Electrochemical carboxylation of α-fluoroalkyl cyclopropane with CO₂ to mono- or difluoro pentenoic acid

Nan Feng, Mengmeng Jiang, Huimin Wang, Yuqing Zhong, Ying Sun, Deyong Yang, Feng Zhou*

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. China.

E-mail: fzhou@chem.ecnu.edu.cn

Supporting Information

Table of Contents	Page
1. General information	1
2. Reaction condition optimization	2-5
3. Photographic guide for electrochemical reaction	6
4. General procedure for the preparation of materials	7-18
5. General procedure for the electrolysis	19-28
6. Product elaboration	29-32
7. X-ray crystallographic data	33-39
8. Mechanistic studies	40-43
9. References	43
10. NMR spectra	44-220

1. General information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. High-resolution mass spectrometry was recorded with Waters Synapt (ESI) or GCT Premier (EI). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were obtained using a Bruker DPX 300 or 400 or 500 MHz Spectrometer. Chemical shifts were reported in ppm with TMS as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad.

Unless mentioned, all reactions were performed under an atmosphere of N₂ and carried out with dry solvents. "Bu₄NI, "Bu₄NBr, "Bu₄NCl, "Bu₄NPF₆, and "Bu₄NClO₄ were purchased from Macklin and used as received. CO₂ (99.999%) was commercially available. As the eluent, the petroleum ether, EtOAc and CH₂Cl₂ were purchased from Shanghai Titan Scientific.

Entry	Chemical name	Abbreviation
1	Petroleum ether	PE
2	Ethyl acetate	EtOAc
3	Acetic acid	AcOH
4	Dimethyl sulfoxide	DMSO
5	N,N-Dimethylformamide	DMF
6	N,N-Dimethylaniline	DMA
7	N-Methyl-2-pyrrolidone	NMP
8	Graphite Felt	GF

List of abbreviation:

2. Reaction condition optimization

2.1 Condition optimization for carboxylation with sacrificial anode

The defluorinative carboxylation of diphenyl substituted α -CF₂H cyclopropane **1a** with CO₂ was selected as the model reaction for condition optimization. Firstly, we examined the influence of electrode by conducting the reaction in DMF containing "Bu₄NCl at the constant current of 15 mA in an undivided cell under room temperature with CO₂ balloon (as shown in Table S1). By screening several typical anodes (entries 1-5), Mg-plate turned out to be the best and afford the desired carboxylic acid **3a** in 81% yield (entry 3). The performance of the typical cathode was also studied, and Ni-plate is still the best result (entries 6-9).

CF₂H (+) Anode (-) Cathode HO₂C CO_2 Ph `Ph ⁿBu₄NCI (0.1 M), DMF (6 mL) 1a (0.2 mmol) (balloon) I = 15 mA, rt, 20 h 3a Yield Anode Cathode Entry $(\%)^{a}$ 1 Al Ni 71 2 Zn 79 Ni

Mg

Cu

Fe

Mg

Mg

Mg

Mg

Table S1. Screening of anode and cathode

3

4

5

6

7

8

9

^a Trimethoxybenzene (3-5 mg) was used as the internal standard, and ¹H NMR was determined. ^b Isolated yield.

Then the solvent effects were examined using Ni-plate as cathode and Mg-plate as anode, ^{*n*}Bu₄NCl as the electrolyte, with typical results shown in Table S2. The reaction conducted in DMSO, CH₃CN and NMP gave lower yield than that in DMF (entries 1-4). The supporting electrolyte is

Ni

Ni

Ni

Pt

Graphite Felt (GF)

C rod

Nb

81^b

NR

62

73

79

NR

42

another important parameter in affecting the reaction outcome, and their influence was studied. By changing the electrolyte from "Bu₄NCl to "Bu₄NBr, a similar 80% yield was obtained (entry 5). Further varying the counter anions in the tetrabutylammonium family had no positive impact on the reaction (entries 6-8). Another ammonium salt, such as Et₄NCl, was also tried, but no better result was obtained (entry 9).

CF ₂ H Ph Ph + 1a (0.2 mmol)	CO ₂ — (balloon)	(+) Mg (-) Ni eletrolyte (0.1 M), solvent (6 mL) I = 15 mA, rt, 20 h	HO ₂ C Ph Ph 3 a
Entry	Solven	t Eletrolyte	Yield $(\%)^a$
1	DMF	"Bu ₄ NCl	81 ^b
2	DMSO	ⁿ Bu ₄ NCl	75
3	CH ₃ CN	ⁿ Bu ₄ NCl	53
4	NMP	ⁿ Bu ₄ NCl	75
5	DMF	ⁿ Bu4NBr	80^b
6	DMF	ⁿ Bu ₄ NBF ₄	25
7	DMF	"Bu4NClO4	65
8	DMF	"Bu ₄ NI	76
9	DMF	Et4NC1	44

Table S2. Screening of solvent and supporting electrolyte.

^a Trimethoxybenzene (3-5 mg) was used as the internal standard, and ¹H NMR was determined. ^b Isolated yield.

Subsequently, the concentration of electrolyte was studied. As shown in Table S3, by decreasing the concentration of ${}^{n}Bu_{4}NCl$ to 0.05 M, the desired carboxylic acids **3a** was obtained in 65% yield, and further increasing the concentration to 0.15 M also gave no better results (entries 1 and 2). Since the intensity of the current may affect the reactions Then, the influence of current intensity was studied, and found that when the current intensity is increased to 15 mA or decreased to 20 mA, the yield of **3a** decreased to 54% and 74%, respectively (entry 4-5).

Finally, we determined to perform the defluorinative carboxylation of **1a** (0.2 mmol) under room temperature in DMF (6.0 mL) containing "Bu₄NCl (0.1 M) at constant current of 15 mA in an undivided cell with CO₂ balloon and Ni-plate as cathode and Mg-plate as anode.

Ph Ph + 1a (0.2 mmol)	$CO_2 \qquad (+) Mg$ $^n Bu_4 NCI (x)$ (balloon) I = y	▲ (-) Ni ★ M), DMF (6 mL) mA, rt, 20 h	HO ₂ C Ph Ph 3a
Entry	Conc. of ⁿ Bu ₄ NCl (M)	I (mA)	Yield (%) ^{<i>a</i>}
1	0.10	15	81 ^b
2	0.05	15	65
3	0.15	15	73
4	0.10	10	54
5	0.10	20	74

 Table S3. Screening of electrolyte concentration and current

^a Trimethoxybenzene (3-5 mg) was used as the internal standard, and ¹H NMR was determined. ^b Isolated yield.

2.2 Condition optimization for carboxylation with non-sacrificial anode

The defluorinative carboxylation of biphenyl substituted α -CF₃ cyclopropane **2k** with CO₂ was selected as the model reaction for condition optimization of non-sacrificial anode system. The influence of reductant was first studied by performing the reaction using Pt as anode and Graphite Felt (GF) cathode, in NMP with "Bu₄NI as the electrolyte at a constant current of 15 mA for 20 hours in an undivided cell at room temperature, with CO₂ bubbling. As detailed in Table S4, among the typical reductant tested, Na₂S was the best to give the desired carboxylic acid **4k** in 42% yield (entries 1-4). The study of solvent effect by conducting the reaction in DMSO or DMF gave no better result (entries 5-6). The performance of different electrode was then studied and found that the combination of C rod with GF cathode or Pt cathode could gave an improved 45% yield, and the cheaper GF cathode as selected for use (entries 7-11). The variation of electrolyte gave no better results (entries 12-14). Subsequent variations in the dosage of Na₂S did not yield improvements

(entries 17-18). Thus, the optimal reaction conditions for the defluorinative carboxylation under nonsacrificial anode system were established.

CF3		(+) Anode (-) Cathode	CO ₂ H
Ph	$+ CO_2 -$	reductant (2.0 equivs)	Ph
2k (0.2 mmol)	(1 atm)	eletrolyte (0.1 M), solvent (6 mL)	4k
		l = 15 mA, rt, 20 h	

Table S4. Condition of	ptimization of	f non-sacrificial anode
------------------------	----------------	-------------------------

Entry	Anode	Cathode	Reductant	Eletrolyte	Solvent	Yield $(\%)^a$
1	Pt	GF	CH ₃ CO ₂ Na	ⁿ Bu ₄ NI	NMP	36
2	Pt	GF	Sodium ascorbate	ⁿ Bu ₄ NI	NMP	25
3	Pt	GF	Na ₂ SO ₃	ⁿ Bu ₄ NI	NMP	33
4	Pt	GF	Na ₂ S	ⁿ Bu ₄ NI	NMP	42
5	Pt	GF	Na_2S	"Bu4NI	DMSO	28
6	Pt	GF	Na_2S	"Bu4NI	DMF	10
7	GF	GF	Na ₂ S	"Bu4NI	NMP	41
8	Nb	GF	Na_2S	"Bu4NI	NMP	45
9	C rod	GF	Na_2S	"Bu ₄ NI	NMP	45 ^{<i>b</i>}
10	C rod	Ni	Na_2S	"Bu4NI	NMP	29
11	C rod	Pt	Na_2S	"Bu ₄ NI	NMP	45
12	C rod	GF	Na ₂ S	ⁿ Bu4NBr	NMP	18
13	C rod	GF	Na_2S	ⁿ Bu ₄ NCl	NMP	NR
14	C rod	GF	Na_2S	Et ₄ NI	NMP	44
17 ^c	C rod	GF	Na ₂ S	ⁿ Bu ₄ NI	NMP	20
18^d	C rod	GF	Na_2S	ⁿ Bu ₄ NI	NMP	36

^{*a*} Determined by ¹H NMR with 4-(Trifluoromethoxy)anisole (3-5 mg) as internal standard. ^{*b*} Isolated yield. ^{*c*} With Na₂S (1.0 equiv). ^{*d*} With Na₂S (3.0 equivs).

3. Photographic guide for electrochemical reaction

Electrochemical reactions at the electrode were conducted in the following equipment: In a 10 mL three-necked flask using Ni-plate as cathode and Mg-plate as anode with the current supplied from a 36 V constant-current power supply purchased from Xiamen Bodong Biotechnology Ltd.

Photographic guide for the equipment (0.2 mmol)

Step 0. Overview of materials used.

From left to right: (1) Ni-plate [cathode, 30 mm x 10 mm x 0.5 mm], Mg-plate [anode, 30 mm x 10 mm x 0.5 mm]; (2) 10 mL three-necked flask; (3) rubber stopper; (4) needle for CO₂ balloon.

Step 1. Assembling the cell

1) The electrodes are inserted into the two lateral openings of the three-neck flask; 2) The stopper is fitted into the central opening of the three-neck flask; 2) The rubber stopper is punctured to accommodate the needle.

Step 2. Electrolysis

After the addition of all materials, the cell was evacuated and back-filled under CO_2 flow (this procedure was repeated three times) and then conducted constant current electrolysis (I = 15.0 mA) using a CO_2 balloon.

Effective area (Mg): 13 mm*10 mm*0.5 mm Effective area (Ni): 13 mm*10 mm*0.1 mm

4. General procedure for the preparation of starting materials

4.1 General procedure A (for the synthesis of **1a-1o**)^[1]

To a flame-dried screw-cap reaction tube equipped with a magnetic stir bar, DFHZ-Tfs (0.75 mmol, 253.5 mg), K_2CO_3 (0.9 mmol, 124.4 mg), and Fe(TPP)Cl (0.015 mmol, 10.6 mg) were added. A solution of styrene (0.3 mmol) in dry 1,4-dioxane (5.0 mL) was then added. The reaction mixture was degassed by freezing with liquid nitrogen to remove oxygen. The mixture was stirred at 40 °C for 36 hours. The crude reaction mixture was filtered through a short pad of celite and washed with EtOAc. The filtrate was evaporated under reduced pressure to obtain a crude mixture, which was purified by flash column chromatography using *n*-hexane as the eluent to yield the final product.

4.2 General procedure B (for the synthesis of 2a-2f, 2j)^[2]

To a flame-dried screw-cap reaction tube equipped with a magnetic stir bar, TFHZ-Tfs (0.9 mmol, 207.0 mg) and Fe(TPP)Cl (0.03 mmol, 21.1 mg) were added. The tube was evacuated and back-filled with nitrogen three times. A solution of styrene (0.3 mmol) in CH₂Cl₂ (1.5 mL) and a 20 wt% aqueous NaOH solution (5 mL) were then successively added. The reaction mixture was stirred at 40 °C for 36 hours. Afterward, 10 mL of water was added to the mixture, and the layers were allowed to separate. The aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL), and the combined organic layers were dried over anhydrous Na₂SO₄, then filtered through a short silica gel pad using CH₂Cl₂ as the eluent. The filtrate was evaporated under reduced pressure to obtain a crude mixture, which was purified by flash column chromatography using *n*-hexane as the eluent to yield the final product.

4.3 General procedure C (for the synthesis of 2g-2i, 2k)^[3]

To a flame-dried screw-cap reaction tube equipped with a magnetic stir bar, TFHZ-Ts (2.2 mmol, 616.6 mg) and ^{*n*}Bu₄NCl (0.07 mmol, 19.5 mg) were added. The tube was evacuated and back-filled with nitrogen three times. A solution of styrene (0.3 mmol) in toluene (8 mL) was then added. The reaction mixture was stirred at 40 °C for 5 minutes, after which NaOMe (1.6 mmol, 86.4 mg) and Fe(TPP)Cl (0.05 mmol, 35.2 mg) were added. The mixture was stirred for an additional 18 hours at the same temperature. Subsequently, saturated aqueous NH₄Cl (10 mL) was added to quench the reaction. The aqueous layer was extracted with EtOAc (3×10 mL), and the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography using *n*-hexane as the eluent to yield the desired product.

The reaction afforded **1a** in 81% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, J = 7.2 Hz, 2H), 7.32-7.14 (m, 8H), 5.14-4.84 (m, 1H), 2.23-2.14 (m, 1H), 1.64 (td, J = 5.6 Hz, 2.4 Hz, 1H), 1.48-1.44 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 144.49, 139.65, 130.02, 128.75, 128.53, 127.78, 127.29, 126.63, 118.18 (t, $J_{C-F} = 234.6$ Hz), 35.22 (d, $J_{C-F} = 9.3$ Hz), 27.17 (dd, $J_{C-F} = 31.6$ Hz, 28.1 Hz), 15.60 (d, $J_{C-F} = 7.4$ Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -107.98 (d, J = 283.5 Hz), -113.99 (d, J = 283.1 Hz); IR (neat): 3063, 3032, 2376, 1697, 1520, 1265, 1088, 1034, 756, 702 cm⁻¹; MS (EI): 244 (M⁺, 100), 115 (96), 193 (88), 165 (71), 243 (53), 178 (48). HRMS (EI): Exact mass calcd for: C₁₆H₁₄F₂ [M]⁺: 244.1064, Found: 244.1062.

