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1. General information

Commercial grade reagents were used without further purification. Solvents were 

dried and distilled following usual protocols. Flash chromatography was carried out 

using 200-300 mesh silica gel. All experiments were monitored by analytical thin layer 

chromatography (TLC). 1H and 13C spectra were recorded on a Bruck Avance NEO-

500 MHz spectrometer (500 MHz for 1H NMR, 125 MHz for 13C NMR). All chemical 

shifts were recorded in ppm relative to chloroform (δ = 7.26) for 1H NMR and to 

chloroform (δ = 77.16) for the 13C NMR measurements. High resolution mass spectra 

(HRMS) were obtained using Thermo Scientific Q Exactive instrument by the ESI 

(Quadrupole-Orbitrap) ionization sources. The substrates 1m-1n, 1q, 1r, 1t, 3a-3f, 3h-

3j and 3l-3o were commercially available. The substrates 1a-1b,[1] 1c,[2] 1d,[3] 1e,[4] 1f,[5] 

1g,[6] 1h,[7] 1i,[8] 1j-1l,[9] 1o,[10] 1p,[11] 1s,[12] 3g,[4] 3k[13] and 3p[5] were synthesized 

according to the literatures and the NMR data are identical to those previously reported. 

Compounds 2a-2b,[14] 2c,[15] 2d,[14] 2i,[16] 2j,[17] 2k,[18] 2l,[19] 2m-2n,[20] 2o,[21] 2p,[22] 

2q,[23] 2r,[24] 2s,[25] 4a-4b,[24] 4c,[26] 4d,[27] 4e,[23] 4f,[28] 4h-4i,[24] 4j,[17] 4l,[20] 4m,[29] 

4n,[30] 5a,[31] 5b,[32] 7,[17] 8[33] and 10[34] are known and the NMR data are identical to 

those previously reported. Compounds 2e-2h, 4f and 4k are unknown and their analysis 

data are as follows.
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2. Optimization of dichlorination

Table S1. Optimization of dichlorination.a

+ CCl3CN
(x equiv)

tBuOMe, rt
Base (y equiv) EtO OEt

O O

Cl Cl
EtO OEt

O O

4a3a

Entry x Base (y equiv) Time (h) Yield (%)
1 1 DBU (0.2) 4.5 mess
2 1 K2CO3 (2) 5 46
3 1.5 K2CO3 (2) 5 65
4 2 K2CO3 (2) 1.5 76
5 3 K2CO3 (2) 0.5 74

aReaction conditions: 3a (0.2 mmol), Cl3CCN (x equiv), base (y equiv), tBuOMe (1.0 mL), rt. 

3. General procedure for monochlorination of 1

tBuOMe, rt
DBU (0.2 equiv)

1 2

R1
R2

O

R3 Cl
R1

R2
O

R3
+ Cl3CCN
(1.5 equiv)

DBU (0.04 mmol) and Cl3CCN (0.3 mmol) were added into a solution of 1 (0.2 

mmol) in tBuOMe (1 mL), then the mixture was allowed to stir at room temperature 

and until the complete disappearance of 1 indicated by TLC. To the mixture was added 

water (1.0 mL) and extracted with EtOAc (3×2.0 mL). The organic layer was washed 

with brine (3×6.0 mL), dried over anhydrous Na2SO4, and concentrated in vacuo. The 

residue was purified by silica gel flash column chromatography to obtain the desired 

product 2.

4. General procedure for dichlorination of 3

3 4

R1
R2

O

Cl Cl
R1

R2
O

tBuOMe, rt
K2CO3 (2.0 equiv)+ Cl3CCN

(2.0 equiv)
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K2CO3 (0. 4 mmol) and Cl3CCN (0.4 mmol) were added into a solution of 3 (0.2 

mmol) in tBuOMe (1 mL), then the mixture was allowed to stir at room temperature 

and until the complete disappearance of 3 indicated by TLC. To the mixture was added 

water (1.0 mL) and extracted with EtOAc (3×2.0 mL). The organic layer was washed 

with brine (3×6.0 mL), dried over anhydrous Na2SO4, and concentrated in vacuo. The 

residue was purified by silica gel flash column chromatography to obtain the desired 

product 4.

