SUPPORTING INFORMATION

Ni-Catalyzed C(sp³)–C(sp³) Cross-Coupling to Access γ-Carbonyl Alkylboronates and Alkylsilicons Enabled by Cyclopropanol-Derived Homoenolates

Linfei Zhu, Yang Sun, and Hui Wang*

Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

E-mail: wanghui29085@ahnu.edu.cn

TABLE OF CONTENTS

1. MATERIALS AND GENERAL METHODS	S2
1.1. Glassware, Solvents, and Reagents	S2
1.2. Chromatography and Instrumentation	S2
1.3. Naming of Compounds	S2
2. EXPERIMENTAL DATA	S3
2.1. Synthesis of Starting Materials	S3
2.1.1. Synthesis of Cyclopropanols (1a-1w)	S3
2.1.2. Synthesis of α-Halo Boronic Esters (2b-2q)	S5
2.1.3. Synthesis of Requisite Iodomethylsilanes	S7
2.2. Reaction Optimization	S9
2.3. General Procedure E: Reactions of Cyclopropanol 1 with 2 or 4	S11
2.4. Characterization Data	S11
3. MECHANISTIC STUDIES	S45
3.1. Radical Trap Experiment	S45
3.2. Radical Clock Experiment	S47
3.3. Competition Experiments	S48
3.4. Gram-Scale Reaction	S48
4. SYNTHETIC APPLICATIONS	S49
4.1. Synthesis of Compound 7	S49
4.2. Synthesis of Compound 8	S50
4.3. Synthesis of Compound 9	S51
4.4. Synthesis of Compound 10	
4.5. Synthesis of Compound 11	
5. SPECTROSCOPIC DATA	
6. REFERENCES	S140

1. MATERIALS AND GENERAL METHODS

1.1. Glassware, Solvents, and Reagents

All manipulations were performed with oven-dried (130 °C for a minimum of 12 h) glassware under air or an atmosphere of nitrogen, unless otherwise stated.

All anhydrous solvents were commercially supplied. Reagents were purchased from commercial sources and used as received.

1.2. Chromatography and Instrumentation

Thin layer chromatography (TLC) was performed using Merck Kieselgel 60 F254 fluorescent treated silica, which was visualised under UV light, or by staining with aqueous basic potassium permanganate followed by heating, or Hanessian's stain (CAM stain) followed by heating, as stated.

Flash column chromatography (FCC) was carried out using Sili Corey silica gel (200-300 mesh), or boric acid impregnated silica gel.¹

NMR spectra were recorded, using Bruker 400 MHz for ¹H, ¹¹B, ¹³C and ¹⁹F acquisitions. All NMR spectra were recorder at 25 °C unless otherwise stated. Chemical shifts (δ) are reported in parts per million (ppm) and referenced to CDCl₃ (¹H: 7.26 ppm; ¹³C: 77.16 ppm). Coupling constants (*J*) are given in Hertz (Hz) and refer to apparent multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, brs = broad signal, dd = doublet of doublets, etc.). The ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, number of protons).

IR spectra were recorded were recorded on Bruker INVENIO. Selected absorption maxima (v_{max}) are reported in wavenumbers (cm⁻¹).

High resolution mass spectra (HRMS) were recorded on a Bruker Daltonics MicrOTOF II by Electrospray Ionisation (ESI).

Gas chromatography–mass spectrometry (**GC-MS**) was recorded on an Agilent 6890 Series GC and 5973 detector using a HP-5MS UI column (15 m x 0.25 mm x 0.25 μm).

1.3. Naming of Compounds

Compound names are those generated by ChemDraw Professional 20.0 software (PerkinElmer), following the IUPAC nomenclature.

2. EXPERIMENTAL DATA

2.1. Synthesis of Starting Materials

2.1.1. Synthesis of Cyclopropanols (1a-1w)

Procedure A: Simmons-Smith Reaction

Following a modified literature procedure:²

To an oven-dried round-bottom flask containing a stir bar was added diisopropylamine (1.1 equiv.) and THF (0.5 M) under nitrogen atmosphere. Then *n*-BuLi (2.5 M in hexane, 1.1 equiv.) was added to the stirring mixture dropwise at 0 °C. The mixture was allowed to warmed to room temperature and stirred for 1 hour. After that the corresponding ketone (1.0 equiv.) was added at 0 °C followed by TMSCl (1.1 equiv.). The mixture was stirred for 12 hours at room temperature. Then the mixture was quenched with saturated NaHCO₃. The organic layer was separated and the aqueous layer was washed with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuum. The enol ether was used in the next step without further purification.

To an oven-dried round-bottom flask containing a stir bar was added the crude enol ether (1.0 equiv.). The flask was evacuated and backfilled with N_2 for three times. Then DCM (0.5 M) was added and the solution was cooled to 0 °C. After that the diiodomethane (1.5 equiv.) was added, followed by diethylzinc (1.0 M in hexanes, 1.5 equiv.). The reaction was allowed to warm to room temperature and stirred for 24 hours. Then the mixture was quenched with saturated NaHCO₃, filtered through Celite and washed with DCM. The organic phase was separated and the aqueous layer was extracted with DCM. The combined organic layers were washed with brine, dried over Na_2SO_4 and concentrated in vacuum. The crude TMS ether was also used in the next step without further purification.

To an oven-dried round-bottom flask containing a stir bar was added the crude TMS ether and MeOH (0.5 M). Then TMSCl (1 drop) was added and the reaction was stirred at room temperature for 1 hour. After that the solution was directly concentrated under vacuum and the residue was purified by column chromatography on silica gel (Petroleum ether/EtOAc) to afford **1**.

The following cyclopropanols were synthesized by **procedure A** according to literature known procedures.²⁻⁴

Procedure B: Kulinkovich Rreaction

Following a modified literature procedure:²

To an oven-dried round-bottom flask containing a stir bar was added corresponding ester (1.0 equiv.) and THF (0.25 M) under nitrogen atmosphere. Then titanium tetraisopropoxide (1.4 equiv.) was added at 0 °C, followed by the addition of ethylmagnesium bromide (2.8 equiv., 2.0 M in THF) dropwise. After that the reaction was allowed to warm to room temperature and stirred until the ester was completely consumed (detected by TLC). Then the mixture was quenched with water, filtered through Celite and washed with ethyl acetate. The organic layer was separated and the aqueous layer was washed with ethyl acetate. The combined organic layers were washed with brine, dried over Na_2SO_4 and concentrated in vacuum. The residue was purified by silica gel column chromatography (Petroleum ether/EtOAc) to afford **1**.

The following cyclopropanols were synthesized by **procedure B** according to literature known procedures.²

The cyclopropanols **1t** and **1w** were synthesized according to literature known procedures.⁵

The cyclopropanol was purchased from commercial sources.

2.1.2. Synthesis of α-Halo Boronic Esters (2b-2q)

Procedure C: 1,2-Migration of Boronates and Exchange Reactions with NaI

Following a modified literature procedure:⁶

To a flame-dried three necked flask equipped with a stir bar, cooled under N_2 and fitted with a thermometer and septum, was added a solution of dry CH_2Cl_2 (0.96 mL, 15.0 mmol, 1.5 equiv.) in THF (20 mL) which was cooled to -110 °C in an absolute EtOH/liq. N_2 slush bath. *n*-BuLi (2.5 M in hexane, 5.6 mL, 14.0 mmol, 1.4 equiv.) was precooled to 0 °C and lightly shaken before used to ensure homogeneity, then added dropwise over 15 min. *The needle containing the n-BuLi was placed such that the solution ran down the side of the flask before contacting the reaction mixture to ensure adequate cooling*. After 30 min stirring at -110 °C, a solution of RBpin (10.0 mmol, 1.0 equiv.) in THF (5.0 mL), precooled to -80 °C (acetone/ liq. N_2 slush bath), was added to the center of the reaction flask in one portion. The solution was stirred for a further 15 min at -110 °C, then the cooling bath was removed and the reaction mixture was stirred at rt overnight. The solution was concentrated at reduced pressure then resuspended in hexane 150.0 mL and insoluble salts were filtered off, washing the LiCl filter cake with hexane (2 x 40.0 mL). The solution was concentrated at reduced pressure to afford a cream which was subject to vacuum distillation to afford a yellow liquid.

To a round bottom flask wrapped in foil and equipped with a stir bar was added NaI (7.5 g, 50.0 mmol, 10.0 equiv.) and acetone (20.0 mL), and the reaction stirred at rt for 3 min until compound α -chloro boronic ester (10.0 mmol, 1.0 equiv.) was added in one portion. The reaction mixture was stirred at rt for 16 hours. After that, the reaction mixture was filtered and concentrated at reduced pressure to afford a vellow solid which was triturated with CH₂Cl₂ (50.0 mL) and the solid was filtered off and washed with

 CH_2Cl_2 (20.0 mL portions until the filtered solid turned white, excess NaI). The liquor was concentrated at reduced pressure to afford the desired product as a yellow oil.

The following cyclopropanols were synthesized by **procedure** C according to literature known procedures.⁶⁻¹²

2-(1-Iodo-5-methoxypentyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2e)

Prepared following **Procedure C**, using 2-(4-methoxybutyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.14 g, 10.0 mmol, 1.0 equiv.), DCM (0.96 mL, 15.0 mmol, 1.5 equiv.), *n*-butyllithium (2.5 M in THF, 5.6 mL, 14.0 mmol, 1.4 equiv.), and NaI (7.50 g, 50.0 mmol, 5.0 equiv.). Purification by vacuum distillation gave boronic ester **2e** (2.21 g, 62%) as a yellow oil.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 3.34 (t, J = 6.4 Hz, 2H), 3.30 (s, 3H), 3.19 (t, J = 8.2 Hz, 1H), 1.94 – 1.71 (m, 2H), 1.65 – 1.43 (m, 3H), 1.41 – 1.22 (m, 1H), 1.25 (s, 12H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 84.0, 72.6, 58.6, 34.7, 28.9, 28.0, 24.5, 24.3 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 31.34 ppm.

IR (film): *v*_{max} 2978, 2934, 2865, 1408, 1381, 1337, 1268, 1215, 1167, 1144, 1120, 967, 873, 846, cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₂H₂₅BIO₃ [M+H]⁺, 355.0936; found, 355.0946.

Ethyl 4-iodo-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butanoate (20)

Prepared following **Procedure C**, using ethyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propanoate (2.28 g, 10.0 mmol, 1.0 equiv.), DCM (0.96 mL, 15.0 mmol, 1.5 equiv.), *n*-butyllithium (2.5 M in THF, 5.6 mL, 14.0 mmol, 1.4 equiv.) and NaI (7.50 g, 50.0 mmol, 5.0 equiv.). Purification by vacuum distillation gave boronic ester **20** (2.36 g, 64%) as a yellow oil.

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 4.10 (q, J = 7.1 Hz, 2H), 3.25 (dd, J = 8.6, 7.0 Hz, 1H), 2.68 – 2.29 (m, 2H), 2.19 – 1.99 (m, 2H), 1.24 (s, 12H), 1.22 (d, J = 7.3 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 172.6, 84.2, 60.6, 35.7, 29.7, 24.5, 24.3, 14.3 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 31.38 ppm.

IR (film): *v*_{max} 2980, 2936, 1735, 1382, 1338, 1270, 1143, 1096, 1035, 968, 846, 768, 671 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{12}H_{23}BIO_4$ [M+H]⁺, 369.0729; found, 369.0727.

2.1.3. Synthesis of Requisite Iodomethylsilanes

Procedure D: Synthesis of Ethoxy(iodomethyl)dimethylsilane (4b)

То an oven-dried round-bottom flask containing stir bar was added а (chloromethyl)(ethoxy)dimethylsilane (1.0 equiv.), dry acetone (1.0 M) and sodium iodide (1.8 equiv.). The reaction was allowed to reflux for 24 hours. After that, the reaction was cooled to room temperature and the solvent was removed via rotary evaporation. Then the resulting slurry was filtered through Celite and washed with hexanes three twice. The combined organic layers were concentrated in vacuum to afford product as a colorless oil.

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 3.73 (q, J = 7.0 Hz, 2H), 2.04 (s, 2H), 1.21 (t, J = 7.0 Hz, 3H),

0.29 (s, 6H) ppm;

```
<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>): δ<sub>C</sub> 59.1, 18.6, -2.5, -14.6 ppm;
```

GC-MS (ESI) calculated for C₅H₁₃IOSi, 244.0; found, 244.0.

(Iodomethyl)trimethylsilane were purchased from commercial sources.

Triethoxy(iodomethyl)silane and (Iodomethyl)dimethyl(phenyl)silane were synthesized according to literature known procedures.^{13, 14}

Purification of benzyl boronic esters using boric acid-capped silica (B-SiO₂)

Note: Some of the substrates synthesized showed a loss of material (up to 30%) upon column chromatography. To remedy this, the separation of any compound containing a Bpin ester was achieved using B-SiO₂, which also maintained good isolated yields of the products in comparison to obtained NMR yields (yield loss typically < 15%).

