Supporting Information

Accessing chiral sulfones with an all-carbon quaternary stereocenter via photoinduced asymmetric Truce-Smiles rearrangement and radical sulfur dioxide insertion

Chenxin Wang,^a Wei Xiao,^{*a} and Jie Wu ^{*a, b}

^a School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

Corresponding author: xiaowei1992@tzc.edu.cn; jie_wu@fudan.edu.cn

Table of Contents

1. General information 2
2. General procedure for the preparation of compound 3
3. General procedure for the preparation of compound 1 3
4. General procedure for the preparation of compound 2 4
5. Characterization data of substrate 1 5
6. Characterization data of compound 3 20
7. Chiral auxiliary cleavage: Synthesis of 6a 59
8. Copies of ¹ H and ¹³ C NMR spectra
9. Crystal data and structure refinement for 3a 120
10. References

1. General information

Chemicals were purchased from commercial suppliers and used without further purification unless otherwise stated. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm). ¹H and ¹³C NMR spectra were recorded on Bruker 400 MHz spectrometer in CDCl₃ with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; p = pentet; m = multiplet; brs = broad singlet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). The enantiomeric excess values were determined by chiral HPLC with an Shimadzu instrument and a Daicel CHIRALCEL and CHIRALPAK column. High resolution mass spectroscopy (HRMS) analyses were performed at a Q-Exactive (Thermo Scientific) Inc mass instrument (HESI).

2. General procedure for the preparation of compound 3.

In a glove box, a dry vial equipped with a magnetic stir bar is charged sequentially with **1a** (0.2 mmol), **2a** (0.3 mmol), Na₂S₂O₄ (0.4 mmol), DABCO·(SO₂)₂ (0.3 mmol), MeOH (0.3 mmol), Ir(ppy)₃ (2 mol%) and dry MeCN (4.0 mL). The reaction mixture is stirred for 12 h at 900 rpm in a thermostatic water bath at 20 °C under 35 W blue LEDs light. When the reaction is completed (monitored by TLC), the mixture is purified by flash chromatography on silica gel and eluted with PE/EA (4/1) to afford the corresponding product **3**. The diastereomers showed one spot by TLC with different developers. However, they can be partially separated by flash chromatography on silica gel.

3. General procedure for the preparation of compound 1

The amides 1 were synthesized through a procedure from reported literature procedures.¹⁻²

$$R-NH_2 + ArSO_2CI \xrightarrow{\text{Pyridine}}_{0 \text{ °C to } rt} R-NHSO_2Ar \xrightarrow{\text{NaH} (2.0 \text{ equiv})}_{0 \text{ °C to } rt} R^1 \xrightarrow{\text{Me}}_{0 \text{ °C to } rt} N_{SO_2Ar}$$

To a solution of the corresponding amine (1.0 equiv) in pyridine (c = 0.1M) was added aryl sulfonyl chloride (1.2 equiv) in several portions at 0 °C. The resulting solution was warmed to room temperature and stirred overnight. Then the reaction was concentrated under reduced pressure to remove pyridine and the crude mixture was purified by flash chromatography on silica gel (eluent: PET/EtOAc 4/1). Subsequently, the product was dissolved in distilled DCM (c = 0.5 M) at 0 °C. To this solution was added NaH (2 equiv) in one portion. The resulting solution was allowed to proceed until no further gas evolution was observed. At this point, the corresponding acryloyl chloride (2 equiv) was added slowly and the resulting solution was warmed to room temperature. Once the amine was fully consumed, the mixture was filtered, concentrated under reduced pressure and purified by flash chromatography on silica gel (eluent PET/EtOAc 4/1) to afford the corresponding amide **1**.

4. General procedure for the preparation of compound 2

Procedure A:

Aryldiazonium salts were prepared according to the Procedure A of Hanson.³

To a solution of aniline in ethanol (2.0 M) was added fluoroboric acid (2.0 equiv) at 0 °C. Then, a solution of 'BuONO (2.2 equiv) was added slowly and the mixture was stirred for 30 min at room temperature. After completion, the thick precipitate was collected by filtration and washed with Et_2O . The diazonium tetrafluoroborate was then redissolved in minimal amount of acetone and precipitated by the addition of Et_2O . Then the product **2** was filtered and washed with Et_2O , dried under high vacuum and stored under argon in the freezer.

Procedure B:

General Procedure B for the synthesis of aryldiazonium salts 2.4

An oven-dried 100 mL round-bottom-flask equipped with a magnetic stir bar was charged with the corresponding aniline (1.0 equiv, 20 mmol). The flask was sealed with a rubber septum and connected to a Schlenk line though a needle. The flask was then evacuated and backfilled with argon (This sequence was repeated a total of three times). The solution of HBF₄ (6.8 ml HBF₄ (50% wt) in 8 mL H₂O) was added via syringe. The mixture was the cooled to 0 °C, and NaNO₂ aqueous (1.4 g in 3 mL H₂O) was added dropwise via a syringe on 0 °C. The resulting mixture was stirred for 40 min at 0 °C on argon atmosphere. Then, the solvent was removed by filtered, and the result solid was dissolved in acetone, crystallized from the solution by adding ice cold diethyl ether. The remaining solid was washed by ice cold diethyl ether (25 mL) three times to afford the product **2**.

5. Characterization data of substrate 1

Ethyl (S)-3,3-dimethyl-2-(N-tosylmethacrylamido)butanoate (1a)

89% yield, > 99% ee

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.91 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 5.43 (s, 1H), 5.32 (d, J = 1.6 Hz, 1H), 4.83 (s, 1H), 4.28–4.19 (m, 2H), 2.44 (s, 3H), 1.40 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H), 1.22 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 171.7, 168.3, 145.0, 139.0, 136.3, 129.8, 129.3, 122.1, 66.1, 60.9, 36.2, 28.4, 21.7, 18.8, 14.2.

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min, λ = 225 nm, t_R = 13.4 min (minor), 15.3 min (major).

