Table of Contents

1.	Ge	neral information	3
2.	Sul	ostrates preparation	4
	2.1	Involved substrates	4
	2.2	Synthesis of 1a–1v, 1ab, 1ac, 1ad, 1ae and D_5 -1a	6
	2.3	Synthesis of 1w	6
	2.4	Synthesis of 1x, 1y, 1z	7
	2.5	Synthesis of 1aa	7
	2.6	Synthesis of 4o	8
	2.7	General Procedure for Synthesis of PPO	8
	2.8	General Procedure for Synthesis of MPO	8
	2.9	General Procedure for Synthesis of 2,2'-Diperoxyphenic Acid (DPP/	4) . 9
3.	Ge	neral experimental procedure	10
	3.1	General experimental procedure for synthesis of 10-phenanthrenols	s .10
	3.2	General experimental procedure for synthesis of 1-Naphthols	10
4.	Rea	action optimization	11
	Table	S1 Optimization of the peroxides ^[a]	11
	Table	S2 Optimization of the halogen sources ^[a]	12
	Table	S3 Optimization of the solvent ^[a]	13
	Table cycloa	S5 Optimization of the reaction conditions of the intramolecular aromatization for the synthesis of 1-Naphthols ^[a]	15
	Table	S6 Optimization of the light source of the intramolecular cycloaromatizati	on
	for the	e synthesis of 1-Naphthols ^a	16
5.	Me	chanistic studies	17
	5.1 in	situ NMR experiment and radical scavenger experiments	17
	5.2 B	DE experiments	19
	5.3 Li	ght off/on experiment	20
	5.4 K	E experiment	21
	5.5 TI	ne DFT calculation of potential energy surface	21
	5.6 P	olarity matching	25
	5.7 B	DFE evaluations	25
	5.8 A	synchronicity factor	27

6.	The characterization of products	28
7.	Cartesian coordinates of optimized structure	122
8.	References	146

1. General information

All reactions were set up using standard Schlenk techniques and carried out under nitrogen atmosphere with anhydrous solvents, unless otherwise noted. Anhydrous tetrahydrofuran was freshly distilled from sodium/benzophenone. All reagents were purchased from commercial suppliers and used without further purification otherwise noted. Flash chromatography was carried out with silica gel (200 to 300 mesh). Reactions were monitored by thin-layer chromatography (TLC) and carried out on silica gel GF254 plates (0.2± 0.03 mm) using UV light (254 nm) as a visualizing agent and phosphomolybdic acid in ethanol or potassium permanganate (KMnO₄) as developing agents. Visible light irradiation was performed with a 30 W LED Light at λ_{ir} = 450 ± 10 nm) for photocatalytic reactions. ¹H NMR, ¹³C NMR and ¹⁹F NMR (400 MHz,101 MHz and 376 MHz, respectively) spectra were measured in CDCI3 recorded on Quantum-I 400M Hz spectrometer. Chemical shifts (δ) for¹H, ¹³C, and ¹⁹F NMR spectra are given in ppm relative to TMS. The residual solvent signals were used as references for ¹H and ¹³C NMR spectra and the chemical shifts converted to the TMS scale (CDCl₃): δ H = 7.26 ppm, δ C = 77.16 ppm; The following abbreviations are used: m (multiplet), s (singlet), d (doublet), t (triplet), q(quartet), dd (doublet of doublets), etc. The high-resolution mass spectra were measured on a Bruker Daltonics APEX II 47e spectrometer by ESI.

2. Substrates preparation

2.1 Involved substrates

scheme S1

1y

1v

1d

Ĵ

OEt

1w

1ab

1ae

scheme S2

0 II

41

CO₂Et

4n

2.2 Synthesis of 1a–1v, 1ab, 1ac, 1ad, 1ae and D_5 -1a

To a stirred solution of aryl bromide (5.0 mmol, 1.0 equiv.) and aryl boronic acid (6 mmol, 1.2 equiv.) in a toluene: ethanol = 3:1 (40 mL) mixture was added potassium carbonate (15.0mmol, 3.0 equiv.) and tetrakis(triphenylphosphine) palladium (0.5 mmol, 0.1 equiv.). The resulting suspension was heated at 110 °C under an atmosphere of N₂ for 12 h. The solvent was removed under reduced pressure and the crude residue was redissolved in water (100 mL) and extracted with EtOAc (3 × 50 mL). The combined organic layers were washed with water and brine. The filtration was concentrated under reduced pressure and then purified by column chromatography.

To a dried three-necked flask equipped with a dropping funnel, a condenser, and a magnetic stirrer was added NaH (60% in mineral oil, 14 mmol, 2.8 equiv.), diethyl carbonate (14 mmol, 2.8 equiv.), and anhydrous THF (10 mL). The mixture was heated to 80 °C under an atmosphere of Ar. A solution of ketone (5.0 mmol, 1.0 equiv.) in anhydrous THF (30 mL) was added dropwise from the dropping funnel over 60 min. After the addition, the mixture was heated to reflux until the biphenyl ketone is completely consumed (12 h). When the reaction was cooled to room temperature, ice water (50 mL) was added dropwise. The THF layer was separated, and the water layer was extracted with EtOAc (3 × 30 mL). The combined organic solution was washed with water and brine. After evaporation of the solvent, the mixture was distilled under reduced pressure. The crude residue was purified by column chromatography to furnish the desired compound **1a–1v**, **1ab**, **1ac**, **1ad**, **1ae and D**5-**1a**. Data matched those provided in the previous literature.^{1,2}

2.3 Synthesis of 1w

To a dried three-necked flask equipped with a dropping funnel, a condenser, and a magnetic stirrer was added NaH (60% in mineral oil, 14 mmol, 2.8 equiv.), dimethyl carbonate (14 mmol, 2.8 equiv.), and anhydrous THF (10 mL). The mixture was heated to 80 °C under N₂ atmosphere. A solution of1-([1,1'-biphenyl]-2-yl)ethan-1-one (5.0 mmol, 1.0 equiv) in anhydrous THF (50 mL) was added dropwise from the dropping funnel over 60

min. After the addition, the mixture was heated to reflux until starting material is completely consumed (about 12 h). After the reaction was cooled to room temperature, ice-water (100 mL) was added. The THF layer was separated, and the water layer was extracted with EtOAc (3×30 mL). The combined organic solution was washed with water and brine. After evaporation of the solvent, the mixture was distilled under reduced pressure. The crude residue was purified by column chromatography to furnish the compound **1w** in 72% yield. Data matched those provided in the literature.¹

2.4 Synthesis of 1x, 1y, 1z

A mixture of corresponding alcohol (5.0 mmol, 1.0 equiv.), **1a** (5.0 mmol, 1.0 equiv.), DMAP (5.0 mmol, 1.0 equiv.) was stirred with oven-dried 4Å MS (50 g) in anhydrous toluene (50 mL) at 105 °C for 48 h. The reaction mixture was then cooled to room temperature and filtered to remove the molecular sieves. The solvents were removed under reduced pressure, and EtOAc (3×30 mL) and water (90mL) were added to the residue. The layers were separated, filtered, and concentrated. The crude product was purified by column chromatography to furnish the compound **1x** in 60% yield, **1y** in 69% yield, **1z** in 78% yield, respectively. Data matched those provided in the literature.¹

2.5 Synthesis of 1aa

Under N₂ atmosphere, *n*-BuLi (3 mL, 2.5 M in hexane, 7.5 mmol) was dropwise added to a stirred solution of dimethyl sulfone (3.6 mmol) in THF (20 mL) at 0 °C. The resultant white cloudy solution was continued to stir at 0 °C for 40 min, followed by slowly adding with a solution of ethyl biphenyl-2-carboxylate (3 mmol) in THF (11.5 mL) over 5 min. The reaction mixture was then allowed to stir at room temperature for 36 hours, then quenched by H₂O (20 mL), and diluted with EtOAc (3 × 30 mL). The organic layer was separated and washed with saturated aqueous NH₄Cl solution (50 mL x 2), water (50 mL) and brine (50 mL). After concentration, the crude mixture was subjected to chromatography to provide **1aa** in 75% yield. Data matched those provided in the literature.¹ 2.6 Synthesis of 4o

To a flask equipped with a Dean-Stark trap and reflux condenser was added ethyl 3-oxo-3-phenylpropanoate (5 mmol), 1-butanol (10 mmol), DMAP (1.5 mmol) in toluene (40 mL). The mixture was heated to reflux, distilling the ethanol formed during the reaction. After completion, monitored by ¹H NMR spectroscopy, the reaction mixture was directly loaded onto silica gel and purified by flash chromatography (eluting in gradient from petroleum ether/ethyl acetate 98:2 to 95:5) to give the **4o** in 66% yield. Data matched those provided in the literature.³

2.7 General Procedure for Synthesis of PPO

To a solution of phthaloyl chloride (0.40 g, 1.5 mmol, 1.0 equiv.) in CH_2CI_2 (25 mL), solid sodium percarbonate (H_2O_2 : 20-30%) (0.34 g, 2.2 mmol, 1.5 equiv) was added in one portion. The heterogeneous reaction mixture was stirred vigorously for 3 hours (rapid stirring is required). The reaction mixture was filtered through celite and concentrated to provide the phthaloyl peroxide as white solid (0.27 g, 78%). Data matched those provided in the literature ⁴

2.8 General Procedure for Synthesis of MPO

Methane sulfonic acid (30 ml) was placed in a round bottomed flask equipped with a large magnetic stirrer bar and immersed in a bath of water at 22 °C. Urea hydrogen peroxide (9.82 g, 104 mmol) was added in a single portion and stirred for 30 seconds. Cycloalkane-1,1-dicarboxylic acid (35 mmol) was added in a single portion and the reaction stirred vigorously for 18 h. The reaction mixture was poured into a mixture of ice (80 g) and ethyl acetate (100 ml) and the layers separated. The aqueous layer was extracted with ethyl acetate (2 × 100 ml) and the combined organics were washed with NaHCO₃ (2 × 50 ml), brine (20 ml) and dried over MgSO₄. Removal of the solvent under reduced pressure gave the desired malonoyl peroxide. Data matched those provided in the literature.⁵

2.9 General Procedure for Synthesis of 2,2'-Diperoxyphenic Acid (DPPA)

Methane sulfonic acid (30 mL) was placed in a round bottomed flask equipped with a large magnetic stirrer bar and immersed in a bath of water at 22 °C. Urea hydrogen peroxide (9.82 g, 104 mmol) was added in a single portion and stirred for 30 seconds. Diphenic acid (35 mmol) was added in a single portion and the reaction stirred vigorously for 24 h. The reaction mixture was poured into a mixture of ice (80 g) and ethyl acetate (100 mL) and the layers separated. The aqueous layer was extracted with ethyl acetate (2 × 100 mL) and the combined organics were washed with NaHCO₃ (2 × 50 mL), brine (20 mL) and dried over Na₂SO₄. Removal of the solvent under reduced pressure gave the 2,2'-diperoxyphenic acid. Data matched those provided in the literature.⁶

3. General experimental procedure

3.1 General experimental procedure for synthesis of 10-phenanthrenols

To an oven-dried 10 mL Schlenk tube equipped with a stir bar, CsI (0.04 mmol, 0.2 equiv.) was added. The flask was evacuated under high temperature and backfilled with N₂ three times. While under active N₂, the aromatic β -ketoesters **1** (0.2 mmol, 1.0 equiv.) were added in THF via syringe. Then the Schlenk tube was sealed under N₂. And the reaction mixture was stirred with the PPO (3.0 equiv.) in THF added dropwise through syringe under the irradiation of two 440 nm LEDs (4.5 cm from glass surface on each side of the tube with fan cooling) for 24 h. After reaction completion, the reaction was quenched with 1 mL NaHCO₃ (aq.) and extracted with 1 mL EtOAc for three times. The combined EtOAc layer was washed with brine then dried over Na₂SO₄. The mixture was filtered and concentrated in vacuo then purified by flash chromatography with silica.

3.2 General experimental procedure for synthesis of 1-Naphthols

To an oven-dried 10 mL Schlenk tube equipped with a stir bar, CsI (0.04 mmol, 0.2 equiv.) was added. The flask was evacuated under high temperature and backfilled with N₂ three times. While under active N₂, the aromatic β -ketoesters **1** (0.2 mmol, 1.0 equiv.) and alkynes (0.3 mmol, 1.5 equiv.) were added in THF via syringe. Then the Schlenk tube was sealed under N₂. And the reaction mixture was stirred with the MPO (3.0 equiv.) in THF added dropwise through syringe under the irradiation of two 440 nm LEDs (4.5 cm from glass surface on each side of the tube with fan cooling) for 24 h. After reaction completion, the reaction was quenched with 1 mL NaHCO₃ (aq.) and extracted with 1 mL EtOAc three times. The combined EtOAc layer was washed with brine then dried over Na₂SO₄. The mixture was filtered and concentrated in vacuo then purified by flash chromatography with silica.

4. Reaction optimization

Table S1 Optimization of the peroxides^[a]

^[a]Reaction conditions: **1a** (0.2 mmol. 1.0 equiv.), peroxide (0.6 mmol, 3.0 equiv.) and CsI (0.04 mmol, 0.2 equiv.) in THF (1.0 M) under N₂ with 440 nm blue LEDs irradiation at room temperature for 24 h. N.D.= not detected. ^[b]Yields of isolated products. ^[c] TBHP in decane, 5.5 mol/L.

$\widehat{\mathbb{Q}}$	PPO-1 (O O Haloge	3.0 equiv.) n source	OEt
\bigcirc	OEt THF, blu	e LEDs, r.t.	ОН
entry	halogen source	equiv.	yield (%) ^[b]
1	Nal	0.2	77
2	Csl	0.2	89
3 ^[c]	NIS	0.2	70
4 ^[d]	TBAI	0.2	59
5	KI	0.2	66
6	l2	0.2	57
7	CsBr	0.2	22
8	CsCl	0.2	N.D.
9	none	-	N.D.
10	Csl	0.1	40

Table S2 Optimization of the halogen sources^[a]

^[a]Reaction conditions: **1a** (0.2 mmol. 1.0 equiv.), PPO-1 (0.6 mmol, 3.0 equiv.) and halogen source (0.04 mmol, 0.2 equiv.) in THF (1.0 M) under N₂ with 440 nm blue LEDs irradiation at room temperature for 24 h. N.D.= not detected. ^[b]Yields of isolated products. ^[c]NIS = N-iodosuccinimide. ^[d]TBAI = tetrabutylammonium iodide.

