Supporting Information

Discovery of Zinc-bound Dithiolates for C(sp³)-S Couplings of

Alkyllodides: A Radical Solution to Nucleophilic Substitution

Yanchuang Zhao¹, Yuenian Xu¹, Han Qian¹, Aman Ullah², Shao-Fei Ni^{2,3*}, Ying Bai¹

and Xinxin Shao^{1*}

¹College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon

Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University,

Hangzhou 311121, People's Republic of China.

²College of Chemistry& Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province,

Shantou University, Shantou 515063, People's Republic of China

³Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, People's Republic of China

E-mail: xxshao@hznu.edu.cn, sfni@stu.edu.cn

Table of Contents

1. General information	S4
2. Synthesis of the starting materials	S5
2.1. Synthesis of diazodium salts 4a, 4b, 4c, 4d:	S5
2.2. Synthesis of diaryliodonium salt 4k:	S5
2.3. Synthesis of alkyl iodides 3a-3c, 3e, 3g-3m,	, 30-3t, 3v-3z,
3af-3ai, 3ap-3at:	S5
2.4. Synthesis of compounds 3aa-3ae:	S6
2.5. Synthesis of disulfides 1c, 1e-1h, 1j-11:	S6
2.6. Synthesis of disulfides 10:	S7
2.7. Synthesis of disulfides 1m:	S7

	2.8. Synthesis of zinc thiolates 2a-2o:	. S8
	2.9. Synthesis of zinc selenole 2p:	S14
	2.10. Synthesis of diazodium salts 4e, 4g:	S15
	2.11. Synthesis of diazodium salts 4f, 4h:	S15
	2.12. Synthesis of sulfonium salt 4i:	S16
	2.13. Synthesis of sulfonium salt 4j:	S17
	2.14. Synthesis of 4-(2,2-difluorovinyl)-1,1'-biphenyl:	S18
	2.15. Synthesis of 1-bromo-4-methylpentane:	S19
	2.16. Synthesis of alkyl iodide 92:	S19
	2.17. Synthesis of alkyl iodide 3f, 3u, 3av-3ax, 90:	S20
	2.18. Synthesis of alkyl iodides 3aj-3al:	S21
	2.19. Synthesis of alkyl iodides 3am, 3an:	S22
	2.20. Synthesis of alkyl iodides 1ao:	S23
	2.21. Synthesis of alkyl iodides 3au:	S24
	2.22. Synthesis of alkyl iodides 67a-67j:	S25
3.	Optimization of the reaction conditions	S28
	Table 3.1 Evaluation of different solvents	S28
	Table 3.2 Evaluation of different diazodium salts	S29
	Table 3.3 Evaluation of different of the starting materials	S29
	Table 3.4 Evaluation of different concentrations	S30
	Table 3.5 Evaluation of different temperature	S30
	Table 3.6 Evaluation of different sulfonium salts	S31

Table 3.7 Evaluation of different diaryliodonium salt	S31
Table 3.8 Background S _N 2 pathway	S32
4. Substrate scope	S33
5. Synethetic application of current method	S56
6. Mechanistic study	S67
7. DFT calculation	S78
8. References	S83
9. NMR spectra	\$87

1. General information

General procedures. Unless specifically stated, all reagents were commercially obtained and where appropriate, purified prior to use. For example, dichloromethane (DCM), acetonitrile (MeCN) was freshly distilled from CaH₂; toluene, dibutyl ether was dried and distilled from metal sodium and benzophenone. Other commercially available reagents and solvents were used directly without purification. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica (200 – 300 mesh). ¹H, ¹³C, ¹⁹F NMR spectra were recorded on a Bruker 400 MHz or 500 MHz spectrometer in CDCl₃ or CD₃COCD₃. Multiplicities were given as: s (singlet); d (doublet); dd (doublets of doublet); t (triplet); q (quartet); td (triplet of doublets); m (multiplets). High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOF-spectrometer.

Reagents. The following chemicals were used as received: Acetic acid (Leybold), 2-Adamantone-5-carboxylic acid (Adamas), 4-Aminoveratrole (Energy-Chemical), Anisole (Energy-Chemical), Boron trifluoride etherate (Energy-Chemical), (Energy-Chemical), 1-Bromo-4-chlorobutane 3-Bromopropionate (leyan), (Energy-Chemical), 1,3-Butanediol 1-Bromobutane (Energy-Chemical), 1-Bromohexane (Energy-Chemical), 1-Bromopentane (Energy-Chemical), 4-Biphenylcarboxaldehyde (Energy-Chemical), Copper(II) trifluoromethanesulfonate (Adamas), Diphenyl diselenide (Adamas), Dibenzothiophene (Energy-Chemical), 4,4'-DichlorodIiphenyl disulfide 4-Dimethylaminopyridine (leyan), (Energy-Chemical), (Energy-Chemical), 3,5-Dimethyl-1-adamantanol Ethyl Fluoroboric acid (Energy-Chemical), Ferric nitrate nonahydrate (Energy-Chemical), 3-Hydroxyadamantane-1-carboxylic acid (Adamas), Imidazole (Adamas), Imidazole Iodine (Energy-Chemical), Lithium iodide (Energy-Chemical), (Adamas), *m*-Anisidine (Energy-Chemical), 4-Methylpentan-1-ol (Energy-Chemical), Methanesulfonic acid (Adamas), 4-Methoxybenzenethiol (Energy-Chemical), Sodium

S4

nitrite (Hushi), N-bromosuccinimide (Adamas), N,N-dicyclohexylcarbodiimide (Energy-Chemical), *N*-hydroxyphthalimide (Energy-Chemical), *N*,*N*,*N*',*N*'-Tetramethylethylenediamine (Energy-Chemical), *N*-(tert-Butoxycarbonyl)-L-cysteine methyl o-Anisidine ester (leyan), (Energy-Chemical), Phenyl disulfide (leyan), disulfide (Adamas), Propyl p-Toluenesulfonyl chloride (Energy-Chemical), p-Tolyl disulfide (leyan), Sodium bromide (leyan), Sodium hydroxide (Hushi), Sodium iodide (leyan), Silver trifluoromethanesulfonate (Energy-Chemical), tert-Butyl nitrite (Energy-Chemical), Thianthrene (Energy-Chemical), 2-Thiophenecarbonyl chloride (Energy-Chemical), Triphenylphosphin (Energy-Chemical), 2,4,6-Trimethylaniline (Energy-Chemical), Trifluoroacetic anhydride (Energy-Chemical), Triethylamine (HUSHI), Triphenylphosphine (Energy-Chemical).

2. Synthesis of the starting materials

2.1. Synthesis of diazodium salts 4a, 4b, 4c, 4d:

The diazodium salts 4a, 4b, 4c, 4d were synthesized according to our previous report¹.

2.2. Synthesis of diaryliodonium salt 4k:

The diaryliodonium salt 4k was synthesized according to our previous report².

2.3. Synthesis of alkyl iodides 3a-3c, 3e, 3g-3m, 3o-3t, 3v-3z, 3af-3ai,

3ap-3at:

The alkyl iodides **3a-3c**, **3e**, **3g-3m**, **3o-3t**, **3v-3z**, **3af-3ai**, **3ap-3at** were synthesized according to our previous report¹.

2.4. Synthesis of alkyl iodides 3aa-3ae:

The alkyl iodides **3aa-3ae** were synthesized according to our previous report³.

2.5. Synthesis of disulfides 1c, 1e-1h, 1j-1l:

General Method A: A oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with benzenethiol (20.0 mmol, 1.0 equiv) and DBDMH (1.37 g, 4.8 mmol, 0.24 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then CHCl₃ (20.0 mL) was added under N₂ and the mixture was allowed to stir for 3 min at room temperature. The mixture was diluted with saturated NaCl aqueous solution (50.0 mL) and ethyl acetate (30.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (30.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (50.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 500:1 to 250:1 petroleum ether: ethyl acetate) to provide the desired product.

Compound 1c: a yellow oil (2.30 g, 9.1 mmol, 91% yield), Spectra were consistent with the literature data⁴.

Compound 1e: a white solid (3.18 g, 8.5 mmol, 85% yield), Spectra were consistent with the literature data⁴.

Compound 1f: a white solid (2.44 g, 7.4 mmol, 69% yield, 17.7 mmol was used), Spectra were consistent with the literature data⁴.

Compound 1g: a orange solid (0.965 g, 3.9 mmol, 39% yield), Spectra were consistent with the literature data⁴.

Compound **1h**: a yellow oil (1.62 g, 5.8 mmol, 58% yield), Spectra were consistent with the literature data⁴.

Compound 1j: a yellow oil (2.38 g, 8.7 mmol, 87% yield), Spectra were consistent with the literature data⁴.

Compound 1k: a yellow solid (2.24 g, 9.1 mmol, 91% yield), Spectra were consistent with the literature data⁴.

Compound 11: a yellow solid (1.22 g, 5.3 mmol, 53% yield), Spectra were consistent with the literature data⁴.

2.6. Synthesis of disulfides 10:

A oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with methyl (*tert*-butoxycarbonyl)cysteinate (4.69 g, 20.0 mmol, 1.0 equiv) and EtOH (30.0 mL), The mixture was cooled at 0 °C and NaI (299.8 mg, 2.0 mmol, 0.100 equiv), 30% H₂O₂ (299.8 mg, 2.3 mL, 1.0 equiv) were added to the mixture. Then, saturated aqueous Na₂S₂O₃ (60.0 mL) was added, and the resulting mixture was extracted with EtOAc (15 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (50.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation. The product **10** was isolated as a white solid (4.68 g, 10.0 mmol, 100% yield). The spectral data match those previously reported⁵.

2.7. Synthesis of disulfides 1m:

A oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with methyl 1-phenyl-1*H*-tetrazole-5-thiol (3.56 g, 20.0 mmol, 1.0 equiv) and EtOH (100.0 mL), The mixture was evacuated and backfilled with N₂ for three times. 30% H_2O_2 (299.8 mg, 2.3 mL, 1.00 equiv) was added to the mixture. The reaction was cooled to 0 °C, and the white precipitate was collected via filtration with washing by cold diethyl ether. The disulfide was purified via recrystallization form a CHCl₃/EtOH mixture. The pure product **1m** was filtered and obtained as a crystalline white-yellow solid (1.73 g, 4.9 mmol, 49% yield). The spectral data match those previously reported⁶.

2.8. Synthesis of zinc thiolates 2a-2o:

General Method B: A oven-dried 50-mL glass schlenck, equipped with a stirring bar, was charged with disulfides (5.0 mmol, 1.0 equiv) and Zn (0.98 g, 15.0 mmol, 3.0 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry DMF (10.0 mL) was added under N_2 and the mixture was allowed to stir for 3 h at 80 °C. The mixture was filtered through a celite pad and the organic layers were separated. The solvent was removed by vacuum. The mixture was evacuated and backfilled with nitrogen for three times. Then dry toluene (10.0 mL) and TMEDA (0.87 g, 7.5 mmol, 1.5 equiv) was added under N_2 and the mixture was allowed to stir for 24 h at room temperature. The solvent was removed by rotary evaporation to provide the desired product.

 N^1, N^2, N^2 -tetramethylethane-1,2diamine • bis(phenylthio)zinc 2a: Prepared according to General Method B and the title compound was isolated as a white solid

(3.09 g, 8.8 mmol, 88% yield). **M.p.** = 142.1 °C – 142.5 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (4H, d, *J* = 7.3 Hz), 6.92 (2H, dd, *J* = 7.6, 7.6 Hz), 6.92 (2H, dd, *J* = 7.4, 7.4 Hz), 2.68 (4H, s), 2.50 (12H, s); ¹³**C NMR** (101 MHz, CDCl₃) δ 140.5, 132.7, 128.3, 123.0, 57.2, 47.6; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₈H₂₆N₂NaS₂Zn: 421.0721, found: 421.0712.

 N^{1}, N^{2}, N^{2} -tetramethylethane-1,2diamine • bis(*p*-tolylthio)zinc 2b: Prepared according to General Method H and the title compound was isolated as a white solid (1.46 g, 3.4 mmol, 68% yield). M.p. = 146.3 °C – 147.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (4H, d, *J* = 8.1 Hz), 6.83 (4H, d, *J* = 7.9 Hz), 2.65 (4H, s), 2.48 (12H, s), 2.20 (6H, s); ¹³C NMR (101 MHz, CDCl₃) δ 136.4, 132.6, 132.3, 129.1, 57.2, 47.6, 20.9; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₃₀N₂NaS₂Zn: 449.1034, found: 449.1030.

 N^{1} , N^{1} , N^{2} , N^{2} -tetramethylethane-1,2diamine • bis((4-fluorophenyl)thio)zinc 2c: Prepared according to General Method B and the title compound was isolated as a white solid (1.81 g, 4.2 mmol, 83% yield). M.p. = 130.1 °C - 131.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (4H, dd, J = 8.6, 5.5 Hz), 6.71 (4H, dd, J = 8.8, 8.8 Hz), 2.68 (4H, s), 2.50 (12H, s); ¹³C NMR (101 MHz, CDCl₃) δ 160.2 (d, $J_{C-F} = 242.2$ Hz), 135.0 (d, $J_{C-F} = 3.1$ Hz), 133.8 (d, $J_{C-F} = 7.4$ Hz), 115.1 (d, $J_{C-F} = 21.4$ Hz), 57.2, 47.7; ¹⁹F NMR (471 MHz, CDCl₃) δ -121.4 - -121.5 (2F, m). HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₈H₂₄F₂N₂NaS₂Zn: 457.0533, found: 457.0522.

 N^{1}, N^{2}, N^{2} -tetramethylethane-1,2diamine • bis((4-chlorophenyl)thio)zinc 2d: Prepared according to General Method B and the title compound was isolated as a white solid (2.12 g, 4.5 mmol, 90% yield). M.p. = 120.1 °C - 120.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (4H, d, J = 8.5 Hz), 6.95 (4H, d, J = 8.5 Hz), 2.65 (4H, s), 2.48 (12H, s); ¹³C NMR (101 MHz, CDCl₃) δ 139.1, 133.8, 128.8, 128.2, 57.2, 47.6; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₈H₂₄Cl₂N₂NaS₂Zn: 488.9942, found: 488.9936.

 $N^{1}, N^{1}, N^{2}, N^{2}$ -tetramethylethane-1,2diamine • bis((4-bromophenyl)thio)zinc 2e: Prepared according to General Method B and the title compound was isolated as a white solid (2.55 g, 4.6 mmol, 91% yield). M.p. = 81.5 °C - 82.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (4H, d, J = 8.0 Hz), 7.09 (4H, d, J = 8.2 Hz), 2.66 (4H, s), 2.48 (12H, s); ¹³C NMR (101 MHz, CDCl₃) δ 139.8, 134.3, 131.1, 116.6, 57.2, 47.7; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₈H₂₄Br₂N₂NaS₂Zn: 576.8931, found: 576.8929.

 N^1 , N^1 , N^2 , N^2 -tetramethylethane-1,2diamine • bis((4-(*tert*-butyl)phenyl)thio)zinc 2f: Prepared according to General Method B and the title compound was isolated as a white solid (2.03 g, 4.0 mmol, 79% yield). M.p. = 155.9 °C – 156.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (4H, d, J = 8.4 Hz), 7.04 (4H, d, J = 8.4 Hz), 2.67 (4H, s), 2.50 (12H, s), 1.23 (18H, s); ¹³C NMR (101 MHz, CDCl₃) δ 145.7, 136.5, 132.3, 125.3, 57.3, 47.6, 34.2, 31.5; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₆H₄₂N₂NaS₂Zn: 533.1973, found: 533.1961.

 N^1 , N^1 , N^2 , N^2 -tetramethylethane-1,2diamine • bis((4-aminophenyl)thio)zinc 2g: Prepared according to General Method B and the title compound was isolated as a yellow solid (0.893 g, 2.1 mmol, 57% yield, 3.67 mmol was used). M.p. = 210.8 °C – 211.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (4H, d, J = 8.4 Hz), 6.46 (4H, d, J = 8.5 Hz), 3.41 (4H, s), 2.66 (4H, s), 2.48 (12H, s); ¹³C NMR (101 MHz, CDCl₃) δ 139.3, 129.2, 127.5, 123.0, 57.2, 47.6; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₈H₂₈N₄NaS₂Zn: 451.0939, found: 451.0932.

 N^1 , N^1 , N^2 , N^2 -tetramethylethane-1,2diamine • bis((4-methoxyphenyl)thio)zinc 2h: Prepared according to General Method B and the title compound was isolated as a white solid (1.52 g, 3.3 mmol, 66% yield). M.p. = 118.2 °C – 118.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (4H, d, J = 8.7 Hz), 6.59 (4H, d, J = 8.7 Hz), 3.68 (6H, s), 2.62 (4H, s), 2.45 (12H, s); ¹³C NMR (101 MHz, CDCl₃) δ 156.2, 133.6, 130.6, 114.0, 57.1, 55.3, 47.5; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₃₀N₂NaO₂S₂Zn: 481.0932, found: 481.0913.

 N^1 , N^2 , N^2 -tetramethylethane-1,2diamine • bis(*o*-tolylthio)zinc 2i: Prepared according to General Method B and the title compound was isolated as a white solid (1.66 g, 3.9 mmol, 78% yield). M.p. = 166.3 °C - 166.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (2H, dd, J = 7.3, 1.7 Hz), 7.03 (2H, dd, J = 7.1, 1.9 Hz), 6.86 - 6.79

(4H, m), 2.66 (4H, s), 2.49 (12H, s), 2.43 (6H, s); ¹³C NMR (101 MHz, CDCl₃) δ 140.3, 139.2, 133.9, 129.5, 125.8, 123.2, 57.3, 47.6, 22.6; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₃₀N₂NaS₂Zn: 449.1034, found: 449.1022.

 N^1 , N^1 , N^2 , N^2 -tetramethylethane-1,2diamine • bis(*m*-tolylthio)zinc 2j: Prepared according to General Method B and the title compound was isolated as a white solid (1.72 g, 4. mmol, 81% yield). M.p. = 154.9 °C – 155.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (4H, d, J = 8.9 Hz), 6.91 (2H, dd, J = 7.5, 7.5 Hz), 6.72 (2H, d, J =7.5 Hz), 2.68 (4H, s), 2.51 (12H, s), 2.14 (6H, s); ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 137.7, 133.6, 129.7, 128.1, 123.9, 57.3, 47.7, 21.3; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₃₀N₂NaS₂Zn: 449.1034, found: 449.1020.

 N^1 , N^1 , N^2 , N^2 -tetramethylethane-1,2diamine • bis((2,4-dimethylphenyl)thio)zinc 2k: Prepared according to General Method B and the title compound was isolated as a white solid (1.70 g, 3.7 mmol, 74% yield). M.p. = 178.6 °C – 178.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (2H, d, J = 7.8 Hz), 6.85 (2H, s), 6.62 (2H, d, J = 7.8 Hz), 2.64 (4H, s), 2.48 (12H, s), 2.39 (6H, s), 2.18 (6H, s); ¹³C NMR (101 MHz, CDCl₃) δ 138.9, 136.3, 133.8, 132.5, 130.5, 126.5, 57.3, 47.6, 22.6, 20.8; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₂H₃₄N₂NaS₂Zn: 477.1347, found: 477.1337.