Chiral HPLC spectrum of (rac)-1a

Chiral HPLC spectrum of (S)-1a

Ethyl N-methacryloyl-N-tosyl-L-valinate (1a')

75% yield, >99% ee

¹**H** NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.10 (d, J = 1.2 Hz, 1H), 4.85 (s, 1H), 4.60 (d, J = 8.8 Hz, 1H), 4.24 – 4.08 (m, 2H), 2.82 – 2.65 (m, 1H), 2.44 (s, 3H), 1.76 (s, 3H), 1.31 – 1.10 (m, 6H), 1.00 (d, J = 7.2 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 171.6, 169.3, 145.0, 139.6, 136.6, 129.2, 129.1, 118.5, 65.9, 61.3, 28.6, 22.4, 21.7, 19.9, 19.7, 14.0. HPLC analysis: Chiralcel IA column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, λ = 216 nm, t_R = 15.3 min (minor), 17.1 min (major).

Chiral HPLC spectrum of (rac)- 1a'

Chiral HPLC spectrum of (S)- 1a'

(S)-N-(1-phenylethyl)-N-tosylmethacrylamide (1a")

80% yield, 98% ee

¹**H** NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.4 Hz, 2H), 7.28 – 7.26 (m, 7H), 5.44 (dd, *J* = 14.0, 6.8 Hz, 1H), 5.15 (d, *J* = 1.2 Hz, 1H), 4.95 (s, 1H), 2.43 (s, 3H), 1.92 (d, *J* = 6.8 Hz, 3H), 1.72 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 144.7, 129.4, 128.7, 128.3, 127.7, 127.6, 119.0, 58.0, 21.7, 19.1, 18.6.

HPLC analysis: Chiralcel IA column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, λ = 254 nm, t_R = 7.3 min (minor), 8.8 min (major).

Chiral HPLC spectrum of (rac)- 1a"

Chiral HPLC spectrum of (S)- 1a"

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.05–8.03 (m, 2H), 7.65–7.61 (m, 1H), 7.55–7.50 (m, 2H), 5.43 (s, 1H), 5.33 (d, J =1.6 Hz, 1H), 4.85 (s, 1H), 4.28–4.17 (m, 2H), 1.40 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H), 1.22 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 171.6, 168.2, 139.2, 138.9, 133.9, 129.7, 128.8, 122.3, 66.2, 60.9, 36.2, 28.4, 18.8, 14.2.

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 1.0 mL/min, λ = 229 nm, t_R = 18.8 min (minor), 22.8 min (major).

Chiral HPLC spectrum of (rac)-1b

Chiral HPLC spectrum of (S)-1b

1H NMR (400 MHz, CDCl₃) δ (ppm) = 7.96 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 9.2 Hz, 2H), 5.46 (s, 1H), 5.33 (d, J = 1.2 Hz, 1H), 4.83 (s, 1H), 4.28–4.19 (m, 2H), 3.88 (s, 3H), 1.43 (s, 3H), 1.28 (t, J = 7.2 Hz 3H), 1.21 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 171.7, 168.4, 163.8, 139.0, 132.1, 130.5, 122.0, 113.8, 66.2, 60.9, 55.8, 36.2, 28.4, 18.9, 14.2.

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min, λ = 254 nm, t_R = 5.2 min (minor), 5.8 min (major).

Chiral HPLC spectrum of (*rac*)-1c

Chiral HPLC spectrum of (S)-1c

88% yield, 98% ee

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.10–8.07 (m, 2H), 7.24–7.20 (m, 2H), 5.43 (s, 1H), 5.36 (d, J = 1.2 Hz, 1H), 4.83 (s, 1H), 4.28–4.19 (m, 2H), 1.51 (s, 3H), 1.27 (t, J = 6.8 Hz, 3H), 1.22 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 171.4, 168.0, 165.6 (J = 256.0 Hz), 138.9, 135.1 (J = 3.1 Hz), 132.6 (J = 9.6 Hz), 122.1, 116.0 (J = 22.6 Hz), 66.6, 60.9, 36.2, 28.3, 18.9, 14.1.

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min, λ = 254 nm, t_R = 7.7 min (minor), 9.3 min (major).

Chiral HPLC spectrum of (rac)-1d

Chiral HPLC spectrum of (S)-1d

85% yield, 98% ee

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.19 (d, *J* = 8.4 Hz, 2H), 7.82 (d, *J* = 8.4 Hz, 2H), 5.41 (s, 1H), 5.38 (d, *J* = 1.2 Hz), 4.82 (s, 1H), 4.27 (q, *J* = 6.8 Hz, 2H), 1.61 (s, 3H), 1.30 (t, *J* = 6.8 Hz, 3H), 1.22 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 171.4, 168.2, 143.3, 138.9, 132.4, 130.1, 122.5, 117.4, 117.0, 67.8, 61.4, 36.3, 28.4, 19.2, 14.2.

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min, λ = 254 nm, t_R = 17.9 min (minor), 22.3 min (major).

Chiral HPLC spectrum of (rac)-1e

Chiral HPLC spectrum of (S)-1e

1H NMR (400 MHz, CDCl₃) δ (ppm) = 7.92–7.89 (m, 2H), 7.68–7.65 (m, 2H), 5.42 (s, 1H), 5.36 (d, J = 1.4 Hz, 1H), 4.81 (s, 1H), 4.27–4.21 (m, 2H), 1.54 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H), 1.21 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.5, 168.2, 139.0, 138.2, 132.0, 131.1, 129.2, 122.4, 66.9, 61.1, 36.2, 28.4, 19.0, 14.2.

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min, λ = 254 nm, t_R = 10.8 min (minor), 12.0 min (major).

Chiral HPLC spectrum of (rac)-1f

Chiral HPLC spectrum of (S)-1f

Ethyl (S)-2-(N-((3,5-bis(trifluoromethyl)phenyl)sulfonyl)methacrylamido)-3,3-

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.50 (s, 2H), 8.13 (s, 1H), 5.40 (d, J = 1.6 Hz, 1H), 5.35 (s, 1H), 4.81 (s, 1H), 4.31–4.21 (m, 2H), 1.72 (s, 3H), 1.25–1.21 (m, 12H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 171.3, 167.6, 141.8, 139.2, 132.6 (J = 34.5 Hz), 129.8 (J = 3.2 Hz), 127.1 (J = 3.5 Hz), 122.3 (J = 271.6 Hz), 122.1, 68.1, 61.3, 36.4, 28.4, 19.3, 14.0.

HPLC analysis: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 100/0, flow rate = 0.8 mL/min, λ = 254 nm, t_R = 10.9 min (minor), 14.0 min (major).