Preparation of boric acid-capped silica (B-SiO₂):¹ A solution of 5% w/v solution of boric acid in ethanol was made by dissolving 27.5 g of boric acid in 550 mL of absolute ethanol and stirred until the mixture became homogenous (ca. 30–45 min). 150 g of SiO₂ was slowly added and the suspension stirred for 1 hour. The silica was filtered off using a 600 mL fritted funnel and washed with Et₂O. This was then transferred to a 1 L round bottom flask and dried under vacuum at 60 °C for several hours. B-SiO₂ should be equally as free-flowing as standard SiO₂. If the B-SiO₂ does not give satisfactory yields, this is most likely due to residual ethanol. To remove it, transfer the B-SiO₂ to a beaker and place it in the oven at 120 °C overnight.

2.2. Reaction Optimization

Table S1: Optimization of the Reaction Conditions^a

Entry	[Ni]	L	Base	Solvent	T (°C)	Yield (%) ^b
1	NiCl ₂ ·DME	L2	K_2CO_3	MeCN	80	53
2	NiCl ₂ ·DME	L2	K_2CO_3	DMF	80	trace
3	NiCl ₂ ·DME	L2	K_2CO_3	DME	80	11
4	NiCl ₂ ·DME	L2	K_2CO_3	EtOAc	80	trace
5	NiCl ₂ ·DME	L2	K_2CO_3	Benzene	80	17
6	NiCl ₂ ·DME	L2	K_2CO_3	Toluene	80	trace
7	NiCl ₂ ·DME	L2	K_2CO_3	THF	80	8
8	NiCl ₂ ·DME	L1	K_2CO_3	MeCN	80	41
9	NiCl ₂ ·DME	L3	K_2CO_3	MeCN	80	37
10	NiCl ₂ ·DME	L4	K_2CO_3	MeCN	80	31
11	NiCl ₂ ·DME	L5	K_2CO_3	MeCN	80	trace
12	NiCl ₂ ·DME	L6	K_2CO_3	MeCN	80	17
13	NiCl ₂ ·DME	L7	K_2CO_3	MeCN	80	39
14	NiCl ₂ ·DME	L8	K_2CO_3	MeCN	80	trace
15	NiCl ₂ ·DME	L9	K_2CO_3	MeCN	80	26
16	NiCl ₂ ·DME	L2	K_2CO_3	MeCN	100	36
17	NiCl ₂ ·DME	L2	K_2CO_3	MeCN	60	33
18	NiCl ₂ ·DME	L2	K_2CO_3	MeCN	40	14
19	NiCl ₂ ·DME	L2		MeCN	80	

20	NiCl ₂ ·DME	L2	K_3PO_4	MeCN	80	46
21	NiCl ₂ ·DME	L2	K_2HPO_4	MeCN	80	43
22	NiCl ₂ ·DME	L2	Na ₃ PO ₄	MeCN	80	51
23	NiCl ₂ ·DME	L2	Na ₂ CO ₃	MeCN	80	45
24	NiCl ₂ ·DME	L2	KHCO ₃	MeCN	80	43
25	$NiCl_2 \cdot DME$	L2	Cs_2CO_3	MeCN	80	trace
26	NiCl ₂ ·DME	L2	DMAP	MeCN	80	trace
27	NiBr ₂ ·DME	L2	K_2CO_3	MeCN	80	71
28	NiI ₂	L2	K_2CO_3	MeCN	80	11
29	Ni(COD) ₂	L2	K_2CO_3	MeCN	80	36
30 ^c	NiBr ₂ ·DME	L2	K_2CO_3	MeCN	80	79
31 ^d	NiBr ₂ ·DME	L2	K_2CO_3	MeCN	80	62

Continued Table S1

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), [Ni] (10 mol %), **L** (15 mol %), base (2.0 equiv.), solvent (2.0 mL), N₂, 24 hours. ^{*b*}Yield was determined by GC-Fid analysis using 4,4,5,5-tetramethyl-2-(*p*-tolyl)-1,3,2-dioxaborolane as internal standard. ^{*c*}MeCN (3.0 mL). ^{*d*}MeCN (4.0 mL). MeCN = Acetonitrile, DMF = *N*, *N*-Dimethylformamide, DME = 1,2-Dimethoxyethane, EtOAc = Ethyl Acetate, THF = Tetrahydrofuran.

Table S2: Optimize the Substrate 2 of the Reaction^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2** (0.4 mmol), NiBr₂·DME (10 mol %), **L2** (15 mol %), K₂CO₃ (2.0 equiv.), MeCN (3.0 mL), N₂, 80 °C, 24 hours. ^{*b*}Yield was determined by GC-Fid analysis using 4,4,5,5-tetramethyl-2-(*p*-tolyl)-1,3,2-dioxaborolane as internal standard. ^{*c*}Isolated yield.

2.3. General Procedure E: Reactions of Cyclopropanol 1 with 2 or 4

To a 10 mL vial equipped with a magnetic stir bar was added cyclopropanol (1) (0.2 mmol, 1.0 equiv.), 2 or 4 (0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 10 mol %), L2 (8.0 mg, 15 mol %), K₂CO₃ (55.3 mg, 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M) under nitrogen atmosphere. The vial was sealed with a septum and allowed to stir at 80 °C for 24 or 48 hours. Upon completion, the mixture was diluted with ethyl acetate (3.0 mL) and quenched with H₂O (3.0 mL). The organic phase was separated and the aqueous layer was extracted with ethyl acetate (3×3.0 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and the solvent was evaporated in vacuo. The residue was purified by column chromatography on silica gel (Petroleum ether/EtOAc) to afford desired product **3** or **5**.

2.4. Characterization Data

1-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3aa)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (26.8 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (43.9 mg, 80%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.98 – 7.96 (m, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.47 – 7.43 (m, 2H), 2.98 (t, *J* = 7.4 Hz, 2H), 1.90 – 1.82 (m, 2H), 1.25 (s, 12H), 0.89 (t, *J* = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.8, 137.2, 133.0, 128.7, 128.3, 83.2, 41.1, 25.0, 19.4 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.92 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹⁵

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(p-tolyl)butan-1-one (3ba)

Prepared following **General Procedure E** using 1-(p-tolyl)cyclopropan-1-ol (29.6 mg, 0.2 mmol, 1.0 equiv.), 2-(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (70 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (50.5 mg, 88%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.87 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 2.95 (t, *J* = 7.4 Hz, 2H), 2.40 (s, 3H), 1.88 – 1.80 (m, *J* = 7.7 Hz, 2H), 1.25 (s, 12H), 0.88 (t, *J* = 7.8 Hz, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.4, 143.7, 134.7, 129.3, 128.4, 83.2, 41.0, 25.0, 21.8, 19.5 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.84 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹⁵

1-[4-(*tert*-Butyl)phenyl]-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3ca)

Prepared following **General Procedure E** using 1-[4-(tert-butyl)phenyl]cyclopropan-1-ol (38.0 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (56.2 mg,

85%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7 7.91 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 2.95 (t, J = 7.4 Hz, 2H), 1.88 – 1.81 (m, 2H), 1.33 (s, 9H), 1.24 (s, 12H), 0.88 (t, J = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.4, 156.6, 134.7, 128.2, 125.6, 83.2, 41.0, 35.2, 31.2, 25.0, 19.5 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B NMR** (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.90 ppm.

IR (film): *v*_{max} 3451, 2970, 1682, 1607, 1467, 1375, 1321, 1274, 1224, 1146, 1088, 973, 847, 580 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₀H₃₂BO₃ [M+H]⁺, 331.2439; found, 331.2441.

1-(4-Methoxyphenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3da)

Prepared following **General Procedure E** using 1-(4-methoxyphenyl)cyclopropan-1-ol (32.8 mg, 0.2 mmol, 1.0 equiv.), 2-(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (70 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 10:1) to afford the title compound (48.4 mg, 80%) as a colorless oil.

 $\mathbf{R}_f = 0.4$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.95 (d, J = 8.9 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 3.86 (s, 3H), 2.92 (t, J = 7.5 Hz, 2H), 1.88 – 1.80 (m, 2H), 1.25 (s, 12H), 0.88 (t, J = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 199.4, 163.4, 130.6, 130.4, 113.8, 83.2, 55.6, 40.8, 25.0, 19.7 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.81 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹⁵

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(m-tolyl)butan-1-one (3ea)

Prepared following **General Procedure E** using 1-(m-tolyl)cyclopropan-1-ol (29.6 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (47.3 mg, 79%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.77 – 7.74 (m, 2H), 7.36 – 7.30 (m, 2H), 2.95 (t, *J* = 7.4 Hz, 2H), 2.40 (s, 3H), 1.88 – 1.80 (m, 2H), 1.24 (s, 12H), 0.87 (t, *J* = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.9, 138.4, 137.2, 133.7, 128.8, 128.5, 125.5, 83.2, 41.1, 25.0, 21.5, 19.5. ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.91 ppm.

IR (film): *v*_{max} 3452, 2980, 2933, 1684, 1596, 1376, 1319, 1146, 971, 844, 779, 691 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₇H₂₆BO₃ [M+H]⁺, 289.1970; found, 289.1974.

1-(3,5-Dimethylphenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3fa)

Prepared following **General Procedure E** using 1-(3,5-dimethylphenyl)cyclopropan-1-ol (32.4 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (41.7 mg, 69%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.57 (s, 2H), 7.18 (s, 1H), 2.94 (t, *J* = 7.4 Hz, 2H), 2.36 (s, 6H), 1.87 - 1.80 (m, 2H), 1.25 (s, 12H), 0.87 (t, *J* = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 201.2, 138.2, 137.4, 134.6, 126.1, 83.2, 41.2, 25.0, 21.4, 19.6 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.92 ppm.

IR (film): *v*_{max} 3421, 2979, 2930, 1683, 1605, 1452, 1376, 1316, 1269, 1146, 970, 852, 683 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{18}H_{28}BO_3$ [M+H]⁺, 303.2126; found, 303.2131.

1-(4-Fluorophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3ga)

Prepared following **General Procedure E** using 1-(4-fluorophenyl)cyclopropan-1-ol (30.4 mg, 0.2 mmol, 1.0 equiv.), 2-(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (70 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (42.8 mg, 73%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.99 (dd, J = 8.9, 5.4 Hz, 2H), 7.11 (t, J = 8.6 Hz, 2H), 2.94 (m, 2H), 1.88 – 1.80 (m, 2H), 1.25 (s, 12H), 0.88 (t, J = 7.7 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 199.1, 165.7 (d, ${}^{1}J_{\rm C-F}$ = 255.2 Hz), 133.6 (d, ${}^{4}J_{\rm C-F}$ = 3.0 Hz), 130. 9 (d, ${}^{3}J_{\rm C-F}$ = 9.3 Hz), 115.7 (d, ${}^{2}J_{\rm C-F}$ = 21.9 Hz), 83.2, 41.0, 25.0, 19.4 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹⁹**F NMR** (377 MHz, CDCl₃): $\delta_{\rm F}$ -105.91 ppm.

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.81 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹⁵

1-(4-Chlorophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3ha)

Prepared following **General Procedure E** using 1-(4-chlorophenyl)cyclopropan-1-ol (33.7 mg, 0.2 mmol, 1.0 equiv.), 2-(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (70 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (40.2 mg, 65%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.91 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 2.94 (t, *J* = 7.4 Hz, 2H), 1.88 - 1.80 (m, 2H), 1.25 (s, 12H), 0.88 (t, *J* = 7.7 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 199.5, 139.4, 135.5, 129.7, 129.0, 83.3, 41.0, 25.0, 19.4 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B NMR** (128 MHz, CDCl₃): *δ*_B 33.88 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹⁶

1-(4-Bromophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3ia)

Prepared following **General Procedure E** using 1-(4-bromophenyl)cyclopropan-1-ol (42.6 mg, 0.2 mmol, 1.0 equiv.), 2-(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (70 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (35.5 mg, 50%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 199.7, 135.9, 132.0, 129.9, 128.1, 83.3, 41.0, 25.0, 19.4 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B NMR** (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.88 ppm.

IR (film): *v*_{max} 3451, 2979, 2831, 1684, 1593, 1364, 1217, 1145, 1073, 975, 844, 774, 534 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₆H₂₃BBrO₃ [M+H]⁺, 353.0918; found, 353.0920.

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1-[4-(trifluoromethyl)phenyl]butan-1-one (3ja)

Prepared following **General Procedure E** using 1-[4-(trifluoromethyl)phenyl]cyclopropan-1-ol (40.4 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 40:1) to afford the title compound (29.7 mg, 43%) as a colorless oil.

 $\mathbf{R}_f = 0.7$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.07 (d, J = 8.2 Hz, 2H), 7.71 (d, J = 8.2 Hz, 2H), 3.00 (t, J = 7.4 Hz, 2H), 1.90 – 1.82 (m, 2H), 1.25 (s, 13H), 0.89 (t, J = 7.7 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 199.7, 139.8, 134.3 (d, ${}^{2}J_{\rm C-F}$ = 129.5 Hz), 128.6, 125.7 (q, ${}^{3}J_{\rm C-F}$ = 3.8 Hz), 123.8 (d, ${}^{1}J_{\rm C-F}$ = 273.7 Hz), 83.3, 41.3, 25.0, 19.2 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹⁹**F NMR** (377 MHz, CDCl₃): *δ*_F 63.06 ppm.