The reaction afforded **1b** in 70% yield as colorless oil. ¹H NMR analysis revealed that the dr vlues is 1:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.40 (m, 1H), 7.32-7.06 (m, 8H), 5.15-4.84 (m, 1H), 2.31 (s, 1.5H), 2.28 (s, 1.5H), 2.20-

2.14 (m, 1H), 1.64-1.60 (m, 1H), 1.47-1.41 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): *δ* 144.71, 141.63, 139.90, 136.94, 136.63, 136.29, 129.92, 129.87, 129.43, 129.20, 128.71, 128.49, 127.69, 127.19,

126.52, 118.30 (t, $J_{C-F} = 234.6 \text{ Hz}$), 118.25 (t, $J_{C-F} = 234.6 \text{ Hz}$), 34.82 (dd, $J_{C-F} = 10.8 \text{ Hz}$, 9.2 Hz), 27.27 (dd, $J_{C-F} = 28.0 \text{ Hz}$, 5.3 Hz), 26.95 (dd, $J_{C-F} = 28.0 \text{ Hz}$, 5.2 Hz), 21.00, 20.89, 15.57 (dd, $J_{C-F} = 14.4 \text{ Hz}$, 7.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -107.90 (d, J = 283.1 Hz), -107.91 (d, J = 283.1 Hz), -113.91 (d, J = 283.1 Hz), -114.07 (d, J = 283.1 Hz); IR (neat): 3024, 2924, 1651, 1512, 1427, 1088, 1034, 910, 741 cm⁻¹; MS (EI): 258 (M⁺, 40), 243 (100), 165 (37), 115 (31), 192 (21), 178 (20). HRMS (EI): Exact mass calcd for: C₁₇H₁₆F₂ [M]⁺: 258.1220, Found: 258.1217.

The reaction afforded **1c** in 72% yield as colorless oil. ¹³C NMR analysis revealed that the dr vlues is 1.4:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 7.6 Hz, 1H), 7.44-7.35 (m, 2H), 7.28-7.14 (m, 4H), 7.08-7.03 (m, 2H), 4.93 (td, *J* = 55.2 Hz, 7.6 Hz, 2H), 2.28 (s, 3H), 2.23-2.15 (m, 1H), 1.90-1.87 (m, H), 1.37-1.26 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 141.99, 138.22, 137.77, 137.08, 131.18 (minor), 130.74, 129.96, 129.36, 128.40, 128.37, 127.79 (minor), 127.31, 126.85, 126.14, 126.13, 126.04, 126.01, 118.21 (t, *J*_{C-F} = 234.0 Hz), 117.91 (t, *J*_{C-F} = 235.3 Hz) (minor), 34.01 (d, *J*_{C-F} = 9.0 Hz), 27.68 (dd, *J*_{C-F} = 31.6 Hz, 28.0 Hz), 19.83 (minor), 19.50 (major), 13.85 (d, *J*_{C-F} = 7.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -108.53 (d, *J* = 284.3 Hz), -114.25 (d, *J* = 284.3 Hz); IR (neat): 3024, 2978, 1690, 1427, 1180, 1088, 1034, 910, 756, 733 cm⁻¹; MS (EI): 258 (M⁺, 38), 243 (100), 179 (63), 178 (51), 115 (36), 165 (32). HRMS (EI): Exact mass calcd for: C₁₇H₁₆F₂ [M⁺]: 258.1220, Found: 258.1218.

The reaction afforded **1d** in 75% yield as colorless oil. ¹H NMR analysis revealed that the dr vlues is 1:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 7.6 Hz, 1H), 7.33-7.13 (m, 6H), 7.09-6.98 (m, 2H), 5.15-4.84 (m, 1H), 2.32 (s, 1.5H), 2.30 (s, 1.5H), 2.22-2.14 (m, 1H), 1.64-1.61 (m, 1H), 1.48-1.43 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 144.62, 144.45, 139.82, 139.57, 138.34, 138.14, 130.69, 129.96, 128.69, 128.58, 128.54, 128.48, 128.41, 128.05, 127.77, 127.42, 127.20, 127.06, 126.55, 124.98, 118.24 (t, *J*_{C-F} = 234.6 Hz), 35.19 (dd, *J*_{C-F} = 9.4 Hz, 4.3 Hz), 27.21 (dd, *J*_{C-F} = 31.6 Hz, 7.1 Hz), 26.93 (dd, *J*_{C-F} = 31.7 Hz, 6.9 Hz), 21.35, 15.47 (dd, *J*_{C-F} = 14.1 Hz, 7.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -107.92 (d, *J* = 283.1 Hz), -107.94 (d, *J* = 283.1 Hz), -113.95 (d, *J* = 283.1 Hz), -113.97 (d, *J* = 283.1 Hz); IR (neat): 3023, 2978, 1944, 1427, 1180, 1080, 1034, 910, 748, 702 cm⁻¹; MS (EI): 258 (M⁺, 100), 243 (96), 207 (68), 115 (62), 165 (58), 129 (33). HRMS (EI): Exact mass calcd for: C₁₇H₁₆F₂ [M]⁺: 258.1220, Found: 258.1223.

The reaction afforded **1e** in 81% yield as colorless oil. ¹H NMR analysis revealed that the dr vlues is 2:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.42 (m, 1H), 7.33-7.08 (m, 8H), 5.15-4.84 (m, 1H), 2.22-2.13 (m, 1H), 1.65-1.59 (m, 1H), 1.51-1.47 (m, 1H) 1.30 (s, 6H), 1.28 (s, 3H) (minor); ¹³C NMR (125 MHz, CDCl₃): δ 151.64, 151.42 (minor), 144.73, 144.12 (minor), 139.86 (minor), 139.17 (major), 130.00, 128.70, 128.49, 128.38, 128.16 (minor), 127.56, 127.29, 127.21, 127.18, 126.49, 125.06, 124.59, 124.19, 123.67 (minor), 118.36 (t, *J*_{C-F} = 234.1 Hz), 118.27 (t, *J*_{C-F} = 234.1 Hz) (minor), 35.47 (dd, *J*_{C-F} = 9.6 Hz, 7.1 Hz), 34.68, 31.30 (s), 27.39 (dd, *J*_{C-F} = 7.8 Hz) (minor); ¹⁹F NMR (376 MHz, CDCl₃): δ -107.88 (d, *J* = 283.1 Hz) (minor), -107.94 (d, *J* = 283.1 Hz) (major), -113.91 (d, *J* = 283.1 Hz) (minor), -107.94 (d, *J* = 283.1 Hz) (major), -113.91 (d, *J* = 283.1 Hz) (minor), -107.94 (18), 203.15, 1427, 1258, 1088, 1034, 910, 741, 702 cm⁻¹; MS (EI): 300 (M⁺, 12), 243 (100), 285 (36), 244 (18), 103 (13), 147 (13). HRMS (EI): Exact mass calcd for: C₂₀H₂₂F₂ [M]⁺: 300.1690, Found: 300.1694.

The reaction afforded **1f** in 83% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.26 (t, J = 8.0 Hz, 2H), 7.15-7.04 (m, 6H), 5.12-4.83 (m, 1H), 2.29 (s, 3H), 2.16-2.10 (m, 1H), 2.27 (s, 3H), 1.60-1.56 (m, 1H), 1.42-1.38 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 141.84, 136.86, 136.85, 136.20, 129.77, 129.40, 129.17, 127.60, 118.37 (t, $J_{C-F} = 234.3$ Hz), 34.49 (t, $J_{C-F} = 9.4$ Hz), 27.04 (dd, $J_{C-F} = 31.6$ Hz, 27.8 Hz), 21.01, 20.90, 15.56 (d, $J_{C-F} = 7.5$ Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -107.83 (d, J = 282.8 Hz), -114.00 (d, J = 282.8 Hz); IR (neat): 3024, 2376, 1651, 1512, 1180, 1080, 1034, 818, 756 cm⁻¹; MS (EI): 272 (M⁺, 23), 257 (100), 129 (18), 178 (15), 165 (15), 206 (13). HRMS (EI): Exact mass calcd for: C₁₈H₁₈F₂ [M]⁺: 272.1377, Found: 272.1380.

The reaction afforded **1g** in 80% yield as colorless oil. ¹H NMR analysis revealed that the dr vlues is 1:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.26 (m, 1H), 7.21-6.98 (m, 7H), 5.14-4.85 (m, 1H), 2.32 (s, 1.5H), 2.31 (s, 1.5H),

2.30 (s, 1.5H), 2.29 (s, 1.5H), 2.18-2.12 (m, 1H), 1.62-1.58 (m, 1H), 1.45-1.39 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 144.68, 141.76, 139.81, 138.30, 138.10, 136.84, 136.80, 136.20, 130.61, 129.80, 129.40, 129.17, 128.55, 128.47, 128.39, 127.96, 127.68, 127.34, 126.96, 124.91, 118.35 (t, *J*_{C-F} = 234.3 Hz), 118.31 (t, *J*_{C-F} = 234.4 Hz), 34.85 (dd, *J*_{C-F} = 9.5 Hz, 6.5 Hz), 27.18 (dd, *J*_{C-F} = 27.7 Hz, 1.9 Hz), 26.86 (dd, *J*_{C-F} = 28.4 Hz, 1.8 Hz), 21.37, 20.98, 20.88, 15.47 (d, *J*_{C-F} = 7.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -107.84 (d, *J* = 282.8 Hz), -107.86 (d, *J* = 282.8 Hz), -113.90 (d, *J* = 282.8 Hz), -114.03 (d, *J* = 282.8 Hz); IR (neat): 2924, 1991, 1512, 1180, 1088, 1034, 910, 733 cm⁻¹; MS (EI): 272 (M⁺, 46), 257 (100), 129 (29), 178 (20), 165 (19), 258 (18). HRMS (EI): Exact mass calcd for: C₁₈H₁₈F₂ [M]⁺: 272.1377, Found: 272.1375.

The reaction afforded **1h** in 72% yield as colorless oil. ¹³C NMR analysis revealed that the dr vlues is 1.5:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.42 (m, 1H), 7.26-7.04 (m, 6H), 6.94-6.92 (m, 1H), 5.09-4.79 (m, 1H), 2.29 (s, 6H), 2.21-2.13 (m, 2H), 1.87-1.84 (m, 1H), 1.32-1.27 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 142.17, 140.13 (minor), 139.20 (minor), 137.65, 137.30, 136.43, 135.70, 135.20, 131.13 (minor), 130.71, 129.87, 129.19, 129.08, 129.04, 127.68 (minor), 127.19, 126.04, 126.00, 125.97, 118.33 (t, *J*_{C-F} = 234.3 Hz), 117.98 (t, *J*_{C-F} = 235.6 Hz) (minor), 33.65 (d, *J*_{C-F} = 9.2 Hz), 27.55 (dd, *J*_{C-F} = 31.6 Hz, 27.9 Hz), 20.83 (d, *J*_{C-F} = 10.5 Hz), 19.82 (minor), 19.46 (major), 13.80 (d, *J*_{C-F} = 7.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -108.44 (d, *J* = 283.9 Hz), -114.34 (d, *J* = 283.9 Hz); IR (neat): 3017, 2924, 2315, 1697, 1512, 1265, 1088, 1034, 756 cm⁻¹; MS (EI): 272 (M⁺, 22), 257 (100), 178 (40), 272 (22), 258 (19), 165 (19). HRMS (EI): Exact mass calcd for: C₁₈H₁₈F₂ [M]⁺: 272.1377, Found: 272.1375.

The reaction afforded **1i** in 70% yield as colorless oil. ¹H NMR analysis revealed that the dr vlues is 1.4:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.31-7.29 (m, 1H), 7.25-7.16 (m, 2H), 7.13-7.07 (m, 2H), 7.02-6.95 (m, 1H), 6.87-6.70 (m, 2H), 5.17-4.85 (m, 1H), 3.78 (s, 1.75H), 3.76 (s, 1.25H) (minor), 2.32 (s, 1.25H) (minor), 2.29 (s, 1.75H) (major), 2.20-2.13 (m, 1H), 1.61 (td, J = 5.6 Hz, 2.4 Hz, 1H), 1.47-1.40 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 159.69, 159.59 (minor), 146.32, 141.45, 141.42 (minor), 136.99, 136.49, 136.33, 129.84, 129.70, 129.49, 129.42, 129.19, 127.64, 122.19, 119.99 (minor), 118.25 (t, $J_{C-F} = 234.5$ Hz), 118.23 (t, $J_{C-F} = 234.4$ Hz) (minor), 115.75, 114.06 (minor), 112.51, 111.46 (minor), 55.12, 34.92 (d, $J_{C-F} = 9.5$ Hz), 34.79 (d, $J_{C-F} = 9.6$ Hz, 1C) (minor), 27.26 (dd, $J_{C-F} = 28.3$ Hz, 5.9 Hz), 27.01 (dd, $J_{C-F} = 27.9$ Hz, 5.8 Hz) (minor), 21.01 (minor), 20.90 (major), 15.65 (d, $J_{C-F} = 7.3$ Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -107.59 (d, J = 283.1 Hz), -107.86 (d, J =283.1 Hz) (minor), -113.78 (d, J = 283.1 Hz), -114.02 (d, J = 283.5 Hz); IR (neat): 2932, 1991, 1713, 1520, 1273, 1034, 748, 702 cm⁻¹; MS (EI): 288 (M⁺, 100), 273 (84), 237 (57), 165 (45), 129 (27), 178 (24). HRMS (EI): Exact mass calcd for: C₁₈H₁₈F₂O [M]⁺: 288.1326, Found: 288.1330.

The reaction afforded **1j** in 39% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.13 (m, 4H), 7.11-6.97 (m, 4H), 5.19-4.79 (m, 1H), 2.32 (s, 3H), 2.31 (s, 3H), 2.22-2.10 (m, 1H), 1.60 (td, J = 7.6 Hz, 3.2 Hz, 1H), 1.46-1.40 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 144.57, 139.71, 138.32, 138.13, 130.62, 128.55, 128.39, 128.00, 127.39, 127.00, 125.02, 118.31 (t, $J_{C-F} = 234.1$ Hz), 35.21 (d, $J_{C-F} = 9.4$ Hz), 26.94 (dd, $J_{C-F} = 31.8$ Hz, 28.0 Hz), 21.40, 15.40 (d, $J_{C-F} = 7.5$ Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -107.84 (d, J = 282.6 Hz), -113.94 (d, J = 282.6 Hz); IR (neat): 2978, 1991, 1605, 1427, 1265, 1080, 1034, 910, 748, 710 cm⁻¹; MS (EI): 272 (M⁺, 81), 257 (100), 129 (53), 221 (41), 178 (27), 165 (25). HRMS (EI): Exact mass calcd for: C₁₈H₁₈F₂ [M]⁺: 272.1377, Found: 272.1379.