5. Synthesis of 8

86 7

N
O

Cl Cl

O

OBn

Cl

THF, r.t.
0.5 h, 82%

NaH (1.1 equiv)
OBn

Br
O

N
H

O

Cl ClCl

DMF, r.t.
5 min, 68%

Cl3CCN (3.0 equiv)
DBU (1.0 equiv)

N
H

O
Cl

(1.1 equiv)

Step 1: DBU (0.25 mmol) and Cl3CCN (0.75 mmol) were added into a solution of 

6 (0.25 mmol) in DMF (1.5 mL), then the mixture was allowed to stir at room 

temperature and until the complete disappearance of 6 indicated by TLC. To the 

mixture was added distilled water (1.5 mL) and extracted with CH2Cl2 (3×3.0 mL). The 

organic layer was washed with water (3×9.0 mL), dried over anhydrous Na2SO4, and 

concentrated in vacuo. The residue was purified by silica gel flash column 

chromatography (EtOAc/PE = 1/12) to obtain the desired product 7 with 68% yield.

Step 2: To a solution of 7 (0.28 mmol) in anhydrous THF (2.5 mL) was added 

NaH (0.31 mmol, 60% in mineral oil) at 0 °C under argon. The resulting brown 

suspension was stirred at 0 °C for 15 min and benzyl bromoacetate (0.31 mmol) was 

added. The reaction mixture was stirred at room temperature for 0.5 h, then water (2.5 

mL) and EtOAc (5.0 mL) were added. The phases were separated, and the aqueous 

phase was extracted three times with EtOAc. The combined organic layer was washed 

with brine (15.0 mL), dried over MgSO4, filtrated off and evaporated in vacuo. The 

residue was purified by silica gel flash column chromatography (EtOAc/PE = 1/15) to 

obtain the desired product 8 with 82% yield.
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6. Synthesis of 10

DMF, r.t.
10 min, 64%

Cl3CCN (2.0 equiv)
DBU (2.0 equiv) N

H

Cl Cl

O
S

N
N

O

O O

10

N
H

O
S

N
N

O

O O

9

DBU (0.2 mmol) and Cl3CCN (0.2 mmol) were added into a solution of 9 (0.1 

mmol) in DMF (1 mL), then the mixture was allowed to stir at room temperature and 

until the complete disappearance of 9 indicated by TLC. To the mixture was added 

water (1.0 mL) and extracted with CH2Cl2 (3×2.0 mL). The organic layer was washed 

with water (6×3.0 mL), dried over anhydrous Na2SO4, and concentrated in vacuo. The 

residue was purified by silica gel flash column chromatography (MeOH/CH2Cl2 = 1/90) 

to obtain the desired product 10 with 64% yield.

7. Gram-Scale Synthesis of 2a

OtBu OtBu

O O

CltBuOMe, rt
DBU (0.2 equiv)

1a, 1 g 2a, 15 min, 0.92 g, 80%

O O

+ Cl3CCN
(1.5 equiv)

DBU (0.8 mmol) and Cl3CCN (6.2 mmol) were added into a solution of 1a (4.1 

mmol) in tBuOMe (10 mL), then the mixture was allowed to stir at room temperature 

and until the complete disappearance of 1a indicated by TLC. To the mixture was added 

water (10 mL) and extracted with EtOAc (3×20 mL). The organic layer was washed 

with brine (3×60 mL), dried over anhydrous Na2SO4, and concentrated in vacuo. The 

residue was purified by silica gel flash column chromatography (EtOAc/PE = 1/10) to 

obtain the desired product 2a with 80% yield.

8. Gram-Scale Synthesis of 7

DMF, r.t.
DBU (1.0 equiv)

6, 1 g 7, 5 min, 0.85 g, 60%

N
H

O
Cl

N
H

O
Cl

Cl Cl

+ Cl3CCN
(3.0 equiv)
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DBU (6 mmol) and Cl3CCN (18 mmol) were added into a solution of 6 (6.0 mmol) 

in DMF (15 mL), then the mixture was allowed to stir at room temperature and until 

the complete disappearance of 6 indicated by TLC. To the mixture was added distilled 

water (15 mL) and extracted with CH2Cl2 (3×30 mL). The organic layer was washed 

with water (3×90 mL), dried over anhydrous Na2SO4, and concentrated in vacuo. The 

residue was purified by silica gel flash column chromatography (EtOAc/PE = 1/12) to 

obtain the desired product 7 with 60% yield.

