Supporting Information

Light induced interrupted alkene diiodination with carbon atom insertion: Access to trifluoromethylated 1,3-diiodoalkanes

Tengfei Pang,¹ Yu Yan,¹ Jianjian Huang,¹ Fangrui Zhong¹ and Guojiao Wu^{1*}

¹ Mr. T. Peng, Ms. Y. Yan, Dr. J. Huang, Prof. Dr. F. Zhong, Prof. Dr. G. Wu Hubei Key Laboratory of Bioinorganic Chemistry & Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074

*Corresponding Author(s): gjwu@hust.edu.cn

Table of contents

1. General information	2
2. Preparation of substrate	3
3. Complete reaction optimization for aryl olefins	3
4. General procedure and characterization data of products 3	5
5. General procedure and characterization data of products 5	25
6. Follow-up chemistry	37
7. Investigation of the reaction mechanism	49
8. References	58
9. Copies of ¹ H, ¹³ C, ¹⁹ F NMR spectra	59

1. General information

Unless otherwise noted, all reactions were carried out under nitrogen atmosphere. All commercially available reagents and solvents were used without further purification. All reagents were purchased from commercial suppliers (Bidepharm and Energy Chemicals) or prepared as reported in the literature. Reactions were monitored by TLC analysis using silica gel 60 Å F-254 thin layer plates and compounds were visualized with a UV light at 254 nm. All products were purified by flash chromatography on silica gel (200–400 mesh) and the chemical yields referred are isolated products unless stated otherwise.

¹H NMR spectra were recorded on 400 MHz (AV400) or 600 MHz (AscendTM 600 MHz) Bruker spectrometers. ¹³C NMR and ¹⁹F NMR spectra were also recorded on the above spectrometers. Chemical shifts are reported in δ ppm relative to residual solvent of CDCl₃ (7.26 ppm for ¹H NMR and 77.1 ppm for ¹³C NMR). The used abbreviations in chemical shifts are as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), td (triplet of doublets) dqd (doublet of quartet of doublets), m (multiplet) and brs (broad singlet). Data were reported as follows, chemical shift, multiplicity, coupling constants (Hz) and integration. High resolution mass spectra (HRMS) data were measured on a Bruker Daltonics SolariX 7T spectrometer (ESI) with a Fourier transform ion cyclotron resonace mass spectrometry (FT-ICR-MS) as the mass analyzer.

The photoreactor (RLH-18SH) used in this reaction was manufactured from Beijing Roger tech Ltd. Eight 10 W blue LED were equipped in this photoreactor. The reaction vessel is a borosilicate glass penicillin bottle and the distance between it and the lamp is 1.5 cm, no filter was used. Reaction temperature was kept at 25 °C with a water cooling system.

2. Preparation of substrate

$$CF_{3}CH_{2}NH_{2} HCI + NaNO_{2} \xrightarrow{DCM/H_{2}O = 20:1} F_{3}C H$$

Trifluoroethylamine hydrochloride (2.76 g, 20 mmol) and sodium nitrite (1.66 g, 24 mmol, 1.2 equiv.) were added to a 50 mL round bottom flask, sealed the flask after add 25 mL of dichloromethane. The mixture was stirred in ice bath for 5 minutes and then added 1 mL of pure water to it. The solution turned yellow gradually, stired the reaction in an ice bath for 1 hour, and then stired at room temperature for 30 minutes. After that, the reaction solution was frozen in -20 °C overnight. Put the liquid in another bottle, dried it with anhydrous K₂CO₃, and stored the solution in a refrigerator at -20 °C. Trifluorotoluene as the internal standard, calibrated the concentration of CF₃CHN₂ with ¹⁹F NMR, which was 0.55 M.

3. Complete reaction optimization for aryl olefins

Table S1. Reaction optimization and control experiments^a.

Entry	Deviation of standard condition	$\mathbf{Yield}\left(\mathbf{\%}\right)^{b}$
1	none	95 (90)
2	K ₂ CO ₃ instead of K ₃ PO ₄	76
3	2,6-Lutidine instead of K ₃ PO ₄	trace
4	green LED instead of blue LED	81
5	DCM instead of MeCN	11
6	DMF instead of MeCN	0
7	MeCN (2 mL)	72
8	No light	0
9	In air	35
10	60 °C, No light	0
11	CuCl/L1 (3 mol%)	50 (47)
12 ^c	L2 instead of L1	32
13	L3 instead of L1	41
14	L4, L5 instead of L1	8
15	L6, L7, L8, L9 instead of L1	0
16	FeBr ₂ instead of CuCl	0
17	NiBr ₂ instead of CuCl	0
18	No L1	7

[a] Reaction conditions: **4a** (0.2 mmol), **2** (0.53 mmol, 0.5 M in DCM), **I**₂ (0.35 mmol), CuCl (4 mol%), **L1**(dap) (4 mol%), K₃PO₄ (0.3 mmol), additional MeCN (1.0 mL), N₂, blue LED, rt, 12 h. [b] The yield was determined by ¹⁹F NMR. [c] 405 nm.

Notes: In the case of aryl alkenes, the actual catalyst is the in-situ formed Cu(dap)2Cl, which is generated more efficiently with MeCN due to the better solubility of the copper salt compared to DCM. In addition, the inorganic base K_3PO_4 is also more soluble in MeCN, which is important to prevent the catalyst poisoning^[1]. This makes the significant difference in DCM and MeCN between aryl alkene and alkyl alkene.

4. General procedure and characterization data of products 3

 I_2 (0.35 mmol) was dissolved in DCM (1.0 mL) under nitrogen atmosphere, then CF₃CHN₂ (1.05 ml, 0.525 mmol) and olefin (0.2 mmol) were added into the bottle. The mixture was stirred for 5 minutes and then irradiated under 5 W blue LED and stirred at room temperature for 12 hours. After the reaction, trace of the reaction supernatant was used for ¹⁹F NMR spectroscopic analysis to determine the dr selectivity. Then, the other mixture was directly subjected to be concentrated in vacuo and purified by flash chromatography on silica gel with petroleum ether/ethyl acetate as an eluent to afford the desired product **3**.

(5,5,5-trifluoro-2,4-diiodopentyl)benzene (3a)

The product **3a** was purified by column chromatography (petroleum ether) as a colourless oil (79.9 mg, 88 %, 3.7:1 dr).

TLC: $R_{\rm f} = 0.65$ (Hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 3H), 7.22 (dd, *J* = 6.8, 1.7 Hz, 2H), 4.57 – 4.53 (m, 0.8H, minor), 4.41 – 4.37 (m, 1.3H, major), 3.50 – 3.40 (m, 0.8H, major), 3.33 – 3.23 (m, 0.8H, major), 3.15 – 2.12 (m, 0.4H, minor), 2.71 – 2.51 (m, 0.5H, minor), 2.27 – 2.20 (m, 0.8H, major), 2.11 – 2.04 (m, 0.8H, major).

¹³**C NMR** (101 MHz, CDCl₃) δ 138.6, 138.5, 129.1, 129.1, 128.9, 128.8, 127.4, 125.9, 124.6 (q, *J* = 276.8 Hz), 47.3, 45.9, 45.0, 41.5, 35.5, 32.5, 26.2 (q, *J* = 31.5 Hz), 21.1 (q, *J* = 31.2 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.69 (d, J = 7.8 Hz, 1F), -68.34 (d, J = 7.6 Hz, 3.7F). **HRMS** (ESI, m/z): calcd for C₁₁H₁₁F₃I₂Na⁺ [M+Na]⁺: 476.8794, found: 476.8785. (6,6,6-trifluoro-3,5-diiodohexyl)benzene (3b)

The product **3b** was purified by column chromatography as a colourless oil (72.7 mg, 78%, 3.3:1 dr).

TLC: $R_{\rm f} = 0.65$ (Hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 (dd, *J* = 8.7, 6.5 Hz, 2H), 7.25 – 7.17 (m, 3H), 4.64 – 4.44 (m, 0.7H, major), 4.32 – 4.44 (m, 0.3H, minor), 4.16 – 4.06 (m, 1H), 2.91 – 2.85 (m, 1H), 2.80 – 2.70 (m, 1H), 2.70 – 2.45 (m, 0.5H, minor), 2.40 – 2.24 (m, 1.5H, major), 2.16 – 2.00 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 140.2, 140.1, 128.8, 128.7, 128.6, 126.6, 124.6 (q, *J* = 276.8 Hz), 44.9, 42.4, 40.2, 36.2, 35.6, 32.3, 26.1 (q, *J* = 31.4 Hz), 20.9 (q, *J* = 31.3 Hz).

¹⁹**F** NMR (565 MHz, CDCl₃) δ -68.03 (d, J = 7.8 Hz, 1F), -68.36 (d, J = 8.1 Hz, 3.3F). HRMS (ESI, m/z): calcd for C₁₂H₁₃F₃I₂Na⁺ [M+Na]⁺: 490.8956, found: 490.8958.

1-(5,5,5-trifluoro-2,4-diiodopentyl)naphthalene (3c)

The product **3c** was purified by column chromatography as a yellow oil (60.4 mg, 60 %, 1.5:1 dr).

TLC: $R_{\rm f} = 0.65$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.99 – 7.88 (m, 2H), 7.83 (d, *J* = 8.2 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.54 – 7.50 (m, 1H), 7.46 – 7.44 (m, 1H), 7.39 – 7.37 (m, 1H), 4.63 – 4.57 (m, 1H), 4.56 – 4.50 (m, 0.6H, major), 4.38 – 4.33 (m, 0.4H, minor), 3.97 – 3.93 (m, 0.6H, major), 3.72 – 3.68 (m, 0.6H, major), 3.67 – 3.62 (m, 0.4H, minor), 3.60 –

3.55 (m, 0.4H, minor), 2.78 – 2.73 (m, 0.4H, minor), 2.69 – 2.61 (m, 0.4H, minor), 2.40 – 2.35 (m, 0.6H, major), 2.15 – 2.10 (m, 0.6H, major).

¹³C NMR (151 MHz, CDCl₃) δ 134.7, 134.6, 134.2, 134.1, 131.62, 131.56, 129.3, 129.3, 128.41, 128.40, 127.9, 127.8, 126.7, 126.6, 126.4 (q, *J* = 276.5 Hz), 126.03, 126.01, 125.44, 125.41, 123.2, 123.1, 46.1, 44.8, 43.9, 42.1, 34.7, 31.5, 26.1 (q, *J* = 31.5 Hz), 20.9 (q, *J* = 31.2 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.80 (d, J = 7.4 Hz, 1F), -68.39 (d, J = 8.1 Hz, 1.5F). **HRMS** (ESI, m/z): calcd for C₁₅H₁₄F₃I₂⁺[M+H]⁺: 504.9132, found: 504.9136.

1,1,1-trifluoro-2,4-diiododecane (3d)

The product **3d** was purified by column chromatography as a colourless oil (77.9 mg, 87%, 3.6:1 dr).

TLC: $R_{\rm f} = 0.70$ (Hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 4.61 – 4.47 (m, 0.7H, major), 4.40 – 4.28 (m, 0.3H, minor), 4.22 – 4.06 (m, 1H), 2.65 – 2.41 (m, 0.5H, minor), 2.30 – 2.20 (m, 0.8H, major), 2.06 – 1.97 (m, 1.6H, major), 1.87 – 1.77 (m, 0.7H, minor), 1.70 – 1.37 (m, 3H), 1.35 – 1.26 (m, 6H), 0.93 – 0.87 (m, 3H)

¹³**C NMR** (101 MHz, CDCl₃) δ 124.6 (q, *J* = 276.5 Hz), 45.1, 42.5, 42.4, 40.8, 38.5, 37.2, 33.3, 31.7, 29.5, 29.2, 28.6, 28.5, 26.4 (q, *J* = 31.4 Hz), 21.1 (q, *J* = 31.1 Hz), 22.7, 14.2.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.97 (d, J = 8.1 Hz, 1F), -68.41 (d, J = 8.0 Hz, 3.6F). **HRMS** (ESI, m/z): calcd for C₁₀H₁₈F₃I₂⁺[M+H]⁺: 448.9444, found: 448.9453.

(5,5,5-trifluoro-2,4-diiodopentyl)cyclopentane (3e)

The product **3e** was purified by column chromatography as a colourless oil (66.1 mg, 74 %, 3.1:1 dr).

TLC: $R_{\rm f} = 0.71$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 4.60 – 4.53 (m, 0.8H, major), 4.42 – 4.36 (m, 0.2H, minor), 4.20 – 4.10 (m, 1H), 2.66 – 2.57 (m, 0.3H, minor), 2.52 – 2.45 (m, 0.3H, minor), 2.26 – 2.17 (m, 1.7H, major), 2.14 – 2.01 (m, 2H), 1.88 – 1.78 (m, 2H), 1.78 – 1.72 (m, 0.9H, major), 1.67 – 1.60 (m, 2H), 1.59 – 1.55 (m, 1H), 1.21 – 1.12 (m,1H), 1.09 – 1.00 (m, 1H), 0.92 – 0.79 (m, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 124.9 (q, *J* = 276.6 Hz), 47.4, 45.5, 45.2, 42.6, 40.3, 40.0, 36.3, 32.9, 32.7, 32.4, 32.0, 31.6, 26.4 (q, *J* = 31.4 Hz), 21.5 (q, *J* = 31.2 Hz), 25.2, 25.2.

¹⁹F NMR (565 MHz, CDCl₃) δ -67.95 (d, J = 7.8 Hz, 1F), -68.42 (d, J = 8.1 Hz, 3.1F).

HRMS (ESI, m/z): calcd for $C_{10}H_{16}F_3I_2^+$ [M+H]⁺: 446.9288, found: 446.9296.

8,8,8-trifluoro-5,7-diiodooctyl benzoate (3f)

The product **3f** was purified by column chromatography as a colourless oil (90.7 mg, 84 %, 3.6:1 dr).

TLC: $R_f = 0.6$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.07 – 8.01 (m, 2H), 7.57–7.53 (m, 1H), 7.46 – 7.42 (m, 2H), 4.58 – 4.50 (m, 0.7H, minor), 4.37 – 4.32 (m, 2H), 4.23 – 4.13 (m, 1.4H, major), 2.66 – 2.60 (m, 0.2H, minor), 2.53 – 2.44 (m, 0.2H, minor), 2.30 – 2.24 (m, 0.9H, major), 2.17 – 2.00 (m, 1.7H, major), 1.93 – 1.55 (m, 5H).

¹³**C NMR** (151 MHz, CDCl₃) δ 166.6, 133.0, 130.3, 129.6, 128.4, 124.4 (q, *J* = 276.6 Hz), 64.5, 64.4, 44.9, 42.3, 40.1, 37.9, 36.4, 32.4, 27.9, 27.8, 26.2, 25.9, 26.1 (q, *J* = 31.4 Hz), 20.8 (q, *J* = 31.2 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.93 (d, J = 7.6 Hz, 1F), -68.33 (d, J = 7.8 Hz, 3.6F). **HRMS** (ESI, m/z): calcd for C₁₅H₁₈F₃I₂O₂⁺[M+H]⁺: 540.9342, found: 540.9348.

8,8,8-trifluoro-5,7-diiodooctyl 4-methylbenzoate (3g)

The product 3g was purified by column chromatography as a colourless oil (88.8 mg, 80%, 3.7:1 dr).

TLC: $R_f = 0.43$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 4.58 – 4.51 (m, 0.8H, minor), 4.33 (t, *J* = 6.4 Hz, 2H), 4.21 – 4.15 (m, 1.1H, major), 2.64 – 2.56 (m, 0.2H, minor), 2.52 – 2.46 (m, 0.2H, minor), 2.41 (s, 3H), 2.31 – 2.24 (m, 0.8H), 2.12 – 2.03 (m, 1.6H, major), 1.93 – 1.70 (m, 4H), 1.65 – 1.59 (m, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 166.7, 143.6, 129.6, 129.1, 127.6, 124.43 (q, *J* = 276.5 Hz), 64.3, 64.2, 44.8, 42.3, 40.1, 37.9, 36.4, 32.4, 27.9, 27.8, 26.2, 25.9, 25.9 (q, *J* = 31.3Hz), 20.8 (q, *J* = 31.2 Hz), 21.7.

¹⁹**F** NMR (565 MHz, CDCl₃) δ -67.97 (d, J = 7.6 Hz, 1F), -68.38 (d, J = 7.9 Hz, 3.7F). HRMS (ESI, m/z): calcd for C₁₆H₂₀F₃I₂O₂⁺ [M+H]⁺: 554.9499, found: 554.9495.