The reaction afforded **1k** in 75% yield as colorless oil. ¹H NMR analysis revealed that the dr vlues is 1.2:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.14 (m, 3H), 7.10-6.96 (m, 3H), 6.89-6.71 (m, 2H), 5.17-4.85 (m, 1H), 3.79 (s, 1.65H), 3.77 (s, 1.35H) (minor), 2.32 (s, 1.35H) (minor), 2.31 (s, 1.65H) (major), 2.22-2.12 (m, 1H), 1.61 (td, J = 5.6 Hz, 2.4 Hz, 1H), 1.47-1.41 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.67, 159.57 (minor), 146.19 (minor), 144.27 (major), 141.31, 139.41 (minor), 138.31 (minor), 138.12 (major), 130.64 (minor), 129.67, 129.46, 128.54, 128.47, 128.38, 128.06, 127.43, 127.00, 124.90, 122.19, 120.04, 118.24 (t, $J_{C-F} = 234.8$ Hz), 118.17 (t, $J_{C-F} = 234.7$ Hz) (minor), 115.82, 114.15, 112.43, 111.42, 55.03, 35.16 (dd, $J_{C-F} = 9.4$ Hz, 5.4 Hz), 27.22 (dd, $J_{C-F} = 27.9$ Hz, 6.3 Hz), 26.90 (dd, $J_{C-F} = 28.0$ Hz, 6.2 Hz), 21.32, 15.53 (d, $J_{C-F} = 7.5$ Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -107.69 (d, *J* = 283.1 Hz), -107.94 (d, *J* = 283.1 Hz) (minor), -113.89 (d, *J* = 283.1 Hz), -114.00 (d, *J* = 283.1 Hz); IR (neat): 3750, 3009, 2376, 1520, 1273, 1088, 1034, 756 cm⁻¹; MS (EI): 288 (M⁺, 100), 257 (77), 237 (67), 165 (43), 129 (39), 145 (26). HRMS (EI): Exact mass calcd for: C₁₈H₁₈F₂O [M]⁺: 288.1326, Found: 288.1322.

The reaction afforded **11** in 54% yield as white solid, Mp 61.7-62.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.23-7.18 (m, 4H), 7.16-7.10 (m, 2H), 7.08-7.04 (m, 2H), 4.92 (td, J = 55.2 Hz, 7.6 Hz, 1H), 3.98 (td, J = 13.6 Hz, 5.6 Hz, 1H), 3.53 (dt, J = 17.6

Hz, 4.8 Hz, 1H), 3.07-2.98 (m, 1H), 2.85-2.79 (m, 1H), 1.84-1.70 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 142.71, 140.95, 139.81, 135.14, 131.39, 128.88, 127.58, 127.51, 127.26, 126.43, 126.29, 125.75, 118.34 (t, $J_{C-F} = 235.1$ Hz), 32.94, 32.81 (t, $J_{C-F} = 9.0$ Hz), 30.27 (t, $J_{C-F} = 28.7$ Hz), 12.24, 12.17; ¹⁹F NMR (376 MHz, CDCl₃): δ -107.40 (d, J = 283.9 Hz), -113.19 (d, J = 284.3 Hz); IR (neat): 3017, 2940, 1697, 1427, 1273, 1088, 1034, 910, 748 cm⁻¹; MS (EI): 270 (M⁺, 100), 269 (94), 255 (55), 203 (40), 204 (36), 189 (35). HRMS (EI): Exact mass calcd for: C₁₈H₁₆F₂ [M]⁺: 270.1220, Found: 270.1224.

The reaction afforded **1m** in 69% yield as white solid, Mp 43.2-45.0 °C. ¹H NMR analysis revealed that the dr vlues is 2.5:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.19 (m, 7H), 5.72 (td, J = 56.4 Hz, 7.6 Hz, 0.4H), 4.99-4.70 (m, 1H), 1.86-1.46 (m, 8.4H), 1.21-0.69 (m, 11.2H); ¹³C NMR (100 MHz, CDCl₃): δ 141.58 (minor), 137.79 (major), 131.55, 131.53, 131.20, 127.85, 127.57 (minor), 127.02, 126.76 (minor), 118.52 (t, $J_{C-F} = 233.9$ Hz), 117.89 (t, $J_{C-F} = 233.3$ Hz) (minor), 48.26, 43.10 (minor), 36.27 (d, $J_{C-F} = 8.2$ Hz, (minor), 36.06 (d, $J_{C-F} = 8.4$ Hz) (major), 30.96 (minor), 30.53 (major), 30.42 (d, $J_{C-F} = 2.0$ Hz, (minor), 29.82 (d, $J_{C-F} = 1.1$ Hz) (major), 26.75 (minor), 26.57 (major), 26.47, 26.42 (minor), 26.10, 26.02 (minor), 26.58 (dd, $J_{C-F} = 31.8$ Hz, 26.9 Hz), 15.21 (d, $J_{C-F} = 6.7$ Hz) (minor), 14.16 (d, $J_{C-F} =$ 7.4 Hz) (major); ¹⁹F NMR (376 MHz, CDCl₃): δ -102.10 (d, J = 284.6 Hz, (minor), -106.78 (d, J =280.9 Hz) (major), -111.44 (d, J = 284.6 Hz) (minor), -113.01 (d, J = 280.9 Hz) (major); IR (neat): 2924, 2855, 2315, 1690, 1427, 1180, 1080, 1034, 764, 702 cm⁻¹; MS (EI): 250 (M⁺, 78), 172 (100), 129 (75), 81 (69), 104 (65), 91 (63). HRMS (EI): Exact mass calcd for: C₁₆H₂₀F₂ [M]⁺: 250.1533, Found: 250.1535.

The reaction afforded **1n** in 51% yield as colorless oil. ¹³C NMR analysis revealed that the dr vlues is greater than 20:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.28 (m, 4H), 7.24-7.20 (m, 1H), 5.69 (td, *J* = 56.0 Hz, 6.8 Hz, 1H), 1.66-1.56 (m, 1H), 1.48 (s, 3H), 1.32-1.28 (m, 1H), 0.97 (td, *J* = 5.6 Hz, 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 143.71, 129.17 (minor), 128.61 (minor), 128.50, 127.54, 126.98 (minor), 126.51, 118.11 (t, *J*_{C-F} = 235.1 Hz), 26.58 (dd, *J*_{C-F} = 29.7 Hz, 27.5 Hz), 25.14 (d, *J*_{C-F} = 7.6 Hz), 21.58 (s, 2C), 16.77 (dd, *J*_{C-F} = 7.1 Hz, 1.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -106.21 (d, *J* = 285.0 Hz), -112.03 (d, *J* = 284.6 Hz); IR (neat): 3024, 2970, 2315, 1690, 1427, 1188, 1088, 1026, 764, 702 cm⁻¹; MS (EI): 182 (M⁺, 34), 131 (100), 91 (41), 147 (37), 167 (37), 115 (25). HRMS (EI): Exact mass calcd for: C₁₁H₁₂F₂ [M]⁺: 182.0907, Found: 182.0905.

The reaction afforded **10** in 58% yield as colorless oil. ¹H NMR analysis revealed CF_2H that the dr vlues is 4:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.18 (m, 6.25H), 5.68 (td, J = 56.0 Hz, 6.8 Hz, 1H), 4.91-4.61 (m, 0.25H) (minor), 1.88-10 1.82 (m, 0.25H) (minor), 1.74-1.69 (m, 1H) (major), 1.57-1.48 (m, 2.5H), 1.26-1.09 (m, 6H), 1.02-0.97 (m, 0.25H) (minor), 0.89 (td, J = 5.6 Hz, 2.4 Hz, 1H) (minor), 0.80-0.77 (m, 4H) (major); ¹³C NMR (125 MHz, CDCl₃): δ 143.95, 139.70 (minor), 130.05 (minor), 129.14 (major), 128.40 (minor), 128.25 (major), 126.94 (minor), 126.61 (major), 118.53 (t, J_{C-F} = 233.6 Hz) (minor), 118.01 (t, J_{C-F} = 234.6 Hz) (major), 41.07 (minor), 35.21 (major), 30.99 (d, J_{C-F} = 8.4 Hz) (minor), 30.78 (d, J_{C-F} = 8.3 Hz) (major), 28.97, 28.68 (minor), 26.35 (dd, J_{C-F} = 31.4 Hz, 26.8 Hz) (minor), 26.31 (dd, J_{C-F} = 30.5 Hz, 27.3 Hz) (major), 22.74, 22.55 (minor), 15.26 (d, $J_{C-F} = 6.8 \text{ Hz}$), 13.53 (d, $J_{C-F} = 7.3 \text{ Hz}$) (minor), 13.95 (minor), 13.89 (major); ¹⁹F NMR (376 MHz, CDCl₃): δ -104.67 (d, J = 284.6 Hz), -107.61 (d, J = 281.2 Hz) (minor), -111.79 (d, J = 284.3 Hz), -112.90 (d, J = 281.6 Hz) (minor); IR (neat): 3024, 2376, 1690, 1466, 1427, 1080, 1026, 910, 702 cm⁻¹; MS (EI): 224 (M⁺, 40), 167 (100), 147 (63), 117 (37), 115 (31), 91 (27). HRMS (EI): Exact mass calcd for: C₁₄H₁₈F₂ [M]⁺: 224.1377, Found: 224.1379.

The reaction afforded **2a** in 70% yield as colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.47-7.44 (m, 2H), 7.35-7.17 (m, 8H), 2.43-2.31 (m, 1H), 1.92 (t, *J* = 5.7 Hz, 1H), 1.56-1.52 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 144.48, 139.03, 129.63, 128.65, 128.36, 127.84, 127.13, 126.84, 125.91 (q, *J*_{C-F} = 270.6 Hz), 35.91, 26.69 (q, *J* =

35.5 Hz), 15.48 (q, *J* = 0.6 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -61.45; IR (neat): 3063, 3032, 1412, 1273, 1126, 910, 748, 702 cm⁻¹; MS (EI): 262 (M⁺, 100), 261 (91), 165 (63), 115 (49), 184 (39), 178 (32). HRMS (EI): Exact mass calcd for: C₁₆H₁₃F₃ [M]⁺: 262.0969, Found: 262.0965.

The reaction afforded **2b** in 25% yield as colorless oil. ¹F NMR analysis revealed that the dr vlues is 1:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, *J* = 7.6 Hz, 1H), 7.33-7.28 (m, 4H), 7.24-7.15 (m, 2H), 7.09 (t, *J* = 8.4 Hz, 2H), 2.36-2.30 (m, 1H), 2.30 (s, 1.5H), 2.29 (s, 1.5H), 1.88 (t, *J* = 5.6 Hz, 1H), 1.53-1.48 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 144.72, 141.64, 139.27, 136.75, 136.54, 136.03, 129.55, 129.46, 129.19, 129.08, 128.63, 128.33, 127.78, 127.71, 127.03, 126.74, 125.95 (q, *J*_{C-F} = 270.4 Hz), 35.58 (d, *J*_{C-F} = 1.4 Hz), 35.52 (d, *J*_{C-F} = 1.4 Hz), 26.66 (q, *J*_{C-F} = 35.4 Hz), 26.64 (q, *J*_{C-F} = 35.3 Hz), 21.07, 20.92, 15.52 (q, *J*_{C-F} = 2.4 Hz), 15.46 (q, *J*_{C-F} = 2.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -61.37, -61.42; IR (neat): 3024, 2924, 2315, 1458, 1412, 1273, 1126, 910, 748, 702 cm⁻¹; MS (EI): 276 (M⁺, 35), 261 (100), 165 (43), 165 (23), 183 (22), 178 (19). HRMS (EI): Exact mass calcd for: C₁₇H₁₅F₃ [M]⁺: 276.1126, Found: 276.1122.

The reaction afforded **2c** in 76% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.58-7.56 (m, 1H), 7.42-7.39 (m, 2H), 7.27-7.14 (m, 5H), 7.11-7.05 (m, 1H), 2.42-2.34 (m, 1H), 2.30 (s, 3H), 2.12 (t, *J* = 6.0 Hz, 1H), 1.41-1.37 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 142.13, 137.41, 137.10, 130.92, 129.63, 128.43, 127.93, 127.41, 126.77, 126.08, 126.02 (q, *J*_{C-F} = 270.5 Hz), 34.66 (q, *J*_{C-F} = 1.9 Hz), 27.53 (q, *J*_{C-F} = 35.3 Hz), 19.41, 14.23 (q, *J*_{C-F} = 2.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -61.33; IR (neat): 3063, 3024, 2932, 1404, 1273, 1126, 910, 748, 702 cm⁻¹; MS (EI): 276 (M⁺, 31), 261 (100), 178 (46), 165 (19), 183 (18), 115 (18). HRMS (EI): Exact mass calcd for: C₁₇H₁₅F₃ [M]⁺: 276.1126, Found: 276.1124. The reaction afforded **2d** in 34% yield as colorless oil. ¹F NMR analysis revealed that the dr vlues is 1:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.40 (m, 1H), 7.36-7.32 (m, 1H), 7.30-7.16 (m, 5H), 6.84-6.78 (m, 2H), 3.77 (s, 1.5H), 3.75 (s, 1.5H), 2.36-2.25 (m, 1H), 1.86 (td, *J* = 1.4 Hz, 0.6 Hz, 1H), 1.53-1.47 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 158.58, 158.37, 144.82, 139.45, 136.80, 131.09, 130.67, 129.45, 128.94, 128.61, 128.32, 127.65, 126.99, 126.70, 122.95 (q, *J*_{C-F} = 270.0 Hz), 113.97, 113.73, 55.24, 55.12, 35.18 (d, *J* = 27.4 Hz), 26.71 (q, *J* = 35.4 Hz), 15.76 (d, *J* = 2.4 Hz), 15.40 (d, *J* = 2.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -61.32, -61.42; IR (neat): 3032, 2839, 2060, 1512, 1458, 1412, 12773, 1250, 1126, 1042, 910, 748, 702 cm⁻¹; MS (EI): 292 (M⁺, 100), 261 (69), 152 (37), 165 (25), 115 (22), 183 (22). HRMS (EI): Exact mass calcd for: C₁₇H₁₅F₃O [M]⁺: 292.1075, Found: 292.1070.