9. Spectral Data

tert-butyl 2-chloro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate

OtBu

O O

Cl

2a

Colorless oil liquid; 86% yield; 1H NMR (500 MHz, CDCl3) δ 8.09 (dd, J = 7.9, 1.7 

Hz, 1H), 7.53 (td, J = 7.4, 1.5 Hz, 1H), 7.37 – 7.34 (m, 1H), 7.27 – 7.26 (m, 1H), 3.28 

– 3.22 (m, 1H), 3.05 – 2.92 (m, 2H), 2.54 – 2.49 (m, 1H), 1.46 (s, 9H). The NMR data 

is identical to that previously reported.[14]

tert-butyl 2-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate

OtBu

O O

Cl
2b

Colorless oil liquid; 85% yield; 1H NMR (500 MHz, CDCl3) δ 7.85 (d, J = 7.6 Hz, 1H), 

7.69 (td, J = 7.5, 1.4 Hz, 1H), 7.49 – 7.44 (m, 2H), 4.02 (d, J = 17.6 Hz, 1H), 3.54 (d, J 

= 17.7 Hz, 1H), 1.43 (s, 9H). The NMR data is identical to that previously reported.[14]

methyl 2-chloro-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate

OMe

O O

Cl

2c
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Colorless oil liquid; 96% yield; 1H NMR (500 MHz, CDCl3) δ 8.09 (dd, J = 8.0, 1.4 

Hz, 1H), 7.55 (td, J = 7.4, 1.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.28 (d, J = 7.4 Hz, 

1H), 3.85 (s, 3H), 3.32 – 3.26 (m, 1H), 3.04 – 2.97 (m, 2H), 2.56 – 2.51 (m, 1H). The 

NMR data is identical to that previously reported.[15]

ethyl 2-chloro-2-methyl-3-oxo-3-phenylpropanoate

OEt

O O

Cl
2d

Colorless oil liquid; 71% yield; 1H NMR (500 MHz, CDCl3) δ 8.00 – 7.98 (m, 2H), 

7.58 – 7.54 (m, 1H), 7.46 – 7.42 (m, 2H), 4.25 – 4.16 (m, 2H), 2.01 (s, 3H), 1.09 (t, J 

= 7.2 Hz, 3H). The NMR data is identical to that previously reported.[14]

2-chloro-2-(morpholine-4-carbonyl)-3,4-dihydronaphthalen-1(2H)-one

N
O

O O

Cl
2e

Colorless oil liquid; 92% yield; 1H NMR (500 MHz, CDCl3) δ 7.99 (dd, J = 7.8, 1.4 

Hz, 1H), 7.53 (td, J = 7.5, 1.7 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.26 (d, J = 7.6 Hz, 

1H), 3.71 – 3.69 (m, 8H), 3.25 (t, J = 6.0 Hz, 2H), 2.99 (dt, J = 14.5, 6.2 Hz, 1H), 2.59 

(dt, J = 14.6, 5.8 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 189.93, 164.89, 142.74, 

134.36, 130.70, 128.86, 128.76, 127.15, 77.36, 70.51, 66.72, 36.16, 26.49. HRMS 

(ESI) calcd for C15H17O3NCl+ ([M+H]+) 294.0891, 295.0925, 296.0862; found 

294.0890, 295.0924, 296.0862.

2-chloro-1-oxo-N-phenyl-1,2,3,4-tetrahydronaphthalene-2-carboxamide

N
H

Ph
O O

Cl

2f

Colorless oil liquid; 98% yield; 1H NMR (500 MHz, CDCl3) δ 8.93 (s, 1H), 8.11 (dd, J 

= 7.9, 1.5 Hz, 1H), 7.61 – 7.54 (m, 2H), 7.55 (td, J = 7.4, 1.5 Hz, 1H), 7.35 (q, J = 8.0 

Hz, 3H), 7.29 (d, J = 7.8 Hz, 1H), 7.17 – 7.13 (m, 1H), 3.32 – 3.26 (m, 1H), 3.13 – 3.04 
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(m, 2H), 2.69 – 2.64 (m, 1H). 13C NMR (126 MHz, CDCl3) δ 189.88, 164.77, 143.51, 

137.15, 134.95, 129.72, 129.28, 129.14, 128.92, 127.41, 125.16, 120.31, 69.27, 34.25, 

25.52. HRMS (ESI) calcd for C17H15O2NCl+ ([M+H]+) 300.0786, 300.0819, 302.0756; 

found 300.0785, 300.0819, 302.0755.

