CLZ, NLL, YPM & BFS Supporting Information pg1 of pg50

Supporting Information

An Efficient Total Synthesis of (+)-Entecavir

Chenlong Zhu, Nanlian Li, Yaopeng Ma and Bingfeng Sun*

School of Pharmaceutical Sciences, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 210000

email: bfsun@njtech.edu.cn

Table of Contents

I.	General Experimental Protocols · · · · 2
II.	Experimental Procedures and Characterization Data for New Compounds 3
III.	HPLC Data for (S)-4, (R)-4, 3, 2 and entecavir (1)
IV.	References for the Supporting Information
V.	Copies of ¹ H and ¹³ C NMR Spectra
	4 ¹ H/ ¹³ C····································
	6 ¹ H/ ¹³ C················31–32
	7 ¹ H/ ¹³ C······ 33–3 ²
	3 ¹ H/ ¹³ C · · · · · · · · 35–36
	S1 ¹ H/ ¹³ C · · · · · · 37–38
	2 ¹ H/ ¹³ C
	8 ¹ H/ ¹³ C ····································
	9 ¹ H/ ¹³ C····································
	10 ¹ H/ ¹³ C · · · · · · · · · · · · · · · · · · ·
	12 ¹ H/ ¹³ C ····································
	1 ¹ H/ ¹³ C····································

I. General Experimental Protocols:

Nuclear magnetic resonance (NMR) spectra (1 H and 13 C) were recorded using a Bruker AX-400 spectrometer. Chemical shifts in 1 H NMR spectra recorded in CDCl₃ are referenced to $\delta = 7.26$ or (CD₃)₂SO (δ 2.50) (Data are reported according to the following format: chemical shift (ppm) [multiplicity (e.g., s, d, t, q, etc.), coupling constant(s) (in Hz), integral value (to the nearest whole integer), and structural assignment of the proton]. Coupling constant values have been determined using reported methods. [1,2] Non-first order doubles are designated by 'nfod' and the apparent double coupling constant is indicated as J_{app} . Chemical shifts in 13 C NMR spectra are referenced to the carbon atom of CDCl₃ (δ 77.16) or (CD₃)₂SO (δ 39.60).

Infrared (IR) spectra were measured on a FT-IR spectrophotometer. The samples were placed on a diamond window as thin films (solids by evaporation from a CH₂Cl₂ solution and liquids by direct deposition) and recorded in the attenuated total reflectance (ATR) mode. The absorption peak maxima are given in cm⁻¹.

High-resolution mass spectrometry (HRMS) measurements were obtained on a Waters Q-TOF Premier Spectrometer (ESI or EI Source).

Optical rotation was obtained from Rudolph Autopol II automatic polarimeter.

Miscellaneous. Reactions performed above the ambient laboratory temperature were performed in silicone oil baths that had been pre-equilibrated to the temperature of choice before the reaction vessel was immersed. Column chromatography was generally performed on silica gel (300-400 mesh). Reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions and an ethanolic solution of phosphomolybdic acid, and heat as developing agents.

II. Preparation Procedures and Characterization Data for All Compounds

4-((Tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-one (*rac-*4)

TBSCI, imidazole

$$CH_2CI_2$$
, rt

 $TBSO$
 $TBSO$
 $TBSO$

To a stirred solution of 4-hydroxy-2-cyclopentenone rac- $\mathbf{5}^{[3]}$ (2.50 g, 25.51 mmol) in CH₂Cl₂ (20 mL) were added tert-butyldimethylsilyl chloride (4.23 g, 28.06 mmol) and imidazole (2.08 g, 30.61 mmol) at room temperature. The resulting mixture was stirred at room temperature for 2 h before it was quenched by the addition of NaHCO₃ (20 mL, satd aq). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3x20 mL). The combined organic layers were washed with brine (20 mL), dried (Na₂SO₄), filtered and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc = 20:1) afforded rac- $\mathbf{4}$ (5.14 g, 95%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 7.43 (dd, J = 2.4, 5.7 Hz, 1H, COCH=CH), 6.14 (dd, J = 1.3, 5.7 Hz, 1H, COCH=CH), 4.96 (tdd, J = 1.4, 2.4, 6.0 Hz, 1H, CHOTBS), 2.68 (dd, J = 6.0, 18.2 Hz, 1H, COC H_a H_b), 2.20 (dd, J = 2.4, 18.2 Hz, 1H, COCH_aH_b), 0.88 [s, 9H, SiC(CH₃)₃], 0.11 [s, 3H, Si(CH₃)₂], and 0.09 [s, 3H, Si(CH₃)₂].

¹³C NMR (101 MHz, CDCl₃): δ 206.4, 163.9, 124.4, 70.9, 44.9, 25.8, 18.1, -4.71, and -4.74.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₂₁O₂Si⁺213.1305; Found 213.1301.

IR (film): 2960, 2934, 2855, 1725, 1708, 1353, 1110, and 822 cm⁻¹.

CLZ, NLL, YPM & BFS Supporting Information pg4 of pg50

Trans-4-((tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-ol (*rac*-6)

To a stirred solution of *rac-*4 (2.17 g, 10.22 mmol) in CH₂Cl₂ (100 mL) was dropwise added diisobutylaluminium hydride (1.0 mol/L in hexane) (12.2 mL, 12.2 mmol) at -78°C. The resulting mixture was stirred at -78°C for 2 h before it was quenched by the addition of potassium sodium tartrate tetrahydrate (60 mL, satd aq). The resulting mixture was stirred at room temperature for 30 min. The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3x30 mL). The combined organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc = 5:1) afforded *rac-*6 (1.89 g, 86%, dr>200:1, indicated in ¹HNMR) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 5.95 (dt, J = 5.7, 1.4 Hz, 1H, C₃H), 5.89 (dt, J = 5.7, 1.5 Hz, 1H, C₂H), 4.66-4.63 (m, 1H, C₄H), 4.59-4.56 (m, 1H, C₁H), 2.68 (dt, J = 14.0, 7.1 Hz, 1H, C₅ H_a H_b), 2.16 (dt, J = 8.8 Hz, 1H, OH), 1.50 (dt, J = 13.8, 4.5 Hz, 1H, C₅ H_a H_b), 0.89 (s, 9H, SiC(C H_3)₃), and 0.08 [s, 6H, Si(C H_3)₂].

¹³C NMR (101 MHz, CDCl₃): δ 137.0, 135.8, 75.3, 75.2, 44.7, 26.0, 18.3, -4.53, and -4.55.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{11}H_{23}O_2Si^+$ 215.1462; Found 214.1465.

IR (film): 3340, 2952, 1640, 1472, 1251, and 1130 cm⁻¹.

CLZ, NLL, YPM & BFS Supporting Information pg5 of pg50

(1S,4R)-4-((Tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-yl acetate (7)

TBSO
$$\frac{\text{lipase}}{\text{TBME}}$$
 $\frac{\text{HO}}{\text{TBSO}}$ $\frac{\text{AcO}}{\text{5}}$ $\frac{1}{5}$ $\frac{1}{5}$

In a dry flask were added *rac-*6 (1.35 g, 6.33 mmol), vinyl acetate (1.20 mL, 12.66 mmol), lipase (1.89 g, 20u/mg, 300 mg/mmol) and *tert*-butyl methyl ether (12 mL, 2 mL/mmol). The mixture was shaken at 150r in shaking table oscillator at 35°C for 36 h. The resulting mixture was filtered and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc = 20:1 to 5:1) afforded 6 (580 mg, 43%) and 7 (728 mg, 45%) as a colorless oil.

Data for 7:

¹**H NMR** (400 MHz, CDCl₃): δ 5.97 (dt, J = 5.7, 1.4 Hz, 1H, C₃H), 5.87 (dt, J = 5.7, 1.5 Hz, 1H, C₂H), 5.45 (m, 1H, C₁H), 4.71 (m, 1H, C₄H), 2.80 (dt, J = 13.8, 7.3 Hz, 1H, C₅ H_a H_b), 2.04 (s, 3H, COC H_3), 1.60 (dt, J = 13.8, 5.0 Hz, 1H, C₅ H_a H_b), 0.89 (s, 9H, SiC(C H_3)₃), 0.084 [s, 3H, Si(C H_3)₂], and 0.08 [s, 3H, Si(C H_3)₂].

¹³C NMR (101 MHz, CDCl₃): δ 171.0, 139.0, 131.3, 77.1, 75.0, 41.3, 26.0, 21.3, 18.3, -4.5, and -4.6.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₂₅O₃Si⁺ 257.1567; Found 257.1563.

IR (film): 3062, 2980, 2930, 2865, 1738, 1708, 1352, 1100, and 986 cm⁻¹.

Specific Rotation for 6: $[\alpha]_D^{25} = -23.0^{\circ}$ (c = 1.0, CHCl₃).

Specific Rotation for 7: $[\alpha]_D^{25} = +0.7^{\circ} (c = 1.0, CHCl_3)$.

(1S,4R)-4-((Tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-ol (ent-6)

AcO
$$K_2CO_3$$
 $MeOH, rt$ TBSO 7

To a stirred solution of **7** (750 mg, 2.93 mmol) in MeOH (4 mL) was added K₂CO₃ (606 mg, 4.40 mmol) at room temperature. The resulting mixture was stirred at room temperature for 1 h before it was quenched by the addition of NaHCO₃ (10 mL, satd aq). The layers were separated and the aqueous layer was extracted with EtOAc (3x10 mL). The combined organic layers were washed with brine (20 mL), dried (Na₂SO₄), filtered and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc = 5:1) afforded *ent*-**6** (625 mg, 100%) as a colorless oil.

Specific Rotation for *ent-6*: $[\alpha]_D^{25} = +23.2^{\circ}$ (c = 1.0, CHCl₃).

CLZ, NLL, YPM & BFS Supporting Information pg7 of pg50

(S)-4-((Tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-one ((S)-4)

TBSO
$$\frac{MnO_2}{CH_2Cl_2, rt}$$
 TBSO $\frac{CH_2Cl_2}{S}$

To a stirred solution of **6** (609 mg, 2.85 mmol) in CH₂Cl₂ (8 mL) was added MnO₂ (2.47 g, 28.5 mmol) at room temperature. The resulting mixture was stirred at room temperature for 24 h, then diluted with CH₂Cl₂ (5 mL). The reaction mixture was filtered through Celite and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc = 20:1) afforded (S)-**4** (557 mg, 92%) as a colorless solid.

(R)-4 was synthesized from the *ent*-6 as the same procedure as synthesis (S)-4 and the yield is 89%.

Specific Rotation for (*S*)-**4**: $[\alpha]_{D}^{25} = -54.0^{\circ}$ (*c* = 1.0, CHCl₃).

Specific Rotation for (*R*)**-4**: $[\alpha]_{D}^{25} = +52.6^{\circ}$ (c = 0.5, CHCl₃).