The reaction afforded **2e** in 59% yield as colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.32-7.29 (m, 2H), 7.20-7.18 (m, 2H), 7.10-7.05 (m, 4H), 2.36-2.24 (m, 1H), 2.30 (s, 3H), 2.80 (s, 3H), 1.85 (t, *J* = 5.7 Hz, 1H), 1.50-1.45 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 141.88, 136.63, 136.42, 136.27, 129.38, 129.28, 129.05, 127.63, 124.92 (q, *J*_{C-F} = 270.4 Hz), 35.19, 26.61 (q, *J*_{C-F} = 35.3 Hz), 21.06, 20.91, 15.49 (q, *J*_{C-F} = 2.3 Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -61.33; IR (neat): 3024, 2924, 1906, 1512, 1458, 1412, 1273, 1126, 1096, 910, 818, 748 cm⁻¹; MS (EI): 290 (M⁺, 22), 275 (100), 152 (37), 178 (16), 183 (14), 129 (9). HRMS (EI): Exact mass calcd for: C₁₈H₁₇F₃ [M]⁺: 290.1282, Found: 290.1283.

The reaction afforded **2f** in 62% yield as white solid, Mp 42.8-43.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.16 (m, 4H), 7.14-7.10 (m, 2H), 7.07-7.02 (m, 2H), 3.96 (td, *J* = 13.6 Hz, 6.0 Hz, 1H), 3.58-3.52 (m, 1H), 3.10-3.01 (m, 1H), 2.88-2.82 (m, 1H), 2.09-2.02 (m, 1H), 1.93-1.84 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 142.90, 140.52, 139.25, 134.23, 131.11, 128.90, 127.75, 127.52, 127.41, 126.41, 125.97, 125.93 (q, *J*_{C-F} = 271.1 Hz), 125.51, 33.34 (q, *J*_{C-F} = 1.8 Hz), 32.89, 30.23, 29.84 (q, *J*_{C-F} = 34.3 Hz), 12.61 (q, *J*_{C-F} = 2.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -61.73; IR (neat): 3024, 2376, 2314, 1744, 1404, 1273, 1126, 1065, 910, 748 cm⁻¹; MS (EI): 288 (M⁺, 100), 273 (72), 189 (35), 203 (34), 202 (29), 204 (24). HRMS (EI): Exact mass calcd for: C₁₈H₁₅F₃ [M]⁺: 288.1126, Found: 288.1124.

The reaction afforded **2g** in 40% yield as white solid; Mp 98.1-98.4 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.53-7.45 (m, 4H), 7.26-7.16 (m, 4H), 2.43-2.37 (m, 1H), 2.40 (s, 3H), 1.91-1.78 (m, 1H), 1.44-1.37 (m, 1H), 1.26-1.17 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 139.73, 137.78, 137.74, 137.10,

129.51, 127.10, 126.84, 126.81, 125.89 (q, $J_{C-F} = 269.1 \text{ Hz}$), 22.98 (q, $J_{C-F} = 36.5 \text{ Hz}$), 19.28 (q, $J_{C-F} = 2.8 \text{ Hz}$), 10.88 (q, $J_{C-F} = 2.8 \text{ Hz}$); ¹⁹F NMR (282 MHz, CDCl₃): δ -66.73; IR (neat): 3024, 2924, 1420, 1342, 1273, 1150, 1126, 910, 810, 748 cm⁻¹; MS (EI): 276 (M⁺, 100), 192 (41), 165 (26), 261 (22), 191 (20), 207 (17). HRMS (EI): Exact mass calcd for: C₁₇H₁₅F₃ [M]⁺: 276.1126, Found: 276.1124.

The reaction afforded **2h** in 66% yield as colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.28-7.21 (m, 6H), 7.18-7.16 (m, 2H), 2.44-2.39 (m, 1H), 2.27 (s, 3H), 1.90-1.83 (m, 1H), 1.44-1.39 (m, 1H), 1.25-1.20 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 141.37, 140.51, 137.51, 135.31, 130.35, 129.73, 129.40,

127.31, 126.17, 125.92 (q, $J_{C-F} = 268.0 \text{ Hz}$), 125.81, 22.98 (q, $J_{C-F} = 36.5 \text{ Hz}$), 20.43, 19.33 (q, $J_{C-F} = 2.9 \text{ Hz}$), 10.90 (q, $J_{C-F} = 2.6 \text{ Hz}$); ¹⁹F NMR (282 MHz, CDCl₃): δ -66.72; IR (neat): 3024, 2924, 2315, 1913, 1466, 1420, 1342, 1265, 1142, 833, 756 cm⁻¹; MS (EI): 276 (M⁺, 100), 165 (51), 192 (29), 179 (28), 167 (26), 178 (23). HRMS (EI): Exact mass calcd for: C₁₇H₁₅F₃ [M]⁺: 276.1126, Found: 276.1122.

The reaction afforded **2i** in 60% yield as white solid, Mp 116.1-117.9 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.51-7.48 (m, 4H), 7.17 (d, J = 6.0 Hz, 2H), 6.97 (d, J = 6.3 Hz, 2H), 3.85 (s, 3H), 2.42-2.37 (m, 1H), 1.87-1.80 (m, 1H), 1.42-1.37 (m, 1H), 1.23-1.18 (m, 1H); ¹³C NMR (125 MHz,

CDCl₃): δ 159.16, 139.40, 137.42, 133.16, 127.98, 126.85, 125.90 (q, $J_{C-F} = 269.1$ Hz), 114.23, 55.32, 22.95 (q, $J_{C-F} = 36.6$ Hz), 19.26 (q, $J_{C-F} = 2.9$ Hz), 10.86 (q, $J_{C-F} = 2.6$ Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -66.72; IR (neat): 3032, 2955, 2839, 1906, 1605, 1504, 14420, 1273, 1250, 1134, 818 cm⁻¹; MS (EI): 292 (M⁺, 100), 277 (24), 165 (16), 249 (13), 152 (12), 178 (11). HRMS (EI): Exact mass calcd for: C₁₇H₁₅F₃O [M]⁺: 292.1075, Found: 292.1079.

The reaction afforded **2j** in 26% yield as colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.27-7.12 (m, 8H), 6.91-6.88 (m, 2H), 3.17 (d, J = 13.5 Hz, 1H), 2.70 (d, J = 13.5 Hz, 1H), 1.85-1.75 (m, 1H), 1.41 (t, J = 5.7 Hz, 1H), 1.26-1.21 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 138.68, 137.46, 129.91, 129.73, 129.71, 128.10, 128.00, 126.00 (q, $J_{C-F} = 270.0$ Hz), 126.66, 46.94, 32.19, 25.26 (q, $J_{C-F} = 35.1$ Hz), 12.69 (q, $J_{C-F} = 2.6$ Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -61.31; IR (neat): 3063, 3032, 1991, 1412, 1281, 1126, 1080, 764, 748, 702 cm⁻¹; MS (EI): 276 (M⁺, 1), 292 (100), 261 (69), 152 (37), 165 (25), 115 (22). HRMS (EI): Exact mass calcd for: C₁₇H₁₅F₃ [M]⁺: 276.1126, Found: 276.1123.

The reaction afforded 2k in 51% yield as white solid, Mp 75.9-77.8 °C. ¹H
NMR (300 MHz, CDCl₃): δ 7.58-7.52 (m, 4H), 7.47-7.41 (m, 2H), 7.37-7.32 (m, 1H), 7.20 (d, J = 8.1 Hz, 2H), 2.44-2.37 (m, 1H), 1.90-1.79 (m, 1H), 1.44-1.38 (m, 1H), 1.25-1.18 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 140.64,

139.82, 138.11, 128.79, 127.32, 127.30, 126.99, 126.88, 125.88 (q, $J_{C-F} = 269.3$ Hz), 23.02 (q, $J_{C-F} = 36.4$ Hz), 19.29 (q, $J_{C-F} = 2.8$ Hz), 10.93 (q, $J_{C-F} = 2.6$ Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -66.74; IR (neat): 2376, 2315, 1528, 1420, 1342, 1265, 1134, 910, 756 cm⁻¹; MS (EI): 262 (M⁺, 100), 178 (66), 193 (43), 165 (42), 115 (18), 263 (18). HRMS (EI): Exact mass calcd for: C₁₆H₁₃F₃ [M]⁺: 262.0969, Found: 262.0973.

5. General procedure for the defluorinative carboxylation reaction.

5.1 General procedure A. (carboxylation with sacrificial anode)

The electroreduction was carried out in an undivided cell equipped with a Mg plate anode (30 mm \times 10 mm \times 0.5 mm) and a Ni plate cathode (30 mm \times 10 mm \times 0.1 mm). To a 10 mL threeneck flask, "Bu₄NCl (166.8 mg, 0.6 mmol) and substrate **1** or **2** (0.2 mmol) were added. The cell was evacuated and back-filled under a CO₂ flow (this procedure was repeated three times), and anhydrous DMF (6 mL) was added via a syringe. The electroreduction was performed at a constant current of 15 mA for 15-20 hours with a CO₂ balloon at room temperature. After the reaction, the mixture was acidified with 2 N HCl (10 mL) at 0 °C. The aqueous layer was extracted with EtOAc (3 \times 20 mL), and the combined organic layers were washed with saturated NaCl solution (2 \times 20 mL), dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography using CH₂Cl₂ as the eluent to yield the desired product.

Note: For the synthesis of **3b**, **3d** and **3f**, "Bu₄NBr was used instead of "Bu₄NCl. For the synthesis of **3m** and **3o**, an Nb plate was used as the cathode, and the reaction was carried out in NMP instead of DMF.

5.2 General procedure B. (carboxylation with non-sacrificial anode)

The electroreduction was carried out in an undivided cell using a carbon rod as the anode and $GF^{[5]}$ as the cathode. To a 10 mL three-neck flask, "Bu₄NI (221.0 mg, 0.6 mmol), Na₂S·H₂O (96.0 mg, 0.4 mmol), and NMP (6.0 mL) were added, followed by the addition of **1** or **2** (0.2 mmol). After bubbling CO₂ gas into the electrolyte for 10 minutes, the electroreduction was performed at a constant current of 15 mA for 12 hours at room temperature. The reaction mixture was acidified with

2 N HCl (10 mL). The aqueous layer was extracted with EtOAc (3×20 mL), and the combined organic layers were washed with saturated NaCl solution (2×20 mL), dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography using dichloromethane as the eluent to yield the desired product.

5.3 Characterization data of products

The reaction afforded **3a** in 81% yield as white solid, Mp 113.4-114.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.26 (m, 10H), 6.24 (dd, J = 85.2 Hz, J = 11.2 Hz, 1H), 5.19-5.07 (m, 1H), 2.97 (dd, J = 8.0 Hz, J = 1.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 180.05, 150.68 (d, $J_{C-F} = 255.0$ Hz), 141.47, 129.01, 128.03, 127.29, 107.01 (d, $J_{C-F} = 12.2$ Hz), 60.33 (d, $J_{C-F} = 2.8$ Hz), 34.07 (d, $J_{C-F} = 10.0$ Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -124.28; IR (neat): 3063, 3032, 1697, 1674, 1258, 1103, 910, 725, 694 cm⁻¹; HRMS (ESI):

Exact mass calcd for: C₁₇H₁₄O₂F [M-H]⁻: 269.0978, Found: 269.0992.

The reaction afforded **3b** in 80% yield as white solid, Mp 75.4-76.9 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.24 (m, 5H), 7.18-7.11 (m, 4H), 6.23 (dd, J = 85.2 Hz, J = 10.8 Hz, 1H), 5.17-5.06 (m, 1H), 2.99-2.87 (m, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 179.79, 150.62 (d, J_{C-F} = 254.7 Hz), 141.65, 138.45, 137.02,

128.99, 128.86, 128.75, 127.95, 127.16, 107.11 (d, $J_{C-F} = 12.1 \text{ Hz}$), 59.96 (d, $J_{C-F} = 3.1 \text{ Hz}$), 34.06 (d, $J_{C-F} = 10.0 \text{ Hz}$), 20.96; ¹⁹F NMR (376 MHz, CDCl₃): δ -124.46; IR (neat): 3055, 3032, 1697, 1512, 1265, 1103, 910, 741, 702 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₈H₁₆O₂F [M-H]⁻: 283.1134, Found: 283.1147.

The reaction afforded **3c** in 48% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.39 (m, 2H), 7.33-7.22 (m, 6H), 7.15-7.13 (m, 1H), 6.33 (dd, J = 84.8 Hz, J = 11.2 Hz, 1H), 5.23-5.12 (m, 1H), 3.14-2.92 (m, 2H), 1.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 179.63, 150.32 (d, $J_{C-F} = 255.7$ Hz), 141.06, 139.69, 137.38, 132.43, 128.63, 128.50, 127.99, 127.48, 127.05, 125.64, 107.13 (d, $J_{C-F} = 12.4$ Hz), 59.40 (d, $J_{C-F} = 3.0$ Hz), 34.33 (d, $J_{C-F} = 9.9$ Hz), 21.28; ¹⁹F NMR (376 MHz, CDCl₃): δ -124.21; IR (neat): 3063, 3024, 1697, 1489, 1450, 1265, 1103, 910, 733 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₈H₁₆O₂F [M-H]⁻: 283.1134, Found: 283.1126.

The reaction afforded **3d** in 84% yield as white solid, Mp 52-54 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.19 (m, 6H), 7.11-7.08 (m, 3H), 6.25 (dd, J = 85.2 Hz, J =11.2 Hz, 1H), 5.19-5.07 (m, 1H), 3.03-2.89 (m, 2H), 2.33 (s, 3H); ¹³C NMR (100 3d MHz, CDCl₃): δ 179.99, 150.62 (d, $J_{C-F} = 254.9$ Hz), 141.58, 141.35, 137.64, 129.54, 129.05, 128.09, 127.95, 127.91, 127.17, 126.07, 107.10 (d, $J_{C-F} = 12.1 \text{ Hz}$), 60.23 (d, $J_{C-F} = 12.1 \text{ Hz}$) 3.0 Hz), 34.09 (d, $J_{C-F} = 10.0$ Hz), 21.58; ¹⁹F NMR (376 MHz, CDCl₃): δ -124.46; IR (neat): 3032, 2924, 1697, 1497, 1265, 1103, 910, 733, 702 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₈H₁₆O₂F [M-H]⁻: 283.1134, Found: 283.1126.

