Photoredox Catalysts. *Org. Lett.* **2017**, *19*, 1958–1961.

[5] Thiel, I.; Jiao, H.; Spannenberg, A.; Hapke, M. Fine-Tuning the Reactivity and Stability by Systematic Ligand Variations in CpCo^I Complexes as Catalysts for [2+2+2]
Cycloaddition Reactions. *Chem. Eur. J.* 2013, *19*, 2548–2554.