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.78 ppm.

IR (film): *v*_{max} 3750, 2986, 2362, 2357, 1691, 1653, 1541, 1377, 1325, 1162, 1139, 1068, 802 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₇H₂₃BF₃O₃ [M+H]⁺, 343.1687; found, 343.1693.

Methyl 4-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butanoyl]benzoate (3ka)

Prepared following **General Procedure E** using methyl 4-(1-hydroxycyclopropyl)benzoate (38.4 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 10:1) to afford the title compound (32.0 mg, 48%) as a colorless oil.

 $\mathbf{R}_f = 0.4$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.10 (d, J = 8.5 Hz, 2H), 8.01 (d, J = 8.8 Hz, 2H), 3.94 (s, 3H), 3.00 (t, J = 7.4 Hz, 2H), 1.89 – 1.82 (m, 2H), 1.24 (s, 12H), 0.89 (t, J = 7.7 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.2, 166.5, 140.4, 133.7, 129.9, 128.2, 83.3, 52.6, 41.4, 25.0, 19.2 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): δ_B 33.91 ppm.

IR (film): *v*_{max} 3432, 2979, 1728, 1689, 1440, 1376, 1319, 1279, 1217, 1145, 1110, 1016, 972, 869, 761, 732 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{18}H_{26}BO_5$ [M+H]⁺, 333.1868; found, 333.1872.

1-(Naphthalen-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3la)

Prepared following **General Procedure E** using 1-(naphthalen-2-yl)cyclopropan-1-ol (36.8 mg, 0.2 mmol, 1.0 equiv.), 2-(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (70 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (54.3 mg, 84%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.49 (s, 1H), 8.04 (dd, J = 8.6, 1.6 Hz, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.88 (dd, J = 8.6, 6.0 Hz, 2H), 7.61 – 7.52 (m, 2H), 3.11 (t, J = 7.4 Hz, 2H), 1.96 – 1.88 (m, 2H), 1.26 (s, 12H), 0.93 (t, J = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.7, 135.6, 134.6, 132.7, 129.9, 129.7, 128.5, 128.4, 127.9, 126.8, 124.2, 83.2, 41.2, 25.0, 19.7 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B NMR** (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.85 ppm.

All recorded spectroscopic data matched those previously reported in the literature.¹⁵

1-(Benzo[b]thiophen-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3ma)

Prepared following **General Procedure E** using 1-(benzo[b]thiophen-2-yl)cyclopropan-1-ol (38.1 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 2:1) to afford the title compound (26.5 mg, 40%) as a yellowish oil.

 $\mathbf{R}_f = 0.5$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.99 (s, 1H), 7.87 (dd, J = 7.6, 4.8 Hz, 2H), 7.45 (t, J = 7.1 Hz, 1H), 7.40 (t, J = 7.0 Hz, 1H), 3.01 (t, J = 7.5 Hz, 2H), 1.95 – 1.88 (m, 2H), 1.26 (s, 12H), 0.92 (t, J = 7.7 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 195.3, 144.2, 142.6, 139.4, 129.1, 127.4, 126.0, 125.0, 123.2, 83.3, 41.7, 25.0, 20.0 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.84 ppm.

IR (film): *v*_{max} 3468, 2977, 2933, 1664, 1516, 1460, 1376, 1318, 1219, 1144, 968, 844, 750, 726 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{18}H_{24}BO_3S$ [M+H]⁺, 331.1534; found, 331.1543.

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(thiophen-2-yl)butan-1-one (3na)

Prepared following **General Procedure E** using 1-(thiophen-2-yl)cyclopropan-1-ol (28.0 mg, 0.2 mmol, 1.0 equiv.), 2-(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (70 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (47.9 mg, 85%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.72 (d, J = 3.8 Hz, 1H), 7.60 (d, J = 5.0 Hz, 1H), 7.11 (t, J = 4.4 Hz, 1H), 2.90 (t, J = 7.6 Hz, 2H), 1.93 – 1.77 (m, 2H), 1.24 (s, 12H), 0.88 (t, J = 7.8 Hz, 2H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 193.7, 144.8, 133.4, 131.9, 128.1, 83.2, 41.8, 25.0, 19.9 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.79 ppm.

IR (film): v_{max} 3449, 2978, 2830, 2362, 1661, 1601, 1415, 1365, 1231, 1145, 969, 848, 775, 724 cm⁻¹.
HRMS (ESI⁺): m/z calculated for C₁₄H₂₂BO₃S [M+H]⁺, 281.1377; found, 281.1379.

2-Ethyl-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3oa)

Prepared following **General Procedure E** using 2-ethyl-1-phenylcyclopropan-1-ol (32.4 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (42.8 mg, 71%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.99 – 7.97 (m, 2H), 7.54 (tt, *J* = 7.3, 1.4 Hz, 1H), 7.46 – 7.42 (m, 2H), 3.40 – 3.33 (m, 1H), 1.91 – 1.72 (m, 2H), 1.66 – 1.51 (m, 3H), 1.22 (s, 12H), 0.86 (t, *J* = 7.4 Hz, 3H), 0.78 – 0.74 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 204.9, 138.1, 132.9, 128.6, 128.4, 83.2, 49.6, 26.6, 25.0, 25.0, 24.9, 12.2. ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.64 ppm.

IR (film): *v*_{max} 2975, 2933, 2363, 1680, 1598, 1452, 1375, 1320, 1270, 1217, 1145, 969, 846, 703 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₈H₂₈BO₃ [M+H]⁺, 303.2126; found, 303.2136.

(E)-1-Phenyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-1-en-3-one (3pa)

Prepared following **General Procedure E** using (*E*)-1-styrylcyclopropan-1-ol (32.0 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (31.9 mg, 53%) as a yellowish solid.

M. P.: 54 - 56 °C.

 $\mathbf{R}_f = 0.5$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.57 – 7.52 (m, 3H), 7.41 – 7.37 (m, 3H), 6.73 (d, J = 16.2 Hz, 1H), 2.68 (t, J = 7.4 Hz, 2H), 1.84 – 1.77 (m, 2H), 1.25 (s, 12H), 0.86 (t, J = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.9, 142.5, 134.8, 130.5, 129.1, 128.4, 126.6, 83.2, 43.3, 25.0, 19.4 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B NMR** (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.67 ppm.

IR (film): *v*_{max} 3058, 2976, 2363, 2339, 1658, 1615, 1454, 1373, 1318, 1197, 1145, 967, 750, 694 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₈H₂₆BO₃ [M+H]⁺, 301.1970; found, 301.1979.

1-Phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentan-2-one (3qa)

Prepared following **General Procedure E** using 1-benzylcyclopropan-1-ol (29.6 mg, 0.2 mmol, 1.0 equiv.), 2-(bromomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (70 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 48 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (43.2 mg, 75%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.34 – 7.30 (m, 2H), 7.27 – 7.22 (m, 1H), 7.21 – 7.18 (m, 2H), 3.67 (s, 2H), 2.45 (t, *J* = 7.4 Hz, 2H), 1.71 – 1.64 (m, 2H), 1.21 (s, 12H), 0.75 (t, *J* = 7.8 Hz, 2H). ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 208.7, 134.6, 129.6, 128.8, 127.0, 83.2, 50.2, 44.3, 24.9, 18.5 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.69 ppm.

IR (film): *v*_{max} 2978, 2931, 2362, 1714, 1495, 1455, 1376, 1321, 1214, 1145, 1086, 968, 847, 701 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₇H₂₆BO₃ [M+H]⁺, 289.1970; found, 289.1979.

1-Phenyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-3-one (3ra)

Prepared following **General Procedure E** using 1-phenethylcyclopropan-1-ol (32.4 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 48 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 2:1) to afford the title compound (44.0 mg, 73%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.29 – 7.25 (m, 2H), 7.20 – 7.16 (m, 3H), 2.90 – 2.86 (m, 2H), 2.75 – 2.70 (m, 2H), 2.40 (t, *J* = 7.4 Hz, 2H), 1.72 – 1.65 (m, 2H), 1.23 (s, 12H), 0.76 (t, *J* = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 210.4, 141.4, 128.6, 128.5, 126.2, 83.2, 45.4, 44.4, 29.9, 25.0, 18.6 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B NMR** (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.71 ppm.

IR (film): *v*_{max} 2978, 2934, 2362, 1713, 1455, 1376, 1321, 1145, 1089, 969, 847, 748, 700 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₈H₂₈BO₃ [M+H]⁺, 303.2126; found, 303.2133.

1-Phenoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentan-2-one (3sa)

Prepared following **General Procedure E** using 1-(phenoxymethyl)cyclopropan-1-ol (32.8 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 48 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (39.9 mg, 66%) as a colorless oil.

 $\mathbf{R}_f = 0.5$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.32 – 7.26 (m, 2H), 6.99 (t, *J* = 7.4 Hz, 1H), 6.89 – 6.86 (m, 2H), 4.54 (s, 2H), 2.61 (t, *J* = 7.4 Hz, 2H), 1.79 – 1.72 (m, 2H), 1.22 (s, 12H), 0.81 (t, *J* = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 208.1, 158.0, 129.8, 121.7, 114.7, 83.2, 72.9, 41.4, 25.0, 18.0 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.72 ppm.

IR (film): *v*_{max} 3453, 2978, 2363, 1721, 1599, 1496, 1377, 1322, 1243, 1144, 1036, 755, 692 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{17}H_{26}BO_4$ [M+H]⁺, 305.1919; found, 305.1914.

1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-8-[(triisopropylsilyl)oxy]octan-4-one (3ta)

Prepared following **General Procedure E** using 1-{4-[(triisopropylsilyl)oxy]butyl}cyclopropan-1-ol (57.3 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 48 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 50:1) to afford the title compound (62.3 mg, 73%) as a colorless oil.

 $\mathbf{R}_{f} = 0.8$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 3.67 (t, J = 6.4 Hz, 2H), 2.41 (q, J = 7.4 Hz, 4H), 1.72 – 1.60 (m, 4H), 1.55 – 1.50 (m, 2H), 1.23 (s, 12H), 1.07 – 1.03 (m, 21H), 0.77 (t, J = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 211.6, 83.2, 63.2, 45.2, 42.7, 32.6, 25.0, 20.5, 18.7, 18.2, 12.1 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): δ_B 33.87 ppm.

IR (film): *v*_{max} 2912, 2867, 2362, 1715, 1463, 1377, 1321, 1146, 1107, 1069, 969, 883, 683 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₃H₄₈BO₄Si [M+H]⁺, 427.3409; found, 427.3417.

1-Cyclohexyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3ua)

Prepared following **General Procedure E** using 1-cyclohexylcyclopropan-1-ol (28.0 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 48 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (42.5 mg, 76%) as a colorless oil.

 $\mathbf{R}_f = 0.7$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 2.43 (t, J = 7.4 Hz, 2H), 2.35 – 2.28 (m, 1H), 1.85 – 1.74 (m, 4H), 1.70 – 1.62 (m, 2H), 1.33 – 1.21 (m, 18H), 0.76 (t, J = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 214.5, 83.1, 50.9, 43.0, 28.6, 26.0, 25.9, 25.0, 18.6 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.77 ppm.

IR (film): *v*_{max} 2978, 2931, 2856, 2362, 1708, 1452, 1376, 1320, 1146, 970, 847 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₆H₃₀BO₃ [M+H]⁺, 281.2283; found, 281.2288.

1-(Tetrahydro-2H-pyran-4-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3va)

Prepared following **General Procedure E** using 1-(tetrahydro-2H-pyran-4-yl)cyclopropan-1-ol (28.4 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react at 100 °C for 72 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 2:1) to afford the title compound (41.7 mg, 74%) as a colorless oil.

 $\mathbf{R}_f = 0.5$ (1:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 3.98 (dd, J = 11.6, 4.2 Hz, 2H), 3.41 (td, J = 11.3, 2.9 Hz, 2H), 2.53 (tt, J = 10.9, 4.3 Hz, 1H), 2.45 (t, J = 7.3 Hz, 2H), 1.77 – 1.62 (m, 6H), 1.23 (s, 12H), 0.77 (t, J = 7.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 212.3, 83.2, 67.5, 47.6, 42.6, 28.3, 25.0, 18.5. ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.70 ppm.

IR (film): *v*_{max} 2971, 2950, 2847, 2362, 1708, 1377, 1321, 1239, 1145, 1108, 1021, 971, 845 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₅H₂₈BO₄ [M+H]⁺, 283.2075; found, 283.2081.

2-[2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]cyclohexan-1-one (3wa)

Prepared following **General Procedure E** using bicyclo[4.1.0]heptan-1-ol (22.4 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 48 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (25.9 mg, 51%) as a colorless oil.

