Electrochemical [3+2]/[4+2] cyclization to indole-fused polycyclics

Chengcheng Yuan,^a Lufang Liao,^a Chengkou Liu,*a Yaqi Qiao,^a Zheng Fang,^a Zefu Zheng,^{b,c} and Kai Guo^{a,d}

^aCollege of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China. E-mail: liuchengkou@njtech.edu.cn.

^bRailway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing, 100081, China.

^cState Key Laboratory for Track System of High-speed Railway, China Academy of Railway Sciences Corporation Limited, Beijing, 100081, China.

^dState Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.

Table of Contents

	Contents	Page	
1	General information	S2	
2	Additional optimization of the electrolysis conditions for the	g2 g7	
	synthesis of 3	S3-S6	
3	Unsuccessful and low yielding examples	S7	
4	General procedure for the electrosynthesis of indole-fused	S7	
	systems		
5	The gram-scale synthesis of product 3	S8	
6	Mechanistic studies	S8-S16	
7	Synthesis of substrates	S16-S17	
8	Characterization data for electrolysis products	S18-S43	
9	X-ray crystallography studies of compound 20	S43-S44	
10	References	S44	
11	NMR Spectra for electrolysis products	S45-S75	

1. General information

Commercially available reagents and solvents are of reagent grade quality without further purification. Analytical thin-layer chromatography (TLC) is performed on 0.2 mm coated silica gel plates (HSGF 254) and visualized using a UV lamp (254 or 365 nm). Flash column chromatography is performed using silicycle silica gel (200-300 mesh). ¹H NMR and ¹³C NMR are recorded on magnet system 400' 54 ascend purchased from Bruker Biospin AG. HRMS (ESI) spectra are recorded on Agilent Q-TOF 6520.

This electrochemically generated C-centered radicals toward N-hetero fused polycyclics was carried out in an undivided cell equipped with a RVC anode and a platinum plate cathode under open air. The carbon cloth, graphite rod (Ø 6 mm), platinum plate, Ni plate and Fe plate were purchased from Shanghai Jing Chong Electronic Technology Development Co., Ltd. Reticulated vitreous carbon (RVC) was purchased from Gaoss Union (Tianjin) Photoelectric Technology Co., Ltd. Electrolysis was conducted under an AXIOMET AX3003P potentiostat in constant current mode. Cyclic voltammogram experiments were investigated using a Metrohm Autolab PGSTAT204 workstation and Nova 2.0 software.

2. Additional optimization of the electrolysis conditions for the synthesis of 3

Table S1. The screening of base.^a

Entry	Variation from "standard conditions"	Yield (%)b
1	none	75
2	KOAc instead of DMAP	0
3	K ₂ HPO ₄ instead of DMAP	30
4	KH ₂ PO ₄ instead of DMAP	23
5	K ₂ CO ₃ instead of DMAP	37
6	NaOPiv instead of DMAP	30
7	NaOH instead of DMAP	53
8	NaH instead of DMAP	0
9	'BuOK instead of DMAP	0
10	NaOAc instead of DMAP	31
11	Na ₂ HPO ₄ instead of DMAP	18
12	Cs ₂ CO ₃ instead of DMAP	13
13	TEA instead of DMAP	40
14	DIPEA instead of DMAP	trace
15	DBU instead of DMAP	0

^aReaction conditions: N-methacryloylindole **1** (0.3 mmol, 55.5 mg), α-allyl activated methylene **2** (0.75 mmol, 171.1 mg), Cp₂Fe (0.15 mmol, 27.9 mg), base (0.3 mmol), n Bu₄NPF₆ (0.6 mmol, 232.2 mg), DMSO/HFIP (7/1, 8 mL), 65 °C, 8 mA, 3-4 h; undivided cell, RVC anode (100 PPI, 10 mm × 10 mm × 12 mm), platinum plate cathode (10 mm × 10 mm × 0.1 mm). b Yields are determined by HPLC analysis with **3** as the external standard.

Table S2. The screening of solvent.^a

Entry	Variation from "standard conditions"	Yield (%)b	
1	none	75	
2	DMSO/HFIP 6/2	37	
3	DMSO/HFIP 5/3	0	
4	DMSO/HFIP 4/4	0	
5	DMSO/HFIP 8/1	22	
6	DMSO/HFIP 8/0.1	26	
7	DMSO/TFE 7/1	0	
8	DMSO/EtOH 7/1	0	
9	DMSO/ ^t BuOH 7/1	0	
10	DMSO/AcOH 7/1	0	
11	DMF/HFIP 7/1	0	
12	ACN/HFIP 7/1	0	
13	1,4-Dioxane/HFIP 7/1	0	
14	DMSO/HFIP/EtOH 7/1/1	22	
15	DMSO/HFIP/TFE 7/1/1	21	
16	DMSO/HFIP/AcOH 7/1/1	0	
17	DMSO/HFIP/TFA 7/1/1	trace	
18	DMSO/HFIP/MTBE 7/1/1	33	

^aReaction conditions: N-methacryloylindole **1** (0.3 mmol, 55.5 mg), α-allyl activated methylene **2** (0.75 mmol, 171.1 mg), Cp₂Fe (0.15 mmol, 27.9 mg), DMAP (0.3 mmol, 36.6 mg), n Bu₄NPF₆ (0.6 mmol, 232.2 mg), solvent (8 mL), 65 °C, 8 mA, 3-4 h; undivided cell, RVC anode (100 PPI, 10 mm × 10 mm × 12 mm), platinum plate cathode (10 mm × 10 mm × 0.1 mm). b Yields are determined by HPLC analysis with **3** as the external standard.

Table S3. The screening of electrode.^a

Entry	Variation from "standard conditions"	Yield (%) ^b
1	none	75
2	C cloth (+) / Pt (-)	48
3	C rod (+) / Pt (-)	15
4	Pt (+) / Pt (-)	trace
5	RVC (+) / Fe (-)	53
6	RVC (+) / Ni (-)	32
7	RVC (+) / RVC (-)	47

^aReaction conditions: N-methacryloylindole **1** (0.3 mmol, 55.5 mg), α-allyl activated methylene **2** (0.75 mmol, 171.1 mg), Cp₂Fe (0.15 mmol, 27.9 mg), DMAP (0.3 mmol, 36.6 mg), n Bu₄NPF₆ (0.6 mmol, 232.2 mg), DMSO/HFIP (7/1, 8 mL), 65 °C, 8 mA, 3-4 h; undivided cell, anode, cathode, C cloth (35 mm × 15 mm), C rod (\varnothing 6 mm), RVC (100 PPI, 10 mm × 10 mm × 12 mm), Pt plate (10 mm × 10 mm × 0.1 mm), Fe plate (10 mm × 10 mm × 0.1 mm), Ni plate (10 mm × 10 mm × 0.1 mm). ^bYields are determined by HPLC analysis with **3** as the external standard.

Table S4. The screening of current density, additive and the amount of additive, substrate and catalyst.^a

Entry	Variation from "standard conditions"	Yield (%)	
1	none	75	
2	4 mA	48	
3	12 mA	34	
4	16 mA	50	
5	DMAP (0.4 eq)	52	
6	DMAP (0.6 eq)	35	
7	DMAP (0.8 eq)	44	
8	DMAP (1.2 eq)	47	
9	DMAP (1.4 eq)	29	
10	DMAP + TsOH instead of DMAP	0	
11	DMAP + TFA instead of DMAP	0	
12	DMAP + AcOH instead of DMAP	0	
13	DMAP + PivOH instead of DMAP	15	
14	2 (1.5 eq)	31	
15	2 (2 eq)	36	
16	2 (3 eq)	71	
17	Cp_2Fe (0.2 eq)	60	
18	Cp ₂ Fe (1 eq)	48	

^aReaction conditions: N-methacryloylindole **1** (0.3 mmol, 55.5 mg), α-allyl activated methylene **2** (0.75 mmol), Cp₂Fe (x mmol), DMAP (x mmol), ⁿBu₄NPF₆ (0.6 mmol, 232.2 mg), additive (0.3 mmol), DMSO/HFIP (7/1, 8 mL), 65 °C, x mA, 3-4 h; undivided cell, RVC anode (100 PPI, 10 mm × 10 mm × 12 mm), platinum plate cathode (10 mm × 10 mm × 0.1 mm). ^bYields are determined by HPLC analysis with **3** as the external standard.

3. Unsuccessful and low yielding examples

Scheme S1 Unsuccessful and low yielding examples.

4. General procedure for the electrosynthesis of indole-fused systems

In an undivided cell equipped with a RVC anode (100 PPI, 10 mm x 10 mm x 12 mm) and a Pt plate cathode (10 mm x 10 mm x 0.1 mm), N-methacryloylindole (0.3 mmol), α-allyl activated methylene (0.75 mmol), ⁿBu₄NPF₆ (0.6 mmol, 232.2 mg), Cp₂Fe (0.15 mmol, 27.9 mg) and DMAP (0.3 mmol, 36.6 mg) were added in a mixed solvent of DMSO/HFIP (7/1, 8 mL). The mixture above was stirred and electrolyzed at a constant current of 8 mA under 65 °C for 3-4 h. The reaction solution was diluted with ethyl acetate (100 mL) and washed with saturated NaCl aqueous solution (50 mL) and H₂O (100 mL x 3). The separated organic layer was dried over anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatographic separation (petroleum ether/ethyl acetate: 200:1) to obtain the desired product.

5. The gram-scale synthesis of product 3

In a 100 mL beaker equipped with RVC anode (100 PPI, 40 mm x 40 mm x 40 mm) and a Pt plate cathode (40 mm × 40 mm × 0.2 mm), N-methacryloylindole (7.5 mmol, 1.388 g), α-allyl activated methylene (18.75 mmol, 4.278 g), "Bu₄NPF₆ (15 mmol, 3.483 g), Cp₂Fe (3.75 mmol, 0.688 g) and DMAP (7.5 mmol, 0.915 g) were added in a mixed solvent of DMSO/HFIP [(70+10) mL]. At 65 °C, the reaction was started at a constant current of 80 mA for 6.5 h. The reaction solution was diluted with ethyl acetate (150 mL) and washed with brine (150 mL) and H₂O (150 mL). The separated organic layer was dried over anhydrous Na₂SO₄ (2 g) and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatographic separation (petroleum ether/ethyl acetate: 200/1, yellow oil, 1.973 g, 64%).

6. Mechanistic Studies

6.1 H/D exchange experiments

+
$$\frac{\text{"standard conditions"}}{\text{HFIP-D}_2 \text{ was used, } N_2}$$
 [D]-1 $\frac{\text{D}}{\text{EtO}_2\text{C}}$ CO₂Et

In an undivided cell equipped with a RVC anode (100 PPI, 10 mm x 10 mm x 12 mm) and a Pt plate cathode (10 mm x 10 mm x 0.1 mm), N-methacryloylindole **1** (0.3 mmol, 55.5 mg), α-allyl activated methylene **2** (0.75 mmol, 171.1 mg), ⁿBu₄NPF₆ (0.6 mmol, 232.2 mg), Cp₂Fe (0.15 mmol, 27.9 mg) and DMAP (0.3 mmol, 36.6 mg) were

added in a mixed solvent of DMSO/HFIP-D2 (7/1, 8 mL). The mixture above was stirred and electrolyzed at a constant current of 8 mA for 1 h under N₂. The reaction solution was diluted with ethyl acetate (100 mL) and washed with saturated NaCl aqueous solution (50 mL) and H₂O (100 mL x 3). The separated organic layer was dried over anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatographic separation (petroleum ether/ethyl acetate: 300:1) to give the starting materials 1 and 2. It was found that 60% [D]-2 was obtained which was conformed by ¹H NMR (Fig. S1).

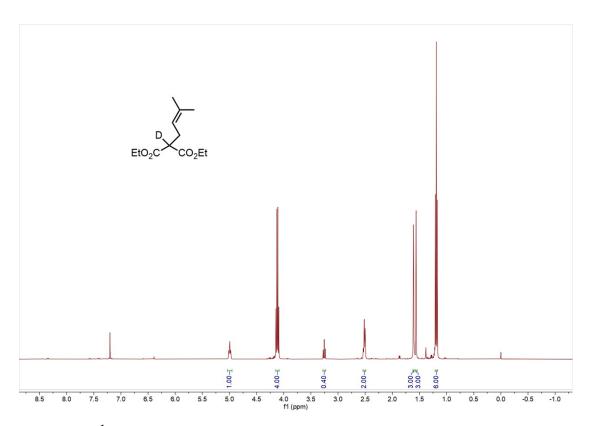


Figure S1 ¹H NMR of 2 after electrolysis in the presence of HFIP-D2 under N₂

6.2 KIE studies

6.2.1 KIE experiment with 2 and D-2 involved

+ D/H EtO₂C CO₂Et
$$\frac{\text{"standard conditions"}}{1) k_H / k_D = 0.78}$$
 $\frac{\text{CO}_2\text{Et}}{3}$

In an undivided cell equipped with a RVC anode (100 PPI, 10 mm x 10 mm x 12 mm) and a Pt plate cathode (10 mm x 10 mm x 0.1 mm), N-methacryloylindole **1** (0.3 mmol, 55.5 mg), **2** (0.75 mmol, 171.1 mg) or D-**2** (0.75 mmol, 171.8 mg), ⁿBu₄NPF₆ (0.6 mmol, 232.2 mg), Cp₂Fe (0.15 mmol, 27.9 mg) and DMAP (0.3 mmol, 36.6 mg) were added in a mixed solvent of DMSO/HFIP (7/1, 8 mL). The mixture above was stirred and electrolyzed at a constant current of 8 mA under 65 °C. Aliquots of 0.1 mL were removed from the cell every 30 minutes and analyzed by HPLC with **3** as the external standard. The corresponding yields were listed in Table **S5** (entry 1 and 2).

Table S5 the yields of KIE studies.

Entry	Time [h]	1	1.5	2	2.5
1	Yield when 2 was used	31.7%	38.8%	45.2%	53.3%
2	Yield when D-2 was used	24.2%	38.1%	44.3%	52.4%
3	Yield when D-1 was used	26.5%	33.5%	39.0%	44.8%

KIE experiment when 1 and 2 were used

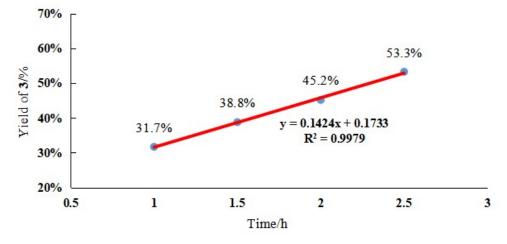


Figure S2 Parallel experiment when 1 and 2 were used

KIE experiment when 1 and D-2 were used

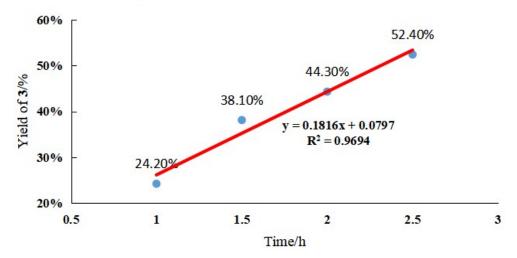


Figure S3 Parallel experiment when 1 and D-2 were used

6.2.2 KIE experiment with 1 and D-1 involved

KIE experiment when D-1 and 2 were used

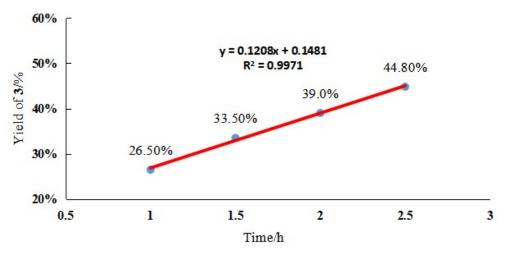


Figure S4 Parallel experiment when D-1 and 2 were used

In an undivided cell equipped with a RVC anode (100 PPI, 10 mm x 10 mm x 12

mm) and a Pt plate cathode (10 mm x 10 mm x 0.1 mm), D-1 (0.3 mmol, 55.8 mg), α-allyl activated methylene 2 (0.75 mmol, 171.1 mg), ⁿBu₄NPF₆ (0.6 mmol, 232.2 mg), Cp₂Fe (0.15 mmol, 27.9 mg) and DMAP (0.3 mmol, 36.6 mg) were added in a mixed solvent of DMSO/HFIP (7/1, 8 mL). The mixture above was stirred and electrolyzed at a constant current of 8 mA under 65 °C. Aliquots of 0.1 mL were removed from the cell every 30 minutes and analyzed by HPLC with 3 as the external standard. The corresponding yields were listed in Table S5 (entry 3).

6.3 Radical-trapping experiments

6.3.1 TEMPO was added

In an undivided cell equipped with a RVC anode (100 PPI, 10 mm x 10 mm x 12 mm) and a Pt plate cathode (10 mm x 10 mm x 0.1 mm), N-methacryloylindole **1** (0.3 mmol, 55.5 mg), α-allyl activated methylene **2** (0.75 mmol, 171.1 mg), ⁿBu₄NPF₆ (0.6 mmol, 232.2 mg), Cp₂Fe (0.15 mmol, 27.9 mg), DMAP (0.3 mmol, 36.6 mg) and TEMPO (0.9 mmol, 140.4 mg) were added in a mixed solvent of DMSO/HFIP (7/1, 8 mL). The mixture above was stirred and electrolyzed at a constant current of 8 mA for 3 h under the open air. However, no desired product **3** was detected.

6.3.2 BHT was added

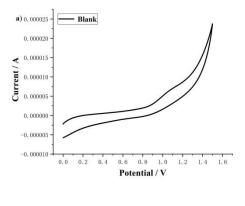
In an undivided cell equipped with a RVC anode (100 PPI, 10 mm x 10 mm x 12

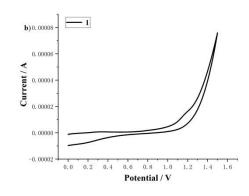
mm) and a Pt plate cathode (10 mm x 10 mm x 0.1 mm), N-methacryloylindole **1** (0.3 mmol, 55.5 mg), α-allyl activated methylene **2** (0.75 mmol, 171.1 mg), ⁿBu₄NPF₆ (0.6 mmol, 232.2 mg), Cp₂Fe (0.15 mmol, 27.9 mg), DMAP (0.3 mmol, 36.6 mg) and BHT (0.9 mmol, 198.3 mg) were added in a mixed solvent of DMSO/HFIP (7/1, 8 mL). The mixture above was stirred and electrolyzed at a constant current of 8 mA for 3 h under the open air, only trace amounts of desired product **3** was detected. Moreover, the corresponding radical trapping product **31** was produced in 65% isolated yield..