Table S3 Optimization of the solvent^[a]

	O OEt Solv	PO-1 (3.0 equiv.) Csl (0.2 equiv.) vent, blue LEDs, r.t.	OEt OH
entry	solvent	concentration	yield (%) ^[b]
1	THF	0.1 M	77
2	MeCN	0.1 M	65
3	DCM	0.1 M	57
4	Chloroform	0.1 M	55
5	toluene	0.1 M	N.D.
6	<i>i</i> -PrOH	0.1 M	N.D.
7 ^[c]	THF	0.1 M	67
8	THF	0.5 M	80
9	THF	1.0 M	89
10	THF	2.0M	80

^[a]Reaction conditions: **1a** (0.2 mmol. 1.0 equiv.), PPO-1 (0.6 mmol, 3.0 equiv.) and CsI (0.04 mmol, 0.2 equiv.) in corresponding solvent (1.0 M) under N₂ with 440 nm blue LEDs irradiation at room temperature for 24 h. N.D.= not detected. ^[b]Yields of isolated products. ^[c]THF was not dried.

Table S4. Optimization of the light source and reaction time^[a]

^[a]Reaction conditions: **1a** (0.2 mmol. 1.0 equiv.), PPO-1 (0.6 mmol, 3.0 equiv.) and CsI (0.04 mmol, 0.2 equiv.) in THF (1.0 M) under N₂ with corresponding light irradiation at room temperature for 24 h. ^[b]Yields of isolated products.

Table S5 Optimization of the reaction conditions of the intramolecular cycloaromatization for the synthesis of 1-Naphthols^[a]

28	MPO-1	3.0	Csl	THF,1.0M	NaOMe	40
29	MPO-1	3.0	Csl	THF,1.0M	TBAOH	N.D.
30	MPO-1	3.0	Csl	THF,1.0M	NaOH	N.D
31	MPO-1	3.0	Csl	THF,1.0M	Na ₂ HPO ₄	trace

^aReaction conditions: **3a** (0.20 mmol, 1.0 equiv.), **4a** (0.20 mmol, 1.0 equiv.), peroxide (0.6 mmol, 3.0 equiv.) and X source (0.04 mmol, 0.2 equiv.) under nitrogen with 440 nm blue LEDs irradiation at room temperature. N.D.= not detected. ^bYields of isolated products. ^c0.1 equiv. Csl. ^d0.4 equiv. Csl.

Table S6 Optimization of the light source of the intramolecular cycloaromatization for the synthesis of 1-Naphthols^a

	4a	3a	MPO-1 (3.0 equiv.) CsI (0.2 equiv.) THF, light source, r.t.	OH O OH O 5a
entry	light source	wavelength.	equiv. of 3a	yield (%) ^b
1	Blue LEDs	470 nm	1.0	40
2	Blue LEDs	405 nm	1.0	45
3	White LEDs	-	1.0	21
4	UV LEDs	260 nm	1.0	trace
5	none	none	1.0	N.D.
6	Blue LEDs	440 nm	0.5	27
7	Blue LEDs	440 nm	1.5	66
8	Blue LEDs	440 nm	2.0	63

^aReaction conditions: **4a** (0.20 mmol, 1.0 equiv.), **3a** (x equiv.), MPO-1 (0.60 mmol, 3.0 equiv.) and CsI (0.04 mmol, 0.2 equiv.) under nitrogen with LEDs irradiation at room temperature. N.D.= not detected. ^bYields of isolated products.

5. Mechanistic studies

5.1 in situ NMR experiment and radical scavenger experiments

in situ NMR experiments

Scheme S1 in situ NMR experiment

Entry	Additive	Equivalent of additive	Yields of $2a \ (\%)^{[a]}$
1	0.	0	89
2	→ N ←	1.0	60
3	ТЕМРО	2.0	N.D.
4	→ ↓ ↓	0	89
5		1.0	41
6	 BHT	2.0	N.D.

Reaction conditions: **1a** (0.2 mmol. 1.0 equiv.), PPO-1 (0.6 mmol, 3.0 equiv.), CsI (0.04 mmol, 0.2 equiv.) and additive (x equiv.) in THF (1.0 M) under N₂ with 440 nm blue LEDs irradiation at room temperature for 24 h. ^[a]Yields of isolated products

¢	, , , , , , , , , , , , , , , , , , ,	MPO-1 (3.0 e Csl (0.2 equ additive (x ec THF, 440 nm blue	equiv.) uiv.) e LEDs, r.t.
	4a	Ja Faujualant of	Sa
Entry	Additive	e additive	Yields of 5a (%) ^a
1	, [,]	0	66
2		1.0	N.D.
3	ТЕМРО	2.0	N.D.
4	→ ↓	0	66
5		1.0	N.D.
6	BHT	2.0	. N.D.

Table S8 Radical scavenger experiment of intramolecular benzannulation transformations

Reaction conditions: **3a** (0.20 mmol, 1.0 equiv.), **4a** (0.20 mmol, 1.0 equiv.), MPO-1 (0.6 mmol, 3.0 equiv.), CsI (0.04 mmol, 0.2 equiv.) and additive (x equiv.) under nitrogen with 440 nm blue LEDs irradiation at room temperature. N.D.= not detected. ^aYields of isolated products.

5.2 BDE experiments

Scheme S2 the BDE values of the O/C-halogenated compounds

5.3 Light off/on experiment

Scheme S3 Light off/on experiment.

5.4 KIE experiment

Scheme S4 Intermolecular KIE with D5-1a and 1a

5.5 The DFT calculation of potential energy surface

All computations were performed with the Gaussian 09 Program. Geometries of all stationary points were fully optimized using the dispersion-corrected B3LYP-D3(BJ) functional, with a mixed basis set of SDD for Cs and 6–31+G(d) for other atoms in the gas phase. To verify the stationary points as minima or transition states, vibration frequency calculation was performed for each structure. Solvation energy corrections were applied using the SMD continuum solvation model with tetrahydrofuran(THF) as the solvent. Single-point energy calculations were carried out using the B3LYP-D3(BJ) functional, with a mixed basis set of SDD and 6-311++G(d,p) for other atoms, in THF. All energies discussed are free energies at 298 K and 1 atm in kcal/mol.

Scheme S5 The Gibbs free energy potential surface for the TDRA-induced intermolecular benzannulation of **1a** computed at S64M052X/6-31G(d)/SMD(MeCN)//B3LYP/6-31+G(d) level of theory.

	Species	Optimized Structures	E ₀ (Hartree) ^b	E ₀ +Ther mal Free Energy Correctio n (Hartree)	<\$°>
INT1		X	-1512.046	-1511.716	0.757734
INT2		A A A A	-1512.039	-1511.715	0.758344
TS1			-1512.012	-1511.690	0.758137
TS2			-1512.036	-1511.714	0.75785

^a Energies, enthalpies, free energies, and entropies of the structures calculated at the SMD(tetrahydrofuran)/B3LYP-D3/6-311+G(d,p) level. ^{b.}1 Hartree = 627.5095 kcal mol⁻¹. ^c Thermal corrections at 298.15 K.

5.6 Polarity matching

The blue arrows represent the experimentally successful abstraction, while the red arrows mean the abstraction pathway not detected. In order to better understand the polarity matching in the intramolecular benzannulation of **1a**, we conducted density functional theory (DFT) calculations for corresponding structures. Specifically, we determined dual descriptor Fukui function values (blue numbers) for hydrogen atom and electrophilicity index (red numbers) for radicals. The more positive condensed dual descriptor (CDD) values are, the more electrophilic the corresponding site hydrogen is. In addition, the higher the values of Electrophilicity index are, the more electrophilic the radicals are.

Scheme S6 The polarity matching of intramolecular benzannulation of 1a

5.7 BDFE evaluations

BDFE (kcal/mol) = 23.06 E° (R[•]/R⁻) + 1.37 pK_a (RH/R⁻) +23.06 E° (H⁺/H[•])

BDFE (kcal/mol) = 23.06 \vec{E} (R[•]/R⁻) + 1.37 pK_a (RH/R⁻) +23.06 \vec{E} (H⁺/H[•])

BDFE (kcal/mol) = 23.06 E° (Ox^{•+}/Ox) + 1.37 pK_a (BH/B⁻) +23.06 E° (H⁺/H[•])

Scheme S7 The thermodynamic cycle separates the BDFE of an R–H bond into two measurable values. Reagent pair and its effective BDFE.

Table S9. A series of O/C-H BDFEs and effective BDFEs are tabulated to show the balancing effect between pK_a and E° . E° is computed using Gibbs free energies of species shown in **Table S10**. The free energy change for the reference reaction in the standard hydrogen electrode. In this study, the value -4.44 V is consistently used in all calculations. The pK_a datas are based on http://pka.luoszgroup.com/.⁷

File Description	E °(eV)	pKa	BDFE
TDRA-1	0.73	14.65	92
1a'	-0.13	20.38	80
1a	0.57	23	100

Table S10. The Gibbs free energy potential surface for the oxidants and substrates computed at M052X/6-31G(d)/SMD(Acetonitrile)//B3LYP/6-31+G(d) level of theory.

File Description	$\triangle G(MeCN)$
TDRA-1	0.18999599999951
1a'	0.158405500000072
1 a	0.184051999999951

5.8 Asynchronicity factor

In order to quantify the asynchronicity in the electron and proton transfer in the concerted HAA process, we have computed the asynchronicity factor (η) proposed by Srnec and coworkers.⁸

Asynchronicity Factor (η) = $\frac{1}{\sqrt{2}}$ [-G(TDRA-1⁺)+G(1a⁺)+G(TDRA-1H⁺)-G(1a⁺H⁺)]

Scheme S8. Species relevant for computing asynchronicity factor. G(species) refers to the Gibbs free energy of the relevant species. **[1a'-IM]** refers to the usual radical product after HAA, **[1a'H^+]** is the substrate structure **1a'** oxidized by 1-electron, and **[1a'-]** is the substrate structure after deprotonating the acidic proton from the O–H bond.

 η = -203 mV (Calculated asynchronicity factors (η) in mV, computed using Gibbs free energies of species shown in Table S10)

Table S10. Solution phase Gibbs free energies, G(sol)/Hartree for stationary points involved in **Scheme S8** for the reaction of **TDRA-1** and **1a**' computed at B3LYP/6-311++G(d,p)/SMD(solvent)//B3LYP/6-31+G(d) of theory (T=298K).

File Description	G(THF)/a.u.
TDRA-1 ⁻	-628.716
TDRA-1H⁺	-628.967
1a'-	-882.714
1a'H⁺	-882.954

6. The characterization of products

2a, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 13.34 (s, 1H), 8.81 (d, *J* = 8.6 Hz, 1H), 8.63 – 8.52 (m, 3H), 7.81 – 7.74 (m, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 4.62 (q, *J* = 7.2 Hz, 2H), 1.56 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.97, 162.79, 133.72, 130.45, 129.54, 127.63, 126.88, 126.13, 126.05, 125.32, 125.02, 124.25, 122.89, 122.47, 101.62, 62.09, 14.42.

2b, Pale yellow solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.88 (s, 1H), 8.67 – 8.55 (m, 3H), 7.77 – 7.68 (m, 1H), 7.64 (t, *J* = 7.0 Hz, 1H), 7.49 – 7.40 (m, 1H), 7.35 (d, *J* = 7.5 Hz, 1H), 4.60 (q, *J* = 7.1 Hz, 2H), 3.04 (s, 3H), 1.53 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.66, 161.37, 135.14, 134.41, 130.81, 129.09, 128.81, 127.68, 126.61, 126.50, 126.35, 126.24, 124.51, 123.88, 102.61, 62.08, 27.28, 14.41.

2c, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 13.26 (s, 1H), 8.67 (d, *J* = 8.7 Hz, 1H), 8.59 – 8.52 (m, 2H), 8.34 (s, 1H), 7.78 – 7.70 (m, 1H), 7.63 (t, *J* = 7.5 Hz, 1H), 7.39 (d, *J* = 8.7 Hz, 1H), 4.60 (q, *J* = 7.1 Hz, 2H), 2.56 (s, 3H), 1.55 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.02, 162.15, 133.64, 133.49, 130.27, 129.21,

127.15, 126.75, 126.18, 125.93, 125.39, 124.98, 122.78, 122.46, 101.56, 62.03, 21.56, 14.43.

2d, White solid

¹**H NMR** (400 MHz, CDCl₃) δ 13.25 (s, 1H), 8.61 (s, 1H), 8.56 – 8.50 (m, 2H), 8.46 (d, *J* = 8.4 Hz, 1H), 7.75 (t, *J* = 7.2, Hz, 1H), 7.66 – 7.54 (m, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 4.62 (q, *J* = 7.1 Hz, 2H), 2.54 (s, 3H), 1.57 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.99, 162.84, 137.24, 133.77, 130.36, 129.55, 126.38, 126.00, 125.71, 124.96, 124.89, 123.88, 122.73, 122.26, 101.34, 62.02, 22.26, 14.33.

2e, White solid

¹**H NMR** (400 MHz, CDCl₃) δ 13.28 (s, 1H), 8.66 (s, 1H), 8.60 – 8.46 (m, 3H), 7.79 – 7.69 (m, 1H), 7.66 – 7.56 (m, 1H), 7.36 (d, J = 8.4 Hz, 1H), 4.61 (q, J = 7.1 Hz, 2H), 2.85 (q, J = 7.6 Hz, 2H), 1.59 (t, J = 7.1 Hz, 3H), 1.37 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.05, 162.81, 143.54, 133.80, 130.43, 129.64, 126.48, 124.99, 124.95, 124.77, 124.74, 124.18, 122.86, 122.32, 101.56, 62.02, 29.40, 15.46, 14.35.

2f, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 13.28 (s, 1H), 8.63 (s, 1H), 8.57 – 8.51 (m, 2H), 8.48 (d, J = 8.4 Hz, 1H), 7.74 (t, J = 7.0 Hz, 1H), 7.61 (t, J = 8.2 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 4.61 (q, J = 7.1 Hz, 2H), 2.84 – 2.76 (m, 2H), 1.82 – 1.70 (m, 2H), 1.57 (t, J = 7.1 Hz, 3H), 1.40 (q, J = 3.6 Hz, 4H), 0.94 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 173.03, 162.78, 142.27, 133.81, 130.41, 129.55, 126.45, 125.45, 125.20, 124.98, 124.93, 124.16, 122.77, 122.30, 101.54, 62.01, 36.49, 31.61, 31.09, 22.69, 14.35, 14.14.