The reaction afforded **3e** in 74% yield as white solid, Mp 96.4-97.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.25 (m, 8H), 7.10-7-07 (m, 1H), 6.22 (dd, J = 85.6Hz, 11.2 Hz, 1H), 5.18-5.10 (m, 1H), 2.96 (dd, *J* = 8.4 Hz, 2.0 Hz, 2H), 1.27 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 178.45, 150.72, 150.61 (d, $J_{C-F} = 254.8$

Hz), 141.53, 140.77, 129.02, 127.94, 127.64, 127.21, 126.44, 126.02, 126.07, 107.14 (d, *J*_{C-F} = 12.3 Hz), 60.44 (d, $J_{C-F} = 3.1$ Hz), 34.74, 34.16 (d, $J_{C-F} = 9.9$ Hz), 31.26; ¹⁹F NMR (376 MHz, CDCl₃): δ -124.44; IR (neat): 3063, 2963, 2631, 1697, 1498, 1265, 1103, 910, 748, 702 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₂₁H₂₂O₂F [M-H]⁻: 325.1604, Found: 325.1607.

The reaction afforded **3f** in 81% yield as white solid, Mp 159.4-161.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.17-7.11 (m, 8H), 6.25 (dd, J = 85.2 Hz, 11.2 Hz, 1H), 5.18-5.07 (m, 1H), 2.93 (dd, J = 8.0 Hz, 1.6 Hz, 2H), 2.34 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 179.78, 150.58 (d, J_{C-F} = 254.6 Hz), 138.61, 136.89, 128.85,

128.69, 107.20 (d, $J_{C-F} = 12.1$ Hz), 59.61 (d, $J_{C-F} = 3.1$ Hz), 34.06 (d, $J_{C-F} = 10.1$ Hz), 20.96; ¹⁹F NMR (376 MHz, CDCl₃): δ -124.65; IR (neat): 3024, 2924, 1991, 1697, 1512, 1265, 1103, 918, 810, 741 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₉H₁₈O₂F [M-H]⁻: 297.1291, Found: 297.1269.

The reaction afforded **3g** in 78% yield as white solid, Mp 147.5-149.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.22-7.15 (m, 3H), 7.13-7.05 (m, 5H), 6.26 (dd, J =85.2 Hz, 10.8 Hz, 1H), 5.18-5.07 (m, 1H), 2.93 (dd, J = 8.0 Hz, 2.0 Hz, 2H), 2.35 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 180.02, 150.58 (d, J_{C-F} =

254.7 Hz), 141.51, 138.53, 137.57, 136.89, 129.54, 128.91, 128.68, 127.98, 127.84, 126.06, 107.19 (d, $J_{C-F} = 12.0$ Hz), 59.88 (d, $J_{C-F} = 2.9$ Hz), 34.08 (d, $J_{C-F} = 10.1$ Hz), 21.58, 20.96; ¹⁹F NMR (376) MHz, CDCl₃): δ -124.63; IR (neat): 3024, 2924, 1697, 1512, 1265, 1103, 910, 741 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₉H₁₈O₂F [M-H]⁻: 297.1291, Found: 297.1281.

The reaction afforded **3h** in 57% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.24 (m, 3H), 7.22-7.19 (m, 2H), 7.14-7.12 (m, 1H), 7.08 (d, J =8.0 Hz, 2H), 6.31 (dd, *J* = 85.2 Hz, 11.2 Hz, 1H), 5.21-5.10 (m, 1H), 3.10-2.90 (m, 2H), 2.32 (s, 3H), 1.95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 179.82, 150.24 (d, *J*_{C-F} = 255.1 Hz), 139.85, 138.01, 137.31, 136.73, 132.35, 128.70, 128.63, 128.55, 127.36, 125.55, 107.27 (d, $J_{C-F} = 12.1$ Hz), 59.12 (d, $J_{C-F} = 3.0$ Hz), 34.04 (d, $J_{C-F} = 9.9$ Hz), 21.30, 20.92; ¹⁹F NMR (376 MHz, CDCl₃): δ -124.43; IR (neat): 3017, 2924, 1697, 1512, 1265, 1103, 910, 741 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₉H₁₈O₂F [M-H]⁻: 297.1291, Found: 297.1286.

The reaction afforded **3i** in 72% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.10 (m, 1H), 7.17-7.10 (m, 4H), 6.87-6.79 (m, 3H), 6.26 (dd, J = 85.2 Hz, 11.2 Hz, 1H), 5.18-5.07 (m, 1H), 3.74 (s, 3H), 2.92 (dd, J = 8.0Hz, 1.6 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 179.80, 159.13,

150.58 (d, *J*_{C-F} = 254.9 Hz), 143.18, 138.28, 136.96, 128.86, 128.83, 128.70, 121.43, 115.55, 112.00, 107.14 (d, $J_{C-F} = 12.2 \text{ Hz}$), 59.93 (d, $J_{C-F} = 3.1 \text{ Hz}$), 55.20, 34.05 (d, $J_{C-F} = 10.0 \text{ Hz}$), 20.95; ¹⁹F NMR (376 MHz, CDCl₃): δ -124.52; IR (neat): 3001, 2940, 1697, 1674, 1489, 1250, 1103, 910, 733 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₉H₁₈O₃F [M-H]⁻: 313.1240, Found: 313.1229.

The reaction afforded **3j** in 78% yield as white solid, Mp 136.3-138.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.23-7.19 (m, 2H), 7.10-7.06 (m, 6H), 6.26 (dd, J = 85.2Hz, 11.2 Hz, 1H), 5.18-5.07 (m, 1H), 2.95 (dd, J = 8.0 Hz, 1.6 Hz, 2H), 2.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 179.94, 150.57 (d, $J_{C-F} = 254.7$ Hz), 141.46, 137.55, 129.58, 127.99, 127.83, 126.14, 107.20 (d, $J_{C-F} = 12.0$ Hz), 60.15 (d, $J_{C-F} = 2.9$ Hz), 34.11 (d, $J_{C-F} = 10.0$ Hz), 21.59; ¹⁹F NMR (376 MHz, CDCl₃): δ -124.62; IR (neat): 3009, 2376, 1744, 1697, 1651, 1528, 1497, 1396, 1265, 1103, 918, 748 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₉H₁₈O₂F [M-H]⁻: 297.1291, Found: 297.1308.

The reaction afforded **3k** in 64% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.24-7.18 (m, 2H), 7.10-7.07 (m, 3H), 6.88-6.82 (m, 3H), 6.27 (dd, **3k** J = 85.6 Hz, 11.2 Hz, 1H), 5.20-5.08 (m, 1H), 3.76 (s, 3H), 2.97-2.93 (m, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 179.59, 159.18, 150.64 (d, *J*_{C-F} = 255.1 Hz), 143.17, 141.26, 137.64, 129.56, 128.90, 128.12, 127.92, 126.10, 121.55, 115.66, 112.08, 107.20 (d, *J*_{C-F} = 12.0 Hz), 60.23 (d, *J*_{C-F} = 3.1 Hz), 55.26, 34.16 (d, *J*_{C-F} = 10.1 Hz), 21.63; ¹⁹F NMR (376 MHz, CDCl₃): δ -124.50; IR (neat): 3009, 2955, 1697, 1605, 1489, 1258, 1103, 910, 733, 702 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₉H₁₈O₃F [M-H]⁻: 313.1240, Found: 313.1260.

The reaction afforded **31** in 89% yield as white solid, Mp 148.5-149.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.28 (m, 2H), 7.22-7.16 (m, 4H), 7.14-7.12 (m, 2H), **31** 6.14 (dd, J = 84.8 Hz, 10.8 Hz, 1H), 5.21-5.12 (m, 1H), 3.22-3.14 (m, 2H), 3.10-3.04 (m, 2H), 3.03-2.99 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 181.05, 150.14 (d, $J_{C-F} = 255.8$ Hz), 141.44, 138.56, 130.70, 127.81, 127.26, 126.37, 106.66 (d, $J_{C-F} = 11.9$ Hz), 61.70, 38.09, 35.02; ¹⁹F NMR (376 MHz, CDCl₃): δ -124.09; IR (neat): 3063, 3017, 2623, 1697, 1497, 1258, 1103, 910, 733 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₉H₁₆O₂F [M-H]⁻: 295.1134, Found: 295.1113.

The reaction afforded **3m** in 45% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.30 (m, 2H), 7.26-7.20 (m, 3H), 6.38 (dd, J = 85.2 Hz, 11.2 Hz, 1H), 5.25-5.13 (m, 1H), 2.74-2.58 (m, 2H), 2.08-2.02 (m, 1H), 1.87-1.61 (m,

5H), 1.33-1.19 (m, 2H), 1.07-0.85 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 180.70, 150.16 (d, *J*_{C-F} = 254.8 Hz), 138.73, 128.39, 127.78, 126.83, 107.24 (d, *J*_{C-F} = 11.4 Hz), 59.39 (d, *J*_{C-F} = 2.9 Hz, 1C), 43.63, 31.81 (d, *J*_{C-F} = 9.6 Hz), 29.17, 28.13, 26.98, 26.96, 26.40; ¹⁹F NMR (376 MHz, CDCl₃): δ -

124.94; IR (neat): 3063, 2932, 1697, 1450, 1265, 1103, 910, 748, 702 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₇H₂₀O₂F [M-H]⁻: 275.1447, Found: 275.1469.

HO₂C F The reaction afforded **3n** in 39% yield as colorless oil, ¹H NMR analysis^[6] revealed that the E/Z vlues is 6:1; For the mixture: ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.34 (m, 4.64H), 7.30-7.26 (m, 1.16 H), 7.30-7.27 (m, 1.16H), 6.49 (dd, *J* = 85.2 Hz, 4.8 Hz, 0.16H) (minor), 6.47 (dd, *J* = 84.8 Hz, 11.2 Hz, 1.0H) (major), 5.25-5.13 (m, 1.0H), 4.69-4.54 (m, 0.16H) (minor), 2.89-2.75 (m, 0.32H) (minor), 2.67-2.47 (m, 2.0H) (major), 1.60 (s, 0.48H) (minor), 1.58 (s, 3.0H) (major); ¹³C NMR (125 MHz, CDCl₃): δ 181.74 (minor), 181.57 (major), 150.54 (d, *J*_{C-F} = 255.4 Hz), 149.52 (d, *J*_{C-F} = 258.0 Hz) (minor), 141.81 (minor), 141.72 (major), 128.58, 128.53 (minor), 127.29, 127.22 (minor), 126.12 (minor), 126.05 (major), 106.89 (d, *J*_{C-F} = 11.1 Hz), 106.27 (d, *J*_{C-F} = 4.1 Hz) (minor), 53.41, 49.73 (d, *J*_{C-F} = 3.1 Hz), 49.53 (d, *J*_{C-F} = 2.6 Hz) (minor), 34.94 (d, *J*_{C-F} = 9.6 Hz), 32.35 (d, *J*_{C-F} = 4.5 Hz) (minor), 22.00 (minor), 21.82 (major); ¹⁹F NMR (376 MHz, CDCl₃): δ -124.68, -127.67 (minor); IR (neat): 3063, 2986, 1697, 1528, 1497, 1273, 1103, 918, 748, 702 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₂H₁₂O₂F [M-H]⁻: 207.0821, Found: 207.0810.

The reaction afforded **30** in 68% yield as white solid, Mp 126.5-128.1 °C. ¹H NMR analysis^[6] revealed that the E/Z vlues is 7:1; For the mixture: (500 MHz, CDCl₃): δ 7.37-7.27 (m, 5.7H), 6.46 (dd, J = 85.5 Hz, 5.0 Hz, 0.14H) (minor), 6.43 (dd, J = 85.0 Hz, 11.0 Hz, 1.0H) (major), 5.13-5.04 (m, 1.0H), 4.54-4.42 (m, 0.14H) (minor), 2.98-2.77 (m, 0.28H) (minor), 2.68-2.56 (m, 2.0H) (major), 2.08-1.95 (m, 2.28H), 1.38-1.29 (m, 2.28H), 1.18-1.10 (m, 2.28H), 0.91-0.88 (m, 3.42H); ¹³C NMR (125 MHz, CDCl₃): δ 181.79 (minor), 181.61 (major), 150.26 (d, $J_{C-F} = 255.1$ Hz), 149.37 (d, $J_{C-F} = 256.8$ Hz) (minor), 141.20 (minor), 141.03 (major), 128.49, 128.44 (minor), 127.17, 127.09 (minor), 126.52 (minor), 126.49 (major), 106.46 (d, $J_{C-F} = 10.5$ Hz), 105.92 (d, $J_{C-F} = 4.4$ Hz) (minor), 53.60 (d, $J_{C-F} = 3.6$ Hz), 53.28 (d, $J_{C-F} = 2.3$ Hz) (minor), 34.13 (minor), 33.50 (major), 30.56 (d, $J_{C-F} = 9.8$ Hz), 28.20 (d, $J_{C-F} = 4.5$ Hz) (minor), 26.15 (minor), 26.08 (major), 23.10 (minor), 23.06 (major), 13.91, 13.85 (minor); ¹⁹F NMR (282 MHz, CDCl₃): δ -124.71, -127.34 (minor); IR (neat): 2955, 2353, 1697, 1520, 1273, 11103, 918, 764, 748 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₅H₁₈₈O₂F [M-H]⁻: 249.1291, Found: 249.1310.

The reaction afforded **4a** in 77% yield as white solid, Mp 85.3-86.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.26 (m, 10H), 4.09-3.98 (m, 1H), 3.06 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 180.08, 156.68 (dd, *J*_{C-F} = 287.3 Hz, 283.6 Hz, 1C), 141.24, 128.89, 128.09, 127.38, 74.37 (dd, *J*_{C-F} = 25.5 Hz, 18.5 Hz), 60.09 (t, *J*_{C-F} = 2.1 Hz), 31.65 (d, *J*_{C-F} = 5.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -86.43 (d, *J* = 41.4 Hz), -89.15 (d, *J* = 41.4 Hz); IR (neat): 3063, 2932, 2639, 1744, 1705, 1497, 1265, 1011, 756, 702 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₇H₁₃O₂F₂ [M-H]⁻: 287.0884, Found: 287.0859.

The reaction afforded **4b** in 72% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.24 (m, 5H), 7.17-7.11 (m, 4H), 4.01 (dt, J = 25.6 Hz, 6.8 Hz, 1H), 3.03 (d, J = 6.0 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 180.07, 156.62 (dd, $J_{C-F} = 287.1$ Hz, 283.3 Hz), 141.53, 138.28, 137.09, 128.86, 128.80,

128.74, 128.00, 127.23, 74.50 (dd, $J_{C-F} = 25.5$ Hz, 18.4 Hz), 31.69, 20.96; ¹⁹F NMR (376 MHz, CDCl₃): δ -86.79 (d, J = 41.4 Hz), -89.26 (d, J = 41.7 Hz); IR (neat): 3024, 2924, 2639, 1744, 1697, 1512, 1258, 910, 741 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₈H₁₅O₂F₂ [M-H]⁻: 301.1040, Found: 301.1031.