8,8,8-trifluoro-5,7-diiodooctyl 4-methoxybenzoate (3h)

The product **3h** was purified by column chromatography as a colourless oil (96 mg, 84%, 3.5:1 dr).

TLC: $R_f = 0.45$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.02 – 7.97 (m, 2H), 6.93 – 6.90 (m, 2H), 4.57 – 4.50 (m, 0.8H, minor), 4.34 – 4.29 (m, 2H), 4.21 – 4.13 (m, 1H, major), 3.85 (s, 3H), 2.64 –

2.57 (m, 0.2H, minor), 2.52 – 2.44 (m, 0.2H, minor), 2.31 – 2.24 (m, 0.8H, major), 2.13 – 2.02 (m, 1.6H, major), 1.92 – 1.68 (m, 4H), 1.66 – 1.56 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 166.4, 163.5, 131.7, 124.5 (q, *J* = 276.5 Hz), 122.79, 113.7, 64.2, 64.2, 55.5, 53.1, 44.9, 42.4, 40.2, 38.0, 36.5, 32.6, 28.0, 28.0, 26.3, 25.9, 26.2 (q, *J* = 31.4 Hz), 20.9 (q, *J* = 31.1 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.97 (d, J = 7.6 Hz, 1F), -68.38 (d, J = 7.9 Hz, 3.5F). **HRMS** (ESI, m/z): calcd for C₁₇H₂₃F₃I₂O₃⁺ [M+H]⁺: 585.9689, found: 585.9688.

8,8,8-trifluoro-5,7-diiodooctyl 4-iodobenzoate (3i)

The product **3i** was purified by column chromatography as a colourless oil (103.9 mg, 78%, 5.7:1 dr).

TLC: $R_{\rm f} = 0.44$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.81 (d, *J* = 8.5 Hz, 2H), 7.75 – 7.73 (m, 2H), 4.57 – 4.51 (m, 0.8H, minor), 4.35 – 4.33 (m, 2H), 4.18 – 4.14 (m, 1.2H, major), 2.64 – 2.56 (m, 0.2H, minor), 2.52 – 2.45 (m, 0.2H, minor), 2.33 – 2.20 (m, 0.9H, major), 2.14 – 2.02 (m, 1.7H, major), 1.90 – 1.70 (m, 4H), 1.64 – 1.58 (m, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 166.2, 137.9, 131.1, 129.8, 124.5 (q, *J* = 276.6 Hz), 100.9, 64.8, 64.7, 42.4, 40.2, 37.9, 36.4, 27.9, 26.2, 26.2 (q, *J* = 31.4 Hz), 20.2 (q, *J* = 31.4 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.94 (d, J = 7.8 Hz, 1F), -68.38 (d, J = 7.9 Hz, 5.7F). **HRMS** (ESI, m/z): calcd for C₁₆H₁₇F₃I₃O₂⁺ [M+H]⁺: 666.8309, found: 666.8312.

8,8,8-trifluoro-5,7-diiodooctyl 4-cyanobenzoate (3j)

The product **3j** was purified by column chromatography as a yellow oil (85.9 mg, 76%, 3.8:1 dr).

TLC: $R_f = 0.43$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.14 (d, *J* = 1.9 Hz, 2H), 7.75 – 7.73 (m, 2H), 4.56 – 0.76 (m, 0.8H, minor), 4.41 – 4.37 (m, 2H), 4.21 – 4.13 (m, 1H, major), 2.63 – 2.56 (m, 0.2H, minor), 2.52 – 2.45 (m, 0.2H, minor), 2.31 – 2.26 (m, 0.8H, major), 2.11 – 2.01 (m, 1.6H, major), 1.92 – 1.56 (m, 5H).

¹³C NMR (151 MHz, CDCl₃) δ 165.0, 134.2, 134.1, 132.4, 130.2, 124.5 (q, J = 276.5 Hz), 118.1, 116.5, 65.4, 45.0, 42.4, 40.1, 37.9, 36.3, 32.3, 29.9, 27.9, 26.2 (q, J = 31.4 Hz), 20.77 (q, J = 31.3 Hz), 26.1.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.94 (d, J = 7.4 Hz, 1F), -68.39 (d, J = 7.7 Hz, 3.8F). **HRMS** (ESI, m/z): calcd for C₁₆H₁₇F₃I₂NO₂⁺ [M+H]⁺: 565.9295, found: 565.9289.

8,8,8-trifluoro-5,7-diiodooctyl 2,6-dichlorobenzoate (3k)

The product **3k** was purified by column chromatography as a colourless oil (103.3 mg, 84%, 3.8:1 dr).

TLC: $R_f = 0.46$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.35 – 7.32 (m, 2H), 7.30 – 7.26 (m, 1H), 4.56 – 4.50 (m, 0.8H, minor), 4.44 – 4.42 (m, 2H), 4.18 – 4.14 (m, 1H, major), 2.74 – 2.55 (m, 0.3H, minor), 2.55 – 2.43 (m, 0.3H, minor), 2.30 – 2.21 (m, 0.8H, major), 2.10 – 1.97 (m, 0.1.7H, major, 1.92 – 1.72 (m, 4H), 1.71 – 1.60 (m, 1H,).

¹³**C NMR** (151 MHz, CDCl₃) δ 164.9, 133.8, 131.9, 131.0, 128.02, 124.5 (q, *J* = 276.5 Hz), 65.9, 65.9, 44.9, 42.4, 40.2, 38.0, 36.2, 32.3, 27.7, 26.2, 26.1, 26.0 (q, *J* = 110.6 Hz), 20.89 (q, *J* = 31.3 Hz).

¹⁹F NMR (565 MHz, CDCl₃) δ -67.95 (d, J = 7.7 Hz, 1F), -68.38 (d, J = 8.1 Hz, 3.8F). HRMS (ESI, m/z): calcd for C₁₅H₁₅Cl₂F₃I₂O₂Na⁺ [M+Na]⁺: 630.8382, found:630.8372.

8,8,8-trifluoro-5,7-diiodooctyl thiophene-2-carboxylate (31)

The product **3I** was purified by column chromatography as a colourless oil (77.3 mg, 71%, 3.6:1 dr).

TLC: $R_f = 0.43$ (Hexane/EtOAc = 30:1).

¹H NMR (600 MHz, CDCl₃) δ 7.81 – 7.80 (m, 1H), 7.56 – 7.55 (m, 1H), 7.11 – 7.10 (m, 1H), 4.57 – 4.51 (m, 0.8H, minor), 4.33 – 4.31 (m, 2H), 4.20 – 4.13 (m, 1.1H, major), 2.73 – 2.58 (m, 0.3H, minor), 2.53 – 2.45 (m, 0.3H, minor), 2.30 – 2.23 (m, 0.8H, major), 2.10 – 2.03 (m, 1.7H, major), 1.93 – 1.70 (m, 4H), 1.66 – 1.23 (m, 1H).
¹³C NMR (151 MHz, CDCl₃) δ 162.31, 133.9, 133.9, 133.6, 133.6, 132.5, 127.9, 124.5 (q, *J* = 276.5 Hz), 64.7, 64.6, 44.9, 41.4, 40.2, 37.9, 36.5, 32.5, 28.0, 27.9, 26.2, 25.9, 26.2 (q, *J* = 31.4 Hz), 20.9 (q, *J* = 31.2 Hz).

¹⁹**F** NMR (565 MHz, CDCl₃) δ -67.95 (d, J = 7.3 Hz, 1F), -68.36 (d, J = 8.4 Hz, 3.6F). HRMS (ESI, m/z): calcd for C₁₃H₁₅F₃I₂O₂SNa⁺ [M+Na]⁺: 568.8735, found: 568.8737.

8,8,8-trifluoro-5,7-diiodooctyl furan-2-carboxylate (3m)

The product **3m** was purified by column chromatography as a colourless oil (68.7 mg, 67%, 3.5:1 dr).

TLC: $R_{\rm f} = 0.43$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.59 – 7.57 (m, 1H), 7.19 – 7.18 (m, 1H), 6.52 – 6.50 (m, 1H), 4.56 – 4.50 (m, 0.8H, minor), 4.34 – 4.30 (m, 2H), 4.20 – 4.12 (m, 1.1H, major), 2.68 – 2.54 (m, 0.3H, minor), 2.52 – 2.44 (m, 0.3H, major), 2.32 – 2.22 (m, 0.8H, major), 2.10 – 2.00 (m, 1.7H, major), 1.92 – 1.65 (m, 4H), 1.65 – 1.54 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 158.8, 146.5, 144.8, 124.5 (q, J = 276.6 Hz), 118.1, 118.1, 112.0, 64.5, 64.5, 44.9, 42.4, 40.2, 37.9, 36.4, 32.4, 27.9, 27.8, 26.5, 26.2, 26.1 (q, J = 31.2 Hz), 20.9 (q, J = 31.1 Hz).

¹⁹**F** NMR (565 MHz, CDCl₃) δ -67.99 (d, J = 8.0 Hz, 1F), -68.40 (d, J = 8.1 Hz, 3.5F). HRMS (ESI, m/z): calcd for C₁₃H₁₅F₃I₂O₂SNa⁺ [M+Na]⁺: 552.8954, found: 552.8950.

8,8,8-trifluoro-5,7-diiodooctyl acetate (3n)

The product **3n** was purified by column chromatography as a colourless oil (72 mg, 82%, 4.5:1 dr).

TLC: $R_f = 0.43$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 4.55 – 4.51 (m, 0.8H, major), 4.37 – 4.32 (m, 0.2H, minor), 4.19 – 4.11 (m, 1H), 4.07 (t, *J* = 6.3 Hz, 2H), 2.62 – 2.54 (m, 0.2H, minor), 2.52 – 2.42 (m, 0.2H, major), 2.30 – 2.22 (m, 0.8H, major), 2.05 (s, 3H), 2.04 – 1.09 (m, 1.3H, major), 1.76 – 1.57 (m, 4H), 1.56 – 1.44 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 171.2, 124.5 (q, J = 276.5 Hz), 64.1, 45.0, 42.4, 40.2, 38.0, 36.4, 32.5, 27.9, 27.7, 26.2 (q, J = 31.4 Hz), 20.8 (q, J = 31.2 Hz), 26.1, 25.8, 21.1, 21.1.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.96 (d, J = 7.6 Hz, 1F), -68.41 (d, J = 8.0 Hz, 4.5F). **HRMS** (ESI, m/z): calcd for C₁₀H₁₆F₃I₂O₂⁺ [M+H]⁺: 478.9186, found: 478.9177.

8,8,8-trifluoro-5,7-diiodooctyl 4-methylbenzenesulfonate (30)

The product **30** was purified by column chromatography as a yellow solid (95.6 mg, 81%, 3.7:1 dr).

TLC: $R_{\rm f} = 0.45$ (Hexane/EtOAc = 20:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.76 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 4.53 – 4.45 (m, 0.7H, major), 4.34 – 4.28 (m, 0.2H, minor), 4.08 – 4.02 (m, 3H), 2.59 – 2.53 (m, 0.24H, minor), 2.45 (s, 3H), 2.23 – 2.18 (m, 0.8H, major), 1.99 – 1.87 (m, 2H), 1.65 – 1.35 (m, 4H), 0.90 – 0.75 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 143.6, 136.9, 129.9, 127.2, 124.5 (q, J = 276.6 Hz),
44.8, 42.9, 42.9, 42.3, 40.0, 37.7, 36.4, 32.5, 28.8, 28.6, 26.6, 26.3, 26.1 (q, J = 31.5 Hz), 20.9 (q, J = 31.5), 21.7, 21.2.

¹⁹**F** NMR (565 MHz, CDCl₃) δ -67.95 (d, J = 7.9 Hz, 1F), -68.36 (d, J = 8.1 Hz, 3.7F). HRMS (ESI, m/z): calcd for C₁₅H₂₁F₃I₂NO₂S⁺ [M+H]⁺: 590.9175, found: 590.9178.

((7,7,7-trifluoro-4,6-diiodoheptyl)oxy)benzene (3p)

The product **3p** was purified by column chromatography as a colourless oil (75.9 mg, 71 %, 3.6:1 dr).

TLC: $R_{\rm f} = 0.45$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.30 (dd, J = 8.6, 7.2 Hz, 2H), 6.97 (t, J = 7.3 Hz, 1H), 6.93 – 6.89 (m, 2H), 4.63 – 4.53 (m, 0.7H, major), 4.43 – 4.37 (m, 0.3H, minor), 4.30 – 4.22 (m, 1H), 4.05 – 3.98 (m, 2H), 2.67 – 2.61 (m, 0.2H, minor), 2.55 – 2.49 (m, 0.2H, minor), 2.36 – 2.28 (m, 0.7H, major), 2.23 – 2.16 (m, 0.7H, major), 2.15 – 2.01 (m, 3H), 2.00 – 1.85 (m, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 158.9, 129.6, 124.4 (q, *J* = 277.0 Hz), 120.9, 114.6, 66.8, 66.5, 44.9, 42.5, 37.6, 36.5, 35.1, 32.3, 29.5, 29.1, 26.2 (q, *J* = 31.5 Hz), 20.9 (q, *J* = 31.2 Hz).

¹⁹**F** NMR (565 MHz, CDCl₃) δ -67.96 (d, J = 7.4 Hz, 1F), -68.34 (d, J = 8.2 Hz, 3.6F). HRMS (ESI, m/z): calcd for C₁₃H₁₅F₃I₂ONa⁺ [M+Na]⁺: 520.9062, found: 520.9060.

3-((7,7,7-trifluoro-4,6-diiodoheptyl)oxy)pyridine (3q)

The product **3q** was purified by column chromatography as a pale yellow liquid (84.7 mg, 84%, 3.5:1 dr).

TLC: $R_f = 0.46$ (Hexane/EtOAc = 10:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.30 (t, J = 2.6 Hz, 1H), 8.21 (dd, J = 4.5, 1.4 Hz, 1H), 7.23 – 7.14 (m, 2H), 4.56 – 4.48 (m, 0.8H, major), 4.41 – 4.33 (m, 0.2H, minor), 4.25 – 4.18 (m, 1H), 4.07 – 4.01 (m, 2H), 2.66 – 2.57 (m, 0.2H, minor), 2.53 – 2.47 (m, 0.2H, minor), 2.31 – 2.28 (m, 0.8H, major), 2.21 – 2.10 (m, 1.1H, major), 2.10 – 2.02 (m, 2H), 2.00 – 1.85 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 155.0, 142.4, 138.0, 138.0, 124.5 (q, J = 276.6 Hz), 124.0, 121.2, 67.2, 67.0, 44.9, 42.4, 37.4, 36.2, 35.0, 31.9, 29.4, 29.1, 26.1 (q, J = 31.3 Hz), 20.7 (q, J = 31.4 Hz).

¹⁹**F** NMR (565 MHz, CDCl₃) δ -67.95 (d, J = 7.7 Hz, 1F), -68.37 (d, J = 7.9 Hz, 3.5F). HRMS (ESI, m/z): calcd for C₁₂H₁₄F₃I₂NONa⁺ [M+Na]⁺: 521.9015, found: 521.9014.

1,1,1-trifluoro-2,4-diiodo-5-methoxypentane (3r)

The product $3\mathbf{r}$ was purified by column chromatography as a colourless oil (70.7 mg, 73%, 2.3:1 dr).

TLC: $R_{\rm f} = 0.5$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.44 – 7.30 (m, 5H), 4.63 – 4.53 (m, 2H), 4.52 – 4.40 (m, 0.4H, minor), 4.40 – 4.36 (m, 0.6H, major), 4.36 – 4.27 (m, 1H), 3.85 – 3.64 (m, 2H), 2.71 – 2.61 (m, 0.6H, major), 2.56 – 2.49 (m, 0.6H, major), 2.35 – 2.27 (m, 0.4H, minor), 2.26 – 2.16 (m, 0.4H, minor).

¹³**C NMR** (101 MHz, CDCl₃) δ 137.6, 137.5, 128.7, 128.7, 128.2, 128.2, 127.9, 127.9, 124.6 (q, *J* = 276.2), 75.2, 74.8, 73.3, 73.3, 42.6, 39.1, 31.5, 29.8, 25.8 (q, *J* = 31.5 Hz), 21.6 (q, *J* = 31.2 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -68.36 (d, J = 7.7 Hz, 1F), -68.41 (d, J = 7.7 Hz, 2.3F). **HRMS** (ESI, m/z): calcd for C₁₂H₁₄F₃I₂O⁺ [M+H]⁺: 484.9081, found: 484.9072.

4-methyl-N-(8,8,8-trifluoro-5,7-diiodooctyl)benzenesulfonamide (3s)

The product **3s** was purified by column chromatography as a yellow solid (118.6 mg, 78%, 3.5:1 dr).