CLZ, NLL, YPM & BFS Supporting Information pg8 of pg50

(S)-4-((Tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)cyclopent-2-en-1-one (3)

To a stirred solution of (*S*)-4 (2.00 g, 9.42 mmol) in mixture of THF (6 mL) and H₂O (3 mL) were added HCHO (37% w/w aqueous solution, 3.8 mL, 47.1 mmol), imidazole (320 mg, 4.72 mmol) and DMAP (1.15 g, 9.42 mmol). The resulting mixture was stirred at room temperature for 2 h before it was quenched by the addition of NaHCO₃ (10 mL, satd aq). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3x15 mL). The combined organic layers were washed with brine (15 mL), dried (Na₂SO₄), filtered and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc = 4:1) afforded the **3** (1.40 g, 61%, 70% brsm) followed by the slower eluting **S1** (380 mg, 15%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ 7.27-7.25 (m, 1H, COC=C*H*), 4.95-4.91 (m, 1H, C*H*OTBS), 4.37 (m, 2H, C*H*₂OH), 2.78 (dd, J = 5.9, 18.4 Hz, 1H, COC*H_a*H_b), 2.35 (brs, 1H, CH₂O*H*), 2.34 (dd, J = 2.2, 18.4 Hz, 1H, COCH_aH_b), 0.90 [s, 9H, SiC(C*H*₃)₃], 0.12 [s, 3H, Si(C*H*₃)₂], and 0.11 [s, 3H, Si(C*H*₃)₂].

¹³C NMR (101 MHz, CDCl₃): δ 206.2, 157.7, 145.7, 69.2, 57.4, 46.0, 25.9, 18.2, -4.64, and -4.65.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{12}H_{23}O_3Si^+$ 243.1411; Found 243.1415.

IR (film): 3435 (broad), 2954, 2927, 2856m 1711m, 1251, and 1081 cm⁻¹.

Specific Rotation: $[\alpha]_{D}^{25} = -39.7^{\circ} (c = 1.0, \text{CHCl}_{3}).$

(4R,5S)-4-((Tert-butyldimethylsilyl)oxy)-2,5-bis(hydroxymethyl)cyclopent-2-en-1-one (S1)

¹H NMR (400 MHz, CDCl₃): δ 7.34-7.27 (m, 1H, COC=CH), 4.87 (m, 1H, CHOTBS), 4.27 (dt, J = 14.8, 24.2 Hz, 2H, CH=CCH₂OH), 4.05 (dd, J = 3.1, 11.0 Hz, 1H, CHCH_aH_bOH), 3.78 (dd, J = 4.5, 11.0 Hz, 1H, CHCH_aH_bOH), 3.19 (brs, 1H, OH_a), 3.17 (brs, 1H, OH_b), 2.40-2.36 (m, 1H, CHCH_aH_bOH), 0.88 [s, 9H, SiC(CH₃)₃], 0.14 [s, 3H, Si(CH₃)₂], and 0.11 [s, 3H, Si(CH₃)₂].

¹³C NMR (101 MHz, CDCl₃): δ 207.0, 158.6, 145.6, 71.6, 59.0, 58.9, 56.8, 25.8, 18.1, -4.5, and -4.6.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₂₅O₄Si⁺ 273.1517; Found 273.1514.

IR (film): 3340 (broad), 2930, 2850, 2260, 1710, 1250, and 1070 cm⁻¹.

3-(Tert-butoxymethyl)-4-((tert-butyldimethylsilyl)oxy)-2-methylenecyclopentan-1-one (*rac*-2)

To a stirred solution of t-BuOK (550 mg, 4.9 mmol) in tert-butyl methyl ether (15 mL) was added s-BuLi (5.0 mL, 1.0 M in THF, 4.9 mmol) at -78 °C. The resulting mixture was stirred at the same temperature for 4 hours followed by adding lithium 2-thienylcyanocuprate (20 mL, 0.25 M in THF, 5.0 mmol). The resulting mixture was stirred at -40 °C for one hour, then rac-3 (400 mg, 1.65 mmol) in THF was added at -78 °C followed by BF₃·Et₂O (0.9 ml, \geq 46.5% BF₃ basis, 3.3 mmol). The cooling bath was removed and the suspension was allowed to warm to room temperature. After completion of the reaction as monitored by TLC, the reaction was quenched with NaHCO₃ (10 mL, satd aq). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3x20 mL). The combined organic layers were washed with brine (10 mL), dried (Na₂SO₄), filtered and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc = 5:1) afforded rac-2 (280 mg, 55%) and rac-9 (40 mg, 8%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 6.10 (dd, J = 1.0, 2.6 Hz, 1H, COC=CC H_a H_b), 5.43 (dd, J = 1.0, 2.3 Hz, 1H, COC=CCH_aH_b), 4.32 (dt, J = 4.2, 6.2 Hz, 1H, CHOTBS), 3.45 (dq, J = 5.7, 10.0 Hz, 2H, CH₂OtBu), 2.85 (m, 1H, CHCH₂OtBu), 2.65 (dd, J = 6.3, 18.0 Hz, 1H, COCH_aH_b), 2.31 (ddd, J = 1.0, 4.5, 18.1 Hz, 1H, COCH_aH_b), 1.16 [s, 9H, O(CH₃)₃], 0.87 [s, 9H, SiC(CH₃)₃], 0.08 [s, 3H, Si(CH₃)₂], and 0.06 [s, 3H, Si(CH₃)₂].

¹³C NMR (101 MHz, CDCl₃): δ 205.1, 145.6, 119.1, 73.0, 69.7, 62.4, 52.1, 47.5, 27.5, 25.9, 18.2, -4.5, and -4.7.

HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₃₃O₃Si⁺ 313.2193; Found 313.2196.

IR (film): 2950, 2930, 2849, 1728, 1369, and 1248 cm⁻¹.

By following the same procedure as above (+)-2 (132 mg, 51%) was obtained from 3 (202 mg). **Specific Rotation for** (+)-2: $[\alpha]_D^{25} = +22.6^{\circ}$ (c = 1.0, CHCl₃).

4-(Tert-butoxymethyl)-5-methylenecyclopent-2-en-1-one (*rac-8*)

To a stirred solution of *t*-BuOK (135 mg, 1.2 mmol) in *tert*-butyl methyl ether (6 mL) was added *s*-BuLi (1.2 mL, 1.0 M in THF, 1.2 mmol) at -78 °C. The resulting mixture was stirred at the same temperature for 4 hours followed by adding lithium 2-thienylcyanocuprate (5 mL, 0.25 M in THF, 1.2 mmol). The resulting mixture was stirred at- 40 °C for one hour, then *rac-3* (100 mg, 0.42 mmol) in THF was added at -78 °C. The cooling bath was removed and the suspension was allowed to warm to room temperature. After completion of the reaction as monitored by TLC, the reaction was quenched with NaHCO₃ (10 mL, satd aq). The layers were separated and the aqueous layer was extracted with CH₂Cl₂(3x10 mL). The combined organic layers were washed with brine (10 mL), dried (Na₂SO₄), filtered and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc = 5:1) afforded *rac-2* (20 mg, 15%) and *rac-8* (26 mg, 35%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 7.68 (nofd, $J_{app} = 6.0$ Hz, 1H, CH=CHCO), 6.41 (nofd, $J_{app} = 6.1$ Hz, 1H, CH=CHCO), 6.13 (nofd, $J_{app} = 1.5$ Hz, 1H, COC=CCH_aH_b), 5.57 (nofd, $J_{app} = 1.5$ Hz, 1H, COC=CCH_aH_b), 3.56-3.51 (m, 1H, CH₂OtBu), 3.39-3.36 (m, 1H, CHCH₂OtBu), and 1.2 [s, 9H, O(CH₃)₃].

¹³C NMR (101 MHz, CDCl₃): δ 196.7, 160.9, 143.4, 135.7, 117.7, 73.4, 64.0, 45.8, 27.5, and 27.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{11}H_{17}O_2^+$ 181.1223; Found 181.1227.

IR (film): 3320, 3118, 2928, 2860, 1730, 1712, 1684, 1448, and 1012 cm⁻¹.

4-((Tert-butyldimethylsilyl)oxy)-2-(hydroxymethyl)-1-(2-methylallyl)cyclopent-2-en-1-ol (rac-9)

¹H NMR (400 MHz, CDCl₃): δ 5.72 (dt, J = 1.6, 1.8 Hz, 1H, C=CHCH), 4.89 (dt, J = 1.5, 3.7 Hz, 1H, C=CH_aH_b), 4.76 (dq, J = 1.0, 2.0 Hz, 1H, COC=CCH_aH_b), 4.61 (m, 1H, CHOTBS), 4.40 (dt, J = 1.6, 14.2 Hz, 2H, CH_aH_bOH), 4.29 (dt, J = 1.4, 14.2 Hz, 2H, CH_aH_bOH), 2.64 (dd, J = 6.7, 13.6 Hz, 1H, CHOTBSCH_aH_b), 2.49 (d, J = 14.0 Hz, 1H, CCH_aH_b), 2.18 (dd, J = 1.0, 13.6 Hz, 1H, CHOTBSCH_aH_b), 1.80 (noft, 3H, CCH₃), 1.76 (dd, J = 4.2, 13.5 Hz, 1H, CCH_aH_b), 0.89 [s, 9H, SiC(CH₃)₃], 0.08 [s, 3H, Si(CH₃)₂] and 0.078 [s, 3H, Si(CH₃)₂].

¹³C NMR (101 MHz, CDCl₃): δ 9.8, 142.5, 130.9, 114.9, 83.7, 73.7, 59.4, 49.4, 46.3, 26.0, 24.4, 18.4, and -4.6.

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₃₀NaO₃Si⁺ 321.1856; Found 321.1853.

IR (film): 3418, 2961, 2930, 2859, 1771, 1248, and 1068 cm⁻¹.

(1R,3R,4S)-3-(Tert-butoxymethyl)-4-((tert-butyldimethylsilyl)oxy)-2-methylenecyclopentan-1-ol (10)

To a stirred solution of 2 (130 mg, 0.42 mmol) in THF (3 mL) were added LiBHEt₃ (0.5 ml, 1.0 M in THF, 0.5 mmol). The resulting mixture was stirred at -78 °C for 30 min before it was quenched by the addition of NH₄Cl (10 mL, satd aq). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3x10 mL). The combined organic layers were washed with brine (10 mL), dried (Na₂SO₄), filtered and concentrated *in vacuo*. Flash column chromatography (silica gel, hexanes:EtOAc = 5:1) afforded **10** (110 mg, 85%) as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 5.38 (nofd, 1H, C=CC H_a H_b), 5.14 (nofd, 1H, C=CCH_a H_b), 4.36 (m, 1H, CHOH), 4.35-4.32 (m, 1H, CHOTBS), 3.30 (dd, J = 5.2, 9.2 Hz, 1H, C H_a H_bOtBu), 3.10 (d, J = 10.6 Hz, 1H, CHOtH), 2.85 (t, J = 9.4 Hz, 1H, CH_atH_bOtBu), 2.76 (m, 1H, CtH) CH_aH_bOtBu), 1.94 (dd, J = 5.0, 13.5 Hz, 1H, CHOHCtH_aH_b), 1.83 (dt, J = 2.1, 13.6 Hz, 1H, CHOHCH_atH_b), 1.15 [s, 9H, O(CtH₃)₃], 0.88 [s, 9H, SiC(CtH₃)₃], 0.093 [s, 3H, Si(CtH₃)₂], and 0.091 [s, 3H, Si(CtH₃)₂].