The reaction afforded **4c** in 72% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.37 (m, 2H), 7.30-7.12 (m, 7H), 4.06-3.95 (m, 1H), 3.19 (dd, *J* = 14.8 Hz, 8.0 Hz, 1H), 3.05 (dd, *J* = 14.4 Hz, 7.2 Hz, 1H), 1,95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 179.71, 156.61 (dd, *J*_{C-F} = 287.0 Hz, 283.8 Hz), 140.77, 139.44, 137.34,

132.48, 128.76, 128.60, 128.10, 127.51, 127.21, 125.54, 74.47 (dd, $J_{C-F} = 25.4$ Hz, 18.1 Hz), 59.23, 31.12 (d, $J_{C-F} = 5.0$ Hz), 21.23; ¹⁹F NMR (376 MHz, CDCl₃): δ -86.43 (d, J = 41.4 Hz), -89.15 (d, J = 41.4 Hz); IR (neat): 3024, 2986, 2631, 1744, 1697, 1450, 1396, 1258, 910, 748 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₈H₁₅O₂F₂ [M-H]⁻: 301.1040, Found: 301.1021.

The reaction afforded **4d** in 60% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.21 (m, 7H), 6.86 (d, J = 8.8 Hz, 2H), 4.08-3.97 (m, 1H), 3.81 (s, 3H), 3.03 (d, J = 6.8 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 179.62, $158.67, 156.64 (dd, J_{C-F} = 287.1 Hz, 283.3 Hz), 141.59, 133.15, 130.04, 128.79,$

128.04, 127.26, 113.42, 74.44 (dd, $J_{C-F} = 25.4$ Hz, 18.3 Hz), 59.37 (t, $J_{C-F} = 2.3$ Hz), 55.23, 31.75 (d, $J_{C-F} = 4.9 \text{ Hz}$); ¹⁹F NMR (282 MHz, CDCl₃): δ -86.69 (d, J = 41.5 Hz), -89.21 (d, J = 41.5 Hz); IR (neat): 3009, 2924, 2855, 1744, 1705, 1512, 1265, 1103, 910, 748 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₈H₁₅O₃F₂ [M-H]⁻: 317.0989, Found: 317.0985.

The reaction afforded 4e in 73% yield as colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.18-7.11 (m, 8H), 4.08-3.94 (m, 1H), 3.02 (dt, J = 7.8 Hz, 1.8 Hz, 2H), 2.34 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 179.94, 156.58 (dd, J_{C-F} = 287.0 Hz, 283.0 Hz), 138.37, 137.00, 128.75, 128.72, 74.53 (dd, $J_{C-F} = 25.4$ Hz, 18.3 Hz), 59.35 (t, $J_{C-F} = 2.1$ Hz, 1C), 31.65 (d, $J_{C-F} = 5.0$ Hz), 20.96; ¹⁹F NMR (282 MHz, CDCl₃): δ -86.91 (d, J = 42.9 Hz), -89.32 (d, J = 42.6 Hz); IR (neat): 2978, 2924, 1744, 1697, 1512, 1265, 910, 741 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₉H₁₇O₂F₂ [M-H]⁻: 315.1197, Found: 315.1172.

The reaction afforded **4f** in 77% yield as white solid, Mp 147.5-149.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.27 (m, 2H), 7.22-7.17 (m, 4H), 7.15-7.12 (m, 2H), 4.11-4.02 (m, 1H), 3.23-3.15 (m, 2H), 3.13-3.06 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 180.70, 156.77 (dd, J_{C-F} = 287.5 Hz, 283.9 Hz), 141.37, 138.29, 130.75, 4f 128.11, 127.38, 126.36, 74.10 (dd, $J_{C-F} = 25.4$ Hz, 18.6 Hz), 61.48, 35.40, 35.10; ¹⁹F NMR (376) MHz, CDCl₃): δ -86.44 (d, J = 42.9 Hz), -89.63 (d, J = 46.6 Hz); IR (neat): 3024, 2940, 2631, 1744, 1697, 1450, 1396, 1265, 1211, 910, 748 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₉H₁₅O₂F₂ [M-H]⁻: 313.1040, Found: 313.1024.

The reaction afforded 4g in 45% yield as white solid, Mp 89.2-92.1 °C. ¹H CO₂H NMR (400 MHz, CDCl₃): *δ* 7.55 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 9.2 Hz, 2H), 4.20-4.09 (m, 1H), 4g 3.64 (t, J = 8.0 Hz, 1H), 2.79-2.72 (m, 1H), 2.55-2.47 (m, 1H), 2.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 178.59, 156.77 (dd, $J_{C-F} = 287.1$ Hz, 284.5 Hz), 140.83, 137.63, 137.27, 135.83, 129.54, 128.33, 127.41, 126.93, 75.31 (dd, $J_{C-F} = 24.3$ Hz, 19.9 Hz), 50.91, 25.95 (d, $J_{C-F} = 4.9$ Hz), 21.12; ¹⁹F NMR (376 MHz, CDCl₃): δ -86.89 (d, J = 42.1 Hz), -88.93 (d, J = 42.1 Hz); IR (neat): 3024, 2924, 2376, 1744, 1697, 1497, 1412, 1265, 910, 748 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₈H₁₅O₂F₂ [M-H]⁻: 301.1040, Found: 301.1071.

The reaction afforded **4h** in 55% yield as colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.29 (m, 4H), 7.27-7.20 (m, 5H), 4.25-4.11 (m, 1H), 3.67 (d, J = 7.8 Hz, 1H), 2.83-2.72 (m, 1H), 2.59-2.48 (m, 1H), 2.27 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 179.02, 156.77 (dd, $J_{C-F} = 287.3$ Hz, 284.5 Hz), 141.58, 141.20, 135.57, 135.32, 130.35, 129.73, 129.66, 127.62, 127.37, 125.78, 75.29 (dd, $J_{C-F} = 24.1$ Hz, 19.9 Hz), 51.03 (t, $J_{C-F} = 2.6$ Hz), 26.05 (d, $J_{C-F} = 4.9$ Hz), 20.45; ¹⁹F NMR (282 MHz, CDCl₃): δ -86.95 (d, J = 42.3Hz), -89.00 (d, J = 42.0 Hz); IR (neat): 3024, 2924, 2654, 1744, 1705, 1412, 1265, 910, 733 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₈H₁₅O₂F₂ [M-H]⁻: 301.1040, Found: 301.1071.

The reaction afforded **4i** in 39% yield as white solid, Mp 121.2-123.0 or C. ¹H NMR (500 MHz, CDCl₃): δ 7.53-7.50 (m, 4H), 7.35 (d, J = 8.0Hz, 2H), 6.97 (d, J = 9.0 Hz, 2H), 4.19-4.10 (m, 1H), 3.85 (s, 3H), 3.64 (t, J = 8.0 Hz, 1H), 2.79-2.72 (m, 1H), 2.54-2.48 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 178.12, 159.24, 156.72 (dd, $J_{C-F} = 286.8$ Hz, 284.4 Hz), 140.44, 135.52, 133.01, 128.32, 128.29, 128.08, 127.11, 114.22, 75.30 (dd, $J_{C-F} = 24.0$ Hz, 19.9 Hz), 55.33, 50.81, 25.93 (d, $J_{C-F} = 4.9$ Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -86.91 (d, J = 42.0 Hz), -88.96 (d, J = 42.3 Hz); IR (neat): 2924, 2855, 2315, 1744, 1713, 1273, 910, 748 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₈H₁₅O₃F₂ [M-H]⁻: 317.0989, Found: 317.1006.

The reaction afforded **4j** in 50% yield as colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.40-7.28 (m, 3H), 7.26-7.14 (m, 5H), 6.92-6.89 (m, 2H), 4.16-4.02 (m, 1H), **3.35** (dd, J = 42.9 Hz, 13.5 Hz, 2H), 2.63 (dd, J = 7.5 Hz, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 180.91, 156.70 (dd, $J_{C-F} = 287.5$ Hz, 284.5 Hz), 140.48, 136.02, 130.20, 128.55, 128.09, 127.49, 126.86, 126.70, 73.84 (dd, $J_{C-F} = 24.8$ Hz, 19.0 Hz), 55.05,

27

41.00, 27.39 (d, $J_{C-F} = 4.4$ Hz); ¹⁹F NMR (282 MHz, CDCl₃): δ -86.97 (d, J = 42.3 Hz), -89.02 (d, J = 42.3 Hz); IR (neat): 3348, 2924, 2855, 2315, 1667, 1396, 1273, 910, 748 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₈H₁₅O₂F₂ [M-H]⁻: 301.1040, Found: 301.1071.

The reaction under condition B afforded **4k** in 45% yield as white solid, Mp 97.5-98.9 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 8.0 Hz, 4H), 7.46-7.35 (m, 5H), 4.21-4.10 (m, 1H), 3.66 (t, *J* = 8.0 Hz, 1H), 2.81-2.73 (m, 1H), 2.56-2.48 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 178.38, 156.74 (dd, *J*_{C-F} = 286.9 Hz, 24.4 Hz), 140.86, 140.48, 136.15, 128.78, 128.34, 127.58, 127.43, 127.07, 75.26 (dd, *J*_{C-F} = 24.1 Hz, 19.9 Hz), 50.88, 25.94 (d, *J*_{C-F} = 4.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -86.89 (d, *J* = 42.1 Hz), -88.93 (d, *J* = 42.1 Hz); IR (neat): 3032, 2932, 1744, 1705, 1412, 1265, 910, 748 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₇H₁₃O₂F₂ [M-H]⁻: 287.0884, Found: 287.0891.

6. Product elaboration

To a solution of **3a** (0.15 mmol, 40.5 mg) in EtOAc (3.0 mL), Pd/C (5.0 mg, 10 wt%) were added with H₂ balloon at room temperature. The reaction mixture was stirred for 5 h at room temperature and monitored by TLC until full conversion of **3a**. Then the reaction mixture was diluted with EtOAc, filtered, and dried with Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography using CH₂Cl₂/MeOH (20:1, v/v) as the eluent to afford **5** in 39.5 mg with 97% yield as white solid. Mp 122.1-124.4 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.34-7.26 (m, 10H), 4.37 (dt, *J* = 47.5 Hz, 6.0 Hz, 2H), 2.51-2.48 (m, 2H), 1.53-1.45 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 179.83, 142.01, 128.95, 128.04, 127.12, 84.10 (d, *J*_{C-F} = 164.3 Hz), 59.84, 33.74 (d, *J*_{C-F} = 4.9 Hz), 26.55 (d, *J*_{C-F} = 19.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -218.61; IR (neat): 3009, 2970, 2631, 1697, 1497, 1273, 764, 748 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₇H₁₆O₂F [M-H]⁻: 271.1134, Found: 271.1136.

To a solution of **3a** (0.15 mmol, 40.5 mg) in Et₂O (2 mL), LiAlH₄ (6.8 mg, 0.18 mmol, 1.0 equiv) were added at 0 °C, then the resulting mixture was stirred for 0.5 h at 0 °C. After the full conversion of **3a** monitored by TLC analysis, the reaction was quenched with H₂O and extracted with Et₂O (10 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography using PE/EtOAc (8:1, v/v) as eluent to afford **6** in 35.0 mg with 83% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.29 (m, 4H), 7.26-7.21 (m, 2H), 7.17-7.14 (m, 4H), 6.45 (dd, *J* = 85.6 Hz, 11.2 Hz, 1H), 5.01-4.90 (m, 1H), 4.14 (d, *J* = 6.8 Hz, 2H), 2.80 (dt, *J* = 8.0 Hz, 1.6 Hz, 2H), 1.05 (t, *J* = 6.8 Hz, 1H); ¹³C NMR (100 MHz,

CDCl₃): δ 150.14 (d, $J_{C-F} = 254.7$ Hz), 144.78, 128.33, 128.05, 126.58, 107.20 (d, $J_{C-F} = 10.9$ Hz), 67.36, 51.46 (d, $J_{C-F} = 2.8$ Hz), 31.78 (d, $J_{C-F} = 9.1$ Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -125.00; IR (neat): 3395, 3024, 2886, 1674, 1497, 1273, 1258, 1096, 748, 702 cm⁻¹; MS (EI): 256 (M⁺, 0.1), 197 (100), 105 (68), 91 (47), 165 (20), 147 (20). HRMS (EI): Exact mass calcd for: C₁₇H₁₇F₇O [M]⁺:256.1263, Found: 256.1267.

To a solution of **3a** (0.15 mmol, 40.5 mg) in CH₂Cl₂ (2.0 mL), piperonyl alcohol (0.3 mmol, 27.0 mg), *N*,*N*-diisopropylcarbodiimide (DIC, 0.20 mmol, 24.6 mg), and 4-dimethylaminopyridine (DMAP, 0.03 mmol, 6.6 mg) were added at room temperature. The resulting mixture was warmed to 55 °C and stirred until complete conversion of **3a** by TLC analysis. The solvent was then removed under reduced pressure, and the residue was purified by flash column chromatography using a elution (PE/EtOAc = 20/1 to 10/1, v/v). The desired product **7** was obtained as a colorless oil with a yield of 44% (26.9 mg). ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.19 (m, 10H), 6.69 (d, *J* = 8.0 Hz, 1H), 6.64-6.61 (m, 1H), 6.57 (d, *J* = 2.0 Hz, 1H), 6.16 (dd, *J* = 85.2 Hz, *J* = 11.2 Hz, 1H), 5.92 (s, 2H), 5.15-5.05 (m, 1H), 5.02 (s, 2H), 3.03-2.89 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 173.30, 150.51 (d, *J*_{C-F} = 254.9 Hz), 147.61, 147.46, 141.83, 129.22, 128.96, 127.90, 127.01, 121.93, 108.71, 108.04, 107.18 (d, *J*_{C-F} = 11.9 Hz), 101.05, 66.94, 60.43 (d, *J*_{C-F} = 3.1 Hz), 34.22 (d, *J*_{C-F} = 9.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -124.57; IR (neat): 3063, 2893, 2353, 1728, 1674, 1497, 1443, 1103, 1042, 918, 810, 764, 702 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₂₅H₂₁O₄FNa [M+Na]⁺: 427.1310, Found: 427.1316.