TLC: $R_{\rm f} = 0.45$ (Hexane/EtOAc = 20:1).

¹**H** NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 4.95 (t, J = 6.2 Hz, 1H), 4.55 – 4.45 (m, 0.7H, major), 4.35 – 4.29 (m, 0.3H, minor), 4.09 – 4.02 (m, 1H), 2.94 (q, J = 6.4 Hz, 2H), 2.57 – 2.50 (m, 0.2H, minor), 2.42 (s, 3H), 2.22 – 2.17 (m, 0.8H, major), 2.00 – 1.87 (m, 2H), 1.77 – 1.68 (m, 1H), 1.65 – 1.35 (m, 4H), 0.90 – 0.75 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 143.6, 136.9, 129.9, 127.2, 124.5 (q, J = 276.6 Hz),
44.8, 42.9, 42.9, 42.3, 40.0, 37.7, 36.4, 32.5, 28.8, 28.6, 26.6, 26.3, 26.1 (q, J = 31.5 Hz), 20.9 (q, 31.5), 21.7, 21.2.

¹⁹**F** NMR (565 MHz, CDCl₃) δ -67.95 (d, J = 7.9 Hz, 1F), -68.36 (d, J = 8.1 Hz, 3.5F). HRMS (ESI, m/z): calcd for C₁₅H₂₁F₃I₂NO₂S⁺ [M+H]⁺: 589.9329, found: 589.9332.

2-(9,9,9-trifluoro-6,8-diiodononyl)isoindoline-1,3-dione (3t)

The product **3t** was purified by column chromatography as a white soild (71.2 mg, 61 %, 3.5:1 dr).

TLC: $R_{\rm f} = 0.30$ (Hexane/EtOAc = 20:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.82 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.69 (dd, *J* = 5.5, 3.0 Hz, 2H), 4.53 – 4.45 (m, 0.7H, major), 4.39 – 4.30 (m, 0.3H, minor), 4.16 – 4.08 (m, 1H), 3.68 (t, *J* = 7.2 Hz, 2H), 2.59 – 2.50 (m, 0.3H, minor), 2.47 – 2.31 (m, 0.3H, minor), 2.27 – 2.16 (m, 0.8H, major), 2.03 – 1.94 (m, 1.6H, major), 1.82 – 1.77 (m, 1H), 1.72 – 1.66 (m, 2H), 1.65 – 1.56 (m, 1H), 1.54 – 1.30 (m, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 168.5, 134.0, 132.2, 124.5 (q, J = 276.6 Hz), 123.3, 44.8, 42.3, 40.5, 38.1, 37.9, 37.8, 36.7, 32.7, 29.8, 29.0, 28.7, 28.4, 26.2 (q, J = 31.3 Hz), 21.03 (q, J = 31.1 Hz), 26.1, 26.0.

¹⁹**F** NMR (565 MHz, CDCl₃) δ -68.00 (d, J = 8.0 Hz, 1F), -68.37 (d, J = 8.1 Hz, 3.5F). HRMS (ESI, m/z): calcd for C₁₇H₁₈F₃I₂NO₂Na⁺ [M+Na]⁺: 601.9238, found: 601.9245.

trimethyl((5,5,5-trifluoro-2,4-diiodopentyl)oxy)silane (3u)

The product 3u was purified by column chromatography as a colourless oil (46.3 mg, 50 %, 2.4:1 dr).

TLC: $R_f = 0.45$ (Hexane/EtOAc = 50:1).

¹**H NMR** (600 MHz, CDCl₃) δ 4.60 – 4.51 (m, 0.3H, minor), 4.51 – 4.43 (m, 0.7H, major), 4.26 – 4.13 (m, 1H), 3.99 – 3.93 (m, 0.7H, major), 3.92 – 3.87 (m, 0.3H, minor), 3.86 – 3.82 (m, 0.7H, major), 3.80 – 3.73 (m, 0.3H, minor), 2.74 – 2.61 (m, 0.3H, minor), 2.53 – 2.44 (m, 0.3H, minor), 2.37 – 2.30 (m, 0.7H, major), 2.16 – 2.08 (m, 0.7H, major), 0.15 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 125.1 (q, J = 276.5 Hz), 68.9, 68.7, 43.2, 39.1, 35.6, 30.2, 26.3 (q, J = 31.5 Hz), 22.7 (q, J = 31.2 Hz), 0.1, 0.0.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -68.42 (d, J = 8.2 Hz, 1F), -68.49 (d, J = 8.1 Hz, 2.4F).

HRMS (ESI, m/z): calcd for $C_8H_{16}F_3I_2OSi^+$ [M+H]⁺: 466.9006, found: 466.8998.

8,8,8-trifluoro-5,7-diiodooctan-1-ol (3v)

The product 3v was purified by column chromatography as a colourless oil (63.7 mg, 73 %, 4.4:1 dr).

TLC: $R_{\rm f} = 0.57$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 4.57 – 4.52 (m, 0.8H, major), 4.40 – 4.31 (m, 0.2H, minor), 4.20 – 4.12 (m, 1H), 3.68 (s, 2H), 2.65 – 2.50 (m, 0.2H, minor), 2.50 – 2.40 (m, 0.2H, minor), 2.33 – 2.10 (m, 0.8H, major), 2.00 – 1.94 (m, 1.7H, major), 1.80 – 1.76 (m, 1H), 1.68 – 1.42 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 124.4 (q, J = 276.7 Hz), 62.6, 45.0, 42.4, 40.5, 38.2, 36.8, 32.9, 31.9, 25.9, 26.2 (q, J = 31.6 Hz), 20.3 (q, J = 31.4 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.97 (d, *J* = 8.0 Hz, 1F), -68.40 (d, *J* = 8.2 Hz, 4.4F). **HRMS** (ESI, m/z): calcd for C₈H₁₄F₃I₂O⁺ [M+H]⁺: 436.9086, found: 436.9085.

8-bromo-1,1,1-trifluoro-2,4-diiodooctane (3w)

The product **3w** was purified by column chromatography as a colourless oil (71.0 mg, 86 %, 3.8:1 dr).

TLC: $R_{\rm f} = 0.57$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 4.59 – 4.49 (m, 0.9H, major), 4.41 – 4.33 (m, 0.1H, minor), 4.22 – 4.09 (m, 1H), 3.48 – 3.38 (m, 2H), 2.70 – 2.57 (m, 0.1H, minor), 2.52 – 2.42 (m, 0.1H, minor), 2.33 – 2.23 (m, 0.9H, major), 2.09 – 1.99 (m, 1.9H, major), 1.98 – 1.81 (m, 3H), 1.78 – 1.67 (m, 1H), 1.6 – 1.58 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 124.4 (q, J = 276.5 Hz), 44.8, 42.3, 39.7, 39.2, 37.4, 36.0, 33.1, 32.1, 31.8, 31.6, 28.1, 27.8, 26.1 (q, J = 31.5 Hz), 20.8 (q, J = 31.6 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -67.97 (d, J = 8.0 Hz, 1F), -68.40 (d, J = 8.2 Hz, 3.8F). HRMS (ESI, m/z): calcd for C₈H₁₃BrF₃I₂⁺ [M+H]⁺: 498.8242, found: 498.8238. 7-chloro-1,1,1-trifluoro-2,4-diiodoheptane (3x)

The product 3x was purified by column chromatography as a colourless oil (65.3 mg, 71 %, 3.7:1 dr).

TLC: $R_{\rm f} = 0.48$ (Hexane).

¹**H NMR** (400 MHz, CDCl₃) δ 4.59 – 4.50 (m, 0.8H, major), 4.40 – 4.30 (m, 0.2H, minor), 4.20 – 4.09 (m, 1H), 3.56 (t, *J* = 6.4 Hz, 2H), 2.67 – 2.52 (m, 0.2H, minor), 2.52 – 2.44 (m, 0.3H, minor), 2.31 – 2.21 (m, 0.8H, major), 2.09 – 1.97 (m, 1.6H, major), 1.93 – 1.61 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 124.5 (q, J = 276.6 Hz), 45.0, 44.6, 42.4, 42.4, 40.0, 37.7, 36.2, 32.3, 31.8, 31.6, 27.0, 26.7, 26.2 (q, J = 31.4 Hz), 20.8 (q, J = 31.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.93 (d, J = 7.6 Hz, 1F), -68.39 (d, J = 7.8 Hz, 3.7F). HRMS (ESI, m/z): calcd for C₈H₁₃ClF₃I₂⁺ [M+H]⁺: 454.8747, found: 454.8745.

9,9,9-trifluoro-6,8-diiodononanenitrile (3y)

The product **3y** was purified by column chromatography as a colourless oil (65 mg, 74 %, 3.6:1 dr)

TLC: $R_{\rm f} = 0.34$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 4.55 – 4.49 (m, 0.8H, major), 4.40 – 4.33 (m, 0.2H, minor), 4.17 – 4.10 (m, 1H), 2.66 – 2.54 (m, 0.2H, minor), 2.51 – 2.43 (m, 0.2H, minor), 2.39 (t, *J* = 6.6 Hz, 2H), 2.30 – 2.24 (m, 0.8H, major), 2.09 – 2.00 (m, 1.6H, major), 1.89 – 1.80 (m, 1H), 1.79 – 1.60 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 124.4 (q, J = 276.6 Hz), 119.3, 44.9, 42.3, 39.7, 37.6, 35.5, 31.7, 28.6, 28.6, 25.9 (q, J = 31.4 Hz), 20.6 (q, J = 31.3 Hz), 24.5, 24.5, 17.1.
¹⁹F NMR (565 MHz, CDCl₃) δ -67.90 (d, J = 7.3 Hz, 1F), -68.40 (d, J = 8.0 Hz, 3.6F).

HRMS (ESI, m/z): calcd for C₉H₁₂F₃I₂NNa⁺ [M+Na]⁺: 467.8950, found: 467.8943.

methyl 13,13,13-trifluoro-10,12-diiodotridecanoate (3z)

The product **3z** was purified by column chromatography as a colourless oil (106.1 mg, 73%, 3.8:1 dr).

TLC: $R_{\rm f} = 0.46$ (Hexane/EtOAc = 30:1).

¹**H NMR** (400 MHz, CDCl₃) δ 4.57 – 4.47 (m, 0.8H, major), 4.41 – 4.39 (m, 0.2H, minor), 4.17 – 4.09 (m, 1H), 3.65 (s, 3H), 2.63 – 2.53 (m, 0.2H, minor), 2.51 – 2.39 (m, 0.2H, minor), 2.30 (t, *J* = 7.6, 2H), 2.25 – 2.20 (m, 0.6H, major), 2.06 – 1.94 (m, 1.6H, major), 1.83 – 1.75(m, 1H), 1.67 – 1.36 (m, 5H), 1.30 (s, 8H).

¹³C NMR (151 MHz, CDCl₃) δ 174.4, 124.4 (q, J = 276.5 Hz), 51.6, 44.9, 42.4, 40.7, 40.1, 38.4, 37.0, 34.1, 33.1, 29.4, 29.2, 29.1, 29.1, 29.0, 28.6, 28.5, 26.2 (q, J = 31.3 Hz), 20.9 (q, J = 31.1 Hz), 24.9.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -67.98 (d, J = 7.9 Hz, 1F), -68.40 (d, J = 7.8 Hz, 3.8F). HRMS (ESI, m/z): calcd for C₁₄H₂₃F₃I₂O₂Na⁺[M+Na]⁺: 556.9631, found: 556.9621.

ethyl 7,7,7-trifluoro-4,6-diiodoheptanoate (3aa)

The product **3aa** was purified by column chromatography as a colourless oil (74.0 mg, 80 %, 3.3:1 dr).

TLC: $R_f = 0.48$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 4.53 – 4.35 (m, 0.8H, major), 4.42 – 4.36 (m, 0.2H, minor), 4.23 – 4.17 (m, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 2.80 – 2.55 (m, 1.4H, major), 2.55 – 2.44 (m, 1.4H, minor), 2.35 – 2.20 (m, 2H), 2.10 – 2.10 (m, 0.9H, minor), 2.10 – 1.90 (m, 1.3H, major), 1.27 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (151 MHz, CDCl₃) δ 172.2, 124.6 (q, *J* = 276.6 Hz), 124.2 (q, *J* = 276.6 Hz), 60.9, 60.9, 45.1, 42.5, 35.6, 35.5, 34.3, 34.2, 33.6, 31.2, 25.8 (q, *J* = 31.4 Hz), 20.6 (q, *J* = 31.2 Hz), 14.4, 14.3.

¹⁹F NMR (565 MHz, CDCl₃) δ -68.09 (d, J = 7.8 Hz, 1F), -68.44 (d, J = 7.9 Hz, 3.3F). HRMS (ESI, m/z): calcd for C₉H₁₃F₃I₂O₂Na⁺ [M+Na]⁺: 486.8849, found: 486.8842.

8,8,8-trifluoro-5,7-diiodooctan-2-one (3ab)

The product **3ab** was purified by column chromatography as a colourless oil (49.2 mg, 63%, 3.5:1 dr).

TLC: $R_f = 0.43$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 4.54 – 4.47 (m, 0.7H, major), 4.41 – 4.37 (m, 0.3H, minor), 4.18 – 4.14 (m, 1H), 2.77 – 2.59 (m, 2.4H, major), 2.49 – 2.45 (m, 0.3H, minor), 2.30 – 2.26 (m, 0.8H, major), 2.19 (s, 3H), 2.17 – 2.10 (m, 2.5H, major), 2.00 – 1.82 (m, 0.5H, minor).

¹³C NMR (151 MHz, CDCl₃) δ 206.8, 206.8, 124.38 (q, J = 276.5 Hz), 45.2, 43.4, 43.4, 42.6, 36.4, 34.1, 32.1 31.9, 30.3, 25.7 (q, J = 31.5 Hz), 20.6 (q, J = 31.1 Hz).
¹⁹F NMR (565 MHz, CDCl₃) δ -68.15 (d, J = 7.6 Hz, 1F), -68.42 (d, J = 7.9 Hz, 3.5F).
HRMS (ESI, m/z): calcd for C₈H₁₂F₃I₂O⁺ [M+H]⁺: 434.8916, found: 434.8924.

diethyl (5,5,5-trifluoro-2,4-diiodopentyl)phosphonate (3ac)

The product **3ac** was purified by column chromatography as a colourless oil (74.4 mg, 73 %, 5.2:1 dr).

TLC: $R_{\rm f} = 0.2$ (Hexane/EtOAc = 10:1).

¹**H NMR** (600 MHz, CDCl₃) δ 4.54 – 4.45 (m, 2H), 4.18 – 4.03 (m, 4H), 4.20 – 4.12 (m, 1H), 2.85 – 2.71 (m, 1H), 2.63 – 2.56 (m, 1H), 2.45 – 2.37 (m, 1H), 2.20 – 2.12 (m, 1H), 1.37 – 1.29 (m, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 124.4 (q, *J* = 276.6 Hz), 62.5 (d, *J* = 6.6 Hz), 62.4 (d, *J* = 6.6 Hz),42.4, 38.9, 26.2 (q, *J* = 31.2 Hz), 23.7, 20.2 (q, *J* = 31.2 Hz), 16.6 (d, *J* = 6.0 Hz), 16.5 (d, *J* = 6.0 Hz).

¹⁹F NMR (565 MHz, CDCl₃) δ -67.29 (d, J = 8.1 Hz, 1F), -68.39 (d, J = 8.0 Hz, 5.2F). HRMS (ESI, m/z): calcd for C₉H₁₇F₃I₂O₃P⁺[M+H]⁺: 514.8951, found: 514.8954.

7,7,7-trifluoro-4,6-diiodoheptanoic acid (3ad)

The product **3ad** was purified by column chromatography as a colourless oil (65.0 mg, 63 %, 3.0:1 dr).

TLC: $R_{\rm f} = 0.21$ (Hexane/EtOAc = 7:1).

¹**H NMR** (600 MHz, CDCl₃) δ 4.76 – 4.68 (m, 0.3H, minor), 4.68 – 4.63 (m, 0.7H, major), 4.56 – 4.38 (m, 0.2H, minor), 4.34 – 4.18 (m, 0.7H, major), 2.64 – 2.54 (m, 2H), 2.51 – 2.31 (m, 2H), 2.17 – 2.05 (m, 0.6H, major), 2.03 – 1.87 (m, 0.3H, minor) , 1.87 – 1.77 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 175.9, 124.5 (q, *J* = 276.6 Hz), 78.8, 78.4, 40.1, 39.0, 28.6, 28.3, 27.5, 27.4, 20.1 (q, *J* = 31.9 Hz), 15.0 (q, *J* = 32.3 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -68.19 (d, J = 7.2 Hz, 3F), -69.48 (d, J = 8.2 Hz, 1F).