¹³C NMR (101 MHz, CDCl₃): δ 154.8, 111.8, 76.4, 76.1, 72.8, 63.6, 53.3, 42.0, 27.6, 26.0, 18.1, -4.7, and -4.8.

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₃₄NaO₃Si⁺ 337.2169; Found 337.2170.

IR (film): 3404 (broad), 2951, 2931, 2842, 1459, 1360, and 1081 cm⁻¹.

Specific Rotation: $[\alpha]_{D}^{25} = -30.0^{\circ} (c = 1.0, CHCl_3).$

CLZ, NLL, YPM & BFS Supporting Information pq15 of pq50

Synthesis of compound 12

To a stirred solution of triphenylphosphine (138 mg, 0.52 mmol) in THF (4 mL) was added diethyl azodicarboxylate (DEAD) (82 uL, 0.52 mmol) at -10 °C dropwise. The resulting mixture was stirred at the same temperature for 30 min before it was added a mixture of compound 10 (110 mg, 0.35 mmol) and 11^[4] (192 mg, 0.52 mmol) in THF (2 mL) at 0 °C. The resulting mixture was stirred at 0 °C for 6 h before it quenched by the addition of NaHCO₃ (10 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3x10 mL). The combined organic layer was washed with brine (10 mL), dried (Na₂SO₄), filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography (silica gel, hexanes:EtOAc = 4:1) to give 12 (176 mg, 76%) a white solid.

¹H NMR (400 MHz, CDCl₃): δ 8.45 (s, 1H, N=CH), 5.65 (t, J = 7.7 Hz, 1H, NCH), 5.26 (t, J = 2.2 Hz, 1H, C=CH_aH_b), 4.91 (t, J = 7.7 Hz, 1H, C=CH_aH_b), 4.38 (dt, J = 3.6, 4.7 Hz, 1 H, CHOTBS), 3.61 (m, 2H, CH₂OtBu), CH_aH_bOtBu), 2.67 (m, 1H, CHC=CH₂), 2.29 (ddd, J = 5.0, 7.9, 12.9 Hz, 1H, CHCH_aH_b), 2.20 (ddd, J = 5.0, 7.9, 12.9 Hz, CHCH_aH_b), 1.41 [s, 18 H, (Boc)₂], 1.21 [s, 9H, O(CH₃)₃], 0.86 [s, 9H, SiC(CH₃)₃], 0.04 [s, 3H, Si(CH₃)₂], and 0.02 [s, 3H, Si(CH₃)₂].

¹³C NMR (101 MHz, CDCl₃): δ 152.8, 151.7, 150.9, 150.6, 149.3, 146.2, 130.1, 112.4, 83.6, 73.2, 73.1, 62.3, 57.0, 53.0, 41.5, 28.0, 27.6, 25.9, 18.1, -4.6, and -4.7.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{32}H_{52}ClN_5NaO_6Si^+$ 688.3268; Found 688.3284.

IR (film): 3410, 2970, 2860, 1796, 1680, 1560, and 1230 cm⁻¹.

Specific Rotation : $[\alpha]_{D}^{25} = +28.6^{\circ} (c = 1.0, \text{CHCl}_{3}).$

CLZ, NLL, YPM & BFS Supporting Information pg16 of pg50

Synthesis of entecavir (1)

To a stirred solution of **12** (150 mg, 0.30 mmol) in THF (3 mL) was added 3 mL of 3M aqueous HCl. The resulting mixture was stirred at 50 °C for 10 h before it was quenched by the addition of Et₃N (1 mL). The mixture was concentrated, and the residue was purified by flash column chromatography (silica gel, CH₂Cl₂/MeOH 4:1) to give entecavir (**1**) (56 mg, 90%) as a white solid.

¹H NMR (400 MHz, DMSO- d_6): δ 10.84 (s, 1H, NH), 7.66 (s, 1H, N=CH), 6.66 (s, 2H, NH₂), 5.34 (t, J = 9.2 Hz, 1H, NCHCH₂), 5.09 (s, 1H, =CH_aH_b), 4.94 (brs, 1H, OH), 4.91 (brs, 1H, OH), 4.54 (s, 1H, =CH_aH_b), 4.23 (s, 1H, CHOH), 3.52 (t, J = 6.1 Hz, 2H, CH₂OH), 2.55-2.50 (m, 1H, CHCH₂OH), 2.24-2.17 (m, 1H, CH_aH_bCN), and 2.05-2.00 (m, 1H, CH_aH_bCN).

¹³C NMR (101 MHz, DMSO-*d*₆): δ 156.9, 153.8, 151.5, 151.4, 136.0, 116.2, 109.3, 70.4, 63.0, 55.2, 54.1, and 39.2.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{12}H_{15}N_5NaO_3^+$ 300.1067; Found 300.1074.

IR (film): 3440, 3300, 3226, 2950, 2858, 2630, and 1609 cm⁻¹.

Specific Rotation: $[\alpha]_D^{25} = +26.4^{\circ} (c = 0.25, DMF: H_2O/1:1).$

$^1\!H$ NMR Spectroscopic Comparison of Reported Work $^{[5,6]}$ and Our Synthetic (+) - Enticavir (1)

entecavir (1)

Position	1 H NMR (δ) (first reported by G. S. Bisacchi and co-workers) a (400 MHz, DMSO- d_{6})	¹ H NMR (δ) (reported by H. Xu and co-workers) ^b (500 MHz, DMSO-d ₆)	1 H NMR (δ) This work (400 MHz, DMSO- d_{6})
1	5.36 (m, 1H)	5.36 (dd, <i>J</i> = 10.3, 8.0 Hz, 1H)	5.34 (t, <i>J</i> = 9.2 Hz, 1H)
2	-	-	-
3	2.52 (m, 1H)	2.55-2.50 (m, 1H)	2.55-2.50 (m, 1H)
4	4.23 (m,1H)	4.23 (s, 1H)	4.23 (s, 1H)
5	2.2 (m, 1H)	2.26-2.17 (m, 1H)	2.24-2.17 (m, 1H)
	2.04 (m, 1H)	2.04 (dd, J= 12.5, 7.8 Hz,1H)	2.05-2.00 (m, 1H)
6	3.53 (m, 1H)	3.54 (t, J = 6.1 Hz, 2H)	3.52 (t, <i>J</i> = 6.1 Hz, 2H)
7	5.10 (m, 1H)	5.10 (s, 1H)	5.09 (s, 1H)
	4.56 (m, 1H)	4.56 (s, 1H)	4.54 (s, 1H)
8	7.66 (s, 1H)	7.65 (s, 1H)	7.66 (s, 1H)
9	-	-	-
10	-	-	-
11	-	-	-
12	-	-	-
13	10.54 (bs, 1H)	10.55 (s, 1H)	10.84 (s, 1H)
14	6.42 (s, 2H)	6.40 (s, 2H)	6.66 (s, 2H)

^a ref. 5; ^b ref. 6

$^{13} \text{C NMR Spectroscopic Comparison of Reported Work}^{[5,6]}$ and Our Synthetic (+) - Enticavir (1)

entecavir (1)

Position	¹³ C NMR (δ) (The original literature did not provide ¹³ C NMR data) ^a	13 C NMR (δ) (reported by H. Xu and co-workers) ^b (126 MHz, DMSO- d_6)	13 C NMR (δ) This work (101 MHz, DMSO- d_6)
1		55.1	55.2
2		156.8	156.9
3		54.1	54.1
4		70.4	70.4
5		39.2	39.2
6		63.0	63.0
7		109.2	109.3
8		135.9	136.0
9		116.2	116.2
10		151.3	151.4
11		153.4	153.8
12		151.4	151.5

^a ref. 5; ^b ref. 6

III. HPLC Data

HPLC data of compound 4

HPLC spectrum of rac-4

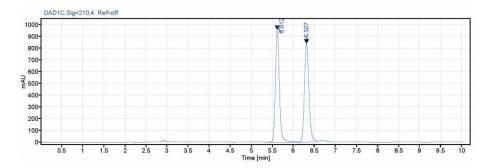
Single Injection Report

Agilent Technologies

Data file: LC1260-2024-12-29 13-19-25+08-00.dx

 Sequence Name:
 SingleSample
 Project Name:
 HPLC1

 Sample name:
 tbso+-2
 Operator:
 系统

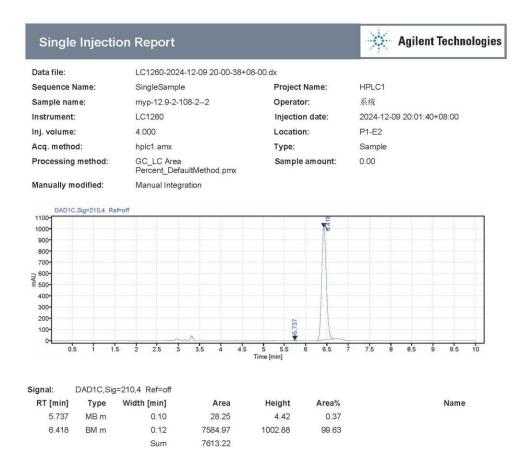

 Instrument:
 LC1260
 Injection date:
 2024-12-29 13:20:22+08:00

 Inj. volume:
 3.000
 Location:
 P2-A6

 Acq. method:
 hplc1.amx
 Type:
 Sample

 Processing method:
 GC_LC Area Percent_DefaultMethod.pmx
 Sample amount:
 0.00

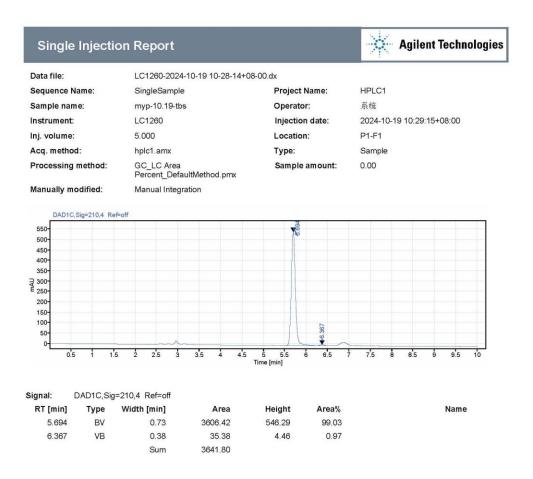
Manually modified: Manual Integration



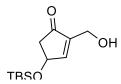
Signal:	DAD1C,Sig	AD1C,Sig=210,4 Ref=off				
RT [min]	Type	Width [min]	Area	Height	Area%	Name
5.612	BM m	0.10	6359.96	958.96	50.15	
6.307	MM m	0.12	6322.34	841.47	49.85	
		Sum	12682 31			

HPLC spectrum of (S)-4

The enantiomeric excess (ee) was 99.26% ee,


determined by HPLC on Chiralpak AS-H column, n-hexane : isopropanol = 99:1; flow rate = 1.0 mL/min; UV detection at 210 nm; $tR_1 = 5.737 \text{ min (minor)}$, $tR_2 = 6.418 \text{ min (major)}$.