Chiral HPLC spectrum of (rac)-1g

Chiral HPLC spectrum of (S)-1g

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.82 (dd, J = 3.6, 1.2 Hz, 1H), 7.73 (dd, J = 4.8, 1.2 Hz, 1H), 7.11 (dd, J = 5.2, 3.6 Hz, 1H), 5.47 (s, 1H), 5.39 (d, J = 1.6 Hz, 1H), 4.80 (s, 1H), 4.27–4.20 (m, 2H), 1.65 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.20 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 171.9, 168.0, 139.5, 139.2, 136.4, 134.6, 127.1, 121.8, 67.1, 61.0, 36.2, 28.4, 19.1, 14.2.

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min, λ = 254 nm, t_R = 10.9 min (minor), 14.0 min (major).

Chiral HPLC spectrum of (*rac*)-1h

Chiral HPLC spectrum of (S)-1h

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 9.17 (d, J = 2.0 Hz, 1H), 8.85 (dd, J = 4.8, 1.2 Hz, 1H), 8.37–8.34 (m, 1H), 7.52–7.49 (m, 1H), 5.40–5.39 (m, 2H), 4.82 (s, 1H), 4.24 (q, J = 7.2 Hz, 2H), 1.62 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.22 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 171.4, 167.9, 153.9, 150.2, 139.2, 137.3, 136.0, 123.4, 122.3, 67.3, 61.2, 36.3, 28.4, 19.2, 14.1.

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min, λ = 254 nm, t_R = 24.8 min (minor), 35.9 min (major).

Chiral HPLC spectrum of (rac)-1i

Chiral HPLC spectrum of (S)-1i

Ethyl (S)-3,3-dimethyl-2-(N-tosylacrylamido)butanoate (1j)

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = 7.95 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.06 (q, J = 10.4 Hz, 1H), 6.18 (dd, J = 16.4, 1.2 Hz, 1H), 5.64 (dd, J = 10.4, 1.6 Hz, 1H), 4.81 (s, 1H), 4.15–4.09 (m, 2H), 2.43 (s, 3H), 1.21 (s, 9H), 1.13 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 168.0, 165.8, 145.1, 136.9, 131.8, 129.4, 128.7, 128.6, 66.6, 60.7, 36.4, 28.5, 21.7, 14.1. HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 99/1, flow rate = 0.5 mL/min, $\lambda = 254$ nm, t_R = 9.78 min (minor), 10.57 min (major).

Chiral HPLC spectrum of (rac)-1j

Chiral HPLC spectrum of (S)-1j

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.09–8.07 (m, 2H), 7.65–7.61 (m, 1H), 7.54–7.50 (m, 2H), 7.08 (dd, J = 16.4, 10.4 Hz, 1H), 6.18 (dd, J = 16.8, 1.6 Hz, 1H), 5.65 (dd, J = 10.4, 1.6 Hz, 1H), 4.81 (s, 1H), 4.15–4.06 (m, 2H), 1.22 (s, 9H), 1.10 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 167.9, 165.8 139.8, 134.0, 131.9, 128.8, 128.7, 128.6, 66.7, 60.7, 36.4, 28.5, 14.0. **HPLC analysis:** Chiralcel ID column, *n*-hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min, $\lambda = 254$ nm, t_R = 10.28 min (minor), 10.99 min (major).

Chiral HPLC spectrum of (rac)-1k

Chiral HPLC spectrum of (S)-1k

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.95 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 8.8 Hz, 2H), 7.02 (q, J = 10.4 Hz, 1H), 6.22 (dd, J = 16.8, 1.2 Hz, 1H), 5.69 (dd, J = 10.4, 1.6 Hz, 1H), 4.78 (s, 1H), 4.16–4.10 (m, 2H), 1.21 (s, 9H), 1.14 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 167.9, 165.6, 138.8, 132.5, 132.1, 130.1, 129.3, 128.5, 66.9, 60.9, 36.4, 28.5, 14.1.

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 98/2, flow rate = 1.0 mL/min, λ = 254 nm, t_R = 7.94 min (minor), 8.74 min (major).

Chiral HPLC spectrum of (rac)-11

Chiral HPLC spectrum of (S)-11

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 6.6 Hz, 2H), 7.22–6.99 (m, 7H), 5.90 (s, 1H), 5.55 (s, 1H), 4.92 (s, 1H), 4.31–4.16 (m, 2H), 2.26 (s, 3H), 1.32–1.26 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 168.2, 145.0, 135.8, 134.1, 129.7, 129.2, 128.1, 125.8, 119.3, 61.1, 36.5, 28.8, 21.5, 14.2. HPLC analysis: Chiralcel ID column, n-hexane/i-PrOH = 99/1, flow rate = 0.5 mL·min-1, $\lambda = 254$ nm, tR = 7.34 min (major), 20.77 min (minor).

Chiral HPLC spectrum of (rac)-1m

Chiral HPLC spectrum of (S)-1m

6. Characterization data of compound 3.

Ethyl (S)-3,3-dimethyl-2-((R)-2-methyl-2-(p-tolyl)-3-tosylpropanamido)butanoate (3a)

3a: 63.4 mg, 64% yield, > 99% ee₁, 99% ee₂, 83:17 dr, yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.48 (d, J = 8.4 Hz, 2H), 7.12 (dd, J = 16.4, 8.0 Hz, 4H), 7.01 (d, J = 8.0 Hz, 2H), 5.74 (d, J = 8.8 Hz, 1H), 4.29 (d, J = 4.0 Hz, 1H), 4.17–4.02 (m, 3H), 3.75 (d, J = 14.8 Hz, 1H), 2.38 (s, 3H), 2.30 (s, 3H), 2.03 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H), 0.87 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.7, 170.7, 143.8, 138.3, 137.7, 136.1, 129.4, 129.4, 127.5, 126.9, 64.0, 60.9, 60.4, 49.4, 34.8, 26.5, 22.9, 21.5, 21.0, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₆H₃₅NO₅S, M+Na]⁺: 496.2134, found: 496.2141. [α]_D²⁵ = -1.1 (c = 0.64, CHCl₃).

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 225 nm, t₁(major) = 39.3 min, t₁(minor) = 53.6 min, ee = > 99%; t₂(major) = 46.5 min, t₂(minor) = 34.7 min, ee = 99%.