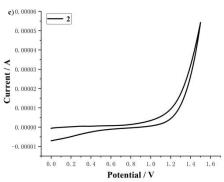
diethyl 2-(3,5-di-*tert*-butyl-4-hydroxybenzyl)-2-(3-methylbut-2-en-1-yl)malonate (**31**): Yellow oil; Eluent:petroluem ether/ethyl acetate 100:1; 65%, 217.4 mg; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.86 (s, 2H), 5.12 - 5.10 (m, 2H), 4.16 (qd, J = 7.1, 2.6 Hz, 4H), 3.16 (s, 2H), 2.47 (d, J = 6.7 Hz, 2H), 1.73 (s, 3H), 1.56 (s, 3H), 1.39 (s, 18H), 1.23 (t, J = 7.1 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.34, 152.58, 135.63, 134.90, 126.68, 126.42, 118.03, 61.02, 58.82, 37.88, 34.17, 30.45, 30.26, 26.00, 18.13, 14.00; HRMS (ESI-TOF) Calcd for C₂₇H₄₃O₅ [M+H]⁺: 440.3105; found: 440.3096.

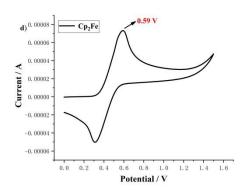
6.3.3 1,1-Diphenylethylene was added

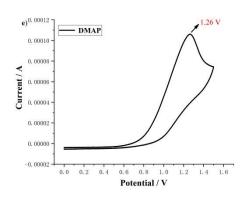
In an undivided cell equipped with a RVC anode (100 PPI, 10 mm x 10 mm x 12 mm) and a Pt plate cathode (10 mm x 10 mm x 0.1 mm), N-methacryloylindole **1** (0.3 mmol, 55.5 mg), α-allyl activated methylene **2** (0.75 mmol, 171.1 mg), ⁿBu₄NPF₆ (0.6 mmol, 232.2 mg), Cp₂Fe (0.15 mmol, 27.9 mg), DMAP (0.3 mmol, 36.6 mg) and 1,1-

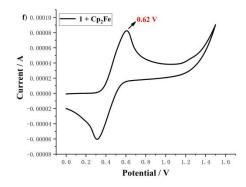

diphenylethylene (0.9 mmol, 162.2 mg) were added in a mixed solvent of DMSO/HFIP (7/1, 8 mL). The mixture above was stirred and electrolyzed at a constant current of 8 mA for 3 h under the open air, 17% desired product was obtained. However, 53% radical trapping product 32 was formed..

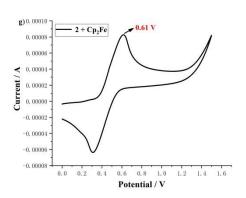

thyl 3-(4-methylpent-3-en-1-yl)-2-oxo-5,5-diphenyltetrahydrofuran-3-carboxylate (32):


White solid; Eluent:petroluem ether/ethyl acetate 100:1; 53%, 150.3 mg; 1 H NMR (400 MHz, Chloroform-d) δ 7.45 (d, J = 7.7 Hz, 2H), 7.36 (d, J = 7.6 Hz, 2H), 7.29 (t, J = 7.5 Hz, 4H), 7.23 (d, J = 7.1 Hz, 2H), 5.08 (t, J = 7.0 Hz, 1H), 3.97 - 3.65 (m, 2H), 3.58 (d, J = 13.4 Hz, 1H), 2.88 (d, J = 13.4 Hz, 1H), 2.68 (dd, J = 14.4, 8.0 Hz, 1H), 2.54 (dd, J = 14.4, 6.8 Hz, 1H), 1.64 (s, 3H), 1.51 (s, 3H), 0.95 (t, J = 7.1 Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 173.52, 169.77, 144.13, 142.70, 137.25, 128.61, 128.36, 127.85, 127.80, 125.70, 125.24, 117.34, 87.22, 61.98, 56.11, 43.88, 33.38, 25.91, 17.98, 13.62; HRMS (ESI-TOF) Calcd for $C_{25}H_{29}O_4$ [M+H]+: 379.1904; found: 379.1902.

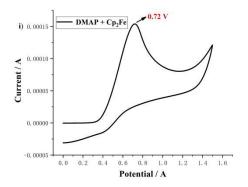

6.4 Cyclic voltammetry experiments


The undivided cell was equipped with glassy-carbon disk working electrode (diameter, 3.0 mm) and Pt wire auxiliary electrode. The Ag/AgCl was used as reference electrode. The scan range was 0.0 V to 1.5 V. The scan rate was 100 mVs⁻¹. A mixed solvent of DMSO/HFIP (7/1, 8 mL) containing ⁿBu₄NPF₆ (0.6 mmol, 232.2 mg) was poured into the electrochemical cell in all experiments.









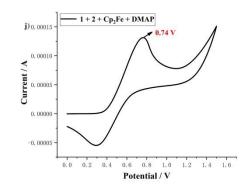


Figure S5 Cyclic voltammetry experiments of substrates

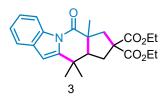
100 mVs-1: a) blank; b) 1-(1*H*-indol-1-yl)-2-methylprop-2-en-1-one **1** (0.3 mmol, 55.5 mg); c) diethyl 2-(3-methylbut-2-en-1-yl)malonate **2** (0.75 mmol, 171.1 mg); d) Cp₂Fe (0.15 mmol, 27.9 mg); e) DMAP (0.3 mmol, 36.6 mg); f) 1-(1*H*-indol-1-yl)-2-methylprop-2-en-1-one **1** (0.3 mmol, 55.5 mg) and Cp₂Fe (0.15 mmol, 27.9 mg); g) diethyl 2-(3-methylbut-2-en-1-yl)malonate **2** (0.75 mmol, 171.1 mg) and Cp₂Fe (0.15 mmol, 27.9 mg); h) 1-(1*H*-indol-1-yl)-2-methylprop-2-en-1-one **1** (0.3 mmol, 55.5 mg), diethyl 2-(3-methylbut-2-en-1-yl)malonate **2** (0.75 mmol, 171.1 mg) and Cp₂Fe (0.15 mmol, 27.9 mg); i) DMAP (0.3 mmol, 36.6 mg) and Cp₂Fe (0.15 mmol, 27.9 mg); j) 1-(1*H*-indol-1-yl)-2-methylprop-2-en-1-one **1** (0.3 mmol, 55.5 mg), diethyl 2-(3-methylbut-2-en-1-yl)malonate **2** (0.75 mmol, 171.1 mg), Cp₂Fe (0.15 mmol, 27.9 mg) and DMAP (0.3 mmol, 36.6 mg).

7. Synthesis of Substrates

7.1 General procedure for the synthesis of N-methacryloylindole S-1.1

$$R^{1} \xrightarrow{I^{1}} R^{2} + CI \xrightarrow{R^{2}} R^{1} \xrightarrow{I^{1}} R^{2}$$
S-1a S-1b S-1

Commercial starting material indole S-1a (10 mmol, 1 eq), DMAP (1 mmol, 122.2


mg), Et₃N (20 mmol, 2023.8 mg) and DCM (10 mL) were added in a 250 mL round bottom flask. The reaction mixture was stirred under 0 °C for 0.5 h, then slowly added methacryloyl chloride **S-1b** (15 mmol, 1567.5 mg). Upon completion of the reaction by TLC, the mixture was warmed to room temperature. The reaction solution was diluted with ethyl acetate (300 mL) and washed with saturated NaCl aqueous solution (300 mL) and H₂O (300 mL). The separated organic layer was dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to give the crude product, which was purified by column chromatographic separation (petroleum ether/ethyl acetate: 100:1) to obtain the desired product **S-1**.

7.2 General procedure for the synthesis of α -allyl activated methylene S-2.²

$$R^1 \longrightarrow R^2 + \longrightarrow Br \longrightarrow R^1 \longrightarrow R^2$$

S-2a S-2b S-2

The corresponding activated methylene compound **S-2a** (10 mmol), NaH (11 mmol, 264.0 mg) were dissolved in dry THF (30 mL). The reaction mixture was stirred under 0 °C for 1 h, then **S-2b** (11 mmol, 1639.0 mg) was added slowly. The mixture was warmed up to room temperature and allowed to stir for 12 - 24 h. Upon completion of the reaction by TLC, the reaction solution was diluted with ethyl acetate (300 mL) and washed with H₂O (300 mL). The organic phase was concentrated under reduced pressure to give the crude product, which was purified by column chromatographic separation (petroleum ether/ethyl acetate: 400:1) to give the desired product **S-2**.

8. Characterization data for electrolysis products

Diethyl 3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido [1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**3**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.2:1, 90.0 mg, 73%; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.43 (d, J = 7.9 Hz, 1H, two isomers), 7.47 (d, J =7.7 Hz, 1H, two isomers), 7.30 - 7.21 (m, 2H, two isomers), 6.45 (s, 0.45H, one isomer), 6.39 (s, 0.55H, one isomer), 4.29 - 4.17 (m, 3H, two isomers), 4.03 - 3.94 (m, 1H, two isomers), 2.99 - 2.96 (m, 0.55H, one isomers), 2.75 - 2.71 (m, 0.45H, one isomer), 2.65 - 2.44 (m, 2.55H, two isomers), 2.38 - 2.32 (m, 0.45H, two isomers), 2.23 - 2.18 (m, 0.55H, one isomer), 2.01 - 1.94 (m, 0.45H, one isomer), 1.45 - 1.41 (m, 6.45H, two isomers), 1.30 - 1.23 (m, 6.90H, two isomers), 1.08 (t, J = 7.1 Hz, 1.65H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.96 & 174.19 (two isomers), 172.20 & 172.15 (two isomers), 172.05 & 170.86 (two isomers), 148.95 & 145.59 (two isomers), 135.68 & 134.65 (two isomers), 130.60 & 130.15 (two isomers), 124.27 & 124.25 (two isomers), 123.91 & 123.73 (two isomers), 119.92 & 119.89 (two isomers), 116.32 & 116.21 (two isomers), 104.75 (overlap, two isomers), 61.90 & 61.88 (two isomers), 61.81 & 61.71 (two isomers), 57.3 & 56.65 (two isomers), 54.13 (overlap, two isomers), 51.07 & 50.56 (two isomers), 49.88 & 48.23 (two isomers), 42.46 & 38.79 (two isomers), 34.34 & 34.09 (two isomers), 32.63 & 31.54 (two isomers), 27.51 & 26.82 (two isomers), 25.72 & 20.72 (two isomers), 14.09 & 14.05 (two isomers), 13.84 (overlap, two isomers); HRMS (ESI-TOF) Calcd for C₂₄H₃₀NO₅ [M+H]⁺: 412.2118; found: 412.2123.

Diethyl 3a,8,11,11-tetramethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (4):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 4.0:1, 93.1 mg, 73%; ¹H NMR (400 MHz, Chloroform-d) δ 8.28 (d, J = 8.3 Hz, 1H, two isomers), 7.26 (s, 1H, two isomers), 7.10 (d, J = 8.3 Hz, 1H, two isomers), 6.38 (s, 0.20H, one isomer), 6.32 (s, 0.80H, one isomer), 4.27 - 4.24 (m, 2.50H, two isomers), 4.22 - 4.17 (m, 1.50H, two isomers), 2.98 - 2.95 (m, 0.80H, one isomer), 2.73 - 2.70 (m, 0.20H, one isomer), 2.63 - 2.49 (m, 2.20H, two isomers), 2.42 (s, 3H, two isomers), 2.37 - 2.31 (m, 0.20H, one isomer), 2.22 - 2.17 (m, 0.80H, one isomer), 2.00 - 1.93 (m, 0.80H, one isomer), 1.45 - 1.40 (m, 7H, two isomers), 1.30 - 1.23 (m, 5.2H, two isomers), 1.10 (t, J = 7.1Hz, 2.8H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.80 &173.95 (two isomers), 172.23 & 172.18 (two isomers), 172.11 & 170.85 (two isomers), 149.00 & 145.64 (two isomers), 133.84 & 133.45 (two isomers), 133.27 & 132.79 (two isomers), 130.82 & 130.38 (two isomers), 125.47 & 125.44 (two isomers), 119.95 & 119.87 (two isomers), 115.95 & 115.83 (two isomers), 104.54 & 104.50 (two isomers), 61.89 & 61.86 (two isomers), 61.79 & 61.70 (two isomers), 57.37 & 56.67 (two isomers), 54.16 (overlap, two isomers), 51.08 & 50.45 (two isomers), 49.80 & 48.18 (two isomers), 42.46 & 38.78 (two isomers), 34.32 & 34.09 (two isomers), 32.63 & 31.54 (two isomers), 27.51 (overlap, two isomers), 26.83 & 25.69 (two isomers), 21.44 & 20.71 (two isomers), 14.08 & 14.04 (two isomers), 13.86 (overlap, two isomers); HRMS (ESI-TOF) Calcd for C₂₅H₃₂NO₅ [M+H]⁺: 426.2278; found: 426.2274.

Diethyl 8-fluoro-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (5):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.5:1, 90.1 mg, 70%; ¹H NMR (400 MHz, Chloroform-d) δ 8.35 (dd, J = 9.0, 4.8 Hz, 1H, two isomers), 7.11 (dd, J = 8.8, 2.2 Hz, 1H, two isomers), 6.98 (tt, J = 9.1, 2.8 Hz, 1H, two isomers), 6.41 (s, 0.40H, one isomer), 6.35 (s, 0.60H, one isomer), 4.29 - 4.17 (m, 3H, two isomers),

4.03 - 3.95 (m, 1H, two isomers), 2.99 - 2.96 (m, 0.60H, one isomer), 2.72 - 2.69 (m, 0.40H, one isomer), 2.63 - 2.43 (m, 2.60H, two isomers), 2.37 - 2.31 (m, 0.40H, two isomers), 2.22 - 2.17 (m, 0.60H, one isomer), 2.01 - 1.95 (m, 0.40H, one isomer), 1.45 - 1.42(m, 6.4H, two isomers), 1.30 - 1.23 (m, 6.8H, two isomers), 1.09 (t, J = 7.1 Hz, 1.8H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.71 & 173.91 (two isomers), 172.16 & 172.09 (two isomers), 172.00 & 170.91 (two isomers), 161.06 (d, J = 16.1Hz) & 158.68 (d, J = 16.0 Hz) (two isomers), 150.65 & 147.37 (two isomers), 131.97 & 130.97 (two isomers), 131.60 (d, J = 10.1 Hz) & 131.27 (d, J = 10.1 Hz) (two isomers), 117.22 (t, J = 9.7 Hz, two isomers), 111.77 (d, J = 9.6 Hz) & 111.53 (d, J =9.5 Hz) (two isomers), 105.71 (d, J = 15.2 Hz) & 105.48 (d, J = 15.0 Hz) (two isomers), 104.42 (dd, J = 3.6, 1.8 Hz) (two isomers), 61.93 & 61.90 (two isomers), 61.83 & 61.74(two isomers), 57.25 & 56.62 (two isomers), 54.13 & 51.01(two isomers), 50.54 & 49.72 (two isomers), 48.19 & 42.43 (two isomers), 38.75 & 34.42 (two isomers), 34.22 & 33.92 (two isomers), 32.56 & 31.49 (two isomers), 27.40 & 26.84 (two isomers), 25.60 & 20.73 (two isomers), 14.05 & 14.00 (overlap, two isomers), 13.81 (overlap, two isomers); 19 F NMR (376 MHz, CDCl₃) δ -119.17, -119.33; HRMS (ESI-TOF) Calcd for C₂₄H₂₉NO₅F [M+H]⁺: 430.2000; found: 430.2026.

Diethyl 8-chloro-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**6**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.0:1, 97.5 mg, 73%; ¹H NMR (400 MHz, Chloroform-d) δ 8.31 (d, J = 8.7 Hz, 1H, two isomers), 7.41 (s, 1H, two isomers), 7.21 (dd, J = 8.7, 2.0 Hz, 1H, two isomers), 6.38 (s, 0.50H, one isomer), 6.32 (s, 0.50H, one isomer), 4.26 - 4.16 (m, 3.20H, two isomers), 4.02 - 3.96 (m, 0.80H, two isomers), 2.97 - 2.94 (m, 0.50H, one isomer), 2.71 - 2.68 (m, 0.50H, one isomer), 2.62 - 2.42 (m, 2.50H, two isomers), 2.36 - 2.30 (m, 0.50H, two isomers), 2.21 - 2.16

(m, 0.50H, two isomers), 1.99 - 1.91 (m, 0.50H, two isomers), 1.44 - 1.40 (m, 6H, two isomers), 1.31 - 1.22 (m, 7.50H, two isomers), 1.08 (t, J= 7.1 Hz, 1.50H, two isomers); 13 C NMR (101 MHz, CDCl₃) δ 174.74 & 174.01 (two isomers), 172.11 & 172.04 (two isomers), 171.93 & 170.87 (two isomers), 150.41 & 147.14 (two isomers), 133.96 & 132.94 (two isomers), 131.83 & 131.45 (two isomers), 129.39 & 129.18 (two isomers), 124.23 (overlap, two isomers), 119.56 & 119.48 (two isomers), 117.24 & 117.14 (two isomers), 104.00 & 103.97 (two isomers), 61.91 & 61.89 (two isomers), 61.82 & 61.73 (two isomers), 57.21 & 56.58 (two isomers), 54.08 & 50.95 (two isomers), 50.60 & 49.76 (two isomers), 48.19 & 42.3 (two isomers), 38.72 & 34.42 (two isomers), 34.19 & 33.91 (two isomers), 32.49 & 31.46 (two isomers), 27.36 & 26.79 (two isomers), 25.59 & 20.68 (two isomers), 14.05 & 14.00 (two isomers), 13.82 (overlap, two isomers); HRMS (ESI-TOF) Calcd for $C_{24}H_{29}NO_5C1$ [M+H]+: 446.1729; found: 446.1730.