 $\mathbf{R}_f = 0.5$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 2.39 – 2.33 (m, 1H), 2.30 – 2.18 (m, 2H), 2.12 – 2.05 (m, 1H), 2.02 – 1.95 (m, 1H), 1.92 – 1.80 (m, 2H), 1.69 – 1.56 (m, 2H), 1.41 – 1.28 (m, 2H), 1.22 (s, 12H), 0.83 – 0.67 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 213.7, 83.1, 52.8, 42.1, 33.5, 28.2, 25.0, 24.8, 23.8 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.06 ppm.

IR (film): v_{max} 3450, 2978, 2934, 2862, 2363, 1710, 1451, 1376, 1320, 1216, 1146, 968, 885, 874 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{14}H_{26}BO_3$ [M+H]⁺, 253.1970; found, 253.1976.

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)butanal (3xa)

Prepared following **General Procedure E** using cyclopropanol (13 μ L, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 48 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (8.7 mg, 22%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 9.75 (t, *J* = 1.8 Hz, 1H), 2.44 (td, *J* = 7.4, 1.8 Hz, 2H), 1.80 – 1.72 (m, 2H), 1.24 (s, 12H), 0.83 (t, *J* = 7.7 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 203.3, 83.3, 46.2, 25.0, 17.0 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.72 ppm.

IR (film): *v*_{max} 3447, 2925, 1683, 2362, 1700, 1651, 1558, 1541, 1514, 1457, 1397, 1319, 673 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₀H₂₀BO₃ [M+H]⁺, 199.1500; found, 199.1499.

Phenyl{2-[(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl]cyclohexyl}methanone (3ya)

Prepared following **General Procedure E** using 7-phenylbicyclo[4.1.0]heptan-7-ol (37.6 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 48 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 40:1) to afford the title compound (32.5 mg, 50%) as a colorless oil.

 $\mathbf{R}f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.93 – 7.90 (m, 2H), 7.51 (tt, J = 7.3, 1.5 Hz, 1H), 7.44 – 7.40 (m, 2H), 3.59 – 3.54 (m, 1H), 2.34 – 2.27 (m, 1H), 1.92 – 1.80 (m, 2H), 1.72 – 1.62 (m, 2H), 1.61 – 1.53 (m, 2H), 1.45 – 1.38 (m, 1H), 1.36 – 1.30 (m, 1H), 1.13 (s, 6H), 1.12 (s, 6H), 0.93 (dd, J = 16.0, 9.7 Hz, 1H), 0.67 (dd, J = 16.0, 5.8 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 203.6, 137.4, 132.5, 128.6, 128.4, 83.0, 48.2, 33.6, 32.2, 25.0, 24.7, 24.3, 22.1 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.97 ppm.

IR (film): *v*_{max} 3424, 2941, 2816, 2716, 2362, 1597, 1354, 1154, 1028, 776, 708, 518 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{20}H_{30}BO_3$ [M+H]⁺, 329.2283; found, 329.2291.

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 2-(1-iodoethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (94 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (48.9 mg, 85%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.00 – 7.97 (m, 2H), 7.53 (tt, *J* = 7.3, 1.4 Hz, 1H), 7.46 – 7.42 (m, 2H), 3.05 – 2.92 (m, 2H), 1.91 – 1.82 (m, 1H), 1.78 – 1.69 (m, 1H), 1.24 (s, 12H), 1.16 – 1.07 (m, 1H), 1.04 – 1.02 (m, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 201.0, 137.2, 132.9, 128.6, 128.3, 83.2, 38.3, 28.2, 25.0, 24.9, 15.7 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.26 ppm.

IR (film): *v*_{max} 3452, 2977, 2872, 1695, 1458, 1378, 1317, 1267, 1144, 969, 859, 745, 694 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₇H₂₆BO₃ [M+H]⁺, 289.1970; found, 289.1970.

1-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-1-one (3ac)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 2-(1-iodopropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (99.6 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (47.1 mg, 78%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.99 – 7.96 (m, 2H), 7.54 (tt, *J* = 7.3, 1.2 Hz, 1H), 7.45 (tt, *J* = 7.8, 1.9 Hz, 2H), 3.05 – 2.89 (m, 2H), 1.89 – 1.75 (m, 2H), 1.55 – 1.40 (m, 2H), 1.26 (s, 12H), 1.04 – 0.98 (m, 1H), 0.95 – 0.91 (m, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.9, 137.2, 132.9, 128.6, 128.3, 83.2, 38.5, 25.9, 25.0, 25.0, 24.2, 13.6 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B NMR** (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.41 ppm.

IR (film): *v*_{max} 3451, 2972, 2929, 1685, 1454, 1382, 1316, 1266, 1212, 1144, 970, 855, 745, 694 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₈H₂₈BO₃ [M+H]⁺, 303.2126; found, 303.2128.

1-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octan-1-one (3ad)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 2-(1-iodopentyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (129.6 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (47.2 mg, 72%) as a colorless oil.

 $\mathbf{R}_f = 0.7$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.99 – 7.96 (m, 2H), 7.54 (tt, *J* = 7.32, 1.4 Hz, 1H), 7.46 – 7.43 (m, 2H), 3.04 – 2.89 (m, 2H), 1.81 (q, *J* = 7.7 Hz, 2H), 1.52 – 1.34 (m, 2H), 1.32 – 1.28 (m, 4H), 1.25 (s, 12H), 1.08 – 1.01 (m, 1H), 0.89 – 0.86 (m, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.9, 137.2, 132.9, 128.6, 128.3, 83.2, 38.5, 31.4, 31.0, 26.2, 25.0, 24.9, 23.1, 14.2 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.30 ppm.

IR (film): v_{max} 2959, 2928, 2860, 2362, 1687, 1599, 1453, 1377, 1317, 1269, 1200, 1144, 969, 851, 745, 694 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₀H₃₂BO₃ [M+H]⁺, 331.2439; found, 331.2447.

8-Methoxy-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octan-1-one (3ae)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 2-(1-iodo-5-methoxypentyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (146.1 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (32.5 mg, 45%) as a colorless oil.

 $\mathbf{R}_f = 0.5$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.99 – 7.96 (m, 2H), 7.54 (tt, *J* = 7.4, 1.4 Hz, 1H), 7.47 – 7.43 (m, 2H), 3.35 (t, *J* = 6.7 Hz, 2H), 3.31 (s, 3H), 3.04 – 2.89 (m, 2H), 1.81 (q, *J* = 7.8 Hz, 2H), 1.60 – 1.52 (m, 2H), 1.48 – 1.32 (m, 4H), 1.25 (s, 12H), 1.09 – 1.02 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.9, 137.2, 133.0, 128.7, 128.3, 83.2, 72.9, 58.6, 38.5, 31.1, 30.0, 26.1, 25.6, 25.0, 25.0 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.48 ppm.

IR (film): v_{max} 2978, 2930, 2861, 2363, 1685, 1454, 1386, 1318, 1268, 1215, 1144, 1118, 968, 863, 746, 693 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₁H₃₄BO₄ [M+H]⁺, 361.2545; found, 361.2554.

6-Methyl-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptan-1-one (3af)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 2-(1-iodobutyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (129.6 mg, 0.4 mmol, 2.0 equiv.),

NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (46.5 mg, 70%) as a colorless oil.

 $\mathbf{R}_f = 0.7$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.99 – 7.96 (m, 2H), 7.54 (tt, *J* = 7.3, 1.1 Hz, 1H), 7.47 – 7.43 (m, 2H), 3.04 – 2.90 (m, 2H), 1.86 – 1.71 (m, 2H), 1.66 – 1.56 (m, 1H), 1.43 – 1.36 (m, 1H), 1.25 (s, 12H), 1.22 – 1.09 (m, 2H), 0.87 (dd, *J* = 8.0, 1.8 Hz, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.9, 137.2, 132.9, 128.6, 128.3, 83.2, 40.5, 38.5, 27.1, 26.3, 25.0, 24.9, 23.0, 22.8 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.24 ppm.

IR (film): *v*_{max} 3451, 2956, 2910, 1686, 1456, 1380, 1318, 1260, 1211, 1144, 972, 859, 746, 695 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₀H₃₂BO₃ [M+H]⁺, 331.2439; found, 331.2443.

4-Cyclopentyl-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3ag)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 2-(cyclopentyliodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (134.4 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (35.9 mg, 52%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.99 – 7.96 (m, 2H), 7.54 (tt, *J* = 7.3, 1.4 Hz, 1H), 7.47 – 7.43 (m, 2H), 3.01 (ddd, *J* = 14.2, 10.5, 5.2 Hz, 1H), 2.89 (ddd, *J* = 16.0, 10.3, 5.8 Hz, 1H), 1.95 – 1.82 (m, 2H), 1.82 – 1.72 (m, 2H), 1.63 – 1.56 (m, 2H), 1.53 – 1.45 (m, 2H), 1.26 (s, 12H), 1.23 – 1.17 (m, 2H), 1.16 – 1.14 (m, 1H), 0.97 (dq, *J* = 12.6, 4.6 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 200.8, 137.2, 132.9, 128.7, 128.3, 83.2, 41.9, 38.8, 32.5, 32.2,

25.7, 25.5, 25.3, 25.1, 25.0 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.78 ppm.

IR (film): *v*_{max} 2949, 2867, 2362, 1686, 1452, 1375, 1318, 1267, 1214, 1144, 968, 849, 745, 694 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{21}H_{32}BO_3$ [M+H]⁺, 343.2439; found, 343.2448.

4-Cyclohexyl-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (3ah)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 2-(cyclohexyliodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (140.0 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (38.3 mg, 54%) as a colorless oil.

 $\mathbf{R}_f = 0.7$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.98 – 7.96 (m, 2H), 7.54 (tt, *J* = 7.4, 1.4 Hz, 1H), 7.46 – 7.96 (m, 2H), 3.05 – 2.98 (m, 1H), 2.89 – 2.81 (m, 1H), 1.83 (q, *J* = 7.8 Hz, 2H), 1.75 – 1.60 (m, 4H), 1.48 – 1.40 (m, 1H), 1.27 (s, 12H), 1.21 – 1.11 (m, 3H), 1.09 – 1.01 (m, 3H), 0.94 (q, *J* = 7.8 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.9, 137.2, 132.9, 128.6, 128.3, 83.2, 39.9, 39.0, 32.8, 32.5, 26.9, 26.9, 26.8, 25.2, 25.0, 23.8 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.93 ppm.

IR (film): v_{max} 3751, 3446, 2979, 2925, 2852, 2363, 1685, 1451, 1377, 1313, 1144, 970, 845, 694 cm⁻¹.

HRMS (ESI⁺): m/z calculated for $C_{22}H_{34}BO_3$ [M+H]⁺, 357.2596; found, 357.2600.

1-Phenyl-4-(tetrahydro-2*H*-pyran-4-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1one (3ai)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 2-[iodo(tetrahydro-2*H*-pyran-4-yl)methyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (140.08 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K_2CO_3 (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 10:1) to afford the title compound (33.2 mg, 46%) as a white solid.

Melting point: 96 – 98 °C.

 $\mathbf{R}_f = 0.2$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.96 (d, J = 7.0 Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.47 – 7.43 (m, 2H), 3.97 – 3.92 (m, 2H), 3.36 (td, J = 11.9, 1.7 Hz, 2H), 3.06 – 2.98 (m, 1H), 2.93 – 2.85 (m, 1H), 1.92 – 1.78 (m, 2H), 1.72 – 1.60 (m, 3H), 1.84 – 1.36 (m, 2H), 1.27 (s, 12H), 0.98 (dt, J = 9.4, 6.1 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.5, 137.1, 133.0, 128.7, 128.2, 83.4, 68.6, 68.5, 38.6, 37.2, 32.7, 32.3, 25.2, 25.0, 23.4 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B NMR** (128 MHz, CDCl₃): *δ*_B 33.81 ppm.

IR (film): *v*_{max} 3750, 2927, 2854, 2362, 1603, 1454, 1373, 1371, 1266, 1208, 1142, 1094, 967, 845, 750, 693 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₁H₃₂BO₄ [M+H]⁺, 359.2388; found, 359.2391.

tert-Butyl 4-[4-oxo-4-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl]piperidine-1carboxylate (3aj)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), *tert*-butyl 4-[iodo(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl]piperidine-1-carboxylate (180.5 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (32.6 mg, 36%) as a colorless oil.

 $\mathbf{R}_f = 0.4$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.79 – 7.74 (m, 2H), 7.56 – 7.51 (m, 1H), 7.46 – 7.43 (m, 2H), 4.08 (d, *J* = 14.0 Hz, 2H), 3.06 – 2.98 (m, 1H), 2.91 – 2.83 (m, 1H), 2.64 (t, *J* = 12.2 Hz, 2H), 1.87 – 1.81 (m, 2H), 1.70 – 1.61 (m, 2H), 1.59 – 1.53 (m, 1H), 1.44 (s, 9H), 1.25 (s, 12H), 0.98 (q, *J* = 8.2 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.5, 155.0, 137.1, 133.0, 128.7, 128.2, 83.4, 79.2, 38.7, 38.2, 31.7, 31.2, 29.8, 28.6, 25.2, 25.0, 23.6 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.75 ppm.