 N^{1} , N^{2} , N^{2} -tetramethylethane-1,2diamine • bis(thiophen-2-ylthio)zinc 21: Prepared according to General Method B and the title compound was isolated as a white solid (1.56 g, 3.8 mmol, 76% yield). **M.p.** = 102.9 °C - 103.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.89 - 6.85 (4H, m), 6.75 (2H, dd, J = 5.4, 3.4 Hz), 2.67 (4H, s), 2.51 (12H, s); ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 132.5, 126.9, 114.9, 56.1, 46.5; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₄H₂₂N₂NaS₄Zn: 432.9849, found: 432.9835.

 N^1, N^1, N^2, N^2 -tetramethylethane-1,2diamine

bis((1-phenyl-1*H*-tetrazol-5-yl)thio)zinc 2m: Prepared according to General Method B and the title compound was isolated as a white solid (5.04 g, 7.8 mmol, 78% yield, 10.0 mmol was used). M.p. = 145.9 °C – 146.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (4H, d, J = 7.9 Hz), 7.52 – 7.48 (4H, m), 7.45 – 7.41 (2H, m), 3.05 (4H, s), 2.80 (12H, s); ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 135.3, 129.2, 129.0, 124.1, 57.4, 47.6; HRMS (ESI⁺) [M+H]⁺ calc'd for C₂₀H₂₇N₁₀S₂Zn: 535.1148, found: 535.1135.

 N^1 , N^2 , N^2 -tetramethylethane-1,2diamine • bis(propylthio)zinc 2n: Prepared according to General Method B and the title compound was isolated as a white solid (1.46 g, 4.2 mmol, 84% yield). **M.p.** = 280.6 °C – 280.8 °C; **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₁₂H₃₁N₂S₂Zn: 331.1215, found: 331.1224.

N^1, N^1, N^2, N^2 -tetramethylethane-1,2diamine

bis((2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)thio)zinc 20: Prepared according to General Method B and the title compound was isolated as a colorless oil (5.04 g, 7.8 mmol, 78% yield, 10.0 mmol was used). ¹H NMR (400 MHz, CDCl₃) δ 5.74 (2H, d, J = 8.3 Hz), 4.45 (2H, dt, J = 8.8, 4.6 Hz), 3.74 (6H, s), 3.07 (2H, dd, J = 12.8, 4.6 Hz), 3.07 (2H, dd, J = 12.8, 4.6 Hz), 2.60 (4H, s), 2.51 (12H, s), 1.42 (18H, s); ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 155.7, 79.6, 57.0, 55.7, 52.3, 47.6, 28.5, 28.2; HRMS (ESI⁺) [M+H]⁺ calc'd for C₂₄H₄₉N₄O₈S₂Zn: 649.2278, found: 649.2278.

2.9. Synthesis of zinc selenole 2p:

$$\begin{array}{c} PhSe-SePh & \underline{Zn} (3.0 \text{ equiv}) \\ \hline DMF (0.50 \text{ M}) \\ 80 \text{ }^{\circ}C, 3 \text{ h} \end{array} \begin{array}{c} PhSe & \underline{Zn} SePh \\ \hline Toluene (0.50 \text{ M}) \\ 22 \text{ }^{\circ}C, 24 \text{ h} \end{array} \begin{array}{c} Me & \underline{N} \\ Me & \underline{N} \\ PhSe & SePh \end{array} \end{array}$$

A oven-dried 50-mL glass schlenck, equipped with a stirring bar, was charged with 1,2-diphenyldiselane (1.56 g, 5.0 mmol, 1.0 equiv) and Zn (0.98 g, 15.0 mmol, 3.0 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry DMF (10.0 mL) was added under N₂ and the mixture was allowed to stir for 3 h at 80 °C. The mixture was filtered through a celite pad and the organic layers were separated. The solvent was removed by vacuum. The mixture was evacuated and backfilled with nitrogen for three times. Then dry toluene (10.0 mL) and TMEDA (0.87 g, 7.5 mmol, 1.5 equiv) was added under N₂ and the mixture was allowed to stir for 24 h at room temperature. The solvent was removed by rotary evaporation to provide the desired product **3k** as a white solid (1.92 g, 3.9 mmol, 78% yield).

 N^{1} , N^{2} , N^{2} -tetramethylethane-1,2diamine • bis(phenylselanyl)zinc 3k: M.p. = 107.6 °C - 108.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (4H, dd, J = 7.3, 2.2 Hz), 7.01 - 6.99 (4H, m), 2.67 (4H, s), 2.48 (12H, s); ¹³C NMR (101 MHz, CDCl₃) δ 135.5, 130.9, 128.4, 124.1, 57.2, 48.0; HRMS (ESI⁺) [M+H]⁺ calc'd for C₁₉H₃₀N₂Se₂Zn: 498.0144, found: 498.0128.

2.10. Synthesis of diazodium salts 4e, 4g:

<u>General Method C</u>: A 120 °C oven-dried 100-mL round-bottom flask, equipped with a stir bar, the aniline (20.0 mmol, 1.0 equiv) was dissolved of H₂O (7.5 mL) and an aqueous solution of HBF₄ (11.0 g, 48.0 wt%, 3.0 equiv). The mixture was cooled at 0 °C with an ice bath and a solution of NaNO₂ (1.52 g, 1.1 equiv, in 3.0 mL H₂O) was added dropwise. The reaction was stirred at 0 °C for 30 min. The diazodium salt was precipitated by the addition of the ice-cooled Et₂O (40.0 mL), and washed with small amounts of cooled the Et₂O wascrude product, and dissolved in the minimal amount of acetone. The arene diazonium tetrafluoroborate was the precipitated by the slow addition of Et₂O.

Compound 4e: a white solid (3.39 g, 15.3 mmol, 76% yield). The spectral data match those previously reported⁷.

Compound **4g**: a white solid (3.76 g, 14.9 mmol, 75% yield). The spectral data match those previously reported⁸.

2.11. Synthesis of diazodium salts 4f, 4h:

General Method D: A 120 °C oven-dried 100-mL glass, equipped with a stir bar, the

aniline (20.0 mmol, 1.0 equiv) was dissolved in a mixture of absolute EtOH (6.0 mL) and an aqueous solution of HBF₄ (7.32 g, 48.0 wt%, 2.0 equiv). The mixture was cooled at $0 \,^{\circ}$ C with an ice bath and 'BuONO (4.12 g, 2.0 equiv) was added dropwise. Was allowed to warm to room temperature and mixture was stirred at room temperature for 1 h, the arene diazonium tetrafluoroborate was precipitated by the addition of the ice-cooled Et₂O (40.0 mL), and washed with small amounts of cooled the Et₂O wascrude product, and dissolved in the minimal amount of acetone. The diazodium salt was the precipitated by the slow addition of Et₂O.

Compound **4f**: a white solid (2.52 g, 11.4 mmol, 57% yield). The spectral data match those previously reported⁹.

Compound **4h**: a white solid (3.47 g, 14.8 mmol, 71% yield). The spectral data match those previously reported⁸.

2.12. Synthesis of sulfonium salt 4i:

A 120 °C oven-dried 100-mL glass, equipped with a stir bar, was charged with thianthrene (2.16 g, 10.0 mmol, 1.0 equiv), $Fe(NO_3)_3 \cdot 9H_2O$ (4.04 g, 10.0 mmol, 1.0 equiv) and NaBr (41.2 mg, 0.40 mmol, 4.0 mol%). The mixture was evacuated and backfilled with N₂ for three times. Then dry DCM (30.0 mL) and AcOH (0.50 mL) were added under N₂. Stirring was continued at room temperature for 12 h. After that, the reaction was dilute with DCM, and then washed with water. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum, the product was isolated as a white solid (2.25g, 9.7 mmol, 97% yield). The spectral data match those previously reported¹⁰.

A 120 °C oven-dried 100-mL glass, equipped with a stir bar, was charged with thianthrenium-S-oxide (TTO) (0.77 g, 3.3 mmol, 1.1 equiv), anisole (0.32 g, 3.0 mmol, 1.0 equiv), The mixture was evacuated and backfilled with N₂ for three times. Then dry DCM (30.0 mL) were added under N₂. The mixture was cooled at – 40 °C and Tf₂O (1.01 g, 3.6 mmol, 1.2 equiv) was added dropwise. The mixture was allowed to warm to room temperature and Stir at room temperature for 12 h, After the completion of the reaction, the reaction mixture was added into NaHCO₃ aqueous solution (25.0 mL) and extracted with DCM (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 3), dried over Na₂SO₄ and filtered, then filtered and concentrated under reduced pressure and purified by precipitation with Et₂O/DCM, the product **4i** was isolated as a white solid (1.06 g, 2.20 mmol, 75% yield). The spectral data match those previously reported¹¹.

2.13. Synthesis of sulfonium salt 4j:

A 120 °C oven-dried 100-mL glass, equipped with a stir bar, was charged with 4-methoxybenzenethiol (1.28 g, 9.1 mmol, 1.0 equiv), 1-bromo-4-chlorobutane (1.71 g, 10.0 mmol, 1.1 equiv) and NaOH (0.36 g, 9.1 mmol, 1.0 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then EtOH (32.5 mL) and H₂O (32.5 mL) were added under N₂. The mixture was allowed to stir at room temperature for 8 h. The solvent was removed by rotary evaporation, The mixture was poured into

 H_2O (20.0 mL) and extracted with Et₂O (10.0 mL x 3). The combined organic layers extracts were washed with water (25.0 mL x 3), dried over Na₂SO₄ and filtered. Was charged with AgOTf (1.80 g, 7.0 mmol, 0.70 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then DCE (30.0 mL) were added under N₂. The mixture was allowed to stir at room temperature for 8 h, then filtered and concentrated under reduced pressure, the product **4j** was isolated as a black solid (0.30 g, 0.87 mmol, 9.6% yield). The spectral data match those previously reported¹².

2.14. Synthesis of 4-(2,2-difluorovinyl)-1,1'-biphenyl:

A 120 °C oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with [1,1'-biphenyl]-4-carbaldehyde (1.82 g, 10.0 mmol, 1.0 equiv), PPh₃ (3.14 g, 12.0 mmol, 1.2 equiv), The mixture was evacuated and backfilled with N₂ for three times. Then DMF (20.0 mL) were added under N₂. The mixture allowed to warm to 100 °C and ClCF₂CO₂Na (2.29 g, 15.0 mmol, 1.0 equiv, in 7.5 ml DCM) was added dropwise. The reaction was stirred at 100 °C for 1 h, The mixture was poured into water (50.0 mL) and extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated Na₂S₂O₃ aqueous solution (25.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography to provide the desired products. The product 4-(2,2-difluorovinyl)-1,1'-biphenyl was isolated as a white solid (1.80 g, 8.34 mmol, 83% yield). The spectral data match those previously reported¹³.

2.15. Synthesis of 1-bromo-4-methylpentane:

A 120 °C oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with 4-methylpentan-1-ol (1.40 g, 13.7 mmol, 1.0 equiv), PPh₃ (5.11 g, 19.5 mmol, 1.3 equiv), The mixture was evacuated and backfilled with N₂ for three times. Then DCM (50.0 mL) were added under N₂. The mixture was cooled at 0 °C and NBS (3.47 g, 19.5 mmol, 1.3 equiv, in 42.2 mL DCM) was added dropwise. The mixture was allowed to warm to 40 °C and stir at 40 °C for 3 h, The mixture was poured into water (50.0 mL) and extracted with DCM (20.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (20.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: petroleum ether). The product 1-bromo-4-methylpentane was isolated as a colorless oil (1.56 g, 9.4 mmol, 69% yield). The spectral data match those previously reported¹⁴.

2.16. Synthesis of alkyl iodide 92:

A 120 °C oven-dried 100-mL round-bottom flask equipped with a stir bar, was charged with prop-2-en-1-ol (0.58 g, 10.0 mmol, 1.0 equiv), NIS (2.47 g, 11.0 mmol, 1.1 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then DCM (10.0 mL) were added under N₂. The mixture was cooled at 0 °C and 3,4-dihydro-2*H*-pyran (0.84g, 10.0 mmol, 1.0 equiv) was added dropwise. The mixture was allowed to stir at 22 °C for 5 h, The mixture was poured into water (50.0 mL) and extracted with DCM (20.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (20.0 mL x 3), dried over Na₂SO₄ and

filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate). The product **92** was isolated as a colorless oil (2.01 g, 7.5 mmol, 75% yield). The spectra were consistent with the literature data¹⁵.

2.17. Synthesis of alkyl iodide 3f, 3u, 3av-3ax, 90:

$$\begin{array}{c} & \text{PPh}_{3} (1.2 \text{ equiv}) \\ I_{2} (1.2 \text{ equiv}) \\ R^{1} \rightarrow \text{OH} \\ R^{2} \\ R^{2} \\ \end{array} \xrightarrow{\text{Imidazole (1.2 equiv)}}{\text{DCM (0.10 M)}} \xrightarrow{\text{R}^{1} \rightarrow \text{I}}_{R^{2}} \\ \hline \\ 0 \ ^{\circ}\text{C to rt, 12 h} \end{array}$$

<u>General Method E</u>: A 120 °C oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with alcohol (4.0 mmol, 1.0 equiv), PPh₃ (1.26 g, 4.8 mmol, 1.2 equiv), imidazole (0.33 g, 4.8 mmol, 1.2 equiv), The mixture was evacuated and backfilled with N₂ for three times. Then DCM (40.0 mL) were added under N₂. I₂ (1.22 g, 4.8 mmol, 1.2 equiv) was added to the mixture. The mixture was allowed to stir at room temperature for 12 h. The mixture was poured into water (50.0 mL) and extracted with DCM (20.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (20.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography to provide the desired products.

Compound **3f**: a colorless oil (0.89 g, 3.2 mmol, 81% yield). The spectral data match those previously reported¹⁶.

Compound **3u**: a colorless oil (2.92 g, 9.4 mmol, 94% yield, 10.0 mmol was used). The spectral data match those previously reported¹⁷.

Compound **3av**: a colorless oil (0.92 g, 2.9 mmol, 97% yield, 3.0 mmol was used). The spectral data match those previously reported¹⁸.

Compound **3aw**: a white solid (0.95 g, 2.8 mmol, 94% yield, 3.0 mmol was used). The spectral data match those previously reported¹⁹.

Compound **3ax**: a white solid (1.0 g, 2.8 mmol, 92% yield, 3.0 mmol was used). The spectral data match those previously reported¹⁹.

Compound **90**: a white solid (0.22 g, 0.84 mmol, 84% yield, 1.0 mmol was used). The spectral data match those previously reported²⁰, **HPLC**: Column: CHIRALPAK-AD-H, 90:10 hexanes, 0.2 mL/min, 254 nm, in comparison with racemic material, >99:1 ee,; $[\alpha]^{22} = -163.4$ (c = 1.0, CHCl₃).

Supplementary Fig. 1 HPLC traces for compound 90

2.18. Synthesis of alkyl iodides 3aj-3al:

<u>General Method F</u>: A 120 °C oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with alkyl bromide (5.0 mmol, 1.0 equiv), sodium iodide

(1.10 g, 7.5 mmol, 1.5 equiv). The mixture was evacuated and backfilled with N_2 for three times. Then acetone (16.7 mL) were added under N_2 and was stirred in the dark for 16 h. The mixture was poured into water (50.0 mL) and extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated $Na_2S_2O_3$ aqueous solution (25.0 mL x 3), dried over Na_2SO_4 and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography to provide the desired products.

Compound **3aj**: a white solid (1.41 g, 4.7 mmol, 94% yield). The spectral data match those previously reported¹⁷.

Compound **3ak**: a colorless oil (0.44 g, 1.4 mmol, 72% yield, 2.0 mmol was used). The spectral data match those previously reported²¹.

Compound **3al**: a colorless oil (1.52 g, 4.6 mmol, 93% yield). The spectral data match those previously reported²².

2.19. Synthesis of alkyl iodides 3am, 3an:

<u>General Method G</u>: A 120 °C oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with carboxylic acid (10.0 mmol, 1.0 equiv), DMAP (0.12 g, 1.0 mmol, 0.10 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then acetone (40.0 mL) were added under N₂ and DCC (2.27 g, 11.0 mmol, 1.1 equiv, in 10.0 mL acetone) was added dropwise. The mixture was allowed to stir at room temperature for 12 h. The mixture was poured into water (50.0 mL) and extracted with DCM (20.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (20.0 mL x 3), dried over Na_2SO_4 and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography to provide the desired products.

A 120 °C oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with Redox-active esters (1.5 mmol, 1.0 equiv), LiI (0.30 g, 2.3 mmol, 1.5 equiv). The mixture was evacuated and backfilled with N_2 for three times. Then acetone (15.0 mL) were added under N_2 . The mixture was allowed to stir at room temperature for 24 h with blue LEDs. The mixture was transferred to a round bottom flask and solvent was removed by rotary evaporation, the residue was purified by flash silica gel chromatography to provide the desired products.

Compound **3am'**: a white solid (2.60 g, 7.7 mmol, 77% yield). The spectral data match those previously reported²³.

Compound **3an'**: a white solid (2.53 g, 7.4 mmol, 74% yield). The spectral data match those previously reported²³.

Compound **3am**: a white solid (0.17 g, 0.62 mmol, 41% yield). The spectral data match those previously reported²³.

Compound **3an**: a white solid (0.26 g, 0.94 mmol, 62% yield). The spectral data match those previously reported²³.

2.20. Synthesis of alkyl iodides 1ao:

A 120 °C oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with (1r,3R,5S,7r)-3,5-dimethyladamantan-1-ol (0.90 g, 5.0 mmol, 5.0 equiv), NaI (1.5 g, 10.0 mmol, 2.0 equiv), The mixture was evacuated and backfilled with N₂ for three times. Then MeCN (25.0 mL) were added under N₂. The mixture was cooled at 0 °C and MsOH (0.96 g, 10.0 mmol, 2.0 equiv) was added dropwise. Was allowed to warm to room temperature. The mixture was allowed stirr at room temperature

for 4 h, The mixture was poured into water (50.0 mL) and extracted with ethyl acetate (20.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (20.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: petroleum ether). The product **1ao** was isolated as a colorless oil (0.27 g, 0.93 mmol, 18% yield). The spectral data match those previously reported²⁴.

2.21. Synthesis of alkyl iodides 3au:

A 120 °C oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with (3-iodobutan-1-ol (0.60 g, 3.0 mmol, 1.0 equiv), Et₃N (0.91 g, 9.0 mmol, 3.0 equiv) and DMAP (35.7 mg, 0.30 mmol, 0.10 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then DCM (7.50 mL) were added under N₂. The mixture was cooled at 0 °C and 4-methylbenzenesulfonyl chloride (0.74 g, 0.74 mmol, 1.30 equiv) was added dropwise. The mixture was allowed to stir at room temperature for 5 h, The mixture was poured into water (50.0 mL) and extracted with DCM (20.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (20.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 to 3:1 petroleum ether : ethyl acetate). The product **3au** was isolated as a colorless oil (1.03 g, 2.9 mmol, 97% yield). The spectral data match those previously reported²⁵.