2g, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 13.39 (s, 1H), 8.89 (d, J = 2.0 Hz, 1H), 8.59 – 8.48 (m, 3H), 7.75 (t, J = 8.3 Hz, 1H), 7.65 – 7.54 (m, 2H), 4.61 (q, J = 7.2 Hz, 2H), 1.60 (t, J = 7.2 Hz, 3H), 1.47 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 173.24, 163.03, 150.34, 133.68, 130.45, 129.29, 126.51, 125.01 125.01 123.90, 122.63, 122.39, 122.34, 122.34, 101.74, 62.02, 35.28, 31.54, 14.49.

2h, White solid

¹**H NMR** (400 MHz, CDCl₃) δ 13.44 (s, 1H), 8.51 (d, *J* = 8.2 Hz, 1H), 8.46 (d, *J* = 9.2 Hz, 2H), 8.33 (s, 1H), 7.73 (t, *J* = 7.7 Hz, 1H), 7.63 – 7.50 (m, 1H), 7.11 (d, *J* = 9.1 Hz, 1H), 4.60 (q, *J* = 7.6 Hz, 2H), 3.94 (s, 3H), 1.56 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 173.05, 163.73, 159.10, 133.90, 131.07, 130.61, 125.86, 125.07, 124.35, 124.21, 121.99, 120.26, 113.63, 108.09, 101.21, 62.03, 55.21, 14.41.

2i, Pale yellow solid

¹**H** NMR (400 MHz, CDCl₃) δ 13.36 (s, 1H), 8.85 (s, 1H), 8.58 – 8.47 (m, 3H), 7.76 (t, J = 8.4, 7.0, 1.5 Hz, 1H), 7.67 – 7.55 (m, 2H), 6.89 (dd, J = 17.5, 10.8 Hz, 1H), 5.91 (d, J = 17.6 Hz, 1H), 5.37 (d, J = 10.9 Hz, 1H), 4.62 (q, J = 7.1 Hz, 2H), 1.59 (t, J = 6.9 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.94, 163.11, 137.49, 136.59, 133.54, 130.56, 129.70, 126.88, 125.75, 125.27, 125.08, 124.52, 123.16, 122.51, 121.91, 114.29, 101.51, 62.13, 14.38.

2j, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 13.53 (s, 1H), 8.59 – 8.36 (m, 4H), 7.75 (t, *J* = 7.0 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.19 (t, *J* = 7.9 Hz, 1H), 4.61 (q, *J* = 7.1 Hz, 2H), 1.57 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.74, 164.05, 163.49 (d, J = 245.0 Hz), 133.38, 131.28 (d, J = 10.3 Hz), 130.82, 126.68, 125.16, 124.94, 124.80, 122.62 (d, J = 1.5 Hz), 122.28, 112.72 (d, J = 24.3 Hz), 111.67 (d, J = 25.8 Hz), 101.05 (d, J = 3.6 Hz), 62.36, 14.37.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.76 (s, 1F).

2k, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 13.48 (s, 1H), 8.81 (s, 1H), 8.51 (d, *J* = 8.2 Hz, 1H), 8.44 (dd, *J* = 15.6, 8.5 Hz, 2H), 7.81 – 7.71 (m, 1H), 7.66 – 7.59 (m, 1H), 7.41 (d, *J* = 8.9 Hz, 1H), 4.61 (q, *J* = 7.2 Hz, 2H), 1.58 (t, *J* = 7.1 Hz, 3H). ¹³**C** NMR (101 MHz CDCl₂) δ 172 59 163 76 133 80 133 14 130 83 130 64 127 15

¹³**C NMR** (101 MHz, CDCl₃) δ 172.59, 163.76, 133.80, 133.14, 130.83, 130.64, 127.15, 125.60, 125.16 (×2), 124.51, 124.40, 124.27, 122.38, 100.70, 62.43, 14.31.

2l, Pale yellow solid

¹**H NMR** (400 MHz, CDCl₃) δ 13.45 (s, 1H), 8.97 (d, J = 2.1 Hz, 1H), 8.51 (d, J = 9.8 Hz, 1H), 8.46 (d, J = 7.8 Hz, 1H), 8.36 (d, J = 8.8 Hz, 1H), 7.75 (t, J = 8.4 Hz, 1H), 7.64 (t, J = 7.0 Hz, 1H), 7.54 (dd, J = 8.8, 2.1 Hz, 1H), 4.61 (q, J = 7.1 Hz, 2H), 1.59 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.53, 163.66, 133.17, 130.97, 130.82, 128.68, 127.24, 127.21, 125.21, 125.16, 124.72, 124.40, 122.32, 122.28, 100.59, 62.42, 14.28.

ESI-HRMS: exact mass calculated for [M+H⁺] requires m/z 345.0048, found m/z 345.0045.

2m, Pale yellow solid

¹**H** NMR (400 MHz, CDCl₃) δ 13.49 (s, 1H), 9.15 (s, 1H), 8.57 (d, J = 8.6 Hz, 1H), 8.55 – 8.48 (m, 2H), 7.82 – 7.76 (m, 1H), 7.71 – 7.66 (m, 1H), 7.63 (d, J = 8.7 Hz, 1H), 4.60 (q, J = 7.2 Hz, 2H), 1.58 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.50, 163.79, 132.69, 130.90, 129.09, 128.91 (q, J = 32.3 Hz), 128.07, 127.93, 125.94, 125.19, 124.7 (q, J = 273.3 Hz), 123.55, 123.48, 122.80, 120.14 (q, J = 3.0 Hz), 101.11, 62.50, 14.06. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.38 (s, 3F).

2n, White solid

¹**H NMR** (400 MHz, CDCl₃) δ 13.55 (s, 1H), 9.10 (d, J = 1.6 Hz, 1H), 8.53 (d, J = 9.0 Hz, 2H), 8.48 (d, J = 8.6 Hz, 1H), 7.80 (t, J = 7.7 Hz, 1H), 7.71 (t, J = 8.2 Hz, 1H), 7.61 (dd, J = 8.6, 1.7 Hz, 1H), 4.63 (q, J = 7.2 Hz, 2H), 1.58 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 172.24, 164.08, 132.33, 131.15, 131.01, 129.28, 128.60,

128.51, 126.19, 125.85, 125.31, 123.71, 122.93, 119.71, 110.91, 100.46, 62.76, 14.35.

20, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 13.44 (s, 1H), 9.57 (s, 1H), 8.55 (t, J = 8.2 Hz, 3H), 8.07 (dt, J = 8.6, 1.8 Hz, 1H), 7.81 – 7.75 (m, 1H), 7.68 (t, J = 7.6 Hz, 1H), 4.61 (q, J = 7.1 Hz, 2H), 4.45 (q, J = 7.1 Hz, 2H), 1.62 (t, J = 7.2 Hz, 3H), 1.46 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.65, 166.95, 163.22, 132.85, 130.65, 129.03, 128.95, 128.24, 127.82, 126.07, 125.08, 124.29, 123.01, 122.85, 101.44, 62.30, 61.04, 14.42, 14.16.

2p, White solid

¹**H NMR** (400 MHz, CDCl₃) δ 13.41 (s, 1H), 9.11 (s, 1H), 8.64 – 8.51 (m, 3H), 7.80 – 7.69 (m, 4H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 1H), 4.61 (q, *J* = 7.1 Hz, 2H), 1.60 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 173.01, 163.26, 141.51, 139.99, 133.52, 130.59, 129.83, 128.96, 127.46, 127.34, 126.89, 125.29, 125.24, 125.10, 124.64, 123.42, 123.26, 122.51, 101.58, 62.15, 14.40.

ESI-HRMS: exact mass calculated for [M+H⁺] requires m/z 343.1256, found m/z 343.1250.

OEt OН

2q, Pale yellow solid

¹**H NMR** (400 MHz, CDCl₃) δ 11.14 (s, 1H), 8.60 (d, *J* = 8.3 Hz, 1H), 8.56 (d, *J* = 9.8 Hz, 1H), 8.49 (d, *J* = 9.0 Hz, 1H), 8.01 (d, *J* = 8.6 Hz, 1H), 7.92 (d, *J* = 7.9 Hz, 1H),

7.86 (d, J = 8.8 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.66 (t, J = 8.1 Hz, 1H), 7.58 – 7.52 (m, 1H), 7.49 (t, J = 6.8 Hz, 1H), 4.37 (q, J = 7.2 Hz, 2H), 1.15 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 172.53, 158.60, 133.28, 133.08, 130.13, 129.60, 129.00, 127.87, 126.81, 126.11, 125.99, 124.73, 124.35, 124.06, 123.02, 120.26, 103.85, 61.74, 13.84.

2r, yellow solid

¹**H NMR** (400 MHz, CDCl₃) δ 13.00 (s, 1H), 8.89 (d, J = 8.4 Hz, 1H), 8.85 (d, J = 8.3 Hz, 1H), 8.76 (d, J = 9.1 Hz, 1H), 8.64 (d, J = 8.2 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.88 (d, J = 9.2 Hz, 1H), 7.76 (t, J = 8.3 Hz, 1H), 7.70 – 7.63 (m, 1H), 7.63 – 7.53 (m, 2H), 4.63 (q, J = 7.2 Hz, 2H), 1.58 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.69, 161.77, 133.22, 131.77, 129.94, 129.40, 128.45, 128.38, 127.96, 127.90, 127.54, 126.24, 125.99, 125.69, 125.33, 124.54, 124.00, 122.75, 102.66, 62.27, 14.44.

2s, yellow solid

¹**H** NMR (400 MHz, CDCl₃) δ 11.57 (s, 1H), 8.74 (d, J = 7.7 Hz, 1H), 8.68 (ddd, J = 7.7, 4.4, 1.5 Hz, 2H), 8.59 (t, J = 8.4 Hz, 2H), 7.79 (d, J = 6.8 Hz, 1H), 7.72 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.68 – 7.55 (m, 4H), 7.50 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 1.09 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.32, 159.09, 132.22, 130.38, 130.11, 129.87, 129.84, 129.64, 129.19, 128.26, 127.88, 127.49, 126.61, 126.56, 126.14, 126.05, 125.45, 125.07, 124.82, 123.72, 123.27, 123.06, 103.22, 61.72, 13.71.

ESI-HRMS: exact mass calculated for [M+H⁺] requires m/z 367.1256, found m/z 367.1248.

2t, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 10.90 (s, 1H), 8.45 (d, *J* = 8.1 Hz, 1H), 8.36 (d, *J* = 8.2 Hz, 1H), 7.95 (d, *J* = 10.3 Hz, 1H), 7.80 – 7.71 (m, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.05 (ddd, *J* = 11.4, 8.4, 2.5 Hz, 1H), 4.48 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.80, 157.69, 131.96 (d, *J* = 6.4 Hz), 130.29, 129.07 (d, *J* = 5.9 Hz), 128.17, 125.54, 124.82, 123.02, 115.25 (d, *J* = 10.2 Hz), 104.23 (d, *J* = 3.7 Hz), 104.01 (d, *J* = 3.7 Hz), 103.92, 103.65, 103.38, 100.16, 62.09, 14.08.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -104.28 (s, 1F), -110.90 (s, 1F).

ESI-HRMS: exact mass calculated for [M+H⁺] requires m/z 303.0755, found m/z 303.0758.

2u, Pale yellow solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.54 (s, 1H), 8.47 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.78 – 7.63 (m, 2H), 7.51 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.16 (d, *J* = 2.1 Hz, 1H), 4.60 (q, *J* = 7.1 Hz, 2H), 1.54 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.61, 160.72, 148.91, 143.10, 130.38, 130.15, 125.20, 124.60, 123.17, 122.52, 115.59, 105.21, 96.82, 61.95, 14.46.

2v, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.62 (s, 1H), 8.50 (d, *J* = 8.4 Hz, 1H), 8.25 (d, *J* = 8.2 Hz, 1H), 7.88 (d, *J* = 5.6 Hz, 1H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.44 (d, *J* = 5.6 Hz, 1H), 4.61 (q, *J* = 7.1 Hz, 2H), 1.59 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.69, 161.00, 134.70, 132.22, 130.29, 129.66, 125.40, 124.99, 124.46, 123.56, 123.53, 121.22, 101.91, 62.34, 14.40.

ESI-HRMS: exact mass calculated for [M+H⁺] requires m/z 273.0507, found m/z 273.0511.

OMe ЮH

2w, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 13.25 (s, 1H), 8.74 (d, *J* = 8.6 Hz, 1H), 8.57 (d, *J* = 8.0 Hz, 3H), 7.77 (t, *J* = 7.7 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 4.13 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 173.45, 162.84, 133.78, 130.57, 129.36, 127.72, 126.95, 126.09 (×2), 125.27, 125.08, 124.37, 122.94, 122.51, 101.54, 52.59.

2x, White solid

¹**H NMR** (400 MHz, CDCl₃) δ 13.23 (s, 1H), 8.83 – 8.77 (m, 1H), 8.60 – 8.53 (m, 3H), 7.77 (t, J = 7.0Hz, 1H), 7.64 (t, J = 7.0 Hz, 1H), 7.57 – 7.36 (m, 7H), 5.60 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 172.76, 163.01, 135.35, 133.83, 130.63, 129.42, 128.86, 128.64, 128.48, 127.76, 126.97, 126.15 (×2), 125.27, 125.10, 124.35, 122.93, 122.52, 101.53, 67.69.

2y, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 13.47 (s, 1H), 8.85 (d, *J* = 10.0 Hz, 1H), 8.63 – 8.53 (m, 3H), 7.76 (t, *J* = 7.7 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.61 (t, *J* = 7.0 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 1.81 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.38, 162.39, 133.57, 130.24, 129.84, 127.43, 126.85, 126.17, 126.11, 125.53, 124.93, 124.12, 122.91, 122.47, 102.82, 84.26, 28.69.

2z, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 13.50 (s, 1H), 9.00 (d, J = 7.0 Hz, 1H), 8.66 – 8.58 (m, 3H), 7.81 (ddd, J = 8.4, 7.0, 1.5 Hz, 1H), 7.65 (dddd, J = 21.9, 8.5, 6.9, 1.3 Hz, 2H), 7.54 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 5.51 (s, 1H), 2.36 (s, 2H), 2.27 (d, J = 12.9 Hz, 2H), 2.06 – 1.93 (m, 6H), 1.86 (s, 2H), 1.77 (d, J = 13.0 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.47, 162.75, 133.67, 130.41, 129.67, 127.51, 126.90, 126.25, 126.13, 125.45, 125.01, 124.21, 122.91, 122.46, 102.12, 80.20, 37.50, 36.55, 32.32, 32.09, 27.33, 27.13.

2aa, White solid

¹H NMR (400 MHz, CDCl₃) δ 11.69 (s, 1H), 8.65 – 8.50 (m, 4H), 7.82 (t, *J* =7.0 Hz, 1H), 7.67 (q, *J* = 7.1 Hz, 2H), 7.57 (t, *J* = 7.0 Hz, 1H), 3.36 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 156.32, 133.69, 131.09, 128.49, 127.52, 127.16, 126.38, 125.29, 125.21, 125.18, 123.48, 123.31, 122.56, 108.62, 44.90.