Diethyl 8-bromo-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (7):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.0:1, 104.4 mg, 71%; ¹H NMR (400 MHz, Chloroform-d) δ 8.28 (d, J = 8.7 Hz, 1H, two isomers), 7.59 (d, J = 1.7 Hz, 1H, two isomers), 7.37 (dd, J = 8.7, 1.9 Hz, 1H, two isomers), 6.39 (s, 0.50H, one isomer), 6.33 (s, 0.50H, one isomer), 4.28 - 4.16 (m, 3.20H, two isomers), 4.05 - 3.93 (m, 0.86H, two isomers), 2.97 (d, J = 14.6 Hz, 0.50H, one isomer), 2.73 - 2.69 (m, 0.50H, one isomer), 2.63 - 2.43 (m, 2.50H, two isomers), 2.38 - 2.31 (m, 0.50H, two isomers), 2.20 (m, 0.50H, one isomer), 2.07 - 1.90 (m, 0.5H, one isomer), 1.48 - 1.39 (m, 6H, two isomers), 1.33 - 1.21 (m, 7.50H, two isomers), 1.10 (t, J = 7.1 Hz, 1.50H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.79 & 174.07 (two isomers), 172.13 & 172.07 (two isomers), 171.96 & 170.88 (two isomers), 150.29 & 147.02 (two

isomers), 134.33 & 133.31 (two isomers), 132.34 & 131.95 (two isomers), 126.99 & 126.97 (two isomers), 122.61 & 122.55 (two isomers), 117.66 & 117.22 (two isomers), 117.22 & 117.00 (two isomers), 103.89 & 103.86 (two isomers), 61.95 & 61.92 (two isomers), 61.85 & 61.77 (two isomers), 57.22 & 56.59 (two isomers), 54.10 (overlap, two isomers), 50.96 & 49.80 (two isomers), 42.36 & 38.73 (two isomers), 34.42 & 34.19 (two isomers), 33.95 & 32.52 (two isomers), 30.33 & 27.38 (two isomers), 26.82 & 25.63 (two isomers), 20.68 (overlap, two isomers), 14.07 & 14.02 (two isomers), 13.84 (overlap, two isomers); HRMS (ESI-TOF) Calcd for C₂₄H₂₉NO₅Br [M+H]⁺: 490.1224; found: 490.1218.

Diethyl 8-iodo-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**8**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.0:1, 111.2 mg, 69%; ¹H NMR (400 MHz, Chloroform-d) δ 8.42 (d, J = 7.9 Hz, 0.30H, one isomer), 8.17 (d, J = 8.6 Hz, 0.70H, one isomer), 7.81 (d, J = 1.5 Hz, 0.60H, one isomer), 7.57 (d, J = 1.6 Hz, 0.70H, one isomer), 7.47 (d, J = 7.6 Hz, 0.30H, one isomer), 7.31 - 7.22 (m, 0.40H, one isomer), 6.46 (s, 0.15H), 6.39 (s, 0.15H), 6.37 (s, 0.35H), 6.31 (s, 0.35H), 4.30 - 4.17 (m, 3.20H, two isomers), 4.04 - 3.95 (m, 0.80H, two isomers), 2.99 - 2.90 (m, 0.50H, one isomer), 2.74 - 2.69 (m, 0.50H, one isomer), 2.64 - 2.43 (m, 2.50H, two isomers), 2.38 - 2.31 (m, 0.50H, two isomers), 2.23 - 2.18 (m, 0.50H, one isomer), 2.00 - 1.93 (m, 0.50H, one isomer), 1.46 - 1.41 (m, 6H, two isomers), 1.30 - 1.24 (m, 7.50H, two isomers), 1.09 (td, J = 7.1, 3.0 Hz, 1.50H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.84 & 174.13 (two isomers), 172.15 & 172.08 (two isomers), 171.98 & 170.88 (two isomers), 150.71 & 147.36 (two isomers), 133.88 & 132.89 (two isomers), 132.76 & 132.71 (two isomers), 128.78 & 128.74 (two isomers), 124.25 & 123.90 (two isomers), 118.09 & 117.98 (two isomers), 116.33 & 116.23 (two isomers), 104.73 &

103.60 (two isomers), 88.13 & 86.82 (two isomers), 61.95 & 61.91 (two isomers), 61.84 & 61.78 (two isomers), 57.23 & 56.60 (two isomers), 54.10 & 50.96 (two isomers), 50.67 & 49.84 (two isomers), 48.19 & 42.34 (two isomers), 38.35 & 34.38 (two isomers), 32.52 & 31.47 (two isomers), 27.37 & 26.81 (two isomers), 25.64 & 20.66 (two isomers), 14.06 & 14.01 (two isomers), 13.83 (overlap, two isomers); HRMS (ESI-TOF) Calcd for $C_{24}H_{29}NO_{5}I [M+H]^{+}$: 538.1085; found: 538.1090.

Diethyl 8-methoxy-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (9):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.9:1, 97.9 mg, 74%; ¹H NMR (400 MHz, Chloroform-d) δ 8.31 (dd, J = 8.9, 2.4 Hz, 1H, two isomers), 6.96 -6.94 (m, 1H, two isomers), 6.90 - 6.86 (m, 1H, two isomers), 6.38 (s, 0.35H, one isomer), 6.32 (s, 0.65H, one isomer), 4.30 - 4.17 (m, 3H, two isomers), 4.04 - 3.94 (m, 1H, two isomers), 3.83 (s, 3H, two isomers), 3.01 - 2.97 (m, 0.65H, two isomers), 2.73 - 2.69 (m, 0.35H, two isomers), 2.64 - 2.43 (m, 2.65H, two isomers), 2.38 - 2.31 (m, 0.35H, two isomers), 2.21 - 2.16 (m, 0.65H, two isomers), 2.03 - 1.97 (m, 0.35H, two isomers), 1.44 - 1.40 (m, 6.35H, two isomers), 1.30 - 1.23 (m, 6.35H, two isomers), 1.09 (t, J = 7.1 Hz, 2.30H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.57 & 173.63 (two isomers), 172.17 & 172.11 (two isomers), 172.04 & 170.88 (two isomers), 156.73 & 156.57 (two isomers), 149.64 & 146.37 (two isomers), 131.58 & 131.21 (two isomers), 130.28 & 129.26 (two isomers), 117.02 & 116.91 (two isomers), 112.26 & 112.01 (two isomers), 104.66 & 104.60 (two isomers), 103.28 & 103.00 (two isomers), 61.86 & 61.84 (two isomers), 61.7 & 61.67 (two isomers), 57.27 & 56.63 (two isomers), 55.64 & 55.62 (two isomers), 54.14 & 51.09 (two isomers), 50.42 & 49.68 (two isomers), 48.16 & 42.49 (two isomers), 38.74 & 34.32 (two isomers), 34.12 & 33.92 (two isomers), 32.60 & 31.50 (two isomers), 27.45 & 26.86 (two isomers), 25.60 &

20.76 (two isomers), 14.06 & 14.02 (two isomers), 13.83 (overlap, two isomers); HRMS (ESI-TOF) Calcd for C₂₅H₃₂NO₆ [M+H]⁺: 442.2224; found: 442.2229.

Diethyl 8-(benzyloxy)-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**10**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 3.0:1, 111.6 mg, 72%; ¹H NMR (400 MHz, Chloroform-d) δ 8.31 (d, J = 8.9 Hz, 1H, two isomers), 7.47 - 7.45 (m, 2H, two isomers), 7.40 - 7.37 (m, 2H, two isomers), 7.33 -7.30 (m, 1H, two isomers), 7.02 - 7.01 (m, 1H, two isomers), 6.98 - 6.94 (m, 1H, two isomers), 6.37 (s, 0.25H, one isomer), 6.31 (s, 0.75H, one isomer), δ 5.11 (s, 2H, two isomers), 4.28 -4.17 (m, 3H, two isomers), 4.04 - 3.95 (m, 1H, two isomers), 3.00 - 2.96 (m, 0.75H, one isomer), 2.72 - 2.68 (m, 0.25H, one isomer), 2.63 - 2.42 (m, 2.25H, two isomers), 2.37 - 2.30 (m, 0.25H, one isomer), 2.21 - 2.16 (m, 0.75H, one isomer), 2.04 - 1.95 (m, 0.75H, two isomers), 1.44 - 1.41(m, 6H, two isomers), 1.30 -1.23 (m, 6.75H, two isomers), 1.10 (t, J = 7.1 Hz, 2.25H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.61 & 173.69 (two isomers), 172.21 & 172.15 (two isomers), 172.10 & 170.92 (two isomers), 155.91 & 155.75 (two isomers), 149.70 & 146.41 (two isomers), 137.34 (overlap, two isomers), 131.58 & 131.21 (two isomers), 130.49 & 129.48 (two isomers), 128.58 & 127.88 (two isomers), 127.46 (overlap, two isomers), 117.10 & 116.99 (two isomers), 113.15 & 112.92 (two isomers), 104.72 & 104.68 (two isomers), 104.66 & 104.43 (two isomers), 70.54 & 70.53 (two isomers), 61.90 & 61.88 (two isomers), 61.81 & 61.72 (two isomers), 57.31 & 56.66 (two isomers), 54.18 & 51.11 (two isomers), 50.46 & 49.71 (two isomers), 48.19 & 42.52 (two isomers), 38.78 & 34.35 (two isomers), 34.15 & 33.94 (two isomers), 32.63 & 31.53 (two isomers), 27.48 & 26.89 (two isomers), 25.64 & 20.79 (two isomers), 14.25 & 14.10 (two isomers),

14.05 & 13.87 (two isomers); HRMS (ESI-TOF) Calcd for $C_{31}H_{36}NO_6$ [M+H]⁺: 518.2544; found: 518.2549.

2,2-Diethyl 8-methyl 3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta -[4,5]-pyrido[1,2-*a*]indole-2,2,8(3*H*)-tricarboxylate (**11**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.0:1, 94.3 mg, 67%; ¹H NMR (400 MHz, Chloroform-d) δ 8.45 - 8.30 (m, 1H, two isomers), 8.13 (s, 1H, two isomers), 7.93 - 7.91 (m, 1H, two isomers), 6.45 (s, 0.50H, one isomer), 6.38 (s, 0.50H, one isomer), 4.22 - 4.11 (m, 3H, two isomers), 3.96 - 3.89 (m, 1H, two isomers), 3.87 -3.87 (m, 3H, two isomers), 2.91 - 2.88 (m, 0.50H, one isomer), 2.67 - 2.64 (m, 0.50H, one isomer), 2.57 - 2.38 (m, 2.50H, two isomers), 2.302 - 2.25 (m, 0.50H, two isomers), 2.18 - 2.13 (m, 0.50H, one isomer), 1.94 - 1.87 (m, 0.50H, one isomer), 1.41 - 1.36 (m, 6H, two isomers), 1.23 - 1.17 (m, 7.50H, two isomers), 1.01 (t, J = 7.1 Hz, 1.50H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 173.93 & 173.34 (two isomers), 171.09 & 171.04 (two isomers), 170.91 (overlap, two isomers), 169.84 & 166.45 (two isomers), 149.33 & 146.00 (two isomers), 137.28 & 136.26 (two isomers), 129.33 & 128.92 (two isomers), 124.73 & 124.68 (two isomers), 124.60 & 124.51 (two isomers), 121.00 & 120.99 (two isomers), 114.85 & 114.77 (two isomers), 103.92 & 103.87 (two isomers), 60.93 & 60.90 (two isomers), 60.83 & 60.75 (two isomers), 56.25 & 55.55 (two isomers), 53.02 & 51.04 (two isomers), 49.89 & 49.69 (two isomers), 48.87 & 47.23 (two isomers), 41.32 & 37.72 (two isomers), 33.45 & 33.18 (two isomers), 32.99 & 31.48 (two isomers), 30.45 (overlap, two isomers), 26.39 & 25.74 (two isomers), 19.64 (overlap, two isomers), 13.03 & 12.98 (two isomers), 12.79 (overlap, two isomers); HRMS (ESI-TOF) Calcd for C₂₆H₃₂NO₇ [M+H]⁺: 470.2173; found: 470.2179.

Diethyl 8-((tert-butoxycarbonyl)amino)-3a,11,11-trimethyl-4-oxo-3a,4,11,11atetrahydro-1*H*-cyclopenta[4,5]pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (12): Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.5:1, 110.1 mg, 66%; ¹H NMR (400 MHz, Chloroform-d) δ 8.21 (dd, J = 8.8, 2.6 Hz, 0.88H, two isomers), 7.60 (s, 0.83H, two isomers), 7.46 (d, J = 8.7 Hz, 0.17H, two isomers), 7.28 (t, J = 2.1 Hz, 0.12H, two isomers), 7.05 (dd, J = 8.6, 2.5 Hz, 0.15H, two isomers), 7.01 - 6.98 (m, 0.85H, two isomers), 6.53 (s, 1H), 6.30 (s, 0.40H, one isomer), 6.24 (s, 0.60H, one isomer), 4.22 - 4.10 (m, 3H, two isomers), 3.97 - 3.87 (m, 1H, two isomers), 2.92 - 2.89 (m, 0.60H, one isomer), 2.65 - 2.61 (m, 0.40H, one isomer), 2.55 - 2.35 (m, 2.60H, two isomers), 2.29 - 2.23 (m, 0.40H, two isomers), 2.13 - 2.09 (m, 0.40H, one isomer), 1.93 - 1.86 (m, 0.60H, one isomer), 1.45 (s, 8H, two isomers), 1.37 - 1.33 (m, 6H, two isomers), 1.26 (s, 1.20H, two isomers), 1.23 - 1.17 (m, 6.80H, two isomers), 1.02 (t, J = 7.1 Hz, 2H, two isomers); 13 C NMR (101 MHz, CDCl₃) δ 173.67 & 172.78 (two isomers), 171.17 & 171.12 (two isomers), 171.07 & 169.87 (two isomers), 152.02 & 148.63 (two isomers), 145.31 (overlap, two isomers), 133.59 & 133.41 (two isomers), 130.77 & 130.21 (two isomers), 129.80 & 129.77 (two isomers), 123.44 & 122.95 (two isomers), 115.47 & 115.34 (two isomers), 114.76 & 108.81 (two isomers), 103.80 & 103.77 (two isomers), 79.28 (overlap, two isomers), 60.86 & 60.84 (two isomers), 60.76 & 60.68 (two isomers), 56.26 & 55.62 (two isomers), 53.13 (overlap, two isomers), 50.03 & 49.44 (two isomers), 48.69 & 47.15 (two isomers), 41.43 & 37.74 (two isomers), 33.31 & 33.08 (two isomers), 32.91 & 31.54 (two isomers), 30.48 & 30.41 (two isomers), 29.17 & 28.67 (two isomers), 27.37 & 26.42 (two isomers), 25.82 & 24.59 (two isomers), 19.71 (overlap, two isomers), 13.03 & 12.98 (two isomers), 12.80 (overlap, two isomers); HRMS (ESI-TOF) Calcd for $C_{29}H_{39}N_2O_7$ [M+H]⁺: 527.2798; found: 527.2773.

Diethyl 3a,9,11,11-tetramethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**13**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.0:1, 94.4 mg, 74%; ¹H NMR (400 MHz, Chloroform-d) δ 8.25 (d, J = 8.2 Hz, 1H, two isomers), 7.21 - 7.17 (m, 1H, two isomers), 7.06 - 7.04 (m, 1H, two isomers), 6.48 (s, 0.50H, one isomer), 6.42 (s, 0.50H, one isomer), 4.29 - 4.18 (m, 3H, two isomers), 4.04 - 3.95 (m, 1H, two isomers), 2.96 - 2.94 (m, 0.50H, one isomer), 2.74 - 2.70 (m, 0.50H, one isomer), 2.64 - 2.55 (m, 2H, two isomers), 2.50 (s, 3H, two isomers), 2.45 - 2.44 (m, 0.50H, one isomer), 2.38 - 2.32 (m, 0.50H, one isomer), 2.23 - 2.18 (m, 0.50H, one isomer), 1.99 -1.92 (m, 0.50H, one isomer), 1.48 - 1.41 (m, 6H, two isomers), 1.30 - 1.24 (m, 7.50H, two isomers), 1.10 (t, J = 7.1 Hz, 1.50H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 175.00 & 174.23 (two isomers), 172.23 & 172.18 (two isomers), 172.09 & 170.83 (two isomers), 148.35 & 144.96 (two isomers), 135.43 & 134.37 (two isomers), 130.06 & 129.57 (two isomers), 129.24 & 129.18 (two isomers), 124.38 & 124.36 (two isomers), 124.16 (overlap, two isomers), 113.83 & 113.73 (two isomers), 103.13 (overlap, two isomers), 61.90 & 61.87 (two isomers), 61.79 & 61.70 (two isomers), 57.44 & 56.68 (two isomers), 54.14 & 51.07 (two isomers), 50.52 & 49.90 (two isomers), 48.22 & 42.44 (two isomers), 38.80 & 34.35 (two isomers), 34.21 & 34.11 (two isomers), 32.71 & 31.56 (two isomers), 27.53 & 26.82 (two isomers), 25.80 & 20.66 (two isomers), 18.46 (overlap, two isomers), 14.07 & 14.02 (two isomers), 13.84 (overlap, two isomers); HRMS (ESI-TOF) Calcd for C₂₅H₃₂NO₅ [M+H]⁺: 426.2278; found: 426.2274.

Diethyl 9-chloro-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**14**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.5:1, 96.1 mg, 72%; ¹H NMR (400 MHz, Chloroform-d) δ 8.31 (d, J = 7.8 Hz, 0.90H, two isomers), 7.64 (d, J= 12.3 Hz, 0.10H, two isomers), 7.26 - 7.18 (m, 2H, two isomers), 6.58 (s, 0.60H, one isomer), 6.52 (s, 0.40H, one isomer), 4.33 - 4.19 (m, 3.20H, two isomers), 4.04 - 3.94 (m, 0.80H, two isomers), 2.98 - 2.94 (m, 0.40H, one isomer), 2.74 - 2.70 (m, 0.60H, one isomer), 2.63 - 2.51(m, 2H, two isomers), 2.49 - 2.44 (m, 0.60H, one isomer), 2.38 - 2.32 (m, 0.40H, one isomer), 2.25 - 2.20 (m, 0.40H, one isomer), 1.96 - 1.93 (m, 0.60H, one isomer), 1.49 - 1.47 (m, 4.50H, two isomers), 1.43 - 1.41 (m, 1.50H, two isomers), 1.32 - 1.24 (m, 7.80H, two isomers), 1.09 (t, J = 7.1 Hz, 1.20H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.96 & 174.31 (two isomers), 172.15 & 172.09 (two isomers), 171.97 & 170.86 (two isomers), 151.68 & 150.41 (two isomers), 146.87 & 138.66 (two isomers), 136.29 & 135.28 (two isomers), 130.01 & 128.09 (two isomers), 125.08 & 124.99 (two isomers), 123.70 & 123.48 (two isomers), 114.79 & 114.69 (two isomers), 101.49 (overlap, two isomers), 61.95 & 61.92 (two isomers), 61.85 & 61.76 (two isomers), 57.31 & 56.63 (two isomers), 53.16 & 50.93 (two isomers), 50.70 & 49.90 (two isomers), 48.95 & 41.37 (two isomers), 37.33 & 34.51 (two isomers), 34.26 & 34.05 (two isomers), 32.54 & 31.09 (two isomers), 27.41 & 26.75 (two isomers), 25.66 & 21.34 (two isomers), 14.20 & 14.05 (two isomers), 14.00 & 13.82 (two isomers); HRMS (ESI-TOF) Calcd for $C_{24}H_{29}NO_5C1$ [M+H]⁺: 446.1729; found: 446.1730.