2.22. Synthesis of alkyl iodides 67a-67j:

<u>General Method</u> <u>H</u>: A 120 °C oven-dried 50-mL round-bottom flask, equipped with a stir bar, was charged with iodomethyl aryl sulfone (3.0 mmol, 1.0 equiv). 50% aqueous sodium hydroxide (4.50 mL), benzyltriethylammonium chloride (27.3 mg, 0.12 mmol, 0.04 equiv) and the alkyl halide (4.5 mmol, 1.5 equiv). The reaction was stirred at 30 °C for 16 h, The mixture was poured into water (50.0 mL) and extracted with DCM (20.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (20.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography provide the desired products.

Compound **67a**: a colorless oil (0.87 g, 2.3 mmol, 76% yield). The spectral data match those previously reported²⁶.

Compound **67e**: a colorless oil (0.14 g, 0.37 mmol, 37% yield, 1.0 mmol was used). The spectral data match those previously reported²⁷.

Compound **99f**: a colorless oil (0.30 g, 0.76 mmol, 76% yield, 1.0 mmol was used). The spectral data match those previously reported²⁷.

1-Chloro-4-((**1-iodoheptyl)sulfonyl)benzene 67b:** Prepared according to **General Method H** (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (0.91 g, 2.3 mmol, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (2H, d, J = 8.6 Hz), 7.56 (2H, d, J = 8.7 Hz), 4.85 (1H, dd, J = 11.3, 3.0 Hz), 2.20 – 1.98 (1H, m), 1.91 – 1.81 (1H, m), 1.62 – 1.56 (1H, m), 1.35 – 1.22 (7H, m), 0.87 (3H, t, J = 6.7 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 133.7, 131.5, 129.6, 45.0, 32.9, 31.5, 29.2, 28.1, 22.6, 14.1; **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₁₃H₁₉ClIO₂S: 400.9833, found: 400.9834.

1-Bromo-4-((**1-iodoheptyl)sulfonyl)benzene 67c:** Prepared according to **General Method H** (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (0.26 g, 0.57 mmol, 29% yield, 2.00 mmol was used). ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (2H, d, J = 8.7 Hz), 7.73 (2H, d, J =8.6 Hz), 4.84 (1H, dd, J = 11.3, 3.0 Hz), 2.11 – 2.00 (1H, m), 1.90 – 1.80 (1H, m), 1.63 – 1.55 (1H, m), 1.37 – 1.24 (7H, m), 0.87 (3H, t, J = 6.7 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 134.1, 132.5, 131.5, 130.0, 45.0, 32.9, 31.4, 29.2, 28.1, 22.6, 14.1; **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₁₃H₁₉BrIO₂S: 444.9328, found: 444.9307.

4-((1-Iodoheptyl)sulfonyl)benzonitrile 67d: Prepared according to General Method **H** (Eluent: 100:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (0.934 g, 2.4 mmol, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (2H, d, J = 8.2 Hz), 7.89 (2H, d, J = 8.2 Hz), 4.87 (1H, dd, J = 11.3, 3.0 Hz), 2.12 – 2.03 (1H, m), 1.92 – 1.80 (1H, m), 1.65 – 1.56 (1H, m), 1.40 – 1.30 (2H, m), 1.29 – 1.18 (5H, m), 0.86 (3H, t, J = 6.7 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 132.8, 130.7, 118.1, 117.1, 44.1, 32.6, 31.4, 29.1, 28.0, 22.5, 14.1; HRMS (ESI⁺) [M+K]⁺ calc'd for C₁₄H₁₈NKIO₂S: 429.9735, found: 429.9724.

1-Bromo-4-((1-iodo-5-methylhexyl)sulfonyl)benzene 67g: Prepared according to General Method H (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (0.37 g, 0.82 mmol, 41% yield, 2.00 mmol was used). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (2H, d, *J* = 8.1 Hz), 7.90 (2H, d, *J* =

8.1 Hz), 4.86 (1H, dd, J = 11.3, 3.0 Hz), 2.12 – 2.03 (1H, m), 1.93 – 1.83 (1H, m), 1.66 – 1.60 (1H, m), 1.56 – 1.49 (1H, m), 1.40 – 1.29 (1H, m), 1.26 – 1.18 (2H, m), 0.87 (6H, dd, J = 6.7, 2.2 Hz; ¹³C NMR (101 MHz, CDCl₃) δ 134.1, 132.5, 131.5, 130.0, 45.1, 37.5, 33.1, 27.7, 27.1, 22.7, 22.4; HRMS (ESI⁺) [M+H]⁺ calc'd for C₁₃H₁₉BrIO₂S: 444.9328, found: 444.9339.

4-((**1**-Iodo-5-methylhexyl)sulfonyl)benzonitrile 67h: Prepared according to General Method H (Eluent: 100:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (0.21 g, 0.55 mmol, 55% yield, 1.00 mmol was used). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (2H, d, J = 8.5 Hz), 7.89 (2H, d, J = 8.5 Hz), 4.88 (1H, dd, J = 11.3, 3.0 Hz), 2.06 – 2.00 (1H, m), 1.91 – 1.83 (1H, m), 1.64 – 1.58 (1H, m), 1.54 – 1.47 (1H, m), 1.36 – 1.30 (1H, m), 1.20 – 1.14 (2H, m), 0.85 (6H, dd, J = 6.6, 2.2 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 139.5, 132.9, 130.7, 118.1, 117.1, 44.1, 37.5, 32.8, 27.7, 27.0, 22.7, 22.3; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₄H₁₈NIO₂SNa: 413.9995, found: 413.9999.

1-((1-Iodohexyl)sulfonyl)-4-methylbenzene 67i: Prepared according to **General Method H** (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (0.94 g, 2.6 mmol, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (2H, d, J = 8.2 Hz), 7.36 (2H, d, J = 8.0 Hz), 4.85 (1H, dd, J = 11.2, 3.0 Hz), 2.46 (3H, s), 2.08 – 1.95 (1H, m), 1.89 – 1.79 (1H, m), 1.64 – 1.54 (1H, m), 1.35 – 1.17 (5H, m), 0.85 (3H, t, J = 6.8 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 132.0, 130.0, 129.8, 45.8, 33.0, 30.5, 28.9, 22.3, 21.8, 14.0; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₃H₁₉IO₂SNa: 389.0043, found: 389.0029.

1-((1-Iodopentyl)sulfonyl)-4-methylbenzene 67j: Prepared according to **General Method H** (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (0.88 g, 2.5 mmol, 84% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (2H, d, J = 8.4 Hz), 7.38 (2H, d, J = 8.4 Hz), 4.86 (1H, dd, J = 11.2, 3.0 Hz), 2.48 (3H, s), 2.11 – 1.98 (1H, m), 1.94 – 1.80 (1H, m), 1.64 – 1.49 (1H, m), 1.41 – 1.21 (3H, m), 0.88 (3H, t, J = 7.0 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 132.0, 130.0, 129.9, 45.8, 32.8, 31.3, 21.9, 21.6, 13.8; HRMS (ESI⁺) [M+K]⁺ calc'd for C₁₂H₁₇IO₂SK: 390.9626, found: 390.9622.

3. Optimization of the reaction conditions

Table 3.1 Evaluation of different solvents

Reaction conditions: **3a** (0.10 mmol, 1.0 equiv), **2a** (0.15 mmol, 1.5 equiv), **4a** (0.25 mmol, 2.5 equiv) in solvent (0.60 mL) at 22 °C for 1 h; ^aYield was determined by ¹H NMR spectroscopy in the presence of CH_2Br_2 as an internal standard.

Table 3.2 Evaluation of different diazodium salts

Reaction conditions: **3a** (0.10 mmol, 1.0 equiv), **2a** (0.15 mmol, 1.5 equiv), **4** (0.25 mmol, 2.5 equiv) in DMSO (0.60 mL) at 22 °C for 1 h; ^aYield was determined by ¹H NMR spectroscopy in the presence of CH_2Br_2 as an internal standard.

Table 3.3 Evaluation of different of the starting materials

Reaction conditions: **2a** , **3a** , **4a** in DMSO (0.60 mL) at 22 ^oC for 1 h; ^aYield was determined by ¹H NMR spectroscopy in the presence of CH_2Br_2 as an internal standard.

Table 3.4 Evaluation of different concentrations

Reaction conditions: **3a** (0.10 mmol, 1.0 equiv), **2a** (0.15 mmol, 1.5 equiv), **4a** (0.25 mmol, 2.5 equiv) in DMSO at 22 °C for 1 h; ^aYield was determined by ¹H NMR spectroscopy in the presence of CH_2Br_2 as an internal standard.

Table 3.5 Evaluation of different temperature

Reaction conditions: **3a** (0.10 mmol, 1.0 equiv), **2a** (0.15 mmol, 1.5 equiv), **4a** (0.25 mmol, 2.5 equiv) in DMSO (0.60 mL) at T for 1 h; ^aYield was determined by ¹H NMR spectroscopy in the presence of CH_2Br_2 as an internal standard.

Table 3.6 Evaluation of different sulfonium salts

Reaction conditions: **3a** (0.10 mmol, 1.0 equiv), **2a** (0.15 mmol, 1.5 equiv), sulfonium salt **4i** or **4j** (0.25 mmol, 2.5 equiv) in DMSO (0.60 mL) at 22 ^oC for 1 h; ^aYield was determined by ¹H NMR spectroscopy in the presence of CH_2Br_2 as an internal standard.

Table 3.7 Evaluation of different diaryliodonium salt

Reaction conditions: **3a** (0.10 mmol, 1.0 equiv), **2a** (0.15 mmol, 1.5 equiv), diaryliodonium salt **4k** (0.25 mmol, 2.5 equiv) in DMSO (0.60 mL) at 22 °C for 1 h; ^{*a*}Yield was determined by ¹H NMR spectroscopy in the presence of CH_2Br_2 as an internal standard.

Table 3.8 Background S_N2 pathway

Reaction conditions: **3a** (0.10 mmol, 1.0 equiv), **2a** (0.15 mmol, 1.5 equiv), in DMSO (0.60 mL) at T $^{\circ}$ C for 1 h; ^aYield was determined by ¹H NMR spectroscopy in the presence of CH₂Br₂ as an internal standard.

4. Substrate scope

General Method I: A 120 °C oven-dried 25-mL glass schlenck, equipped with a stir bar, was charged with alkyl iodide (0.30 mmol, 1.0 equiv), zinc thiolate (0.45 mmol, 1.5 equiv) and arene diazodium salt (0.75 mmol, 2.5 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then DMSO (1.8 mL) were added under N₂ and was stirred for 1 h. The mixture was poured into water (20.0 mL) and extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography to provide the desired products.

Phenyl(4-phenylbutan-2-yl)sulfane 5: Prepared according to **General Method I** (Eluent: petroleum ether) and the title compound was isolated as a colorless oil (51.0 mg, 0.21 mmol, 70% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.34 (2H, m), 7.29 – 7.24 (4H, m), 7.22 – 7.20 (1H, m), 7.18 – 7.15 (3H, m), 3.22 – 3.17 (1H, m), 2.83 – 2.72 (2H, m), 1.97 – 1.88 (1H, m), 1.86 – 1.76 (1H, m), 1.31 (3H, d, J = 6.7 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 141.8, 135.2, 132.1, 128.9, 128.6, 128.5, 126.8, 126.0, 42.6, 38.3, 33.3, 21.3. The spectral data match those previously reported²⁸.

3-(Phenylthio)butan-1-ol 6: Prepared according to **General Method J** (Eluent: 100:1 to 3:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (54.6 mg, 0.30 mmol, >99% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.41 (2H, m), 7.32 – 7.28 (2H, m), 7.27 – 7.19 (1H, m), 3.93 – 3.69 (2H, m), 3.44 – 3.35 (1H, m), 1.89 (1H, s), 1.84 – 1.78 (2H, m), 1.32 (3H, d, *J* = 6.8 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 134.7, 132.3, 129.0, 127.1, 60.7, 40.5, 39.2, 21.6. The spectral data match those previously reported²⁹.

tert-Butyldimethyl(3-(phenylthio)butoxy)silane 7: Prepared according to General Method I (Eluent: 100:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (84.9 mg, 0.29 mmol, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.34 (2H, m), 7.31 – 7.25 (2H, m), 7.23 – 7.17 (1H, m), 3.83 – 3.66 (2H, m), 3.46 – 3.48 (1H, m), 1.88 – 1.82 (1H, m), 1.72 – 1.66 (1H, m), 1.30 (3H, d, *J* = 6.8 Hz), 0.89 (9H, s), 0.05 (6H, d, *J* = 1.8 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 135.5, 131.7, 128.9, 126.6, 60.6, 39.6 (d, *J* = 7.4 Hz), 26.1, 21.4, 18.4, –5.3 (d, *J* = 4.56 Hz); HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₆H₂₈NaSSiO: 319.1522, found: 319.1513.

4-Methyl-*N***-(3-(phenylthio)butyl)benzenesulfonamide 8:** Prepared according to **General Method I** (Eluent: 100:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a brown oil (51.1 mg, 0.15 mmol, 51% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (2H, d, *J* = 8.3 Hz), 7.27 – 7.24 (2H, m), 7.22 – 7.18 (3H, m), 7.17 – 7.14 (2H, m), 4.95 (1H, t, *J* = 6.3 Hz), 3.13 (1H, q, *J* = 6.8 Hz), 3.02 (2H, q, *J* = 6.7 Hz), 2.33 (3H, s), 1.61 (2H, q, *J* = 6.9 Hz), 1.13 (3H, q, *J* = 6.7 Hz); ¹³**C NMR** (126 MHz, CDCl₃) δ 143.5, 136.9, 134.2, 132.5, 129.8, 129.0, 127.2, 127.2, 41.0, 40.8,

36.2, 21.6, 21.4; **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₁₇H₂₂NO₂S₂: 336.1086, found: 336.1080.

tert-Butyl (3-(phenylthio)butyl)(tosyl)carbamate 9: Prepared according to General Method I (Eluent: 100:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (100.3 mg, 0.23 mmol, 77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (2H, d, J = 8.4 Hz), 7.37 (2H, d, J = 6.9 Hz), 7.25 – 7.21 (3H, m), 7.20 – 7.14 (2H, m), 4.03 – 3.81 (2H, m), 3.18 (1H, q, J = 6.7 Hz), 2.35 (3H, s), 2.00 – 1.87 (2H, m), 1.27 (3H, d, J = 6.8 Hz), 1.25 (9H, s); ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 144.3, 137.4, 134.5, 132.6, 129.4, 129.0, 127.9, 127.1, 84.4, 45.4, 41.1, 36.8, 28.0, 21.7, 21.3; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₂H₂₉NaNO₄S: 458.1430, found: 458.1441.

Phenyl(1-phenylpentan-3-yl)sulfane 10: Prepared according to **General Method I** (Eluent: petroleum ether) and the title compound was isolated as a colorless oil (67.7 mg, 0.26 mmol, 88% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.40 – 7.38 (2H, m), 7.31 – 7.27 (4H, m), 7.25 – 7.19 (2H, m), 7.18 (2H, d, *J* = 7.0 Hz), 3.07 – 3.05 (1H, m), 2.88 – 2.77 (2H, m), 1.96 – 1.85 (2H, m), 1.74 – 1.63 (2H, m), 1.04 (3H, t, *J* = 7.4 Hz); ¹³**C NMR** (126 MHz, CDCl₃) δ 142.0, 135.6, 132.1, 128.9, 128.6, 128.5, 126.7, 126.0, 50.1, 35.8, 33.1, 27.5, 11.3; **HRMS** (ESI⁺) [M+K]⁺ calc'd for C₁₇H₂₀KS: 295.0917, found: 295.0923.

(2,3-Dihydro-1*H*-inden-2-yl)(phenyl)sulfane 11: Prepared according to General Method I (Eluent: petroleum ether) and the title compound was isolated as a colorless oil (52.6 mg, 0.23 mmol, 77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (2H, d, J = 7.4 Hz), 7.24 – 7.20 (2H, m), 7.16 – 7.07 (5H, m), 4.03 (1H, tt, J = 7.5, 5.9 Hz), 3.29 (2H, dd, J = 16.2, 7.5 Hz), 2.92 (2H, dd, J = 16.2, 5.9 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 136.2, 130.7, 129.1, 126.8, 126.5, 124.6, 45.4, 40.3. The spectral data match those previously reported²⁸.

tert-Butyl (4-(phenylthio)cyclohexyl)carbamate 12: Prepared according to General Method I (Eluent: 100:1 to 15:1 petroleum ether: ethyl acetate) and the title compound was isolated as a grey solid (68.4 mg, 0.22 mmol, 74% yield). M.p. = 67.4 °C - 68.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (2H, d, J = 7.3 Hz), 7.20 - 7.13 (2H, m), 7.10 (1H, d, J = 6.6 Hz), 4.53 (1H, s), 3.48 (1H, s), 3.29 (1H, s), 1.77 - 1.67 (3H, m), 1.65 - 1.64 (1H, m), 1.62 - 1.56 (4H, m), 1.34 (9H, s); ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 135.2, 131.8, 129.0, 126.9, 79.2, 47.8, 44.8, 35.4, 29.0, 28.5; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₂₅NNaO₂S: 330.1498, found: 330.1491.

Cycloheptyl(phenyl)sulfane 13: Prepared according to **General Method I** (Eluent: petroleum ether) and the title compound was isolated as a colorless oil (61.5 mg, 0.30 mmol, >99% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.28 (2H, m), 7.23 – 7.19 (2H, m), 7.15 – 7.11 (1H, m), 3.30 – 3.24 (1H, m), 1.98 – 1.91 (2H, m), 1.68 – 1.63 (2H, m), 1.56 – 1.55 (1H, m), 1.51 – 1.47 (5H, m), 1.43 – 1.35 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 136.2, 131.2, 128.8, 126.3, 48.0, 34.6, 28.3, 26.0. The spectral data match those previously reported³⁰.

S36

4-(Phenylthio)tetrahydro-2*H***-pyran 14:** Prepared according to **General Method I** (Eluent: 100:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (53.6 mg, 0.28 mmol, 92% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.34 (2H, m), 7.25 – 7.21 (2H, m), 7.20 – 7.15 (1H, m), 3.89 (2H, dt, J = 11.7, 3.8 Hz), 3.35 (2H, ddd, J = 11.7, 10.7, 2.4 Hz), 3.19 (1H, tt, J = 10.7, 4.0 Hz), 1.86 – 1.79 (2H, m), 1.64 – 1.54 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 133.8, 132.8, 129.0, 127.4, 67.4, 43.5, 33.2. The spectral data match those previously reported³¹.

3-(Phenylthio)tetrahydrofuran 15: Prepared according to **General Method I** (Eluent: 100:1 to 70:1 petroleum ether: ethyl acetate) and the title compound was isolated as a brown oil (41.6 mg, 0.23 mmol, 77% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.29 (2H, m), 7.25 – 7.21 (2H, m), 7.17 – 7.13 (1H, m), 4.03 (1H, dd, J = 9.2, 6.5 Hz), 3.91 – 3.85 (1H, m), 3.82 – 3.70 (2H, m), 3.61 (1H, dd, J = 9.2, 5.4 Hz), 2.30 – 2.21 (1H, m), 1.89 – 1.81 (1H, m); ¹³**C** NMR (101 MHz, CDCl₃) δ 135.7, 130.7, 129.1, 126.8, 73.7, 67.7, 44.9, 33.2. The spectral data match those previously reported³².