2ab, White solid

¹**H NMR** (400 MHz, CDCl₃) δ 13.34 (s, 1H), 8.78 (d, J = 8.2 Hz, 1H), 8.46 (d, J = 9.3 Hz, 2H), 7.87 (d, J = 2.8 Hz, 1H), 7.49 (dddd, J = 21.7, 8.1, 7.0, 1.4 Hz, 2H), 7.37 (dd, J = 9.1, 2.8 Hz, 1H), 4.61 (q, J = 7.1 Hz, 2H), 3.99 (s, 3H), 1.56 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.13, 162.09, 158.66, 128.39, 127.98, 126.67, 126.51, 126.22, 125.99, 124.31, 124.23, 122.38, 121.17, 104.64, 102.00, 62.13, 55.60, 14.42.

2ac, White solid

¹**H NMR** (400 MHz, CDCl₃) δ 13.33 (s, 1H), 8.73 (d, *J* = 8.5 Hz, 1H), 8.42 – 8.34 (m, 2H), 7.84 (s, 1H), 7.53 – 7.44 (m, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.19 – 7.13 (m, 1H), 4.52 (q, *J* = 6.5 Hz, 2H), 3.94 (s, 3H), 1.49 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 173.10, 163.18, 161.61, 135.80, 130.24, 127.81, 127.03, 126.14, 125.59, 123.92, 122.92, 119.53, 116.40, 104.24, 99.79, 61.93, 55.55, 14.45.

2ad, ¹**H NMR** (400 MHz, CDCl₃) δ 13.38 (s, 1H), 8.80 (d, J = 7.1 Hz, 1H), 8.54 (dd, J = 9.0, 6.1 Hz, 1H), 8.42 (d, J = 8.3 Hz, 1H), 8.16 (dd, J = 11.1, 2.6 Hz, 1H), 7.59 (ddd, J = 8.6, 7.0, 1.4 Hz, 1H), 7.48 (ddd, J = 8.2, 7.0, 1.3 Hz, 1H), 7.35 (ddd, J = 9.0, 7.9, 2.5 Hz, 1H), 4.61 (q, J = 7.1 Hz, 2H), 1.56 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.92, 165.53 (d, J = 250.0 Hz), 162.46, 136.04 (d, J = 8.9 Hz), 130.07, 128.31, 128.03 (d, J = 9.3 Hz), 126.15, 125.38 (d, J = 3.6 Hz), 124.34, 123.12, 121.96, 115.90 (d, J = 23.9 Hz), 108.04 (d, J = 22.8 Hz), 101.08, 62.19, 14.41. ¹⁹F NMR (376 MHz, CDCl₃) δ -108.11 (s, 1F).

2ae, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 13.21 (s, 1H), 8.80 (d, J = 8.4 Hz, 1H), 8.57 (dd, J = 9.2, 5.1 Hz, 1H), 8.51 (d, J = 8.3 Hz, 1H), 8.16 (dd, J = 9.8, 2.9 Hz, 1H), 7.62 – 7.53 (m, 1H), 7.53 – 7.44 (m, 2H), 4.62 (q, J = 7.1 Hz, 2H), 1.55 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 172.74, 162.78 (d, J = 246.7 Hz), 161.55 (d, J = 3.7 Hz), 130.12, 128.89, 127.40, 126.79 (d, J = 8.1 Hz), 126.05, 125.68, 124.93 (d, J = 8.7 Hz), 124.49, 122.63, 119.24 (d, J = 23.7 Hz), 109.82 (d, J = 22.6 Hz), 102.41, 62.28, 14.39.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.81 (s, 1F).

5a, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.10 (s, 1H), 8.56 – 8.44 (m, 1H), 7.85 – 7.79 (m, 1H), 7.75 (s, 1H), 7.58 – 7.52 (m, 2H), 7.52 – 7.40 (m, 5H), 4.46 (q, *J* = 7.1 Hz, 2H), 1.44 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.18, 160.44, 140.26, 135.55, 131.21, 130.27, 129.48, 128.43, 127.28, 125.95, 125.73, 125.05, 124.98, 124.19, 105.44, 61.57, 14.34.

5b, Pale yellow solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.11 (s, 1H), 8.55 – 8.49 (m, 1H), 7.69 (s, 1H), 7.59 – 7.50 (m, 2H), 7.41 – 7.29 (m, 4H), 7.28 (d, *J* = 3.3 Hz, 1H), 4.47 (q, *J* = 7.1 Hz, 2H), 2.06 (s, 3H), 1.44 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.20, 160.39, 139.63, 137.35, 135.88, 130.83, 130.56, 129.97, 129.49, 127.76, 125.99, 125.79, 125.65, 124.84, 124.63, 124.14, 105.40, 61.53, 20.14, 14.30.

5c, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.12 (s, 1H), 8.54 – 8.53 (m, 1H), 7.92 – 7.81 (m, 1H), 7.77 (s, 1H), 7.59 (dd, J = 6.8, 3.3 Hz, 2H), 7.42 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 9.4 Hz, 3H), 4.50 (q, J = 7.1 Hz, 2H), 2.49 (s, 3H), 1.48 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.18, 160.35, 140.18, 138.06, 135.61, 131.34, 130.94, 129.40, 128.27, 127.99, 127.33, 126.03, 125.66, 125.01, 124.82, 124.13, 105.41, 61.54, 21.56, 14.34.

5d, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.07 (s, 1H), 8.55 – 8.47 (m, 1H), 7.88 – 7.79 (m, 1H), 7.73 (s, 1H), 7.58 – 7.52 (m, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 7.9 Hz, 2H), 4.46 (q, J = 7.1 Hz, 2H), 2.46 (s, 3H), 1.43 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.18, 160.29, 137.30, 136.95, 135.66, 131.16, 130.11, 129.37, 129.10, 126.00, 125.64, 125.03, 124.88, 124.14, 105.44, 61.52, 21.29, 14.32.

5e, Pale yellow solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.06 (s, 1H), 8.65 – 8.26 (m, 1H), 7.87 – 7.81 (m, 1H), 7.74 (s, 1H), 7.57 – 7.52 (m, 2H), 7.39 (d, J = 7.9 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 4.45 (q, J = 7.2 Hz, 2H), 2.76 (q, J = 7.6 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H), 1.34 (t, J = 7.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.18, 160.28, 143.28, 137.52, 135.67, 131.20, 130.16, 129.35, 127.89, 126.03, 125.63, 125.04, 124.90, 124.13, 105.45, 61.50, 28.69, 15.66, 14.32.

5f, Pale yellow solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.07 (s, 1H), 8.53 – 8.46 (m, 1H), 7.91 – 7.82 (m, 1H), 7.76 (s, 1H), 7.59 – 7.49 (m, 4H), 7.41 (d, *J* = 8.3 Hz, 2H), 4.45 (q, *J* = 7.1 Hz, 2H), 1.42 – 1.40 (m, 12H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.21, 160.28, 150.14, 137.23, 135.64, 131.12, 129.88, 129.36, 126.09, 125.65, 125.32, 125.03, 124.94, 124.13, 105.45, 61.52, 34.69, 31.52, 14.34.

5g, Pale yellow solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.06 (s, 1H), 8.65 – 8.34 (m, 1H), 7.87 – 7.78 (m, 1H), 7.72 (s, 1H), 7.59 – 7.50 (m, 2H), 7.39 (d, J = 8.6 Hz, 2H), 7.03 (d, J = 8.8 Hz, 2H), 4.46 (q, J = 7.1 Hz, 2H), 3.90 (s, 3H), 1.43 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.17, 160.22, 158.96, 135.80, 132.60, 131.26, 130.83, 129.37, 125.98, 125.64, 125.05, 124.86, 124.14, 113.84, 105.43, 61.52, 55.44, 14.33.

5h, White solid

¹**H NMR** (400 MHz, CDCl₃) δ 12.14 (s, 1H), 8.69 – 8.36 (m, 1H), 7.81 – 7.69 (m, 4H), 7.63 – 7.54 (m, 4H), 4.47 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.04, 161.00, 144.07, 135.15, 130.65, 129.90, 129.73, 129.40 (q, *J* = 32.6 Hz), 126.06, 125.49, 125.44 (q, *J* = 3.6 Hz), 125.35, 125.18, 124.45 (×2), 105.52, 61.78, 14.40.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.35 (s, 3F).

5i, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.09 (s, 1H), 8.54 – 8.46 (m, 1H), 7.78 – 7.72 (m, 1H), 7.70 (s, 1H), 7.61 – 7.51 (m, 2H), 7.42 – 7.37 (m, 2H), 7.18 (t, *J* = 8.1 Hz, 2H), 4.46 (q, *J* = 7.8 Hz, 2H), 1.44 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.11, 163.54 (d, J = 247.2 Hz), 160.57, 136.16 (d, J = 3.5 Hz), 135.59, 131.84, 131.77, 130.11, 129.63, 125.84 (d, J = 10.8 Hz), 125.09 (×2), 124.29, 115.46 (d, J = 21.8 Hz), 105.43, 61.66, 14.38. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.43 (s, 1F).

5j, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.10 (s, 1H), 8.54 – 8.43 (m, 1H), 7.79 – 7.71 (m, 1H), 7.70 (s, 1H), 7.60 – 7.52 (m, 2H), 7.46 (d, *J* = 7.0 Hz, 2H), 7.39 (d, *J* = 7.0 Hz, 2H), 4.46 (q, *J* = 7.2 Hz, 2H), 1.43 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.02, 160.64, 138.65, 135.30, 133.30, 131.53, 129.85, 129.66, 128.61, 125.85, 125.58, 125.06, 125.03, 124.28, 105.41, 61.64, 14.33.

5k, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.10 (s, 1H), 8.57 – 8.43 (m, 1H), 7.81 – 7.72 (m, 1H), 7.70 (s, 1H), 7.65 – 7.52 (m, 4H), 7.34 (d, J = 8.4 Hz, 2H), 4.46 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.01, 160.66, 139.15, 135.23, 131.88, 131.57, 129.84, 129.67, 125.86, 125.57, 125.08, 125.00, 124.29, 121.44, 105.42, 61.64, 14.33.

51, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.15 (s, 1H), 8.51 (d, *J* = 7.7 Hz, 1H), 7.78 (d, *J* = 8.9 Hz, 1H), 7.71 (s, 1H), 7.64 – 7.50 (m, 2H), 7.00 (d, *J* = 5.9 Hz, 2H), 6.88 (t, *J* = 9.0 Hz, 1H), 4.47 (q, *J* = 7.2 Hz, 2H), 1.46 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.89, 164.23 (d, J = 13.3 Hz), 161.76 (d, J = 13.3 Hz), 161.00, 143.51 (t, J = 9.3 Hz), 134.81, 129.91, 128.80, 126.02, 125.22, 125.13, 125.08, 124.39, 113.34 (d, J = 7.3 Hz), 113.16 (d, J = 6.4 Hz), 105.34, 102.70 (t, J = 26.8 Hz), 61.73, 14.33.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -110.04 (s, 2F).

ESI-HRMS: exact mass calculated for [M+H⁺] requires m/z 329.0911, found m/z 329.0909.

5m, Pale yellow solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.07 (s, 1H), 8.53 – 8.37 (m, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.77 (s, 1H), 7.55 (m, 2H), 7.44 (dd, *J* = 4.9, 3.0 Hz, 1H), 7.34 (dd, *J* = 3.0, 1.3 Hz, 1H), 7.24 (s, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.08, 160.51, 140.57, 135.72, 129.70, 129.59, 125.86, 125.78 (×2), 125.41, 125.05, 125.02, 124.19, 123.44, 105.43, 61.58, 14.35.

5n, Yellow solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.17 (s, 1H), 8.54 (d, J = 9.2 Hz, 1H), 7.95 (dd, J = 8.2, 3.8 Hz, 2H), 7.82 (s, 1H), 7.61 – 7.40 (m, 6H), 7.33 – 7.27 (m, 2H), 4.44 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.19, 160.72, 137.85, 136.70, 133.61, 133.14, 129.46, 129.17, 128.27 (×2), 128.06, 126.51 (×2), 126.11, 125.90, 125.83, 125.73, 125.52, 124.82, 124.05, 105.51, 61.55, 14.27.

50, Pale yellow solid

¹**H NMR** (400 MHz, CDCl₃) δ 11.97 (s, 1H), 8.45 (d, *J* = 8.2 Hz, 1H), 8.34 (d, *J* = 8.3 Hz, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 9.3 Hz, 2H), 4.46 (q, *J* = 7.1 Hz, 2H), 2.24 - 2.10 (m, 1H), 1.46 (t, *J* = 7.2 Hz, 3H), 1.03 (d, *J* = 8.4 Hz, 2H), 0.72 (d, *J* = 5.5 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.14, 159.93, 137.32, 129.54, 129.28, 125.56, 124.96, 124.41, 124.31, 122.24, 105.09, 61.40, 14.39, 12.92, 6.04.

5p, Pale yellow solid

¹**H NMR** (400 MHz, CDCl₃) δ 11.89 (s, 1H), 8.45 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.59 (s, 1H), 7.55 – 7.45 (m, 1H), 4.46 (q, J = 7.1 Hz, 2H), 3.01 – 2.85 (m, 2H), 1.74 – 1.67 (m, 2H), 1.49 – 1.44 (m, 3H), 1.28 (dt, J = 11.3, 6.4 Hz, 14H), 0.88 (t, J = 6.7 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.16, 159.56, 135.82, 129.34, 129.15, 125.27, 124.52, 123.88, 123.32, 105.28, 61.37, 32.67, 31.94, 30.83, 29.84, 29.66, 29.60, 29.38, 22.72, 14.36, 14.14.

5q (left), **5q'** (right), **5q:5q'** = 10:1, Pale yellow solid

5q(major) ¹**H NMR** (400 MHz, CDCl₃) δ 12.56 (s, 1H), 8.39 (d, J = 8.1 Hz, 1H), 7.42 (ddd, J = 7.4, 6.2, 1.6 Hz, 2H), 7.37 (ddt, J = 12.2, 5.6, 1.7 Hz, 3H), 7.21 – 7.18 (m, 2H), 7.04 (d, J = 8.4 Hz, 1H), 4.45 (q, J = 7.2 Hz, 2H), 2.81 (q, J = 7.3 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 7.3 Hz, 3H).