IR (film): *v*_{max} 3750, 2977, 2929, 2363, 1694, 1421, 1368, 1317, 1271, 1168, 969, 869, 748, 694 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₆H₄₁BNO₅ [M+H]⁺, 458.3072; found, 458.3091.

1,5-Diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentan-1-one (3ak)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 2-(1-iodo-2-phenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (143.2 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (53.7 mg, 74%) as a colorless oil.

 $\mathbf{R}_f = 0.7$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.96 – 7.93 (m, 2H), 7.54 (tt, *J* = 7.4, 1.4 Hz, 1H), 7.46 – 7.42 (m, 2H), 7.27 – 7.20 (m, 4H), 7.17 – 7.13 (m, 1H), 3.07 – 2.90 (m, 2H), 2.82 (dd, *J* = 13.7, 8.3 Hz, 1H),

2.71 (dd, *J* = 13.7, 7.8 Hz, 1H), 1.85 (q, *J* = 7.8 Hz, 2H), 1.50 – 1.42 (m, 1H), 1.18 (s, 6H), 1.16 (s, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.5, 141.9, 137.1, 133.0, 129.0, 128.6, 128.3, 125.9, 83.3, 38.4, 37.3, 25.8, 25.0, 24.9 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.73 ppm.

IR (film): v_{max} 3062, 3028, 2978, 2929, 2363, 1965, 1492, 1383, 1321, 1268, 1213, 1143, 969, 858, 744, 695 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₃H₃₀BO₃ [M+H]⁺, 365.2283; found, 365.2289.

1,6-Diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-1-one (3al)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 2-(1-iodo-3-phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (148.8 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (51.6 mg, 68%) as a colorless oil.

 $\mathbf{R}_f = 0.7$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.00 – 7.97 (m, 2H), 7.54 (tt, *J* = 7.4, 1.1 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.29 – 7.25 (m, 2H), 7.20 – 7.15 (m, 3H), 3.07 – 2.91 (m, 2H), 2.71 – 2.58 (m, 2H), 1.89 (q, *J* = 7.7 Hz, 2H), 1.85 – 1.78 (m, 1H), 1.76 – 1.66 (m, 1H), 1.28 (s, 12H), 1.18 – 1.11 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.7, 143.0, 137.1, 133.0, 128.7, 128.6, 128.4, 128.3, 125.8, 83.3, 38.4, 35.5, 33.5, 26.0, 25.0, 25.0 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.07 ppm.

IR (film): v_{max} 3062, 3027, 2978, 2928, 2860, 2362, 1685, 1600, 1453, 1383, 1318, 1270, 1217, 1143, 967, 850, 746, 696 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₅H₃₁BO₃ [M+H]⁺, 379.2439; found, 379.2446.
6,6,7,7,8,8,9,9,9-Nonafluoro-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nonan-1-one (3am)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 4,4,5,5-tetramethyl-2-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohexyl)-1,3,2-dioxaborolane (194.4 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 30:1) to afford the title compound (63.4 mg, 61%) as a colorless oil.

 $\mathbf{R}_f = 0.7$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.96 (dt, J = 7.0, 1.1 Hz, 2H), 7.55 (tt, J = 7.4, 1.5 Hz, 1H), 7.48 – 7.44 (m, 2H), 3.04 (t, J = 7.2 Hz, 2H), 2.48 – 2.32 (m, 1H), 2.19 – 2.04 (m, 1H), 1.96 – 1.90 (m, 2H), 1.51 – 1.44 (m, 1H), 1.25 (s, 6H), 1.24 (s, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 199.7, 137.0, 133.2, 128.8, 128.2, 83.9, 37.7, 32.4 (t, *J* = 21.9 Hz), 25.9, 24.9, 24.8 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹⁹**F NMR** (377 MHz, CDCl₃): $\delta_{\rm F}$ -81.07 (t, *J* = 9.6 Hz), -111.93 - -113.86 (m), -124.59 - -125.69 (m), -125.92 - -126.03 (m) ppm.

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.24 ppm.

IR (film): v_{max} 2983, 2937, 1689, 1452, 1390, 1332, 1235, 1136, 1075, 1020, 970, 928, 877, 742, 692 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₁H₂₅BF₉O₃ [M+H]⁺, 507.1748; found, 507.1754.

Ethyl 7-oxo-7-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptanoate (3an)

Prepared following General Procedure E using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0

equiv.), ethyl 4-iodo-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butanoate (147.21 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (63.6 mg, 85%) as a colorless oil.

 $\mathbf{R}_f = 0.7$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.97 – 7.94 (m, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 4.10 (q, *J* = 8.0 Hz, 2H), 3.06 – 2.92 (m, 2H), 2.43 – 2.28 (m, 2H), 1.89 – 1.69 (m, 4H), 1.25 – 1.22 (m, 15H), 1.10 – 1.02 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.5, 173.9, 137.1, 133.0, 128.6, 128.2, 83.4, 60.3, 38.1, 33.8, 26.3, 25.7, 24.9, 14.6 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B NMR** (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.80 ppm.

IR (film): *v*_{max} 3453, 2978, 2931, 2363, 1721, 1599, 1496, 1377, 1322, 1243, 1170, 1144, 1036, 968, 755, 692 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₁H₃₂BO₅ [M+H]⁺, 375.2337; found, 375.2346.

Ethyl 7-(4-chlorophenyl)-7-oxo-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptanoate (3hn)

Prepared following **General Procedure E** using 1-(4-chlorophenyl)cyclopropan-1-ol (33.7 mg, 0.2 mmol, 1.0 equiv.), ethyl 4-iodo-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butanoate (147.21 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K_2CO_3 (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (54.7 mg, 73%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.89 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 8.6 Hz, 2H), 4.09 (q, J = 7.1 Hz, 2H), 3.01 – 2.87 (m, 2H), 2.42 – 2.26 (m, 2H), 1.88 – 1.67 (m, 4H), 1.27 – 1.18 (m, 15H), 1.07 – 0.97 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 199.2, 173.8, 139.3, 135.4, 129.7, 128.9, 83.4, 60.3, 38.1, 33.7, 26.2, 25.6, 24.9, 14.3 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.81 ppm.

IR (film): *v*_{max} 2980, 2934, 1734, 1688, 1590, 1458, 1376, 1319, 1265, 1212, 1143, 1092, 1035, 1011, 848, 672 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₁H₃₁BClO₅ [M+H]⁺, 409.1948; found, 409.1956.

Ethyl 7-oxo-9-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nonanoate (3rn)

Prepared following **General Procedure E** using 1-phenethylcyclopropan-1-ol (32.4 mg, 0.2 mmol, 1.0 equiv.), ethyl 4-iodo-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butanoate (147.21 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (55.2 mg, 69%) as a yellowish oil.

 $\mathbf{R}_f = 0.4$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.28 – 2.24 (m, 2H), 7.19 – 7.15 (m, 3H), 4.10 (q, *J* = 7.1 Hz, 2H), 2.87 (t, *J* = 7.4 Hz, 2H), 2.71 (t, *J* = 8.0 Hz, 2H), 2.44 – 2.39 (m, 2H), 2.37 – 2.23 (m, 2H), 1.76 – 1.62 (m, 4H), 1.25 – 1.22 (m, 15H), 0.95 – 0.88 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 210.1, 173.8, 141.2, 128.5, 128.3, 126.1, 83.2, 60.2, 44.3, 42.2, 33.6, 29.8, 26.1, 24.8, 24.8, 14.3 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.68 ppm.

IR (film): v_{max} 2979, 2933, 2363, 1734, 1455, 1375, 1320, 1248, 1144, 1103, 1034, 968, 749, 701 cm⁻¹.
HRMS (ESI⁺): m/z calculated for C₂₃H₃₆BO₅ [M+H]⁺, 403.2650; found, 403.2661.

7-Oxo-7-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptanenitrile (3ao)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 4-iodo-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butanenitrile (128.8 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 10:1) to afford the title compound (40.8 mg, 62%) as a white solid.

Melting point: 45 - 47 °C.

 $\mathbf{R}_f = 0.4$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.97 – 7.95 (m, 2H), 7.55 (tt, J = 7.4, 1.5, 1H), 7.47 – 7.43 (m, 2H), 3.09 – 2.94 (m, 2H), 2.49 – 2.34 (m, 2H), 1.90 – 1.70 (m, 4H), 1.25 – 1.24 (m, 12H), 1.20 – 1.13 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.1, 137.0, 133.1, 128.7, 128.2, 120.1, 83.7, 37.8, 27.1, 25.1, 24.9, 24.9, 16.5 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 33.50 ppm.

IR (film): v_{max} 2979, 2933, 2363, 1685, 1453, 1385, 1321, 1272, 1217, 1142, 968, 851, 746, 693 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₉H₂₇BNO₃ [M+H]⁺, 328.2079; found, 320.2086.

1-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oct-7-en-1-one (3ap)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 2-(1-iodopent-4-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (128.79 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.), anhydrous acetonitrile (3.0 mL, 0.067 M) and react for 24 h. Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (36.7 mg,

56%) as a colorless oil.

 $\mathbf{R}_f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.98 – 7.96 (m, 2H), 7.57 – 7.52 (m, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 5.86 – 5.76 (m, 1H), 5.00 (dq, *J* = 17.1, 1.8 Hz, 1H), 4.95 – 4.91 (m, 1H), 3.05 – 2.89 (m, 2H), 2.19 – 2.02 (m, 2H), 1.87 – 1.78 (m, 2H), 1.64 – 1.55 (m, 1H), 1.53 – 1.44 (m, 1H), 1.26 (s, 12H), 1.14 – 1.05 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.8, 139.1, 137.2, 133.0, 128.7, 128.3, 114.6, 83.3, 38.4, 33.4, 30.6, 26.0, 25.0, 25.0 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 34.05 ppm.

IR (film): *v*_{max} 2978, 2928, 2362, 1686, 1650, 1453, 1382, 1318, 1269, 1218, 1144, 968, 911, 853, 745, 693 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₀H₃₀BO₃ [M+H]⁺, 329.2283; found, 329.2291.

1-Phenyl-4-(trimethylsilyl)butan-1-one (5aa)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), (iodomethyl)trimethylsilane (85.6 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K_2CO_3 (55.3 mg, 0.4 mmol, 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M). Purification by flash column chromatography (Petroleum ether/EtOAc: 50:1) to afford the title compound (20.0 mg, 45%) as a colorless oil.

 $\mathbf{R}_{f} = 0.8$ (5:1 Petroleum ether/EtOAc)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.98 – 7.94 (m, 2H), 7.54 (tt, *J* = 7.2, 1.4 Hz, 1H), 7.48 – 7.44 (m, 2H), 2.99 (t, *J* = 7.3 Hz, 2H), 1.79 – 1.71 (m, 2H), 0.60 – 0.56 (m, 2H), 0.00 (s, 9H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ_C 200.8, 137.3, 133.0, 128.7, 128.2, 42.4, 19.2, 16.8, -1.6 ppm.

IR (film): *v*_{max} 3448, 2953, 2892, 1687, 1362, 1248, 1220, 971, 838, 757, 737, 693 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₃H₂₁OSi [M+H]⁺, 221.1356; found, 221.1361.

4-(Ethoxydimethylsilyl)-1-phenylbutan-1-one (5ab)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), ethoxy(iodomethyl)dimethylsilane (97.7 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M). Purification by flash column chromatography (Petroleum ether/EtOAc: 30:1) to afford the title compound (27.8 mg, 56%) as a colorless oil.

 $\mathbf{R}_{f} = 0.7$ (5:1 Petroleum ether/EtOAc)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.97 – 7.94 (m, 2H), 7.54 (tt, *J* = 7.4, 1.4 Hz, 1H), 7.47 – 7.43 (m, 2H), 3.66 (q, *J* = 7.0 Hz, 2H), 3.01 (t, *J* = 7.2 Hz, 2H), 1.84 – 1.77 (m, 2H), 1.18 (t, *J* = 7.0 Hz, 3H), 0.72 – 0.64 (m, 2H), 0.12 (s, 6H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): *δ*_C 200.6, 137.2, 133.0, 128.7, 128.2, 58.4, 42.0, 18.7, 18.5, 16.3, - 2.0 ppm.

IR (film): v_{max} 3481, 2964, 1685, 1598, 1450, 1409, 1346, 1253, 1221, 1164, 970, 840, 794, 747, 693 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₄H₂₃O₂Si [M+H]⁺, 251.1462; found, 251.1469.

1-Phenyl-4-(triethoxysilyl)butan-1-one (5ac)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), triethoxy(iodomethyl)silane (121.7 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M). Purification by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound (26.3 mg, 42%) as a colorless oil.

 $\mathbf{R}_{f} = 0.6$ (5:1 Petroleum ether/EtOAc)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.97 – 7.95 (m, 2H), 7.54 (tt, *J* = 7.2, 1.4 Hz, 1H), 7.47 – 7.43 (m,

2H), 3.82 (q, *J* = 7.0 Hz, 6H), 3.03 (t, *J* = 7.2 Hz, 2H), 1.92 – 1.84 (m, 2H), 1.22 (t, *J* = 7.0 Hz, 9H), 0.76 – 0.70 (m, 2H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.5, 137.2, 133.0, 128.7, 128.2, 58.5, 41.5, 18.4, 18.1, 10.2 ppm.