4-(Phenylthio)tetrahydro-2*H***-thiopyran 16:** Prepared according to **General Method I** (Eluent: 100:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (57.2 mg, 0.27 mmol, 91% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.30 (2H, m), 7.25 – 7.23 (1H, m), 7.22 – 7.16 (2H, m), 3.06 (1H, tt, J = 10.2, 3.4 Hz), 2.71 – 2.65 (2H, m), 2.55 (2H, ddd, J = 13.7, 10.5, 2.7 Hz), 2.22 – 2.16 (2H, m), 1.77 – 1.68 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 133.8, 132.8, 129.1, 127.4, 46.1, 34.0, 28.0. The spectral data match those previously reported³¹.

tert-Butyl 4-(phenylthio)piperidine-1-carboxylate 17: Prepared according to General Method I (Eluent: 100:1 to 15:1 petroleum ether: ethyl acetate) and the title compound was isolated as a brown solid (58.6 mg, 0.20 mmol, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.30 (2H, m), 7.26 – 7.20 (2H, m), 7.20 – 7.15 (1H, m), 3.89 (2H, dt, J = 14.0, 4.3 Hz), 3.17 – 3.10 (1H, m), 2.84 (2H, dt, J = 13.6, 10.7 Hz, 3.0 Hz), 1.86 – 1.82 (2H, m), 1.49 – 1.40 (2H, m), 1.37 (1H, s); ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 133.8, 132.8, 129.0, 127.4, 79.7, 44.6, 43.3, 32.2, 28.5. The spectral data match those previously reported³².

6-(Phenylthio)hexahydro-2*H*-3,5-methanocyclopenta[*b*]furan-2-one 18: Prepared according to General Method I (Eluent: 100:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (60.8 mg, 0.25 mmol, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.26 (4H, m), 7.25 – 7.20 (1H, m), 4.60 (1H, d, J = 5.0 Hz), 3.30 – 3.19 (2H, m), 2.61 (1H, ddt, J = 11.4, 4.7, 1.5 Hz), 2.50 (1H, s), 2.25 (1H, dd, J = 11.4, 1.9 Hz), 2.13 (1H, ddd, J = 13.4, 11.3Hz, 3.9 Hz), 1.83 (1H, d, J = 13.4 Hz), 1.66 (1H, dd, J = 11.4, 1.9 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 180.2, 134.1, 129.7, 129.4, 126.8, 85.8, 54.0, 46.4, 41.2, 38.9, 36.1, 35.1. The spectral data match those previously reported³⁴.

Benzyl 4-(phenylthio)piperidine-1-carboxylate 19: Prepared according to General Method I (Eluent: 100:1 to 15:1 petroleum ether: ethyl acetate) and the title compound was isolated as a brown oil (75.6 mg, 0.23 mmol, 77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.39 (2H, m), 7.37 – 7.33 (4H, m), 7.31 – 7.30 (1H, m), 7.30 – 7.27 (2H, m), 7.27 – 7.22 (1H, m), 5.11 (2H, s), 4.03 (2H, s), 3.21 (1H, tt, J = 10.1, 3.8 Hz), 3.00 (2H, t, J = 10.9 Hz), 2.01 – 1.83 (2H, m), 1.56 – 1.53 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 155.2, 136.8, 133.7, 132.8, 129.0, 128.5, 128.1, 127.9, 127.5, 67.2, 44.3, 43.4, 32.0; HRMS (ESI⁺) [M+H]⁺ calc'd for C₁₉H₂₂NO₂S: 328.1366, found: 328.1359.

tert-Butyl 2-(phenylthio)-7-azaspiro[3.5]nonane-7-carboxylate 20: Prepared according to General Method I (Eluent: 100:1 to 40:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow oil (64.9 mg, 0.20 mmol, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.22 (4H, m), 7.19 – 7.14 (1H, m), 3.88 – 3.80 (1H, m), 3.34 (2H, t, J = 5.6 Hz), 3.26 (2H, t, J = 5.6 Hz), 2.40 – 2.34 (2H, m), 1.90 – 1.85 (2H, m), 1.59 (2H, t, J = 5.6 Hz), 1.55 (2H, t, J = 5.6 Hz), 1.44 (9H, s); ¹³C NMR (101 MHz, CDCl₃) δ 155.0, 136.8, 129.0, 128.9, 125.9, 79.5, 40.2, 39.1, 36.4, 35.1, 34.1, 28.5; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₉H₂₇NNaO₂S: 356.1655, found: 356.1642.

8-(Phenylthio)-1,4-dioxaspiro[4.5]decane 21: Prepared according to General Method I (Eluent: 100:1 to 15:1 petroleum ether: ethyl acetate) and the title compound was isolated as a brown oil (45.0 mg, 0.18 mmol, 60% yield). ¹H NMR

(400 MHz, CDCl₃) δ 7.41 (2H, d, J = 7.4 Hz), 7.30 – 7.27 (2H, m), 7.24 – 7.20 (1H, m), 3.93 (4H, s), 3.19 (1H, tt, J = 9.6, 3.8 Hz), 2.02 – 1.96 (2H, m), 1.87 – 1.81 (2H, m), 1.71 (2H, dtd, J = 13.3, 9.9, 3.5 Hz), 1.60 – 1.53 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 135.1, 132.1, 128.9, 126.9, 108.2, 64.4, 44.9, 33.8, 30.2. The spectral data match those previously reported³⁴.

3-(Phenylthio)butyl benzoate 22: Prepared according to **General Method I** (Eluent: 100:1 to 30:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (80.3 mg, 0.28 mmol, 93% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (2H, d, J = 7.0 Hz), 7.60 – 7.54 (1H, m), 7.46 – 7.42 (4H, m), 7.30 – 7.25 (2H, m), 7.24 – 7.20 (1H, m), 4.48 (2H, t, J = 6.4 Hz), 3.44 – 3.36 (1H, m), 2.13 – 1.94 (2H, m), 1.38 (3H, d, J = 6.8 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 166.6, 134.6, 133.1, 132.5, 130.3, 129.7, 129.0, 128.5, 127.2, 62.7, 40.5, 35.8, 21.4; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₁₈NaO₂S: 309.0920, found: 309.0929.

5-(3-(Phenylthio)butyl)benzo[*d*][1,3]dioxole 23: Prepared according to General Method I (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (53.3 mg, 0.19 mmol, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.27 (2H, m), 7.20 – 7.18 (2H, m), 7.16 – 7.11 (1H, m), 6.64 (1H, d, *J* = 7.8 Hz), 6.60 – 6.52 (2H, m), 5.83 (2H, s), 3.10 (1H, q, *J* = 6.7 Hz), 2.67 – 2.58 (2H, m), 1.82 – 1.65 (2H, m), 1.22 (3H, d, *J* = 6.7 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 145.8, 135.6, 135.1, 132.2, 128.9, 126.9, 121.3, 109.0, 108.3, 100.9, 42.5, 38.5, 33.0, 21.3; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₁₈NaO₂S: 309.0920, found: 309.0918.

3-(Phenylthio)butyl furan-2-carboxylate 24: Prepared according to **General Method I** (Eluent: 100:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (65.6 mg, 0.24 mmol, 79% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (1H, s), 7.42 (2H, d, J = 7.2 Hz), 7.30 – 7.26 (2H, m), 7.25 – 7.20 (1H, m), 7.16 (1H, d, J = 3.4 Hz), 6.51 (1H, dd, J = 3.6, 1.7 Hz), 4.46 (2H, t, J = 6.5 Hz), 3.37 (1H, q, J = 6.8 Hz), 2.07 – 1.94 (2H, m), 1.36 (3H, d, J = 6.8 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 158.7, 146.4, 144.7, 134.5, 132.5, 129.0, 127.2, 118.0, 111.9, 62.7, 40.3, 35.6, 21.4; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₅H₁₆NaO₃S: 299.0712, found: 299.0719.

3-(Phenylthio)butyl thiophene-2-carboxylate 25: Prepared according to **General Method I** (Eluent: 100:1 to 80:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (73.8 mg, 0.25 mmol, 84% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (1H, dd, J = 3.7, 1.3 Hz), 7.56 (1H, dd, J = 5.0, 1.3 Hz), 7.44 – 7.41 (2H, m), 7.31 – 7.26 (2H, m), 7.25 – 7.21 (1H, m), 7.10 (1H, dd, J = 5.0, 3.6 Hz), 4.45 (2H, td, J = 6.3, 1.2 Hz), 3.39 (1H, q, J = 6.8 Hz), 2.08 – 1.92 (2H, m), 1.37 (3H, d, J = 6.8 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 162.2, 134.6, 133.8, 133.6, 132.5, 132.4, 129.0, 127.9, 127.2, 62.9, 40.4, 35.7, 21.3; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₅H₁₆NaO₂S₂: 315.0484, found: 315.0481.

4-(4-(Phenylthio)butoxy)benzonitrile 26: Prepared according to **General Method I** (Eluent: 100:1 to 30:1 petroleum ether: ethyl acetate) and the title compound was

isolated as a colorless oil (73.2 mg, 0.26 mmol, 86% yield). ¹**H** NMR (400 MHz, CDCl₃) δ 7.56 (2H, d, J = 8.8 Hz), 7.33 (2H, dd, J = 8.3, 1.4 Hz), 7.29 – 7.26 (2H, m), 7.20 – 7.16 (1H, m), 6.90 (2H, d, J = 8.8 Hz), 4.00 (2H, t, J = 6.2 Hz), 2.99 (2H, t, J = 7.1 Hz), 1.97 – 1.91 (2H, m), 1.86 – 1.80 (2H, m); ¹³**C** NMR (101 MHz, CDCl₃) δ 162.4, 136.3, 134.0, 129.3, 129.0, 126.1, 119.3, 115.2, 103.8, 67.7, 33.4, 28.0, 25.6; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₁₇NNaOS: 306.0923, found: 306.0917.

(4-(4-Nitrophenoxy)butyl)(phenyl)sulfane 27: Prepared according to General Method I (Eluent: 100:1 to 30:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow solid (53.7 mg, 0.18 mmol, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (2H, d, J = 9.2 Hz), 7.35 – 7.30 (2H, m), 7.28 (2H, dd, J = 8.5, 6.8 Hz), 7.19 – 7.16 (1H, m), 6.91 (2H, d, J = 9.2 Hz), 4.05 (2H, t, J = 6.2 Hz), 3.00 (2H, t, J = 7.1 Hz), 1.99 – 1.94 (2H, m), 1.88 – 1.82 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 164.1, 141.5, 136.3, 129.4, 129.0, 126.1, 126.0, 114.5, 68.2, 33.4, 28.0, 25.6. The spectral data match those previously reported³⁵.

4-(4-(Phenylthio)butoxy)benzaldehyde 28: Prepared according to **General Method I** (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (58.4 mg, 0.20 mmol, 68% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 9.87 (1H, s), 7.81 (2H, d, J = 8.6 Hz), 7.35 – 7.32 (2H, m), 7.29 – 7.26 (2H, m), 7.20 – 7.15 (1H, m), 6.96 (2H, d, J = 8.4 Hz), 4.04 (2H, t, J = 6.2 Hz), 3.00 (2H, t, J = 7.1 Hz), 2.00 – 1.93 (2H, m), 1.88 – 1.80 (2H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 190.9, 164.1, 136.4, 132.1, 130.0, 129.3, 129.0, 126.1, 114.8, 67.8, 33.4, 28.1, 25.7. The spectral data match those previously reported²⁸.

1-(4-(4-(Phenylthio)butoxy)phenyl)ethan-1-one 29: Prepared according to **General Method I** (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (67.4 mg, 0.22 mmol, 75% yield). **M.p.** = 93.9 °C – 94.3 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (2H, d, *J* = 8.8 Hz), 7.35 – 7.32 (2H, m), 7.30 – 7.26 (2H, m), 7.20 – 7.15 (1H, m), 6.96 (2H, d, *J* = 8.9 Hz), 4.02 (2H, t, *J* = 6.2 Hz), 2.99 (2H, t, *J* = 7.1 Hz), 2.55 (3H, s), 1.99 – 1.90 (2H, m), 1.85 – 1.82 (2H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 196.9, 162.9, 136.4, 130.7, 130.4, 129.3, 129.0, 126.1, 114.2, 67.6, 33.4, 28.2, 26.4, 25.7; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₈H₂₀NaO₂S: 323.1076, found: 323.1073.

Methyl 4-(4-(phenylthio)butoxy)benzoate 30: Prepared according to General Method I (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (66.5 mg, 0.20 mmol, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (2H, d, J = 8.9 Hz), 7.35 – 7.32 (2H, m), 7.29 – 7.26 (2H, m), 7.19 – 7.15 (1H, m), 6.88 (2H, d, J = 8.8 Hz), 4.01 (2H, t, J = 6.1 Hz), 3.88 (3H, s), 2.99 (2H, t, J = 7.1 Hz), 1.97 – 1.91 (2H, m), 1.87 – 1.80 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 162.8, 136.5, 131.7, 129.3, 129.0, 126.1, 122.6, 114.1, 67.6, 52.0, 33.5, 28.2, 25.8. The spectral data match those previously reported²⁸.

Methyl 4-(4-(phenylthio)butyl)benzoate 31: Prepared according to General Method I (Eluent: 100:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (51.9 mg, 0.17 mmol, 58% yield). M.p. = 63.9 °C - 64.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (2H, d, J = 8.6 Hz), 7.44 (2H, d, J =

8.6 Hz), 7.34 – 7.31 (2H, m), 7.26 – 7.22 (3H, m), 4.36 (2H, s); ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 136.0, 132.6, 131.6, 130.6, 129.5, 129.4, 128.3, 59.8; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₃H₁₁ClNaO₂S₂: 320.9781, found: 320.9773.

4-(((Phenylthio)methyl)sulfonyl)benzonitrile 32: Prepared according to **General Method I** (Eluent: 100:1 to 4:1 petroleum ether: ethyl acetate) and the title compound was isolated as a brown solid (55.7 mg, 0.19 mmol, 64% yield). **M.p.** = 80.1 °C – 80.6 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (2H, d, *J* = 8.5 Hz), 7.77 (2H, d, *J* = 8.5 Hz), 7.32 – 7.30 (2H, m), 7.28 – 7.22 (3H, m), 4.41 (2H, s); ¹³C **NMR** (101 MHz, CDCl₃) δ 141.8, 132.8, 132.2, 131.6, 129.9, 129.5, 128.6, 117.8, 117.1, 59.5; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₄H₁₁NNaO₂S₂: 312.0123, found: 312.0127.

Benzyl 2-(phenylthio)acetate 33: Prepared according to **General Method I** (Eluent: 100:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow oil (48.0 mg, 0.19 mmol, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.35 (2H, m), 7.34 – 7.32 (2H, m), 7.31 – 7.30 (1H, m), 7.29 – 7.25 (3H, m), 7.25 – 7.23 (1H, m), 7.23 – 7.19 (1H, m), 5.13 (2H, s), 3.67 (2H, s); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 135.4, 134.9, 130.2, 129.2, 128.7, 128.5, 128.4, 127.1, 67.3, 36.8. The spectral data match those previously reported³⁶.

4-Nitrobenzyl 2-(phenylthio)acetate 34: Prepared according to General Method I (Eluent: 100:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow oil (58.4 mg, 0.19 mmol, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (2H, d, J = 8.7 Hz), 7.40 – 7.38 (2H, m), 7.38 – 7.37 (2H, m), 7.31 – 7.26 (2H, m), 7.26 – 7.22 (1H, m), 5.21 (2H, s), 3.72 (2H, s); ¹³C NMR (101 MHz, CDCl₃) δ 169.4, 147.8, 142.7, 134.5, 130.3, 129.3, 128.4, 127.4, 123.8, 65.6, 36.6; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₅H₁₃NNaO₄S: 326.0457, found: 326.0459.

((Naphthalen-2-ylsulfonyl)methyl)(phenyl)sulfane 35: Prepared according to General Method I (Eluent: 100:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow solid (51.0 mg, 0.16 mmol, 54% yield). M.p. = 58.3 °C – 59.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (1H, s), 7.94 (1H, d, J = 8.1 Hz), 7.89 (1H, d, J = 4.1 Hz), 7.87 (1H, d, J = 3.5 Hz), 7.82 (1H, dd, J = 8.6, 1.9 Hz), 7.68 – 7.59 (2H, m), 7.29 (2H, dd, J = 7.6, 2.1 Hz), 7.11 – 7.05 (3H, m), 4.43 (2H, s); ¹³C NMR (101 MHz, CDCl₃) δ 135.6, 134.6, 132.8, 132.1, 131.6, 131.3, 129.6, 129.5, 129.2, 128.1, 128.0, 127.8, 123.3, 59.9 (one carbon was missing due to overlap); HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₁₄NaO₂S₂: 337.0327, found: 337.0319.

tert-Butyl 3-((phenylthio)methyl)azetidine-1-carboxylate 36: Prepared according to General Method I (Eluent: 100:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow oil (54.5 mg, 0.20 mmol, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (2H, d, J = 7.5 Hz), 7.31 – 7.27 (2H, m), 7.24 – 7.19 (1H, m), 4.00 (2H, t, J = 8.4 Hz), 3.63 (2H, dd, J = 8.8, 5.3 Hz), 3.11 (2H, d, J = 7.8 Hz), 2.68 (1H, tt, J = 8.0, 5.3 Hz), 1.43 (9H, s); ¹³C NMR (101 MHz, CDCl₃) δ 156.4, 135.2, 130.4, 129.1, 126.8, 79.5, 54.3, 38.5, 28.5, 28.4; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₅H₂₁NNaO₂S: 302.1185, found: 302.1182.

tert-Butyl 4-((phenylthio)methyl)piperidine-1-carboxylate 37: Prepared according to General Method I (Eluent: 100:1 to 10:1 petroleum ether: ethyl acetate) and the

title compound was isolated as a yellow oil (67.4 mg, 0.22 mmol, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.23 (2H, m), 7.23 – 7.18 (2H, m), 7.12 – 7.08 (1H, m), 4.02 (2H, s), 2.77 (2H, d, J = 7.2 Hz), 2.59 (2H, t, J = 12.9 Hz), 1.78 (2H, d, J = 13.8 Hz), 1.65 – 1.55 (1H, m), 1.38 (9H, s), 1.15 – 1.05 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 154.9, 136.9, 129.1, 129.0, 125.9, 79.5, 43.8, 40.2, 36.1, 31.7, 28.5; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₂₅NNaO₂S: 330.1498, found: 330.1507.

Methyl 3-(phenylthio)propanoate 38: Prepared according to General Method I (Eluent: 100:1 to 30:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (49.9 mg, 0.24 mmol, 79% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.36 (2H, m), 7.32 – 7.30 (2H, m), 7.29 – 7.19 (1H, m), 4.14 (2H, q, J = 7.1 Hz), 3.17 (2H, t, J = 7.4 Hz), 2.62 (2H, t, J = 7.4 Hz), 1.25 (3H, t, J = 7.1 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 135.4, 130.2, 129.2, 126.7, 60.9, 34.6, 29.2, 14.3. The spectral data match those previously reported³⁷.