HPLC spectrum of (R)-4

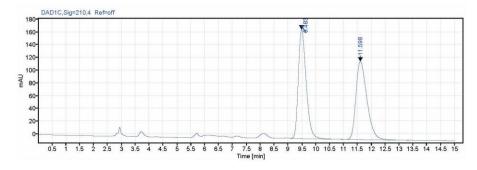

The enantiomeric excess (ee) was 98.06% ee,

determined by HPLC on Chiralpak AS-H column, n-hexane : isopropanol = 99:1; flow rate = 1.0 mL/min; UV detection at 210 nm; $tR_1 = 5.694$ min (major), $tR_2 = 6.367$ min (minor).

HPLC data of compound 3

HPLC spectrum of rac-3

Single Injection Report


LC1260-2024-12-29 11-21-25+08-00.dx

Sequence Name: SingleSample Project Name: HPLC1 Sample name: mbh+-1 Operator: 系统

LC1260 2024-12-29 11:22:20+08:00 Instrument: Injection date:

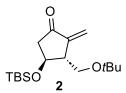
2.000 Inj. volume: Location: P2-A5 Acq. method: hplc1.amx Type: Sample GC_LC Area Percent_DefaultMethod.pmx Processing method: Sample amount: 0.00

Manually modified: Manual Integration



Signal:	DAD1C,Si	g=210,4 Ref=off				
RT [min]	Type	Width [min]	Area	Height	Area%	Name
9.483	VB	1.96	3357.43	170.97	49.94	
11.598	BB	2.25	3365.78	122.53	50.06	
		Sum	6723.21			

HPLC spectrum of (-)-3


The enantiomeric excess (ee) was 99.24% ee,

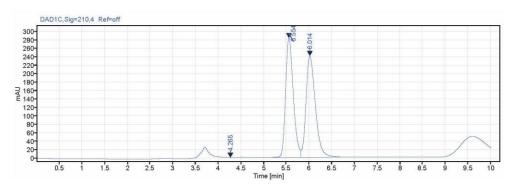
determined by HPLC on Chiralpak AS-H column, n-hexane : isopropanol = 95:5; flow rate = 0.8 mL/min; UV detection at 210 nm; $tR_1 = 9.386 \text{ min (major)}$, $tR_2 = 11.753 \text{ min (minor)}$.

HPLC data of compound 2

HPLC spectrum of rac-2

Single Injection Report

Agilent Technologies

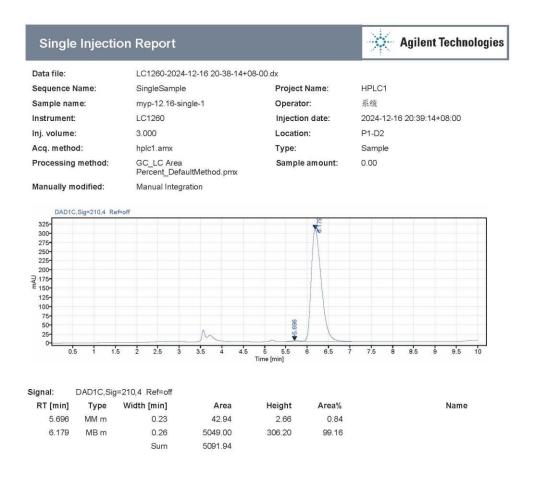

Data file: LC1260-2024-12-16 20-50-57+08-00.dx

Sequence Name: SingleSample Project Name: HPLC1 Operator: 系统 Sample name: myp-12.16-racemic-3

Instrument: LC1260 Injection date: 2024-12-16 20:51:55+08:00

3.000 P1-D1 Inj. volume: Location: Acq. method: hplc1.amx Type: Sample GC_LC Area Percent_DefaultMethod.pmx Processing method: Sample amount: 0.00

Manually modified: Manual Integration



Signal:	DAD1C,Sig=210,4 Ref=off					
RT [min]	Type	Width [min]	Area	Height	Area%	Name
4.265	MV m	0.00	0.03	0.31	0.00	
5.554	BV	0.80	3320.25	282.62	49.23	
6.014	VB	1.05	3423.70	240.08	50.77	
		Sum	6743.98			

HPLC spectrum of (+)-2

The enantiomeric excess (ee) was 98.32% ee,

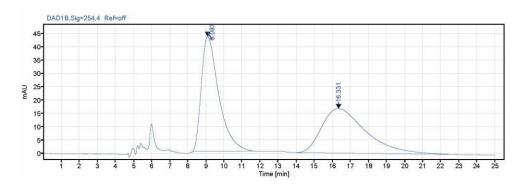
determined by HPLC on Chiralpak AS-H column, n-hexane : isopropanol = 99:1; flow rate = 0.8 mL/min; UV detection at 210 nm; $tR_1 = 5.696$ min (minor), $tR_2 = 6.179$ min (major).

HPLC data of entecavir (1)

HPLC spectrum of rac-1

Single Injection Report

Agilent Technologies

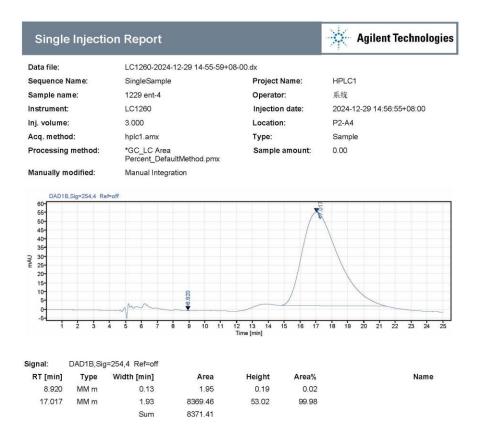

Data file: LC1260-2024-12-28 17-26-34+08-00.dx

Project Name: HPLC1 Sequence Name: SingleSample Sample name: zcl-12.28-en-1-+--1(55/45) Operator: 系统 LC1260

Instrument: Injection date: 2024-12-28 17:27:33+08:00 8.000 Inj. volume: Location: P2-A3 Acq. method: hplc1.amx Type: Sample Processing method: Sample amount: 0.00