HRMS (ESI, m/z): calcd for $C_7H_{10}F_3I_2O_2^+$ [M+H]⁺: 436.8722, found: 436.8724.

4-ethyl-1,1,1-trifluoro-2,4-diiodooctane (3ae)

The product **3ae** was purified by column chromatography as a colourless oil (64.9 mg,

71 %, 1:1 dr)

TLC: $R_{\rm f} = 0.52$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 4.44 (m, 1H), 2.75 (m, 1H), 2.36 (m, 1H), 2.12 – 1.99 (m, 1H), 1.96 – 1.74 (m, 3H), 1.52 – 1.26 (m, 5H), 1.03 (m, 3H), 0.94 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 125.93 (q, J = 276.6 Hz), 65.1, 65.0, 47.9, 47.6, 44.6, 43.9, 38.1, 37.4, 29.1, 28.9, 22.6, 22.5, 18.8 (q, J = 30.29), 18.6 (q, J = 30.30), 14.1, 11.9.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -68.99 (d, J = 8.7 Hz, 1F), 69.01 (d, J = 8.7 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₁₀H₁₈F₃I₂⁺ [M+H]⁺: 448.9450, found: 448.9455.

8,8,8-trifluoro-5,7-diiodooctyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (3af)

The product **3af** was purified by column chromatography as a colourless oil (118.1 mg, 89%, 3.8:1 dr).

TLC: $R_f = 0.34$ (Hexane/EtOAc = 100:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.6 Hz, 2H), 7.50 – 7.33 (m, 4H), 7.21 – 7.11 (m, 2H), 4.60 – 4.44 (m, 0.8H, major), 4.39 – 4.27 (m, 0.2H, minor), 4.24 – 4.04 (m, 5H), 3.82 – 3.73 (m, 1H), 2.71 – 2.5 (m, 0.2H, minor), 2.50 – 2.31 (m, 0.2H, minor), 2.31 – 4.17 (m, 0.8H, major), 2.14 – 1.92 (m, 2H), 1.87 – 1.57 (m, 1.8H, major), 1.56 (d, *J* = 7.3 Hz, 3H), 1.51 – 1.38 (m, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 174.0, 160.5, 158.9, 141.9, 141.8, 135.5, 130.9, 130.8, 129.0, 128.5, 127.7, 124.43 (q, *J* = 276.5 Hz), 123.6, 115.4, 115.2, 65.5 64.4, 45.1, 45.1, 42.3, 40.0, 37.8, 36.3, 36.3, 27.7, 27.7, 26.3, 26.1, 25.98 (q, *J* = 31.4 Hz), 20.73 (q, *J* = 31.4 Hz), 18.4, 18.4

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.92 (d, J = 7.4 Hz, 1F), -68.37 (d, J = 7.7 Hz, 3.8F),

-117.42 (t, *J* = 9.8 Hz, 2.2F).

HRMS (ESI, m/z): calcd for $C_{23}H_{25}F_4I_2O_2^+$ [M+H]⁺: 662.9880, found: 662.9882.

8,8,8-trifluoro-5,7-diiodooctyl 2-(4,5-diphenyloxazol-2-yl)acetate

The product **3ag** was purified by column chromatography as a clear yellow liquid (118.5 mg, 85%, 3.5:1 dr).

TLC: $R_f = 0.37$ (Hexane/EtOAc = 20:1).

¹H NMR (600 MHz, CDCl₃) δ 7.66 – 7.61 (m, 2H), 7.60 – 7.54 (m, 2H), 7.39 – 7.29 (m, 6H), 4.59 – 4.44 (m, 0.8H, major), 4.39 – 4.29 (m, 0.2H, minor), 4.16 (t, *J* = 6.2 Hz, 2H), 4.14 – 4.07 (m, 1H), 3.20 (t, *J* = 7.5 Hz, 2H), 2.93 (t, *J* = 7.7 Hz, 2H), 2.62 – 2.51 (m, 0.2H, minor), 2.50 – 2.40 (m, 0.2H, minor), 2.30 – 2.20 (m, 0.7H, major), 2.05 – 1.95 (m, 1H), 1.82 – 1.59 (m, 3H), 1.56 – 1.45 (m, 1H).
¹³C NMR (151 MHz, CDCl₃) δ 172.0, 161.8, 145.4, 135.1, 132.5, 129.0, 128.7, 128.6, 128.5, 128.1, 127.9, 126.5, 124.4 (q, *J* = 276.7 Hz), 64.3, 64.2, 44.9, 42.3, 40.1, 37.8,

36.3, 32.4, 31.2, 27.8, 27.7, 26.0 (q, *J* = 31.6 Hz), 20.8 (q, *J* = 31.2 Hz), 26.0, 23.6.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.94 (d, J = 7.8 Hz, 1F), -68.38 (d, J = 8.0 Hz, 3.5F).

HRMS (ESI, m/z): calcd for $C_{25}H_{25}F_3I_2NO_3^+[M+H]^+$: 697.9876, found: 697.9875.

8,8,8-trifluoro-5,7-diiodooctyl 2-(1-(4-chlorobenzoyl)-6-methoxy-2-methyl-1Hindol-3-yl)acetate (3ah)

The product **3ah** was purified by column chromatography as a colourless oil (134.9 mg,

87%, 3.0:1 dr).

TLC: $R_f = 0.34$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.72 – 7.66 (m, 2H), 7.53 – 7.47 (m, 2H), 7.00 (d, J = 2.6 Hz, 1H), 6.89 (d, J = 9.1 Hz, 1H), 6.72 – 6.68 (m, 1H), 4.58 – 4.47 (m, 0.7H, major), 4.41 – 4.31 (m, 0.2H, minor), 4.20 – 4.14 (m, 3H), 4.15 – 4.06 (m, 1H), 3.86 (s, 3H), 3.70 (d, J = 1.6 Hz, 2H), 2.62 – 2.55 (m, 0.2H, minor), 2.50 – 2.42 (m, 0.3H, minor), 2.43 (s, 3H), 2.30 – 2.20 (m, 0.6H, major), 2.06 – 1.92 (m, 1.5H, major), 1.83 – 1.72 (m, 0.7H, major), 1.75 – 1.56 (m, 2H), 1.53 – 1.42 (m, 1H).

¹³**C NMR** (151 MHz, CDCl₃) δ 170.9, 168.3, 156.1, 139.3, 136.0, 133.9, 131.2, 130.8, 130.7, 129.6, 124.4 (q, *J* = 277.1 Hz), 115.0, 112.6, 111.6, 101.5, 101.5, 64.5, 55.8, 44.8, 42.3, 40.1, 37.8, 36.3, 32.4, 30.4, 27.7, 26.1, 26.0 (q, *J* = 31.4 Hz), 25.8, 20.7 (q, *J* = 31.7 Hz), 13.4.

¹⁹F NMR (565 MHz, CDCl₃) δ -67.91 (d, J = 7.3 Hz, 1F), -68.35 (d, J = 7.6 Hz, 3F). HRMS (ESI, m/z): calcd for C₂₇H₂₈ClF₃I₂NO₄⁺ [M+H]⁺: 775.9748, found: 775.9750.

5. General procedure and characterization data of products 5.

I₂ (0.35 mmol), CuCl (4 mol%) and dap (4 mol%) were dissolved in MeCN (1.0 mL), with the nitrogen atmosphere being maintained throughout the process. It is important to ensure that the solids are completely dissolved before adding CF₃CHN₂ (0.52 mmol) and alkene 4 (0.2 mmol). Subsequently, the reaction mixture is irradiated with a 455 nm LED while being magnetically stirred at room temperature (25 °C) for 12 hours. After the reaction, trace of the reaction supernatant was used for ¹⁹F NMR spectroscopic analysis to determine the dr selectivity. Then, the other mixture was directly subjected to be concentrated in vacuo and purified by flash chromatography on silica gel with petroleum ether/ethyl acetate as an eluent to afford the desired product

(4,4,4-trifluoro-1,3-diiodobutyl)benzene (5a)

The product **5a** was purified by column chromatography as a colourless oil (79.2 mg, 90 %, 1.2:1 dr).

TLC: $R_{\rm f} = 0.67$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.43 (d, *J* = 7.9 Hz, 2H), 7.38 – 7.27 (m, 3H), 5.28 (dd, *J* = 11.6, 4.7 Hz, 1H), 4.61 – 4.53 (m, 0.5H, major), 3.70 – 3.60 (m, 0.4H, minor), 2.89 – 2.77 (m, 0.5H, minor), 2.87 – 2.77 (m, 1H), 2.19 (m, 0.6H, major).

¹³C NMR (101 MHz, CDCl₃) δ 142.6, 140.4, 129.5, 129.2, 129.0, 128.8, 127.4, 127.4, 124.6 (q, J = 277.0 Hz), 123.8 (q, J = 277.0 Hz), 44.7, 43.1, 33.0, 25.7, 25.22 (q, J = 31.4 Hz), 21.95 (q, J = 31.6 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.97 (d, J = 7.9 Hz, 1.2F), -68.85 (d, J = 7.8 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₁₀H₁₀F₃I₂⁺[M+H]⁺: 440.8824, found: 440.8819.

1-methyl-4-(4,4,4-trifluoro-1,3-diiodobutyl)benzene (5b)

The product **5b** was purified by column chromatography as a colourless oil (54.2 mg, 60%, 1.2:1 dr).

TLC: $R_{\rm f} = 0.70$ (Hexane).

¹H NMR (600 MHz, CDCl₃) δ 7.26 – 7.08 (m, 4H), 5.30 – 5.19 (m, 1H), 4.64 – 4.52 (m, 0.5H, major), 3.71 – 3.61 (m, 0.4H, minor), 3.00 – 2.94 (m, 0.43H, minor), 2.86 – 2.76 (m, 1H), 2.36 (d, *J* = 3.3 Hz, 3H), 2.20 – 2.13 (m, 0.5H, major).
¹³C NMR (101 MHz, CDCl₃) δ 142.3, 140.2, 139.1, 138.9, 129.8, 129.5, 129.2, 129.0, 127.9, 127.9, 124.5 (q, *J* = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, *J* = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, *J* = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, *J* = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, *J* = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, *J* = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, *J* = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, *J* = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, *J* = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, *J* = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, *J* = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, J = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, J = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, J = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, J = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, J = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, J = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, J = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, J = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, J = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, J = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, J = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, J = 276.9 Hz), 124.4, 124.3, 44.5, 43.1, 33.1, 25.9, 25.1 (q, J = 276.9 Hz), 124.4, 124.3, 1

31.4 Hz), 21.8 (q, *J* = 31.4 Hz), 21.3.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.98 (d, J = 8.0 Hz, 1.2F), -68.85 (d, J = 8.0 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₁₁H₁₂F₃I₂⁺ [M+H]⁺: 454.8981, found: 454.8978.

1-(tert-butyl)-4-(4,4,4-trifluoro-1,3-diiodobutyl)benzene (5c)

The product **5c** was purified by column chromatography as a colourless oil (78.4 mg, 79%, 1.9:1 dr).

TLC: $R_{\rm f} = 0.67$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.43 – 7.39 (m, 2H), 7.35 – 7.30 (m, 2H), 4.87 (d, *J* = 10.0 Hz, 1H), 4.70 – 4.61 (m, 0.6H, major), 3.88 – 3.77 (m, 0.3H, minor), 2.52 – 2.43 (m, 0.4H, major), 2.40 – 2.33 (m, 0.4H, minor), 2.22 – 2.15 (m, 0.4H, minor), 2.11 – 2.04 (m, 0.5H, major), 1.32 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 151.9, 151.4, 140.1, 138.7, 126.0, 125.9, 125.7, 125.5, 124.5 (q, *J* = 276.9 Hz), 73.6, 72.4, 41.7, 41.6, 34.7, 34.6, 31.3, 25.1 (q, *J* = 31.4 Hz), 21.83 (q, *J* = 31.4 Hz).

¹⁹F NMR (565 MHz, CDCl₃) δ -68.66 (d, J = 7.6 Hz, 1F), -68.96 (d, J = 8.2 Hz, 1.9F). HRMS (ESI, m/z): calcd for C₁₄H₁₈F₃I₂⁺[M+H]⁺: 496.9450, found: 496.9454.

4-(4,4,4-trifluoro-1,3-diiodobutyl)phenyl acetate (5d)

The product **5d** was purified by column chromatography as a colourless oil (67 mg, 60%, 1.4:1 dr).

TLC: $R_f = 0.58$ (Hexane/EtOAc = 30:1).

¹H NMR (600 MHz, CDCl₃) δ 8.04 – 7.98 (m, 2H), 7.52 – 7.45 (m, 2H), 5.31 – 5.22

(m, 1H), 4.60 – 4.49 (m, 0.5H, major), 3.65 – 3.62 (m, 0.5H, minor), 3.00 – 2.90 (m, 0.5H, minor), 2.84 – 2.70 (m, 1H), 2.30 (s, 3H), 2.24 – 2.12 (m, 0.6H, major).
¹³C NMR (101 MHz, CDCl₃) δ169.1, 150.6 (d, *J* = 25.0 Hz), 140.0, 137.8, 128.5, 128.4, 124.6 (q, *J* = 276.6 Hz), 122.5, 122.2, 44.6, 43.1, 31.7, 24.60, 25.0 (q, *J* = 31.8 Hz), 21.8 (q, *J* = 31.6 Hz), 21.2 (d, *J* = 4.2 Hz).

¹⁹F NMR (565 MHz, CDCl₃) δ -68.02 (d, J = 8.0 Hz, 1.4F), -68.80 (d, J = 7.8 Hz, 1F). HRMS (ESI, m/z): calcd for C₁₂H₁₂F₃I₂O₂⁺ [M+H]⁺: 498.8879, found: 498.8877.

1-chloro-4-(4,4,4-trifluoro-1,3-diiodobutyl)benzene (5e)

The product **5e** was purified by column chromatography as a colourless oil (84 mg, 88%, dr 1.2:1 dr).

TLC: $R_{\rm f} = 0.70$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.40 – 7.29 (m, 4H), 5.26 – 5.18 (m, 1H), 4.57 – 4.50 (m, 0.6H, major), 3.67 – 3.58 (m, 0.5H, minor), 2.96 – 2.89 (m, 0.5H, minor), 2.85 – 2.72 (m, 1H), 2.16 – 2.13 (m, 0.6H, major).

¹³C NMR (101 MHz, CDCl₃) δ 141.1, 139.1, 134.8, 134.5, 129.8, 129.4, 128.8, 128.7, 122.7 (q, J = 276.7), 44.6, 43.1, 31.3, 24.1, 24.9 (q, J = 31.6), 21.7 (q, J = 31.6). ¹⁹F NMR (565 MHz, CDCl₃) δ -68.01 (d, J = 7.7 Hz, 1.2F), -68.86 (d, J = 7.7 Hz, 1F). HRMS (ESI, m/z): calcd for C₁₀H₉ClF₃I₂⁺ [M+H]⁺: 474.8434, found: 474.8428.

1-bromo-4-(4,4,4-trifluoro-1,3-diiodobutyl)benzene (5f)

The product **5f** was purified by column chromatography as a colourless oil (89 mg, 86%, 1.2:1 dr).

TLC: $R_{\rm f} = 0.71$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.48 (t, *J* = 8.3 Hz, 2H), 7.30 (dd, *J* = 8.5, 3.3 Hz, 2H), 5.27 – 5.17 (m, 1H), 4.57 – 4.48 (m, 0.6H, major), 3.66 – 3.57 (m, 0.5H, minor), 2.95 – 2.88 (m, 0.4H, minor), 2.85 – 2.72 (m, 1H), 2.19 – 2.11 (m, 0.6H, major).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.1, 139.1, 134.8, 134.5, 129.8, 129.4, 128.8, 128.7, 124.6 (q, *J* = 276.7), 123.6 (q, *J* = 276.9), 44.6, 43.1, 31.3, 24.1, 24.9 (q, *J* = 31.6), 21.7 (q, *J* = 31.6).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.98 (d, J = 8.1 Hz, 1.2F), -68.83 (d, J = 8.1 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₁₀H₉BrF₃I₂⁺ [M+H]⁺: 518.7929, found: 518.7923.

1-(4,4,4-trifluoro-1,3-diiodobutyl)-4-(trifluoromethyl)benzene (5g)

The product **5g** was purified by column chromatography as a colourless oil (72.1 mg, 70%, 1.4:1).