(6-Chlorohexyl)(phenyl)sulfane 39: Prepared according to General Method I (Eluent: petroleum ether) and the title compound was isolated as a colorless oil (45.2 mg, 0.20 mmol, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (4H, m), 7.19 – 7.14 (1H, m), 3.52 (2H, t, J = 6.7 Hz), 2.92 (2H, t, J = 7.3 Hz), 1.80 – 1.73 (2H, m), 1.70 – 1.63 (2H, m), 1.47 – 1.43 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 136.9, 129.1, 129.0, 125.9, 45.1, 33.6, 32.6, 29.1 28.1, 26.5.The spectral data match those previously reported³⁸.

1-(4-(Phenylthio)butyl)-1H-indole 40: Prepared according to **General Method I** (Eluent: 100:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a brown oil (61.2 mg, 0.22 mmol, 72% yield). ¹H NMR (400 MHz, CDCl₃)

 δ 7.61 (1H, d, J = 8.0 Hz), 7.29 (1H, d, J = 8.2 Hz), 7.26 – 7.22 (3H, m), 7.21 – 7.16 (2H, m), 7.15 – 7.11 (1H, m), 7.10 – 7.06 (1H, m), 7.00 (1H, d, J = 3.1 Hz), 6.45 (1H, d, J = 3.1 Hz), 4.05 (2H, t, J = 7.0 Hz), 2.84 (2H, t, J = 7.1 Hz), 1.95 – 1.89 (2H, m), 1.63 – 1.58 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 136.3, 135.9, 129.5, 129.0, 128.7, 127.7, 126.1, 121.5, 121.1, 119.4, 109.4, 101.2, 45.9, 33.4, 29.2, 26.5. The spectral data match those previously reported²⁸.

3-(Phenylthio)propyl bicyclo[2.2.1]hept-5-ene-2-carboxylate 41: Prepared according to **General Method I** (Eluent: 100:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (48.4 mg, 0.17 mmol, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (2H, d, J = 7.3 Hz), 7.31 – 7.27 (2H, m), 7.21 – 7.19 (1H, m), 6.20 – 6.18 (1H, m), 5.92 – 5.89 (1H, m), 4.13 (2H, td, J = 6.3, 1.5 Hz), 3.20 (1H, s), 3.00 – 2.94 (3H, m), 2.91 – 2.90 (1H, m), 1.95 – 1.89 (3H, m), 1.44 – 1.40 (2H, m), 1.27 (1H, d, J = 8.5 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 138.0, 136.1, 132.4, 129.5, 129.1, 126.2, 62.7, 49.7, 45.8, 43.4, 42.6, 30.4, 29.3, 28.5. The spectral data match those previously reported²⁸.

3-(Phenylthio)propyl bicyclo[2.2.1]hept-5-ene-2-carboxylate 42: Prepared according to **General Method I** (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (72.6 mg, 0.23 mmol, 78% yield). **¹H NMR** (400 MHz, CDCl₃) δ 7.84 – 7.81 (2H, m), 7.71 – 7.69 (2H, m), 7.30 (2H, d, *J* = 7.8 Hz), 7.25 – 7.22 (2H, m), 7.15 – 7.11 (1H, m), 3.69 (2H, t, *J* = 7.1 Hz), 2.95 (2H, t, *J* = 7.2 Hz), 1.87 – 1.79 (2H, m), 1.71 – 1.63 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 136.3, 134.0, 132.1, 129.4, 128.9, 126.0, 123.3, 37.5, 33.2, 27.7, 26.3. The spectral data match those previously reported²⁸.

(1*R*,3*S*,5*s*,7*s*)-5-(phenylthio)adamantan-2-one 43: Prepared according to General Method I (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (69.9 mg, 0.27 mmol, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (2H, d, *J* = 6.9 Hz), 7.41 – 7.36 (1H, m), 7.35 – 7.31 (2H, m), 2.54 (2H, s), 2.18 (1H, s), 2.14 – 2.07 (2H, m), 2.06 – 2.03 (4H, m), 1.97– 1.89 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 216.6, 137.8, 129.7, 129.3, 128.7, 47.3, 45.9, 44.4, 42.3, 38.1, 29.0. The spectral data match those previously reported³⁹.

(1*r*,3*s*,5*R*,7*S*)-3-(phenylthio)adamantan-1-ol 44: Prepared according to General Method I (Eluent: 100:1 to 3:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (70.9 mg, 0.27 mmol, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (2H, d, *J* = 6.5 Hz), 7.38 – 7.29 (3H, m), 2.21 (2H, s), 1.75 (3H, d, *J* = 8.6 Hz), 1.76 – 1.68 (4H, m), 1.64 – 1.55 (4H, m), 1.49 (2H, s); ¹³C NMR (101 MHz, CDCl₃) δ 137.8, 130.0, 128.9, 128.5, 69.6, 51.1, 49.0, 44.0, 42.2, 34.7, 31.5. The spectral data match those previously reported⁴⁰.

((1*r*,3*R*,5*S*,7*r*)-3,5-dimethyladamantan-1-yl)(phenyl)sulfane 45: Prepared according to General Method I (Eluent: 100:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (63.4 mg, 0.23 mmol, 78% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (2H, d, *J* = 6.5 Hz), 7.39 – 7.30 (3H, m), 2.10 – 2.07 (1H, m), 1.63 (1H, s), 1.49 – 1.39 (4H, m), 1.31 – 1.22 (4H, m), 1.12 – 1.04 (2H, m), 0.80 (6H, s); ¹³C NMR (101 MHz, CDCl₃) δ 137.8, 130.6, 128.7, 128.5, 50.5, 49.7, 48.9, 42.5, 42.2, 32.9, 30.8, 30.4. The spectral data match those previously reported⁴⁰.

3a-(Phenylthio)-1-tosyloctahydro-1H-indole 46: Prepared according to **General Method I** (Eluent: 100:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow solid (102.3 mg, 0.26 mmol, 88% yield). **M.p.** = 62.5 °C - 63.1 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (2H, d, J = 8.3 Hz), 7.36 – 7.31 (2H, m), 7.31 – 7.28 (2H, m), 7.27 – 7.25 (3H, m), 3.53 – 3.44 (2H, m), 3.31 (1H, dd, J = 7.4, 5.0 Hz), 2.40 (3H, s), 2.15 – 2.08 (1H, m), 1.96 – 1.91 (1H, m), 1.89 – 1.80 (1H, m), 1.76 – 1.70 (2H, m), 1.63 – 1.54 (3H, m), 1.36 – 1.28 (2H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 143.2, 137.3, 135.0, 130.6, 129.6, 129.2, 128.8, 127.6, 63.2, 56.9, 46.0, 34.0, 33.8, 29.7, 21.9, 21.7, 21.6; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₂₁H₂₅NNaO₂S₂: 410.1219, found: 410.1221.

3-Methyl-3-(phenylthio)butyl 4-iodobenzoate 47: Prepared according to **General Method I** (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (99.1 mg, 0.24 mmol, 78% yield). **M.p.** = $69.1 \,^{\circ}\text{C} - 69.7 \,^{\circ}\text{C}$; ¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (2H, d, J = 8.6 Hz), 7.66 (2H, d, J = 8.5 Hz), 7.47 (2H, d, J = 6.4 Hz), 7.29 – 7.24 (3H, m), 4.49 (2H, t, J = 7.0 Hz), 1.87 (2H, t, J = 7.0 Hz), 1.25 (6H, s); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 137.8, 137.7, 131.7, 131.1, 129.9, 129.1, 128.8, 100.9, 62.7, 47.7, 40.3, 29.3; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₈H₁₉INaO₂S: 449.0043, found: 449.0053.

3-Methyl-3-(phenylthio)butyl furan-2-carboxylate 48: Prepared according to

General Method I (Eluent: 100:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (56.5 mg, 0.19 mmol, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (1H, s), 7.47 (2H, dd, J = 7.8, 1.7 Hz), 7.32 – 7.29 (1H, m), 7.28 – 7.24 (2H, m), 7.09 (1H, dd, J = 3.5, 0.7 Hz), 6.43 (1H, dd, J = 3.5, 1.7 Hz), 4.49 (2H, t, J = 7.1 Hz) 1.86 (2H, t, J = 7.1 Hz), 1.24 (6H, s); ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 146.4, 144.9, 137.7, 131.7, 129.1, 128.8, 118.0, 111.9, 62.4, 47.7, 40.3, 29.2; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₆H₁₈NaO₃S: 313.0869, found: 313.0866.

3-Methyl-3-(phenylthio)butyl thiophene-2-carboxylate 49: Prepared according to **General Method I** (Eluent: 100:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (78.4 mg, 0.26 mmol, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (1H, dd, J = 3.8, 1.2 Hz), 7.56 – 7.54 (3H, m), 7.39 – 7.32 (3H, m), 7.10 (1H, dd, J = 5.0, 3.8 Hz), 4.56 (2H, t, J = 6.9 Hz), 1.94 (2H, t, J = 6.9 Hz), 1.33 (6H, s); ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 137.6, 133.9, 133.4, 132.4, 131.7, 129.0, 128.7, 127.8, 62.5, 47.7, 40.2, 29.1; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₅H₁₆NaO₂S₂: 315.0484, found: 315.0481.

((3*s*,5*s*,7*s*)-Adamantan-1-yl)(*p*-tolyl)sulfane 50: Prepared according to General Method I (Eluent: petroleum ether) and the title compound was isolated as a white solid (64.7 mg, 0.25 mmol, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (2H, d, J = 8.0 Hz), 7.13 (2H, d, J = 7.8 Hz), 2.36 (3H, s), 2.01 (3H, s), 1.80 (6H, d, J = 2.8 Hz), 1.67 – 1.57 (6H, m); ¹³C NMR (101 MHz, CDCl₃) δ 138.7, 137.7, 129.2, 127.1, 47.7, 43.7, 36.3, 30.1, 21.4. The spectral data match those previously reported⁴¹.

((3*s*,5*s*,7*s*)-Adamantan-1-yl)(*p*-tolyl)sulfane 51: Prepared according to General Method I (Eluent: petroleum ether) and the title compound was isolated as a white solid (69.5 mg, 0.26 mmol, 88% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.44 (2H, m), 7.03 – 6.99 (2H, m), 2.01 (3H, s), 1.78 (6H, s), 1.67 – 1.57 (6H, m); ¹³C NMR (101 MHz, CDCl₃) δ 163.4 (d, *J* = 249.5 Hz), 139.5 (d, *J* = 83.1 Hz), 125.9 (d, *J* = 34.3 Hz), 115.5 (d, *J* = 21.6 Hz), 47.9, 43.6, 36.2, 30.0; ¹⁹F NMR (471 MHz, CD₃COCD₃) δ –113.0 – –113.1 (1F, m). The spectral data match those previously reported⁴¹.

((3s,5s,7s)-Adamantan-1-yl)(4-chlorophenyl)sulfane 52: Prepared according to General Method I (Eluent: petroleum ether) and the title compound was isolated as a white solid (80.6 mg, 0.29 mmol, 96% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (2H, d, J = 8.5 Hz), 7.28 (2H, d, J = 8.5 Hz), 2.01 (3H, s), 1.78 (6H, d, J = 2.9 Hz) 1.62 – 1.57 (6H, m); ¹³C NMR (101 MHz, CDCl₃) δ 138.9, 135.2, 129.2, 128.6, 48.3, 43.6, 36.2, 30.1. The spectral data match those previously reported⁴².

((3s,5s,7s)-Adamantan-1-yl)(4-bromophenyl)sulfane 53: Prepared according to General Method I (Eluent: petroleum ether) and the title compound was isolated as a white solid (81.9 mg, 0.25 mmol, 84% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (2H, d, J = 8.3 Hz), 7.35 (2H, d, J = 8.3 Hz), 2.01 (3H, s), 1.79 (2H, d, J = 2.3 Hz), 1.67 – 1.58 (6H, m); ¹³C NMR (101 MHz, CDCl₃) δ 139.2, 131.6, 129.8, 123.5, 48.3, 43.7, 36.2, 30.1. The spectral data match those previously reported⁴².

((3s,5s,7s)-Adamantan-1-yl)(4-(*tert*-butyl)phenyl)sulfane 54: Prepared according to General Method I (Eluent: petroleum ether) and the title compound was isolated as a white solid (60.2 mg, 0.20 mmol, 67% yield). M.p. = 85.4 °C - 85.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (2H, d, J = 8.3 Hz), 7.33 (2H, d, J = 8.4 Hz), 2.02 (3H, s), 1.83 – 1.82 (6H, m) 1.68 – 1.58 (6H, m), 1.33 (9H, s); ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 137.3, 127.0, 125.4, 47.6, 43.6, 36.2, 34.6, 31.3, 30.0; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₂₈NaS: 323.1804, found: 323.1813.

4-(((3*s*,5*s*,7*s*)-Adamantan-1-yl)thio)aniline 55: Prepared according to General Method I (Eluent: 100:1 to 2:1 petroleum ether: ethyl acetate) and the title compound was isolated as a grey solid (42.2 mg, 0.16 mmol, 54% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (2H, d, *J* = 8.4 Hz), 6.64 (2H, d, *J* = 8.4 Hz), 3.77 (2H, brs), 2.02 (2H, s), 1.80 – 1.79 (6H, m) 1.67 – 1.59 (6H, m); ¹³C NMR (101 MHz, CDCl₃) δ 147.1, 139.1, 118.6, 115.0, 47.4, 43.5, 36.4, 30.1. The spectral data match those previously reported⁴⁴.

((3*s*,5*s*,7*s*)-Adamantan-1-yl)(2,4-dimethylphenyl)sulfane 56: Prepared according to General Method I (Eluent: petroleum ether) and the title compound was isolated as a white solid (64.4 mg, 0.24 mmol, 79% yield). M.p. = 51.3 °C – 52.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (1H, d, *J* = 7.8 Hz), 7.10 (1H, s), 6.95 (1H, d, *J* = 7.6 Hz), 2.48 (3H, s), 2.32 (3H, s), 2.00 (3H, s), 1.84 (6H, d, *J* = 2.8 Hz) 1.62 – 1.58 (6H, m); ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 139.4, 138.9, 131.3, 126.8, 126.5, 49.2, 43.8, 36.3, 30.1, 22.1, 21.3; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₈H₂₄NaS: 295.1491, found: 295.1499.

((3*s*,5*s*,7*s*)-Adamantan-1-yl)(*o*-tolyl)sulfane 57: Prepared according to General Method I (Eluent: petroleum ether) and the title compound was isolated as a white solid (66.8 mg, 0.26 mmol, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (1H, d, J = 7.5 Hz), 7.29 – 7.22 (2H, m), 7.15 – 7.11 (1H, m), 2.52 (3H, s), 2.00 (3H, s), 1.86 – 1.85 (6H, m), 1.67 – 1.57 (6H, m); ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 139.4, 130.4, 130.3, 128.9, 125.6, 49.5, 43.9, 36.3, 30.1, 22.2. The spectral data match those previously reported⁴⁰.

((3s,5s,7s)-Adamantan-1-yl)(*m*-tolyl)sulfane 58: Prepared according to General Method I (Eluent: petroleum ether) and the title compound was isolated as a white solid (57.2 mg, 0.22 mmol, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.30 (2H, m), 7.23 – 7.16 (2H, m), 2.36 (3H, s), 2.01 (3H, s), 1.81 (6H, d, J = 2.8 Hz) 1.67 – 1.57 (6H, m); ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 138.1, 134.8, 130.3, 129.5, 128.2, 47.8, 43.8, 36.3, 30.1, 21.4. The spectral data match those previously reported⁴⁴.

2-(((3s,5s,7s)-Adamantan-1-yl)thio)thiophene 59: Prepared according to **General Method I** (Eluent: petroleum ether) and the title compound was isolated as a colorelss oil (37.0 mg, 0.18 mmol, 59% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 2.48 (2H, t, J =7.5 Hz), 2.03 (3H, s), 1.86 (6H, d, J = 3.0 Hz), 1.72 – 1.63 (6H, m), 1.60 – 1.52 (2H, m), 0.98 (3H, t, J = 7.3 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 44.1, 43.8, 36.5, 29.8, 27.8, 23.8, 14.0; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₃H₂₂NaS: 233.1334, found: 233.1336.

Methyl *S*-((3*s*,5*s*,7*s*)-adamantan-1-yl)-*N*-(*tert*-butoxycarbonyl)cysteinate 60: Prepared according to General Method I (Eluent: 100:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (58.3 mg, 0.16 mmol, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.32 (1H, d, *J* = 8.1 Hz), 4.52 (1H, dt, *J* = 8.6, 5.0 Hz), 3.73 (3H, s), 2.94 (2H, d, *J* = 5.0 Hz), 2.01 (3H, s), 1.80 (6H, s), 1.69 – 1.60 (6H, m), 1.42 (9H, s); ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 155.2, 80.0, 53.4, 52.6, 44.8, 43.4, 36.2, 29.7, 28.4, 28.2; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₉H₃₁NNaO₄S: 392.1866, found: 392.1864.

2-(((3s,5s,7s)-Adamantan-1-yl)thio)thiophene 61: Prepared according to **General Method I** (Eluent: petroleum ether) and the title compound was isolated as a grey solid (74.0 mg, 0.28 mmol, 93% yield). **M.p.** = 88.8 °C – 89.3 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.44 (1H, dd, J = 5.4, 1.2 Hz), 7.13 (1H, dd, J = 3.5, 1.2 Hz), 7.04 (1H, dd, J = 5.4, 3.5 Hz), 2.58 (2H, s), 2.22 (1H, s), 2.19 – 2.11 (2H, m), 2.11 – 2.04 (4H, m), 2.01 – 1.91 (4H, m); ¹³C **NMR** (101 MHz, CDCl₃) δ 216.5, 137.7, 131.6, 128.6, 127.9, 47.3, 46.7, 44.0, 42.0, 38.1, 29.8, 29.2; **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₁₄H₁₇OS₂: 265.0715, found: 265.0713.

((3*s*,5*s*,7*s*)-Adamantan-1-yl)(phenyl)selane 62: Prepared according to General Method I (Eluent: petroleum ether) and the title compound was isolated as a colorless oil (35.5 mg, 0.12 mmol, 41% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (2H, d, *J* = 6.5 Hz), 7.38 – 7.28 (1H, m), 7.32 – 7.27 (2H, m), 1.97 (9H, s), 1.69 – 1.60 (6H, m); ¹³C NMR (101 MHz, CDCl₃) δ 138.5, 128.6, 128.5, 126.4, 47.1, 44.8, 36.3, 30.8. The spectral data match those previously reported⁴⁵.

3-((4-methoxyphenyl)thio)butyl 4-methylbenzenesulfonate 63: Prepared according to **General Method I** (Eluent: 100:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a brown oil (78.3 mg, 0.21 mmol, 71% yield). ¹H **NMR** (500 MHz, CDCl₃) δ 7.79 (2H, d, J = 8.4 Hz), 7.34 (2H, d, J = 8.0 Hz), 7.29 (2H, d, J = 8.7 Hz), 6.82 (2H, d, J = 8.7 Hz), 4.25 – 4.14 (2H, m), 3.80 (3H, s), 3.04 (1H, q, J = 6.9 Hz), 2.45 (3H, s), 1.83 – 1.75 (2H, m), 1.18 (3H, d, J = 6.8 Hz); ¹³C **NMR** (126 MHz, CDCl₃) δ 159.8, 144.9, 136.3, 133.1, 130.0, 128.0, 123.6, 114.6, 68.3, 55.4, 40.7, 35.4, 21.8, 21.3; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₈H₂₂NaO₄S₂: 389.0852, found: 389.0845.