IR (film): *v*_{max} 2975, 2928, 2889, 2362, 1687, 1451, 1392, 1223, 1167, 1104, 1080, 958, 787, 694 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₆H₂₇O₄Si [M+H]⁺, 311.1673; found, 311.1675.

4-[Dimethyl(phenyl)silyl]-1-phenylbutan-1-one (5ad)

Prepared following **General Procedure E** using 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), (iodomethyl)dimethyl(phenyl)silane (110.5 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M). Purification by flash column chromatography (Petroleum ether/EtOAc: 50:1) to afford the title compound (36.1 mg, 64%) as a colorless oil.

 $\mathbf{R}_f = 0.8$ (5:1 Petroleum ether/EtOAc)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.92 (d, J = 7.5 Hz, 2H), 7.57 – 7.51 (m, 3H), 7.45 (t, J = 7.7 Hz, 2H), 7.37 – 7.35 (m, 3H), 2.98 (t, J = 7.2 Hz, 2H), 1.84 – 1.76 (m, 2H), 0.88 – 0.84 (m, 2H), 0.31 (s, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃): *δ*_C 200.6, 139.3, 137.2, 133.7, 133.0, 129.0, 128.7, 128.1, 127.9, 42.2, 19.1, 15.8, -3.0 ppm.

IR (film): v_{max} 3067, 2954, 2890, 2363, 1695, 1450, 1425, 1362, 1250, 1220, 1113, 970, 834, 785, 734, 696, 469 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₈H₂₁OSi [M-H]⁻, 281.1367; found, 281.1384.

4-[Dimethyl(phenyl)sily]-1-(4-methoxyphenyl)butan-1-one (5dd)

Prepared following **General Procedure E** using 1-(4-methoxyphenyl)cyclopropan-1-ol (32.8 mg, 0.2 mmol, 1.0 equiv.), (iodomethyl)dimethyl(phenyl)silane (110.5 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M). Purification by flash column chromatography (Petroleum ether/EtOAc: 40:1) to afford the title compound (36.2 mg, 58%) as a colorless oil.

 $\mathbf{R}_f = 0.7$ (5:1 Petroleum ether/EtOAc)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.90 (dt, J = 8.8, 3.0 Hz, 2H), 7.54 – 7.50 (m, 2H), 7.37 – 7.34 (m, 3H), 6.92 (dt, J = 8.9, 2.9 Hz, 2H), 3.86 (s, 3H), 2.92 (t, J = 7.2 Hz, 2H), 1.82 – 1.74 (m, 2H), 0.87 – 0.82 (m, 2H), 0.30 (s, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃): *δ*_C 199.2, 163.4, 139.3, 133.7, 130.4, 130.3, 129.0, 129.0, 113.8, 55.5, 41.9, 19.3, 15.8, -3.0 ppm.

IR (film): v_{max} 3006, 1676, 1601, 1576, 1510, 1460, 1421, 1362, 1312, 1259, 1226, 1171, 1113, 1031, 973, 732, 702 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₉H₂₄O₂SiNa [M+Na]⁺, 335.1438; found, 335.1436.

1-(4-Chlorophenyl)-4-[dimethyl(phenyl)silyl]butan-1-one (5hd)

Prepared following **General Procedure** using 1-(4-chlorophenyl)cyclopropan-1-ol (33.7 mg, 0.2 mmol, 1.0 equiv.), (iodomethyl)dimethyl(phenyl)silane (110.5 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M). Purification by flash column chromatography (Petroleum ether/EtOAc: 50:1) to afford the title compound (27.3 mg, 43%) as a colorless oil.

 $\mathbf{R}_{f} = 0.8$ (5:1 Petroleum ether/EtOAc)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.83 (dt, J = 8.6, 2.5 Hz, 2H), 7.53 – 7.49 (m, 2H), 7.41 (dt, J = 8.6, 2.5 Hz, 2H), 7.37 – 7.34 (m, 3H), 2.93 (t, J = 7.2 Hz, 2H), 1.81 – 1.73 (m, 2H), 0.85 –0.81 (m, 2H), 0.29 (s, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃): *δ*_C 199.3, 139.4, 139.2, 135.5, 133.7, 129.6, 129.1, 129.0, 127.9, 42.2, 19.1, 15.8, -3.0 ppm.

IR (film): *v*_{max} 2954, 2363, 1697, 1589, 1401, 1362, 1250, 1217, 1113, 1092, 973, 838, 732, 702, 470

 cm^{-1} .

HRMS (ESI⁺): m/z calculated for C₁₈H₂₁ClOSiNa [M+Na]⁺, 339.0942; found, 339.0940.

5-[Dimethyl(phenyl)silyl]-1-phenylpentan-2-one (5qd)

Prepared following **General Procedure E** using 1-benzylcyclopropan-1-ol (29.6 mg, 0.2 mmol, 1.0 equiv.), (iodomethyl)dimethyl(phenyl)silane (110.5 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M). Purification by flash column chromatography (Petroleum ether/EtOAc: 30:1) to afford the title compound (39.5 mg, 67%) as a colorless oil.

 $\mathbf{R}_{f} = 0.6$ (5:1 Petroleum ether/EtOAc, K₂MnO₄ stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.49 – 7.47 (m, 2H), 7.37 – 7.27 (m, 6H), 7.18 – 7.16 (m, 2H), 3.62 (s, 2H), 2.45 (t, *J* = 7.2 Hz, 2H), 1.62 – 1.54 (m, 2H), 0.70 – 0.66 (m, 2H), 0.25 (s, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 208.6, 139.2, 134.5, 133.7, 129.5, 129.0, 128.8, 127.9, 127.1, 50.3, 45.6, 18.5, 15.5, -3.1 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

IR (film): v_{max} 3447, 2955, 1713, 1494, 1454, 1426, 1366, 1251, 1186, 1082, 833, 731, 700, 469 cm⁻¹.

 $\label{eq:HRMS} \text{(ESI^+): } m/z \text{ calculated for } C_{19}H_{24}OSiNa \ [M+Na]^+, \ 319.1487; \ found, \ 319.1486.$

1-Cyclohexyl-4-[dimethyl(phenyl)silyl]butan-1-one (5td)

Prepared following **General Procedure E** using 1-cyclohexylcyclopropan-1-ol (28.0 mg, 0.2 mmol, 1.0 equiv.), (iodomethyl)dimethyl(phenyl)silane (110.5 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.1 mg, 0.03 mmol, 15 mol %), K_2CO_3 (55.3 mg, 0.4 mmol, 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M). Purification by flash column chromatography (Petroleum ether/EtOAc: 60:1) to afford the title compound (23.6 mg, 41%) as a colorless oil.

 $\mathbf{R}_f = 0.7$ (5:1 Petroleum ether/EtOAc, K₂MnO₄ stain)

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H} \delta 7.52 - 7.50$ (m, 2H), 7.36 - 7.34 (m, 3H), 2.43 (t, J = 7.2 Hz, 2H), 2.27 (tt, J = 11.1, 3.3 Hz, 1H), 1.81 - 1.74 (m, 4H), 1.67 - 1.55 (m, 2H), 1.34 - 1.15 (m, 6H), 0.74 - 0.69 (m, 2H), 0.27 (s, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃): *δ*_C 214.5, 139.3, 133.7, 129.0, 127.9, 50.9, 44.2, 28.6, 26.0, 25.8, 18.4, 15.7, -3.0 ppm.

IR (film): *v*_{max} 2030, 2855, 1707, 1450, 1249, 1114, 985, 831, 781, 731, 702, 470 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₁₈H₂₈OSiNa [M+Na]⁺, 327.1541; found, 327.1538.

3. MECHANISTIC STUDIES

3.1. Radical Trap Experiment

To a 10 mL vial equipped with a magnetic stir bar was added 1-phenylcyclopropan-1-ol (**1a**) (26.8 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2a'**) (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.0 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 2.0 equiv.), 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) (62.5 mg, 0.2 mmol. 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M) under nitrogen atmosphere. The vial was sealed with a septum and allowed to stir at 80 °C for 24 hours. After the reaction, the mixture was checked by TLC and GC-Mass, and showed that the desired product **3aa** was not observed.

To a 10 mL vial equipped with a magnetic stir bar was added 1-phenylcyclopropan-1-ol (**1a**) (26.8 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2a'**) (73 μ L, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.0 mg, 0.03 mmol, 15 mol %), K₂CO₃

(55.3 mg, 2.0 equiv.), 2,6-di-tert-butyl-4-methylphenol (BHT) (88.1 mg, 0.2 mmol. 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M) under nitrogen atmosphere. The vial was sealed with a septum and allowed to stir at 80 °C for 24 hours. After the reaction, the desired product **3aa** was obtained in 51% yield by GC-Fid analysis.

To a 10 mL vial equipped with a magnetic stir bar was added 1-phenylcyclopropan-1-ol (**1a**) (26.8 mg, 0.2 mmol, 1.0 equiv.), (iodomethyl)dimethyl(phenyl)silane (**4d**) (110.5 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), **L2** (8.0 mg, 0.03 mmol, 15 mol %), K_2CO_3 (55.3 mg, 2.0 equiv.), 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) (62.5 mg, 0.2 mmol. 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M) under nitrogen atmosphere. The vial was sealed with a septum and allowed to stir at 80 °C for 24 hours. After the reaction, the mixture was checked by TLC and GC-Mass, and showed that the desired product **5ad** was not observed and the corresponding TEMPO-adduct was detected by GC-MS.

GC-MS (ESI) calculated for C₁₈H₃₁NOSi, 305.2; found, 305.2.

Overall, these three results indicate that a radical intermediate might be involved in this transformation.

3.2. Radical Clock Experiment

To a 10 mL vial equipped with a magnetic stir bar was added 1-phenylcyclopropan-1-ol (27.6 mg, 0.2 mmol, 1.0 equiv.), 2-(cyclobutyliodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (128.8 mg, 0.4 mmol, 2.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.1 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 0.4 mmol, 2.0 equiv.) and anhydrous acetonitrile (3.0 mL, 0.067 M) under nitrogen atmosphere. The vial was sealed with a septum and allowed to stir at 80 °C for 24 hours. After the reaction, The residue was purified by column chromatography on silica gel (Petroleum ether/EtOAc: 40:1) to afford desired product **3aq** (19.2 mg, 29%) as a colorless oil.

(E)-1-Phenyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oct-7-en-1-one (3aq) (Major product)

 $\mathbf{R}f = 0.6$ (5:1 Petroleum ether/EtOAc, CAM stain)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.95 – 7.93 (m, 2H), 7.54 (tt, *J* = 7.3, 1.5 Hz, 1H), 7.45 (t, *J* = 8.0 Hz, 2H), 6.62 (dt, *J* = 17.9, 6.5 Hz, 1H), 5.42 (dt, *J* = 18.0, 1.7 Hz, 1H), 2.95 (t, *J* = 7.4 Hz, 2H), 2.19 – 2.14 (m, 2H), 1.77 – 1.69 (m, 2H), 1.51 – 1.35 (m, 4H), 1.26 (s, 12H) ppm;

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 200.6, 154.5, 137.2, 133.0, 128.7, 128.2, 83.1, 38.6, 35.8, 29.0, 28.1, 24.9, 24.3 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

¹¹**B** NMR (128 MHz, CDCl₃): $\delta_{\rm B}$ 29.38 ppm.

IR (film): *v*_{max} 3750, 2928, 2363, 1686, 1639, 1454, 1365, 1321, 1145, 971, 850, 693 cm⁻¹.

HRMS (ESI⁺): m/z calculated for C₂₀H₃₀BO₃ [M+H]⁺, 329.2283; found, 329.2291.

To a 10 mL vial equipped with a magnetic stir bar was added 1-(4-methoxyphenyl)cyclopropan-1-ol (1d) (32.8 mg, 0.2 mmol, 1.0 equiv.), 1-[4-(trifluoromethyl)phenyl]cyclopropan-1-ol (1j) (40.4 mg, 0.2 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2a') (36 μ L, 0.2 mmol, 1.0 equiv.), NiBr₂·DME (7.1 mg, 0.02 mmol, 10 mol %), L2 (8.0 mg, 0.03 mmol, 15 mol %), K₂CO₃ (55.3 mg, 2.0 equiv.), and anhydrous acetonitrile (3.0 mL, 0.067 M) under nitrogen atmosphere. The vial was sealed with a septum and allowed to stir at 80 °C for 24 hours. After the reaction, the mixture was checked by GC-Fid analysis, and showed that the ratio of **3da** : **3ja** was 3.5 : 1.0.