TLC: $R_{\rm f} = 0.66$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.65 – 7.51 (m, 4H), 5.32 – 5.21 (m, 1H), 4.60 – 4.50 (m, 0.6H, major), 3.68 – 3.57 (m, 0.4H, minor), 3.04 – 2.90 (m, 0.4H, minor), 2.88 – 2.73 (m, 1H), 2.23 – 2.13 (m, 0.6H, major).

¹³C NMR (101 MHz, CDCl₃) δ 146.2, 144.4, 130.7 (q, *J* = 32 Hz), 127.8, 127.7, 126.4 (q, *J* = 3.9 Hz), 126.1 (q, *J* = 3.9 Hz), 123.9 (q, *J* = 276.7), 44.1, 42.7, 30.3, 24.7 (q, *J* = 31.9 Hz), 21.4 (q, *J* = 31.9 Hz), 23.2.

¹⁹F NMR (565 MHz, CDCl₃) δ -62.81 (s, 1F), -62.85 (s, 0.8F), -68.06 (d, J = 7.7 Hz, 1.4F), -68.88 (d, J = 7.6 Hz, 1F).

HRMS (ESI, m/z): calcd for $C_{11}H_9F_6I_2^+[M+H]^+$: 508.8698, found: 508.8693.

methyl 4-(4,4,4-trifluoro-1,3-diiodobutyl)benzoate (5h)

The product **5h** was purified by column chromatography as a colourless oil (67 mg, 66%, 1.2:1 dr).

TLC: $R_f = 0.61$ (Hexane/EtOAc = 30:1).

¹H NMR (600 MHz, CDCl₃) δ 8.04 – 7.98 (m, 2H), 7.52 – 7.45 (m, 2H), 5.31 – 5.22 (m, 1H), 4.60 – 4.49 (m, 0.5H, major), 3.92 (s, 3H), 3.65 – 3.55 (m, 0.4H, minor), 3.00 – 2.92 (m, 0.5H, minor), 2.88 – 2.74 (m, 1H), 2.24 – 2.12 (m, 0.6H, major).
¹³C NMR (101 MHz, CDCl₃) δ166.4 (d, J = 4.3 Hz), 147.2, 145.4, 130.8, 130.5, 127.5,

127.4, 124.6 (q, *J* = 276.6 Hz), 52.4, 44.3, 42.7, 31.1, 24.9 (q, *J* = 31.4 Hz), 24.0, 21.5 (q, *J* = 31.6 Hz).

¹⁹F NMR (565 MHz, CDCl₃) δ -68.02 (d, J = 8.0 Hz, 1.2F), -68.90 (d, J = 7.9 Hz, 1F). HRMS (ESI, m/z): calcd for C₁₂H₁₂F₃I₂O₂⁺ [M+H]⁺: 498.8879, found: 498.8876.

1-(chloromethyl)-4-(4,4,4-trifluoro-1,3-diiodobutyl)benzene (5i)

The product **5i** was purified by column chromatography as as a colourless oil (90.1 mg, 92%, 1.5:1 dr).

TLC: $R_{\rm f} = 0.63$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.43 (d, *J* = 7.8 Hz, 2H), 7.40 – 7.34 (m, 2H), 7.30 – 7.21 (m, 1H), 5.32 – 5.20 (m, 1.13H, major), 4.57 (s, 2H), 4.56 – 4.36 (m, 0.5H, minor), 3.71 – 3.60 (m, 0.5H, major), 3.00 – 2.91 (m, 0.5H, minor), 2.88 – 2.75 (m, 1.3H, major), 2.22 – 2.13 (m, 0.6H, minor).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.6, 140.6, 138.2, 138.0, 129.6, 129.3, 127.7, 127.6, 123.5 (q, *J* = 274.7 Hz), 45.5, 44.3, 42.8, 31.9, 25.0 (q, *J* = 31.6 Hz), 24.8, 21.8 (q, *J* = 31.7 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.97 (d, J = 7.9 Hz, 1.5F), -68.82 (d, J = 7.5 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₁₁H₁₁ClF₃I₂⁺[M+H]⁺: 488.8591, found: 488.8587.

1-methyl-3-(4,4,4-trifluoro-1,3-diiodobutyl)benzene (5j)

The product **5j** was purified by column chromatography as a colourless oil (63.4 mg, 68%, 1.2:1 dr).

TLC: $R_{\rm f} = 0.68$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.32 (d, *J* = 7.5 Hz, 1H), 7.25 – 7.21 (m, 2H), 7.17 – 7.08 (m, 1H), 5.31 – 5.20 (m, 1H), 4.57 – 4.65 (m, 0.5H, major), 3.66 – 3.57 (m, 0.5H, minor), 2.97 – 2.95 (m, 0.5H, minor), 2.86 – 2.76 (m, 1H), 2.40 – 2.31 (m, 3H), 2.21 – 2.12 (m, 0.5H, major).

¹³C NMR (101 MHz, CDCl₃) δ 142.5, 140.3, 139.7, 139.3, 139.1, 139.0, 138.9, 137.4, 130.2, 129.9, 129.6, 129.4, 129.1, 128.1, 127.3, 124.6 (q, *J* = 275.1 Hz), 44.6, 43.2, 33.3, 26.1, 25.3 (q, *J* = 31.4 Hz), 22.0 (q, *J* = 31.4 Hz), 21.5, 21.4.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.99 (d, J = 8.0 Hz, 1.2F), -68.87 (d, J = 8.1 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₁₁H₁₂F₃I₂⁺[M+H]⁺: 454.8981, found: 454.8978.

1-methoxy-3-(4,4,4-trifluoro-1,3-diiodobutyl)benzene (5k)

The product **5k** was purified by column chromatography as a colourless oil (73 mg, 77%, 1.7:1 dr).

TLC: $R_{\rm f} = 0.67$ (Hexane).

¹**H** NMR (600 MHz, CDCl₃) δ 7.29 – 7.22 (m, 1H), 7.01 (d, J = 7.5 Hz, 1H), 6.96 –

6.92 (m, 1H), 6.87 – 6.80 (m, 1H), 5.28 – 5.17 (m, 1H), 4.58 – 4.48 (m, 0.7H, major), 3.87 – 3.79 (m, 3H), 3.72 – 3.62 (m, 0.5H, minor), 3.00 – 2.91 (m, 0.4H, minor), 2.84 – 2.74 (m, 1H), 2.24 – 2.13 (m, 0.7H, major).

¹³C NMR (101 MHz, CDCl₃) δ 160.0, 159.9, 143.8, 141.7, 130.4, 130.1, 124.5 (q, J = 276.6 Hz), 119.5 (d, J = 6.3 Hz), 114.1, 114.1, 113.2, 113.0, 55.3 (d, J = 3.1 Hz), 44.5, 43.1, 32.5, 24.9 (q, J = 32.0 Hz), 21.7 (q, J = 31.6 Hz).

¹⁹F NMR (565 MHz, CDCl₃) δ -67.99 (d, J = 8.2 Hz, 1.7F), -68.90 (d, J = 7.8 Hz, 1F). HRMS (ESI, m/z): calcd for C₁₁H₁₂F₃I₂O⁺ [M+H]⁺: 470.8930, found: 470.8926.

1-methyl-2-(4,4,4-trifluoro-1,3-diiodobutyl)benzene (5l)

The product **51** was purified by column chromatography as a colourless oil (59 mg, 65%, 1.3:1 dr).

TLC: $R_{\rm f} = 0.70$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.56 – 7.39 (m, 1H), 7.24 – 7.12 (m, 3H), 5.57 – 5.40 (m, 1H), 4.70 – 4.55 (m, 0.5H, major), 3.92 – 3.79 (m, 0.4H, minor), 3.28 – 3.06 (m, 0.5H, minor), 2.92 – 2.80 (m, 1H), 2.41 (s, 1.3H, major), 2.37 (s, 1.7H, major), 2.27 – 2.17 (m, 0.59H, minor).

¹³C NMR (101 MHz, CDCl₃) δ140.3, 135.7, 134.5, 131.6, 131.0, 128.7, 128.6, 127.4, 127.3, 127.2, 124.6 (q, *J* = 275.1 Hz), 43.1, 42.5, 29.7, 25.2 (q, *J* = 31.4 Hz), 21.6 (q, *J* = 31.4 Hz), 19.4, 19.1.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -68.01 (d, J = 7.8 Hz, 1.3F), -69.00 (d, J = 7.7 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₁₁H₁₂F₃I₂⁺[M+H]⁺: 454.8981, found: 454.8979.

2-(4,4,4-trifluoro-1,3-diiodobutyl)naphthalene (5m)

The product **5m** was purified by column chromatography as a colourless oil (67.6 mg, 68%, 1.1:1 dr).

TLC: $R_{\rm f} = 0.65$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.90 – 7.80 (m, 4H), 7.57 – 7.48 (m, 3H), 5.47 (dd, *J* = 11.5, 3.6 Hz, 1H), 4.65 – 4.56 (m, 0.5H, major), 3.68 – 3.60 (m, 0.5H, minor), 3.13 – 3.05 (m, 0.4H, minor), 2.99 – 2.87 (m, 1H), 2.32 – 2.23 (m, 0.5H, major).

¹³**C NMR** (101 MHz, CDCl₃) δ 139.6, 137.4, 133.3, 133.2, 133.1, 129.8, 129.2, 128.07 (d, *J* = 2.5 Hz), 127.80 (d, *J* = 6.5 Hz), 126.95 (d, *J* = 1.9 Hz), 126.8, 125.6, 125.4, 124.6, 124.5 (q, *J* = 276.6 Hz), 44.3, 43.0, 33.4, 26.3, 24.9 (q, *J* = 31.5 Hz), 21.9 (q, *J* = 31.5 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.94 (d, J = 7.4 Hz, 1.1F), -68.90 (d, J = 8.0 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₁₄H₁₂F₃I₂⁺ [M+H]⁺: 490.8981, found: 490.8978.

4-(4,4,4-trifluoro-1,3-diiodobutyl)pyridine (5n)

The product **5n** was purified by column chromatography as a yellow oil (83.8 mg, 95%, 1.4:1 dr).

TLC: $R_{\rm f} = 0.27$ (Hexane/EtOAc = 5:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.63 – 8.57 (m, 2H), 7.33 – 7.30 (m, 2H), 5.15 – 5.09 (m, 1H), 4.57 – 4.47 (m, 0.6H, major), 3.67 – 3.58 (m, 0.5H, minor), 2.95 – 2.86 (m, 0.4H, minor), 2.84 – 2.69 (m, 1H), 2.20 – 2.12 (m, 0.6H, major).

¹³**C NMR** (101 MHz, CDCl₃) δ 150.9, 150.7, 149.1, 124.4 (q, *J* = 276.9 Hz), 122.0, 121.8, 43.5, 41.9, 28.7, 21.7, 24.6 (q, *J* = 31.7 Hz), 21.1 (q, *J* = 32.0 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -68.08 (d, J = 7.4 Hz, 1.4F), -68.87 (d, J = 7.7 Hz, 1F).

HRMS (ESI, m/z): calcd for $C_9H_9F_3I_2N^+[M+H]^+$: 441.8776, found: 441.8772.

2-(4,4,4-trifluoro-1,3-diiodobutyl)pyridine (50)

The product **50** was purified by column chromatography as a yellow oil (84.7 mg, 96%, 1.2:1 dr).

TLC: $R_{\rm f} = 0.29$ (Hexane/EtOAc = 5:1).

¹H NMR (600 MHz, CDCl₃) δ 8.60 (dd, J = 17.2, 4.8 Hz, 1H), 7.69 – 7.62 (m, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.20 (q, J = 6.4 Hz, 1H), 5.40 – 5.31 (m, 1H), 4.62 – 4.52 (m, 0.6H, major), 3.90 – 3.81 (m, 0.5H, minor), 3.36 – 3.28 (m, 0.5H, minor), 3.09 – 3.01 (m, 0.6H, major), 2.79 – 2.71 (m, 0.5H, minor), 2.33 – 2.25 (m, 0.6H, major).
¹³C NMR (101 MHz, CDCl₃) δ 160.3, 158.6, 150.4, 150.0, 137.3 (d, J = 8.2 Hz), 123.7

(q, J = 277.0 Hz), 123.4 (d, J = 2.3 Hz), 122.7, 122.0, 41.8, 40.6, 33.2, 26.6, 25.4 (q, J = 31.6 Hz), 22.7 (q, J = 31.5 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.91 (d, J = 7.4 Hz, 1.2F), -68.89 (d, J = 7.7 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₉H₉F₃I₂N⁺ [M+H]⁺: 441.8776, found: 441.8773.

1-(but-3-en-1-yl)-4-(4,4,4-trifluoro-1,3-diiodobutyl)benzene (5p)

The product **5p** was purified by column chromatography as a colourless oil (81 mg, 80%, 1.2:1 dr).

TLC: $R_{\rm f} = 0.63$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.34 (d, *J* = 7.7 Hz, 2H), 7.16 (d, *J* = 7.7 Hz, 2H), 5.91 – 5.81 (m, 1H), 5.27 (d, *J* = 11.0 Hz, 1H), 5.10 – 4.95 (m, 2H), 4.60 – 4.52 (m, 0.6H, major), 4.60 – 4.52 (m, 0.4H, minor), 3.00 – 2.93 (m, 0.4H, minor), 2.87 – 2.76 (m,

1H), 2.74 – 2.66 (m, 2H), 2.42 – 2.33 (m, 2H), 2.22 – 2.10 (m, 0.6H, major).
¹³C NMR (101 MHz, CDCl₃) δ142.9, 142.7, 140.0, 137.8, 129.4, 129.1, 127.3, 127.2, 124.5 (q, *J* = 276.2 Hz), 115.2, 44.5, 43.1, 35.2, 35.1, 35.1, 33.2, 26.0, 25.2 (q, *J* = 31.6 Hz), 21.9 (q, *J* = 31.7 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.97 (d, J = 7.8 Hz, 1.2F), -68.83 (d, J = 8.1 Hz,1F). **HRMS** (ESI, m/z): calcd for C₁₄H₁₆F₃I₂⁺ [M+H]⁺: 494.9294, found: 494.9296.

ethyl 2,2-difluoro-4-iodo-6-(4-(4,4,4-trifluoro-1,3-diiodobutyl)phenyl)hexanoate (5q)

The product **5q** was purified by column chromatography as a colorless liquid (105.6 mg, 71%, 1.2:1 dr).

TLC: $R_f = 0.42$ (Hexane/EtOAc = 50:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.38 – 7.32 (m, 2H), 7.18 (dd, J = 8.2, 2.9 Hz, 2H), 5.30 – 5.22 (m, 1H), 4.59 – 4.50 (m, 0.5H, minor), 4.35 – 4.27 (m, 2H), 4.21 – 4.11 (m, 0.7H, major), 3.71 – 3.59 (m, 0.4H, minor), 3.02 – 2.93 (m, 1.2H, major), 2.92 – 2.84 (m, 1H), 2.84 – 2.74 (m, 2H), 2.74 – 2.66 (m, 1H), 2.20 – 1.99 (m, 2H), 1.37 – 1.31 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.3 (t, J = 32.2 Hz), 141.1, 140.9, 140.5, 138.3, 129.5, 129.2, 127.5, 127.4, 125.4 (q, J = 277.6 Hz), 115.9 (t, J = 252.4 Hz), 63.3, 45.3 (t, J = 23.1 Hz), 44.5, 43.0, 41.4 (d, J = 5.1 Hz), 35.3 (d, J = 9.2 Hz), 32.8, 25.7 (d, J = 4.2 Hz), 25.1 (q, J = 34.9 Hz), 22.2 (d, J = 4.3 Hz), 21.8 (q, J = 29.2 Hz), 13.9. ¹⁹F NMR (565 MHz, CDCl₃) δ -68.00 (d, J = 7.9 Hz, 1.2F), -68.86 (dd, J = 13.1, 8.0 Hz, 1F), -101.41 to -102.08 (m, 0.9F), -106.23 (tt, J = 15.6, 7.5 Hz), -106.69 (tt, J = 15.7, 7.4 Hz).

HRMS (ESI, m/z): calcd for C₁₈H₂₁F₅I₃O₂ [M+H]⁺: 744.8596, found: 744.8599.

4-(4,4,4-trifluoro-1,3-diiodobutyl)benzyl

2-(4-chlorophenoxy)-2-

methylpropanoate (5r)

The product **5r** was purified by column chromatography as a colorless liquid (94.6 mg, 71%, 1.5:1 dr).