2-chloro-2-methyl-1-morpholino-3-phenylpropane-1,3-dione

Ph N
O

O O

Cl
2g

Colorless oil liquid; 57% yield; 1H NMR (500 MHz, CDCl3) δ 8.02 – 7.99 (m, 2H), 

7.62 – 7.61 (m, 1H), 7.50 – 7.46 (m, 2H), 3.73 – 3.14 (m, 8H), 2.11 (s, 3H). 13C NMR 

(126 MHz, CDCl3) δ 192.48, 166.74, 134.30, 132.98, 129.67, 128.98, 72.52, 66.57, 

65.87, 47.01, 43.76, 28.12. HRMS (ESI) calcd for C14H17O3NCl+ ([M+H]+) 282.0891, 

283.0925, 284.0862; found 282.0890, 283.0924, 284.0861.

2-allyl-2-chloro-1,3-diphenylpropane-1,3-dione

Ph Ph

O O

Cl
2h

Colorless oil liquid; 72% yield; 1H NMR (500 MHz, CDCl3) δ 7.92 – 7.90 (m, 4H), 

7.51 – 7.47 (m, 2H), 7.36 (t, J = 7.8 Hz, 4H), 5.87 – 5.78 (m, 1H), 5.13 (dd, J = 10.2, 

1.2 Hz, 1H), 5.00 – 4.95 (m, 1H), 3.32 (d, J = 7.2 Hz, 2H). 13C NMR (126 MHz, CDCl3) 

δ 191.66, 134.21, 133.78, 130.59, 129.92, 128.76, 120.60, 79.50, 43.41. HRMS (ESI) 

calcd for C18H16O2Cl+ ([M+H]+) 299.0833, 300.0867, 301.0804; found 299.0833, 

300.0868, 301.0805.

2-chloro-2-methyl-1-phenylbutane-1,3-dione

Ph Me

O O

Cl
2i

Colorless oil liquid; 81% yield; 1H NMR (500 MHz, CDCl3) δ 7.93 – 7.90 (m, 2H), 

7.58 – 7.55 (m, 1H), 7.46 – 7.43 (m, 2H), 2.39 (s, 3H), 1.95 (s, 3H). The NMR data is 

identical to that previously reported.[16]
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3-chloro-3-methyl-1-phenylindolin-2-one

2j
N

Cl

Ph

O

Colorless oil liquid; 98% yield; 1H NMR (500 MHz, CDCl3) δ 7.55 – 7.49 (m, 3H), 

7.45 – 7.41 (m, 3H), 7.29 – 7.25 (m, 1H), 7.16 (td, J = 7.5, 1.0 Hz, 1H), 6.85 – 6.83 (m, 

1H), 2.01 (s, 3H). The NMR data is identical to that previously reported.[17]

3-chloro-3-methylindolin-2-one

2k
N
H

Cl

O

Colorless oil liquid; 78% yield; 1H NMR (500 MHz, CDCl3) δ 9.44 (s, 1H), 7.41 (dd, J 

= 7.5, 1.2 Hz, 1H), 7.29 (td, J = 7.6, 1.4 Hz, 1H), 7.11 (td, J = 7.6, 1.1 Hz, 1H), 6.99 (d, 

J = 7.8 Hz, 1H), 1.93 (s, 3H). The NMR data is identical to that previously reported.[18]

3-chloro-3-phenylindolin-2-one

2l
N
H

Ph Cl

O

Colorless oil liquid; 31% yield; 1H NMR (500 MHz, CDCl3) δ 8.77 (s, 1H), 7.56 – 7.54 

(m, 2H), 7.39 – 7.35 (m, 5H), 7.14 (t, J = 7.6 Hz, 1H), 6.98 (d, J = 7.8 Hz, 1H). The 