Ethyl ((R)-2-methyl-2-(p-tolyl)-3-tosylpropanoyl)-L-valinate (3a')

3a': 50.5 mg, 55% yield, > 99% ee₁, > 99% ee₂, 75:25 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (d, J = 8.4 Hz, 2H), 7.17–7.12 (m, 4H), 7.04–7.00 (m, 2H), 5.76 (d, J = 8.4 Hz, 1H), 4.41 (dd, J = 8.4, 4.8 Hz, 1H), 4.17–4.02 (m, 3H), 3.73 (d, J = 14.8 Hz, 1H), 2.39 (s, 3H), 2.30 (s, 3H), 2.14–2.02 (m, 1H), 2.03 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H), 0.79 (d, J = 6.8 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 174.8, 171.4, 143.8, 138.3, 137.7, 136.3, 129.4, 129.4, 127.6, 126.9, 64.1, 61.2, 57.4, 49.4, 31.1, 22.9, 21.6, 21.0, 18.9, 17.7, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₅H₃₃NO₅S+H⁺: M+H]⁺: 460.2153, found: 460.2149. [α]_D²⁵ = +4.3 (c = 0.24, CHCl₃).

HPLC analysis: Chiralcel IB column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 222 nm, t₁(major) = 6.4 min, t₁(minor) = 6.9 min, ee = > 99%; t₂(minor) = 7.6 min, t₂(major) = 8.8 min, ee = > 99%.

(R)-2-methyl-N-((S)-1-phenylethyl)-2-(p-tolyl)-3-tosylpropanamide (3a'')

3a'': 41.8 mg, 48% yield, 98% ee₁, > 99% ee₂, 59:41 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.48 (m, 2H), 7.33–7.29 (m, 1H), 7.24–7.12 (m, 6H), 7.05 – 6.97 (m, 4H), 5.49 (d, J = 8.0 Hz, 1H), 5.06–5.00 (m, 1H), 4.10–4.04 (m, 1H), 3.69 (d, J = 14.4 Hz, 1H), 2.38 (s, 3H), 2.30 (d, J = 6.0 Hz, 3H), 2.02 (s, 3H), 1.30 (d, J = 6.8 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.8, 143.8, 143.0, 138.4, 137.6, 136.8, 129.4, 129.3, 128.5, 127.6, 127.2, 126.8, 125.9, 64.2, 49.2, 49.1, 22.5, 21.8, 21.5, 21.0. **HRMS** (ESI) m/z Calcd for [C₂₆H₂₉NO₃S+H⁺: M+H]⁺: 436.1941, found: 436.1942. [α]_D²⁵ = +3.2 (c = 0.20, CHCl₃).

HPLC analysis: Chiralcel IA column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.8 mL/min, λ = 212 nm, t₁(major) = 34.6 min, t₁(minor) = 36.5 min, ee = 98%; t₂(major) = 48.4 min, t₂(minor) = 65.0 min, ee = > 99%.

Ethyl (S)-3,3-dimethyl-2-((R)-2-methyl-3-(phenylsulfonyl)-2-(p-tolyl)propanamido)butanoate (3b)

3b: 56.0 mg, 61% yield, > 99% ee₁, 99% ee₂, 84:16 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.53 (d, *J* = 7.6 Hz, 2H), 7.45–7.41 (m, 1H), 7.30–7.25 (m, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 5.68 (d, *J* = 9.2 Hz, 1H), 4.22 (d, *J* = 8.8 Hz, 1H), 4.11–3.95 (m, 3H), 3.72 (d, *J* = 14.8 Hz, 1H), 2.22 (s, 3H), 1.98 (s, 3H), 1.10 (t, *J* = 6.8 Hz, 3H), 0.81 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.7, 170.7, 141.2, 137.7, 136.0, 132.8, 129.4, 128.8, 127.5, 127.0, 64.0, 61.0, 60.4, 49.4, 34.8, 26.5, 23.0, 21.0, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₅H₃₃NO₅S+H⁺: M+H]⁺: 460.2152, found: 460.2157. [α]_D²⁵ = -7.9 (c = 0.10, CHCl₃). **HPLC analysis**: Chiralcel AD-3 column, *n*-hexane/*i*-PrOH = 85/15, flow rate = 0.8 mL/min, λ = 220 nm, t₁(major) = 18.7 min, t₁(minor) = 31.9 min, ee = >99%; t₂(major) = 48.0 min, t₂(minor) = 16.6 min, ee = 99%.

Ethyl (S)-3,3-dimethyl-2-((R)-2-methyl-2-(p-tolyl)-3-(o-tolylsulfonyl)propanamido)butanoate

3c: 39.8 mg, 42% yield, > 99% ee₁, > 99% ee₂, 85:15 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.60–7.55 (m, 1H), 7.37 (td, *J* = 7.6, 1.2 Hz, 1H), 7.19–7.11 (m, 4H), 7.01 (d, *J* = 8.0 Hz, 2H), 5.77 (d, *J* = 9.2 Hz, 1H), 4.29 (d, *J* = 9.2 Hz, 1H), 4.20–4.01 (m, 3H), 3.77 (d, *J* = 14.8 Hz, 1H), 2.62 (s, 3H), 2.28 (s, 3H), 2.06 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 3H), 0.88 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.7, 170.7, 139.1, 137.7, 137.5, 136.2, 133.0, 132.3, 129.6, 129.4, 126.8, 126.3, 62.9, 60.9, 60.3, 49.4, 34.8, 26.5, 23.0, 21.0, 20.3, 14.1. **HRMS** (ESI) m/z Calcd for $[C_{26}H_{35}NO_5S+H^+: M+H]^+: 474.2309$, found: 474.2320. $[\alpha]_D^{25} = +2.3$ (c = 0.16, CHCl₃).

HPLC analysis: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 98/2, flow rate = 0.6 mL/min, λ = 233 nm, t₁(major) = 25.0 min, t₁(minor) = 42.3 min, ee = > 99%; t₂(major) = 77.0 min, t₂(minor) = 30.6 min, ee = > 99%.