Diethyl 9-fluoro-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**15**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.5:1, 86.2 mg, 67%; ¹H NMR (400 MHz, Chloroform-d) δ 8.20 (d, J = 8.2 Hz, 1H, two isomers), 7.21 (td, J =8.2, 5.4 Hz, 1H, two isomers), 7.96 - 6.91 (m, 1H, two isomers), 6.57 (s, 0.60H, one isomer), 6.51 (s, 0.40H, one isomer), 4.30 - 4.18 (m, 3.20H, two isomers), 4.05 - 3.95 (m, 0.80H, two isomers), 2.98 - 2.94 (m, 0.40H, one isomer), 2.74 - 2.71 (m, 0.60H, one isomer), 2.64 - 2.44 (m, 2.60H, two isomers), 2.39 - 2.32 (m, 0.60H, two isomers), 2.25 - 2.20 (m, 0.40H, one isomer), 2.05 - 1.94 (m, 0.40H, one isomer), 1.48 - 1.43 (m, 6H, two isomers), 1.31 - 1.24 (m, 7.80H, two isomers), 1.10 (t, J = 7.1 Hz, 1.20H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.97 & 174.34 (two isomers), 172.15 & 172.09 (two isomers), 171.97 & 170.86 (two isomers), 156.39 (d, J = 4.3 Hz) & 153.93 (d, J = 4.3 Hz) (two isomers), 149.04 & 145.7 (two isomers), 137.72 (d, J = 9.5 Hz) & 136.70 (d, J = 9.4 Hz) (two isomers), 125.03 (dd, J = 10.9, 7.2 Hz) (two isomers), 119.22 (d, J = 21.6 Hz) & 118.70 (d, J = 21.7 Hz) (two isomers), 112.37 (d, J = 3.7 Hz) & 112.26 (d, J = 3.7 Hz) (two isomers), 109.39 (d, J = 18.6 Hz) & 109.09 (d, J = 18.6Hz) (two isomers), 100.19 & 100.17 (two isomers), 61.95 & 61.92 (two isomers), 61.85 & 61.76 (two isomers), 57.31 & 56.62 (two isomers), 54.07 & 50.97 (two isomers), 50.68 & 49.92 (two isomers), 48.23 & 42.36 (two isomers), 38.76 & 34.4 (two isomers), 34.05 (two isomers), 32.57 & 31.48 (two isomers), 27.44 & 26.75 (two 34.22 & isomers), 25.69 & 20.68 (two isomers), 14.07 & 14.02 (two isomers), 13.83 (overlap, two isomers); 19 F NMR (376 MHz, CDCl₃) δ -122.97, -123.13; HRMS (ESI-TOF) Calcd for C₂₄H₂₉NO₅F [M+H]⁺: 430.2024; found: 430.2026.

Diethyl 3a,7,11,11-tetramethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5] -pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**16**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.5:1, 90.5 mg, 71%; ¹H NMR (400 MHz, Chloroform-d) δ 8.27 (d, J = 3.3 Hz, 1H, two isomers), 7.34 (d, J = 3.3 Hz, 1H, two isomers)

7.9 Hz, 1H, two isomers), 7.07 (d, J = 7.9 Hz, 1H, two isomers), 6.40 (s, 0.60H, one isomer), 6.34 (s, 0.40H, one isomer), 4.30 - 4.18 (m, 3.20H, two isomers), 4.05 - 3.96 (m, 0.80H, two isomers), 2.97 - 2.94 (m, 0.40H, one isomer), 2.73 - 2.70 (m, 0.60H, one isomer), 2.63 - 2.51 (m, 2H, two isomers), 2.47 (s, 3H, two isomers), 2.44 - 2.42 (m, 0.40H, two isomers), 2.37 - 2.34 (m, 0.60H, two isomers), 2.22 - 2.17 (m, 0.60H, one isomer), 1.98 - 1.91 (m, 0.40H, one isomer), 1.44 - 1.40 (m, 6.80H, two isomers), 1.31 - 1.24 (m, 7H, two isomers), 1.10 (t, J = 7.1 Hz, 1.20H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.01 & 173.26 (two isomers), 171.21 & 171.15 (two isomers), 171.06 & 169.82 (two isomers), 147.22 & 143.82 (two isomers), 135.01 & 133.97 (two isomers), 133.27 & 133.26 (two isomers), 127.21 & 126.74 (two isomers), 124.11 & 123.99 (two isomers), 118.40 & 118.37 (two isomers), 115.62 & 115.45 (two isomers), 103.59 (overlap, two isomers), 60.86 & 60.83 (two isomers), 60.75 & 60.66 (two isomers), 56.38 & 55.64 (two isomers), 53.08 & 50.02 (two isomers), 49.45 & 48.85 (two isomers), 47.14 & 41.42 (two isomers), 37.77 & 33.25 (two isomers), 33.07 & 33.01 (two isomers), 31.59 & 30.51 (two isomers), 26.51 & 25.75 (two isomers), 24.70 & 20.83 (two isomers), 20.80 & 19.66 (two isomers), 13.03 & 12.99 (two isomers), 12.80 (overlap, two isomers); HRMS (ESI-TOF) Calcd for C₂₅H₃₂NO₅ [M+H]⁺: 426.2278; found: 426.2273.

Diethyl 3a,6,11,11-tetramethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5] -pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**17**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.0:1, 80.3 mg, 63%; ¹H NMR (400 MHz, Chloroform-d) δ 8.25 (d, J = 8.2 Hz, 1H, two isomers), 7.19 (td, J = 7.8, 2.0 Hz, 1H, two isomers), 7.05 (dd, J = 7.4, 2.9 Hz, 1H, two isomers), 6.48 (s, 0.50H, one isomer), 6.42 (s, 0.50H, one isomer), 4.24 - 4.19 (m, 3H, two isomers), 4.01 - 3.98 (m, 1H, two isomers), 2.96 - 2.93 (m, 0.50H, one isomer), 2.74 - 2.70 (m, 0.50H,

one isomer), 2.63 - 2.54 (m, 2H, two isomers), 2.50 (s, 3H, two isomers), 2.45 - 2.44 (m, 0.50H, one isomer), 2.39 - 2.35 (m, 0.50H, one isomer), 2.23 - 2.18 (m, 0.50H, one isomer), 1.99 - 1.92 (m, 0.50H, one isomer), 1.48 - 1.41 (m, 6H, two isomers), 1.28 - 1.24 (m, 7.50H, two isomers), 1.10 (t, J = 7.1 Hz, 1.50H, two isomers); 13 C NMR (101 MHz, CDCl₃) δ 175.00 & 174.23 (two isomers), 172.23 & 172.19 (two isomers), 172.09 &170.83 (two isomers), 148.35 & 144.96 (two isomers), 135.43 & 134.37 (two isomers), 130.06 & 129.57 (two isomers), 129.24 & 129.18 (two isomers), 124.38 & 124.36 (two isomers), 124.16 (overlap, two isomers), 113.83 & 113.73 (two isomers), 103.12 (overlap, two isomers), 61.90 & 61.87 (two isomers), 61.79 & 61.70 (two isomers), 57.44 & 56.67 (two isomers), 54.14 & 51.06 (two isomers), 50.51 & 49.90 (two isomers), 48.22 & 42.43 (two isomers), 38.80 & 34.35 (two isomers), 34.21 & 34.11 (two isomers), 32.71 & 31.55 (two isomers), 27.54 & 26.81 (two isomers), 25.81 (overlap, two isomers), 20.66 & 18.46 (two isomers), 14.07 & 14.02 (two isomers), 13.84 (overlap, two isomers); HRMS (ESI-TOF) Calcd for $C_{25}H_{32}NO_5$ [M+H]⁺: 426.2278; found: 426.2275.

Diethyl 6-bromo-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3H)-dicarboxylate (**18**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 2.3:1, 95.6 mg, 65%; ¹H NMR (400 MHz, Chloroform-d) δ 7.56 - 7.41 (m, 2H, two isomers), 7.14 - 7.08 (m, 1H, two isomers), 6.42 (s, 0.70H, one isomer), 6.37 (s, 0.30H, one isomer), 4.35 - 4.07 (m, 4H, two isomers), 3.00 - 2.98 (m, 0.30H, one isomer), 2.74 - 2.71 (m, 0.70H, one isomer), 2.65 - 2.56 (m, 2H, two isomers), 2.45 - 2.32 (m, 1.40H, two isomers), 1.87 - 1.81 (m, 0.60H, two isomers), 1.48 - 1.42 (m, 6H, two isomers), 1.33 - 1.22 (m, 8H, two isomers), 1.18 - 1.14 (m, 1H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 172.76 & 172.28 (two isomers), 172.19 & 172.11 (two isomers), 171.69 & 170.41 (two

isomers), 152.17 & 148.94 (two isomers), 134.41 & 134.32 (two isomers), 133.93 & 133.61 (two isomers), 129.63 & 129.21 (two isomers), 124.97 & 124.71 (two isomers), 119.22 & 119.17 (two isomers), 109.09 & 108.26 (two isomers), 104.17 & 103.18 (two isomers), 61.91 & 61.88 (two isomers), 61.85 & 61.77 (two isomers), 59.22 & 56.50 (two isomers), 55.65 & 53.42 (two isomers), 51.33 & 50.83 (two isomers), 47.14 & 42.45 (two isomers), 39.10 & 35.32 (two isomers), 34.78 & 32.10 (two isomers), 32.03 & 31.71 (two isomers), 26.37 & 25.62 (two isomers), 25.54 & 20.18 (two isomers), 14.07 & 14.05 (two isomers), 14.00 & 13.92 (two isomers); HRMS (ESI-TOF) Calcd for C₂₄H₂₉NO₅Br [M+H]⁺: 490.1224; found: 490.1216.

Diethyl 3a,10,11,11-tetramethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5] -pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**19**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr > 99:1, 89.3 mg, 70%; ¹H NMR (400 MHz, Chloroform-d) δ 8.47 - 8.45 (m, 1H), 7.45 - 7.43 (m, 1H), 7.32 - 7.27 (m, 2H), 4.26 - 4.18 (m, 2H), 4.07 - 3.98 (m, 2H), 3.08 (d, J = 14.6 Hz, 1H), 2.56 - 2.52 (m, 2H), 2.34 (s, 3H), 2.11 - 2.10 (m, 2H), 1.61 - 1.58 (m, 6H), 1.46 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.97, 172.31, 171.03, 138.19, 134.69, 132.14, 124.58, 123.57, 117.63, 116.51, 113.79, 61.79, 61.70, 56.92, 55.81, 50.02, 47.53, 38.92, 35.31, 30.71, 28.43, 27.09, 14.04, 13.88, 9.76; HRMS (ESI-TOF) Calcd for $C_{25}H_{32}NO_5$ [M+H]⁺: 426.2278; found: 426.2271.

Diethyl 10-(2-methoxy-2-oxoethyl)-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro -1*H*-cyclopenta[4,5]pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**20**):

Yellow olid; Eluent:petroluem ether/ethyl acetate 200:1, dr = 1.0:1, 98.5 mg, 68%; ¹H NMR (400 MHz, Chloroform-d) δ 8.45 (d, J = 8.3 Hz, 1H, two isomers), 7.47 (t, J =6.9 Hz, 1H, two isomers), 7.34 - 7.25 (m, 2H, two isomers), 4.29 - 4.18 (m, 3.20H, two isomers), 4.05 - 3.95 (m, 0.80H, two isomers), 3.93 - 3.85 (m, 2H, two isomers), 3.69 -3.68 (m, 3H, two isomers), 3.01 - 2.97 (m, 0.50H, one isomer), 2.77 - 2.73 (m, 0.50H, one isomer), 2.69 - 2.55 (m, 2H, two isomers), 2.51 - 2.46 (m, 0.50H, one isomer), 2.39 - 2.33 (m, 0.50H, one isomer), 2.16 - 2.02 (m, 1H, two isomers), 1.61 (s, 1.50H, two isomers), 1.53 - 1.47 (m, 4.50H, two isomers), 1.30 - 1.24 (m, 7.50H, two isomers), 1.10 (t, J = 7.1 Hz, 1.50H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.99 & 174.27 (two isomers), 172.17 & 172.15 (two isomers), 172.07 & 171.41 (two isomers), 171.22 & 170.81 (two isomers), 143.33 & 140.32 (two isomers), 134.78 & 134.16 (two isomers), 131.28 & 131.00 (two isomers), 124.95 & 124.93 (two isomers), 123.86 & 123.70 (two isomers), 118.06 & 117.85 (two isomers), 116.43 & 116.27 (two isomers), 111.27 & 111.09 (two isomers), 61.90 & 61.88 (two isomers), 61.81 & 61.71 (two isomers), 57.28 & 56.54 (two isomers), 55.85 & 52.22 (two isomers), 52.18 & 51.78 (two isomers), 49.95 & 49.34 (two isomers), 48.08 & 42.23 (two isomers), 38.88 & 35.89 (two isomers), 34.51 & 31.76 (two isomers), 31.52 & 31.28 (two isomers), 31.16 & 30.43 (two isomers), 27.68 & 27.23 (two isomers), 23.46 & 20.51 (two isomers), 14.06 & 14.02 (two isomers), 13.82 (overlap, two isomers); HRMS (ESI-TOF) Calcd for C₂₇H₃₄NO₇ [M+H]⁺: 484.2330; found: 484.2332.

Diethyl 10-(2-(benzyloxy)-2-oxoethyl)-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1H-cyclopenta[4,5]pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (**21**): Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.0:1, 115.7 mg, 69%; ¹H NMR (400 MHz, Chloroform-d) δ 8.37 (d, J = 8.1 Hz, 1H, two isomers), 7.40 - 7.36 (m, 1H, two isomers), 7.25 - 7.14 (m, 7H, two isomers), 5.08 - 5.01 (m, 2H, two

isomers), 4.29 - 4.09 (m, 3H, two isomers), 3.98 - 3.90 (m, 1H, two isomers), 3.88 -3.76 (m, 2H, two isomers), 2.93 - 2.89 (m, 0.50H, one isomer), 2.69 - 2.65 (m, 0.50H, one isomer), 2.54 - 2.36 (m, 0.50H, one isomer), 2.29 - 2.23 (m, 0.50H, one isomer), 2.05 - 1.93 (m, 1H, two isomers), 1.51 - 1.50 (m, 3H, two isomers), 1.41 - 1.39 (m, 3H, two isomers), 1.22 - 1.16 (m, 7.50H, two isomers), 1.01 (t, J = 7.1 Hz, 1.50H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 173.96 & 173.21 (two isomers), 171.11 & 171.03 (two isomers), 169.77 & 169.67 (two isomers), 169.46 (overlap, two isomers), 142.30 & 139.35 (two isomers), 134.61 & 134.56 (two isomers), 133.75 & 133.12 (two isomers), 130.21 & 129.96 (two isomers), 127.48 & 127.47 (two isomers), 127.25 & 127.21 (two isomers), 123.92 & 123.90 (two isomers), 122.81 & 122.63 (two isomers), 117.16 & 116.92 (two isomers), 115.38 & 115.18 (two isomers), 110.22 & 110.04 (two isomers), 65.83 & 65.80 (two isomers), 60.86 & 60.84 (two isomers), 60.76 & 60.67 (two isomers), 56.21 & 55.50 (two isomers), 54.80 & 50.70 (two isomers), 48.90 & 48.30 (two isomers), 47.06 & 41.16 (two isomers), 37.85 & 34.81 (two isomers), 33.45 & 30.78 (two isomers), 30.47 & 30.36 (two isomers), 30.19 & 29.63 (two isomers), 26.66 & 26.17 (two isomers), 22.46 & 19.43 (two isomers), 13.02 & 12.98 (two isomers), 12.78 (overlap, two isomers); HRMS (ESI-TOF) Calcd for C₃₃H₃₈NO₇ [M+H]⁺: 560.2643; found: 560.2643.

Diethyl 8-methoxy-10-(2-methoxy-2-oxoethyl)-3a,11,11-trimethyl-4-oxo-3a,4,11,11a -tetrahydro-1H-cyclopenta[4,5]pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (**22**): Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.5:1, 107.7 mg, 70%; ^{1}H NMR (400 MHz, Chloroform-d) δ 8.34 - 8.31 (m, 1H, two isomers), 6.93 - 6.88 (m, 2H, two isomers), 4.27 - 4.16 (m, 3H, two isomers), 4.03 - 3.94 (m, 1H, two isomers), 3.86 - 3.82 (m, 5H, two isomers), 3.68 (s, 3H, two isomers), 3.01 - 2.97 (m, 0.60H, one isomer), 2.74 - 2.70 (m, 0.40H, one isomer), 2.61 - 2.52 (m, 2H, two isomers), 2.48 -

2.44 (m, 0.40H, one isomer), 2.37 - 2.31 (m, 0.60H, one isomer), 2.13 - 2.03 (m, 1H, two isomers), 1.61 - 1.58 (m, 3H, two isomers), 1.51 - 1.45 (m, 3H, two isomers), 1.29 - 1.23 (m, 7.20H, two isomers), 1.10 (t, J = 7.1 Hz, 1.80H, two isomers); 13 C NMR (101 MHz, CDCl₃) δ 174.66 & 173.76 (two isomers), 172.17 & 172.15 (two isomers), 172.12 & 171.37 (two isomers), 171.17 & 170.85 (two isomers), 156.81 & 156.63 (two isomers), 144.04 & 141.09 (two isomers), 132.30 & 132.12 (two isomers), 129.39 & 128.78 (two isomers), 117.29 & 117.07 (two isomers), 112.77 & 112.57 (two isomers), 111.14 & 110.89 (two isomers), 101.48 (overlap, two isomers), 61.89 & 61.87 (two isomers), 61.80 & 61.71 (two isomers), 57.17 & 56.53 (two isomers), 55.89 & 55.77 (two isomers), 55.73 & 52.23 (two isomers), 52.20 & 51.80 (two isomers), 49.82 & 49.15 (two isomers), 48.01 & 42.27 (two isomers), 38.84 & 35.84 (two isomers), 34.55 & 31.69 (two isomers), 31.51 & 31.25 (two isomers), 30.50 & 27.77 (two isomers), 27.19 & 23.39 & 20.57 (two isomers), 14.05 & 14.01 (two isomers), 13.83 (overlap, two isomers); HRMS (ESI-TOF) Calcd for $C_{28}H_{36}NO_{8}$ [M+H]⁺: 514.2435; found: 514.2422.