5q(major) ¹³**C NMR** (101 MHz, CDCl₃) δ 172.73, 161.66, 140.01, 138.40, 136.20, 130.90, 130.85, 129.32, 128.38, 127.03, 126.38, 124.92, 123.85, 123.54, 105.97, 61.86, 25.95, 16.30, 14.06.

ESI-HRMS: exact mass calculated for [M+H⁺] requires m/z 321.1412, found m/z 321.1405.

5r (left), **5r'** (right), **5r:5r'** = 1:2, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.06 (s, 1H), 12.04 (s, 2H), 8.45 (d, *J* = 10.0 Hz, 2H), 8.29 (s, 1H), 7.72 (d, *J* = 8.6 Hz, 1H), 7.68 (s, 1H), 7.62 (s, 2H), 7.54 – 7.28 (m, 22H), 4.45 (p, *J* = 7.0 Hz, 6.5H), 2.55 (s, 3.2H), 1.99 (s, 6.7H), 1.42 (q, *J* = 7.3 Hz, 10.3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.25, 170.98, 160.58, 160.00, 144.64, 140.40, 135.60, 135.40, 134.67, 133.71, 133.30, 131.56, 131.27, 131.08, 130.22, 129.94, 128.37, 127.75, 127.17, 127.13, 126.83, 126.14, 125.85, 125.53, 125.11, 124.01, 123.19, 122.63, 105.48, 104.55, 61.51, 24.93, 21.68, 14.34.

5s, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.64 (s, 1H), 7.70 (s, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.44 – 7.32 (m, 4H), 7.27 (s, 1H), 4.44 (q, J = 7.1 Hz, 2H), 3.04 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.75, 163.75, 141.07, 138.66, 137.50, 131.37, 130.31, 129.00, 128.94, 128.33, 127.12, 125.10, 124.44 (×2), 105.59, 61.50, 25.52, 14.32.

5t, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.05 (s, 1H), 8.39 (d, J = 8.5 Hz, 1H), 7.70 (s, 1H), 7.57 (s, 1H), 7.53 – 7.41 (m, 5H), 7.38 (d, J = 8.6 Hz, 1H), 4.45 (q, J = 7.1 Hz, 2H), 2.45 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.20, 160.47, 140.45, 139.82, 135.80, 130.63, 130.25, 128.39, 127.81, 127.15, 125.17, 125.10, 124.06, 123.08, 104.78, 61.44, 22.18, 14.34.

5u, Pale yellow solid

¹**H NMR** (400 MHz, CDCl₃) δ 12.05 (s, 1H), 8.40 (d, *J* = 9.1 Hz, 1H), 7.70 (s, 1H), 7.48 (d, *J* = 3.0 Hz, 4H), 7.43 (dd, *J* = 6.1, 2.6 Hz, 1H), 7.17 (dd, *J* = 9.1, 2.5 Hz, 1H), 7.13 (d, *J* = 2.5 Hz, 1H), 4.43 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 3H), 1.42 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.20, 160.65, 160.50, 140.46, 137.52, 130.11, 130.07, 128.50, 127.22, 126.05, 125.93, 119.80, 117.23, 105.34, 103.94, 61.36, 55.31, 14.36.

5v, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.10 (s, 1H), 8.57 (d, J = 8.7 Hz, 1H), 8.02 (s, 1H), 7.86 – 7.72 (m, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 3.4 Hz, 4H), 7.47 – 7.40 (m, 3H), 7.39 – 7.33 (m, 1H), 4.47 (q, J = 7.2 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.12, 160.35, 142.12, 140.82, 140.21, 135.86, 131.42, 130.25, 128.94, 128.52, 127.86, 127.60, 127.32, 125.57, 125.30, 124.83, 124.08, 123.92, 105.49, 61.58, 14.36.

ESI-HRMS: exact mass calculated for [M+H⁺] requires m/z 369.1412, found m/z 369.1417.

5w, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.11 (s, 1H), 8.58 (d, J = 8.7 Hz, 1H), 8.17 (s, 1H), 7.86 (s, 1H), 7.67 (dd, J = 8.6, 1.7 Hz, 1H), 7.51 (ddd, J = 12.7, 7.6, 5.9 Hz, 3H), 7.44 – 7.38 (m, 2H), 4.49 (q, J = 7.1 Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.58, 159.58, 138.70, 134.55, 131.90, 131.47, 130.09, 128.82, 127.98, 126.78, 126.61, 126.33, 125.59, 118.96, 112.77, 107.91, 62.09, 14.27.

5x, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.15 (s, 1H), 8.66 (d, J = 8.7 Hz, 1H), 8.15 (s, 1H), 7.88 (s, 1H), 7.75 (d, J = 10.8 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.53 – 7.44 (m, 3H), 4.52 (q, J = 7.1 Hz, 2H), 1.49 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ170.86, 159.87, 139.29, 134.69, 131.94, 131.03 (q, J = 32.3 Hz),130.18, 128.79, 127.82, 126.62, 126.48, 125.54, 124.27 (q, J = 273.8 Hz), 123.51 (q, J = 4.5 Hz), 121.44 (q, J = 2.8 Hz),107.24, 61.99, 14.36. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.62 (s, 3F).

5y, White solid

¹**H NMR** (400 MHz, CDCl₃) δ 12.12 (s, 1H), 8.51 (dd, *J* = 9.2, 5.9 Hz, 1H), 7.77 (s, 1H), 7.55 – 7.40 (m, 6H), 7.29 (ddd, *J* = 9.3, 8.1, 2.7 Hz, 1H), 4.46 (q, *J* = 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.03, 164.60 (d, J = 250.2 Hz), 160.34, 139.72, 137.38 (d, J = 9.2 Hz), 130.62 (d, J = 5.0 Hz), 130.05, 128.59, 127.50, 127.24 (d, J = 9.5 Hz), 126.24, 121.92, 115.73 (d, J = 24.8 Hz), 110.09 (d, J = 22.6 Hz), 105.09 (d, J = 1.8 Hz), 61.63, 14.32.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -108.85 (s, 1F).

5z, Pale yellow solid

¹**H NMR** (400 MHz, CDCl₃) δ 12.08 (s, 1H), 8.43 (d, J = 8.9 Hz, 1H), 7.80 – 7.75 (m, 2H), 7.54 – 7.41 (m, 6H), 4.46 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.90, 160.20, 139.54, 136.42, 136.02, 130.42, 130.13, 128.61, 127.55, 126.54, 126.32, 125.99, 124.95, 123.32, 105.78, 61.71, 14.31.

5aa, Pale yellow solid

¹**H NMR** (400 MHz, CDCl₃) δ 12.08 (s, 1H), 8.35 (d, *J* = 8.9 Hz, 1H), 7.95 (s, 1H), 7.75 (s, 1H), 7.62 (d, *J* = 11.0 Hz, 1H), 7.50 (d, *J* = 7.3 Hz, 2H), 7.44 (t, *J* = 8.0 Hz, 3H), 4.46 (q, *J* = 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.90, 160.26, 139.49, 136.68, 130.35, 130.13, 129.15, 128.63, 128.19, 127.56, 126.32, 126.00, 124.70, 123.57, 105.86, 61.73, 14.31.

ESI-HRMS: exact mass calculated for [M+H⁺] requires m/z 371.0205, found m/z 371.0213.

5ab, Pale yellow solid

¹**H** NMR (400 MHz, CDCl₃) δ 11.64 (s, 1H), 7.79 (s, 1H), 7.73 – 7.65 (m, 3H), 7.50 (t, J = 7.4 Hz, 2H), 7.44 – 7.38 (m, 2H), 4.46 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.05, 157.64, 146.19, 139.92, 130.37, 128.88, 128.20, 127.97, 127.85, 125.73, 124.30, 122.02, 107.43, 61.54, 14.35.

5ac, Pale yellow solid

¹**H** NMR (400 MHz, CDCl₃) δ 11.89 (s, 1H), 8.44 (d, J = 9.0 Hz, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.85 – 7.80 (m, 2H), 7.74 (d, J = 8.7 Hz, 1H), 7.51 – 7.38 (m, 6H), 7.11 (ddd, J = 8.6, 6.9, 1.5 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.80, 159.33, 144.94, 134.84, 133.66, 131.31, 129.81, 129.35, 129.22, 129.04, 128.79, 128.51, 127.42, 127.22, 127.07, 124.98, 123.91, 120.92, 106.90, 61.65, 14.35.

5ad, White solid

¹H NMR (400 MHz, CDCl₃) δ 11.97 (s, 1H), 8.55 – 8.46 (m, 1H), 7.86 – 7.79 (m, 1H), 7.74 (s, 1H), 7.59 – 7.52 (m, 2H), 7.51 – 7.41 (m, 5H), 3.99 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 171.35, 160.21, 140.02, 135.43, 131.19, 130.06, 129.38, 128.25, 127.11, 125.80, 125.60, 124.88, 124.78, 124.05, 105.08, 52.22.

5ae, White solid

¹**H** NMR (400 MHz, CDCl₃) δ 12.11 (s, 1H), 8.56 – 8.46 (m, 1H), 7.85 – 7.79 (m, 1H), 7.73 (s, 1H), 7.59 – 7.53 (m, 2H), 7.51 – 7.43 (m, 5H), 4.41 (t, *J* = 6.7 Hz, 2H), 1.79 (p, *J* = 7.0 Hz, 2H), 1.53 – 1.44 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.23, 160.43, 140.26, 135.53, 131.19, 130.27, 129.46, 128.41, 127.25, 125.93, 125.71, 125.04, 124.87, 124.16, 105.45, 65.41, 30.72, 19.27, 13.80.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

2j ¹H NMR

2j ¹⁹F NMR

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm) 2s¹H NMR

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

-65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

2ad ¹⁹F NMR

pdata/1

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

2ae ¹⁹F NMR

3ad. 2. 1. 1r

--113.81

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm) 5a¹H NMR

5b¹H NMR

5f¹³C NMR

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 f1 (ppm) 40 30 20 10 0 -10 -20

5h¹H NMR

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

5n ¹H NMR

5q ¹H NMR

5r¹H NMR

5x ¹H NMR

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

5y ¹⁹F NMR

pdata/1

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

5ac ¹H NMR

7. Cartesian coordinates of optimized structure

INT1

С	-3.21833600	-0.66923400	-0.95128200
С	-3.02725400	-0.87825900	0.42824500
С	-4.06955300	-0.59032800	1.32066400
С	-5.29823800	-0.12354600	0.85542600
С	-5.48306000	0.09920900	-0.51391800
С	-4.44133400	-0.15716200	-1.40666500
С	-1.70436700	-1.26876400	1.03020800
С	-2.15751600	-0.95184700	-1.98635300
0	-0.75542200	-1.69278200	0.25018800
0	-1.48523000	-1.14305700	2.24318000
0	-2.01248500	-0.19641500	-2.96285700
0	-1.44558200	-2.01956100	-1.82009800
С	-1.22608600	3.59989700	2.16315300
С	-0.04580300	3.32984300	1.46886700
С	-0.07530500	2.61232300	0.25901000
С	-1.31659100	2.19210400	-0.24991900
С	-2.49520600	2.46382000	0.44632300
С	-2.45359300	3.16361100	1.65538600
С	1.18106800	2.32966900	-0.48144200
С	1.22976600	2.57936500	-1.86809600
С	2.40871500	2.41525400	-2.59672200
С	3.58399700	2.01508700	-1.94599200
С	3.55583000	1.76253500	-0.57478400
С	2.36269500	1.88475700	0.16049100
С	2.44768300	1.48568400	1.61019100
С	1.42651900	0.50981700	2.20048300
0	3.39600300	1.84610100	2.29012300
С	1.94115200	-0.90967100	2.05423200
0	1.76597300	-1.62149500	3.16235400
0	2.44411100	-1.34322900	1.02358900
С	2.02801900	-3.05279500	3.10435200
С	0.80866100	-3.79136600	2.57345600
Н	0.45864600	0.53607600	1.69323000

Н	-3.88724700	-0.72294700	2.38233600
Н	-6.10269500	0.08042100	1.55738300
Н	-6.43275000	0.47711800	-0.88419700
Н	-4.55809300	0.03420000	-2.46895000
Н	-1.18561400	4.15380200	3.09744100
Н	0.90242900	3.69435800	1.85597600
Н	-1.36418200	1.62854900	-1.17833300
Н	-3.44148600	2.10709900	0.05218300
Н	-3.37262500	3.36366000	2.19978000
Н	0.33299400	2.93638300	-2.36667900
Н	2.41632700	2.62651500	-3.66321400
Н	4.51315500	1.91096000	-2.50049300
Н	4.45242100	1.44436800	-0.05117500
Н	1.26735100	0.74486400	3.25387800
Н	2.91652600	-3.22322100	2.48983400
Н	2.24717400	-3.31761100	4.14118200
Н	0.99790500	-4.87197700	2.59451700
Н	-0.07022500	-3.56921500	3.18563700
Н	0.58049000	-3.48686300	1.54848700
Cs	1.42362500	-1.40878300	-1.87204600

INT2

С	-4.69591900	0.37888200	-0.09702700
С	-3.95309500	1.57658200	-0.01528300
С	-4.63934400	2.78456000	0.12032600
С	-6.03718000	2.81175800	0.16359900
С	-6.77087100	1.62172400	0.07377800
С	-6.10261000	0.40600000	-0.05509500
С	-2.43520700	1.55058800	-0.09834700
С	-4.05304800	-0.95537900	-0.20130900
Ο	-1.90998300	0.43141500	-0.33879300
Ο	-1.83193700	2.64522400	0.08073800
Ο	-3.96044000	-1.58329200	-1.29624600
Ο	-3.71423200	-1.63536000	0.80994900
С	1.42907200	-0.82205400	-3.08285900
С	1.94896400	0.24403100	-2.34253500