(4-((4-Methoxyphenyl)thio)piperidin-1-yl)(phenyl)methanone 64: Prepared according to General Method I (Eluent: 100:1 to 3:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow oil (69.5 mg, 0.21 mmol, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (7H, m), 6.85 (2H, d, J = 8.4 Hz), 4.46 (1H, s), 3.80 (3H, s), 3.72 (1H, s), 3.15 – 3.11 (1H, m), 3.10 – 3.03 (2H, m), 1.92 (2H, d, J = 64.2 Hz), 1.55 (2H, d, J = 48.9 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 159.9, 136.3, 136.1, 129.7, 128.6, 126.9, 123.5, 114.6, 55.4, 47.2, 45.6, 41.7, 32.8, 32.0; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₉H₂₁NNaO₂S: 350.1185, found: 350.1188.

(4-Chlorophenyl)(4-((4-methoxyphenyl)thio)piperidin-1-yl)methanone 65: Prepared according to General Method I (Eluent: 100:1 to 4:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow solid (71.3 mg, 0.20 mmol, 66% yield). M.p. = 76.4 °C - 76.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (2H, d, J = 8.8 Hz), 7.36 (2H, d, J = 8.5 Hz), 7.30 (2H, d, J = 8.5 Hz), 6.84 (2H, d, J = 8.7 Hz), 4.42 (1H, s), 3.79 (3H, s), 3.68 (1H, s), 3.14 – 3.02 (3H, m), 1.92 (2H, d, J = 54.8 Hz), 1.53 (2H, d, J = 38.7 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 159.9, 136.3, 135.7, 134.4, 128.8, 128.5, 123.3, 114.6, 55.4, 47.2, 45.4, 41.7, 32.7, 31.9; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₉H₂₀ClNNaO₂S: 384.0795, found: 384.0799.

(4-Chlorophenyl)(4-((4-methoxyphenyl)thio)piperidin-1-yl)methanone 66: Prepared according to General Method I (Eluent: 100:1 to 4:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow solid (78.0 mg, 0.19 mmol, 64% yield). M.p. = $80.1 \,^{\circ}$ C - $80.7 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (2H, d, $J = 8.3 \,$ Hz), 7.39 (2H, d, $J = 8.7 \,$ Hz), 7.24 (2H, d, $J = 8.4 \,$ Hz), 6.84 (2H, d, $J = 8.8 \,$ Hz), 4.42 (1H, s), 3.79 (3H, s), 3.68 (1H, s), 3.15 - 3.02 (3H, m), 1.99 - 1.85 (2H, m), 1.60 - 1.48 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 159.9, 136.3, 134.8, 131.8, 128.7, 124.0, 123.3, 114.6, 55.4, 47.2, 45.4, 41.7, 32.8, 31.9; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₉H₂₀BrNNaO₂S: 428.0290, found: 428.0296.

5. Synethetic application of current method

Phenyl(1-tosylheptyl)sulfane 68: Prepared according to **General Method I** (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (63.4 mg, 0.17 mmol, 58% yield). **M.p.** = 38.0 °C – 38.1 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (2H, d, J = 8.3 Hz), 7.30 – 7.28 (2H, m), 7.27 – 7.26 (2H, m), 7.24 – 7.21 (2H, m), 7.20 – 7.18 (1H, m), 4.06 (1H, dd, J = 11.3, 2.9 Hz), 2.43 (3H, s), 2.31 – 2.23 (1H, m), 1.86 – 1.76 (1H, m), 1.68 – 1.58 (1H, m), 1.54 – 1.45 (1H, m), 1.36 – 1.21 (6H, m), 0.88 – 0.85 (3H, m); ¹³C NMR (101 MHz, CDCl₃) δ

144.9, 133.9, 133.4, 132.8, 129.8, 129.6, 129.1, 128.2, 74.1, 31.5, 28.7, 28.7, 26.8, 22.6, 21.8, 14.2; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₂₆NaO₂S₂: 385.1266, found: 385.1260.

(1-((4-Chlorophenyl)sulfonyl)heptyl)(phenyl)sulfane 69: Prepared according to General Method I (Eluent: 100:1 to 30:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow solid (88.7 mg, 0.23 mmol, 77% yield). M.p. = $48.1 \text{ °C} - 49.1 \text{ °C}; \text{ }^{1}\text{H} \text{ NMR} (500 \text{ MHz}, \text{CDCl}_{3}) \delta 7.80 (2H, d, <math>J = 8.7 \text{ Hz}), 7.41 (2H, d, J = 8.6 \text{ Hz}), 7.25 - 7.23 (3H, m), 7.21 - 7.18 (2H, m), 4.10 (1H, dd, <math>J = 11.2, 2.9 \text{ Hz}), 2.33 - 2.26 (1H, m), 1.86 - 1.79 (1H, m), 1.70 - 1.61 (1H, m), 1.57 - 1.49 (1H, m), 1.38 - 1.24 (6H, m), 0.89 - 0.86 (3H, m); \text{ }^{13}\text{C} \text{ NMR} (126 \text{ MHz}, \text{CDCl}_{3}) \delta 140.7, 135.5, 133.1, 132.6, 131.2, 129.2, 128.4, 74.1, 31.5, 28.7, 28.4, 26.7, 22.6, 14.1 (one carbon was missing due to overlap);$ **HRMS**(ESI⁺) [M+Na]⁺ calc'd for C₁₉H₂₃ClNaO₂S₂: 405.0720, found: 405.0727.

(1-((4-Bromophenyl)sulfonyl)heptyl)(phenyl)sulfane 70: Prepared according to General Method I (Eluent: 100:1 to 30:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow solid (84.7 mg, 0.20 mmol, 66% yield). M.p. = 53.3 °C – 54.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (2H, d, J = 8.7 Hz), 7.58 (2H, d, J = 8.6 Hz), 7.27 – 7.19 (5H, m), 4.10 (1H, dd, J = 11.2, 3.0 Hz), 2.34 – 2.26 (1H, m), 1.89 – 1.79 (1H, m), 1.72 – 1.60 (1H, m), 1.59 – 1.48 (1H, m), 1.38 – 1.24 (6H, m), 0.90 – 0.86 (3H, m); ¹³C NMR (101 MHz, CDCl₃) δ 136.0, 133.1, 132.6, 132.2, 131.2, 129.4, 129.2, 128.4, 74.1, 31.5, 28.7, 28.3, 26.8, 22.6, 14.2; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₉H₂₃BrNaO₂S₂: 449.0215, found: 449.0215.

4-((1-(Phenylthio)heptyl)sulfonyl)benzonitrile 71: Prepared according to **General Method I** (Eluent: 100:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow solid (54.3 mg, 0.15 mmol, 48% yield). **M.p.** = 56.4 °C – 56.8 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (2H, d, *J* = 8.4 Hz), 7.73 (2H, d, *J* = 8.4 Hz), 7.29 – 7.23 (1H, m), 7.22 – 7.19 (3H, m), 7.17 – 7.16 (1H, m), 4.17 (1H, dd, *J* = 11.2, 3.0 Hz), 2.37 – 2.28 (1H, m), 1.91 – 1.81 (1H, m), 1.73 – 1.63 (1H, m), 1.60 – 1.51 (1H, m), 1.42 – 1.25 (6H, m), 0.90 – 0.85 (3H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 141.5, 132.7, 132.5, 132.3, 130.4, 129.3, 128.5, 117.5, 117.2, 73.7, 31.5, 28.7, 28.0, 26.7, 22.6, 14.1; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₂₃NNaO₂S₂: 396.1062, found: 396.1055.

(5-Methyl-1-tosylhexyl)(phenyl)sulfane 72: Prepared according to General Method I (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (61.2 mg, 0.17 mmol, 56% yield). M.p. = 48.1 °C - 48.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (2H, d, J = 8.2 Hz), 7.30 – 7.27 (4H, m), 7.24 – 7.18 (3H, m), 4.07 (1H, dd, J = 11.3, 2.9 Hz), 2.43 (3H, s), 2.29 – 2.21 (1H, m), 1.84 – 1.77 (1H, m), 1.66 – 1.58 (1H, m), 1.55 – 1.43 (2H, m), 1.21 – 1.14 (2H, m), 0.86 (6H, d, J = 6.6 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 133.9, 133.4, 132.9, 129.9, 129.6, 129.1, 128.3, 74.1, 38.3, 29.0, 27.8, 24.7, 22.8, 22.5, 21.8; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₂₆NaO₂S₂: 385.1266, found: 385.1268.

(1-((4-Chlorophenyl)sulfonyl)-5-methylhexyl)(phenyl)sulfane 73: Prepared

according to **General Method I** (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow oil (60.5 mg, 0.16 mmol, 53% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (2H, d, J = 8.6 Hz), 7.43 (2H, d, J = 8.6 Hz), 7.26 – 7.19 (5H, m), 4.10 (1H, dd, J = 11.1, 2.9 Hz), 2.32– 2.24 (1H, m), 1.89 – 1.79 (1H, m), 1.63 – 1.59 (1H, m), 1.57 – 1.51 (2H, m), 1.23 – 1.18 (2H, m), 0.88 (6H, d, J =6.6 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 140.8, 135.5, 133.1, 132.6, 131.2, 129.3, 129.2, 128.4, 74.1, 38.3, 28.7, 27.8, 24.7, 22.8, 22.5; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₉H₂₃ClNaO₂S₂: 405.0720, found: 405.0712.

(1-((4-Bromophenyl)sulfonyl)-5-methylhexyl)(phenyl)sulfane 74: Prepared according to General Method I (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow oil (61.8 mg, 0.14 mmol, 48% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (2H, d, J = 8.6 Hz), 7.59 (2H, d, J = 8.6 Hz), 7.26 – 7.24 (2H, m), 7.23 – 7.21 (3H, m), 4.10 (1H, dd, J = 11.1, 3.0 Hz), 2.32 – 2.24 (1H, m), 1.89 – 1.79 (1H, m), 1.69 – 1.62 (1H, m), 1.61 – 1.52 (2H, m), 1.26 – 1.18 (2H, m), 0.88 (6H, d, J = 6.6 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 136.0, 133.1, 132.6, 132.2, 131.3, 129.4, 129.3, 128.4, 74.1, 38.3, 28.6, 27.8, 24.7, 22.8, 22.5; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₉H₂₃BrNaO₂S₂: 449.0215, found: 449.0222.

4-((5-Methyl-1-(phenylthio)hexyl)sulfonyl)benzonitrile 75: Prepared according to **General Method I** (Eluent: 100:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow oil (41.3 mg, 0.11 mmol, 37% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (2H, d, J = 8.4 Hz), 7.73 (2H, d, J = 8.4 Hz), 7.28 – 7.22 (2H, m), 7.21 – 7.17 (3H, m), 4.17 (1H, dd, J = 11.1, 3.0 Hz), 2.34 – 2.26 (1H, m), 1.91 – 1.81 (1H, m), 1.70 – 1.62 (1H, m), 1.60 – 1.52 (2H, m), 1.26 – 1.19 (2H, m),

0.89 (6H, d, J = 6.7 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 132.7, 132.5, 132.4, 130.4, 129.3, 128.6, 117.5, 117.2, 73.7, 38.2, 28.3, 27.8, 24.6, 22.7, 22.5; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₂₃NNaO₂S₂: 396.1062, found: 396.1071.

Phenyl(1-tosylhexyl)sulfane 76: Prepared according to **General Method I** (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (47.5 mg, 0.14 mmol, 45% yield). **M.p.** = 41.1 °C – 41.6 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (2H, d, J = 8.3 Hz), 7.30 – 7.28 (2H, m), 7.27 – 7.26 (2H, m), 7.24 – 7.17 (3H, m), 4.06 (1H, dd, J = 11.2, 2.9 Hz), 2.42 (3H, s), 2.31 – 2.23 (1H, m), 1.85 – 1.78 (1H, m), 1.68 – 1.61 (1H, m), 1.56 – 1.46 (1H, m), 1.34 – 1.22 (4H, m), 0.89 – 0.86 (3H, m); ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 134.0, 133.4, 132.8, 129.8, 129.6, 129.1, 128.2, 74.1, 31.2, 28.7, 26.5, 22.4, 21.8, 14.1; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₉H₂₄NaO₂S₂: 371.1110, found: 371.1111.

Phenyl(1-tosylpentyl)sulfane 77: Prepared according to General Method I (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (67.2 mg, 0.20 mmol, 67% yield). M.p. = 38.3 °C – 38.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (2H, d, J = 8.3 Hz), 7.29 – 7.26 (4H, m), 7.23 – 7.17 (3H, m), 4.06 (1H, dd, J = 11.3, 3.0 Hz), 2.42 (3H, s), 2.36 – 2.22 (1H, m), 1.82 – 1.77 (1H, m), 1.66 – 1.59 (1H, m), 1.54 – 1.49 (1H, m), 1.38 – 1.26 (2H, m), 0.90 (3H, t, J = 7.4 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 133.9, 133.4, 132.8, 129.8, 129.6, 129.1, 128.2, 74.1, 28.9, 28.4, 22.2, 21.8, 13.9; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₈H₂₂NaO₂S₂: 357.0953, found: 357.0949.

5-(((3*s*,5*s*,7*s*)-Adamantan-1-yl)thio)-1-phenyl-1*H*-tetrazole 78: Prepared according to General Method I (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (40.2 mg, 0.13 mmol, 43% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.52 (5H, m), 2.18 (6H, d, *J* = 3.0 Hz), 2.10 (2H, s), 1.76 – 1.68 (6H, m); ¹³C NMR (101 MHz, CDCl₃) δ 152.0, 134.0, 130.2, 129.7, 125.0, 54.2, 43.1, 36.0, 30.3. The spectral data match those previously reported⁴⁶.

1-Phenyl-5-((4-phenylbutan-2-yl)thio)-1*H***-tetrazole 80:** Prepared according to **General Method I** (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (49.9 mg, 0.16 mmol, 54% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.58 – 7.53 (5H, m), 7.29 – 7.20 (2H, m), 7.19 – 7.16 (3H, m), 4.06 (1H, q, J = 6.8 Hz), 2.80 – 2.75 (2H, m), 2.17 – 2.01 (2H, m), 1.56 (1H, d, J = 6.8 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 154.0, 140.9, 133.8, 130.2, 129.8, 128.6, 128.4, 126.2, 124.1. 44.4, 38.3, 33.2, 21.6. The spectral data match those previously reported⁴⁷.

5-((2-Methyl-4-phenylbutan-2-yl)thio)-1-phenyl-1*H*-tetrazole 81: Prepared according to General Method I (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (51.4 mg, 0.16 mmol, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.53 (5H, m), 7.27 – 7.24 (2H, m), 7.20 – 7.14 (3H, m), 2.73 – 2.69 (2H, m), 2.25 – 2.21 (2H, m), 1.63 (6H, s); ¹³C NMR (101 MHz, CDCl₃) δ 152.7, 141.5, 133.9, 130.3, 129.7, 128.6, 128.5, 126.1, 124.9.

55.2, 43.8, 31.6, 28.7; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₈H₂₀NaN₄S: 347.1301, found: 347.1309.

<u>General Method J</u>: A 120 °C oven-dried 25-mL glass schlenck, equipped with a stir bar, was charged with compound 22 or compound 81 (0.30 mmol, 1.0 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then DCM (1.5 mL) were added under N₂. The mixture was cooled at 0 °C and *m*-CPBA (155.3 mg, 0.90 mmol, 3.0 equiv) was added. Was allowed to warm to room temperature. The reaction was stirred at 22 °C for 16 h. The mixture was poured into NaHCO₃ aqueous solution (20.0 mL) and extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography.

5-((2-Methyl-4-phenylbutan-2-yl)sulfonyl)-1-phenyl-1*H*-tetrazole 82: Prepared according to General Method J (Eluent: 100:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (58.3 mg, 0.16 mmol, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.60 (5H, m), 7.57 – 7.52 (4H, m), 7.31 – 7.29 (1H, m), 7.27 – 7.26 (1H, m), 7.23 – 7.19 (1H, m), 7.14 (2H, d, *J* = 6.8 Hz), 2.72 – 2.68 (2H, m), 2.17 – 2.13 (2H, m), 1.59 (6H, s); ¹³C NMR (101 MHz, CDCl₃) δ 152.0, 140.4, 133.4, 131.6, 129.4, 128.8, 128.4, 126.6, 126.3, 67.8, 36.9, 30.1, 20.5; The spectral data match those previously reported⁵¹.

3-(Phenylsulfonyl)butyl benzoate 86: Prepared according to **General Method J** (Eluent: 100:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (83.3 mg, 0.22 mmol, 74% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (2H, d, J = 6.9 Hz), 7.89 (2H, d, J = 7.0 Hz), 7.67 – 7.62 (1H, m), 7.57 – 7.53 (3H, m), 7.44 – 7.40 (2H, m), 4.46 – 4.33 (2H, m), 3.32 – 3.19 (1H, m), 2.52 – 2.44 (1H, m), 1.88 – 1.77 (1H, m), 1.35 (3H, d, J = 6.9 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 166.2, 136.9, 133.9, 133.3, 129.7, 129.6, 129.3, 129.1, 128.5, 61.6, 57.3, 28.9, 13.5; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₁₈NaO₄S: 341.0818, found: 341.0819.

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stir bar, was charged compound 82 2.0with (142.6)0.40 mmol, equiv), mg, 4-(2,2-difluorovinyl)-1,1'-biphenyl (43.2 mg, 0.20 mmol, 1.00 equiv), NH₄Cl (32.1 mg, 0.60 mmol, 3.0 equiv), Et₃N (121.4 mg, 1.2 mmol, 6.0 equiv) and [IrF(CF₃)ppy](dtbpy)PF₆ (2.2 mg, 0.02 mmol, 0.01 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then MeCN (1.0 mL) were added under N₂. The mixture was allowed to stir at 22 °C for 16 h with blue LEDs. The mixture was transferred to a round bottom flask and solvent was removed by rotary evaporation, the residue was purified by flash silica gel chromatography (Eluent: petroleum ether). The product 83 was isolated a colorless oil (60.9 mg, 0.18 mmol, 88% yield).

4-(2-fluoro-3,3-dimethyl-5-phenylpent-1-en-1-yl)-1,1'-biphenyl 83: E/Z = 93:7, ¹H NMR (400 MHz, CDCl₃) δ 7.52 (2H, d, *J* = 7.6 Hz), 7.45 (2H, d, *J* = 8.0 Hz), 7.38 – 7.34 (2H, m), 7.28 – 7.24 (1H, m), 7.20 (2H, d, *J* = 8.1 Hz), 7.16 – 7.13 (2H, m), 7.09 – 7.06 (1H, m), 7.02 (2H, d, *J* = 7.0 Hz), 6.34 (1H, d, *J* = 27.4 Hz), 2.56 – 2.52 (2H, m), 1.68 – 1.63 (2H, m), 1.01 (6H, s);¹³C NMR (101 MHJz, CDCl₃) δ 166.5, 164.0, 142.7, 140.8, 139.8, 133.5 (d, $J_{C-F} = 15.3$ Hz), 130.4 (d, $J_{C-F} = 2.3$ Hz), 128.9, 128.5, 127.5, 127.1, 126.6, 125.8, 108.1 (d, $J_{C-F} = 33.5$ Hz), 43.3 (d, $J_{C-F} = 2.1$ Hz), 40.1, 39.8, 31.7, 27.2 (d, $J_{C-F} = 4.4$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ –101.4 (d, J =27.4 Hz), –109.4 (d, J = 27.4 Hz). The spectral data match those previously reported⁴⁹.