GC_LC Area Percent_DefaultMethod.pmx

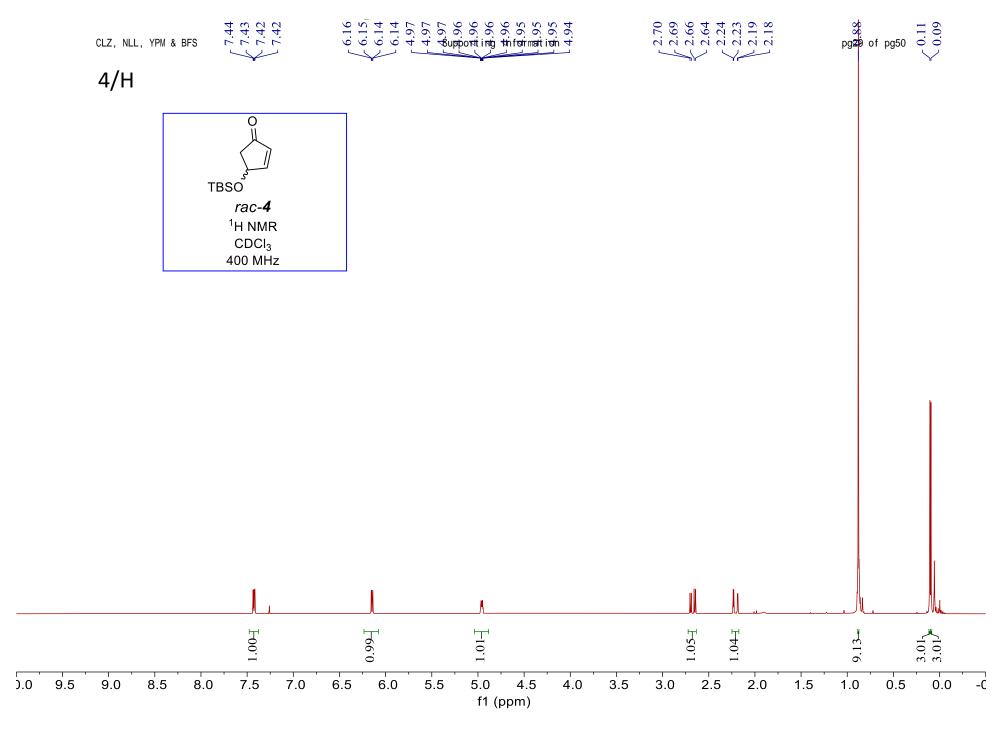
Manually modified: Manual Integration

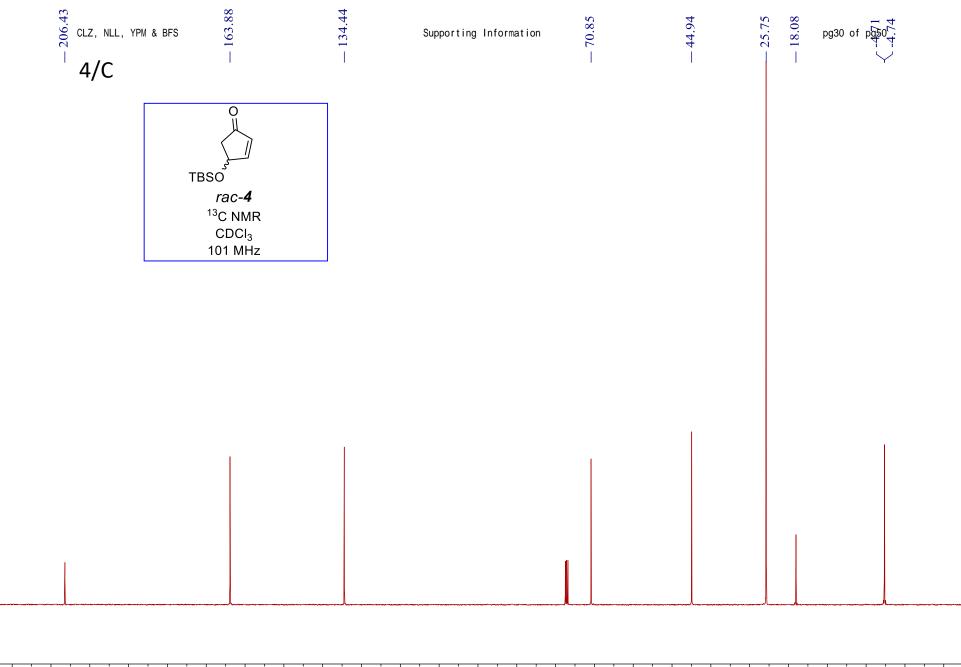


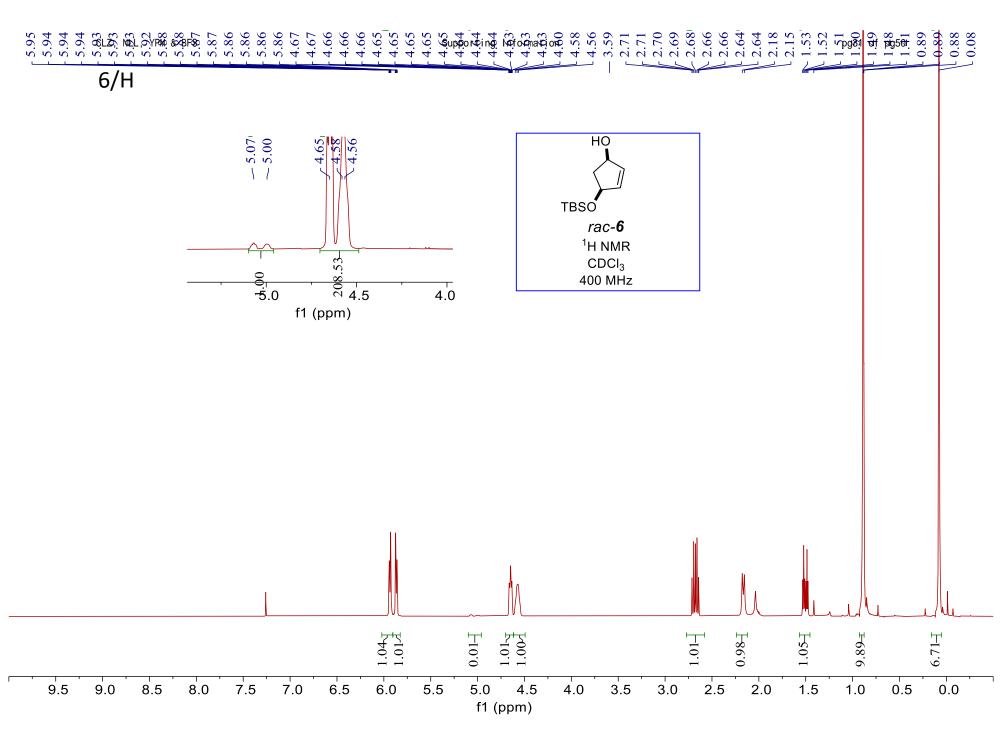
Signal:	DAD1B,Sig	g=254,4 Ref=off				
RT [min]	Type	Width [min]	Area	Height	Area%	Name
9.087	MM m	1.00	2909.77	43.37	50.60	
16.331	MM m	1.99	2840.60	16.80	49.40	
		Sum	5750.37			

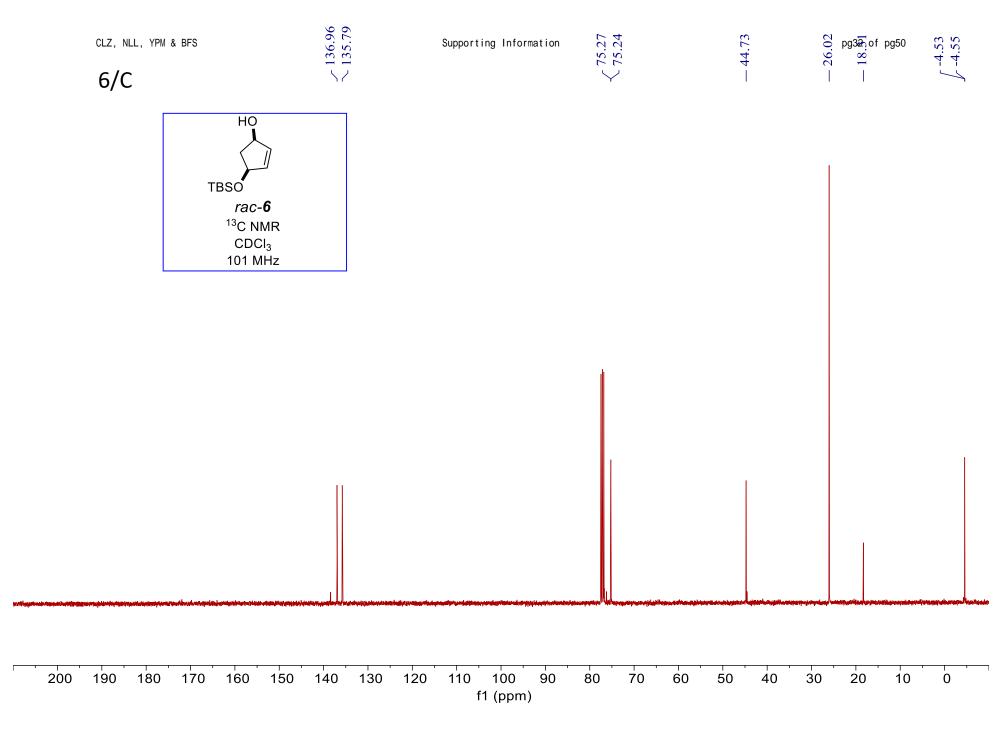
HPLC spectrum of entecavir (1)

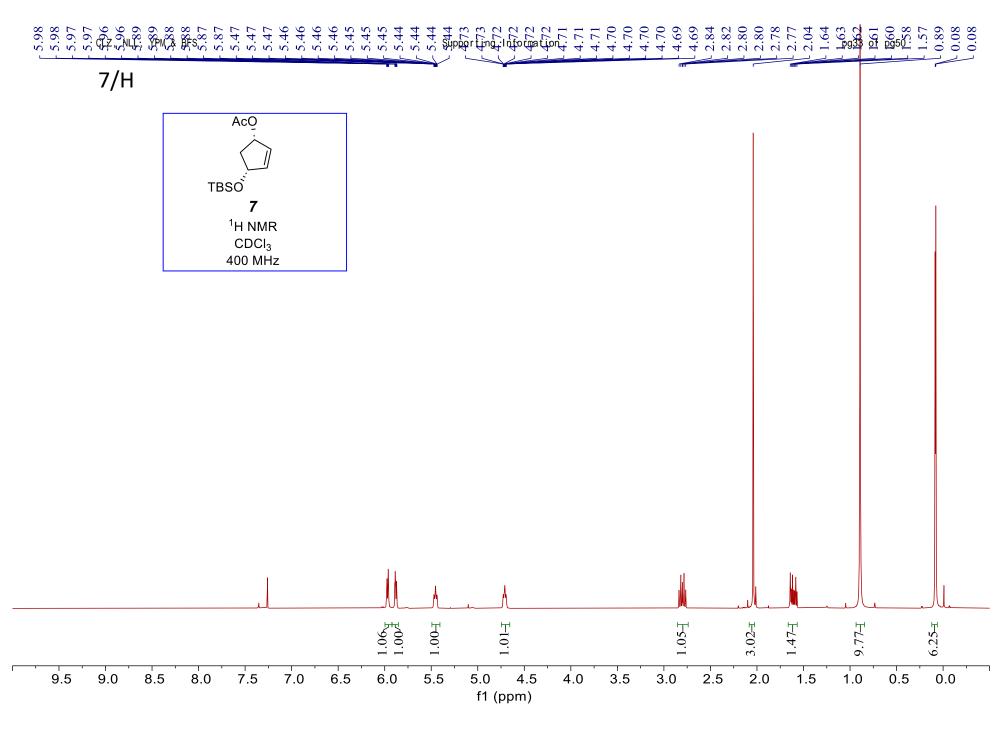
The enantiomeric excess (ee) was 99.9% ee,

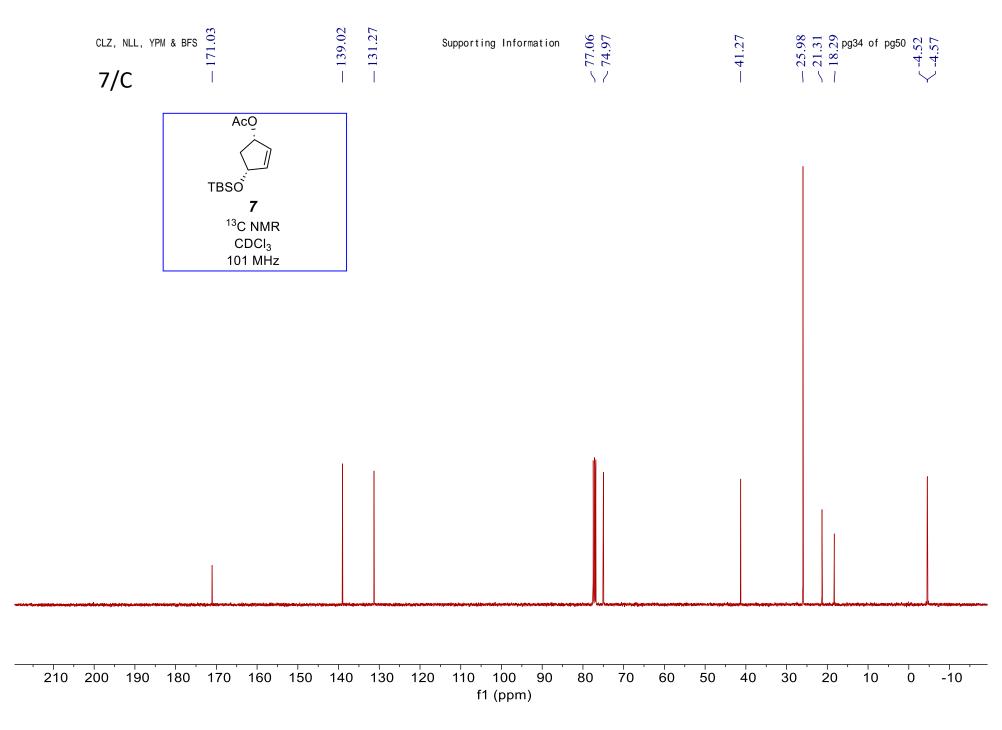

determined by HPLC on Chiralpak AD-H column, n-hexane : EtOH: Et₃N = 55:45:0.1; flow rate = 0.6 mL/min; UV detection at 210 nm; $tR_1 = 8.920 \text{ min (minor)}$, $tR_2 = 17.017 \text{ min (major)}$.