NMR data is identical to that previously reported.[19]

2-chloro-2-methyl-2,3-dihydro-1H-inden-1-one

O

Cl
2m

Colorless oil liquid; 72% yield; 1H NMR (500 MHz, CDCl3) δ 7.85 (d, J = 7.9 Hz, 1H), 

7.67 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 6.8 Hz, 2H), 3.66 (d, J = 18.0 Hz, 1H), 3.46 (d, J = 

17.7 Hz, 1H), 1.81 (s, 3H). The NMR data is identical to that previously reported.[20]

2-chloro-2-methyl-3,4-dihydronaphthalen-1(2H)-one
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O

2n

Cl

Colorless oil liquid; 62% yield; 1H NMR (500 MHz, CDCl3) δ 8.11 (dd, J = 8.0, 1.7 Hz, 

1H), 7.50 (td, J = 7.5, 1.6 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 7.8 Hz, 1H), 

3.42 – 3.36 (m, 1H), 2.92 – 2.86 (m, 1H), 2.52 – 2.48 (m, 1H), 2.36 – 2.30 (m, 1H), 

1.83 (s, 3H). The NMR data is identical to that previously reported.[20]

2-chloro-1,2-diphenylpropan-1-one

Ph
Ph

O

Cl
2o

Colorless oil liquid; 51% yield; 1H NMR (500 MHz, CDCl3) δ 7.76 – 7.74 (m, 2H), 

7.51 – 7.48 (m, 2H), 7.42 – 7.29 (m, 4H), 7.27 – 7.24 (m, 2H), 2.04 (s, 3H). The NMR 

data is identical to that previously reported.[21]

ethyl 2-bromo-2-chloro-3-oxo-3-phenylpropanoate

Ph OEt

O O

2p
Br Cl

White solid, 41% yield; 1H NMR (500 MHz, CDCl3) δ 8.05 – 8.03 (m, 2H), 7.63 – 7.60 

(m, 1H), 7.50 – 7.46 (m, 2H), 4.31 (q, J = 7.2 Hz, 2H), 1.18 (t, J = 7.2 Hz, 3H). The 

NMR data is identical to that previously reported.[22]

diethyl 2-bromo-2-chloromalonate

EtO OEt

O O

2q
Br Cl

Colorless oil liquid; 80% yield; 1H NMR (500 MHz, CDCl3) δ 4.38 – 4.33 (m, 4H), 

1.35 – 1.31 (m, 6H). The NMR data is identical to that previously reported.[23]

2-bromo-2-chloro-1-phenylethan-1-one
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Ph

O
Br

Cl
2r

Colorless oil liquid; 50% yield; 1H NMR (500 MHz, CDCl3) δ 8.10 – 8.07 (m, 2H), 

7.68 – 7.63 (m, 1H), 7.54 – 7.50 (m, 2H), 6.79 – 6.64 (m, 1H). The NMR data is 

identical to that previously reported.[24]

2-chloro-2-fluoro-3,4-dihydronaphthalen-1(2H)-one

O

2s

F
Cl

White solid; 57% yield; 1H NMR (500 MHz, CDCl3) δ 8.13 (d, J = 8.0 Hz, 1H), 7.58 

(t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 3.38 – 3.32 (m, 

1H), 3.14 – 3.09 (m, 1H), 2.84 – 2.78 (m, 1H), 2.74 – 2.67 (m, 1H). The NMR data is 

identical to that previously reported.[25]

diethyl 2,2-dichloromalonate

4a

EtO OEt

O O

Cl Cl

Colorless oil liquid; 76% yield; 1H NMR (500 MHz, CDCl3) δ 4.25 – 4.18 (m, 4H), 

1.32 (t, J = 7.2 Hz, 3H), 1.27 (t, J = 7.0 Hz, 3H). The NMR data is identical to that 

previously reported.[24]

di-tert-butyl 2,2-dichloromalonate

4b

tBuO OtBu

O O

Cl Cl

White solid; 48% yield; 1H NMR (500 MHz, CDCl3) δ 1.51 (dd, J = 3.5, 1.6 Hz, 18H). 