С	3.01822700	0.04315500	-1.44994300
С	3.52216800	-1.25940500	-1.28559300
С	2.99777500	-2.32876700	-2.01968200
С	1.95756900	-2.11160700	-2.93274200
С	3.66597500	1.19525100	-0.76362500
С	5.04364700	1.39862900	-0.93925500
С	5.69229100	2.48932700	-0.35870800
С	4.96363600	3.40535400	0.40399000
С	3.59509500	3.21069700	0.59356800
С	2.94590400	2.10598000	0.03185200
С	1.49576600	1.91497000	0.33419700
С	1.02373800	0.98766200	1.22349600
С	1.87314600	0.07987700	1.97031400
0	1.09272600	-0.90173400	2.57790400
0	3.08865300	0.07531000	2.08920800
С	1.79170100	-1.82301400	3.44168800
С	2.39554800	-2.98426600	2.65891700
Н	-4.05465100	3.69633800	0.18638100
Н	-6.55577600	3.76152500	0.26571100
Н	-7.85665100	1.64282200	0.10558000
Н	-6.65979100	-0.52459700	-0.12041500
Н	0.61932400	-0.64137300	-3.78586500
Н	1.54005300	1.24278500	-2.46608300
Н	4.32956300	-1.42446000	-0.57701800
Н	3.41230600	-3.32620000	-1.89084300
Н	1.57050600	-2.93502900	-3.52913100
Н	5.60331100	0.70227100	-1.55881600
Н	6.75938200	2.62847800	-0.51208900
Н	5.45752900	4.26254900	0.85387700
Н	3.02192000	3.90465800	1.20210700
Н	-0.04728200	0.91061800	1.37093000
Н	2.57103400	-1.28121700	3.98469700
Н	1.03267000	-2.16807900	4.14994100
Н	2.94428500	-3.65048000	3.33571300
Н	1.61743400	-3.58312100	2.16746600
Н	3.09172500	-2.60863500	1.90325400
Cs	-0.54608000	-2.05532500	-0.10653000
0	0.72049800	2.75137800	-0.33910700
Н	-0.28246300	2.64730100	-0.13777900

С	-3.07809100	-0.71034100	-0.87870300
С	-3.12307300	-0.34879400	0.48541900
С	-4.30528300	0.17081100	1.03294300
С	-5.44692800	0.30631800	0.24703100
С	-5.40933900	-0.05626700	-1.10908300
С	-4.23524100	-0.55942200	-1.66197500
С	-1.92549700	-0.37645500	1.40262000
С	-1.84873400	-1.28353300	-1.53756300
0	-0.82213300	-0.03268800	0.75861900
0	-2.01017700	-0.58236500	2.60406600
0	-1.40799400	-0.70689900	-2.56834200
0	-1.34947900	-2.32020300	-1.01230300
С	-1.37357500	3.73124800	1.28659500
С	-0.05627600	3.34723400	1.02305900
С	0.25702000	2.62473700	-0.14151400
С	-0.77723400	2.31762200	-1.04493500
С	-2.08976300	2.70265600	-0.78028800
С	-2.39440400	3.40631700	0.38909100
С	1.64932800	2.18518700	-0.42664900
С	2.17272200	2.37197800	-1.72351100
С	3.47768100	1.99905900	-2.04852400
С	4.30696200	1.43791100	-1.06936000
С	3.81500500	1.25724500	0.22378900
С	2.49481500	1.60510800	0.54894100
С	2.07128600	1.37159200	1.97944500
С	1.15847800	0.24512000	2.36887300
0	2.51985100	2.08499100	2.86796800
С	1.61794400	-1.14982000	2.12117200
0	1.11152200	-1.98451700	3.03165100
0	2.30168600	-1.50343500	1.16217500
С	1.12339200	-3.41190200	2.74672100
С	-0.15562400	-3.78971100	2.01307900
Н	0.11659900	0.20949600	1.57226400
Н	-4.31144400	0.44991100	2.08189400
Н	-6.36573600	0.68624500	0.68621100

Н	-6.29585600	0.05769800	-1.72790700
Н	-4.18834900	-0.82861300	-2.71300600
Н	-1.59850100	4.28508000	2.19437600
Н	0.73090200	3.62766100	1.71599100
Н	-0.57928300	1.70976600	-1.92314600
Н	-2.87874400	2.41398900	-1.46883600
Н	-3.42168700	3.68952900	0.60266100
Н	1.54424700	2.84583600	-2.47267500
Н	3.85423000	2.17076700	-3.05405600
Н	5.33091800	1.16008400	-1.30511400
Н	4.44810600	0.82154800	0.99122700
Н	0.73750500	0.38558800	3.36380100
Н	2.02386800	-3.65499500	2.17629700
Н	1.18192800	-3.87883600	3.73249400
Н	-0.17786500	-4.87377300	1.84508900
Н	-1.03126600	-3.50688700	2.60546300
Н	-0.23700700	-3.28872800	1.04315400
Cs	1.46941400	-1.46334200	-1.77048900

TS2

С	-4.58299400	0.43652200	-0.00822900
С	-3.82212400	1.62964500	0.00124700
С	-4.49132600	2.85738100	-0.00879700
С	-5.88764600	2.91158500	-0.04550200
С	-6.63857600	1.72882800	-0.06868100
С	-5.98818500	0.49781100	-0.04710100
С	-2.31175600	1.60009500	-0.04729100
С	-3.96447100	-0.91712800	0.08362000
Ο	-1.73637500	0.56668000	-0.44042500
Ο	-1.72588900	2.68617900	0.31429300
Ο	-3.98972400	-1.70182700	-0.90487300
Ο	-3.47746200	-1.31970100	1.17655600
С	1.33405100	-0.70751500	-3.00387300
С	1.86271200	0.33846000	-2.24196900
С	2.96983700	0.12437200	-1.40023800

С	3.50080700	-1.17389400	-1.30330800	
С	2.96532600	-2.22421600	-2.05520900	
С	1.88960700	-1.99138900	-2.92220000	
С	3.62483500	1.26410100	-0.70140400	
С	4.99199300	1.49455700	-0.91595600	
С	5.64061900	2.58504000	-0.33398700	
С	4.92068100	3.47781000	0.46404600	
С	3.56070300	3.26063700	0.68735200	
С	2.91466500	2.15046000	0.13130800	
С	1.47444500	1.93882000	0.47479400	
С	1.04209600	0.88687500	1.27821500	
С	1.91548700	-0.09681800	1.88537700	
0	1.16351900	-1.14919300	2.39407600	
0	3.13468300	-0.09207300	1.97605200	
С	1.89278600	-2.14803200	3.14090000	
С	2.51115600	-3.20022300	2.22675000	
Н	-3.89930800	3.76627200	0.00824400	
Н	-6.39007200	3.87523700	-0.05701300	
Н	-7.72397400	1.76942900	-0.09978100	
Н	-6.55787200	-0.42715700	-0.05576900	
Н	0.49588100	-0.51425000	-3.66920300	
Н	1.43178500	1.33304300	-2.31391600	
Н	4.33535000	-1.35062900	-0.63024000	
Н	3.39854600	-3.21886200	-1.97713700	
Н	1.49575500	-2.79887300	-3.53590200	
Н	5.54300000	0.82119900	-1.56776100	
Н	6.70037000	2.74387700	-0.51617600	
Н	5.41438100	4.33579800	0.91252800	
Н	2.99223100	3.93950600	1.31677900	
Н	-0.02020300	0.79693400	1.47036300	
Н	2.66672200	-1.65296000	3.73402100	
Н	1.14875700	-2.58543400	3.81289300	
Н	3.07840400	-3.92673700	2.82114400	
Н	1.74126300	-3.75509300	1.67510000	
Н	3.19140600	-2.72844200	1.51225600	
Cs	-0.70612300	-2.14598100	-0.19392300	
0	0.67177300	2.83096800	-0.01154700	
Н	-0.47821000	2.69513700	0.17310100	

С	-2.98719400	-0.72548700	-0.96365600
С	-3.55491100	-0.24350700	0.23105200
С	-4.83660000	0.32527600	0.22386800
С	-5.55068300	0.45179400	-0.96832800
С	-4.98019100	0.00303800	-2.16391300
С	-3.71020500	-0.57798000	-2.15454900
С	-2.84253000	-0.22281500	1.54301700
С	-1.65076400	-1.45322900	-1.01769000
0	-1.58487000	0.26583100	1.46067600
0	-3.35990000	-0.50916600	2.60894700
0	-0.93873600	-1.24583500	-2.04778200
0	-1.36162700	-2.21210900	-0.05129400
С	-0.69214100	4.25867600	0.35747200
С	0.49295400	3.59272200	0.03729300
С	0.46824100	2.41181400	-0.73261900
С	-0.77008700	1.93257400	-1.19480800
С	-1.95014200	2.60582700	-0.88016400
С	-1.91768200	3.76553800	-0.09942100
С	1.73011600	1.72152000	-1.10963600
С	1.89872300	1.25761000	-2.42974300
С	3.10187100	0.69239500	-2.85400900
С	4.18481400	0.59088400	-1.96942200
С	4.04093500	1.04559000	-0.65924200
С	2.81992000	1.58001000	-0.21783100
С	2.73970200	1.99689500	1.21628000
С	1.69002300	1.47324800	2.12028300
0	3.58377900	2.73428700	1.72397000
С	1.50224000	0.04064100	2.30503600
0	0.64784100	-0.23374100	3.31486500
0	2.10065200	-0.82224000	1.66319600
С	0.57890500	-1.61731100	3.80061200
С	-0.61079800	-2.36504300	3.22352900
Н	-1.19354100	0.22471800	2.35493400
Н	-5.25626400	0.68005200	1.16085900
Н	-6.54071600	0.90042700	-0.96381500

Н	-5.52513900	0.10084800	-3.09984500
Н	-3.25343900	-0.93240300	-3.07345600
Н	-0.65302400	5.17104900	0.94726000
Н	1.44238600	4.01977100	0.34853400
Н	-0.81559400	1.00648300	-1.76107600
Н	-2.89827300	2.20486900	-1.22588300
Н	-2.84136700	4.28199900	0.14909400
Н	1.07741700	1.36543600	-3.13147600
Н	3.20259300	0.35526700	-3.88294800
Н	5.13227400	0.17468600	-2.30198100
Н	4.86468800	0.97604500	0.04539100
Н	1.27443700	2.15405300	2.85481700
Н	1.52707600	-2.10223800	3.55639300
Н	0.49908100	-1.50008100	4.88427300
Н	-0.58352100	-3.39909100	3.59061000
Н	-1.55742900	-1.91957800	3.54268500
Н	-0.60222800	-2.38218600	2.12993700
Cs	1.54247900	-2.37164400	-0.89755300

INT4

С	4.12598000	0.91952500	0.36143700
С	3.38605000	1.92171000	-0.30584400
С	3.91621800	3.22440100	-0.41610300
С	5.16295800	3.53525800	0.11643400
С	5.89945100	2.54019500	0.77155600
С	5.38293900	1.25103500	0.88696800
С	2.06342800	1.63208200	-0.91664400
С	3.63913500	-0.50605100	0.57074500
0	1.57324200	0.51388300	-1.06944300
0	1.40872000	2.73970200	-1.31187900
0	2.80629700	-0.68858700	1.50418700
0	4.11449100	-1.37908400	-0.20272300
С	-0.17764700	0.00475100	2.14085500
С	-1.08593100	0.85702900	1.50424700
С	-2.46875400	0.57417800	1.49062200

С	-2.92074800	-0.58737200	2.14110000
С	-2.01856400	-1.43816300	2.78187600
С	-0.64722100	-1.14604400	2.78144400
С	-3.42809500	1.49184500	0.82428400
С	-4.58951300	1.89888700	1.49859000
С	-5.47072900	2.81838300	0.92803700
С	-5.19502600	3.37289200	-0.32646500
С	-4.04261500	2.98820600	-1.00848600
С	-3.17755700	2.03209400	-0.45853600
С	-1.99662900	1.62249700	-1.26637100
С	-1.59387600	0.22438000	-1.39413000
С	-2.50229800	-0.91641000	-1.31689700
0	-1.80503000	-2.09408100	-1.36754200
0	-3.71892700	-0.86690100	-1.25503600
С	-2.59689800	-3.31225900	-1.37094300
С	-3.01343900	-3.71359300	0.03627500
Н	3.34171700	3.98626800	-0.93090200
Н	5.55979300	4.54227400	0.01974500
Н	6.87652200	2.77090900	1.18990600
Н	5.95534100	0.47676100	1.39038800
Н	0.88950800	0.21353800	2.11693300
Н	-0.71997800	1.77216300	1.04668200
Н	-3.97938100	-0.83186900	2.11731400
Н	-2.38569500	-2.33363600	3.27796600
Н	0.05722200	-1.80282800	3.28640000
Н	-4.78198900	1.51310400	2.49605500
Н	-6.36269900	3.11757700	1.47230000
Н	-5.87270000	4.09844300	-0.76758400
Н	-3.80938000	3.40283600	-1.98465400
Н	-0.55857700	0.06564700	-1.67574200
Н	-3.46715900	-3.16191800	-2.01568700
Н	-1.93863700	-4.05636300	-1.82901900
Н	-3.54300100	-4.67324400	0.00353100
Н	-2.14224100	-3.81937500	0.69225300
Н	-3.67716100	-2.96068800	0.46753200
Cs	1.37541500	-2.51119400	-0.44339300
0	-1.31886500	2.46984100	-1.87592400
Н	0.52749300	2.50114500	-1.68421900

Polarity matching

С	-1.16169900	2.54803400	1.69951100
С	-0.01455600	1.82729100	1.36078900
С	0.23237000	1.45773300	0.02846700
С	-0.69508300	1.83049300	-0.95768400
С	-1.84210800	2.55185600	-0.62011800
С	-2.08067100	2.91206700	0.70997300
С	1.46247000	0.71086800	-0.34555200
С	2.28681600	1.21702300	-1.36245400
С	3.47046400	0.57501200	-1.72829500
С	3.86363600	-0.59145000	-1.06731100
С	3.05716600	-1.11010000	-0.05497400
С	1.85218000	-0.48426200	0.29582600
С	1.02621600	-1.13733900	1.34267200
С	-0.22296300	-1.64292300	1.21603600
С	-0.99475800	-1.67324800	-0.02890300
0	-2.25255200	-2.13531000	0.22469000
0	-0.61662700	-1.35391000	-1.14392400
С	-3.16597900	-2.17760200	-0.89605900
С	-3.79086700	-0.81087600	-1.14390200
Н	-1.33476800	2.83028700	2.73514000
Н	0.70403900	1.55712300	2.13050400
Н	-0.52809000	1.51746700	-1.98427300
Н	-2.55551100	2.82297000	-1.39455600
Н	-2.97443200	3.47222900	0.97307600
Н	1.99835900	2.14178800	-1.85497900
Н	4.08961500	0.99248500	-2.51823100
Н	4.78764500	-1.09492600	-1.33834800
Н	3.34514700	-2.02311300	0.45843700
Н	-0.72215700	-2.05419800	2.09046400
Н	-2.63016800	-2.53579700	-1.78017500
Н	-3.91602100	-2.91675200	-0.60215900
Н	-4.51665200	-0.87573800	-1.96423800
Н	-4.30975200	-0.45435200	-0.24716400
Н	-3.02119500	-0.08244300	-1.41298500
0	1.70662100	-1.21044400	2.52490600