Diethyl 10-(2-(benzyloxy)-2-oxoethyl)-8-methoxy-3a,11,11-trimethyl-4-oxo-3a,4,11, 11a-tetrahydro-1H-cyclopenta[4,5]pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (23): Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.0:1, 90.1 mg, 51%; ¹H NMR (400 MHz, Chloroform-d) δ 8.33 (dd, J = 8.7, 4.5 Hz, 1H, two isomers), 7.35 - 7.28 (m, 5H, two isomers), 6.90 (d, J = 9.9 Hz, 2H, two isomers), 5.17 - 5.01 (m, 2H, two isomers), 4.92 - 4.17 (m, 3H, two isomers), 4.05 - 4.00 (m, 1H, two isomers), 3.90 - 3.83 (m, 2H, two isomers), 3.78 (s, 1.50H, one isomer), 3.74 (s, 1.50H, one isomer), 3.02 - 2.99 (m, 0.50H, one isomer), 2.74 - 2.71 (m, 0.50H, one isomer), 2.61 - 2.43 (m, 2.50H, two isomers), 2.36 - 2.33 (m, 0.50H, two isomers), 2.08 - 2.06 (m, 1H, two isomers), 1.49 - 1.47 (m, 3H, two isomers), 1.40 - 1.37 (m, 3H, two isomers), 1.28 -

1.23 (m, 7.50H, two isomers), 1.12 - 1.09 (m, 1.50H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.69 & 173.76 (two isomers), 172.18 & 172.15 (two isomers), 170.87 & 170.68 (two isomers), 170.48 (overlap, two isomers), 156.81 & 156.61 (two isomers), 144.04 & 141.13 (two isomers), 135.63 & 135.60 (two isomers), 132.24 & 132.08 (two isomers), 129.38 & 128.76 (two isomers), 128.54 & 128.34 (two isomers), 128.29 (overlap, two isomers), 117.31 & 117.07 (two isomers), 113.11 & 112.88 (two isomers), 111.13 & 110.89 (two isomers), 101.33 (overlap, two isomers), 66.90 & 61.90 (two isomers), 61.88 & 61.80 (two isomers), 61.73 & 57.16 (two isomers), 56.55 & 55.90 (two isomers), 55.68 & 55.62 (two isomers), 51.78 & 49.82 (two isomers), 49.16 & 48.03 (two isomers), 42.24 & 38.87 (two isomers), 35.81 & 34.54 (two isomers), 31.80 & 31.51 (two isomers), 31.45 & 31.26 (two isomers), 30.78 & 29.71 (two isomers), 27.83 & 27.19 (two isomers), 23.47 & 20.54 (two isomers), 14.13 & 14.06 (two isomers), 14.02 & 13.84 (two isomers); HRMS (ESI-TOF) Calcd for C₃₄H₄₀NO₈ [M+H]*: 590.2748; found: 590.2731.

Diethyl 10-cyano-8-methoxy-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta[4,5]pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**24**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.0:1, 85.3 mg, 61%; ¹H NMR (400 MHz, Chloroform-d) δ 8.37 - 8.34 (m, 1H, two isomers), 7.00 - 6.93 (m, 2H, two isomers), 4.30 - 4.18 (m, 3H, two isomers), 4.08 - 3.97 (m, 1H, two isomers), 3.89 (s, 3H, two isomers), 3.07 - 3.03 (m, 0.50H, one isomer), 2.75 - 2.72 (m, 0.50H, one isomer), 2.63 - 2.57 (m, 2H, two isomers), 2.50 - 2.45 (m, 0.50H, one isomer), 2.39 - 2.37 (m, 0.50H, one isomer), 2.17 - 2.03 (m, 1H, two isomers), 1.60 - 1.52 (m, 6H, two isomers), 1.39 - 1.25 (m, 7.50H, two isomers), 1.12 (t, J = 7.1 Hz, 1.50H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.48 & 174.11 (two isomers), 173.57 & 172.03 (two isomers), 172.02 & 170.84 (two isomers), 157.09 & 156.94 (two isomers),

144.39 & 141.76 (two isomers), 130.59 & 130.44 (two isomers), 129.20 (overlap, two isomers), 117.72 & 117.43 (two isomers), 117.22 & 116.81 (two isomers), 113.80 & 113.48 (two isomers), 106.83 & 106.42 (two isomers), 100.47 & 100.40 (two isomers), 62.00 & 61.97 (two isomers), 61.91 & 61.85 (two isomers), 56.94 & 56.45 (two isomers), 55.84 & 55.81 (two isomers), 55.75 & 51.59 (two isomers), 49.97 & 49.15 (two isomers), 47.83 & 42.18 (two isomers), 38.83 & 35.70 (two isomers), 30.96 & 30.14 (two isomers), 29.71 & 29.67 (two isomers), 28.07 & 27.08 (two isomers), 23.33 & 20.57 (two isomers), 14.06 & 14.02 (two isomers), 13.85 & 13.49 (two isomers); HRMS (ESI-TOF) Calcd for $C_{26}H_{31}N_2O_6$ [M+H]⁺: 467.2214; found: 467.2234.

Diethyl 10-(2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta[4,5]pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**25**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 2.3:1, 115.7 mg, 63%; ¹H NMR (400 MHz, Chloroform-d) δ 8.44 - 8.40 (m, 1H, two isomers), 7.53 - 7.44 (m, 1H, two isomers), 7.31 - 7.25 (m, 2H, two isomers), 5.30 - 5.15 (m, 1H, two isomers), 4.75 - 4.57 (m, 1H, two isomers), 4.31 - 4.18 (m, 2.80H, two isomers), 4.02 - 3.92 (m, 1.20H, two isomers), 3.56 - 3.43 (m, 3H, two isomers), 3.33 - 3.19 (m, 2H, two isomers), 2.94 - 2.89 (m, 0.70H, one isomer), 2.78 - 2.75 (m, 0.30H, one isomer), 2.61 - 2.57 (m, 2H, two isomers), 2.39 - 2.32 (m, 0.30H, one isomer), 2.16 - 2.11 (m, 0.70H, one isomer), 2.07 - 2.00 (m, 1H, two isomers), 1.67 - 1.47 (m, 9H, two isomers), 1.38 - 1.30 (m, 6.90H, two isomers), 1.29 - 1.26 (m, 6H, two isomers), 1.12 - 1.07 (m, 2.10H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 174.99 & 174.43 (two isomers), 172.82 (overlap, two isomers), 172.20 & 172.04 (two isomers), 170.80 & 170.18 (two isomers), 154.84 (overlap, two isomers), 140.15 & 140.09 (two isomers), 134.85 & 134.31 (two isomers), 131.17 & 124.86 (two isomers), 123.76 & 123.59 (two isomers),

118.28 & 117.94 (two isomers), 116.31 & 116.23 (two isomers), 113.59 & 113.51 (two isomers), 113.46 & 113.41 (two isomers), 79.96 (overlap, two isomers), 61.90 & 61.81 (two isomers), 61.68 (overlap, two isomers), 57.46 & 57.06 (two isomers), 56.55 & 55.97 (two isomers), 54.13 & 53.97 (two isomers), 52.34 & 52.30(two isomers), 50.26 & 49.79 (two isomers), 49.33 & 49.29 (two isomers), 48.48 & 48.34 (two isomers), 42.13 & 38.91 (two isomers), 36.19 & 34.71 (two isomers), 32.15 & 31.96 (two isomers), 31.77 & 31.62 (two isomers), 28.74 & 28.48 (two isomers), 28.17 & 28.10 (two isomers), 27.74 & 27.58 (two isomers), 27.33 & 27.18 (two isomers), 14.06 & 14.02 (two isomers), 13.83 (overlap, two isomers); HRMS (ESI-TOF) Calcd for $C_{33}H_{45}N_2O_9$ [M+H]⁺: 613.3098; found: 613.3120.

Diethyl 10-(3-(benzyloxy)-2-((*tert*-butoxycarbonyl)amino)-3-oxopropyl)-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta[4,5]pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**26**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1; dr = 1.0:1, 132.1 mg, 64%; ¹H NMR (400 MHz, Chloroform-d) δ 8.48 - 8.42 (m, 1H, two isomers), 7.25 - 6.77 (m, 9H, two isomers), 5.32 - 4.97 (m, 2H, two isomers), 4.89 - 4.56 (m, 2H, two isomers), 4.31 - 4.17 (m, 3H, two isomers), 4.12 - 3.90 (m, 1H, two isomers), 3.66 - 3.12 (m, 2H, two isomers), 2.95 - 2.90 (m, 0.50H, one isomer), 2.74 - 2.69 (m, 0.50H, one isomer), 2.57 - 2.53 (m, 2H, two isomers), 2.42 - 2.39 (m, 1H, two isomers), 2.12 - 1.95 (m, 1H), 1.69 - 1.38 (m, 6.50H, two isomers), 1.42 - 1.38 (m, 6H, two isomers), 1.32 - 1.24 (m, 9H, two isomers), 1.10 - 1.02 (m, 2.50H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 175.01 & 174.33 (two isomers), 172.19 (overlap, one isomer), 172.06 (overlap, one isomer), 170.75 & 170.71 (two isomers), 154.86 (overlap, one isomer), 143.28 (overlap, one isomer), 140.19 & 140.09 (two isomers), 135.03 & 134.91 (two isomers), 134.86 & 134.78 (two isomers), 134.55 & 134.33 (two isomers), 128.53 & 128.42 (two

isomers), 128.28 & 128.17 (two isomers), 127.79 & 127.51 (two isomers), 124.91 & 124.83 (two isomers), 123.81 & 123.65 (two isomers), 118.08 & 117.83 (two isomers), 116.49 & 116.34 (two isomers), 113.97 & 113.38 (two isomers), 113.33 & 113.22 (two isomers), 80.04 & 79.71 (two isomers), 67.55 & 67.41 (two isomers), 67.08 & 66.98 (two isomers), 61.87 & 61.80 (two isomers), 61.68 & 61.48 (two isomers), 57.39 & 56.53 (two isomers), 55.99 & 55.91 (two isomers), 51.73 & 51.51 (two isomers), 49.83 & 49.77 (two isomers), 49.22 & 48.45 (two isomers), 41.20 & 39.28 (two isomers), 35.69 (overlap, one isomer), 34.67 & 34.63 (two isomers), 31.75 (overlap, one isomer), 28.26 & 28.15 (two isomers), 27.23 & 27.15 (two isomers), 23.99 & 23.73 (two isomers), 20.99 & 20.09 (two isomers), 14.06 & 14.02 (two isomers), 13.83 (overlap, one isomer); HRMS (ESI-TOF) Calcd for C₃₉H₄₀N₂O₉ [M+H]⁺: 689.3433; found: 689.3406.

Diethyl 5a,9,9-trimethyl-5-oxo-5a,6,8a,9-tetrahydro-5*H*-cyclopenta[*f*]indolizine-7, 7(8*H*)-dicarboxylate (**27**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1, dr > 99:1, 73.7 mg, 68%; ¹H NMR (400 MHz, Chloroform-d) δ 7.21 - 7.20 (m, 0.88H), 7.17 - 7.16 (m, 0.12H), 6.18 - 6.16 (m, 1H), 6.01 - 6.00 (m, 0.10H), 5.95 - 5.94 (m, 0.90H), 4.18 - 4.09 (m, 2H), 4.06 - 3.99 (m, 2H), 2.96 - 2.91 (m, 1H), 2.47 - 2.43 (m, 1H), 2.41 - 2.36 (m, 1H), 2.08 - 2.03 (m, 1H), 1.98 - 1.89 (m, 1H), 1.39 - 1.27 (m, 6H), 1.22 - 1.17 (m, 6H), 1.11 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.02, 171.17, 170.17, 139.01, 116.15, 112.13, 107.51, 60.74, 60.70, 55.88, 53.69, 49.22, 46.47, 37.60, 32.55, 31.96, 26.28, 26.18, 12.98, 12.88; HRMS (ESI-TOF) Calcd for C₂₀H₂₈NO₅ [M+H]⁺: 362.1959; found: 362.1962.

Dimethyl 8-methoxy-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta -[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**28**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1, dr = 1.0:1, 91.7 mg, 74%; ¹H NMR (400 MHz, Chloroform-d) δ 8.22 (dd, J = 8.9, 4.0 Hz, 1 H, two isomers), 6.88(dd, J = 4.2, 2.6 Hz, 1H, two isomers), 6.81 (dt, J = 8.9, 2.6 Hz, 1H, two isomers), 6.31(s, 0.50H, one isomer), 6.25 (s, 0.50H, one isomer), 3.77 - 3.76 (m, 3H, two isomers), 3.71 (s, 1.50H, one isomer), 3.69 - 3.67 (m, 3H, two isomers), 3.46 (s, 1.50H, one isomer), 2.91 - 2.90 (m, 0.50H, one isomer), 2.65 - 2.62 (m, 0.50H, one isomer), 2.57 -2.43 (m, 2H, two isomers), 2.42 - 2.35 (m, 0.50H, one isomer), 2.30 - 2.23 (m, 0.50H, one isomer), 2.13 - 2.09 (m, 0.50H, one isomer), 1.97 - 1.88 (m, 0.50H, one isomer), 1.54 (s, 1H, two isomers), 1.37 - 1.34 (m, 6H, two isomers), 1.21 - 1.81 (m, 2H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 173.44 & 172.56 (two isomers), 171.62 & 171.57 (two isomers), 171.48 & 170.32 (two isomers), 155.71 & 155.53 (two isomers), 148.54 & 145.27 (two isomers), 130.52 & 130.16 (two isomers), 129.23 & 128.24 (two isomers), 116.00 & 115.89 (two isomers), 111.24 & 111.00 (two isomers), 103.68 & 103.60 (two isomers), 102.29 & 101.99 (two isomers), 56.17 & 55.49 (two isomers), 54.67 & 54.64 (two isomers), 53.12 & 52.08 (two isomers), 51.99 & 51.88 (two isomers), 50.04 & 49.40 (two isomers), 48.67 & 47.21 (two isomers), 41.50 & 37.85 (two isomers), 33.29 & 33.10 (two isomers), 32.96 & 31.59 (two isomers), 30.63 & 26.40 (two isomers), 25.81 & 24.59 (two isomers), 19.72 (overlap, two isomers); HRMS (ESI-TOF) Calcd for C₂₃H₂₈NO₆ [M+H]⁺: 414.1907; found: 414.1911.

2-Benzyl 2-methyl 8-methoxy-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-

cyclopenta[4,5]pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (29):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1, dr = 1.9:1, 102.7 mg, 70%; ¹H NMR (400 MHz, Chloroform-d) δ 8.32 - 8.28 (m, 1H, two isomers), 7.35 - 7.14 (m, 5H, two isomers), 6.96 - 6.86 (m, 2H, two isomers), 6.37 (s, 0.35H, one isomer), 6.31 (d, J = 3.7 Hz, 0.65H, one isomer), 5.25 - 5.13 (m, 1.35H, one isomer), 5.01 - 4.93 (m, 0.65H, one isomer), 3.83 (d, J = 3.9 Hz, 3H, two isomers), 3.70 - 3.64 (m, 2.35H, one isomer), 3.07 (d, J = 14.6 Hz, 0.35H, one isomer), 2.96 (d, J = 14.6 Hz, 0.35H. one isomer), 2.76 - 2.71 (m, 0.35H, one isomer), 2.63 - 2.50 (m, 2H, two isomers), 2.45 -2.34 (m, 0.65H, one isomer), 2.21 - 2.09 (m, 0.65H, one isomer), 2.05 - 1.93 (m, 0.65H, one isomer), 1.59 (d, J = 25.6 Hz, 2H, one isomer), 1.43 - 1.37 (m, 6H, two isomers), 1.28 - 1.22 (m, 1H, one isomer); ¹³C NMR (101 MHz, CDCl₃) δ 174.45 & 173.53 (two isomers), 172.54 & 172.48 (two isomers), 171.86 & 171.65 (two isomers), 171.17 & 170.67 (two isomers), 156.78 & 156.60 (two isomers), 149.60 & 146.32 (two isomers), 135.39 & 135.33 (two isomers), 131.58 & 131.25 (two isomers), 130.29 & 129.29 (two isomers), 128.61 & 128.44 (two isomers), 128.22 & 128.18 (two isomers), 128.06 & 127.97 (two isomers), 117.12 & 116.95 (two isomers), 112.30 & 112.09 (two isomers), 104.77 & 104.69 (two isomers), 103.37 & 103.05 (two isomers), 67.44 & 67.31 (two isomers), 57.25 & 56.67 (two isomers), 55.73 & 55.68 (two isomers), 54.19 & 54.10 (two isomers), 52.89 & 52.80 (two isomers), 51.07 & 50.57 (two isomers), 50.31 & 49.71 (two isomers), 48.19 & 42.45 (two isomers), 38.83 & 34.33 (two isomers), 34.12 & 32.65 (two isomers), 31.60 & 27.42 (two isomers), 27.01 & 25.64 (two isomers), 20.83 & 20.72 (two isomers); HRMS (ESI-TOF) Calcd for $C_{29}H_{32}NO_6$ [M+H]⁺: 490.2224; found: 490.2218.

Ethyl (2S,3aR,11aS)-2-acetyl-8-methoxy-3a,11,11-trimethyl-4-oxo-2,3,3a,4,11,11a-hexahydro-1*H*-cyclopenta[4,5]pyrido[1,2-*a*]indole-2-carboxylate (**30**):

Yellow oil; Eluent:petroluem ether/ethyl acetate 200:1, dr = 1.0:1, 86.9 mg, 73%; ¹H NMR (400 MHz, Chloroform-d) δ 8.26 - 8.19 (m, 1H, two isomers), 6.88 - 6.87 (m, 1H, two isomers), 6.82 - 6.78 (m, 1H, two isomers), 6.31 (d, J = 2.7 Hz, 0.50H, one isomer), 6.25 (d, J = 4.0 Hz, 0.50H, one isomer), 4.24 - 4.11 (m, 1.50H, two isomers), 3.95 - 3.86 (m, 0.50H, two isomers), 3.77 - 3.76 (m, 3H, two isomers), 2.96 - 2.80 (m, 0.50H, one isomer), 2.59 - 2.56 (m, 0.50H, one isomer), 2.50 - 2.33 (m, 2.50H, two isomers), 2.31 - 2.24 (m, 0.50H, two isomers), 2.15 - 2.08 (m, 3H, two isomers), 1.98 -1.97 (m, 1H, two isomers), 1.37 - 1.35 (m, 6H, two isomers), 1.24 - 1.11 (m, 5.50H, two isomers), 1.00 (t, J = 7.1 Hz, 0.50H, two isomers); ¹³C NMR (101 MHz, CDCl₃) δ 201.22 & 200.95 (two isomers), 173.59 & 172.54 (two isomers), 171.80 & 171.72 (two isomers), 155.72 & 155.53 (two isomers), 148.59 & 145.24 (two isomers), 130.51 & 130.17 (two isomers), 129.16 & 128.23 (two isomers), 116.03 & 115.90 (two isomers), 111.24 & 111.02 (two isomers), 103.76 & 103.60 (two isomers), 102.32 & 101.98 (two isomers), 62.76 & 62.25 (two isomers), 61.03 & 60.92 (two isomers), 54.64 & 53.11 (two isomers), 49.97 & 49.71 (two isomers), 49.35 & 48.56 (two isomers), 45.54 & 39.91 (two isomers), 36.08 & 33.09 (two isomers), 32.92 & 31.61 (two isomers), 28.89 & 26.38 (two isomers), 26.23 & 25.46 (two isomers), 25.24 & 24.86 (two isomers), 24.58 & 19.75 (two isomers), 12.97 &12.73 (two isomers); HRMS (ESI-TOF) Calcd for C₂₄H₃₀NO₅ [M+H]⁺: 412.2114; found: 412.2118.