TLC: $R_f = 0.38$ (Hexane/EtOAc = 20:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.25 – 7.21 (m, 2H), 7.17 – 7.09 (m, 2H), 6.74 – 6.66 (m, 2H), 5.30 – 5.23 (m, 1H), 5.16 (s, 2H), 4.60 – 4.50 (m, 0.6H, major), 3.68 – 3.60 (m, 0.4H, minor), 2.99 – 2.91 (m, 0.4H, minor), 2.87 – 2.75 (m, 1H), 2.21 – 2.10 (m, 0.6H, major), 1.61 (s, 2H), 1.60 (s, 4H).

¹³**C NMR** (151 MHz, CDCl₃) δ 173.8, 173.7, 154.0, 142.8, 140.56, 136.0, 135.8, 129.2, 129.1, 129.1, 127.5, 127.5, 123.6 (q, *J* = 276.3 Hz), 120.4, 120.3, 79.6, 79.5, 66.5, 44.3, 42.8, 32.0, 25.4, 24.9, 25.0 (q, *J* = 31.6 Hz), 21.7 (q, *J* = 31.6 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.95 (d, J = 7.8 Hz, 1.5F), -68.78 (d, J = 7.6 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₂₁H₂₁ClF₃I₂O⁺ [M+H]⁺: 666.9221, found: 666.9225.

4-(4,4,4-trifluoro-1,3-diiodobutyl)benzyl 4-([1,1'-biphenyl]-4-yl)-4-oxobutanoate (5s)

The product **5s** was purified by column chromatography as a colorless liquid (79.1 mg, 56%, 1.4:1 dr).

TLC: $R_f = 0.26$ (Hexane/EtOAc = 15:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.06 (dd, *J* = 8.3, 2.4 Hz, 2H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 7.6 Hz, 2H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.45 – 7.39 (m, 3H), 7.37 – 7.33 (m,
2H), 5.31 – 5.24 (m, 1H), 5.14 (s, 2H), 4.60 – 4.51 (m, 0.6H, major), 3.68 – 3.59 (m, 0.4H, minor), 3.38 (m, 2H), 3.03 – 2.91 (m, 0.4H, minor), 2.90 – 2.84 (m, 2H), 2.24 – 2.13 (m, 0.8H, major), 2.83 – 2.77(m, 0.5H, minor).

¹³**C NMR** (151 MHz, CDCl₃) δ 197.6, 172.7, 172.7, 146.0, 142.3, 140.2, 139.8, 136.8, 136.6, 135.2, 129.0, 129.0, 128.8, 128.7, 128.3, 127.5, 127.5, 127.3, 123.5 (q, *J* = 276.9 Hz), 65.8, 65.8, 44.33, 42.96, 33.4, 33.4, 32.2, 28.3, 25.0 (q, *J* = 31.6 Hz), 21.8 (q, *J* = 31.6 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -67.96 (d, J = 7.5 Hz, 1.4F), -68.81 (d, J = 8.1 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₂₇H₂₄F₃I₂O₃⁺ [M+H]⁺: 706.9767, found: 706.9770.

6. Follow-up chemistry

6.1 Gram scale preparation of product 3a, 3b

To a 250-mL Schlenk flask equipped with a magnetic stir bar were added corresponding olefin (5.0 mmol), I_2 (2.28 g, 9 mmol) were dissolved in DCM (20 mL) under N₂ atmosphere. Then CF₃CHN₂ (16.7 mL, 10 mmol) were added with syringe at 0 °C. The mixture was stirred at 0 °C for 30 minutes and then irradiated under 30 W blue LED for 24 hours. Upon the completion of reaction, the mixture was directly subjected to be concentrated in vacuo and purified by flash chromatography on silica gel with petroleum ether as an eluent to give the product (**3a**, 1.60g, 71%; **3b**, 1.71g,

73%).

6.2 Gram scale preparation of product 5a

To a 250-mL Schlenk flask equipped with a magnetic stir bar were added corresponding I₂ (2.28 g, 9 mmol), CuCl (4 mol%), dap (4 mol%) were dissolved in MeCN (20 mL) under N₂ atmosphere (Note: solids should be completely dissolved). Then olefin (5.0 mmol) and CF₃CHN₂ (16.7 mL, 10 mmol) were added with syringe at 0 °C. The mixture was stirred at 0 °C for 30 minutes and then irradiated under 30 W blue LED for 24 hours. Upon the completion of reaction, the mixture was directly subjected to be concentrated in vacuo and purified by flash chromatography on silica gel with petroleum ether as an eluent to give the product **5a** (1.63g, 74%).

6.3 Synthetic transformations of the product 3a or 3b or 5a.

6.3.1 Nucleophilic substitution reaction

(1-azido-4,4,4-trifluoro-3-iodobutyl)benzene (6a)

5a (89.2 mg, 0.2 mmol) was dissolved in 2.0 mL DMF in a penicillin bottle. The reactants, NaN₃ (40.5 mg, 0.50 mmol) were added separately, and the reaction was allowed to proceed for 24 hours. The mixture was then partitioned between water and EtOAc, the organic layer was collected, dried over Na₂SO₄ evaporated under vacuum and purified by flash chromatography with Pe/EA (10:1) to furnish 56.8 mg (80%, 12.4:1 dr) of **6a** as a colorless oil.

TLC: $R_{\rm f} = 0.34$ (PE/EA = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.47 – 7.35 (m, 5H), 4.69 (dd, *J* = 9.5, 5.8 Hz, 1H), 3.77 – 3.67 (m, 1H), 2.43 – 2.29 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 136.5, 129.5, 127.2, 124.3 (q, *J* = 276.5 Hz), 65.2, 39.1, 18.7 (q, *J* = 32.0 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -68.78 (d, J = 7.7 Hz, 12.4F), -68.91 (d, J = 7.6 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₁₀H₁₀F₃IN₃⁺ [M+H]⁺: 355.9872, found: 355.9877.

(3-azido-6,6,6-trifluoro-5-iodohexyl)benzene (6b)

3b (94.3 mg, 0.2 mmol) was dissolved in 2.0 mL DMF in a penicillin bottle. The reactants, NaN₃ (40.5 mg, 0.50 mmol) were added separately, and the reaction was allowed to proceed for 24 hours. The mixture was then partitioned between water and EtOAc, the organic layer was collected, dried over Na₂SO₄ evaporated under vacuum and purified by flash chromatography with Hexane/EtOAc (10:1) to furnish 65.1 mg (85%) of **6b** as a colorless oil.

TLC: $R_f = 0.24$ (Hexane/EtOAc = 10:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.32 (t, *J* = 7.5 Hz, 2H), 7.22 (dd, *J* = 18.4, 7.4 Hz, 3H), 4.23 (h, *J* = 7.6 Hz, 1H), 3.55 – 3.48 (m, 1H), 2.95 – 2.60 (m, 2H), 2.22 (t, *J* = 7.2 Hz, 2H), 1.88 – 1.73 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 140.5, 128.8, 128.5, 126.5, 124.7 (q, J = 276.6 Hz),
61.5, 38.9, 35.5, 32.0, 17.2 (q, J = 31.4 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -68.17 (d, J = 7.8 Hz).

HRMS (ESI, m/z): calcd for $C_{12}H_{14}F_3IN_3^+[M+H]^+$: 384.0185, found: 384.0180.

phenyl(6,6,6-trifluoro-5-iodo-1-phenylhexan-3-yl)sulfane (6c)

Sodium thiophenolate (53.1 mg, 0.4 mmol), **3b** (94.1 mg, 0.2 mmol) were added to 2.0 mL dry DMF. The resulting mixture was stirred at room temperature for 24 hours. The mixture was then partitioned between water and EtOAc, the organic layer was collected, dried over Na₂SO₄ evaporated under vacuum and purified by flash chromatography with PE/EA (100:1) to furnish 65.8 mg (73%, 3.5:1 dr) of **6c** as a colorless oil.

TLC: $R_{\rm f} = 0.55$ (PE/EA = 100:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.44 – 7.38 (m, 2H), 7.34 – 7.24 (m, 5H), 7.23 – 7.12 (m, 3H), 4.88 – 4.74 (m, 0H), 4.37 – 4.27 (m, 1H), 3.26 – 3.11 (m, 1H), 2.99 – 2.76 (m, 2H), 2.27 – 1.72 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 141.2, 134.2, 132.1, 129.3, 128.6, 128.6, 128.3, 126.3, 48.5, 37.5 (d, *J* = 14.9 Hz), 33.1, 23.3 (q, *J* = 31.4 Hz).

¹⁹F NMR (565 MHz, CDCl₃) δ -68.35 (d, J = 7.4 Hz, 3.5F), -68.53 (d, J = 8.2 Hz, 1F). HRMS (ESI, m/z): calcd for C₁₈H₁₉F₃IS⁺ [M+H]⁺: 451.0204, found: 451.0209.

(4,4,4-trifluoro-3-iodo-1-thiocyanatobutyl)benzene (6d)

A flame-dried Schlenk flask was charged with **5a** (89.2mg, 0.20 mmol), NaSCN (40.5 mg, 0.50 mmol), Na₂CO₃ (53.0 mg, 0.50 mmol), dissolved in anhydrous MeCN (2.0 mL, 0.1 M) and magnetically stirred at room temperature (25 °C) for 12 h. The reaction was monitored by TLC. Afterwards, the reaction mixture was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (hexanes to hexanes / EtOAc 10:1) to yield 63.1 mg (85%, 1:4.2 dr) of **6d** as a colorless oil

TLC: $R_{\rm f} = 0.49$ (PE/EA = 10:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.48 – 7.37 (m, 5H), 4.63 (dd, *J* = 11.7, 4.1 Hz, 1H), 4.51 – 4.39 (m, 1H), 3.66 (m, 1H), 2.85 – 2.56 (m, 2H).

¹³**C NMR** (151 MHz, CDCl₃) δ 137.4, 134.4, 130.1, 129.9, 129.6, 129.5, 127.6, 127.3, 124.0 (q, *J* = 276.7 Hz), 110.5, 109.5, 38.4, 38.3.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -68.10 (d, J = 7.8 Hz, 1F), -69.01 (d, J = 7.8 Hz, 4.2F). **HRMS** (ESI, m/z): calcd for C₁₁H₁₀F₃INS⁺[M+H]⁺: 371.9531, found:371.9533.

(6,6,6-trifluoro-5-iodo-3-thiocyanatohexyl)benzene (6e)

A flame-dried Schlenk flask was charged with **3b** (93.2 mg, 0.20 mmol), NaSCN (40.5 mg, 0.50 mmol), Na₂CO₃ (53.0 mg, 0.50 mmol), dissolved in anhydrous MeCN (2.0 mL, 0.1 M) and then magnetically stirred at room temperature (25 °C) for 12 h. The reaction was monitored by TLC. Afterwards, the reaction mixture was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (Hexanes to Hexanes / EtOAc 10:1) to yield 55.1 mg (69%, dr 9.6:1) of **6e** as a colorless oil

TLC: $R_f = 0.47$ (Hexanes / EtOAc = 10:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.33 (t, *J* = 7.5 Hz, 2H), 7.23 (dd, *J* = 22.6, 7.4 Hz, 3H), 4.29 – 4.20 (m, 1H), 3.17 – 3.09 (m, 1H), 3.04 – 2.90 (m, 1H), 2.81 – 2.72 (m, 1H), 2.53 – 2.36 (m, 2H), 2.11 – 1.92 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 139.3, 128.9, 128.5, 125.9 (q, J = 276.6 Hz), 109.5, 48.7, 39.8, 34.7, 32.6, 18.2 (q, J = 31.7 Hz).

¹⁹F NMR (565 MHz, CDCl₃) δ -68.21 (d, *J* = 7.6 Hz, 9.6F), -68.76 (d, *J* = 7.7 Hz, 1F). HRMS (ESI, m/z): calcd for C₁₃H₁₄F₃ISN⁺ [M+H]⁺: 399.9844, found: 399.9846.

1,3-diphenyl-5-(trifluoromethyl)pyrazolidine (6f)

A flame-dried Schlenk flask was charged with **5a** (89.2 mg, 0.20 mmol), phenylhydrazine (49.3 μ L, 54.1 mg, 0.5 mmol), Na₂CO₃ (53.0 mg, 0.50 mmol), dissolved in anhydrous MeCN (2.0 mL, 0.1 M) and magnetically stirred at room temperature (25 °C) for 24 h. The reaction was monitored by TLC. Afterwards, the reaction mixture was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (Hexanes to Hexanes / EtOAc 30:1) to yield 26.6 mg (61%) of **6f** as a colorless oil.

TLC: $R_{\rm f} = 0.21$ (PE/EA = 30:1).

¹**H** NMR (600 MHz, CDCl₃) δ 7.45 – 7.39 (m, 4H), 7.34 – 7.30 (m, 1H), 7.23 – 7.19 (m, 2H), 7.08 – 7.04 (m, 2H), 6.85 – 6.81 (m, 1H), 4.90 (t, *J* = 7.2 Hz, 1H), 4.59 (d, *J* = 7.5 Hz, 1H), 3.91 – 3.80 (m, 1H), 2.92 – 2.84 (m, 1H), 2.50 – 2.40 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 151.6, 142.6, 129.2, 128.8, 127.6, 125.8, 119.5, 114.1,
67.2, 59.4 (q, J = 31.4 Hz), 38.3.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -74.84 (d, J = 8.2 Hz).

HRMS (ESI, m/z): calcd for $C_{16}H_{16}F_3N_2^+$ [M+H]⁺: 293.1266, found: 293.1264.

6.3.2 Elimination reaction

(5,5,5-trifluoropenta-1,3-dien-1-yl)benzene (6g)

A Schlenk flask was charged with **3a** (90.3 mg, 0.20 mmol), KOH (67.3 mg, 1.20 mmol), dissolved in MeCN (5 mL) and magnetically stirred under reflux for 2 h. The reaction was monitored by TLC. Afterwards the reaction mixture was allowed to cool down to room temperature, acidified with HCl (1.0 M), subsequently neutralized with

saturated aqueous NaHCO₃ and extracted three times with EtOAc. The combined organic phase was dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (Hexanes) to yield 42.2 mg (35.8 mg, 90%) of **6g** as a colorless oil.

TLC: $R_{\rm f} = 0.8$ (Hexanes).

¹H NMR (600 MHz, CDCl₃) δ 7.47 – 7.43 (m, 2H), 7.39 – 7.35 (m, 2H), 7.33 – 7.30 (m, 1H), 6.94 – 6.88 (m, 1H), 6.85 – 6.74 (m, 2H), 5.85 – 5.77 (m, 1H).
¹³C NMR (151 MHz, CDCl₃) δ 139.5, 137.7 (d, J = 6.9 Hz), 137.6 (d, J = 7.1 Hz), 136.0, 129.1, 129.0, 127.2, 125.0, 118.5 (q, J = 33.6 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -63.20 (d, J = 6.9 Hz).

HRMS (ESI, m/z): calcd for $C_{11}H_{10}F_3^+$ [M+H]⁺: 199.0735, found: 199.0731.

(5,5,5-trifluoro-4-iodopent-1-en-1-yl)benzene (6h)

A flame-dried Schlenk flask was charged with 3a (90.3 mg, 0.20 mmol), sodium benzenesulfinate (65.7 mg, 0.40 mmol), dissolved in anhydrous DMF (2.0 mL, 0.1 M) and magnetically stirred at room temperature (25 °C) for 24 h. The reaction was monitored by TLC. Afterwards, the reaction mixture was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (Hexanes) to yield 45.1 mg (69%) of **6h** as a colorless oil.

TLC: $R_{\rm f} = 0.65$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.40 – 7.37 (m, 2H), 7.35 – 7.31 (m, 2H), 7.29 – 7.24 (m, 1H), 6.54 (dd, *J* = 15.7, 1.5 Hz, 1H), 6.12 (m, 1H), 4.30 – 4.20 (m, 1H), 3.00 – 2.92 (m, 1H), 2.85 – 2.76 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 136.6, 134.3, 128.7, 127.8, 126.4, 125.3 (q, *J* = 276.2 Hz), 125.2, 36.6, 23.5 (q, *J* = 30.2 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -68.57 (d, J = 7.3 Hz).

(E)-(6,6,6-trifluoro-5-iodohex-3-en-1-yl)benzene (6i)

3b (93.3 mg, 0.2 mmol) was dissolved in 2.0 mL DCM in a reaction tube, 0.4 mmol of 1,8-diazabicyclo[5.4.0]undecane-7-ene (DBU, 2equiv) was added and the mixture was stirred at 25 °C (**Note:** The reaction must be protected from light). The mixture was then evaporated under vacuum and purified by flash chromatography with petroleum ether to furnish 51.0 mg (74%) of **6i** as a colorless oil.