Н

С	-3.74003200	0.12274500	0.72903000
С	-2.48260200	0.73113000	0.74222800
С	-1.59694600	0.56789000	-0.33689500
С	-2.00451000	-0.20772500	-1.43419400
С	-3.26109900	-0.81575300	-1.44799400
С	-4.13238600	-0.65474600	-0.36506800
С	-0.25911500	1.21488200	-0.32034200
С	0.12655400	2.02797800	-1.39825700
С	1.34516700	2.70883800	-1.39368000
С	2.19803500	2.60686800	-0.29089400
С	1.82884700	1.80901900	0.79166600
С	0.62147900	1.09390400	0.77719400
С	0.39023400	0.16820900	1.94213100
С	0.13859800	-1.32135500	1.64991200
0	0.50053200	0.56127600	3.08986200
С	1.21748100	-1.86051800	0.72693000
0	0.80849900	-1.86760500	-0.55762000
0	2.32300500	-2.20095700	1.09650500
С	1.79995500	-2.19938800	-1.56603600
С	2.67772000	-0.99531700	-1.87720400
Н	-0.84324100	-1.44798600	1.18739100
Н	-4.41339300	0.26044300	1.57107100
Н	-2.18522900	1.34433900	1.58922000
Н	-1.31645000	-0.35895900	-2.26127700
Н	-3.55637100	-1.42446100	-2.29886500
Н	-5.10946000	-1.13063400	-0.37487200
Н	-0.55732500	2.14587300	-2.23490300
Н	1.61894500	3.33130900	-2.24169200
Н	3.14319600	3.14251600	-0.27410200
Н	2.48328900	1.70884700	1.65271200
Н	0.18125700	-1.85018000	2.60350600
Н	2.39013500	-3.05109400	-1.21598000
Н	1.20261400	-2.50128200	-2.42984700

Н	3.35866300	-1.23711300	-2.70233100
Н	2.06662500	-0.13431800	-2.16652900
Н	3.27618300	-0.71898400	-1.00463400

TDRA-1

С	-4.55142700	-0.69876900	0.00006100
С	-4.55142800	0.69876700	0.00004000
С	-3.34004800	1.38587100	0.00000500
С	-2.10828700	0.70804100	-0.00000900
С	-2.10828600	-0.70804200	0.00001000
С	-3.34004700	-1.38587300	0.00004300
С	-0.89236300	-1.61200000	-0.00000400
0	-1.01796500	-2.84272100	-0.00001600
0	0.29344000	-1.08417200	0.00001000
С	-0.89236600	1.61200000	-0.00004400
0	0.29343800	1.08417400	-0.00002100
0	-1.01796800	2.84272100	-0.00008900
Н	-5.48781100	-1.25111500	0.00008900
Н	-5.48781200	1.25111200	0.00005200
Н	-3.31880300	2.47048800	-0.00001400
Н	-3.31880100	-2.47048900	0.00005400
Cs	2.90747600	0.00000000	0.00000200

The details of the BDEs BCTC-1

1.82038500	1.79632200	0.27782100
2.77057100	2.82031400	0.31165100
2.43622900	4.11940000	-0.08221800
1.14512600	4.40807600	-0.53771100
0.18935600	3.39175300	-0.60034100
0.53302800	2.09204800	-0.20690400
3.77230500	2.58067700	0.65621400
3.18280800	4.90838200	-0.03286400
0.88309700	5.41701700	-0.84483800
-0.81342400	3.59844800	-0.96300800
1.37299900	-2.53581800	-0.21324000
-1.59251100	1.28238400	0.26663600
-3.14688100	-0.09216200	0.13625000
	1.82038500 2.77057100 2.43622900 1.14512600 0.18935600 0.53302800 3.77230500 3.18280800 0.88309700 -0.81342400 1.37299900 -1.59251100 -3.14688100	1.820385001.796322002.770571002.820314002.436229004.119400001.145126004.408076000.189356003.391753000.533028002.092048003.772305002.580677003.182808004.908382000.883097005.41701700-0.813424003.598448001.37299900-2.53581800-1.592511001.28238400-3.14688100-0.09216200

IM-1

С	-0.53261600	3.74408600	-0.43960200
С	-0.97089500	2.52102700	-0.95222100
С	-1.71512000	1.63556400	-0.15258400
С	-2.02275800	2.01088400	1.16567500
С	-1.58560200	3.23422100	1.67726100
С	-0.83634800	4.10349100	0.87718700
С	-2.16323500	0.32421000	-0.69066000
С	-3.51624500	-0.04056000	-0.59094000
С	-3.98573800	-1.23606900	-1.13554200
С	-3.10900700	-2.08743400	-1.81599100
С	-1.76353900	-1.74195200	-1.92952200
С	-1.28064000	-0.55567600	-1.35609700
С	0.21214400	-0.35353300	-1.42100400
С	0.88013400	-0.20392400	-0.03970100
0	0.82377200	-0.40525900	-2.46575600
С	0.48351500	-1.38903600	0.83165200
0	-0.02177200	-0.96529700	2.00357000
Ο	0.56752600	-2.54913600	0.48844000
С	-0.58293000	-1.98330100	2.87813900
С	-1.99943600	-2.33194300	2.44320600
Н	0.55397700	0.71943000	0.43499500
Н	0.04411300	4.41547600	-1.07017600

Н	-0.74159200	2.25030700	-1.97966700
Н	-2.57747100	1.32319700	1.79852400
Н	-1.81870100	3.50325600	2.70426400
Н	-0.49099500	5.05288600	1.27758900
Н	-4.20743800	0.64230100	-0.10383800
Н	-5.03746400	-1.49449300	-1.04350600
Н	-3.46941800	-3.01573400	-2.25043200
Н	-1.06280900	-2.40138900	-2.43231800
Н	0.07227000	-2.85851600	2.86668100
Н	-0.55980700	-1.52104900	3.86749500
Н	-2.43274500	-3.05974300	3.13963500
Н	-2.63285400	-1.43844600	2.43462000
Н	-1.99985800	-2.76840900	1.44012400
Ι	3.06291500	-0.03569600	-0.13942600

1a'

С	-1.34326800	2.20547500	1.84881700
С	-0.13822700	1.60631900	1.47141900
С	0.15744500	1.37407200	0.11473000
С	-0.78247400	1.76865300	-0.85239600
С	-1.98340900	2.37094200	-0.47573400
С	-2.27061900	2.58874700	0.87670700
С	1.44182100	0.74815900	-0.29425600
С	2.21114800	1.35703300	-1.29835400
С	3.44969200	0.83803700	-1.67736000
С	3.95768300	-0.29735400	-1.03866300
С	3.21140200	-0.91042300	-0.03411600
С	1.94936600	-0.41601000	0.32566300
С	1.20259400	-1.17804300	1.37506400
С	-0.22351400	-1.48006600	1.25412000
С	-0.96213500	-1.62569400	-0.00316000
0	-2.27454300	-1.85358600	0.24819600
0	-0.47766800	-1.58608800	-1.12428500
С	-3.13554000	-2.07052000	-0.89796800
С	-3.55867300	-0.75458800	-1.53509300
Н	-1.55064200	2.37910600	2.90151000
Н	0.59255400	1.34151400	2.23084800
Н	-0.57905300	1.56738200	-1.90047300

Н	-2.70342600	2.65796200	-1.23786700
Н	-3.20820100	3.05476000	1.16831600
Н	1.84107800	2.26607400	-1.76508600
Н	4.02399100	1.32967000	-2.45841500
Н	4.92573300	-0.70141700	-1.32195800
Н	3.58538400	-1.79476300	0.47304400
Н	-0.72916800	-1.75706500	2.17322100
Н	-2.61165100	-2.71005100	-1.61492000
Н	-3.99005800	-2.61136100	-0.48414900
Н	-4.27695300	-0.95044400	-2.34069200
Н	-4.03179400	-0.10165400	-0.79411100
Н	-2.69347500	-0.23573300	-1.95495100
0	1.79045200	-1.62062700	2.37223200

1a

-1.34360100	2.20439400	1.84946400
-0.13848200	1.60548100	1.47190500
0.15727600	1.37380600	0.11513900
-0.78265700	1.76860900	-0.85189300
-1.98363900	2.37068300	-0.47506500
-2.27091800	2.58796300	0.87745200
1.44179300	0.74825000	-0.29400900
2.21103500	1.35759900	-1.29787800
3.44971300	0.83900100	-1.67700000
3.95790800	-0.29648600	-1.03865500
3.21170300	-0.91003000	-0.03434100
1.94953400	-0.41603400	0.32557000
1.20284200	-1.17859300	1.37459100
-0.22312500	-1.48098300	1.25337400
1.79074500	-1.62153000	2.37162000
-0.96197200	-1.62560000	-0.00386800
-2.27428300	-1.85377000	0.24752800
-0.47767000	-1.58495400	-1.12502500
-3.13546800	-2.07003500	-0.89860300
-3.55914300	-0.75372900	-1.53458000
-0.72851400	-1.75909000	2.17228100
-1.55101800	2.37766500	2.90220700
	$\begin{array}{r} -1.34360100\\ -0.13848200\\ 0.15727600\\ -0.78265700\\ -1.98363900\\ -2.27091800\\ 1.44179300\\ 2.21103500\\ 3.44971300\\ 3.95790800\\ 3.21170300\\ 1.94953400\\ 1.20284200\\ -0.22312500\\ 1.79074500\\ -0.96197200\\ -2.27428300\\ -0.47767000\\ -3.13546800\\ -3.55914300\\ -0.72851400\\ -1.55101800\end{array}$	-1.34360100 2.20439400 -0.13848200 1.60548100 0.15727600 1.37380600 -0.78265700 1.76860900 -1.98363900 2.37068300 -2.27091800 2.58796300 1.44179300 0.74825000 2.21103500 1.35759900 3.44971300 0.83900100 3.95790800 -0.29648600 3.21170300 -0.91003000 1.94953400 -0.41603400 1.20284200 -1.17859300 -0.22312500 -1.48098300 1.79074500 -1.62153000 -0.96197200 -1.62560000 -2.27428300 -1.85377000 -0.47767000 -1.58495400 -3.13546800 -2.07003500 -3.55914300 -0.75372900 -0.72851400 -1.75909000 -1.55101800 2.37766500

Н	0.59225400	1.34040500	2.23127500
Н	-0.57913600	1.56775700	-1.90003000
Н	-2.70366700	2.65791600	-1.23710600
Н	-3.20852900	3.05385200	1.16917600
Н	1.84078700	2.26669700	-1.76435800
Н	4.02393300	1.33100100	-2.45788200
Н	4.92608900	-0.70021700	-1.32198500
Н	3.58583500	-1.79447500	0.47253200
Н	-2.61151500	-2.70875500	-1.61623900
Н	-3.98971200	-2.61151600	-0.48505700
Н	-4.27749600	-0.94917800	-2.34020200
Н	-4.03228400	-0.10150100	-0.79299600
Н	-2.69415800	-0.23431300	-1.95422400

Spin Population Analyses

TS-20 (TDRA-1+1a')

С	-4.55751600	0.57701400	-0.00941500
С	-3.78616800	1.76130000	0.00759800
С	-4.44627100	2.99126700	-0.00700800
С	-5.84205200	3.05210900	-0.05344800
С	-6.60361200	1.87445100	-0.07875600
С	-5.96416500	0.63910500	-0.05292300
С	-2.26810900	1.71583100	-0.01925100
С	-3.94339700	-0.76706900	0.07942200
0	-1.73449300	0.64579700	-0.40860200
0	-1.67963200	2.77445000	0.34319600
0	-3.96601400	-1.58414900	-0.88363400
0	-3.47398700	-1.21602300	1.16411400
С	1.40465500	-0.62076500	-2.98403900
С	1.94996500	0.41802400	-2.22423300
С	3.05411300	0.18833800	-1.38280100
С	3.56374400	-1.11778600	-1.28372300
С	3.01210100	-2.16143700	-2.03424600
С	1.94016400	-1.91358400	-2.90124300
С	3.72627200	1.31804600	-0.68174300
С	5.09339000	1.53936800	-0.90630900

TS+50 (TDRA-1+1a')

5.75494600	2.62172400	-0.32340000
5.05031700	3.51311800	0.48953200
3.69272800	3.30022900	0.72837900
3.03430600	2.20028500	0.16838000
1.59622300	2.00340100	0.50607500
1.12450900	0.98309300	1.29025800
1.97569400	-0.01583500	1.90453000
1.20225500	-1.06323000	2.40447800
3.19292200	-0.03895100	2.00601600
1.91524200	-2.07008200	3.15454800
2.53115900	-3.12839900	2.24514500
-3.84383500	3.89325500	0.01819600
-6.33961900	4.01834400	-0.06862800
-7.68824500	1.92419400	-0.11435800
-6.53986100	-0.28220900	-0.06062100
0.56934100	-0.41515900	-3.64947600
1.53269400	1.41857200	-2.29431500
4.39514400	-1.30655300	-0.61001400
3.43078100	-3.16228800	-1.95501500
1.53489500	-2.71538100	-3.51524700
5.63389200	0.86653200	-1.56748900
6.81365100	2.77513900	-0.51640900
5.55433200	4.36530100	0.93777100
3.13444900	3.97608300	1.36996500
0.05621900	0.90493100	1.45315100
2.69026500	-1.58486400	3.75430800
1.16285200	-2.50186600	3.82143700
3.08961500	-3.85908000	2.84298700
1.76072600	-3.67844900	1.68878000
3.21874500	-2.66143100	1.53463500
-0.64888300	-2.03862600	-0.18298600
0.83180500	2.93871300	-0.03100500
-0.17558900	2.81778300	0.15933600
	5.75494600 5.05031700 3.69272800 3.03430600 1.59622300 1.12450900 1.97569400 1.20225500 3.19292200 1.91524200 2.53115900 -3.84383500 -6.33961900 -7.68824500 -6.53986100 0.56934100 1.53269400 4.39514400 3.43078100 1.53489500 5.63389200 6.81365100 5.55433200 3.13444900 0.05621900 2.69026500 1.16285200 3.08961500 1.76072600 3.21874500 -0.64888300 0.83180500 -0.17558900	5.754946002.621724005.050317003.513118003.692728003.300229003.034306002.200285001.596223002.003401001.124509000.983093001.97569400-0.015835001.20225500-1.063230003.19292200-0.038951001.91524200-2.070082002.53115900-3.12839900-3.843835003.89325500-6.339619004.01834400-7.688245001.92419400-6.53986100-0.282209000.56934100-0.415159001.532694001.418572004.39514400-3.162288001.53489500-2.715381005.633892000.866532006.813651002.775139005.554332004.365301003.134449003.976083000.056219000.904931002.69026500-1.584864001.16285200-2.501866003.08961500-3.678449003.21874500-2.038626000.831805002.93871300-0.175589002.81778300