9. X-ray crystallography studies of compound 19

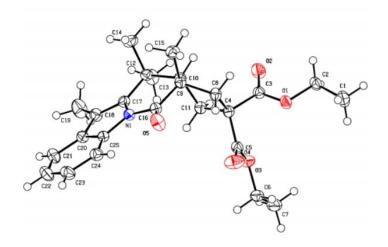
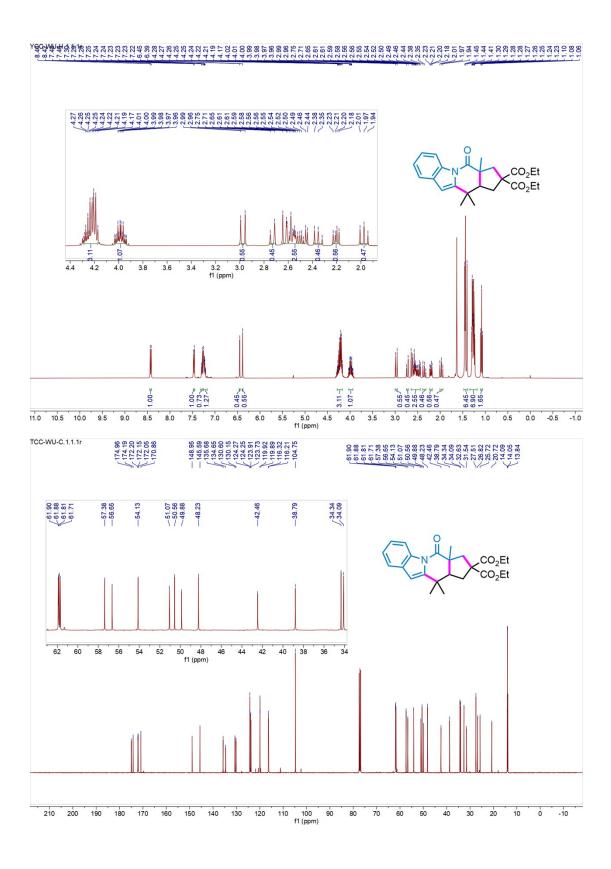


Figure S6 Structure of 19 by X-Ray crystallographic (CCDC = 2422567)

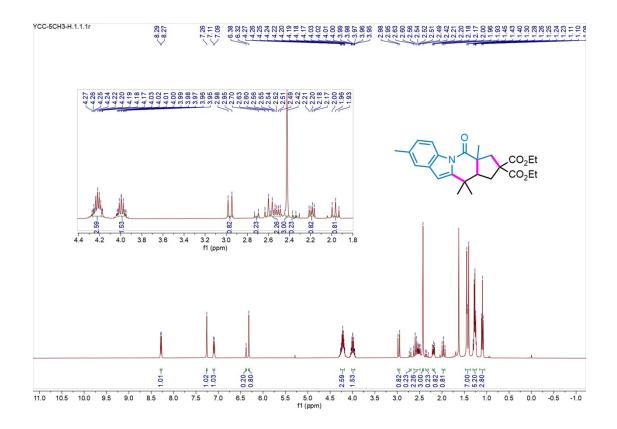
Single crystal suitable for X-ray diffraction was obtained by slow evaporation of a solution of compound 19 (n-hexane/dichloromethane) in a loosely capped vial.

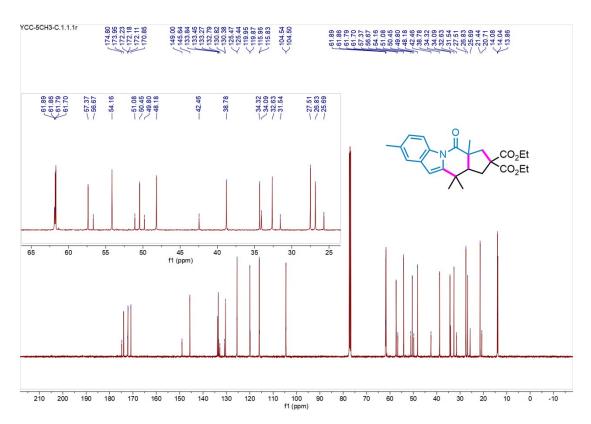
Table S6 Crystal data and structure refinement for 19

Empirical formula	$C_{25}H_{31}NO_5$
Formula weight	425.51
Temperature/K	193.00
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	8.4395(12)
b/Å	22.775(3)
c/Å	11.8083(18)
α/°	90
β/°	104.783(5)
γ/°	90
Volume/Å ³	2194.5(6)
Z	4
pcalcg/cm ³	1.288
μ /mm ⁻¹	0.460
F(000)	912.0

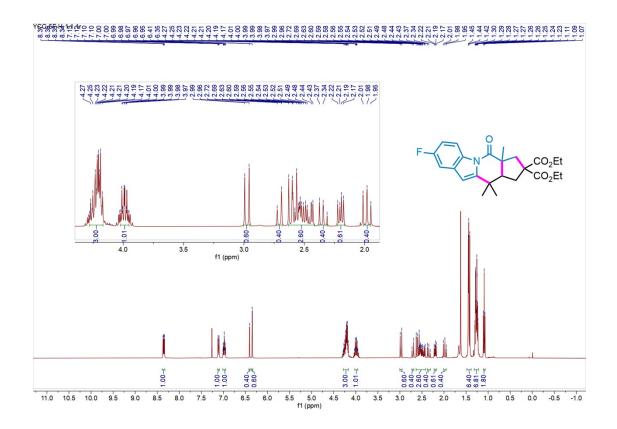

Crystal size/mm³ $0.152 \times 0.1 \times 0.1$ Radiation $CuK\alpha (\lambda = 1.34139)$ 2Θ range for data collection/° 9.544 to 128.122 Index ranges $-11 \le h \le 11, -30 \le k \le 30, -15 \le 1 \le 15$ Reflections collected 21671 5423 [$R_{int} = 0.0381$, $R_{sigma} = 0.0295$] Independent reflections Data/restraints/parameters 5423/0/286 Largest diff. peak/hole / e Å-3 0.37/-0.21

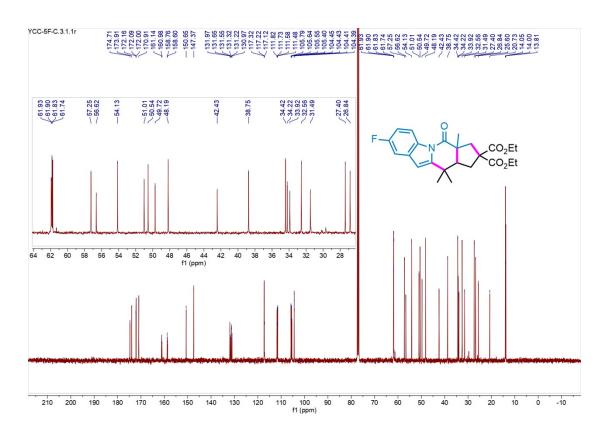
10. References

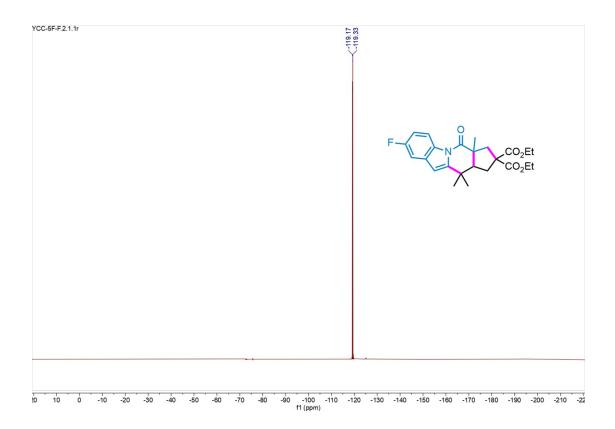

- 1. R.-J. Zhang, X.-R. Li, R.-B. Liang, Y. Xiao, Q.-X. Tong, J.-J. Zhong and L.-Z. Wu, Org. Lett., 2024, 26, 591-596.
- 2. H.-X. Feng, Y.-Y. Wang, J. Chen and L. Zhou, Adv. Synth. Catal., 2015, 357, 940-944.


11. NMR spectra for electrolysis products

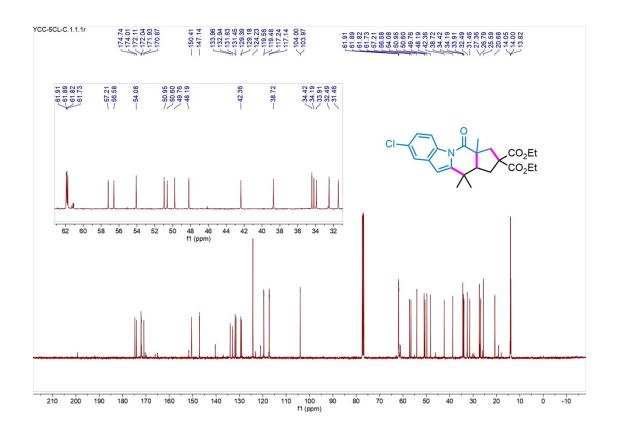
Diethyl 3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1H-cyclopenta-[4,5]-pyrido [1,2-a]indole-2,2(3H)-dicarboxylate (3):

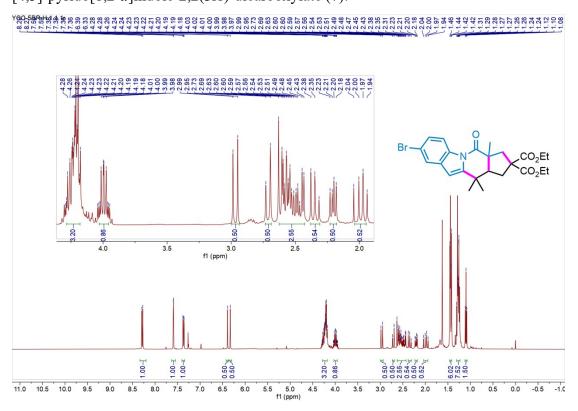


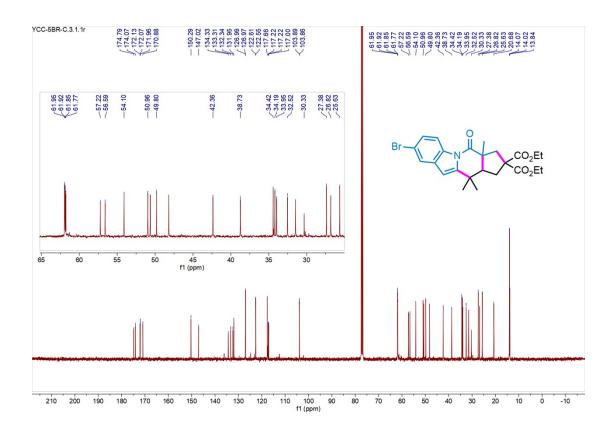

Diethyl 3a,8,11,11-tetramethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**4**):

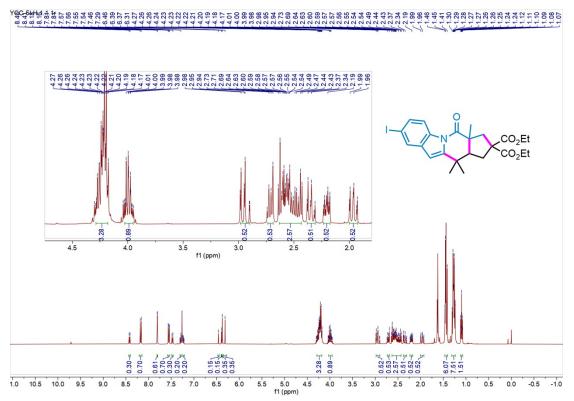


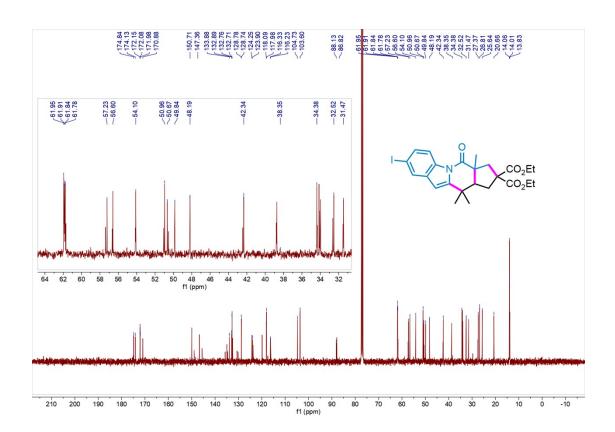
Diethyl 8-fluoro-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1H-cyclopenta-[4,5]-pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (**5**):

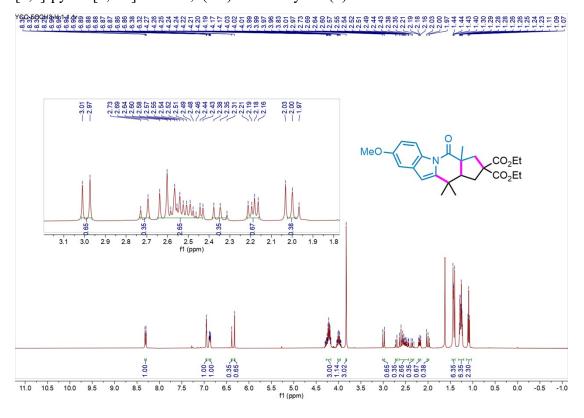


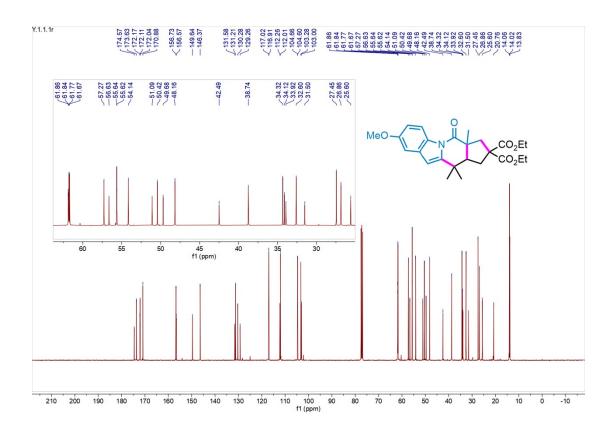


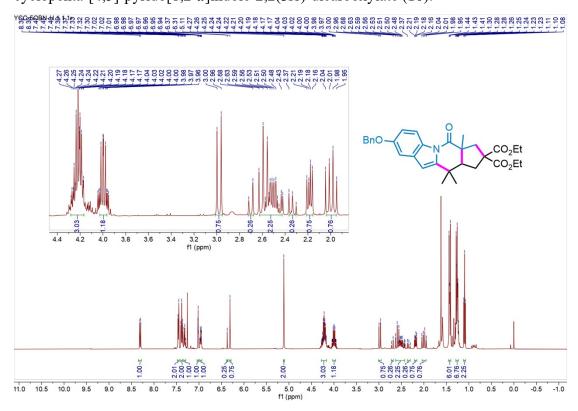

Diethyl 8-chloro-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-a]indole-2,2(3*H*)-dicarboxylate (**6**):

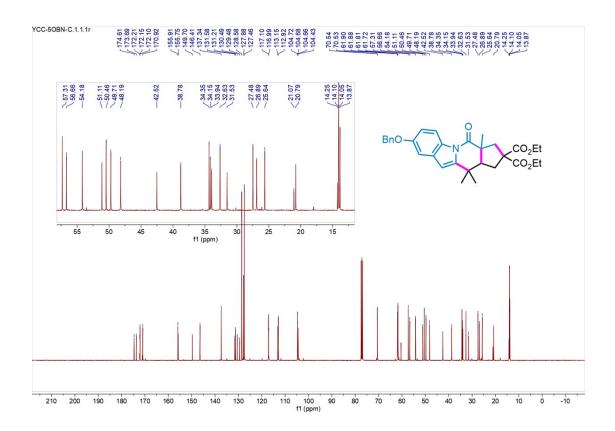


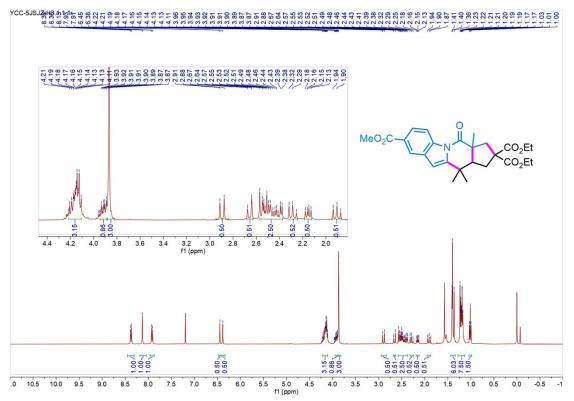

Diethyl 8-bromo-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (7):

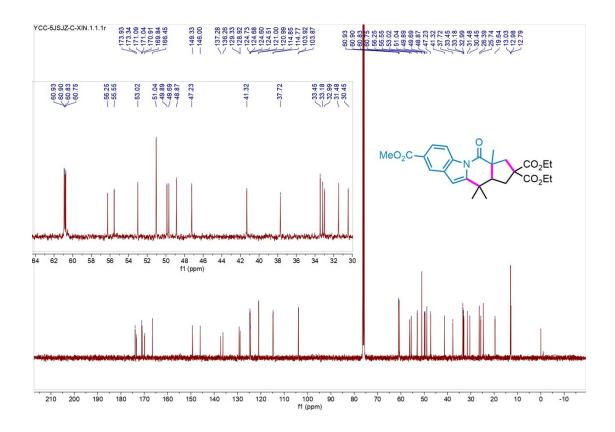


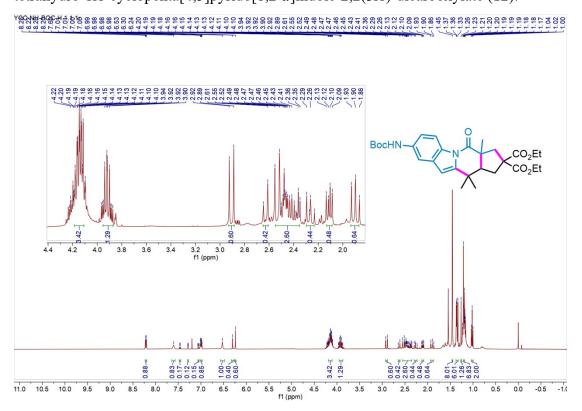

Diethyl 8-iodo-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5] -pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**8**):