To a 10 mL flask were added **3a** (0.15 mmol, 40.5 mg), Et2O (2.0 mL) and MeOH (0.5 mL), and the hexane solution of TMSCHN2 (0.15 mL, 2 mol/L, 0.3 mmol) was added at 0 °C. The mixture was stirred at that temperature till full conversion of **3a**. Then the solvent was removed under reduced pressure, and the residue was purified by column chromatography using PE as eluent to afford **8** in 40.5 mg with 95% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.18 (m, 10H), 6.33-6.08 (m, 1H), 5.16-5.05 (m, 1H), 3.67 (s, 3H), 2.94 (dt, *J* = 8.0 Hz, 1.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 174.14, 150.50 (d, *J*_{C-F} = 254.4 Hz), 142.01, 128.88, 127.95, 127.04, 107.30 (d, *J*_{C-F} = 12.0 Hz), 60.43 (d, *J*_{C-F} = 3.1 Hz), 52.44, 34.35 (d, *J*_{C-F} = 10.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -124.66; IR (neat): 3063, 1728, 1674, 1497, 1258, 1227, 1103, 764, 748, 702 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₁₈H₁₇O₂FNa [M+Na]⁺: 307.1099, Found: 307.1105.

To a solution of **3a** (0.15 mmol, 40.5 mg) in DMF (2 mL), *sec*-butylamine (0.18 mmol, 13.2 mg, 1.2 equivs), *o*-(7-Azabenzotriazol-1-yl)-*N*,*N*,*N'*,*N'*-tramethyluronium hexafluorophosphate (HATU, 0.3 mmol, 114.0 mg) and N,N-Diisopropylethylamine (DIPEA, 0.45 mmol, 58.0 mg) were added at room temperature. The resulting mixture was stirred for 12 h at room temperature till full conversion of **3a**. Then the reaction was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography using PE/EtOAc (10:1, v/v) as eluent to afford **9** in 44.5 mg with 91% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.24 (m, 10H), 6.23 (dd, *J* = 85.6 Hz, 11.2 Hz, 1H), 5.34-5.23 (m, 1H), 5.16 (d, *J* = 8.4 Hz, 1H), 3.93-3.83 (m, 1H), 2.99 (d, *J* = 8.0 Hz, 2H), 1.38-1.17 (m, 2H), 0.98 (d, *J* = 6.4 Hz, 3H), 0.67 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.92, 150.25 (d, *J*_{C-F} = 254.0 Hz), 142.57, 142.31, 128.93, 128.87, 128.35,

128.30, 127.10, 127.08, 108.19 (d, $J_{C-F} = 11.7 \text{ Hz}$), 60.79 (d, $J_{C-F} = 2.9 \text{ Hz}$), 47.00, 34.71 (d, $J_{C-F} = 9.9 \text{ Hz}$), 29.25, 20.08, 10.03; ¹⁹F NMR (376 MHz, CDCl₃): δ -125.50; IR (neat): 3024, 2970, 1667, 1651, 1512, 1450, 1273, 1103, 918, 764, 748, 702 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₂₁H₂₄ONFNa [M+Na]⁺: 348.1739, Found: 348.1734.

To a solution of **3a** (0.15 mmol, 40.5 mg) in CH₂Cl₂ (2 mL), then *L*-Tryptophan ester (0.18 mmol, 39.2 mg, 1.2 equivs), HATU (0.3 mmol, 114.0 mg,) and 4-Methylmorpholine (NMM, 0.45 mmol, 45.5 mg) were added at room temperature. The resulting mixture was stirred for 12 h at room temperature till full conversion of **3a**. Then the reaction was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography using PE/EtOAc (10:1 to 2:1, v/v) as eluent to afford 10 in 60.5 mg with 86% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (s, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.26-7.23 (m, 3H), 7.21-7.15 (m, 6H), 7.08-7.02 (m, 3H), 6.46 (d, J = 2.4 Hz, 1H), 6.19 (dd, J = 85.6 Hz, 10.8 Hz, 1H), 5.98 (d, J = 7.6 Hz, 1H), 5.27-5.15 (m, 1H), 4.89 (dd, J = 12.8 Hz, 6.4 Hz, 1H), 3.65 (s, 3H), 3.19 (t, J = 4.8 Hz, 2H), 2.96-2.92 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 173.41, 172.16, 150.28 (d, J_{C-F} = 253.9 Hz), 142.21, 141.84, 135.99, 129.00, 128.88, 128.25, 128.22, 127.21, 127.10, 126.95, 122.44, 122.28, 119.71, 118.47, 111.08, 109.70, 108.01 (d, $J_{C-F} = 12.0 \text{ Hz}$), 60.53 (d, $J_{C-F} = 2.8 \text{ Hz}$), 52.82, 52.29, 34.60 (d, $J_{C-F} = 10.0$ Hz), 27.14; ¹⁹F NMR (376 MHz, CDCl₃): δ -125.23; IR (neat): 3009, 1667, 1450, 1273, 1258, 1196, 1103, 764, 748 cm⁻¹; HRMS (ESI): Exact mass calcd for: C₂₉H₂₇O₃N₂FNa [M+Na]⁺: 493.1895, Found: 493.1898.

7. X-ray crystallographic data

Single crystals of **3a** were obtained by slow diffusion of the solution of **3a** in PE/EtOAc at room temperature. Data intensity of **3a** (CCDC 2337631) was collected using a 'Bruker APEX-II CCD' diffractometer at 150.00(10) K. Data collection and reduction were done by using Olex2 and the structure was solved with the ShelXS structure solution program using direct methods and refined by full-matrix least-squares on F2 with anisotropic displacement parameters for non-H atoms using SHELX-97. Hydrogen atoms were added at their geometrically ideal positions and refined isotropically. Crystal data for C₁₇H₁₅O₂F (*M*=270.29 g/mol): orthorhombic, space group Pccn (no. 33), *a* = 13.7828(3) Å, *b* = 27.4622(6) Å, *c* = 7.5425(2) Å, *V* = 2854.88(12) Å³, *Z* = 8, *T* = 224.00 K, μ (Cu K α) = 0.472 mm⁻¹, *Dcalc* = 1.258 g/cm³, 24007 reflections measured (2.800° ≤ 2 Θ ≤ 55.020°), 2715 unique (*R*_{int} = 0.0685) which were used in all calculations. The final *R*₁ was 0.0699 (I > 2 σ (I)) and *wR*₂ was 0.1641 (all data).

X-ray of 3a

Table S5 Crystal data and structure refinement for 3a.

Identification code	3a
Empirical formula	$C_{17}H_{15}FO_2$
Formula weight	270.29
Temperature/K	224.00
Wavelength	1.34139 Å
Crystal system	Orthorhombic
Space group	Pccn

a/ Å	a = 13.7828(3)
b/ Å	b = 27.4622(6)
b/ Å	c = 7.5425(2)
Volume/Å ³	2854.88(12)
Z	8
$\rho_{calc}g/cm^3$	1.258
μ/mm^{-1}	0.472
F(000)	1136
Crystal size/mm ³	$0.17 \times 0.17 \times 0.05$
2Θ range for data collection/°	2.800 to 55.020
Index ranges	-16≤h≤16, -33≤k≤29, -9≤l≤8
Reflections collected	26007
Independent reflections	2715 [$R_{int} = 0.0685$]
Completeness to theta = 53.594°	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7508 and 0.6146
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2715/0/182
Goodness-of-fit on F ²	1.250
Final R indices [I>2sigma(I)]	$R_1 = 0.0699, wR_2 = 0.1622$
R indices (all data)	$R_1 = 0.0748, wR_2 = 0.1641$
Extinction coefficient	0.0034(3)

Table S6 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 3a. Ueq is defined as 1/3 of the trace of the orthogonalised UIJ tensor.

Atom	Х	У	Z	U(eq)
F1	6441(2)	4774(1)	-1897(3)	74(1)

01	4362(2)	4471(1)	4617(3)	40(1)
O2	5880(2)	4672(1)	3896(3)	41(1)
C1	6583(3)	4528(1)	-349(5)	50(1)
C2	6013(2)	4173(1)	122(5)	37(1)
C3	6188(2)	3883(1)	1772(4)	32(1)
C4	5344(2)	3870(1)	3130(4)	26(1)
C5	5180(2)	4378(1)	3898(4)	28(1)
C6	5607(2)	3555(1)	4760(4)	28(1)
C7	6530(2)	3363(1)	5025(4)	32(1)
C8	6713(2)	3064(1)	6474(5)	40(1)
C9	5999(3)	2955(1)	7683(5)	42(1)
C10	5083(3)	3156(1)	7459(5)	43(1)
C11	4894(2)	3451(1)	6011(4)	37(1)
C12	4439(2)	3666(1)	2210(4)	29(1)
C13	4308(2)	3164(1)	2116(4)	35(1)
C14	3527(3)	2964(1)	1205(5)	44(1)
C15	2878(3)	3263(2)	354(5)	48(1)
C16	2995(3)	3758(2)	412(5)	49(1)
C17	3779(2)	3962(1)	1337(5)	38(1)

Table S7 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3a. The Anisotropic displacementfactor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
F1	98(2)	60(2)	64(2)	30(1)	17(2)	4(1)
01	28(1)	36(1)	56(2)	-12(1)	3(1)	4(1)
02	37(1)	29(1)	57(2)	-12(1)	10(1)	-7(1)
C1	63(2)	41(2)	47(2)	11(2)	4(2)	0(2)
C2	37(2)	37(2)	37(2)	-1(1)	6(2)	4(1)
C3	31(2)	26(1)	37(2)	-3(1)	6(1)	3(1)
C4	24(1)	24(1)	32(2)	-1(1)	0(1)	0(1)
-----	-------	-------	-------	-------	--------	--------
C5	24(1)	26(1)	34(2)	1(1)	0(1)	2(1)
C6	31(2)	22(1)	31(2)	-4(1)	-3(1)	-1(1)
C7	30(2)	28(2)	39(2)	-4(1)	-4(1)	-1(1)
C8	40(2)	31(2)	48(2)	-2(2)	-15(2)	1(1)
C9	56(2)	32(2)	39(2)	5(2)	-12(2)	-5(2)
C10	49(2)	44(2)	36(2)	4(2)	5(2)	-4(2)
C11	35(2)	39(2)	37(2)	-1(1)	3(1)	2(1)
C12	26(1)	31(2)	31(2)	-3(1)	0(1)	-2(1)
C13	38(2)	32(2)	34(2)	-2(1)	3(1)	-6(1)
C14	47(2)	44(2)	39(2)	-6(2)	4(2)	-20(2)
C15	37(2)	68(2)	40(2)	-8(2)	1(2)	-18(2)
C16	36(2)	68(2)	43(2)	2(2)	-9(2)	2(2)
C17	35(2)	38(2)	42(2)	0(2)	-5(2)	0(1)

Table S8 Bond Lengths for 3a.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F1	C1	1.362(4)	C8	H8	0.9400
O1	C5	1.276(3)	C8	С9	1.375(5)
O2	H2	0.8300	С9	Н9	0.9400
O2	C5	1.257(3)	С9	C10	1.388(5)
C1	H1	0.9400	C10	H10	0.9400
C1	C2	1.301(5)	C10	C11	1.386(5)
C2	H2A	0.9400	C11	H11	0.9400
C2	C3	1.497(4)	C12	C13	1.392(4)
C3	H3A	0.9800	C12	C17	1.387(4)
C3	H3B	0.9800	C13	H13	0.9400
C3	C4	1.551(4)	C13	C14	1.389(5)
C4	C5	1.527(4)	C14	H14	0.9400

C4	C6	1.547(4)	C14	C15	1.372(5)
C4	C12	1.534(4)	C15	H15	0.9400
C6	C7	1.391(4)	C15	C16	1.371(5)
C6	C11	1.393(4)	C16	H16	0.9400
C7	H7	0.9400	C16	C17	1.402(5)
C7	C8	1.389(4)	C17	H17	0.9400

Table S9 Bond Angles for 3a.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C5	O2	H2	109.5	C9	C8	C7	121.4(3)
F1	C1	H1	119.4	C9	C8	H8	119.3
C2	C1	F1	121.2(4)	C8	С9	Н9	120.5
C2	C1	H1	119.4	C8	С9	C10	118.9(3)
C1	C2	H2A	119	C10	С9	H9	120.5
C1	C2	C3	121.9(3)	С9	C10	H10	120
C3	C2	H2A	119	C11	C10	C9	120.0(3)
C2	C3	H3A	108.3	C11	C10	H10	120
C2	C3	H3B	108.3	C6	C11	H11	119.3
C2	C3	C4	116.1(2)	C10	C11	C6	121.4(3)
H3A	C3	H3B	107.4	C10	C11	H11	119.3
C4	C3	H3A	108.3	C13	C12	C4	119.5(3)
C4	C3	H3B	108.3	C17	C12	C4	122.2(3)
C5	C4	C3	109.9(2)	C17	C12	C13	118.1(3)
C5	C4	C6	104.2(2)	C12	C13	H13	119.5
C5	C4	C12	112.7(2)	C14	C13	C12	121.1(3)
C6	C4	C3	111.2(2)	C14	C13	H13	119.5
C12	C4	C3	108.6(2)	C13	C14	H14	120
C12	C4	C6	110.2(2)	C15	C14	C13	120.1(3)
01	C5	C4	118.3(2)	C15	C14	H14	120

O2	C5	O1	123.5(3)	C14	C15	H15	120
02	C5	C4	118.1(2)	C16	C15	C14	120.0(3)
C7	C6	C4	122.8(3)	C16	C15	H15	120
C7	C6	C11	118.0(3)	C15	C16	H16	119.9
C11	C6	C4	119.2(3)	C15	C16	C17	120.2(3)
C6	C7	H7	119.9	C17	C16	H16	119.9
C8	C7	C6	120.2(3)	C12	C17	C16	120.5(3)
C8	C7	H7	119.9	C12	C17	H17	119.8
C7	C8	H8	119.3	C16	C17	H17	119.8

Table S10 Torsion Angles for 3a.