Ethyl (S)-2-((R)-3-((2-(allyloxy)phenyl)sulfonyl)-2-methyl-2-(p-tolyl)propanamido)-3,3dimethylbutanoate (3d)

3d: 51.5 mg, 50% yield, > 99% ee₁, 98% ee₂, 78:22 dr, yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = 7.40–7.20 (m, 4H), 7.13 (t, J = 7.6 Hz, 1H), 6.87–6.81 (m, 2H), 6.77 (d, J = 8.0 Hz, 1H), 5.86 (dd, J = 8.8, 4.0 Hz, 1H), 4.66 (dd, J = 20.4, 9.6 Hz, 1H), 4.43–4.30 (m, 2H), 4.22–4.05 (m, 2H), 3.92–3.82 (m, 2H), 3.60 (dd, J = 15.2, 10.0 Hz, 1H), 2.94–2.80 (m, 1H), 2.57–2.48 (m, 1H), 2.36 - 2.32 (m, 3H), 2.03 (d, J = 2.8 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H), 0.91 (d, J = 1.6 Hz, 9H). ¹³**C** NMR (100 MHz, CDCl₃) δ (ppm) = 174.5, 174.4, 170.7, 159.7, 159.7, 138.5, 136.6, 136.5, 129.9, 129.2, 129.1, 127.1, 127.0, 124.1, 124.0, 120.7, 120.6, 109.9, 76.1, 75.9, 63.2, 63.0, 61.0, 60.4, 60.4, 58.7, 58.6, 49.6, 49.5, 36.0, 35.5, 34.8, 26.5, 23.0, 23.0, 21.0, 21.0, 14.1. HRMS (ESI) m/z Calcd for [C₂₈H₃₇NO₆S+H⁺: M+H]⁺: 516.2414, found: 516.2430. [α]_D²⁵ = +16.4 (c= 0.14, CHCl₃).

HPLC analysis: Chiralcel AZ-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 286 nm, t₁(major) = 43.4 min, t₁(minor) = 34.0 min, ee = > 99%; t₂(major) = 37.7 min, t₂(minor) = 25.2 min, ee = 98%.

Ethyl (S)-3,3-dimethyl-2-((R)-2-methyl-2-(p-tolyl)-3-(m-tolylsulfonyl)propanamido)butanoate (3e)

3e: 53.0 mg, 56% yield, 98% ee₁, 91% ee₂,79:21 dr, yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.43 (d, J = 7.6 Hz, 1H), 7.32–7.20 (m, 3H), 7.11–7.10 (m, 4H), 5.71 (d, J = 8.8 Hz, 1H), 4.29 (d, J = 8.8 Hz, 1H), 4.17–4.01 (m, 3H), 3.80 (d, J = 14.8 Hz, 1H), 2.31 (s, 3H), 2.29 (s, 3H), 2.05 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H), 0.87 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.8, 8 170.7, 140.9, 138.9, 137.6, 135.9, 133.6, 129.3, 128.7, 127.9, 127.0, 124.6, 63.8, 60.9, 60.3, 49.4, 34.7, 26.5, 23.0, 21.2, 21.0, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₆H₃₅NO₅S+H⁺: M+H]⁺: 474.2309, found: 474.2319. [α]_D²⁵ = +6.7 (c = 0.18, CHCl₃).

HPLC analysis: Chiralcel AD-3 column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 207 nm, t₁(major) = 7.2 min, t₁(minor) = 6.5 min, ee = 98%; t₂(major) = 9.3 min, t₂(minor) = 5.4 min, ee = 91%.

Ethyl (S)-3,3-dimethyl-2-((R)-2-methyl-3-((3-nitrophenyl)sulfonyl)-2-(p-tolyl)propanamido)butanoate (3f)

3f: 26.2 mg, 26% yield, > 99% ee₁, > 99% ee₂, 82:18 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.14–8.10 (m, 2H), 7.68 (d, J = 8.8 Hz, 2H), 7.05–7.02 (m, 2H), 6.95 (d, J = 8.0 Hz, 2H), 5.61 (d, J = 8.8 Hz, 1H), 4.28 (d, J = 9.2 Hz, 1H), 4.21–4.02 (m, 3H), 3.90 (d, J = 15.2 Hz, 1H), 2.27 (s, 3H), 2.05 (s, 3H), 1.16 (t, J = 7.2 Hz, 3H), 0.87 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.4, 170.6, 150.0, 146.2, 138.5, 135.3, 129.4, 129.0, 127.2, 123.8, 64.4, 61.0, 60.3, 49.3, 34.7, 26.5, 22.9, 20.9, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₅H₃₂N₂O₇S+H⁺: M+H]⁺: 505.2003, found: 505.2015. [α]_D²⁵ = +13.1 (c= 0.06, CHCl₃).

HPLC analysis: Chiralcel AD-3 column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.8 mL/min, λ = 263 nm, t₁(major) = 56.4 min, t₁(minor) = 72.8 min, ee = > 99%; t₂(major) = 77.1 min, t₂(minor) = 48.0 min, ee = > 99%.

Ethyl (S)-2-((R)-3-((3-fluorophenyl)sulfonyl)-2-methyl-2-(p-tolyl)propanamido)-3,3dimethylbutanoate (3g)

3g: 42.9 mg, 45% yield, 99% ee₁, 98% ee₂, 84:16 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.42–7.30 (m, 2H), 7.19–7.06 (m, 4H), 6.99 (d, J = 8.4 Hz, 2H), 5.69 (d, J = 8.8 Hz, 1H), 4.28 (d, J = 9.2 Hz, 1H), 4.20–3.97 (m, 3H), 3.86 (d, J = 14.8 Hz, 1H), 2.29 (s, 3H), 2.04 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H), 0.87 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.7, 170.7, 162.0 (J = 250.2 Hz), 143.0 (J = 6.4 Hz), 138.1, 135.4, 130.6 (J = 7.4 Hz), 129.4, 127.1, 123.2 (J = 3.2 Hz), 119.9 (J = 21.1 Hz), 115.0 (J = 24.4 Hz), 64.2, 60.9, 60.3, 49.4, 34.7, 26.5, 23.0, 20.9, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₅H₃₂FNO₅S+H⁺: M+H]⁺: 478.2058, found: 478.2070. [α]_D²⁵ = +2.5 (c = 0.24, CHCl₃).

HPLC analysis: Chiralcel AD-3 column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.8 mL/min, λ = 202 nm, t₁(major) = 19.4 min, t₁(minor) = 24.3 min, ee = 99%; t₂(major) = 29.8 min, t₂(minor) = 15.7 min, ee = 98%.