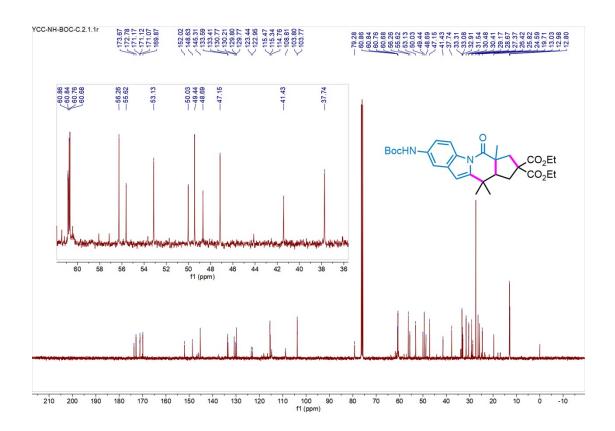


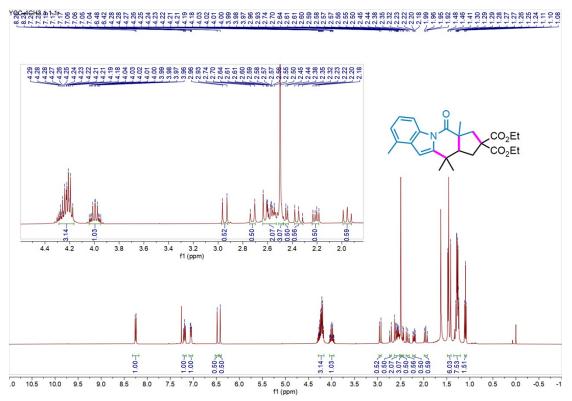

Diethyl 8-methoxy-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (9):

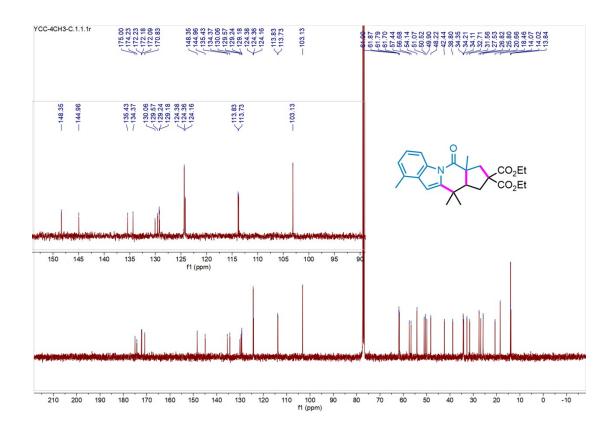


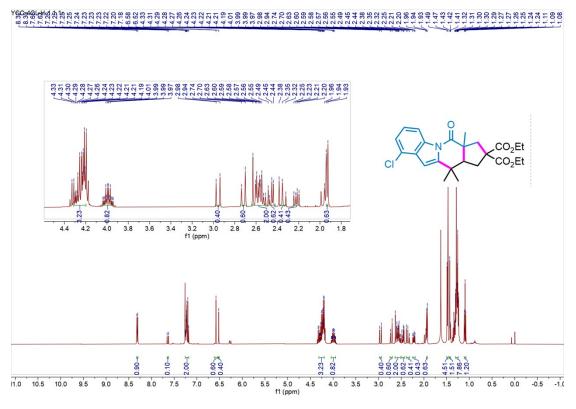

Diethyl 8-(benzyloxy)-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1H-cyclopenta-[4,5]-pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (10):

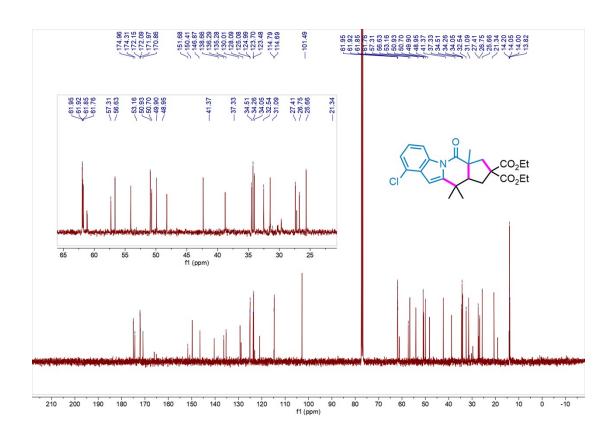


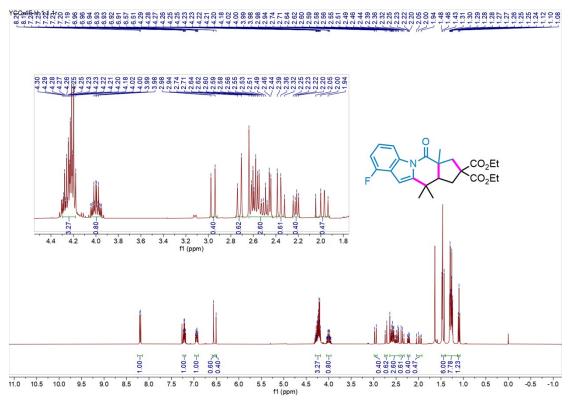

2,2-Diethyl 8-methyl 3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1H-cyclopenta -[4,5]-pyrido[1,2-a]indole-2,2,8(3H)-tricarboxylate (11):

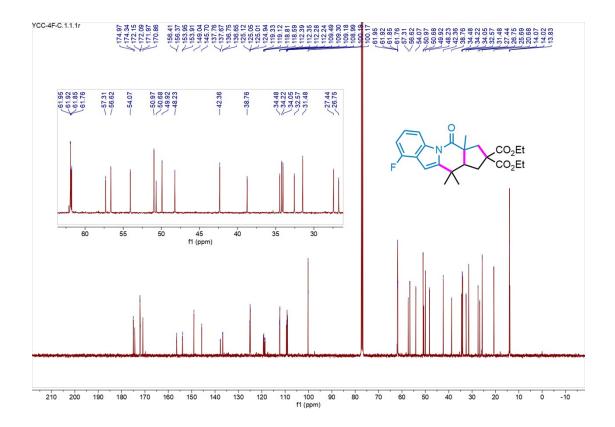


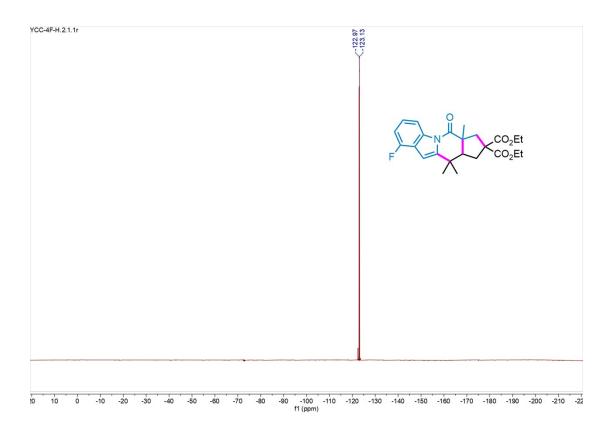

Diethyl 8-((*tert*-butoxycarbonyl)amino)-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta[4,5]pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**12**):

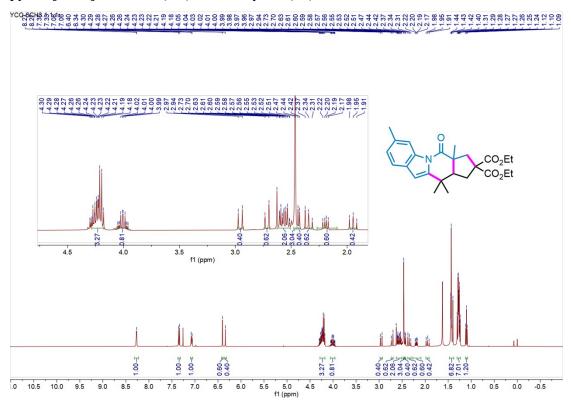


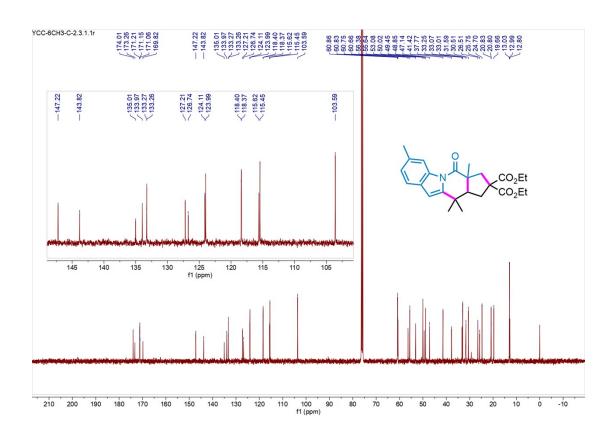

Diethyl 3a,9,11,11-tetramethyl-4-oxo-3a,4,11,11a-tetrahydro-1H-cyclopenta-[4,5] -pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (13):

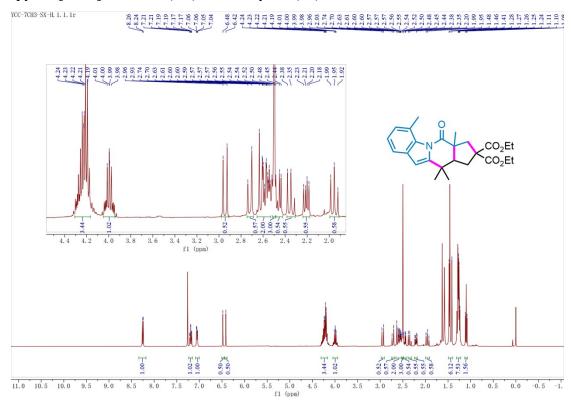


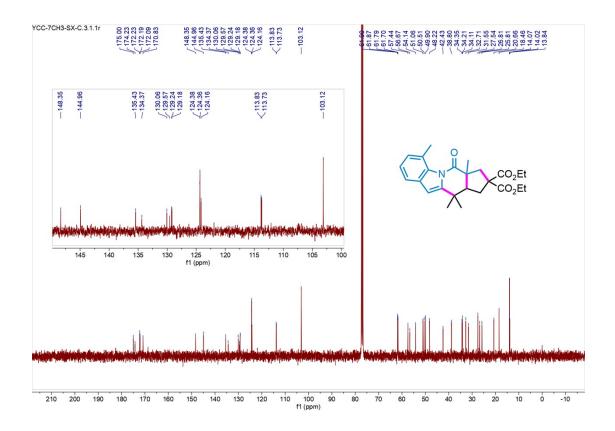

Diethyl 9-chloro-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**14**):

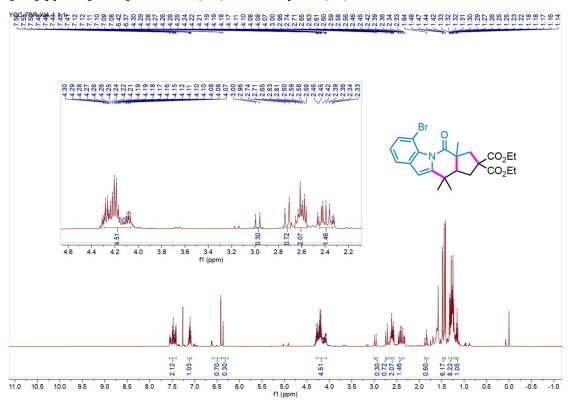


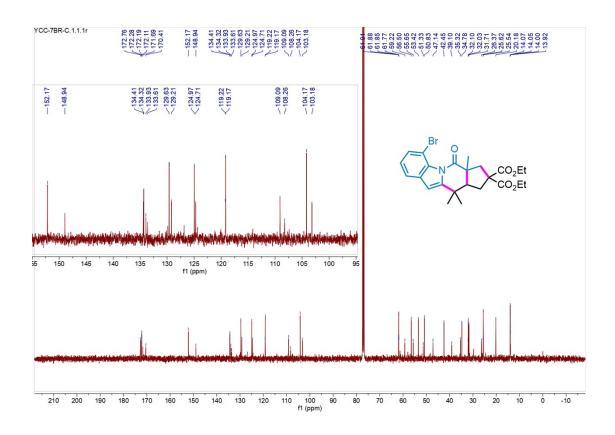

Diethyl 9-fluoro-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1H-cyclopenta-[4,5]-pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (15):

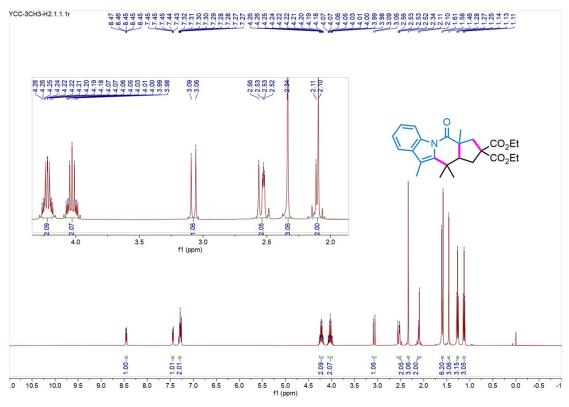


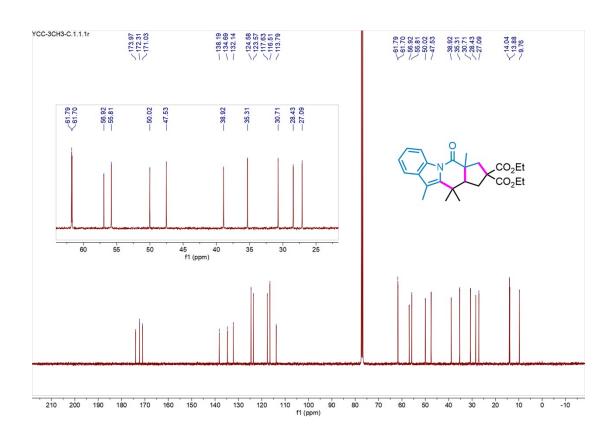


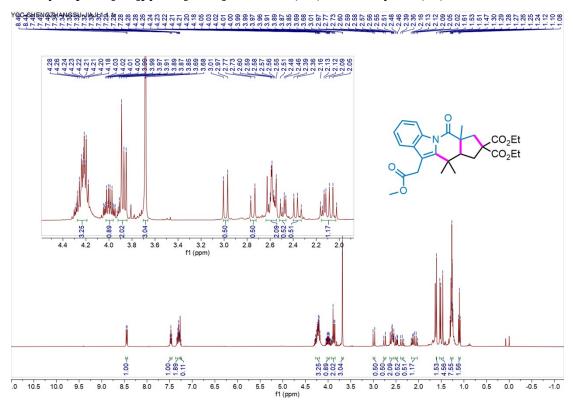

Diethyl 3a,7,11,11-tetramethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5]-pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**16**):

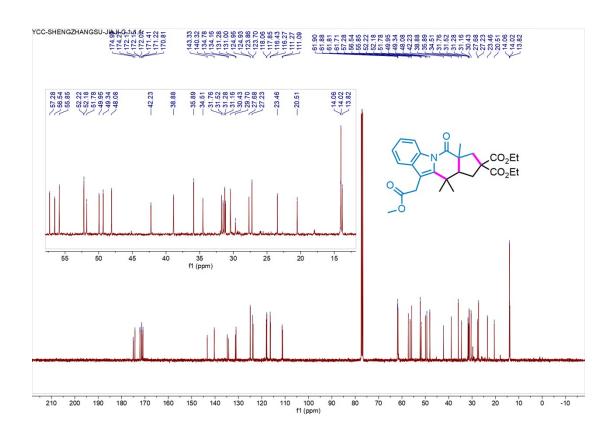


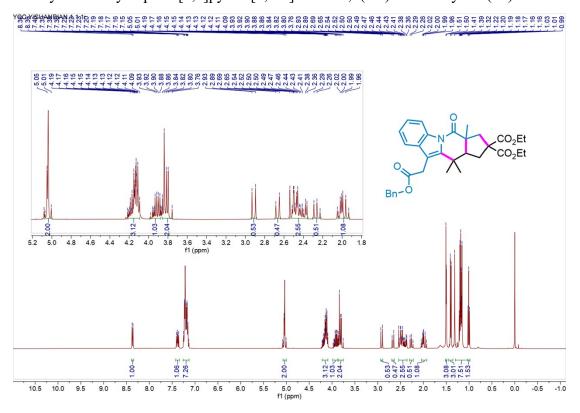

Diethyl 3a,6,11,11-tetramethyl-4-oxo-3a,4,11,11a-tetrahydro-1H-cyclopenta-[4,5] -pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (17):

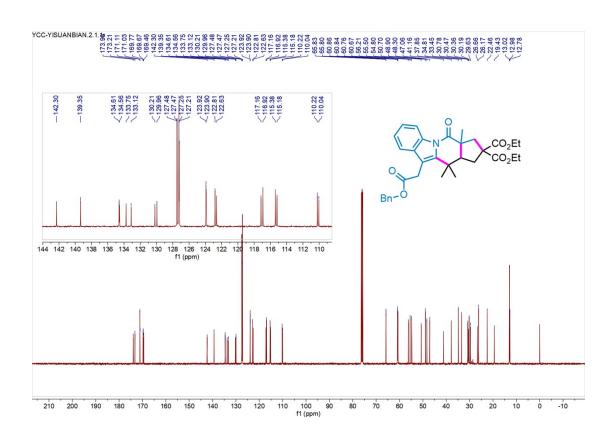


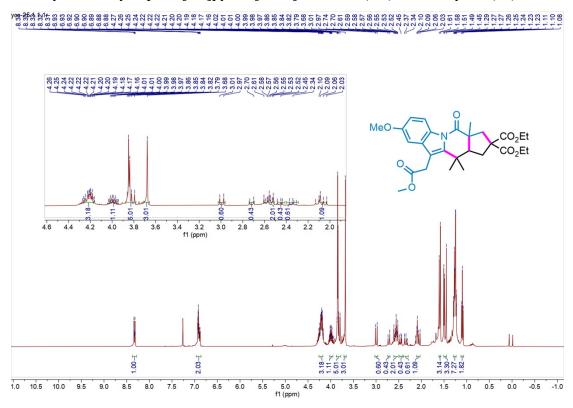

Diethyl 6-bromo-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1H-cyclopenta-[4,5]-pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (18):