А	В	С	D	Angle/°	А	В	С	D	Angle/°
F1	C1	C2	C3	176.9(3)	C6	C4	C5	02	94.3(3)
C1	C2	C3	C4	123.2(4)	C6	C4	C12	C13	-36.9(4)
C2	C3	C4	C5	-65.9(3)	C6	C4	C12	C17	148.3(3)
C2	C3	C4	C6	179.3(2)	C6	C7	C8	С9	-0.6(5)
C2	C3	C4	C12	57.9(3)	C7	C6	C11	C10	-1.5(5)
C3	C4	C5	01	159.9(3)	C7	C8	C9	C10	-1.1(5)
C3	C4	C5	O2	-24.9(4)	C8	С9	C10	C11	1.5(5)
C3	C4	C6	C7	7.1(4)	C9	C10	C11	C6	-0.2(5)
C3	C4	C6	C11	-171.9(3)	C11	C6	C7	C8	1.9(4)
C3	C4	C12	C13	85.1(3)	C12	C4	C5	01	38.5(4)
C3	C4	C12	C17	-89.7(3)	C12	C4	C5	02	-146.2(3)
C4	C6	C7	C8	-177.1(3)	C12	C4	C6	C7	127.6(3)
C4	C6	C11	C10	177.6(3)	C12	C4	C6	C11	-51.4(3)
C4	C12	C13	C14	-176.3(3)	C12	C13	C14	C15	1.0(5)
C4	C12	C17	C16	175.8(3)	C13	C12	C17	C16	0.9(5)
C5	C4	C6	C7	-111.3(3)	C13	C14	C15	C16	-0.5(5)
C5	C4	C6	C11	69.7(3)	C14	C15	C16	C17	0.1(6)

C5	C4	C12	C13	-152.8(3)	C15	C16	C17	C12	-0.4(5)
C5	C4	C12	C17	32.4(4)	C17	C12	C13	C14	-1.2(5)
C6	C4	C5	01	-80.9(3)					

Table	S11	Hydrogen	Atom	Coordinates	(Å×10 ⁴)	and	Isotropic	Displacement	Parameters
(Ų×1	0 ³) fo	or 3a.							

Atom	Х	У	Z	U(eq)
H2	5687	4946	4199	61
H1	7103	4617	391	60
H2A	5476	4097	-594	44
H3A	6763	4015	2366	38
H3B	6339	3548	1426	38
H7	7030	3435	4221	39
H8	7338	2934	6630	47
H9	6130	2748	8647	51
H10	4591	3091	8290	52
H11	4270	3584	5870	44
H13	4754	2956	2678	42
H14	3443	2625	1171	52
H15	2352	3127	-269	58
H16	2549	3962	-169	59
H17	3857	4302	1367	46

8. Mechanistic studies

8.1 Investigation of the formation of CO2 radical anion

The electroreduction was carried out under the standard reaction conditions. After that, the reaction mixture was acidized with HCl aqueous (2 N). The aqueous layer was collected and concentrated in vacuo, and 2.0 mL D₂O was added. The aqueous phase was analyzed by crude ¹H NMR and ¹³C NMR. The formic acid and oxalic acid were detected.^[4] Therefore, the CO₂ radical anion might be generated through single electron transfer reduction at the cathode.

Figure S1. ¹H NMR spectrum of the aqueous

Figure S2. ¹³C NMR spectrum of the aqueous

8.2 Trapping of carbanion intermediates with deuterium water

To a 10 mL three-neck flask containing a stir bar was added "Bu₄NCl (166.8 mg, 0.6 mmol, 0.1 M), D₂O (10 equivs), followed by the addition of **2g** (0.2 mmol). Then the flask was installed with Mg-plate (30 mm x 10 mm x 0.5 mm) as anode and Ni-plate (30 mm x 10 mm x 0.5 mm) as cathode. Then the cell was evacuated and back-filled under N₂ flow (this procedure was repeated three times), and anhydrous DMF (6 mL) was added via a syringe. The electroreduction was performed at 15 mA of constant current for 12 h with N₂ balloon at room temperature. After that, the reaction mixture was transferred to a 50 mL Erlenmeyer flask and acidized with HCl (2 N, 10 mL) at 0 °C. The aqueous layer extracted with EtOAc (3 x 20 mL) and the combined organics were washed with saturated salt solution (2 x 20 mL), dried over Na₂SO₄, and concentrated in vacuo. The crude product

was purified by column chromatography using dichloromethane as the eluent to afford the desired product **2g'**. These results indicate that the carbanion intermediate could be formed in this electrochemical system. ¹H NMR (300 MHz, CDCl₃): δ 7.53-7.48 (m, 4H), 7.25-7.23 (m, 4H), 4.27-4.21 (m, 1H), 2.72 (t, *J* = 9.0 Hz, 1.6H), 2.40 (s, 3H), 2.36-2.30 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 156.32 (dd, *J*_{C-F} = 285.4 Hz, 283.3 Hz), 139.71, 139.02, 138.08, 136.84, 129.44, 128.76, 126.95, 126.82, 50.88, 35.28 (t, *J*_{C-F} = 2.3 Hz), 23.96 (dd, *J*_{C-F} = 9.4 Hz, 4.3 Hz), 21.07; ¹⁹F NMR (282 MHz, CDCl₃): δ -88.89 (d, *J* = 47.1 Hz), -90.89 (dd, *J* = 47.1 Hz, 2.3 Hz); HRMS (EI): Exact mass calcd for: C₁₇H₁₅DF₂ [M]⁺: 295.1283, Found: 295.1278.

8.3 Cyclic voltammetry studies

The cyclic voltammetry was carried out with a Shanghai Chenhua CHI760E workstation. A glassy-carbon electrode (3mm-diameter, disc-electrode) was used as the working electrode, a Pt plate was used as the auxiliary electrode and SCE (saturated calomel electrode) as the reference electrode. All of the samples should be bubbled with N₂ for 5 min before testing except the cases with CO₂. The measurements were carried out at a scan rate of 100 mV s⁻¹ in DMF/ⁿBu₄NCl (0.1 M).

Figure S3. Cyclic voltammetry (DMF, 0.1M ^{*n*}Bu₄NCl, 100 mVs⁻¹) using glassy carbon as the working electrode. Cyclic voltammograms of CO₂, **1a** (0.02 mmol), and their mixtures.

Figure S4. Cyclic voltammetry (DMF, 0.1M ^{*n*}Bu₄NCl, 100 mVs⁻¹) using glassy carbon as the working electrode. Cyclic voltammograms of CO₂, **2a** (0.02 mmol), and their mixtures.

9. References

[1] Y.-Q. Ning, X.-Y. Zhang, Y. Gai, Y.-Q. Dong, P. Sivaguru, Y.-Y. Wang, B. R. P. Reddy, G. Zanoni and X.-H. Bi, *Angew. Chem. Int. Ed.* 2020, **59**, 6473-6481.

[2] X.-Y. Zhang, Z.-H. Liu, X.-Y. Yang, Y.-Q. Dong, E. Anderson, M. Virelli, G. Zanoni and X.-H. Bi, *Nat. Commun.* 2019, 10, 284.

[3] K. Fuchibe, R. Oki, H. Hatta and J. Ichikawa, Chem. Eur. J. 2018, 24, 17932-17935.

[4] Y. Wang, S. Tang, G. Yang, S. Wang, D. Ma and Y. Qiu, *Angew. Chem. Int. Ed.*, 2022, **61**, e202207746.

- [5] a) X. Liu, R.-Y. Liu, J.-X. Qiu, X. Cheng, G.-G. Li, Angew. Chem. Int. Ed. 2020, 59, 13962-
- 13967; b) J. Sheng, N. Wu, X. Liu, F. Liu, S. Liu, W.-J. Ding, C. Liu, X. Cheng, Chin. J. Org. Chem.
- 2020, 40, 3873-3880; c) L. F. Castanñeda, F. C. Walsh, J. L. Nava a, C. P. de León.
- [6] a) I. Franzoni, L. Guénée, C. Mazet, Chem. Sci., 2013, 4, 2619-2624; b) F. Li, Y.-C. Luo, X.-J.
- Zhu, Y. Ye, Q.-J. Yuan, W.-B. Zhang, Chem. Eur. J. 2023, 29, e202300027.

WHM-WC-68-2.11.fid

-107.606 -108.360 -113.616 -114.369

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

FEN-FI-17-400-H.11.fid

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

FEN-FI-42-400-H.11.fid

FEN-FI-43.10.fid

FEN-FI-43.11.fid

JMM-JB-130-400-H.10.fid

_r -107.504	/107.551	-108.257	~ -108.303	~ -113.536	~ -113.567	-114.289	L -114.320
_	_	-	ï	Y	~		

JMM-JB-130-400-H.11.fid

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

FEN-FI-72-H-400.10.fid

~ -107.452
 ~ -108.204
 ~ -113.620
 ~ -114.372

FEN-FI-72-H-400.11.fid

f1 (ppm)

FEN-FI-87.11.fid

-108.064
-108.819
-113.961
-114.716

JMM-JB-112-400-H-2.11.fid

WHM-WC-89-H.10.fid

WHM-WC-89.11.fid

FEN-FJ-91-300-H.10.fid

-107.343
-108.345
-113.437
-114.439

FEN-FJ-91-300-H.11.fid

JMM-JB-126-400-H-2.10.fid

JMM-JB-126-400-H-2.11.fid

JMM-JB-110-400-H-re.12.fid

WHM-WC-69-2.10.fid

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
f1 (ppm)																						

FEN-FI-18-400-H.11.fid

Ö f1 (ppm)

CF₂H

¹⁹F NMR of compound **1o** (376 MHz, CDCl₃)

— -61.445

FEN-FF-112-300.11.fid

 19 F NMR of compound **2a** (282 MHz, CDCl₃)

-61.368 < -61.421

FEN-FJ-34-400-H.11.fid

¹⁹F NMR of compound **2b** (376 MHz, CDCl₃)

— -61.330

FEN-FH-6-400-H.11.fid

¹⁹F NMR of compound **2c** (376 MHz, CDCl₃)

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											f1 (ppm)										

— -61.333

FEN-FG-64-1.11.fid 300M

CF₃

 $^{19}\mathsf{F}$ NMR of compound **2e** (282 MHz, CDCl_3)

FEN-FG-90-400-H-2.20.fid

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											f1 (ppm)										

— -66.725 FEN-FE-31-300.11.fid CF₃ ¹⁹F NMR of compound **2g** (282 MHz, $CDCI_3$)

FEN-FG-100.11.fid

— -66.716

¹⁹F NMR of compound **2h** (282 MHz, CDCl₃)

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											f1 (ppm)										

		•	•																			
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											f1 (ppm)										

				'	· · ·					- I I					
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
100	110	100	120		100	00	00	10	00	00	10	00	20	10	Ŭ
	f1 (ppm)														
								· · · · · /							

FEN-FE-80-300-H-2.12.fid

 $^{19}\mathsf{F}$ NMR of compound $\mathbf{2k}$ (282 MHz, CDCl_3)

FEN-FI-98-400-H.10.fid

FEN-FI-98-400-H.11.fid

FEN-FJ-66-400-H.11.fid

¹⁹F NMR of compound **3b** (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

FEN-FI-44-400-1.11.fid

HO₂C

 $^{19}\mathsf{F}$ NMR of compound **3c** (376 MHz, CDCl_3)

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	
											f1 (ppm)											

131

f1 (ppm)

4.0

4.5

1.97-

3.0

3.5

2.5

2.0

1.5

1.0

0.5

0.0

−66.0

5.0

5.5

9

6.0

6.5

7.0

7.5

8.0

8.5

FEN-FJ-66-400-H.21.fid

FEN-FI-138-F.11.fid

HO ₂ C F	
¹⁹ F NMR of compound 3e (376 MHz, CDCI ₃)	
	-130 -140 -150 -160 -170 -180 -190 -200 -210

f1 (ppm)

FEN-FI-82-400-H-2.10.fid

0.003

FEN-FI-82-400-H-2.11.fid

— -124.654

HO₂C

¹⁹F NMR of compound **3f** (376 MHz, CDCl₃)

FEN-FI-90-F.11.fid

FEN-FI-110-H.21.fid

	· ·	· ·								·	· · ·	· .										
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											f1 (ppm)										

FEN-FI-98-H.11.fid

FEN-FI-122-H.11.fid

— -124.621

HO₂C ¹⁹F NMR of compound **3j** (376 MHz, CDCl₃) 10 -10 -20 -60 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -30 -40 -50 -70 -80 -90 ò

f1 (ppm)

FEN-FI-132-A.11.fid

FEN-FI-104-H.11.fid

FEN-FJ-30-Nb-H-3.11.fid

FEN-FI-26-400-H.10.fid

— -124.682 — -127.671 FEN-FI-26-400-H.11.fid HO₂C $^{19}\mathsf{F}$ NMR of compound 3n (376 MHz, $\mathsf{CDCI}_3)$ 1.00-10 -10 -20 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -30 -40 -50 -60 -70 -80 ò -90 f1 (ppm)

FEN-FJ-71-500-H.10.fid

FEN-FJ-71-300.11.fid

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											f1 (ppm)										

		1 1				1 1					1 1		' '								1		
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
210	200	100	100	170	100	100	140	100	120	110	100	00	00	10	00	00	40	00	20	10	U	10	
											f1 (ppm))											

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

FEN-FG-70-300-F.11.fid

¹⁹F NMR of compound **4e** (282 MHz, CDCl₃)

∠ -86.379 ∠ -86.493 ⊤ -89.564

FEN-FG-112-400-H.11.fid

 $^{19}\mathsf{F}$ NMR of compound $\mathbf{4f}$ (376 MHz, $\mathsf{CDCI}_3)$

			· · · · ·	'	'				·													
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											f1 (ppm)										-	

FEN-FG-104-300-H-4.10.fid

FEN-FH-48-300-H.11.fid

— 0.001

FEN-FJ-130-H-2.10.fid

- -218.608

FEN-FI-130-F.11.fid

Ο HO `F Ph Ph $^{19}\mathsf{F}$ NMR of compound **5** (376 MHz, CDCl_3)

									1										1
-205	-206	-207	-208	-209	-210	-211	-212	-213	-214	-215	-216	-217	-218	-219	-220	-221	-222	-223	-224
									f1 (j	opm)									

FEN-FI-118-H-400-2.11.fid

— -124.993

HO F Ph Ph

 ^{19}F NMR of compound $\boldsymbol{6}$ (376 MHz, CDCl_3)

FEN-FJ-84-400-H.10.fid

FEN-FJ-84-400-F.11.fid

Ö Ό Ph Ph

¹⁹F NMR of compound **7** (376 MHz, CDCl₃)

FEN-FJ-53-H-4.11.fid

— -124.656

ö MeO `F Ph Ph ¹⁹F NMR of compound **8** (376 MHz, CDCl₃)

FEN-FJ-59-400-H-2.11.fid

N H Ph Ph

¹⁹F NMR of compound **9** (376 MHz, CDCl₃)

FEN-FJ-21-400-1.10.fid

FEN-FJ-21-400-1.11.fid

- -125.230

3-indolyl- \cap MeO、 `N´ H Ph Ph Ö

¹⁹F NMR of compound **10** (376 MHz, $CDCI_3$)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