Ethyl (S)-2-((R)-3-((4-ethylphenyl)sulfonyl)-2-methyl-2-(p-tolyl)propanamido)-3,3dimethylbutanoate (3h)

3h: 63.3 mg, 65% yield, > 99% ee₁, > 99% ee₂, 83:17 dr, yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.49 (d, J = 8.0 Hz, 2H), 7.12–7.09 (m, 4H), 7.01 (d, J = 8.0 Hz, 2H), 5.68 (d, J = 9.2 Hz, 1H), 4.29 (d, J = 8.8 Hz, 1H), 4.18–4.00 (m, 3H), 3.78 (d, J = 14.8 Hz, 1H), 2.66 (q, J = 7.6 Hz, 2H), 2.29 (s, 3H), 2.04 (s, 3H), 1.25–1.15 (m, 6H), 0.87 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.7, 170.7, 150.0, 138.4, 137.6, 136.1, 129.3, 128.3, 127.6, 127.0, 63.9, 60.9, 60.3, 49.4, 34.7, 28.8, 26.5, 22.9, 21.0, 15.3, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₇H₃₇NO₅S+H⁺: M+H]⁺: 488.2465, found: 488.2476. [α]_D²⁵ = +1.9 (c = 0.12, CHCl₃).

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 231 nm, t₁(major) = 32.1 min, t₁(minor) = 45.2 min, ee = > 99%; t₂(major) = 28.1 min, t₂(minor) = 29.8 min, ee = > 99%.

Ethyl (S)-2-((R)-3-((4-(*tert*-butyl)phenyl)sulfonyl)-2-methyl-2-(*p*-tolyl)propanamido)-3,3dimethylbutanoate (3i)

3i: 58.7 mg, 57% yield, > 99% ee₁, > 99% ee₂, 81:19 dr, yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.43–7.38 (m, 2H), 7.28–7.24 (m, 2H), 7.04–7.01 (m, 2H), 6.92 (d, *J* = 8.0 Hz, 2H), 5.63 (d, *J* = 9.2 Hz, 1H), 4.21 (d, *J* = 8.8 Hz, 1H), 4.10–3.94 (m, 3H), 3.73 (d, *J* = 14.8 Hz, 1H), 2.22 (s, 3H), 1.97 (s, 3H), 1.24 (s, 9H), 1.10 (t, *J* = 7.2 Hz, 3H), 0.80 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.8, 170.7, 156.8, 138.1, 137.5, 136.0, 129.3, 127.3, 127.1, 125.8, 63.9, 60.9, 60.3, 49.4, 35.1, 34.7, 31.1, 26.5, 23.0, 21.1, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₉H₄₁NO₅S+H⁺: M+H]⁺: 516.2778, found: 516.2788. [α]_D²⁵ = -10.7 (c = 0.10, CHCl₃). **HPLC analysis**: Chiralcel ID column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 239 nm, t₁(major) = 23.9 min, t₁(minor) = 30.9 min, ee => 99%; t₂(major) = 27.8 min, t₂(minor) = 22.7 min, ee => 99%.

Ethyl (S)-2-((R)-3-([1,1'-biphenyl]-4-ylsulfonyl)-2-methyl-2-(p-tolyl)propanamido)-3,3dimethylbutanoate (3j)

3j: 48.2 mg, 45% yield, > 99% ee₁, > 99% ee₂, 82:18 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.65–7.60 (m, 2H), 7.57–7.51 (m, 4H), 7.49–7.40 (m, 3H), 7.14–7.10 (m, 2H), 7.01 (d, J = 8.0 Hz, 2H), 5.73 (d, J = 8.8 Hz, 1H), 4.30 (d, J = 8.8 Hz, 1H), 4.20–4.02 (m, 3H), 3.84 (d, J = 14.8 Hz, 1H), 2.24 (s, 3H), 2.07 (s, 3H), 1.16 (t, J = 7.2 Hz, 3H), 0.87 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.7, 170.7, 145.9, 139.6, 139.3, 137.8, 136.0, 129.4, 129.1, 128.5, 128.1, 127.4, 127.3, 127.0, 64.0, 61.9, 60.4, 49.5, 34.8, 26.5, 23.0, 21.0, 14.1. **HRMS** (ESI) m/z Calcd for [C₃₁H₃₇NO₅S+H⁺: M+H]⁺: 536.2465, found: 536.2477. [α]_D²⁵ = -19.4 (c = 0.10, CHCl₃).

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 275 nm, t₁(major) = 54.2 min, t₁(minor) = 85.0 min, ee = > 99%; t₂(major) = 66.7 min, t₂(minor) = 50.7 min, ee = > 99%.

Ethyl (S)-2-((R)-3-((4-methoxyphenyl)sulfonyl)-2-methyl-2-(p-tolyl)propanamido)-3,3dimethylbutanoate (3k)

3k: 68.5 mg, 70% yield, 99% ee₁, > 99% ee₂, 84:16 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.53–7.48 (m, 2H), 7.13–7.10 (m, 2H), 7.03 (d, J = 8.4 Hz, 2H), 6.81–6.78 (m, 2H), 5.74 (d, J = 8.8 Hz, 1H), 4.29 (d, J = 8.8 Hz, 1H), 4.18–4.02 (m, 3H), 3.86–3.80 (m, 3H), 3.74 (d, J = 15.2 Hz, 1H), 2.30 (s, 3H), 2.03 (s, 3H), 1.17 (t, J = 6.8 Hz, 3H), 0.87 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.7, 170.7, 163.2, 137.6, 136.2, 133.0, 129.7, 129.4, 127.0, 114.0, 64.1, 61.0, 60.3, 55.6, 49.4, 34.7, 26.5, 22.9, 21.0, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₆H₃₅NO₆S+H⁺: M+H]⁺: 490.2258, found: 490.2268. [α]_D²⁵ = -5.5 (c = 0.18, CHCl₃).

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 219 nm, t₁(major) = 55.5 min, t₁(minor) = 75.0 min, ee = 99%; t₂(major) = 69.9 min, t₂(minor) = 43.3 min, ee = > 99%.