С	-3.80755300	1.73255000	-0.01670000
С	-4.51103700	2.94953100	-0.03432300
С	-5.90379500	2.96557200	-0.06249500
С	-6.60839300	1.75561200	-0.07350500
С	-5.91827100	0.54369600	-0.05288600
С	-2.32012900	1.76248400	-0.04137300
С	-3.83255000	-0.83871200	0.08352200
0	-1.60656400	0.82358600	-0.39278400
0	-1.81011500	2.93515900	0.34308000
0	-3.82877500	-1.57198000	-0.94209200
0	-3.31701200	-1.14109700	1.19525400
С	1.40492800	-0.60564500	-2.95119300
С	1.96750900	0.42551300	-2.19246600
С	3.08101100	0.18412600	-1.36560300
С	3.58321000	-1.12694100	-1.28014600
С	3.01356200	-2.16126500	-2.02772800
С	1.93244800	-1.90086500	-2.88025500
С	3.77559900	1.30751600	-0.67781200
С	5.14741600	1.49977800	-0.89985400
С	5.82609600	2.58105900	-0.33448200
С	5.13494200	3.50798400	0.45016000
С	3.76956700	3.33583100	0.67437900
С	3.09591200	2.23239800	0.13792300
С	1.64847600	2.08636400	0.48578700
С	1.16644200	0.97545700	1.26288100
С	2.00290300	-0.03435000	1.90207200
0	1.22727000	-1.06106200	2.37892800
0	3.21686900	-0.01135800	2.03444500
С	1.91148400	-2.08337100	3.14761700
С	2.54281600	-3.13521100	2.24440400
Н	-3.95370800	3.87976600	-0.03309800
Н	-6.43602500	3.91287100	-0.07900900
Н	-7.69545400	1.75812400	-0.09771800
Н	-6.46259300	-0.39645800	-0.06158500
Н	0.56310500	-0.39125000	-3.60493500
Н	1.56370500	1.43127500	-2.26707900
Н	4.42515900	-1.32594000	-0.62247700
Н	3.42427700	-3.16584300	-1.95840300
Н	1.51104800	-2.69746500	-3.48936100
Н	5.67845200	0.80558100	-1.54612400
Н	6.88921400	2.70742100	-0.52151800
Н	5.65430400	4.35839300	0.88328700
Н	3.21760700	4.04395200	1.28593000
Н	0.09558000	0.92257200	1.42362700

Н	2.66769300	-1.60253600	3.77402100
Н	1.13041900	-2.50789800	3.78314000
Н	3.06880600	-3.87954500	2.85383600
Н	1.78415300	-3.66503600	1.65573900
Н	3.26294600	-2.67292900	1.56348200
Cs	-0.74225300	-2.05806700	-0.18794400
0	0.85946100	2.99227100	0.13278800
Н	-0.81459200	2.91744000	0.26149500

Asynchronicity Factor TDRA-1⁻

С	-4.06884400	-1.23567000	0.20270500
С	-4.35037800	0.13310000	0.27965600
С	-3.30649100	1.05540900	0.17125900
С	-1.97292800	0.65035200	-0.00365000
С	-1.69503000	-0.73294200	-0.09633200
С	-2.74893400	-1.65373300	0.01613400
С	-0.30637800	-1.29793700	-0.36474100
0	0.22046900	-1.01873400	-1.48124300
0	0.22211600	-2.00132100	0.54884900
С	-0.90343100	1.75948600	-0.02230500
0	0.19766700	1.48630700	0.55712600
0	-1.22353800	2.84545700	-0.55883300
Н	-4.86876500	-1.97093700	0.28570900
Н	-5.37370000	0.47900600	0.42270200
Н	-3.50293500	2.12351500	0.21304300
Н	-2.51539100	-2.71511600	-0.04008800
Cs	2.49166500	-0.00870100	0.09991100

TDRA-1H⁺

Н	0.88691900	2.98437200	0.48113100
С	0.43553400	-0.55955200	-0.01457100
0	-0.25937100	-0.89976500	0.98298200
0	-0.18656000	-0.21742100	-1.05423800
С	2.35012800	1.87295900	0.05340600
0	1.06222100	2.02409600	0.45411100
0	3.07256600	2.81098100	-0.19878000
С	1.91109500	-0.66963100	0.01866100
С	2.43294000	-1.98315200	0.02108400
С	3.80757100	-2.19299200	-0.01753100
С	4.67405600	-1.09380600	-0.06506100
С	4.16448300	0.21387900	-0.05902000
С	2.79072500	0.44359900	-0.00442400
Н	1.74817200	-2.82546500	0.04408800
Н	4.20354600	-3.20377400	-0.01601900
Н	5.74825700	-1.24860500	-0.10205000
Н	4.83292400	1.06825200	-0.08702800
Cs	-3.31508900	-0.04919500	-0.02523600

1a'-

С	-1.17343100	2.60772900	1.59370900
С	-0.04108600	1.83912400	1.31474100
С	0.25891300	1.45792900	-0.00443200
С	-0.61499400	1.85355500	-1.03078200
С	-1.74846300	2.62152500	-0.75261800
С	-2.03137700	3.00567200	0.56234600
С	1.48046100	0.67142500	-0.32333700
С	2.32149200	1.11760500	-1.35739600
С	3.47964500	0.42069000	-1.70644100

С	3.82000200	-0.74042200	-1.00503800
С	2.99699300	-1.18469800	0.03131000
С	1.82078500	-0.50625200	0.37457100
С	1.01028400	-1.05514600	1.53900400
С	-0.27292500	-1.59726200	1.32909200
С	-0.95185100	-1.70020700	0.08616900
0	-2.24874500	-2.22845000	0.27390100
0	-0.58519200	-1.40196900	-1.05787500
С	-3.08736000	-2.24372800	-0.87794000
С	-3.72455800	-0.87691800	-1.12838200
Н	-1.39167700	2.88587200	2.62278300
Н	0.61225700	1.51587000	2.12026500
Н	-0.42173300	1.51146500	-2.04348500
Н	-2.42254400	2.90098700	-1.56024100
Н	-2.91870500	3.59612600	0.78276800
Н	2.06409800	2.03448000	-1.88425100
Н	4.11381900	0.78675300	-2.51191400
Н	4.72122100	-1.29442800	-1.26249300
Н	3.25408300	-2.08078100	0.59054700
Н	-0.80171800	-1.93542600	2.21490400
Н	-2.51313800	-2.56040400	-1.75679200
Н	-3.85502800	-2.99801400	-0.66262300
Н	-4.39770700	-0.91751700	-1.99739200
Н	-4.30162400	-0.55487800	-0.25275400
Н	-2.94468100	-0.13391100	-1.31874700
0	1.57742300	-0.98207000	2.66547100

1a'H+

С	-1.33659800	2.09351100	1.95712600
С	-0.17242200	1.47752500	1.50475500
С	0.10239100	1.37128200	0.10709800
С	-0.82852000	1.92286600	-0.80878700
С	-1.99384500	2.51228000	-0.35121700
С	-2.25265000	2.60423600	1.03548600
С	1.33026100	0.74743800	-0.37027100
С	2.03617400	1.32675500	-1.44844300
С	3.30107800	0.87674700	-1.79239200

С	3.90319100	-0.17656900	-1.07395400
С	3.21973400	-0.79187800	-0.02842700
С	1.91857900	-0.38494000	0.29561600
С	1.17021900	-1.17230000	1.27928100
С	-0.12678400	-1.61608500	1.14368000
С	-0.89436700	-1.61338000	-0.12333800
0	-2.13848500	-2.05256400	0.11001600
0	-0.45930200	-1.28698800	-1.21613400
С	-3.04119700	-2.15955200	-1.03440800
С	-3.68249900	-0.81706700	-1.34815700
Н	-1.51979300	2.18886000	3.02286200
Н	0.57011700	1.14568400	2.22250500
Н	-0.65639600	1.81674600	-1.87469100
Н	-2.72064700	2.89702200	-1.06040700
Н	-3.16325400	3.08461900	1.38169200
Н	1.61347400	2.18380800	-1.96204000
Н	3.84265500	1.35560800	-2.60265900
Н	4.89328400	-0.52539100	-1.35146400
Н	3.66331000	-1.62868600	0.50025600
Н	-0.60573700	-2.10898800	1.98616200
Н	-2.47467000	-2.54849100	-1.88463000
Н	-3.77636100	-2.89825000	-0.71115100
Н	-4.41146300	-0.94253200	-2.15672300
Н	-4.20568000	-0.42236700	-0.47057100
Н	-2.92856200	-0.09412600	-1.67192900
0	1.90915400	-1.48097000	2.36171800
Н	1.47231300	-2.14455300	2.92609800

С	3.47966000	0.42117200	-1.70655700
С	3.82026900	-0.73996000	-1.00532700
С	2.99735600	-1.18456000	0.03098000
С	1.82103200	-0.50641500	0.37436900
С	1.01060400	-1.05573800	1.53870000
С	-0.27294200	-1.59720600	1.32895000
С	-0.95210400	-1.69986700	0.08612500
0	-2.24917800	-2.22768100	0.27406100
0	-0.58548700	-1.40172400	-1.05795600
С	-3.08774600	-2.24334400	-0.87783900
С	-3.72489400	-0.87661400	-1.12877700
Н	-1.39126300	2.88594600	2.62311500
Н	0.61268200	1.51598600	2.12040700
Н	-0.42207000	1.51095100	-2.04314800
Н	-2.42292700	2.90032100	-1.55971700
Н	-2.91869200	3.59578700	0.78330200
Н	2.06381500	2.03474100	-1.88405700
Н	4.11368400	0.78746400	-2.51204800
Н	4.72154900	-1.29380400	-1.26291600
Н	3.25467000	-2.08065300	0.59009000
Н	-0.80165400	-1.93546400	2.21477000
Н	-2.51346300	-2.56031700	-1.75654800
Н	-3.85541400	-2.99756800	-0.66229900
Н	-4.39807000	-0.91752900	-1.99776200
Н	-4.30194000	-0.55420700	-0.25327500
Н	-2.94496800	-0.13373700	-1.31945900
0	1.57803400	-0.98335900	2.66503900

1a⁻

С	-1.17305700	2.60794200	1.59390700	
С	-0.04076800	1.83929000	1.31487700	
С	0.25902800	1.45786700	-0.00426600	
С	-0.61494100	1.85346800	-1.03056000	
С	-1.74836000	2.62149700	-0.75234600	
С	-2.03113000	3.00577400	0.56260500	
С	1.48051600	0.67135700	-0.32330400	
С	2.32139300	1.11760000	-1.35745500	
С	3.47950400	0.42072400	-1.70671000	
С	3.82002200	-0.74038700	-1.00538400	
---	-------------	-------------	-------------	--
С	2.99714500	-1.18475000	0.03104100	
С	1.82091700	-0.50642600	0.37443300	
С	1.01056100	-1.05555500	1.53888700	
С	-0.27305900	-1.59695800	1.32917200	
0	1.57805200	-0.98317400	2.66517600	
С	-0.95207300	-1.69985000	0.08628800	
Ο	-2.24922600	-2.22774100	0.27421900	
0	-0.58537600	-1.40192000	-1.05779200	
С	-3.08779200	-2.24360900	-0.87771500	
С	-3.72508200	-0.87698800	-1.12885800	
Н	-0.80179900	-1.93507900	2.21501500	
Н	-1.39117200	2.88620000	2.62297700	
Н	0.61266200	1.51610400	2.12035800	
Н	-0.42177000	1.51135700	-2.04327700	
Н	-2.42249800	2.90091200	-1.55993700	
Н	-2.91843100	3.59625300	0.78307800	
Н	2.06389100	2.03446700	-1.88428100	
Н	4.11351700	0.78684600	-2.51228900	
Н	4.72122000	-1.29435900	-1.26298600	
Н	3.25436100	-2.08082700	0.59022400	
Н	-2.51351000	-2.56069100	-1.75638600	
Н	-3.85540400	-2.99785500	-0.66205500	
Н	-4.39808800	-0.91801200	-1.99797600	
Н	-4.30231500	-0.55457100	-0.25348700	
Н	-2.94521000	-0.13404200	-1.31947900	

8. References

(1) Guo, J.-D.; Yang, X.-L.; Chen, B.; Tung, C.-H.; Wu, L.-Z. N-lodosuccinimide and dioxygen in an air-enabled synthesis of 10-phenanthrenols under sunlight. *Green Chem.* **2021**, 23, 7193-7198.

(2) Jiang, Y.-T.; Yu, Z.-Z.; Zhang, Y.-K.; Wang, B. N-Bromosuccinimide-Induced C-H Bond Functionalization: An Intramolecular Cycloaromatization of Electron Withdrawing Group Substituted 1-Biphenyl-2-ylethanone for the Synthesis of 10-Phenanthrenol. *Org. Lett.* **2018**, *20*, 3728-3731.

(3) Yang, X.-L.; Guo, J.-D.; Xiao, H.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Photoredox Catalysis of Aromatic beta-Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. *Angew. Chem. Int. Ed.* **2020**, *59*, 5365-5370.

(4) Yuan, C.; Axelrod, A.; Varela, M.; Danysh, L.; Siegel, D. Synthesis and reaction of phthaloyl peroxide derivatives, potential organocatalysts for the stereospecific dihydroxylation of alkenes. *Tetrahedron Letters* **2011**, *52*, 2540-2542.

(5) Griffith, J. C.; Jones, K. M.; Picon, S.; Rawling, M. J.; Kariuki, B. M.; Campbell, M.; Tomkinson, N. C. O. Alkene Syn Dihydroxylation with Malonoyl Peroxides. *J. Am. Chem. Soc.* **2010**, *132*, 14409-14411.

(6) Gan, S.; Yin, J.; Yu, Z.; Song, L.; Shi, L. A one-pot and two-stage Baeyer–Villiger reaction using 2,2'-diperoxyphenic acid under biomolecule-compatible conditions. *Green Chemistry* **2022**, *24*, 2232-2239.

(7) Yang, Q.; Li, Y.; Yang, J.-D.; Liu, Y.; Zhang, L.; Luo, S.; Cheng, J.-P. Holistic Prediction of the pKa in Diverse Solvents Based on a Machine-Learning Approach. *Angew. Chem. Int. Ed.* **2020**, 59, 19282-19291.

(8) Trail, D.; Boehnke, P.; Savage, P. S.; Liu, M.-C.; Miller, M. L.; Bindeman, I. Origin and significance of Si and O isotope heterogeneities in Phanerozoic, Archean, and Hadean zircon. *Proc. Natl. Acad. Sci. U. S. A.* **2018**, *115*, 10287-10292.