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stir bar, was charged with compound **82** (71.3 mg, 0.20 mmol, 1.0 equiv), acrylonitrile (21.2 mg, 0.40 mmol, 2.0 equiv), zinc powder (32.7 mg, 0.50 mmol, 2.5 equiv), 1,10-Phen (108.1 mg, 0.60 mmol, 3.0 equiv) and Hantzsch ester (101.3 mg, 0.40 mmol, 2.0 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then DMF (1.00 mL) were added under N₂. The mixture was allowed to stir at 22 °C for 16 h with blue LEDs. The mixture was poured into water (20.0 mL) and extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: petroleum ether). The product **84** was isolated a colorless oil (33.2 mg, 0.16 mmol, 82% yield).

4,4-Dimethyl-6-phenylhexanenitrile 84: ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.25 (2H, m), 7.21 – 7.16 (3H, m), 2.57 – 2.53 (2H, m), 2.32 – 2.27 (2H, m), 1.72 – 1.68 (2H, m), 1.53 – 1.48 (2H, m), 0.98 (6H, s); ¹³**C NMR** (101 MHz, CDCl₃) δ 142.6, 128.6, 128.4, 126.0, 120.6, 43.8, 37.1, 33.4, 30.6, 26.4, 12.5. The spectral data match those previously reported⁴⁸.

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stir bar, was charged with compound **11** or **1r** (5.0 mmol, 1.0 equiv), zinc thiolate **2a** (3.0 g, 7.5 mmol, 1.5 equiv) and diazodium salt **4a** (2.77 g, 12.5 mmol, 2.5 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then DMSO (30.0 mL) were added under N₂. The mixture was allowed to stir at 22 °C for 16 h. he mixture was poured into water (30.0 mL) and extracted with ethyl acetate (30.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (30.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 to 30:1 petroleum ether: ethyl acetate). The product **16** was isolated as a colorless oil (0.76 g, 3.6 mmol, 73% yield) and product **22** was isolated as a colorless oil (1.13 g, 3.95 mmol, 79% yield).

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stir bar, was charged with compound **22** (86.0 mg, 0.30 mmol, 1.0 equiv), NaIO₄ (77.0 mg, 0.36 mmol, 1.2 equiv), H₂O (1.5 mL) and MeOH (1.5 mL). The mixture was allowed to stir at 50 °C for 6 h. The mixture was poured into NaHCO₃ aqueous solution (20.0 mL) and extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 to 1:1 petroleum ether: ethyl acetate). The product **85** was isolated a colorless oil (69.5 mg, 0.23 mmol, 77% yield).

3-(Phenylsulfinyl)butyl benzoate 85: dr = 3:1. ¹H NMR (400 MHz, CDCl₃) δ 8.03 –

7.94 (2H, m), 7.63 – 7.60 (2H, m), 7.58 – 7.54 (1H, m), 7.51 – 7.50 (3H, m), 7.46 – 7.40 (2H, m), 4.38 – 4.35 (2H, m), 2.99 – 2.84 (1H, m), 2.25 – 2.17 (1H, m), 1.87 – 1.77 (1H, m), 1.37 – 1.29 (3H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 166.5, 141.4, 133.2, 131.0, 129.9, 129.7, 129.1, 128.5, 124.8, 62.1, 56.3, 29.8, 10.8; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₁₈NaO₃S: 325.0869, found: 325.0878.

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stir bar, was charged with compound **22** (86.0 mg, 0.30 mmol, 1.0 equiv), PhI(OAc)₂ (241.6 mg, 0.75 mmol, 2.5 equiv) and NH₂COONH₄ (46.8 mg, 0.60 mmol, 2.0 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then MeOH (1.00 mL) were added under N₂. The reaction was stirred at room temperature for 16 h. The mixture was poured into H₂O (20.0 mL) and extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 to 1:2 petroleum ether: ethyl acetate). The product **87** was isolated a colorless oil (78.2 mg, 0.25 mmol, 82% yield).

3-(Phenylsulfonimidoyl)butyl benzoate 87: dr = 1:1; ¹**H** NMR (400 MHz, CDCl₃) δ 7.94 – 7.85 (4H, m), 7.61 – 7.55 (1H, m), 7.53 – 7.49 (3H, m), 7.42 – 7.37 (2H, m), 4.43 – 4.29 (2H, m), 3.31 – 3.24 (1H, m), 2.64 (1H, s), 2.51 – 2.46 (1H, m), 1.83 – 1.75 (1H, m), 1.37 – 1.33 (3H, m); ¹³**C** NMR (101 MHz, CDCl₃) δ 166.3, 166.3, 139.7, 139.7, 133.3, 133.2, 129.8, 129.6, 129.4, 129.2, 128.5, 61.9, 58.4, 58.3, 29.4, 29.2, 13.8, 13.7; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₁₉NNaO₃S: 340.0978, found: 340.0982.

6. Mechanistic study

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with diazodium salt **4a** (22.2 mg, 0.10 mmol, 1.0 equiv) and zinc thiolate **2a** (60.0 mg, 0.15 mmol, 1.5 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then DMSO (0.60 mL) were added under N₂ and was stirred for 1 h. The mixture was poured into water (20.0 mL) and extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was added 0.20 mmol CH₂Br₂. The yield was determined by ¹H NMR spectroscopy in the presence of CH₂Br₂ (35.1 mg, 0.20 mmol) as an internal standard.

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stir bar, was charged with alkyl iodide **90** (78.0 mg, 0.30 mmol, 1.0 equiv), zinc thiolate **2a** (299.9 mg, 0.45 mmol, 1.5 equiv) and diazodium salt **4a** (166.5 mg, 0.75 mmol, 2.5 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then DMSO (1.80 mL) were added under N₂ and was stirred for 1 h. The mixture was poured into water (20.0 mL) and extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 petroleum ether: ethyl acetate). The product **5** was isolated a colorless oil (60.8 mg, 0.25 mmol, 84% yield),

HPLC: Column: CHIRALPAK-AD-H, 100% hexanes, 0.2 mL/min, 254 nm, in comparison with racemic material, ee = 0%; $[\alpha]^{22}$ = +5.05 (*c* = 0.7125, CHCl₃).

Supplementary Fig. 3. HPLC traces for compound 5

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with (3-iodobutyl)benzene **3a** (26.0 mg, 0.10 mmol, 1.0 equiv), zinc thiolate

2a (60.0 mg, 0.15 mmol, 1.5 equiv), diazodium salt **4a** (60.0 mg, 0.25 mmol, 2.5 equiv) and TEMPO (46.9 mg, 0.30 mmol, 3.0 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then DMSO (0.60 mL) were added under N₂ and was stirred for 1 h. The mixture was poured into water (20.0 mL) and extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was added CH₂Br₂ (35.1 mg, 0.20 mmol) as an internal standard. The yield was determined by ¹H NMR spectroscopy.

Supplementary Fig. 4. ¹H NMR of radical inhibition studie

reaction

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with (3-iodobutyl)benzene **3a** (26.0 mg, 0.10 mmol, 1.0 equiv), zinc thiolate **2a** (60.0 mg, 0.15 mmol, 1.5 equiv), diazodium salt **4a** (60.0 mg, 0.25 mmol, 2.5 equiv) and **BHT** (66.1 mg, 0.30 mmol, 3.0 equiv). The mixture was evacuated and

backfilled with N_2 for three times. Then DMSO (0.60 mL) were added under N_2 and was stirred for 1 h. The mixture was poured into water (20.0 mL) and extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na_2SO_4 and filtered. The solvent was removed by rotary evaporation and the residue was added CH_2Br_2 (17.4 mg, 0.10 mmol) as an internal standard.

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stir bar, was charged with zinc thiolate **2a** or **2h** (0.45 mmol, 1.5 equiv) and diazodium salt **4a** (166.5 mg, 0.75 mmol, 2.5 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then (2*R*,3*S*)-2-(allyloxy)-3-iodotetrahydro-2*H*-pyran **92** (80.4 mg, 0.30 mmol, 1.0 equiv) and DMSO (1.8 mL) were added under N₂ and was stirred in the dark for 1 h. The mixture was poured into water (20.0 mL) and extracted with ethyl acetate
(10.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na_2SO_4 and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography.

(3a*R*,7a*S*)-3-((phenylthio)methyl)hexahydro-4*H*-furo[2,3-*b*]pyran 93: (Eluent: 100:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (62.4 mg, 0.25 mmol, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.24 (2H, m), 7.31 – 7.26 (2H, m), 7.23 – 7.18 (1H, m), 5.23 (1H, d, *J* = 3.7 Hz), 4.01 (1H, t, *J* = 8.2 Hz), 3.80 – 3.74 (2H, m), 3.63 (1H, dtd, *J* = 11.1, 3.7, 1.6 Hz), 3.01 (1H, dd, *J* = 12.6, 7.7 Hz), 2.90 (1H, dd, *J* = 12.6, 8.0 Hz), 2.62 – 2.55 (1H, m), 2.11 – 2.05 (1H, m), 1.79 – 1.73 (1H, m), 1.62 – 1.55 (2H, m), 1.51 – 1.41 (1H, m); ¹³C NMR (101 MHz, CDCl₃) δ 135.7, 129.8, 129.1, 126.5, 101.9, 69.9, 61.3, 40.2, 36.8, 32.5, 23.1, 19.4; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₄H₁₈NaO₂S: 273.0920, found: 273.0926.

(3a*R*,7a*S*)-3-(((4-methoxyphenyl)thio)methyl)hexahydro-4*H*-furo[2,3-*b*]pyran 94: (Eluent: 100:1 to 30:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless oil (58.8 mg, 0.21 mmol, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (2H, d, *J* = 8.8 Hz), 6.84 (2H, d, *J* = 8.7 Hz), 5.22 (1H, d, *J* = 3.6 Hz), 3.99 (1H, t, *J* = 8.2 Hz), 3.79 (3H, s), 3.77 – 3.70 (2H, m), 3.62 (1H, dtd, *J* = 11.1, 3.7, 1.6 Hz), 2.90 (1H, dd, *J* = 12.8, 7.4 Hz), 2.78 (1H, dd, *J* = 12.8, 8.1 Hz), 2.54 – 2.49 (1H, m), 2.06 – 2.03 (1H, m), 1.72 – 1.61 (1H, m), 1.60 – 1.54 (2H, m), 1.47 – 1.37 (1H, m); ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 133.8, 125.6, 114.8, 101.9, 69.6, 61.2, 55.4, 40.4, 36.8, 34.6, 23.1, 19.4; HRMS (ESI⁺) [M+H]⁺ calc'd for C₁₅H₂₁O₃S: 281.1206, found: 281.1215.

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with (3-iodobutyl)benzene (26.0 mg, 0.10 mmol, 1.0 equiv), zinc thiolate **2a** (60.0 mg, 0.15 mmol, 1.5 equiv), diazodium salt **4a** (55.5 mg, 0.25 mmol, 2.5 equiv) and compound **95** (41.7 mg, 0.15 mmol, 1.5 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then DMSO (0.60 mL) were added under N₂ and was stirred for 1 h. The mixture was poured into water (20.0 mL) and extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was added 0.20 mmol CH₂Br₂. The yield was determined by ¹H NMR spectroscopy in the presence of CH₂Br₂ (35.1 mg, 0.20 mmol) as an internal standard.

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stir bar, was charged with zinc thiolate **2h** (207.9 mg, 0.45 mmol, 1.5 equiv) and diazodium salt **4a** (166.5 mg, 0.75 mmol, 2.5 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then 6-iodohex-1-ene (63.0 mg, 0.30 mmol, 1.0 equiv) and DMSO (1.8 mL) were added under N₂ and was stirred in the dark for 1 h. The mixture was poured into water (20.0 mL) and extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography. The product **4** was isolated a colorless oil (59.0 mg, 0.27 mmol, 88% yield).

7.3544 7.3524 6.8338 6.8338 6.8338 6.8338 6.8338 6.8338 6.8338 6.8338 6.8338 6.8338 6.8338 6.8338 6.8338 6.8338 2.0570 2.0570 2.05770 2.054700 2.054700 2.054700 2.054700 2.054700 2.054700 2.054700 2.054700 2.054700 2.054700 2.054700 2.054700 2.054700 2.054700 2.0547000 2.0547000 2.054700 2.054700000

Supplementary Fig. 9. Radical clock of primary alkyl iodie

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stir bar, was charged with zinc thiolate **2h** (207.9 mg, 0.45 mmol, 1.5 equiv) and diazodium salt **4a** (166.5 mg, 0.75 mmol, 2.5 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then (iodomethyl)cyclopropane (54.6 mg, 0.30 mmol, 1.0 equiv) and DMSO (1.8 mL) were added under N₂ and was stirred in the dark for 1 h. The mixture was poured into water (20.0 mL) and extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography. The product **4** was isolated a colorless oil (66.0 mg, 0.30 mmol, >99% yield).

$\begin{array}{c} 7,5695\\ 7,5695\\ 6,83486\\ 6,83486\\ 6,83486\\ 6,838648\\ 6,838648\\ 6,83896\\ 6,838$

Supplementary Fig. 9. Radical clock of primary alkyl iodie

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stir bar, was charged with 1-(3-bromobutyl)-4-methoxybenzene or 3-(tosyloxy)butyl benzoate (0.10 mmol, 1.0 equiv), zinc thiolate **2a** (0.15 mmol, 1.5 equiv) and arene diazodium salt **4a** (0.25 mmol, 2.5 equiv). The mixture was evacuated and backfilled with N₂ for three times. Then DMSO (0.60 mL) were added under N₂ and was stirred for 1 h. The mixture was poured into water (10.0 mL) and extracted with ethyl acetate (10.0 mL x 3). The

combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was added 0.20 mmol CH₂Br₂. The yield was determined by ¹H NMR spectroscopy in the presence of CH₂Br₂ (35.1 mg, 0.20 mmol) as an internal standard.

7. DFT calculation

Computational Methods:

All calculations were performed using Gaussian 16 package.¹ All the reactants, intermediates, transition states, and products were optimized with the ω B97X-D functional.² For H, C, O, S, and N, we employed 6-31G(d) basis sets for geometry optimizations and frequency calculations and the Stuttgart-Dresden basis set (SDD) used for the Iodine atom. All the stationary structures were characterized with no imaginary frequency and the transition state structures (TSs) were characterized with a single imaginary frequency. Intrinsic reaction coordinate (IRC) calculations were performed on the TSs. The solvent effect of Dimethyl sulfoxide was evaluated through the SMD method, ³ The basis set 6-311++G (d, p) was employed for H, C, O, S, N, and SDD for heavy atoms. All reported energies are free energies at a concentration of 1 M and a temperature of 298.15 K.

¹ Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

²S. Grimme, J. Comput. Chem., 2006, 27, 1787.

³A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.

Coordinates for each structures examined in this study

Int1 E = -970.704405681 a.u. 01 С -0.34417800 0.10881800 -0.16596500 С 1.03478000 0.09331900 -0.32536800 С 1.74177600 1.29947500 -0.30056600 С 1.06858300 2.50617800 -0.11717700 С -0.313722002.51436800 0.04165500 С -1.02120500 1.31586500 0.01743800 Η -0.89760100 -0.82539600 -0.18432600 Η 1.57337100 -0.83695300 -0.46862300 Η 1.64838500 3.42359500 -0.10274400 Η -0.83680200 3.45503000 0.18419700 Η -2.10006000 1.31856200 0.14134300 Ν 3.15603800 1.41522100 -0.45202700 Ν 3.74246100 0.33643700 -0.62157900 S 5.45876400 0.41087200 -0.81073400 С 5.86706900 2.13900400 -0.69229300 С 5.89549400 2.92903100 -1.84319400 С 6.15499300 2.70362000 0.55185800 С 6.22018100 4.27861500 -1.74883100 Η 5.66337200 2.48400400 -2.80571900 С 6.47875100 0.64137300 4.05367800 Η 6.12387300 2.08406900 1.44267600 С 6.51208300 4.84007700 -0.50794200

Н	6.24477800	4.89201300	-2.64439700
Η	6.70487200	4.49182700	1.60873600
Η	6.76699900	5.89333400	-0.43642600
TS1			
E =	-970.640871697 a.u.		
03			
С	1.81052600	0.63889400	-0.82357100
С	1.95463900	0.89186500	0.54160000
С	2.14319800	2.20314500	0.91410300
С	2.20972000	3.27481800	0.05696000
С	2.07049400	3.00033600	-1.30594900
С	1.87070100	1.69013400	-1.73918000
Η	1.65504500	-0.37856800	-1.17136900
Η	1.93662900	0.09458900	1.27994400
Η	2.37777700	4.28152800	0.42594000
Η	2.12111900	3.81049300	-2.02790700
Η	1.76080000	1.48563900	-2.79993300
Ν	2.47310200	2.58164900	2.75319500
N	2.81728800	1.70841100	3.38890300
С	5.45023700	1.82482500	1.68560900
С	5.31521300	1.11593200	0.47305800
С	5.45636300	1.76599500	-0.74349600
С	5.72676100	3.13432800	-0.77579100
С	5.86200000	3.85250800	0.41345000
С	5.72625900	3.20730400	1.63389100
Н	5.08626400	0.05601500	0.50986100

Н	5.33785400	1.21242500	-1.66946600
Н	5.82737600	3.64327800	-1.72989000
Н	6.07217300	4.91747700	0.38462800
Н	5.82430300	3.75609200	2.56509600
S	5.21230000	1.03220100	3.20402600

Int2

E = -231.471515710 a.u.

С	0.98541300	-2.00909400	0.00175100
С	2.37971000	-2.00183200	0.00214800
С	3.08327200	-0.79806300	0.00161900
С	2.39443800	0.42084600	0.00073600
С	1.02023200	0.35326100	0.00035800
С	0.27443900	-0.80299700	0.00080100
Н	0.44500100	-2.95199900	0.00215900
Н	2.92258800	-2.94216600	0.00286300
Н	4.17005100	-0.80164000	0.00192900
Н	2.92895900	1.36619100	0.00032500
Н	-0.81150500	-0.79298100	0.00048900

TS2

E = -475.888942276 a.u.