TLC: $R_{\rm f} = 0.70$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.29 (t, *J* = 7.5 Hz, 2H), 7.18 (dd, *J* = 29.4, 7.3 Hz, 3H), 5.86 (dt, *J* = 14.1, 6.8 Hz, 1H), 5.69 (dd, *J* = 15.2, 10.3 Hz, 1H), 4.84 (dt, *J* = 15.5, 7.8 Hz, 1H), 2.72 (t, *J* = 7.6 Hz, 2H), 2.41 (dt, *J* = 12.7, 6.5 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 140.8, 137.3, 133.3, 128.5, 126.1, 124.8, 123.5 (q, *J* = 276.2 Hz), 34.8, 33.7, 21.9 (q, *J* = 33.2 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -69.11 (d, J = 7.8 Hz).

HRMS (ESI, m/z): calcd for $C_{12}H_{13}F_{3}I^{+}[M+H]^{+}$: 341.0014, found: 341.0010.

2-(6,6,6-trifluoro-1-phenylhex-4-en-3-yl)isoindoline-1,3-dione (6j)

Sodium thiophenolate (53.1 mg, 0.4 mmol), **3b** (94.1 mg, 0.2 mmol) were added to 1.0 mL dry DMF. The resulting mixture was stirred at room temperature for 24 hours. The mixture was then partitioned between water and EtOAc, the organic layer was collected, dried over Na₂SO₄ evaporated under vacuum and purified by flash chromatography with Hexane/EtOAc (20:1) to furnish 65.8 mg (74%) of 6j as a colorless oil.

TLC: $R_f = 0.35$ (Hexane/EtOAc = 20:1).

¹H NMR (600 MHz, CDCl₃) δ 7.88 – 7.79 (m, 2H), 7.75 – 7.67 (m, 2H), 7.22 – 7.03 (m, 2H), 5.84 – 5.75 (m, 1H), 4.88 (m, 1H), 2.72 – 2.50 (m, 3H), 2.26 – 2.15 (m, 1H).
¹³C NMR (151 MHz, CDCl₃) δ 167.7, 140.0, 137.0 (q, *J* = 6.4 Hz), 134.2, 131.6, 128.5, 128.3, 126.2, 123.4 121.0 (q, *J* = 34.1 Hz), 51.2, 32.7, 32.6.
¹⁹F NMR (565 MHz, CDCl₃) δ -64.37 (d, *J* = 6.2 Hz).

HRMS (ESI, m/z): calcd for $C_{20}H_{17}F_3NO_2^+$ [M+H]⁺: 360.1211, found: 360.1206.

6.3.3 Radical reactions

(6,6,6-trifluoro-3-iodohexyl)benzene (6k)

A flame-dried Schlenk flask was charged with **3b** (93.2 mg, 0.20 mmol), NHC-BH₃ (25.1 mg, 0.3 mmol), [Mes-Acr](ClO₄) (2 mol%), dissolved in anhydrous MeCN (2.0 mL, 0.1 M) under N₂. The reaction mixture was stirred at room temperature (25 °C) under blue LED irradiation. Afterwards, the reaction mixture was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (Hexanes) to yield 62.9 mg (92%) of **6k** as a colorless oil.

TLC: $R_{\rm f} = 0.65$ (Hexanes).

¹**H NMR** (600 MHz, CDCl₃) δ 7.32 – 7.30 (m, 2H), 7.24 – 7.21 (m, 3H), 3.99 – 3.97 (m, 1H), 2.93 – 2.88 (m, 1H), 2.76 – 2.73 (m, 1H), 2.43 – 2.40 (m, 1H), 2.24 – 2.17 (m, 2H), 2.08 – 1.96 (m, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 140.4, 129.6, 128.7, 128.6, 126.8 (q, *J* = 276.5 Hz), 42.3, 35.6, 35.0, 34.3 (q, *J* = 28.6 Hz), 33.1.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -65.82 (t, J = 10.7 Hz).

1,1,1-trifluoro-4-iodo-6-phenylhexan-2-ol (6l)

A flame-dried Schlenk flask was charged with **3b** (93.2 mg, 0.20 mmol), NHC-BH₃ (25.1 mg, 0.3 mmol), 4-CzIPN (2 mol%), dissolved in anhydrous MeCN (2.0 mL, 0.1 M) under O₂. The reaction mixture was stirred at room temperature (25 °C) under blue LED irradiation. Afterwards, the reaction mixture was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel (Hexanes to Hexanes/EtOAc = 10:1) to yield 32.3 mg (45%, 4.3:1 dr) of **6l** as a white solid.

TLC: $R_f = 0.31$ (Hexanes/EtOAc = 15:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.30 (t, *J* = 7.6 Hz, 2H), 7.21 (t, *J* = 6.6 Hz, 3H), 4.36 – 4.29 (m, 1H), 4.28 – 4.16 (m, 1H), 2.92 (m, 1H), 2.81 – 2.68 (m, 1H), 2.40 – 2.22 (m, 2H), 2.20 – 2.12 (m, 1H), 2.10 – 1.83 (m, 2H).

¹³**C NMR** (151 MHz, CDCl₃) δ 141.4, 141.2, 128.8, 128.7, 128.5, 126.3, 126.3, 124.6 (q, *J* = 276.5 Hz), 71.4, 68.1, 71.1 (q, *J* = 31.4 Hz), 68.0 (q, *J* = 31.4 Hz), 39.7, 39.3, 35.8, 35.5, 32.1, 31.6.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -79.46 (d, J = 6.6 Hz, 4.3F), -79.71 (d, J = 6.5 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₁₂H₁₅F₃IO⁺ [M+H]⁺: 359.0120, found: 359.0127.

methyl 6-iodo-2-methylene-8-phenyl-4-(trifluoromethyl)octanoate (6m)

3b (0.2 mmol), methyl 2-((phenylsulfonyl)methyl)acrylate (0.6 mmol), ^{*i*}Pr₂NEt (0.3 mmol) and 4-CzIPN (2 mol%) were dissolved in 2.0 mL MeCN in a penicillin

bottle under N_2 . The reaction mixture was then stirred overnight under blue LED irradiation. The mixture was then evaporated under vacuum and purified by flash chromatography with Hexane/EtOAc (10:1) to furnish 67.8 mg (77%, 1.1:1 dr) of **6m** as a colorless oil.

TLC: $R_{\rm f} = 0.40$ (Hexane/EtOAc = 10:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.23 – 2.19 (m, 3H), 6.25 (d, *J* = 82.7 Hz, 1H), 5.63 (d, *J* = 50.1 Hz, 1H), 4.12– 4.08 (m, 1H), 3.77 (d, *J* = 20.8 Hz, 3H), 2.96 – 2.78 (m, 2H), 2.77 – 2.58 (m, 2H), 2.36 – 2.23 (m, 1H), 2.19 – 2.10 (m, 1H), 2.04 – 1.93 (m, 2H), 1.77 – 1.70 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 166.72, 140.48, 140.38, 136.61, 136.15, 128.8, 128.6, 128.5, 128.5, 127.75 (q, *J* = 277.1 Hz), 126.3, 126.2, 52.2, 52.2, 42.2 (q, *J* = 25.3 Hz), 42.2, 39.8, 39.2, 35.6, 35.4, 35.3, 33.8, 31.8 (q, *J* = 3.3 Hz).

¹⁹**F NMR** (565 MHz, CDCl₃) δ -70.15 (d, J = 8.5 Hz, 1.1F), -70.34 (d, J = 8.9 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₁₇H₂₁F₃IO₂⁺ [M+H]⁺: 441.0538, found: 441.0540.

methyl 2-methylene-8-phenyl-6-(phenylthio)-4-(trifluoromethyl)octanoate (6n)

6c (0.2 mmol), methyl 2-((phenylsulfonyl)methyl)acrylate (0.6 mmol), ^{*i*}Pr₂NEt (0.3 mmol) and 4-CzIPN (2 mol%) were dissolved in 2.0 mL MeCN in a penicillin bottle under N₂. The reaction mixture was then stirred overnight under blue LED irradiation. The mixture was then evaporated under vacuum and purified by flash chromatography with Hexane/EtOAc (10:1) to furnish 65.0 mg (58%, 1:1.3 dr) of **6n** as a colorless oil.

TLC: $R_f = 0.43$ (Hexane/EtOAc = 10:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.44 – 7.40 (m, 1H), 7.39 – 7.35 (m, 1H), 7.31 (dd, J = 14.2, 7.2 Hz, 5H), 7.24 – 7.19 (m, 1H), 7.16 (d, J = 7.5 Hz, 2H), 6.25 (d, J = 29.3 Hz,

1H), 5.62 (d, *J* = 8.3 Hz, 1H), 3.79 (s, 1H), 3.74 (s, 2H), 3.23 – 3.13 (m, 1H), 2.99 – 2.87 (m, 1H), 2.86 – 2.77 (m, 2H), 2.72 – 2.65 (m, 1H), 2.43 – 2.26 (m, 1H), 2.01 – 1.81 (m, 3H), 1.70 – 1.59 (m, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 166.8, 141.4, 136.9, 136.5, 134.2, 132.9, 133.4, 132.6, 129.0, 128.5, 128.4, 128.3, 127.4, 127.3, 126.0, 126.0, 52.1, 52.0, 46.9, 45.5, 39.6 (q, J = 25.3 Hz), 37.0, 36.4, 33.5, 32.8, 32.7, 32.2, 32.0.

¹⁹F NMR (565 MHz, CDCl₃) δ -70.07 (d, J = 9.0 Hz, 1F), -70.20 (d, J = 9.1 Hz, 1.3F). HRMS (ESI, m/z): calcd for C₂₃H₂₆F₃O₂S⁺[M+H]⁺: 423.1606, found: 423.1610.

(1,7-diphenyl-5-(trifluoromethyl)hept-6-en-3-yl)(phenyl)sulfane (60)

6c (0.2 mmol), Pd(PPh₃)₂Cl₂ (5 mol%), Xantphos (7.5 mol%) and AcOK (2 equiv) were dissolved in 2.0 mL DMF in a penicillin bottle under N₂. The resulting mixture was stirred at 80 °C for 16 hours. The mixture was then partitioned between water and EtOAc, the organic layer was collected, dried over Na₂SO₄ evaporated under vacuum and purified by flash chromatography with hexane to furnish 46.9 mg (55%, 1.5:1 dr) of **60** as a colorless oil.

TLC: $R_{\rm f} = 0.32$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.37 – 7.07 (m, 15H), 6.45 (d, *J* = 15.9 Hz, 0.6H, major), 6.26 (d, *J* = 15.9 Hz, 0.4H, minor), 5.90 – 5.85 (m, 0.6H, major), 5.78 – 5.74 (m, 0.4H, minor), 3.52 (m, 0.6H, major), 3.08 (m, 0.4H, minor), 3.02 – 2.73 (m, 3H), 2.03 (m, 0.6H), 1.99 – 1.91 (m, 1.6H), 1.86 (m, 2H).

¹³**C NMR** (151 MHz, CDCl₃) δ 141.4, 141.2, 137.1, 136.1, 136.1, 136.0, 134.1, 133.5, 133.1, 132.3, 129.0, 128.6, 128.6, 128.5, 128.4, 128.2, 127.5, 127.2, 126.6, 126.6, 126.2, 126.0, 122.1 (q, *J* = 2.6 Hz), 121.7 (q, *J* = 2.6 Hz), 45.7 (q, *J* = 27.2 Hz), 45.5, 44.5, 37.8, 35.0, 33.9, 33.0, 32.9, 32.6.

¹⁹F NMR (565 MHz, CDCl₃) δ -70.47 (d, J = 9.0 Hz, 1.5F), -70.53 (d, J = 8.8 Hz, 1F). HRMS (ESI, m/z): calcd for C₁₈H₁₈F₃S⁺ [M+H]⁺: 427.1707, found: 427.1711.

7. Investigation of the reaction mechanism

7.1 Radical trapping experiments with TEMPO.

To a penicillin bottle equipped with magnetic stir bar, I_2 (51.8 mg, 0.2 mmol), CF₃CHN₂ (0.5 or 0.3 mmol), **1a** (0.6 mmol), TEMPO (96.6 mg, 0.6 mmol) were added under N₂, and the resulting mixture was irradiated under 5 W blue LED. Upon the completion of reaction, the mixture was directly subjected to be concentrated in vacuo and purified by flash chromatography on silica gel with petroleum ether as an eluent to afford the product 7¹ as a colorless oil (26.3 mg, 36%).

TLC: $R_{\rm f} = 0.55$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 6.75 (q, *J* = 6.2 Hz, 1H), 1.55 – 1.48 (m, 6H), 1.24 – 1.20 (m, 12H).

¹³C NMR (151 MHz, CDCl₃) δ 121.3 (q, *J* = 278.5 Hz), 68.2 (q, *J* = 33.7 Hz), 53.6, 40.8, 29.9, 16.9.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -71.97 (d, J = 5.8 Hz)

7.2 Radical clock experiment.

 I_2 (0.35 mmol) were added into a 10 mL penicillin bottle with magneton under N_2 , then CF₃CHN₂ (1.05 ml, 0.525 mmol) and olefin (0.2 mmol) were added into the bottle.

The mixture was stirred for 5 minutes and then irradiated under 5 W blue LED and stirred at room temperature for 12 hours. After the reaction, trace of the reaction supernatant was used for ¹⁹F NMR spectroscopic analysis to determine the dr selectivity. Then, the other mixture was directly subjected to be concentrated in vacuo and purified by flash chromatography on silica gel with petroleum ether/ethyl acetate as an eluent to afford the desired product **9** as a yellow liquid (82.2 mg, 70%, 1.2:1 dr).

TLC: $R_f = 0.29$ (Hexane/EtOAc = 10:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.73 (dd, J = 10.7, 8.1 Hz, 2H), 7.35 (t, J = 6.7 Hz, 2H), 4.14 – 3.90 (m, 1H), 3.58 – 3.50 (m, 0.5H, major), 3.19 – 3.13 (m, 0.5H, minor), 3.48 (dt, J = 12.2, 6.7 Hz, 1H), 3.40 – 3.31 (m, 1H), 3.13 – 3.07 (m, 0.5H, major), 2.86 – 2.81 (m, 0.5H, minor), 3.07 – 3.01 (m, 1H), 3.01 – 2.91 (m, 1H), 2.61 (t, J = 10.1 Hz, 1H), 2.53 – 2.46 (m, 0.4H, minor), 2.40 – 2.32 (m, 0.6H, major), 2.44 (d, J = 3.1 Hz, 3H), 1.99 – 1.89 (m, 0.6H, major), 1.76 – 1.68 (m, 0.5H, minor), 1.76 – 1.68 (m, 0.6H, major), 1.53 – 1.46 (m, 0.4H, minor).

¹³**C NMR** (151 MHz, CDCl₃) δ 144.1, 133.4, 130.0, 127.4, 124.3 (q, *J* = 277.3 Hz), 53.0, 52.5, 50.6, 50.2, 44.8, 43.9, 41.5, 31.2, 29.4, 22.0 (q, *J* = 31.4 Hz), 20.0 (q, *J* = 31.5 Hz), 21.6.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -68.50 (d, J = 8.0 Hz, 1.2F), -69.05 (d, J = 7.3 Hz, 1F). **HRMS** (ESI, m/z): calcd for C₁₅H₁₉F₃I₂N [M+H]⁺: 587.9178, found: 587.9180.

7.3 Control experiments

 CF_3CHN_2 (0 equiv, 0.2 equiv, 0.4 equiv, 0.8 equiv, 1.0 equiv) was added to a series of 10 mL penicillin vials containing magnets under N₂, then $CF_3CHI_2^{[2]}$ (0.35 mmol) and olefin (0.2 mmol) were added into the bottle. The mixture was stirred for 5 minutes and then irradiated under 5 W blue LED and stirred at room temperature for 12 hours. After the reaction, trace of the reaction supernatant was used for ¹⁹F NMR spectroscopic analysis with PhCF₃ (0.1 mmol) as the internal standard to determine the yield. As shown in the table below, when the amount of CF_3CHN_2 added is 0 equiv, the reaction does not react. However, as the amount of CF_3CHN_2 increases, the yield of the reaction gradually increases. Therefore, CF₃CHN₂ has an important role in the occurrence of this reaction.