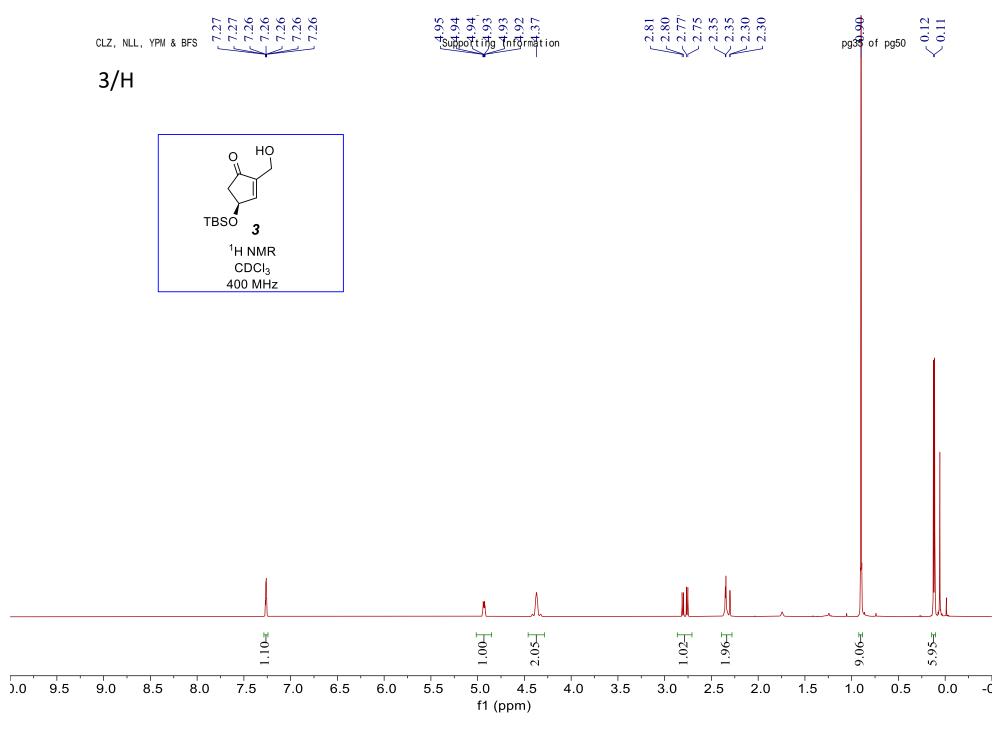


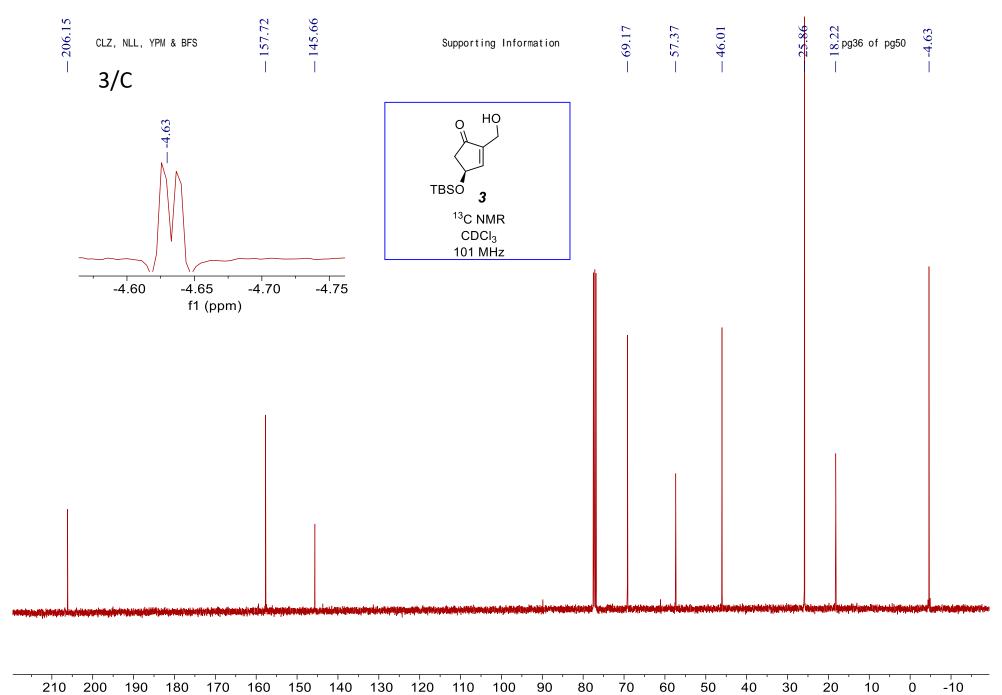

IV. References for the Supporting Information

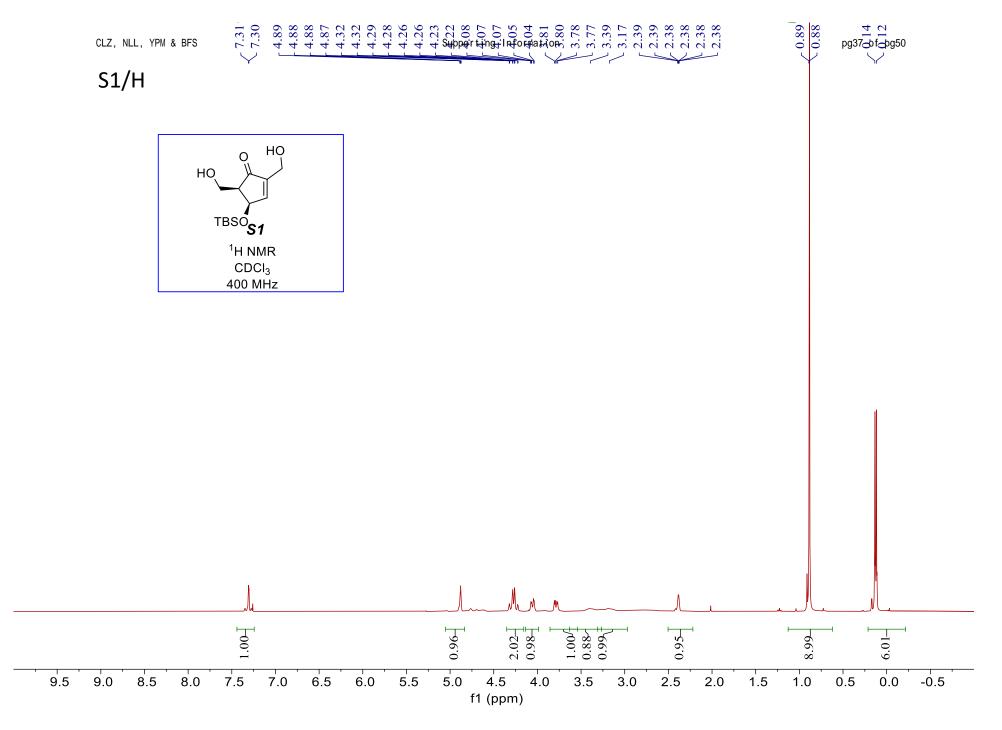

- [1] T. R. Hoye, P. R. Hanson, J. R. Vyvyan, A practical guide to first-order multiplet analysis in 1H NMR spectroscopy, *J. Org. Chem.*, 1994, **59**, 4096–4013.
- [2] T. R. Hoye, H. Zhao, A method for easily determining coupling constant values: An addendum to "a practical guide to first-order multiplet analysis in 1H NMR spectroscopy", *J. Org. Chem.*, 2002, **67**, 4014–4016.
- [3] P. R. Hamann, A. Wissner, The efficient synthesis of two prostaglandin intermediates, *Synthetic Commun.*, 1989, **19**, 1509–1518.
- [4] S. Dey, P. Garner, Synthesis of *tert*-butoxycarbonyl (Boc)-protected purines, *J. Org. Chem.*, 2000, **65**, 7697–7699.
- [5] G. S. Bisacchi, S. T. Chao, C. Bachard, J. P. Daris, S. Innaimo, G. A. Jacobs, O. Kocy, P. Lapointe, A. Martel, Z. Merchant, W. A. Slusarchyk, J. E. Sundeen, M. G. Young, R. Colonno, R. Zahler, BMS-200475, a novel carbocyclic 2'-deoxyguanosine analog with potent and selective antihepatitis B virus activity in vitro, *Bioorg. Med. Chem. Lett.*, 1997, 7, 127–132.
- [6] H. Xu, F. Wang, W. Xue, Y. Zheng, Q. Wang, F. G. Qiu, Y. Jin, Total synthesis of entecavir: A robust route for pilot production. *Org. Process Res. Dev.*, 2018, **22**, 377–384.

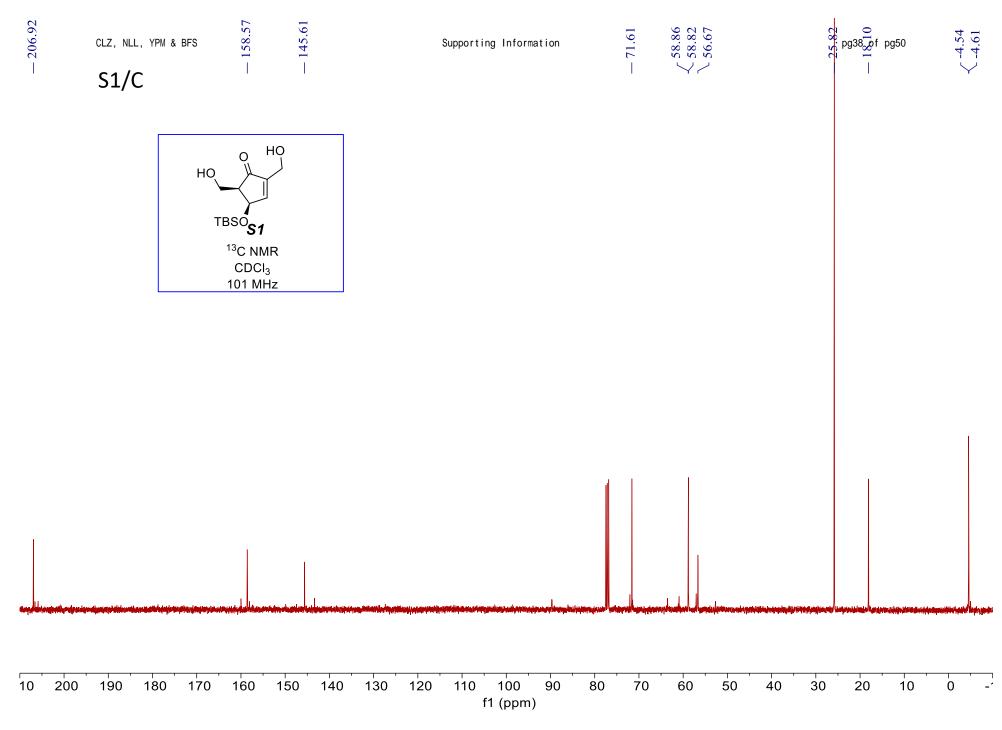

V. Copies of ¹H and ¹³C NMR Spectra











f1 (ppm)