0	2
С	

С	0.29668183	0.49122458	-0.41979253	
С	0.06660966	-0.52608083	0.68759454	
Н	1.35659307	0.72859839	-0.53869361	
Н	-0.08787451	0.12708553	-1.37731948	
Н	-0.23772000	1.41562949	-0.16591951	

С	-1.40483919	-0.86096336	0.88254273
Н	0.50857915	-0.17880880	1.62424138
С	-1.72103861	-1.76083678	2.06734721
Н	-1.92565709	0.09273208	1.04858820
Н	-1.82399411	-1.29594249	-0.03161536
Н	-1.33013439	-2.77212071	1.88793349
Н	-1.22477479	-1.36835980	2.97102965
0	-3.12645315	-1.76830491	2.21584957
Н	-3.35351913	-2.41740343	2.89045645
Ι	1.40786896	-2.57729597	0.19257937
С	2.58592548	-6.93751625	0.22906343
С	3.44207115	-7.23091515	-0.83162101
С	3.90988599	-6.21765430	-1.66739006
С	3.52343595	-4.88971946	-1.44949647
С	2.67780610	-4.65902577	-0.38897745
С	2.18544855	-5.61721889	0.46693771
Н	2.22604022	-7.73350066	0.87559685
Н	3.74726677	-8.25782565	-1.00841023
Н	4.57692573	-6.45528229	-2.49182598
Н	3.87977899	-4.09010597	-2.09216833
Н	1.51911543	-5.37353996	1.28912720

Int3 E = -232.917750639 a.u. 0 2

C 0.02902400 1.14340200 0.05129400

С	-1.11335000	0.19855400	0.20382000
Н	-0.15187700	1.87719000	-0.74080000
Н	0.22081800	1.70992100	0.97911900
Н	0.96012400	0.60997200	-0.18208700
С	-0.98071700	-1.04646300	1.01489100
С	-2.07714200	-2.06287800	0.72872300
Н	-0.00456000	-1.51883600	0.83744300
Н	-1.00780800	-0.82005100	2.09592200
Н	-3.06147000	-1.59534900	0.89750000
Н	-2.03203900	-2.36236500	-0.33019100
0	-1.88228200	-3.16873900	1.58696000
Н	-2.56108300	-3.82396600	1.39220900
Н	-2.11336600	0.54379400	-0.05354400

8. References

1. Zhang, J.; Jiang, M.; Wang, C.-S.; Guo, K.; Li, Q.-X.; Ma, C.; Ni, S.-F.; Chen, G.-Q.; Zong, Y.; Lu, H.; Xu, L.-W.; Shao, X., Transition-Metal Free C–N Bond Formation from Alkyl iodides and Diazonium Salts via Halogen-Atom Transfer. *Nat. Commun.* **2022**, *13*, 7961-7971.

 Liu, W.; Zhang, Y.; Xing, S.; Lan, H.; Chen, X.; Bai, Y.; Shao, X., β-Trifluorosulfinylesters: Tuneable Reagents for Switchable Trifluoromethylsulfinylation and C–H Trifluoromethylthiolation. *Org. Chem. Front.*. 2023, 10, 2186-2192.

3. Zhao, Y.; Zhang, J.; Zhan, Z.-J.; Fan, Q.; Xiao, X.-Q.; Bai, Y.; Ni, S.-F.; Shao, X., Synthesis of Azo-Substituted Bicyclo[1.1.1]pentanes (BCPs) via Base-Promoted Halogen Atom Transfer. *Org. Lett.* **2024**, *26*, 4406-4410.

4. Zhang, X.; Liu, C.; Pang, W.; Gu, X.; Wei, W.; Zhang, Z.; Chen, H.; Liang, T., Directing-Group-Free Strategy for the Iodine-Mediated Regioselective Dichalcogenation of Indolines: Understanding the Full Catalytic cycles. *Org. Chem. Front.* **2024**, *11*, 871-884.

5. Mampuys, P.; Zhu, Y.; Sergeyev, S.; Ruijter, E.; Orru, R. V. A.; Van Doorslaer, S.; Maes, B. U. W., Iodide-Catalyzed Synthesis of Secondary Thiocarbamates from Isocyanides and Thiosulfonates. *Org. Lett.* **2016**, *18*, 2808-2811.

6. Zachmann, A. K. Z.; Drappeau, J. A.; Liu, S.; Alexanian, E. J., $C(sp^3)$ –H (N-Phenyltetrazole)thiolation as an Enabling Tool for Molecular Diversification. Angew. Chem. Int. Ed. **2024**, *63*, e202404879.

7. Panda, B.; Sarkar, T. K., Gold and Palladium Combined for the Sonogashira-Type Cross-Coupling of Arenediazonium Salts. *Chem. Commun* **2010**, *46*, 3131-3133.

8. Cai, A.; Yan, W.; Wang, C.; Liu, W., Copper-Catalyzed Difluoromethylation of Alkyl Iodides Enabled by Aryl Radical Activation of Carbon–Iodine Bonds. Angew. Chem. Int. Ed. **2021**, *60*, 27070-27077.

9. Youn, S. W.; Lee, E. M., Metal-Free One-Pot Synthesis of *N*,*N*'-Diarylamidines and *N*-Arylbenzimidazoles from Arenediazonium Salts, Nitriles, and Free Anilines. *Org. Lett.* **2016**, *18*, 5728-5731.

10. Zuo, J.; Li, X.; Shi, Y.; Lv, J.; Yang, D., Synthesis of Sulfur-Containing Trisubstituted Imidazoles by One-Pot, Multicomponent Reaction via Electron Donor–Acceptor Complex Photoactivation. *Org. Lett.* **2024**, *26*, 3541-3546.

11. Bao, L.; Liu, C.; Li, W.; Yu, J.; Wang, M.; Zhang, Y., Electrochemical Synthesis of Polysubstituted Oxazoles from Ketones and Acetonitrile. *Org. Lett.* **2022**, *24*, 5762-5766.

12. Gao, P.; Zhang, Q.; Chen, F., Base-Promoted Synthesis of Vinyl Sulfides from Sulfonium Triflates. *Org. Lett.* **2022**, *24*, 7769-7773.

13. Frost, A. B.; Brambilla, M.; Exner, R. M.; Tredwell, M., Synthesis and Derivatization of 1,1-[¹⁸F]Difluorinated Alkenes. *Angew. Chem. Int. Ed.* **2018**, *58*, 472-476.

14. Andrade, V. S. C. d.; Mattos, M. C. S. d., Tribromoisocyanuric Acid/Triphenylphosphine: a New System for Conversion of Alcohols into Alkyl Bromides. *J. Braz. Chem. Soc.* **2014**, *25*, 975-979.

15. 16. Zhang, Y.; Cao, Q.; Xi, Y.; Wu, X.; Qu, J.; Chen, Y., Nickel-Catalyzed Carbonylative Negishi Cross-Coupling of Unactivated Secondary Alkyl Electrophiles with 1 atm CO Gas. *J. Am. Chem. Soc.* **2024**, *146*, 7971-7978.

17. Yi, J.; Lu, X.; Sun, Y. Y.; Xiao, B.; Liu, L., Nickel-Catalyzed Sonogashira Reactions of Non-activated Secondary Alkyl Bromides and Iodides. *Angew. Chem. Int. Ed.* **2013**, *52*, 12409-12413.

18. Sun, X.; Zheng, K., Electrochemical Halogen-Atom Transfer Alkylation via α -Aminoalkyl Radical Activation of Alkyl Iodides. *Nat. Commun.* **2023**, *14*, 6825-6834.

19. Geniller, L.; Taillefer, M.; Jaroschik, F.; Prieto, A., Photo-Induced Formal Trifluoropropanation of Organic Halides. *ACS Catal.* **2023**, *13*, 8624-8630.

20. Dang, H.; Cox, N.; Lalic, G., Copper-Catalyzed Reduction of Alkyl Triflates and Iodides: An Efficient Method for the Deoxygenation of Primary and Secondary Alcohols. *Angew. Chem. Int. Ed.* **2013**, *53*, 752-756.

21. Si, K. Y.; Marcus, W., Modular Covalent Multifunctionalization of Copolymers. *Macromolecules* **2008**, *41*, 346-351.

22. Ai, H.-J.; Rabeah, J.; Brückner, A.; Wu, X.-F., Rhodium-Catalyzed Carbonylative Coupling of Alkyl Halides with Thiols: A Radical Process Faster than Easier Nucleophilic Substitution. *Chem. Commun* **2021**, *57*, 1466-1469.

23. Fu, M.-C.; Wang, J.-X.; Shang, R., Triphenylphosphine-Catalyzed Alkylative Iododecarboxylation with Lithium Iodide under Visible Light. *Org. Lett.* **2020**, *22*, 8572-8577.

24. Kobayashi, S.; Kawamoto, T.; Uehara, S.; Fukuyama, T.; Ilhyong, R., Black-Light-Induced Radical/Ionic Hydroxymethylation of Alkyl Iodides with Atmospheric CO in the Presence of Tetrabutylammonium Borohydride. *Org. Lett.* **2010**, *12*, 1548-1551.

25. Rück-Braun, K. R.; Freysoldt, T., Synthesis by Addition across C—C Bonds. 2007, DOI: 10.1055/sos-SD-035-00256.

26. Jonczyk, A.; Pytlewski, T. Reactions of organic anions; LXXXVIII1. Catalytic Two-Phase Alkylation of Iodomethyl Aryl Sulfones. *Synthesis*. **1978**, *12*, 883-886.

 Li, H.; Qiu, X.; Zhang, X.; Wu, X., Sulfonyl Group-Induced Remote .C(*sp*³)–N Bond Construction through Hydrogen Atom Transfer. *Org. Lett.* 2023, *25*, 8814-8818.
 Fan, Q.; Zhao, Y.; Liang, J.; Zhang, Y.; Xu, Y.; Zhang, Q.; Zhu, H.; Jiang, M.; Shao, X., Nickel-Free Cross-Electrophile Coupling of Unactivated Alkyl Bromides with Thiosulfonates and Sulfinyl Sulfones. *Org. Chem. Front.* 2024, *11*, 2518-2527.

29. Anselmi, S.; Liu, S.; Kim, S.-H.; Barry, S. M.; Moody, T. S.; Castagnolo, D., A mild and Chemoselective CALB Biocatalysed Synthesis of Sulfoxides Exploiting the Dual Role of AcOEt as Solvent and Reagent. *Org. Biomol. Chem.* **2021**, *19*, 156-161.

30. Reeves, J. T.; Camara, K.; Han, Z. S.; Xu, Y.; Lee, H.; Busacca, C. A.; Senanayake, C. H., The Reaction of Grignard Reagents with Bunte Salts: A Thiol-Free Synthesis of Sulfides. *Org. Lett.* **2014**, *16*, 1196-1199.

31. Liu, Y.; Tao, X.; Mao, Y.; Yuan, X.; Qiu, J.; Kong, L.; Ni, S.; Guo, K.; Wang, Y.; Pan, Y., Electrochemical C–N Bond Activation for Deaminative Reductive Coupling of Katritzky Salts. *Nat. Commun.* **2021**, *12*, 6745-6752.

32. Xiao, Z.; Wang, L.; Wei, J.; Ran, C.; Liang, S. H.; Shang, J.; Chen, G.-Y.; Zheng, C., Visible-Light Induced Decarboxylative Coupling of Redox-Active Esters with Disulfides to Construct C–S Bonds. *Chem. Commun.* **2020**, *56*, 4164-4167.

33. Zhang, K.; Wang, J.; Wang, X.; Zhao, J., Electrochemical Oxidative Sulfenocyclization of Alkenoic Acids with Disulfides for the Synthesis of Lactones. *Asian J. Org. Chem.* **2023**, *12*, e202300485.

34. Meka, P. N.; Amatya, E.; Kaur, S.; Banerjee, M.; Zuo, A.; Dobrowsky, R. T.; Blagg, B. S. J., Synthesis and Evaluation of 3'- and 4'-Substituted Cyclohexyl Noviomimetics that Modulate Mitochondrial Respiration. *Biorg. Med. Chem.* **2022**, *70*, 116940-116957.

35. Mukherjee, N.; Chatterjee, T.; Ranu, B. C., Reaction under Ball-Milling: Solvent-, Ligand-, and Metal-Free Synthesis of Unsymmetrical Diaryl Chalcogenides. *J. Org. Chem.* **2013**, *78*, 11110-11114.

36. Kondoh, A.; Oishi, M.; Tezuka, H.; Terada, M., Development of Chiral Organosuperbase Catalysts Consisting of Two Different Organobase Functionalities. *Angew. Chem. Int. Ed.* **2020**, *59*, 7472-7477.

37. Pan, X.; Curran, D. P., Neutral Sulfur Nucleophiles: Synthesis of Thioethers and Thioesters by Substitution Reactions of N-Heterocyclic Carbene Boryl Sulfides and Thioamides. *Org. Lett.* **2014**, *16*, 2728-2731.

38. Yang, Y.-Z.; Lv, G.-F.; Hu, M.; Li, Y.; Li, J.-H., Nickel-Catalyzed Umpolung C-S Radical Reductive Cross Coupling of *S*-(Trifluoromethyl)arylsulfonothioates with Alkyl Halides. *Chin. Chem. Lett.* **2023**, *34*, 108590-108595.

39. Mao, R.; Bera, S.; Turla, A. C.; Hu, X., Copper-Catalyzed Intermolecular Functionalization of Unactivated $C(sp^3)$ -H Bonds and Aliphatic Carboxylic Acids. *J. Am. Chem. Soc.* **2021**, *143*, 14667-14675.

40. Yamaguchi, R.; Yang, K. W.; Kawanisi, M.; Wang, J., The Reaction of 7-Methylenebicyclo[3.3.1]nonan-3-one and Bicyclo-[3.3.1]nonane-3,7-dione with Several Nucleophiles. *B. Chem. Soc. Japan.* **1973**, *46*, 673-673.

41. Oechsner, R. M.; Wagner, J. P.; Fleischer, I., Acetate Facilitated Nickel Catalyzed Coupling of Aryl Chlorides and Alkyl Thiols. *ACS Catal.* **2022**, *12*, 2233-2243.

42. Cai, Y.-P.; Nie, F.-Y.; Song, Q.-H., Visible-Light-Mediated Alkylation of Thiophenols via Electron Donor–Acceptor Complexes Formed between Two Reactants. J. Org. Chem. 2021, 86, 12419-12426.

43. Lednicer, D.; Heyd, W. R.; Emmert, D. E.; TenBrink, R. E.; Schurr, P. E.; Day, C.
F., Hypobetalipoproteinemic Agents. 2. Compounds Related to
4-(l-Adamantyloxy)aniline. J. Am. Chem. Soc. 1978, 22, 66-77.

44. Maurin, J. K.; Lasek, W.; Górska, A.; Świtaj, T.; Jakubowska, A. B.; Kazimierczuk, Z., Adamantylsulfanyl- and N-Adamantylcarboxamido-Derivatives of Heterocycles and Phenoles: Synthesis, Crystal Structure, Tumor Necrosis Factor- α Production-Enhancing Properties, and Theoretical Considerations. *Chem. Biodivers.* **2004**, *1*, 1498-1512.

45. Tiefel, A. F.; Grenda, D. J.; Allacher, C.; Harrer, E.; Nagel, C. H.; Kutta, R. J.; Hernández-Castillo, D.; Narasimhamurthy, P. R.; Zeitler, K.; González, L.; Rehbein, J.; Nuernberger, P.; Breder, A., Unimolecular Net Heterolysis of Symmetric and Homopolar σ -bonds. *Nature*. **2024**, *632*, 550-556.

46. Logvinov, A. S.; Polyakova, I. N.; Righi, P., Adamantylazoles: XI. Reaction of 1-Phenyltetrazole-5-thione with Adamantan-1-ol in Strong Acids. *Russ. J. Gen. Chem.* **2007**, *77*, 2186-2196.

47. Ellwood, A. R.; Porter, M. J., A Direct and Efficient Preparation of 1-Phenyltetrazol-5-yl Sulfides from Alcohols. *Org. Biomol. Chem.* **2011**, *9*, 379-381.

48. Nambo, M.; Tahara, Y.; Yim, J. C. H.; Yokogawa, D.; Crudden, C. M., Synthesis of Quaternary Centres by Single Electron Reduction and Alkylation of Alkylsulfones. *Chem. Sci.* **2021**, *12*, 4866-4871.

49. Nambo, M.; Ghosh, K.; Yim, J. C. H.; Tahara, Y.; Inai, N.; Yanai, T.; Crudden, C. M., Desulfonylative Coupling of Alkylsulfones with *gem*-Difluoroalkenes by Visible-Light Photoredox Catalysis. *ACS Catal.* **2022**, *12*, 9526-9532.

9. NMR spectra

7.4069 7.3932 7.3855 7.3855 7.3770 7.3718 6.7343 6.7123 6.7123 6.7059

- 2.6796 - 2.4985

. 120

¹³C NMR (CDCI₃), 101 MHz

¹³C NMR (CDCI₃), 101 MHz

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.

2.00 1.97 3.10 10 10 10

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0

2.07-

1.01H

2.17-

3.08 8.91

1.5 1.0 0.5 0.0

3.07.1

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

S115

— 45.3812 — 40.2819

¹³C NMR (CDCI₃), 101 MHz

¹³C NMR (CDCI₃), 101 MHz

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

¹³C NMR (CDCI₃), 101 MHz

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

¹H NMR (CDCI₃), 400 MHz

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

L 7.4270 L 7.4059 L 7.2948 7.2736

2.0156 1.8252 1.8252 1.8180 1.6681 1.6445 1.6381 1.6381 1.6190 1.6114 1.5896 1.5896 1.3318 1.3318

140 130

7,5008 7,4820 7,2852 7,2854 7,2869 7,2869 7,2869 7,28610 7,28610 7,2456 7,2456 7,2456 7,2456 7,2456 7,2456 7,2456 7,2456 7,2456 7,1576 7,11070

2.5209 2.0012 1.8454 1.8454 1.6657 1.6584 1.6584 1.6584 1.6584 1.16528 1.16195 1.16099 1.16022 1.16022 1.15719

2.5015 2.4829 2.24829 2.24643 2.202744 1.8590 1.18596 1.18516 1.17143 1.15438 1.16738 1.15795

¹H NMR (CDCI₃), 400 MHz

(5.3333) (5.3138) (5.3138) (5.3138) (4.529) (4.52916) (4.5097)<

$\begin{bmatrix} 1.9697\\ 1.6929\\ 71.6678\\ 1.6678\\ 1.6529\\ 1.6529\\ 1.6433\\ 1.6137\\ 1.6062\end{bmatrix}$

¹H NMR (CDCI₃), 500 MHz MeO `OTs Me 63 3.20₋ 2.00<u>+</u> 2.02 2.05≖ 2.11_H 3.13₌ 2.12H 3.16≖ 40. 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1. 136.2625
133.0857
133.0857
129.9794
129.0221
123.5583 - 144.9215 - 114.5593 $\underset{<21.7598}{<21.2692}$ - 159.8371 - 68.3292 - 55.4231

. 170 . 140

7,8082 7,72549 7,72514 7,72514 7,72514 7,72514 7,72514 7,72514 7,72514 7,72514 7,72514 7,72514 7,72514 7,1995 7,1955 1,1575 1,1575 1,1575 1,1575 1,1575 1,1575 1,12

. 190

7.571 7.5523 7.5543 7.5543 7.5543 7.5543 7.5543 7.5543 7.5543 7.5543 7.2878 7.2878 7.2878 7.2879 7.2879 7.2879 7.1879 7.1879 7.21738 7.21738 7.21738 7.21738 7.21738 7.21738 7.21738 7.21738 7.21738 7.21738 7.21738 7.21738 7.21738 7.21738 7.21738 7.21738 7.21738 7.21739 7

S184

2.5598 2.5480 2.5480 2.55382 2.55382 2.55382 2.5551 1.6751 1.6751 1.6751 1.6771 1.6771 1.6773 1.6771 1.6773 1.0773 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744 1.07744

2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

¹H NMR (CDCI₃), 400 MHz

S190

¹H NMR (CDCI₃), 400 MHz

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