3.4. Gram-Scale Reaction

Following **General Procedure E**, in a 500 mL flame-dried Schlenk flask using 1-phenylcyclopropan-1ol (**1a**) (1.25 g, 9.3 mmol, 1.0 equiv.), 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2a**') (3.4 mL, 18.6 mmol, 2.0 equiv.), NiBr₂·DME (329.8 mg, 0.93 mmol, 10 mol %), **L2** (374.4 mg, 1.4 mmol, 15 mol %), K₂CO₃ (2.6 mg, 18.6 mmol, 2.0 equiv.), acetonitrile (138.8 mL, 0.067 M) and react under nitrogen atmosphere at 80 °C for 48 hours. The residue was purified by column chromatography on silica gel (Petroleum ether/EtOAc: 20:1) to afford desired product **3aa** (1.9 g, 75 %) as a colorless oil.

4. SYNTHETIC APPLICATIONS

4.1. Synthesis of Compound 7

Following a known procedure.¹⁷ To a 10 mL Schlenk flask with a magnetic stir bar was added 1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (**3aa**) (54.8 mg, 0.2 mmol, 1.0 equiv.), *N*methylaniline (33 μ L, 0.3 mmol, 1.5 equiv.), Cu(OAc)₂ (1.8 mg, 0.01 mmol, 5 mol %), di-*tert*-butyl peroxide (73 μ L, 0.4 mmol, 2 equiv.) and toluene (0.8 mL, 0.25 M). The reaction mixture was stirred at 100 °C for 24 h. After that, the reaction mixture was cooled to room temperature and the solvent was removed in vacuo. The resulting crude material was purified by flash column chromatography (Petroleum ether/EtOAc: 20:1) to afford the title compound **7** (24.1 mg, 48%) as a yellowish oil.

4-[Methyl(phenyl)amino]-1-phenylbutan-1-one (7)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.95 – 7.93 (m, 2H), 7.56 (tt, *J* = 7.4, 1.4 Hz, 1H), 7.48 – 7.44 (m, 2H), 7.25 – 7.21 (m, 2H), 6.75 (d, *J* = 8.2 Hz, 2H), 6.69 (t, *J* = 7.2 Hz, 1H), 3.42 (t, *J* = 7.2 Hz, 2H), 3.02 (t, *J* = 7.0 Hz, 2H), 2.95 (s, 3H), 2.09 – 2.01 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): *δ*_C 199.9, 149.5, 137.0, 133.2, 129.4, 128.7, 128.1, 116.4, 112.4, 52.1, 38.4, 35.7, 21.5 ppm;

All recorded spectroscopic data matched those previously reported in the literature.¹⁸

4.2. Synthesis of Compound 8

Following a known procedure.¹⁹ To a 10 mL flame-dried Schlenk flask with a magnetic stir bar was added furan (29 μ L, 0.2 mmol, 2.0 equiv.) and THF (2.0 mL) and the solution was cooled to -78 °C. Then *n*-BuLi (120 μ L, 2.5 M in hexane, 1.5 equiv.) was added dropwise. After that the mixture was allowed to warm to room temperature and stirred for 1 hour. Subsequently, the reaction mixture was cooled back to -78 °C and a solution of 1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (**3aa**) (54.8 mg, 0.2 mmol, 1.0 equiv.) in THF (1.0 mL) was then added dropwise. The reaction was stirred for 1 hour at -78 °C, followed by the addition of a solution of NBS (53.4 mg, 0.3 mmol, 1.5 equiv.) in THF (2.0 mL). After stirred at -78 °C for another 1 hour, a saturated aqueous Na₂S₂O₃ solution (4.0 mL) was added. Then the reaction mixture was allowed to warm to room temperature before the organic phase was separated, and the aqueous layer was extracted with ethyl acetate (3 × 3.0 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and the solvent was evaporated in vacuo. The residue was purified by column chromatography on silica gel (Petroleum ether/EtOAc: 30:1) to afford the title compound **8** (26.7 mg, 62 %) as a colorless oil.

4-(Furan-2-yl)-1-phenylbutan-1-one (8)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.96 – 7.93 (m, 2H), 7.56 (tt, *J* = 7.4, 1.4 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.31 (d, *J* = 1.0 Hz, 1H), 6.28 (dd, *J* = 2.1, 0.8 Hz, 1H), 6.02 (d, *J* = 2.8 Hz, 1H), 3.01 (t, *J* = 7.2 Hz, 2H), 2.75 (t, *J* = 7.3 Hz, 2H), 7.14 – 7.07 (m, 2H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): *δ*_C 200.0, 155.6, 141.2, 137.1, 133.1, 128.7, 128.2, 110.3, 105.5, 37.7, 27.4, 22.7 ppm;

All recorded spectroscopic data matched those previously reported in the literature.²⁰

4.3. Synthesis of Compound 9

Following a modified procedure.²¹ To a 10 mL flame-dried Schlenk flask with a magnetic stir bar was added 1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (**3aa**) (54.8 mg, 0.2 mmol, 1.0 equiv.), bromobenzene (25 μ L, 0.24 mmol, 1.2 equiv.), Pd(dba)₂ (2.3 mg, 0.004 mmol, 2 mol %), Ruphos (3.7 mg, 0.008 mmol, 4 mol %), NaO'Bu (76.9 mg, 0.8 mmol, 4.0 equiv.) toluene (0.7 mL) and H₂O (70 μ L) under nitrogen atmosphere. Then the reaction was stirred at 80 °C for 24 hours. After that, the mixture was cooled to room temperature, diluted with ethyl acetate (1.0 mL) and quenched with H₂O (1.0 mL). The organic phase was separated and the aqueous layer was extracted with ethyl acetate (3 × 1.0 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and the solvent was evaporated in vacuo. The residue was purified by column chromatography on silica gel (Petroleum ether/EtOAc: 50:1) to afford the title compound **9** (24.9 mg, 56 %) as a colorless oil.

1,4-Diphenylbutan-1-one (9)

NMR Spectroscopy (see spectra):

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.95 – 7.92 (m, 2H), 7.55 (tt, *J* = 7.2, 1.5 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.32 – 7.28 (m, 2H), 7.26 – 7.18 (m, 3H), 2.99 (t, *J* = 7.2 Hz, 2H), 2.73 (t, *J* = 7.4 Hz, 2H), 2.13 – 2.06 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): *δ*_C 200.3, 141.8, 137.1, 133.1, 128.7, 128.7, 128.5, 128.2, 126.1, 37.8, 35.3, 25.8 ppm;

All recorded spectroscopic data matched those previously reported in the literature.²²

4.4. Synthesis of Compound 10

Following a known procedure.¹⁵ Saturated aq. KHF₂ (4.5 M, 0.3 mL, 0.8 mmol) was added dropwise to the solution of 1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (**3aa**) (54.8 mg, 0.2 mmol, 1.0 equiv.) in acetonitrile (1.5 mL) at room temperature. The reaction was stirred for 4 h. After that the mixture was concentrated in vacuo. The dried solids were triturated with hot acetone (3×1.0 mL) and filtered to remove inorganic salts. The resulting filtrate was concentrated and washed with Et₂O (3×1.0 mL) to give the title compound **10** (36.2 mg, 71%) as a white solid.

Trifluoro(4-oxo-4-phenylbutyl)borate (10)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, *d*₆-DMSO): 7.93 – 7.90 (m, 2H), 7.59 (tt, *J* = 7.3, 1.4 Hz, 1H), 7.52 – 7.48 (m, 2H), 2.85 (t, *J* = 7.5 Hz, 2H), 1.53 – 1.45 (m, 2H), 0.06 – -0.02 (m, 2H) ppm;

¹³C NMR (101 MHz, d_6 -DMSO): δ_C 201.7, 137.0, 132.7, 128.6, 127.9, 41.9, 21.8 ppm. The carbon attached to boron was not observed due to quadrupolar relaxation;

All recorded spectroscopic data matched those previously reported in the literature.¹⁵

4.5. Synthesis of Compound 11

Following a known procedure.²¹ To a 10 mL Schlenk flask with a magnetic stir bar was added 1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-one (**3aa**) (54.8 mg, 0.2 mmol, 1.0 equiv.), NaBO₃·4H₂O (101.8 mg, 1 mmol, 5.0 equiv.) THF (2.0 mL) and H₂O (2.0 mL). The reaction was stirred at room temperature for 5 h. After that, the organic phase was separated and the aqueous layer was extracted with ethyl acetate (3×2.0 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and the solvent was evaporated in vacuo. The residue was purified by column chromatography on silica gel (Petroleum ether/EtOAc: 2:1) to afford the title compound **11** (29.4 mg, 89 %) as a colorless oil.

4-Hydroxy-1-phenylbutan-1-one (11)

NMR Spectroscopy (see spectra):

¹**H NMR** (400 MHz, CD₃OD): $\delta_{\rm H}$ 8.00 – 7.97 (m, 2H), 7.58 (tt, *J* = 7.4, 1.2 Hz, 1H), 7.50 – 7.46 (m, 2H), 3.64 (t, *J* = 6.4 Hz, 2H), 3.10 (t, *J* = 7.2 Hz, 2H), 1.96 – 1.89 (m, 2H) ppm;

¹³C NMR (101 MHz, CD₃OD): δ_C 202.2, 138.3, 134.2, 129.7, 129.1, 62.2, 35.8, 28.2 ppm;

All recorded spectroscopic data matched those previously reported in the literature.²³

5. SPECTROSCOPIC DATA

¹H NMR (400 MHz, CDCl₃) of **2e** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of 2e

¹¹B NMR (128 MHz, CDCl₃) of 2e

¹³C NMR (101 MHz, CDCl₃) of **20**

80 75

70 65 60 55

45

50

40 35

30 25 ppm 20 15 10

-10 -15 -20

-5

0

5

¹³C NMR (101 MHz, CDCl₃) of **4b**

77.48 CDCl3 77.16 CDCl3 76.84 CDCl3	- 59.08	- 18.62	2.45	
	1		1	

¹H NMR (400 MHz, CDCl₃) of **3aa** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of 3aa

210 200 190 180 170 160 150 140 ppm -10

¹H NMR (400 MHz, CDCl₃) of **3ba** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3ba**

¹¹B NMR (128 MHz, CDCl₃) of 3ca

¹³C NMR (101 MHz, CDCl₃) of **3da**

¹H NMR (400 MHz, CDCl₃) of **3ea** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of 3ea

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm ¹¹B NMR (128 MHz, CDCl₃) of 3ea

¹H NMR (400 MHz, CDCl₃) of **3fa** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **3fa**

¹H NMR (400 MHz, CDCl₃) of **3ga** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of 3ga

210 200 190 ppm io 170 160 150 140

19F NMR (376 MHz, CDCl3) of 3ga

¹H NMR (400 MHz, CDCl₃) of **3ha** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3ha**

ppm io

¹H NMR (400 MHz, CDCl₃) of **3ia** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3ia**

¹H NMR (400 MHz, CDCl₃) of **3ja** (see procedure)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

¹⁹F NMR (376 MHz, CDCl3) of **3ja**

¹H NMR (400 MHz, CDCl₃) of **3ka** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of 3ka

210 200 150 140 100 ppm

¹³C NMR (101 MHz, CDCl₃) of **3la**

¹H NMR (400 MHz, CDCl₃) of **3ma** (*see procedure*)

¹¹B NMR (128 MHz, CDCl₃) of **3ma**

30 ppm 25 20 15 10 5 0 -5

¹H NMR (400 MHz, CDCl₃) of **3na** (*see procedure*)

80

75 70 65 60 55 50 45 40 35

-10 -15

-20

¹³C NMR (101 MHz, CDCl₃) of **3na**

¹H NMR (400 MHz, CDCl₃) of **30a** (see procedure)

210 200 110 100 ppm <u>6</u>0 io

¹¹B NMR (128 MHz, CDCl₃) of 30a

¹³C NMR (101 MHz, CDCl₃) of **3pa**

¹³C NMR (101 MHz, CDCl₃) of 3qa

210 200 190 140 130 110 100 ppm Ь ¹¹B NMR (128 MHz, CDCl₃) of 3qa

¹H NMR (400 MHz, CDCl₃) of **3ro** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3ro**

¹H NMR (400 MHz, CDCl₃) of **3ra** (see procedure)

ppm 210 200 190 180 170 140 130

¹³C NMR (101 MHz, CDCl₃) of 3sa

¹¹B NMR (128 MHz, CDCl₃) of 3sa

-33.72

¹H NMR (400 MHz, CDCl₃) of **3ta** (see procedure)

80 75 70 65 60 55 50 45 40 35

30 25 20 15 10 5 0 -5 -10 ppm

-:

-20

-15

¹³C NMR (101 MHz, CDCl₃) of **3ua**

¹H NMR (400 MHz, CDCl₃) of **3va** (see procedure)

210 200 190 ppm 140 130 ę0

¹H NMR (400 MHz, CDCl₃) of **3wa** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **3wa**

¹H NMR (400 MHz, CDCl₃) of **3xa** (see procedure)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

¹¹B NMR (128 MHz, CDCl₃) of 3xa

¹H NMR (400 MHz, CDCl₃) of **3ya** (<u>see procedure</u>)

NOESY (400 MHz, CDCl₃) of 3ya

¹³C NMR (101 MHz, CDCl₃) of **3ya**

^{11}B NMR (128 MHz, CDCl₃) of 3ya

¹³C NMR (101 MHz, CDCl₃) of **3ab**

¹¹B NMR (128 MHz, CDCl₃) of **3ab**

¹H NMR (400 MHz, CDCl₃) of **3ac** (see procedure)