Ethyl (*R*)-3,3-dimethyl-2-((*R*)-2-methyl-3-((4-(phenylethynyl)phenyl)sulfonyl)-2-(*p*-tolyl)propanamido)butanoate (3)

31: 47.0 mg, 42% yield, > 99% ee₁, 99% ee₂, 81:19 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.35–7.20 (m, 4H), 7.13 (t, J = 7.6 Hz, 1H), 6.87–6.81 (m, 2H), 6.77 (d, J = 8.0 Hz, 1H), 5.86 (dd, J = 8.8, 4.8 Hz, 1H), 4.66 (dd, J = 20.4, 9.6 Hz, 1H), 4.43–4.30 (m, 2H), 4.22–4.05 (m, 2H), 3.92–3.82 (m, 2H), 3.60 (dd, J = 15.2, 10.0 Hz, 1H), 2.94–2.76 (m, 1H), 2.57–2.48 (m, 1H), 2.36–2.32 (m, 3H), 2.03 (d, J = 2.8 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H), 0.91 (d, J = 1.6 Hz, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.7, 170.7, 140.0, 138.1, 135.7, 131.8, 131.7, 129.5, 129.0, 128.5, 128.2, 127.5, 127.0, 122.4, 92.9, 87.8, 64.0, 60.9, 60.3, 49.4, 34.8, 26.5, 22.9, 21.0, 14.1. **HRMS** (ESI) m/z Calcd for [C₃₃H₃₇NO₅S+H⁺: M+H]⁺: 560.2465, found: 560.2479. [α]_D²⁵ = -4.2 (c = 0.10, CHCl₃).

HPLC analysis: Chiralcel AD-3 column, *n*-hexane/*i*-PrOH = 88/12, flow rate = 0.8 mL/min, λ = 203 nm, t₁(major) = 41.5 min, t₁(minor) = 82.3 min, ee = >99%; t₂(major) = 90.5 min, t₂(minor) = 49.8 min, ee = 99%.

Ethyl (S)-2-((R)-3-((4-cyanophenyl)sulfonyl)-2-methyl-2-(p-tolyl)propanamido)-3,3dimethylbutanoate (3m)

3m: 38.7 mg, 40% yield, > 99% ee₁, > 99% ee₂, 83:17 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.65–7.57 (m, 4H), 7.06–6.97 (m, 4H), 5.67 (d, J = 9.2 Hz, 1H), 4.28 (d, J = 8.8 Hz, 1H), 4.21–4.02 (m, 3H), 3.86 (d, J = 15.2 Hz, 1H), 2.31 (s, 3H), 2.04 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H), 0.87 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.4, 170.6, 144.8, 138.3, 135.4, 132.4, 129.5, 128.3, 127.1, 117.2, 116.3, 64.2, 61.0, 60.4, 49.4, 34.7, 26.5, 22.9, 21.0, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₆H₃₂N₂O₅S+H⁺: M+H]⁺: 485.2105, found: 485.2116. [α]_D²⁵ = +2.3 (c = 0.18, CHCl₃).

HPLC analysis: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 233 nm, t₁(major) = 23.2 min, t₁(minor) = 30.1 min, ee = > 99%; t₂(major) = 53.5 min, t₂(minor) = 27.9 min, ee = > 99%.

Ethyl 4-(((*R*)-3-(((*S*)-1-ethoxy-3,3-dimethyl-1-oxobutan-2-yl)amino)-2-methyl-3-oxo-2-(*p*-tolyl)propyl)sulfonyl)benzoate (3n)

3n: 53.1 mg, 50% yield, 98% ee₁, > 99% ee₂, 83:17 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.97–7.94 (m, 2H), 7.59 (d, J = 8.4 Hz, 2H), 7.06–7.03 (m, 2H), 6.95 (d, J = 8.0 Hz, 2H), 5.68 (d, J = 8.8 Hz, 1H), 4.45–4.38 (m, 2H), 4.28 (d, J = 8.8 Hz, 1H), 4.22–3.99 (m, 3H), 3.86 (d, J = 15.2 Hz, 1H), 2.27 (s, 3H), 2.04 (s, 3H), 1.42 (t, J = 7.2 Hz, 3H), 1.16 (t, J = 7.2 Hz, 3H), 0.86 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.6, 170.6, 165.1, 144.5, 138.1, 135.4, 134.1, 129.8, 129.4, 127.5, 127.1, 64.0, 61.7, 60.9, 60.3, 49.3, 34.7, 26.5, 22.9, 20.9, 14.3, 14.0. **HRMS** (ESI) m/z Calcd for [C₂₈H₃₇NO₇S+H⁺: M+H]⁺: 532.2363, found: 532.2378. [α]_D²⁵ = +5.4 (c = 0.10, CHCl₃).

HPLC analysis: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95/5, flow rate = 0.6 mL/min, λ = 254 nm, t₁(major) = 32.2 min, t₁(minor) = 43.3 min, ee = 98%; t₂(major) = 63.7 min, t₂(minor) = 37.6 min, ee = > 99%.

Ethyl (S)-3,3-dimethyl-2-((R)-2-methyl-2-(p-tolyl)-3-((4-(trifluoromethyl)phenyl)sulfonyl)propanamido)butanoate (30)

30: 64.3 mg, 61% yield, > 99% ee₁, 99% ee₂, 82:18 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.54–4.44 (m, 4H), 6.92 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.0 Hz, 2H), 5.56 (d, J = 8.8 Hz, 1H), 4.19 (d, J = 8.8 Hz, 1H), 4.10–3.94 (m, 3H), 3.84 (d, J = 15.6 Hz, 1H), 2.18 (s, 3H), 1.97 (s, 3H), 1.09 (t, J = 7.2 Hz, 3H), 0.78 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.7, 170.6, 144.0, 138.1, 135.1, 134.3 (J = 32.9 Hz), 129.4, 128.1, 127.2, 125.7 (J = 3.6 Hz), 123.2 (J = 271.1 Hz), 64.0, 61.0, 60.3, 49.3, 34.7, 26.5, 22.9, 20.8, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₆H₃₂F₃NO₅S+H⁺: M+H]⁺: 528.2026, found: 528.2037. [α]_D²⁵ = +10.4 (c = 0.10, CHCl₃).

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 224 nm, t₁(major) = 13.8 min, t₁(minor) = 19.3 min, ee = > 99%; t₂(major) = 17.2 min, t₂(minor) = 11.7 min, ee = 99%.