2.008 2.008 2.008 2.008 2.008 2.008 2.008 CLZ, NLL, YPM & BFS 2/H -OtBu TBSO 2 ¹H NMR CDCI₃ 400 MHz

1.004

4.0

4.5

5.0

f1 (ppm)

 $0.95^{\text{A}}_{1.01\text{A}}$ 1.03_{A}

3.0

2.5

2.0

2.024

3.5

9.04±

1.5

9.06≖

1.0

 $6.02 \pm$

0.5

0.0

0.98±

6.0

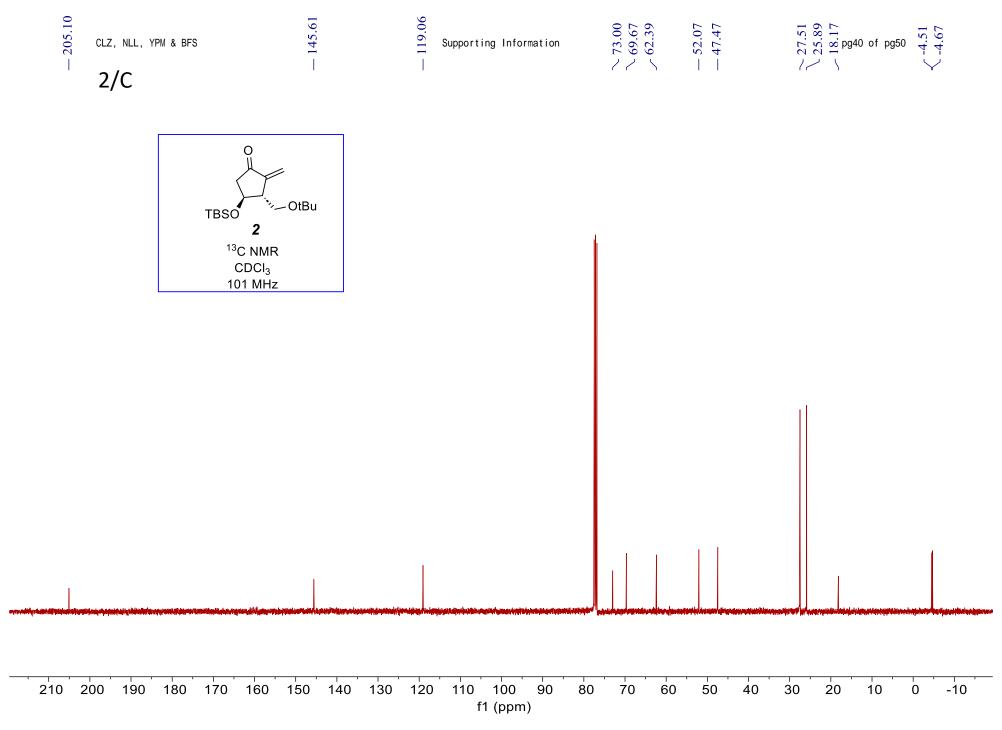
6.5

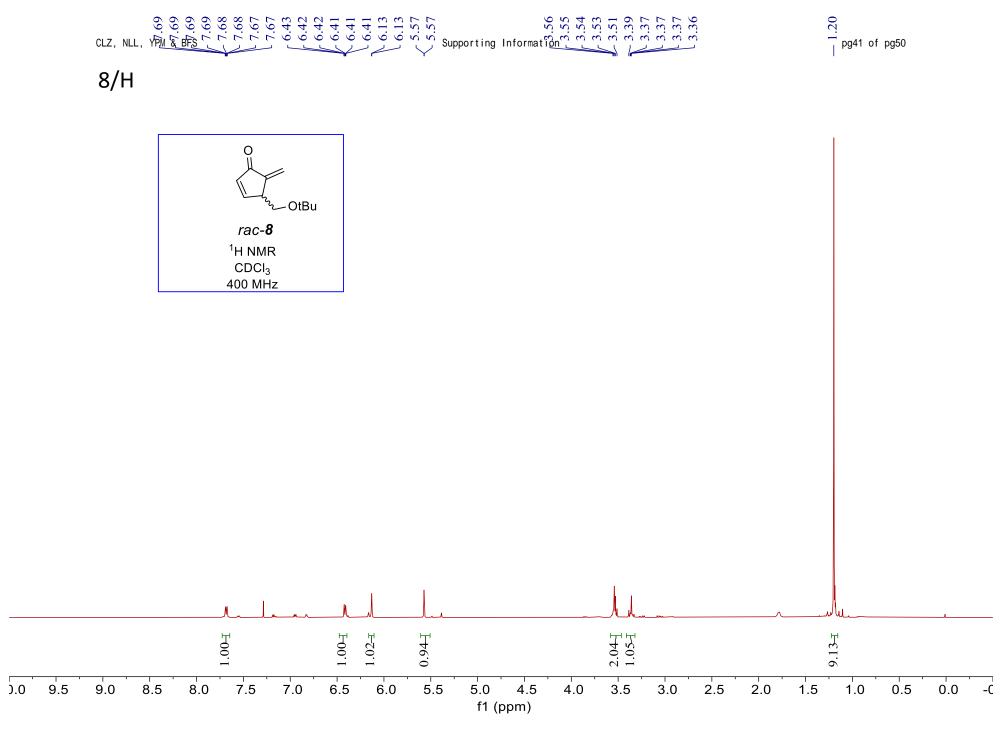
7.5

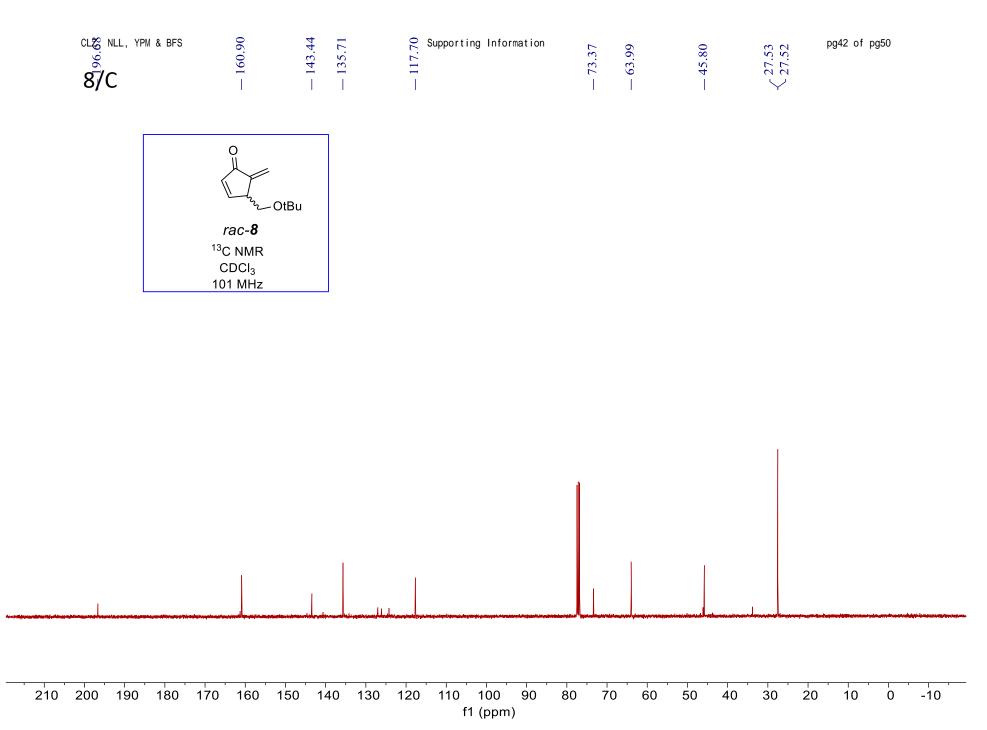