The NMR data is identical to that previously reported.[24]

dibenzyl 2,2-dichloromalonate
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4c

BnO OBn

O O

Cl Cl

Colorless oil liquid; 60% yield; 1H NMR (500 MHz, CDCl3) δ 7.31 – 7.26 (m, 10H), 

5.16 (d, J = 8.0 Hz, 4H). The NMR data is identical to that previously reported.[26]

ethyl 2,2-dichloro-3-oxo-3-phenylpropanoate

4d

Ph OEt

O O

Cl Cl

Colorless oil liquid; 64% yield; 1H NMR (500 MHz, CDCl3) δ 7.75 – 7.73 (m, 2H), 

7.58 – 7.55 (m, 1H), 7.53 – 7.50 (m, 2H), 4.24 – 4.19 (m, 2H), 1.10 (td, J = 7.2, 1.7 Hz, 

3H). The NMR data is identical to that previously reported.[27]

ethyl 2,2-dichloro-3-oxobutanoate

4e

Me OEt

O O

Cl Cl

White solid; 46% yield; 1H NMR (500 MHz, CDCl3) δ 4.25 (q, J = 7.2 Hz, 2H), 2.28 

(s, 3H), 1.35 (t, J = 7.2 Hz, 3H). The NMR data is identical to that previously 

reported.[23]

tert-butyl 2,2-dichloro-3-oxobutanoate

4f

Me OtBu

O O

Cl Cl

Colorless oil liquid; 45% yield; 1H NMR (500 MHz, CDCl3) δ 2.32 (s, 3H), 1.56 (s, 

9H). The NMR data is identical to that previously reported.[28]

2,2-dichloro-1-morpholino-3-phenylpropane-1,3-dione

Ph N

O O

Cl Cl O
4g

Colorless oil liquid; 85% yield; 1H NMR (500 MHz, CDCl3) δ 8.03 (d, J = 7.6 Hz, 2H), 

7.63 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.9 Hz, 2H), 3.64 (dd, J = 16.0, 5.4 Hz, 4H), 3.45 
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(s, 4H). 13C NMR (126 MHz, CDCl3) δ 184.37, 162.10, 134.56, 131.31, 130.53, 128.85, 

85.27, 66.57, 65.81, 47.61, 44.53. HRMS (ESI) calcd for C13H14O3NCl2
+ ([M+H]+) 

302.0345, 303.0379, 304.0316; found 302.0346, 303.0383, 304.0313.

2,2-dichloro-1-phenylbutane-1,3-dione

4h

Ph Me

O O

Cl Cl

Colorless oil liquid; 96% yield; 1H NMR (500 MHz, CDCl3) δ 7.89 – 7.83 (m, 2H), 

7.70 – 7.66 m, 1H), 7.54 (t, J = 7.3 Hz, 2H), 2.50 (d, J = 1.2 Hz, 3H). The NMR data is 

identical to that previously reported.[24]

3,3-dichloropentane-2,4-dione

4i

Me Me

O O

Cl Cl

Yellow oil liquid; 88% yield; 1H NMR (500 MHz, CDCl3) δ 2.75 (t, J = 1.4 Hz, 3H), 

2.66 (t, J = 1.2 Hz, 3H). The NMR data is identical to that previously reported.[24]

3,3-dichloro-1-phenylindolin-2-one

N
Ph

O

Cl Cl

4j

White solid liquid; 82% yield; 1H NMR (500 MHz, CDCl3) δ 7.70 (dd, J = 7.6, 1.5 Hz, 

1H), 7.57 – 7.53 (m, 2H), 7.47 – 7.43 (m, 3H), 7.34 (td, J = 7.8, 1.4 Hz, 1H), 7.22 (td, 

J = 7.6, 1.1 Hz, 1H), 6.82 (d, J = 7.9 Hz, 1H). The NMR data is identical to that 

previously reported.[17]

tert-butyl 3,3-dichloro-2-oxoindoline-1-carboxylate

N
Boc

O

Cl Cl

4k

Colorless oil liquid; 47% yield; 1H NMR (500 MHz, CDCl3) δ 7.91 (dt, J = 8.2, 0.8 Hz, 

1H), 7.68 (dd, J = 7.6, 1.7 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.30 (td, J = 7.6, 1.1 Hz, 1H), 
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1.66 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 166.51, 148.49, 137.09, 132.32, 128.27, 

126.01, 124.98, 115.80, 86.02, 74.49, 28.13. HRMS (ESI) calcd for C13H14O3NCl2
+ 

([M+H]+) 302.0345, 303.0379, 304.0316; found 302.0344, 303.0378, 304.0315.