210 200 190 180 170 30 20 160 150 140 130 120 110 100 ppm 50 40 90 80 70 ę0 io 6

^{11}B NMR (128 MHz, CDCl₃) of **3ac**

¹H NMR (400 MHz, CDCl₃) of **3ad** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **3ad**

¹¹B NMR (128 MHz, CDCl₃) of 3ad

¹H NMR (400 MHz, CDCl₃) of **3ae** (*see procedure*)

210 200 190 ppm io Ь

¹¹B NMR (128 MHz, CDCl₃) of 3ae

¹H NMR (400 MHz, CDCl₃) of **3af** (see procedure)

80

75 70 65 60 55 50 45 40 35

7 28 7 28 7 28 7 28 7 29 7 29 7 29 7 29 7 29 7 29 7 29 7 29 7 29 7 29 7 29 7 20

30 ppm 25 20

15 10

-20

-15

-10

-5

¹³C NMR (101 MHz, CDCl₃) of **3af**

¹¹B NMR (128 MHz, CDCl₃) of **3af**

¹H NMR (400 MHz, CDCl₃) of **3ag** (see procedure)

210 200 190 150 140 130 110 100 ppm 20 10 180 170 160 120 ę0 50 40 30 90 80 70 ю

^{11}B NMR (128 MHz, CDCl₃) of 3ag

¹H NMR (400 MHz, CDCl₃) of **3ah** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3ah**

¹H NMR (400 MHz, CDCl₃) of **3ai** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of 3ai

¹¹B NMR (128 MHz, CDCl₃) of 3ai

¹³C NMR (101 MHz, CDCl₃) of 3aj

¹H NMR (400 MHz, CDCl₃) of **3ak** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3ak**

¹¹B NMR (128 MHz, CDCl₃) of **3ak**

¹H NMR (400 MHz, CDCl₃) of **3al** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of 3al

¹H NMR (400 MHz, CDCl₃) of **3am** (*see procedure*)

210 200 190 ppm io Ь

¹⁹F NMR (377 MHz, CDCl₃) of **3am**

85 80

70

65

60 55

45

40 35

50

75

30 ppm 25

20 15

io

5 0

-15

-10

-5

-20 -25

¹H NMR (400 MHz, CDCl₃) of **3an** (*see procedure*)

¹¹B NMR (128 MHz, CDCl₃) of **3an**

¹H NMR (400 MHz, CDCl₃) of **3hn** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **3hn**

¹¹B NMR (128 MHz, CDCl₃) of **3hn**

-33.81

¹H NMR (400 MHz, CDCl₃) of **3rn** (see procedure)

3.0

3.5

¹³C NMR (101 MHz, CDCl₃) of **3rn**

6.5

6.0

5.5

5.0

4.5

4.0

ppm

7.5

7.0

210 200 190 180 170 160 150 140 130 120 110 100 ppm 90 70 60 40 20 io 80 50 30 0

0.5

0.0

¹¹B NMR (128 MHz, CDCl₃) of **3rn**

¹H NMR (400 MHz, CDCl₃) of **3ao** (see procedure)

ppn

¹³C NMR (101 MHz, CDCl₃) of 3ao

¹¹B NMR (128 MHz, CDCl₃) of 3ao

¹H NMR (400 MHz, CDCl₃) of **3ap** (see procedure)

¹³C NMR (101 MHz, CDCl₃) of **3ap**

210 200 190 180 160 150 110 100 ppm io

¹¹B NMR (128 MHz, CDCl₃) of 3ap

210 200

190 180 170 160

¹H NMR (400 MHz, CDCl₃) of (*E*)-3aq (*see procedure*)

110 100 ppm 90 80 70 60 50 40 30 20

150 140 130 120

io

0

¹³C NMR (101 MHz, CDCl₃) of (*E*)-3aq

¹¹B NMR (128 MHz, CDCl₃) of 3aq

¹¹B NMR (128 MHz, CDCl₃) of (*E*)-3aq

¹³C NMR (101 MHz, CDCl₃) of 5aa

¹³C NMR (101 MHz, CDCl₃) of **5ab**

¹H NMR (400 MHz, CDCl₃) of **5ac** (see procedure)

→ 3.85 → 3.82 → 3.03 →

¹³C NMR (101 MHz, CDCl₃) of 5ac

¹H NMR (400 MHz, CDCl₃) of **5ad** (see procedure)

$\begin{array}{c} 3.00\\ 2.298\\ 2.296\\ 1.84\\ 1.82\\ 1.82\\ 1.81\\ 1.81\\ 1.76\\ 1.79\\ 1.77\\ 1.79\\ 1.76\\ 0.88\\ 0.88\\ 0.86\\ 0.86\\ 0.86\\ 0.86\\ 0.81\\ 0.8$

1.954

8.0

8.5

3.08 2.18 3.05 7.5 7.0 6.5 5.5 4.0 ppm 3.5 3.0 2.0 1.5 1.0 0.5 0.0 6.0 5.0 2.5 4.5

-0.5

¹³C NMR (101 MHz, CDCl₃) of 5ad

13 C NMR (101 MHz, CDCl₃) of **5dd**

13 C NMR (101 MHz, CDCl₃) of **5hd**

¹³C NMR (101 MHz, CDCl₃) of **5qd**

¹H NMR (400 MHz, CDCl₃) of **5td** (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of 5td

¹H NMR (400 MHz, CDCl₃) of 7 (*see procedure*)

¹³C NMR (101 MHz, CDCl₃) of **7**

¹³C NMR (101 MHz, CDCl₃) of **8**

1.91-

8.0

9.0

8.5

0.984 1.944 2.004 2.844

7.5

7.0

6.5

6.0

5.5

5.0

2.00H

3.0

3.5

4.5 4.0 ppm 2.01-

2.0

1.5

1.0

0.5

0.0

2.5

¹³C NMR (101 MHz, CDCl₃) of **9**

¹³C NMR (101 MHz, d_6 -DMSO) of **10**

¹H NMR (400 MHz, MeOD) of **11** (*see procedure*)

6. REFERENCES

(1) Hitosugi, S.; Tanimoto, D.; Nakanishi, W.; Isobe, H. A Facile Chromatographic Method for Purification of Pinacol Boronic Esters. *Chem. Lett.* **2012**, *41*, 972-973.

(2) Zhang, X.; Cui, S.; Wei, S.; Zhao, M.; Liu, X.; Zhang, G. Nickel-Catalyzed Deaminative Alkyl– Alkyl Cross-Coupling of Katritzky Salts with Cyclopropanols: Merging C–N and C–C Bond Activation. *Org. Lett.* **2024**, *26*, 2114-2118.

(3) Jiang, J.; Liu, J.; Yang, Z.; Zheng, L.; Liu, Z.-Q. Three-Component Synthesis of Benzofuran-3(2H)ones with Tetrasubstituted Carbon Stereocenters via Rh(III)-Catalyzed C–H/C–C Bond Activation and Cascade Annulation. *Adv. Synth. Catal.* **2022**, *364*, 2540-2545.

(4) Lou, C.; Wang, X.; Lv, L.; Li, Z. Iron-Catalyzed Ring-Opening Reactions of Cyclopropanols with Alkenes and TBHP: Synthesis of 5-Oxo Peroxides. *Org. Lett.* **2021**, *23*, 7608-7612.

(5) West, M. S.; Pia, J. E.; Rousseaux, S. A. L. Synthesis of 1- and 1,2-Substituted Cyclopropylamines from Ketone Homoenolates. *Org. Lett.* **2022**, *24*, 5869-5873.

(6) Bastick, K. A. C.; Watson, A. J. B. Pd-Catalyzed Organometallic-Free Homologation of Arylboronic Acids Enabled by Chemoselective Transmetalation. *ACS. Catal.* **2023**, *13*, 7013-7018.

(7) Lacker, C. R.; Delano, T. J.; Chen, E. P.; Kong, J.; Belyk, K. M.; Piou, T.; Reisman, S. E. Enantioselective Synthesis of N-Benzylic Heterocycles by Ni/Photoredox Dual Catalysis. *J. Am. Chem. Soc.* **2022**, *144*, 20190-20195.

(8) Wang, J.-W.; Li, Y.; Nie, W.; Chang, Z.; Yu, Z.-A.; Zhao, Y.-F.; Lu, X.; Fu, Y. Catalytic asymmetric reductive hydroalkylation of enamides and enecarbamates to chiral aliphatic amines. *Nat. Commun.* **2021**, *12*, 1313.

(9) Schmidt, J.; Choi, J.; Liu, A. T.; Slusarczyk, M.; Fu, G. C. A general, modular method for the catalytic asymmetric synthesis of alkylboronate esters. *Science* **2016**, *354*, 1265-1269.

(10) Marotta, A.; Fang, H.; Adams, C. E.; Sun Marcus, K.; Daniliuc, C. G.; Molloy, J. J. Direct Light-Enabled Access to α-Boryl Radicals: Application in the Stereodivergent Synthesis of Allyl Boronic Esters. *Angew. Chem. Int. Ed.* **2023**, *62*, e202307540.

(11) Wang, D.; Zhou, J.; Hu, Z.; Xu, T. Deoxygenative Haloboration and Enantioselective Chloroboration of Carbonyls. *J. Am. Chem. Soc.* **2022**, *144*, 22870-22876.

(12) Ho, T. D.; Lee, B. J.; Tan, C.; Utley, J. A.; Ngo, N. Q.; Hull, K. L. Efficient Synthesis of α-Haloboronic Esters via Cu-Catalyzed Atom Transfer Radical Addition. J. Am. Chem. Soc. 2023, 145, 27230-27235.

(13) Mercadante, M. A.; Kelly, C. B.; Hamlin, T. A.; Delle Chiaie, K. R.; Drago, M. D.; Duffy, K. K.; Dumas, M. T.; Fager, D. C.; Glod, B. L. C.; Hansen, K. E.; Hill, C. R.; Leising, R. M.; Lynes, C. L.; Macinnis, A. E.; Mcgohey, M. R.; Murray, S. A.; Piquette, M. C.; Roy, S. L.; Smith, R. M.; Sullivan, K. R.; Truong, B. H.; Vailonis, K. M.; Gorbatyuk, V.; Leadbeater, N. E.; Tilley, L. J. 1,3-γ-Silyl-elimination in electron-deficient cationic systems. *Chem. Sci.* **2014**, *5*, 3983-3994.

(14) Kurandina, D.; Parasram, M.; Gevorgyan, V. Visible Light-Induced Room-Temperature Heck Reaction of Functionalized Alkyl Halides with Vinyl Arenes/Heteroarenes. *Angew. Chem. Int. Ed.* **2017**, *56*, 14212-14216.

(15) Sumida, Y.; Yorimitsu, H.; Oshima, K. Nickel-Catalyzed Borylation of Aryl Cyclopropyl Ketones with Bis(pinacolato)diboron to Synthesize 4-Oxoalkylboronates. *J. Org. Chem.* **2009**, *74*, 3196-3198.

(16) Yang, J.-C.; Chen, L.; Yang, F.; Li, P.; Guo, L.-N. Copper-catalyzed borylation of cycloalkylsilyl peroxides via radical C–C bond cleavage. *Org. Chem. Front.* **2019**, *6*, 2792-2795.

(17) Sueki, S.; Kuninobu, Y. Copper-Catalyzed N- and O-Alkylation of Amines and Phenols using Alkylborane Reagents. *Org. Lett.* **2013**, *15*, 1544-1547.

(18) Piehl, P.; Amuso, R.; Alberico, E.; Junge, H.; Gabriele, B.; Neumann, H.; Beller, M. Cyclometalated Ruthenium Pincer Complexes as Catalysts for the α -Alkylation of Ketones with Alcohols. *Chem. Eur. J.* **2020**, *26*, 6050-6055.

(19) Zhang, B.; Xu, X.; Tao, L.; Lin, Z.; Zhao, W. Rhodium-Catalyzed Regiodivergent Synthesis of Alkylboronates via Deoxygenative Hydroboration of Aryl Ketones: Mechanism and Origin of Selectivities. *ACS. Catal.* **2021**, *11*, 9495-9505.

(20) Sun, Y.-W.; Tang, X.-Y.; Shi, M. A gold-catalyzed 1,2-acyloxy migration/intramolecular cyclopropanation/ring enlargement cascade: syntheses of medium-sized heterocycles. *Chem. Commun.* **2015**, *51*, 13937-13940.

(21) Yuan, Y.; Xu, J.-X.; Wu, X.-F. Cooperative Cu/Pd-catalyzed borocarbonylation of ethylene. *Chem. Commun.* **2022**, *58*, 12110-12113.

(22) Wang, X.; Liu, F.; Yan, Z.; Qiang, Q.; Huang, W.; Rong, Z.-Q. Redox-Neutral Nickel-Catalyzed Cross-Coupling Reactions of (Homo)allylic Alcohols and Aryltriflates. *ACS. Catal.* **2021**, *11*, 7319-7326.