7.0

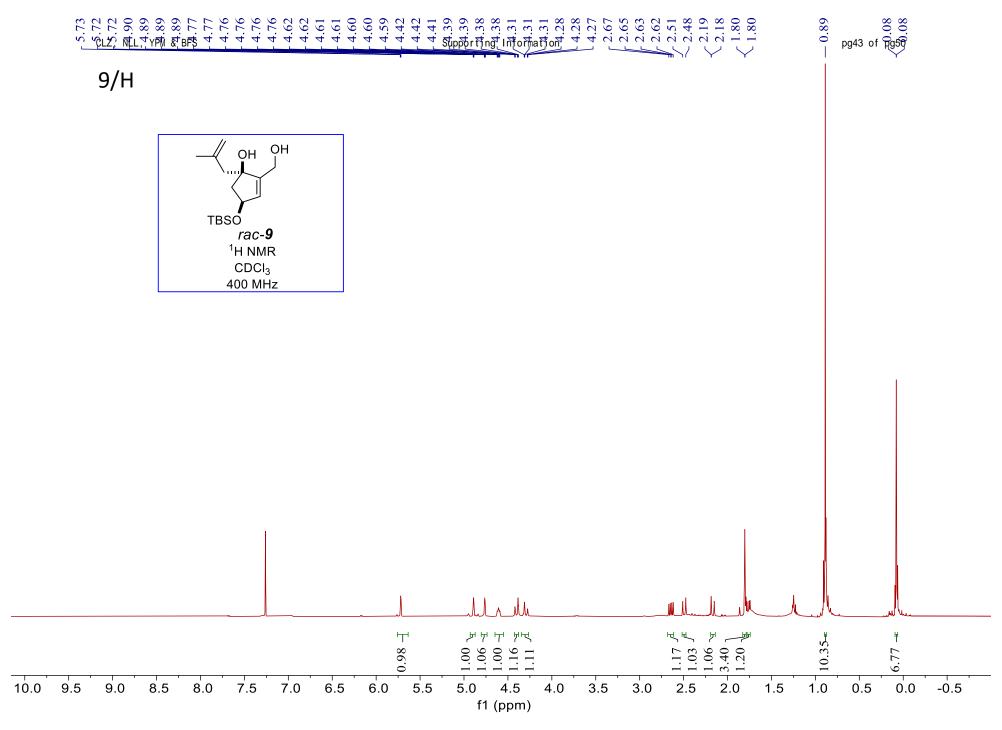
8.0

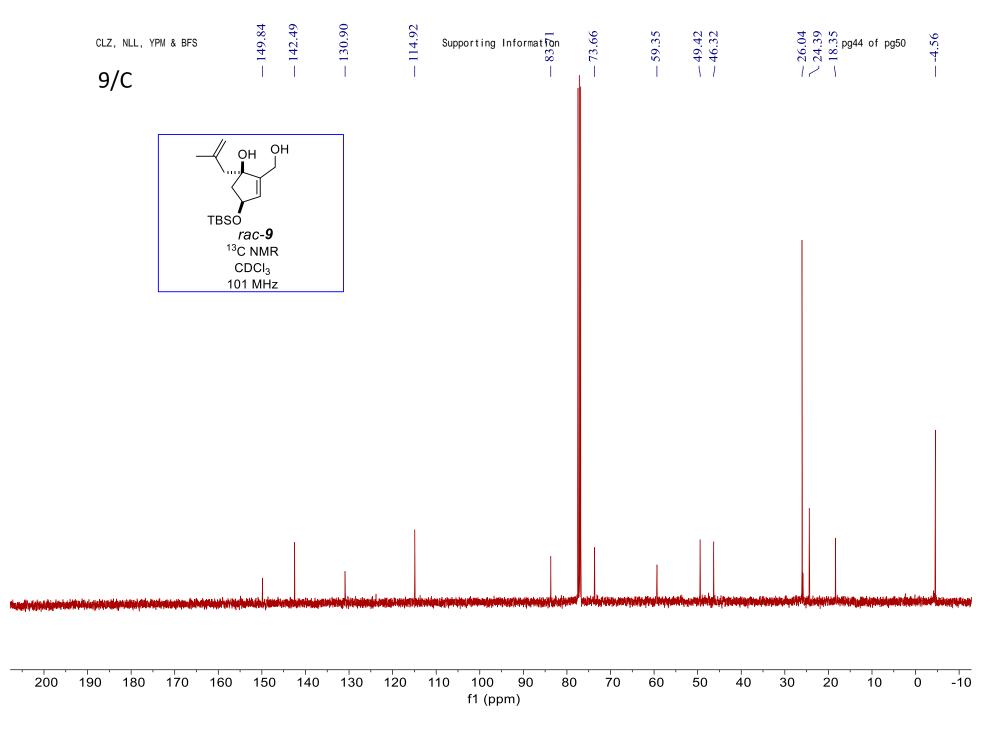
9.5


9.0


8.5


0.0

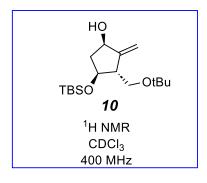

D.97H

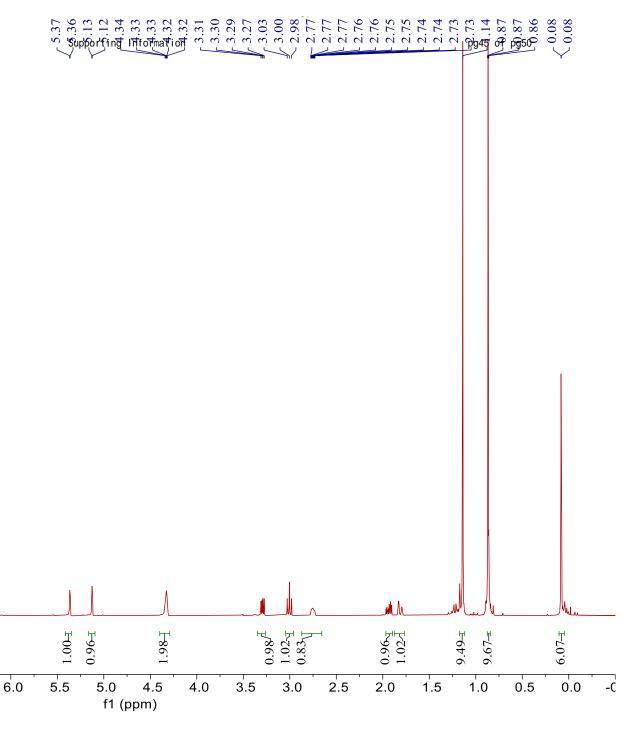

5.5

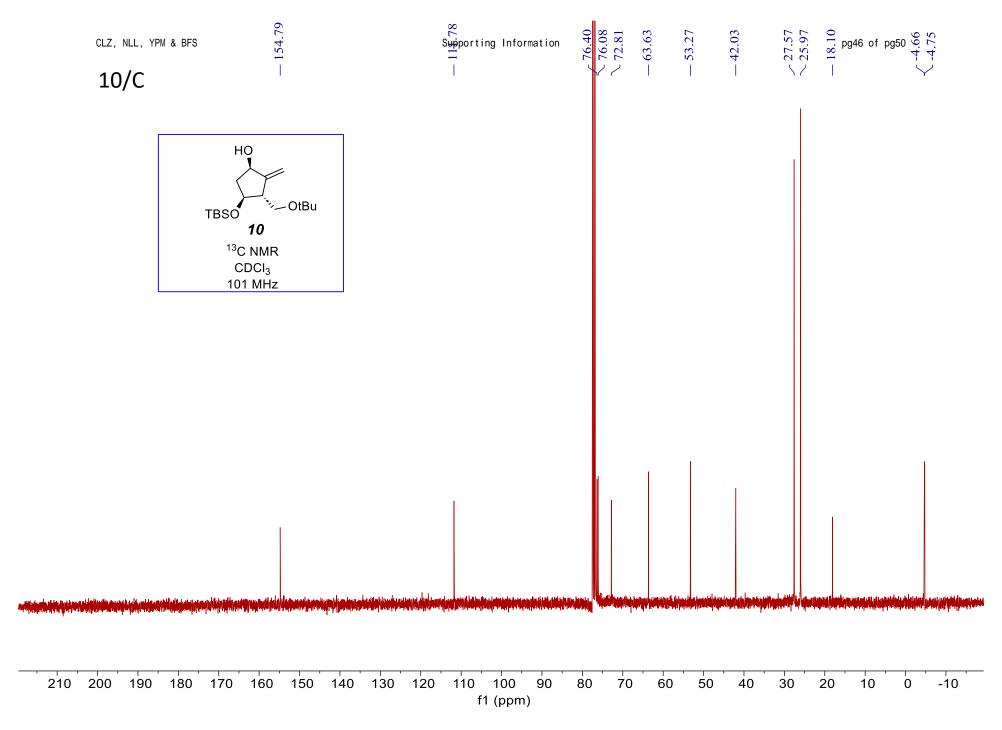
ე.0

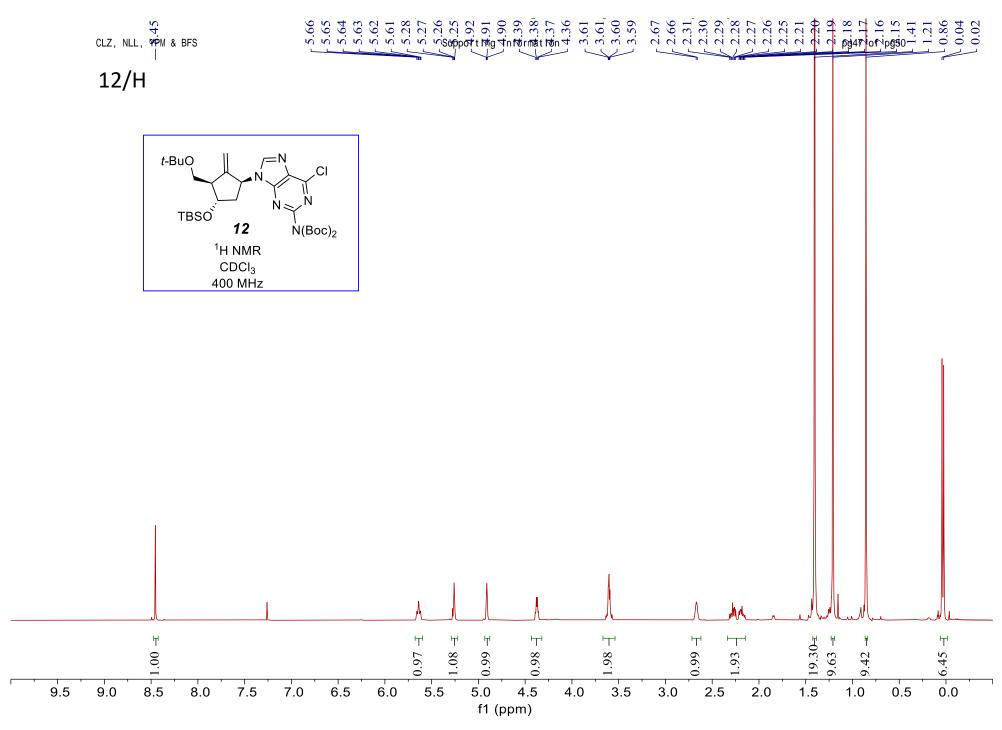
9.5

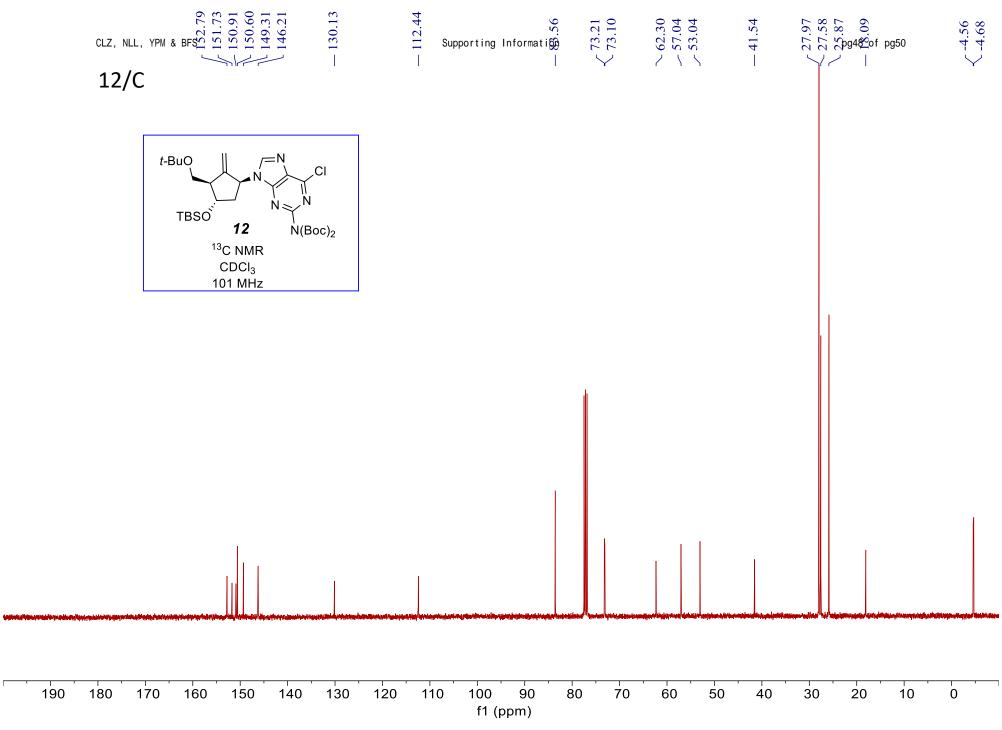
9.0


8.5


8.0


7.5


7.0


6.5