2,2-dichloro-2,3-dihydro-1H-inden-1-one

O

Cl
Cl

4l

Colorless oil liquid; 49% yield; 1H NMR (500 MHz, CDCl3) δ 7.93 (d, J = 7.8 Hz, 1H), 

7.74 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.44 (d, J = 7.8 Hz, 1H), 4.06 (s, 2H). 

The NMR data is identical to that previously reported.[20]

2,2-dichloro-3,4-dihydronaphthalen-1(2H)-one

O
Cl
Cl

4m

White solid; 62% yield; 1H NMR (500 MHz, CDCl3) δ 8.16 (dd, J = 7.9, 1.5 Hz, 1H), 

7.56 (td, J = 7.6, 1.6 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 3.21 (t, 

J = 6.0 Hz, 2H), 2.96 (t, J = 6.1 Hz, 2H). The NMR data is identical to that previously 

reported.[29]

2,2-dichloro-1,2-diphenylethan-1-one

Ph
Ph

O

Cl Cl
4n

White solid; 62% yield; 1H NMR (500 MHz, CDCl3) δ 7.79 (dd, J = 8.4, 1.2 Hz, 2H), 

7.67 – 7.64 (m, 2H), 7.48 – 7.40 (m, 4H), 7.31 (t, J = 7.4 Hz, 2H). The NMR data is 

identical to that previously reported.[30]

2-chloro-3-oxo-N,3-diphenylpropanamide

5a

Ph N
H

O O
Ph

Cl
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White solid; 51% yield; 1H NMR (500 MHz, CDCl3) δ 8.35 (s, 1H), 8.09 (d, J = 7.8 

Hz, 2H), 7.66 (t, J = 7.5 Hz, 1H), 7.55 – 7.51 (m, 4H), 7.35 (t, J = 7.8 Hz, 2H), 7.17 (t, 

J = 7.4 Hz, 1H), 5.80 (s, 1H). The NMR data is identical to that previously reported.[31]

2,2-dichloro-3-oxo-N,3-diphenylpropanamide

5b

Ph N
H

O O
Ph

Cl Cl

White solid; 56% yield; 1H NMR (500 MHz, CDCl3) δ 7.94 – 7.92 (m, 2H), 7.53 – 7.47 

(m, 3H), 7.41 (s, 1H), 7.34 – 7.27 (m, 4H), 7.18 (t, J = 7.4 Hz, 1H). The NMR data is 

identical to that previously reported.[32]

3,3,5-trichloroindolin-2-one

7
N
H

O

Cl ClCl

White solid; 68% yield; 1H NMR (500 MHz, CDCl3) δ 9.29 (s, 1H), 7.61 (d, J = 2.1 

Hz, 1H), 7.35 (dd, J = 8.4, 2.2 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H). The NMR data is 

identical to that previously reported.[17]

benzyl 2-(3,3,5-trichloro-2-oxoindolin-1-yl)acetate

8
N

O

Cl Cl

O

OBn

Cl

White solid; 82% yield; 1H NMR (500 MHz, CDCl3) δ 7.64 (d, J = 2.2 Hz, 1H), 7.35 – 

7.33 (m, 3H), 7.32 – 7.27 (m, 3H), 6.63 (d, J = 8.6 Hz, 1H), 5.19 (s, 2H), 4.51 (s, 2H). 