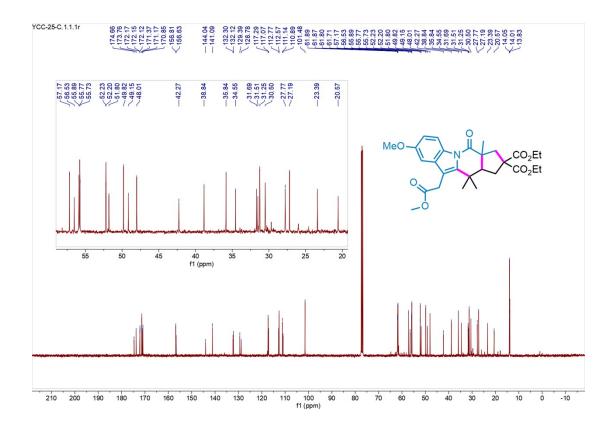


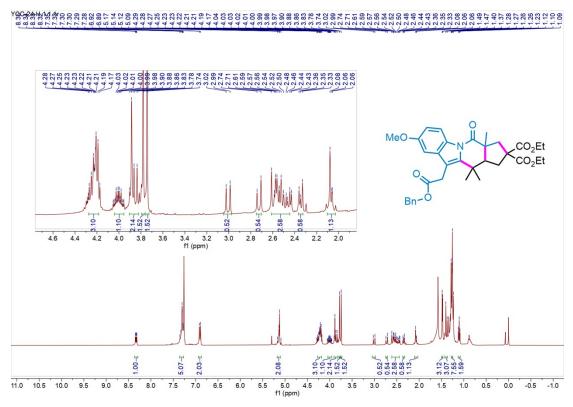

Diethyl 3a,10,11,11-tetramethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta-[4,5] -pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**19**):

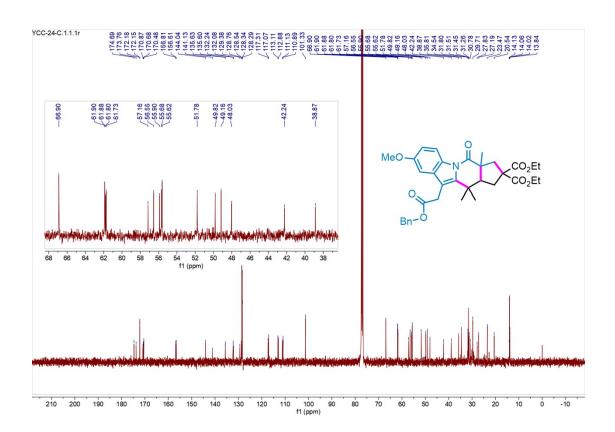


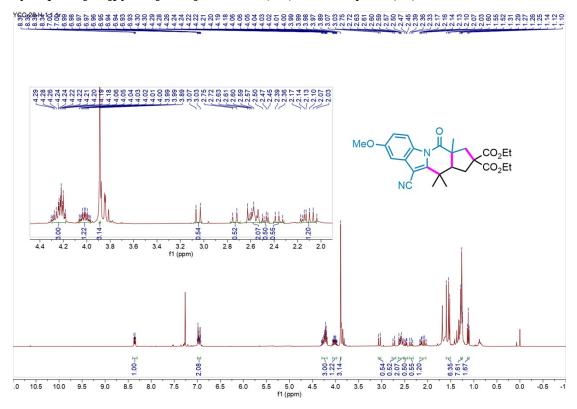

Diethyl 10-(2-methoxy-2-oxoethyl)-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro -1H-cyclopenta[4,5]pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (**20**):

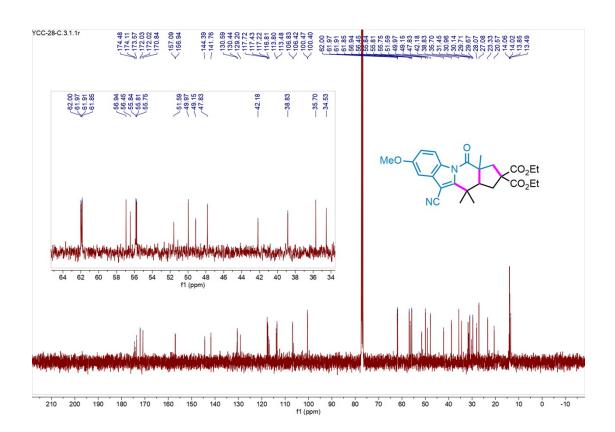


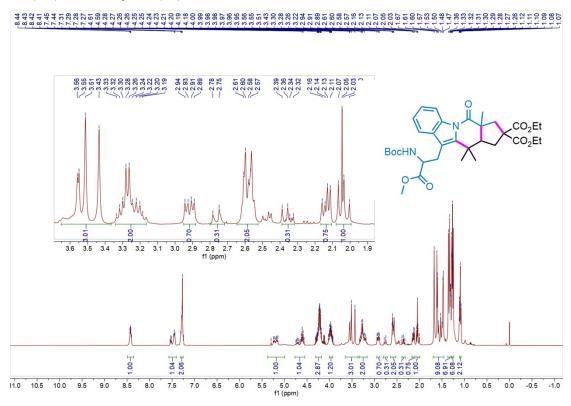

Diethyl 10-(2-(benzyloxy)-2-oxoethyl)-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta[4,5]pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**21**):

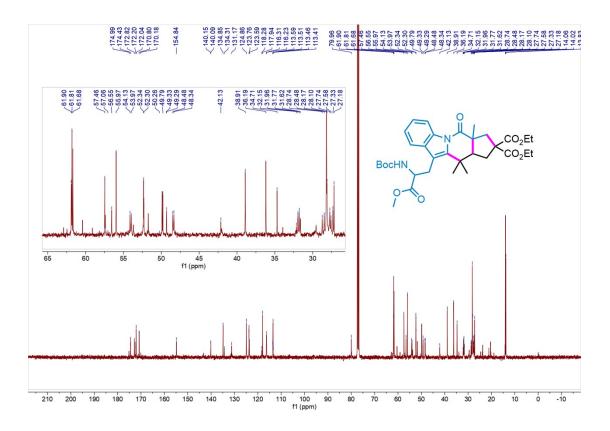


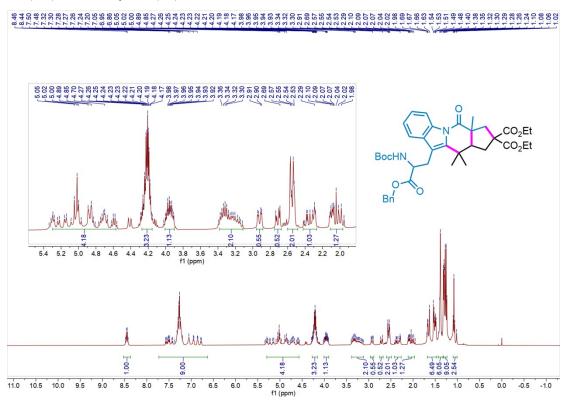

Diethyl 8-methoxy-10-(2-methoxy-2-oxoethyl)-3a,11,11-trimethyl-4-oxo-3a,4,11,11a -tetrahydro-1*H*-cyclopenta[4,5]pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**22**):

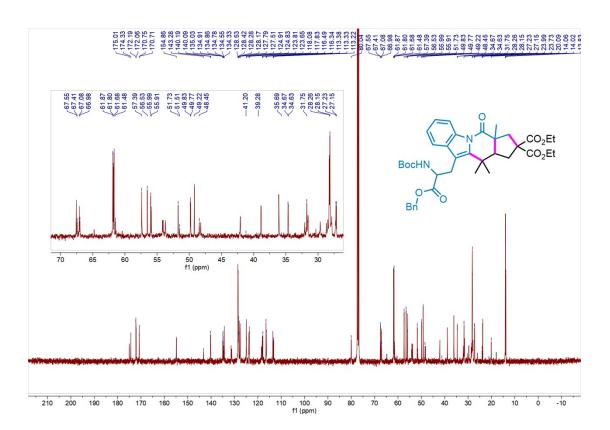


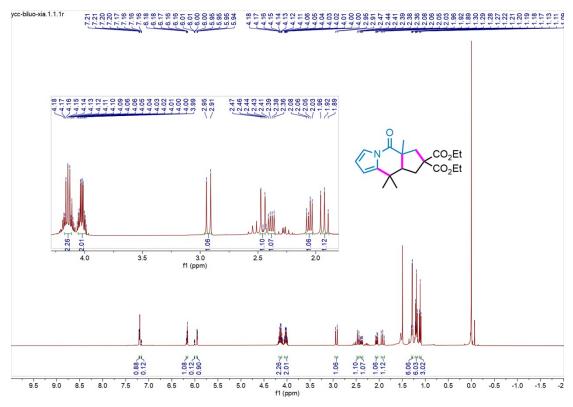

Diethyl 10-(2-(benzyloxy)-2-oxoethyl)-8-methoxy-3a,11,11-trimethyl-4-oxo-3a,4,11, 11a-tetrahydro-1*H*-cyclopenta[4,5]pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**23**):

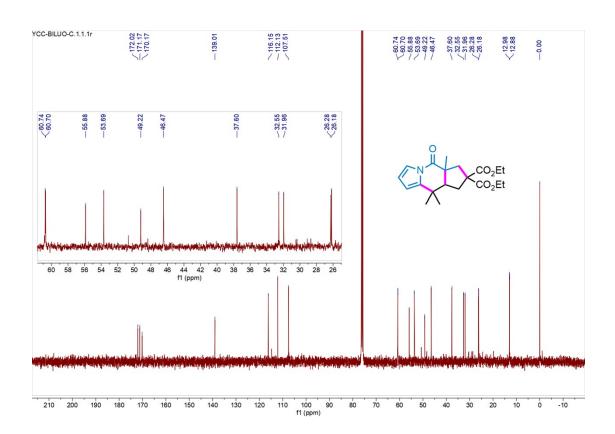


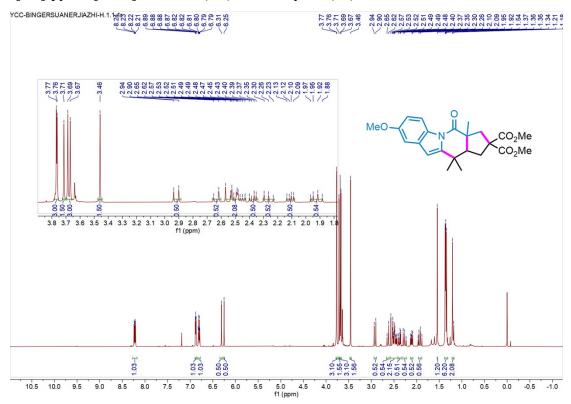

Diethyl 10-cyano-8-methoxy-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1H-cyclopenta[4,5]pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (**24**):

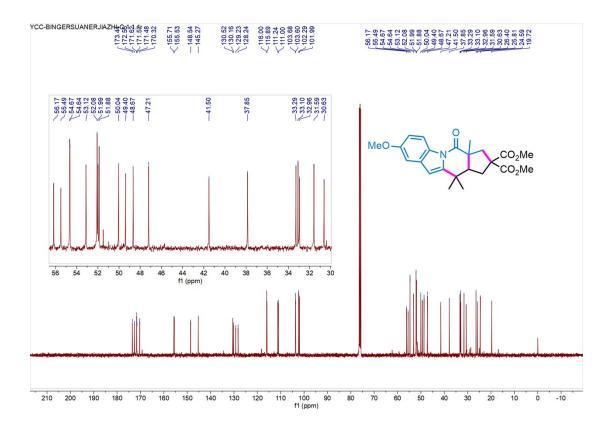


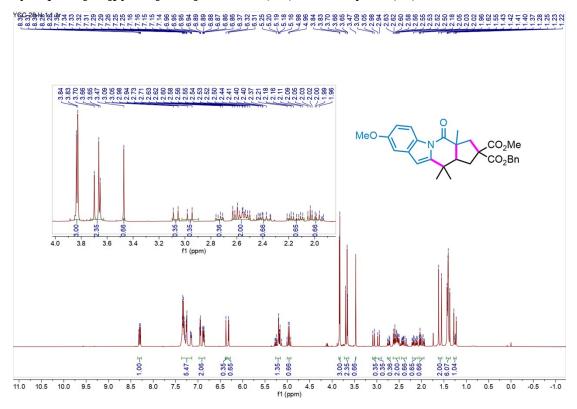

Diethyl 10-(2-((tert-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1H-cyclopenta[4,5]pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (**25**):

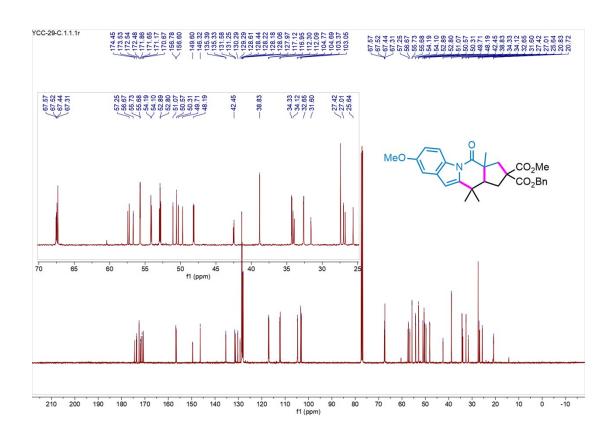



Diethyl 10-(3-(benzyloxy)-2-((*tert*-butoxycarbonyl)amino)-3-oxopropyl)-3a,11,11 -trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1*H*-cyclopenta[4,5]pyrido[1,2-*a*]indole-2,2(3*H*)-dicarboxylate (**26**):

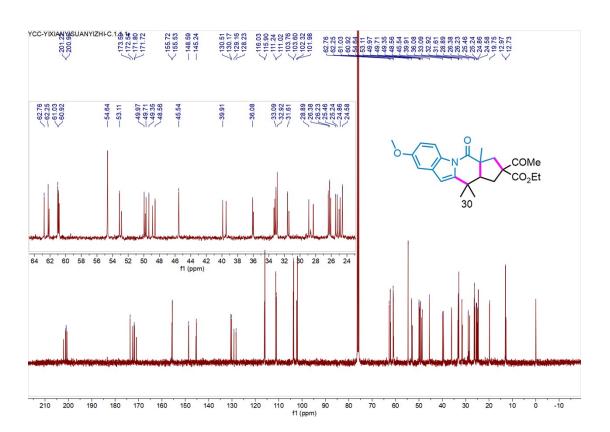


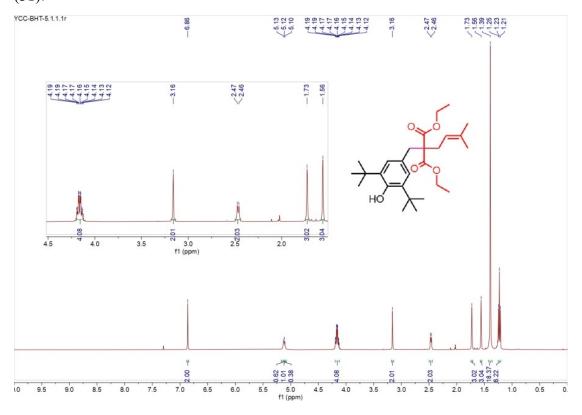

Diethyl 5a,9,9-trimethyl-5-oxo-5a,6,8a,9-tetrahydro-5H-cyclopenta[f]indolizine-7,7(8H)-dicarboxylate (27):

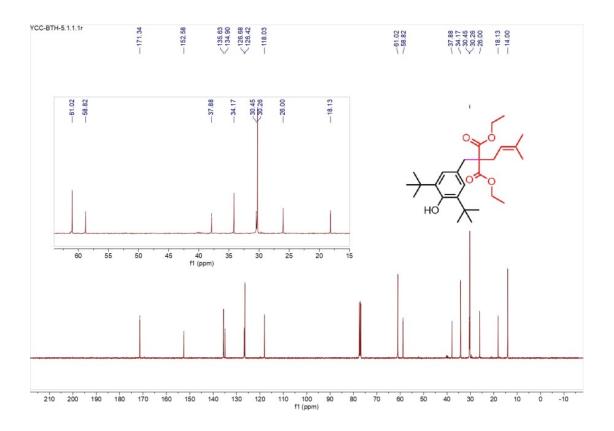


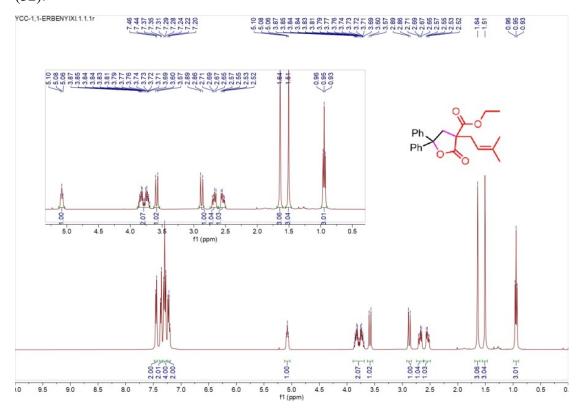

Dimethyl 8-methoxy-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1H-cyclopenta -[4,5]-pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (28):

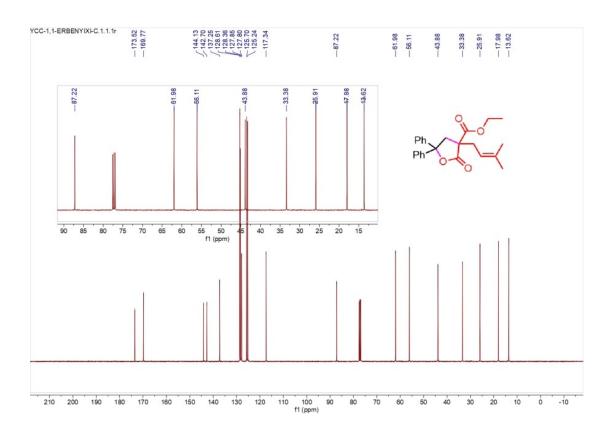



2-Benzyl 2-methyl 8-methoxy-3a,11,11-trimethyl-4-oxo-3a,4,11,11a-tetrahydro-1H-cyclopenta[4,5]pyrido[1,2-a]indole-2,2(3H)-dicarboxylate (**29**):




Ethyl (2S,3aR,11aS)-2-acetyl-8-methoxy-3a,11,11-trimethyl-4-oxo-2,3,3a,4,11,11a-hexahydro-1*H*-cyclopenta[4,5]pyrido[1,2-*a*]indole-2-carboxylate (**30**):




Diethyl 2-(3,5-di-*tert*-butyl-4-hydroxybenzyl)-2-(3-methylbut-2-en-1-yl)malonate (**31**):

thyl 3-(4-methylpent-3-en-1-yl)-2-oxo-5,5-diphenyltetrahydrofuran-3-carboxylate (32):