7.4 Light ON/OFF experiments and reaction monitoring.

7.4.1 Light ON/OFF experiments

According to standard procedure, the mixture was irradiated under blue LED for 1 hour at which point a reaction aliquot (20 μ L) was taken via syringe for ¹⁹F NMR analysis using PhCF₃ (0.1 mmol) as an internal standard. The light was switched off and the mixture was then stirred in the dark for another hour at which point a reaction aliquot (20 μ L) was taken for ¹⁹F NMR analysis. The blue LED was then switched ON and OFF and ON and OFF alternatively and ¹⁹F NMR yields were calculated. (**Note:** When the reaction reached the 6th hour, reaction aliquot (20 μ L) was taken every two hours, and the light was kept on in 10 hours before the last sample was taken.) As shown in Figure S1, the yield increased faster at the beginning under light conditions, and in the absence of light, the yield still increased, albeit in a quite slow rate. The results suggest that a chain propagation involved in the reaction.

7.4.2 Reaction Monitoring

In accordance with established protocols, the mixture was exposed to blue LED irradiation for a duration of 1 h, 2 h, 3 h and so forth. Subsequently, an equivalent volume of the reaction (20 μ L) was meticulously transferred via a syringe for ¹⁹F NMR analysis with PhCF₃ (0.1 mmol) as the internal standard to determine the yield of the product and the consumption of CF₃CHN₂. (**Note:** The ratio of CF₃CHN₂ expresses the ratio of the amount of CF₃CHN₂ remaining in the reaction system over time to the amount of CF₃CHN₂ remaining after the initial CF₃CHN₂ has fully reacted with iodine; The ratio of product **3a** is the proportion of product **3a** that has been present over a given period to the total amount of the initial substrate.) As demonstrated in Figure S2, the product **3a** initially increases rapidly at the beginning, along with the consumption of CF₃CHN₂. The observation further supported that CF₃CHN₂ has a promoting effect in the reaction. Furthermore, an attempt was made to irradiate CF₃CHN₂ in the DCM; however, after a period of three hours, it was ascertained that there was only a minimal depletion of CF₃CHN₂, amounting to a mere 5%.

Figure S2 The distribution of product 3a and CF₃CHN₂ content over time.

7.6¹⁹F NMR at the start of the reaction of alkyl olefin 1a and aryl olefin 4a

I₂ (0.35 mmol) was added into a 10 mL penicillin bottle with magneton under N₂ (In the case of **1a**) or I₂ (0.35 mmol), CuCl (4 mol%) and dap (4 mol%) dissolved in MeCN (0.5 mL, 0.40 M), under N₂ (in the case of **4a**), then CF₃CHN₂ (1.05 ml, 0.525 mmol) and olefin **1a** or **4a** (0.2 mmol) were added into the bottle. The mixture was stirred for a period of five minutes, after which the internal standard (PhCF₃, 0.1 mmol) was added. The mixture was then analyzed by ¹⁹F NMR spectroscopy using a micro reaction mixture to determine the amount of CF₃CHN₂ at the reaction's inception. The results demonstrate that in the alkyl olefin system, a significant quantity of CF₃CHN₂ persists prior to blue light irradiation (Figure S3, a), whereas in the aryl olefin system, no CF₃CHN₂ remains before blue light irradiation (Figure S3, b).

Figure S3 ¹⁹F NMR of alkyl olefin 1a and aryl olefin 4a before blue light irradiation

7.7 General procedure and characterization data of products 11

Compound **10** (0.35 mmol) were added into a 10 mL penicillin bottle with magneton under N_2 , then CF₃CHN₂ (1.05 ml, 0.525 mmol) and olefins or alkynes (0.2 mmol) were added into the bottle. The mixture was stirred for 5 minutes and then irradiated under 5 W blue LED and stirred at room temperature for 12 hours. Then, the mixture was directly subjected to be concentrated in vacuo and purified by flash chromatography on silica gel with petroleum ether/ethyl acetate as an eluent to afford the desired product **11**.

(4,4,5,5,6,6,7,7,7-nonafluoro-2-iodoheptyl)benzene (11a)³

The product **11a** was purified by column chromatography as a colorless liquid (55.7 mg, 60%).

TLC: $R_{\rm f} = 0.43$ (Hexane).

¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.32 (m, 3H), 7.26 – 7.21 (m, 2H), 4.55 – 4.46 (m, 1H), 3.37 – 3.30 (m, 1H), 3.28 – 3.20 (m, 1H), 3.02 – 2.80 (m, 2H).
¹³C NMR (101 MHz, CDCl₃) δ 138.6, 129.0, 128.7, 127.4, 47.1 (d, *J* = 1.9 Hz), 40.8 (t, *J* = 20.8 Hz), 19.2.

¹⁹F NMR (565 MHz, CDCl₃) δ -81.06 (t, J = 9.4 Hz), -111.98 (dt, J = 27.3, 12.8 Hz), -112.37 to -112.57 (m), -113.62 to -113.86 (m), -114.15 to -114.34 (m), -124.57 (q, J = 9.3 Hz), -125.92 (tt, J = 11.9, 6.0 Hz).

ethyl 2,2-difluoro-4-iodo-5-phenylpentanoate (11b)³

The product **11b** was purified by column chromatography as a colorless liquid (53.7 mg, 73%).

TLC: $R_f = 0.43$ (Hexane/EtOAc = 30:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.36 – 7.32 (m, 2H), 7.31 – 7.28 (m, 1H), 7.22 – 7.17 (m, 2H), 4.41 – 4.30 (m, 3H), 3.30 – 3.17 (m, 2H), 2.99 – 2.73 (m, 2H), 1.37 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 163.4 (t, *J* = 32.2 Hz), 138.8, 129.0, 128.6, 127.2, 115.2 (t, *J* = 252.7 Hz), 63.3, 47.2, 44.4 (t, *J* = 23.4 Hz), 21.9 (t, *J* = 3.9 Hz), 13.9.

¹⁹F NMR (565 MHz, CDCl₃) δ -101.53 (dd, J = 17.2, 13.2 Hz), -102.00 (dd, J = 17.2, 13.2 Hz), -106.12 (t, J = 16.8 Hz), -106.59 (t, J = 16.8 Hz).

(2,4,4,4-tetrabromobutyl)benzene (11c)⁴

The product **11c** was purified by column chromatography as a colorless liquid (65.1 mg, 71%).

TLC: $R_{\rm f} = 0.53$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.37 – 7.33 (m, 2H), 7.29 (m, 3H), 4.37 (m, 1H), 3.85 (dd, *J* = 16.2, 4.7 Hz, 1H), 3.67 (dd, *J* = 16.2, 4.5 Hz, 1H), 3.53 (dd, *J* = 14.4, 5.2 Hz, 1H), 3.23 (dd, *J* = 14.4, 9.1 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 137.5, 129.5, 128.6, 127.3, 65.8, 51.5, 46.0, 36.0.

(2,4,4-tribromobutyl)benzene (11d)

The product **11d** was purified by column chromatography as a colorless liquid (53.9 mg, 73%).

TLC: $R_{\rm f} = 0.57$ (Hexane).

¹**H NMR** (600 MHz, CDCl₃) δ 7.38 (dd, *J* = 8.1, 6.6 Hz, 2H), 7.34 – 7.30 (m, 1H), 7.27 – 7.23 (m, 2H), 5.95 – 5.87 (m, 1H), 4.42 – 4.32 (m, 1H), 3.35 – 3.18 (m, 2H), 2.89 – 2.77 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 137.0, 129.2, 128.7, 127.3, 53.4, 52.5, 44.9, 43.4.

HRMS (ESI, m/z): calcd for $C_{10}H_{12}Br_3^+[M+H]^+$: 370.8469, found: 370.8473.

ethyl 4-iodo-5-phenylpentanoate (11e)

The product **11e** was purified by column chromatography as a colorless liquid (45.1 mg, 68%).

TLC: $R_f = 0.52$ (Hexane/EtOAc = 30:1).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.19 (m, 5H), 4.74 – 4.61 (m, 1H), 4.46 – 4.16 (m, 2H), 3.35 (m, 2H), 2.40 – 1.97 (m, 4H), 1.31 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 171.0, 138.8, 129.0, 128.6, 127.2, 62.0, 47.1, 43.8, 36.2, 23.8, 13.8.

HRMS (ESI, m/z): calcd for C₁₃H₁₈IO₂⁺ [M+H]⁺: 333.0352, found:333.035.

The product **11f** was purified by column chromatography as a colorless liquid (61.9 mg, 71%).

TLC: $R_f = 0.35$ (Hexane/EtOAc = 50:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.38 (dd, *J* = 8.1, 6.6 Hz, 2H), 7.34 – 7.30 (m, 1H), 7.27 – 7.23 (m, 2H), 5.95 – 5.87 (m, 1H), 4.42 – 4.32 (m, 1H), 3.35 – 3.18 (m, 2H), 2.89 – 2.77 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 166.9, 165.8, 137.6, 129.3, 128.5, 127.1, 63.5, 63.3, 61.7, 50.8, 46.1, 45.5, 13.8, 13.7.

HRMS (ESI, m/z): calcd for $C_{16}H_{21}Br_2O_4^+$ [M+H]⁺: 436.9786, found: 436.9789.

ethyl 2,2-difluoro-4-iodo-4-phenylbut-3-enoate (11g)⁵

The product **11g** was purified by column chromatography as a colorless liquid (57.7 mg, 82%, E/Z = 7.5:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.37 – 7.30 (m, 5H), 6.75 (t, *J* = 10.9 Hz, 1H), 4.00 (q, *J* = 7.1 Hz, 2H), 1.22 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 162.6 (t, J = 33.3 Hz), 140.7, 133.1 (t, J = 28.4 Hz), 129.5, 128.1, 127.8 (t, J = 2.2 Hz), 110.9 (t, J = 250.1 Hz), 108.7 (t, J = 10.1 Hz), 63.1, 13.7.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -93.82 (d, J = 10.9 Hz, 7.5F) -98.09 (d, J = 11.5, 1F).

7.8 ¹⁹F NMR analysis of the crude reaction with 11e

Compound 10 (0.35 mmol) was added into a 10 mL penicillin bottle with

magneton under N₂, then CF₃CHN₂ (0.45 ml, 0.2 mmol) and olefin **1a** (0.2 mmol) were added into the bottle. The mixture was stirred for 5 minutes and then irradiated under 5 W blue LED and stirred at room temperature for 12 hours. The mixture was stirred for 5 minutes, then illuminated under a 5 W blue LED light and stirred for 12 hours at room temperature. The internal standard (PhCF₃, 0.1 mmol) was added after completion of the reaction. The mixture was then analyzed by ¹⁹F NMR spectroscopy using a micro reaction mixture to determine the amount of CF₃CHI₂.

Figure S4¹⁹F NMR analysis of the crude reaction with 11e

8. References

- 1. A. Hossian, S. Engl, E. Lutsker, O. Reiser, ACS Catal. 2019, 9, 1103-1109
- 2. Y. Liu, T. Pang, W. Yao, F. Zhong and G. Wu, Org. Lett., 2023, 25, 1958-1962.
- 3. T. Tasnim, C. Ryan, M. L. Christensen, C. J. Fennell and S. P. Pitre, *Org. Lett.*, 2022, **24**, 446-450.
- 4. P. Bianchi, J. D. Williams and C. O. Kappe, Green Chem., 2021, 23, 2685-2693.
- 5. X. Li, S. He and Q. Song, Org. Lett., 2021, 23, 2994-2999.

9. Copies of ¹H, ¹³C, ¹⁹F NMR spectra

¹³C NMR (101 MHz, CDCl₃) for 3a

¹H NMR (400 MHz, CDCl₃) for **3b**

 ^{19}F NMR (565 MHz, CDCl_3) for 3b

¹³C NMR (151 MHz, CDCl₃) for 3c

 1H NMR (400 MHz, CDCl₃) for 3d

 ^{19}F NMR (565 MHz, CDCl_3) for 3d

¹³C NMR (151 MHz, CDCl₃) for 3e

¹⁹F NMR (565 MHz, CDCl₃) for 3f

 ^{13}C NMR (151 MHz, CDCl_3) for 3g

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 f1 (ppm)

 ^{19}F NMR (565 MHz, CDCl_3) for 3h

¹³C NMR (151 MHz, CDCl₃) for **3i**

 $^{19}F\,NMR$ (565 MHz, CDCl3) for 3j

 ^{13}C NMR (151 MHz, CDCl_3) for 3k

 1H NMR (600 MHz, CDCl₃) for 3l

 ^{19}F NMR (565 MHz, CDCl_3) for 3l

 ^{13}C NMR (151 MHz, CDCl₃) for 3m

 1H NMR (600 MHz, CDCl₃) for 3n

¹³C NMR (151 MHz, CDCl₃) for **30**

 ^{19}F NMR (565 MHz, CDCl_3) for 3p

¹⁹F NMR (565 MHz, CDCl₃) for 3r

¹³C NMR (151 MHz, CDCl₃) for 3s

 1H NMR (600 MHz, CDCl₃) for 3t

¹⁹F NMR (565 MHz, CDCl₃) for 3t

¹³C NMR (151 MHz, CDCl₃) for **3u**

¹⁹F NMR (565 MHz, CDCl₃) for 3v

¹⁹F NMR (376 MHz, CDCl₃) for 3x

¹³F NMR (376 MHz, CDCl₃) for 3z

-67.28 -67.30 -68.39 -68.40

 $\begin{array}{c} 7.68\\ 7.66\\ 7.68\\ 7.68\\ 7.68\\ 7.73\\ 7.58\\$

¹³C NMR (151 MHz, CDCl₃) for 3ag

 ^{19}F NMR (565 MHz, CDCl_3) for 3ag

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

 ^{19}F NMR (565 MHz, CDCl_3) for 3ah

 ^{13}C NMR (101 MHz, CDCl₃) for 5a

 $^{19}F\,NMR$ (565 MHz, CDCl₃) for 5a

 ^{13}F NMR (565 MHz, CDCl_3) for $\mathbf{5b}$

 ^{13}C NMR (101 MHz, CDCl_3) for 5c

 1H NMR (600 MHz, CDCl_3) for 5d

 ^{19}F NMR (565 MHz, CDCl_3) for 5d

¹³C NMR (101 MHz, CDCl₃) for 5e

CF₃

 ^{19}F NMR (565 MHz, CDCl₃) for 5f

 ^{13}C NMR (101 MHz, CDCl_3) for 5g

 ^{19}F NMR (565 MHz, CDCl_3) for 5h

¹³C NMR (101 MHz, CDCl₃) for 5i

 1H NMR (600 MHz, CDCl_3) for 5j

 ^{19}F NMR (565 MHz, CDCl_3) for 5j

 ^{13}C NMR (101 MHz, CDCl₃) for 5k

 1H NMR (600 MHz, CDCl_3) for 5l

¹⁹F NMR (565 MHz, CDCl₃) for **5**l

¹³C NMR (101 MHz, CDCl₃) for 5m

5n

 ^{13}C NMR (101 MHz, CDCl_3) for 50

5p

 ^{19}F NMR (565 MHz, CDCl_3) for 5p

¹H NMR (600 MHz, CDCl₃) for 5q

¹³C NMR (151 MHz, CDCl₃) for 5q

 19 F NMR (565 MHz, CDCl₃) for 5r

 ^{13}C NMR (151 MHz, CDCl₃) for 5s

 ^{19}F NMR (565 MHz, CDCl₃) for 6a

 ^{13}C NMR (151 MHz, CDCl_3) for 6b

 $^1\mathrm{H}$ NMR (600 MHz, CDCl_3) for 6c

 ^{13}C NMR (151 MHz, CDCl_3) for 6d

¹⁹F NMR (565 MHz, CDCl₃) for 6e

¹³C NMR (151 MHz, CDCl₃) for 6f

$\begin{array}{c} 7,7,8\\ 7,4,4\\ 7,7,4,4\\ 7,7,4,4\\ 7,7,4,4\\ 7,7,4,4\\ 7,7,3,4\\ 7,7,3,4\\ 7,7,3,4\\ 7,7,3,4\\ 7,7,3,4\\ 7,7,3,4\\ 7,7,3,4\\ 7$

 ^{19}F NMR (565 MHz, CDCl_3) for 6g

 ^{13}C NMR (151 MHz, CDCl_3) for 6h

 1H NMR (600 MHz, CDCl₃) for 6i

 ^{19}F NMR (565 MHz, CDCl_3) for 6i

 ^{13}C NMR (151 MHz, CDCl_3) for 6j

-64.34

 -64.35

 ^1H NMR (600 MHz, CDCl_3) for 6k

 ^{19}F NMR (565 MHz, CDCl₃) for 6k

¹³C NMR (151 MHz, CDCl₃) for 6l

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

 ^{13}C NMR (151 MHz, CDCl_3) for 6n

-70.06 -70.08 -70.19 -70.20

 ^1H NMR (600 MHz, CDCl_3) for 60

 ^{19}F NMR (565 MHz, CDCl_3) for 60

¹³C NMR (151 MHz, CDCl₃) for 9