The NMR data is identical to that previously reported.[33]

5-((4-(4-acetylphenyl)piperazin-1-yl)sulfonyl)-3,3-dichloroindolin-2-one
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N
H

Cl Cl

O
S

N
N

O

O O

10

White solid; 64% yield; 1H NMR (500 MHz, DMSO) δ 11.90 (s, 1H), 7.96 (d, J = 2.0 

Hz, 1H), 7.84 (dd, J = 8.2, 1.9 Hz, 1H), 7.80 – 7.77 (m, 2H), 7.22 (d, J = 8.2 Hz, 1H), 

6.97 – 6.94 (m, 2H), 3.44 (t, J=4.2 Hz, 4H), 3.05 (t, J = 5.0 Hz, 4H), 2.44 (s, 3H). The 

NMR data is identical to that previously reported.[34]
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10.Copies of NMR Spectra

1H NMR (500 MHz, CDCl3) spectrum of 2a

1H NMR (500 MHz, CDCl3) spectrum of 2b

OtBu

O O

Cl

2a

 

OtBu

O O

Cl
2b
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1H NMR (500 MHz, CDCl3) spectrum of 2c

1H NMR (500 MHz, CDCl3) spectrum of 2d

 

OMe

O O

Cl

2c

 

OEt

O O

Cl
2d
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1H NMR (500 MHz, CDCl3) spectrum of 2e

13C NMR (125 MHz, CDCl3) spectrum of 2e

 

N
O

O O

Cl
2e

 

N
O

O O

Cl
2e
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1H NMR (500 MHz, CDCl3) spectrum of 2f

13C NMR (125 MHz, CDCl3) spectrum of 2f
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Cl
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1H NMR (500 MHz, CDCl3) spectrum of 2g

13C NMR (125 MHz, CDCl3) spectrum of 2g

 

Ph N
O

O O

Cl
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Cl
2g



S21

1H NMR (500 MHz, CDCl3) spectrum of 2h

13C NMR (125 MHz, CDCl3) spectrum of 2h

 

Ph Ph

O O

Cl
2h

 

Ph Ph

O O

Cl
2h
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1H NMR (500 MHz, CDCl3) spectrum of 2i

1H NMR (500 MHz, CDCl3) spectrum of 2j

 

Ph Me
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Cl
2i

 

2j
N

Cl
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1H NMR (500 MHz, CDCl3) spectrum of 2k

1H NMR (500 MHz, CDCl3) spectrum of 2l
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1H NMR (500 MHz, CDCl3) spectrum of 2m

1H NMR (500 MHz, CDCl3) spectrum of 2n

 O

Cl
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 O

2n

Cl
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1H NMR (500 MHz, CDCl3) spectrum of 2o

1H NMR (500 MHz, CDCl3) spectrum of 2p
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1H NMR (500 MHz, CDCl3) spectrum of 2q

1H NMR (500 MHz, CDCl3) spectrum of 2r
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1H NMR (500 MHz, CDCl3) spectrum of 2s

1H NMR (500 MHz, CDCl3) spectrum of 4a
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1H NMR (500 MHz, CDCl3) spectrum of 4b

1H NMR (500 MHz, CDCl3) spectrum of 4c
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1H NMR (500 MHz, CDCl3) spectrum of 4d

1H NMR (500 MHz, CDCl3) spectrum of 4e

 

4d

Ph OEt

O O

Cl Cl

 

4e

Me OEt

O O

Cl Cl



S30

1H NMR (500 MHz, CDCl3) spectrum of 4f

1H NMR (500 MHz, CDCl3) spectrum of 4g
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13C NMR (125 MHz, CDCl3) spectrum of 4g

1H NMR (500 MHz, CDCl3) spectrum of 4h
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1H NMR (500 MHz, CDCl3) spectrum of 4i

1H NMR (500 MHz, CDCl3) spectrum of 4j
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1H NMR (500 MHz, CDCl3) spectrum of 4k

13C NMR (125 MHz, CDCl3) spectrum of 4k
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1H NMR (500 MHz, CDCl3) spectrum of 4l

1H NMR (500 MHz, CDCl3) spectrum of 4m
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1H NMR (500 MHz, CDCl3) spectrum of 4n

1H NMR (500 MHz, CDCl3) spectrum of 5a
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1H NMR (500 MHz, CDCl3) spectrum of 5b 

1H NMR (500 MHz, CDCl3) spectrum of 7
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1H NMR (500 MHz, CDCl3) spectrum of 8

1H NMR (500 MHz, DMSO) spectrum of 10

 

8
N

O

Cl Cl

O

OBn

Cl

 

N
H

Cl Cl

O
S

N
N

O

O O

10



S38

11.HRMS Spectrum of Intermediate B
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