Ethyl (S)-2-((R)-3-((4-bromophenyl)sulfonyl)-2-methyl-2-(p-tolyl)propanamido)-3,3dimethylbutanoate (3p)

3p: 55.8 mg, 52% yield, > 99% ee₁, > 99% ee₂, 85:15 dr, yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.45–7.42 (m, 2H), 7.38–7.34 (m, 2H), 7.05–7.03 (m, 2H), 7.00–6.98 (m, 2H), 5.67 (d, J = 9.2 Hz, 1H), 4.28 (d, J = 8.8 Hz, 1H), 4.16–4.01 (m, 3H), 3.81 (d, J = 15.2 Hz, 1H), 2.32 (s, 3H), 2.03 (s, 3H), 1.16 (t, J = 7.2 Hz, 3H), 0.86 (s, 9H). ¹³C **NMR** (100 MHz, CDCl₃) δ (ppm) = 174.6, 170.7, 139.9, 138.1, 135.5, 132.0, 129.4, 129.1, 128.0, 127.1, 64.1, 60.9, 60.3, 49.3, 34.7, 26.5, 22.8, 21.0, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₅H₃₂BrNO₅S+H⁺: M+H]⁺: 538.1257, found: 538.1271. [α]_D²⁵ = -11.5 (c = 0.16, CHCl₃).

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 229 nm, t₁(major) = 31.1 min, t₁(minor) = 42.8 min, ee = > 99%; t₂(major) = 39.7 min, t₂(minor) = 25.2 min, ee = > 99%.

Ethyl (S)-3,3-dimethyl-2-((R)-2-methyl-3-((4-nitrophenyl)sulfonyl)-2-(p-tolyl)propanamido)butanoate (3q)

3q: 33.3 mg, 33% yield, > 99% ee₁, > 99% ee₂, 83:17 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.14–8.10 (m, 2H), 7.70–7.65 (m, 2H), 7.05–7.02 (m, 2H), 6.95 (d, J = 8.0 Hz, 2H), 5.65 (d, J = 8.8 Hz, 1H), 4.27 (d, J = 8.8 Hz, 1H), 4.18–4.02 (m, 3H), 3.90 (d, J = 15.2 Hz, 1H), 2.27 (s, 3H), 2.05 (s, 3H), 1.16 (t, J = 7.2 Hz, 3H), 0.87 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.4, 170.6, 150.0, 146.2, 138.5, 135.3, 129.4, 129.0, 127.2, 123.8, 64.4, 61.0, 60.3, 49.3, 34.7, 26.5, 22.9, 20.9, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₅H₃₂N₂O₇S+H⁺: M+H]⁺: 505.2003, found: 505.2011. [α]_D²⁵ = +9.6 (c = 0.20, CHCl₃).

HPLC analysis: Chiralcel AD-3 column, *n*-hexane/*i*-PrOH = 85/15, flow rate = 0.8 mL/min, λ = 254 nm, t₁(major) = 37.2 min, t₁(minor) = 47.0 min, ee = > 99%; t₂(major) = 50.6 min, t₂(minor) = 31.8 min, ee = > 99%.

Ethyl (S)-2-((R)-3-((3-methoxy-4-(trifluoromethyl)phenyl)sulfonyl)-2-methyl-2-(p-tolyl)propanamido)-3,3-dimethylbutanoate (3r)

3r: 66.8 mg, 60% yield, > 99% ee₁, > 99% ee₂, 81:19 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.73–7.69 (m, 1H), 7.65–7.61 (m, 1H), 7.07–7.05 (m, 2H), 7.00 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.8 Hz, 1H), 5.64 (d, J = 8.8 Hz, 1H), 4.27 (d, J = 9.2 Hz, 1H), 4.17–4.02 (m, 3H), 3.94 (s, 3H), 3.85 (d, J = 15.2 Hz, 1H), 2.27 (s, 3H), 2.04 (s, 3H), 1.16 (t, J =7.2 Hz, 3H), 0.86 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.7, 170.6, 160.8, 138.0, 135.4, 133.4, 132.6, 129.5, 127.4 (J = 5.3 Hz), 127.1, 122.5 (J = 271.2 Hz), 119.1 (J = 31.9 Hz), 111.8, 64.1, 60.9, 60.3, 56.5, 49.4, 34.7, 26.4, 22.9, 20.9, 14.0. **HRMS** (ESI) m/z Calcd for [C₂₇H₃₄F₃NO₆S+H⁺: M+H]⁺: 558.2132, found: 558.2144. [α]_D²⁵ = +3.1 (c = 0.12, CHCl₃). **HPLC analysis**: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 94/6, flow rate = 0.8 mL/min, $\lambda =$

211 nm, $t_1(major) = 24.0 \text{ min}$, $t_1(minor) = 49.2 \text{ min}$, ee = > 99%; $t_2(major) = 69.6 \text{ min}$, $t_2(minor) = 27.5 \text{ min}$, ee = > 99%.

Ethyl (S)-3,3-dimethyl-2-((R)-2-methyl-3-(naphthalen-2-ylsulfonyl)-2-(p-tolyl)propanamido)butanoate (3s)

3s: 66.2 mg, 65% yield, > 99% ee₁, 98% ee₂, 83:17 dr, yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.94 (d, *J* = 1.2 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.81–7.76 (m, 2H), 7.63–7.55 (m, 3H), 7.03 (d, *J* = 10.8 Hz, 2H), 6.78 (d, *J* = 8.0 Hz, 2H), 5.65 (d, *J* = 9.2 Hz, 1H), 4.27 (d, *J* = 8.8 Hz, 1H), 4.19–4.00 (m, 3H), 3.94 (d, *J* = 15.2 Hz, 1H), 2.08 (s, 3H), 1.97 (s, 3H), 1.13 (t, *J* = 7.2 Hz, 3H), 0.85 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.9, 170.6, 137.9, 137.6, 135.3, 134.8, 131.9, 129.4, 129.2, 129.1, 128.9, 127.8, 127.3, 127.1, 122.3, 63.6, 60.9, 60.3, 49.4, 34.7, 26.5, 23.0, 20.7, 14.0. **HRMS** (ESI) m/z Calcd for [C₂₉H₃₅NO₅S+H⁺: M+H]⁺: 510.2309, found: 510.2323. [α]_D²⁵ = +29.4 (c = 0.16, CHCl₃).

HPLC analysis: Chiralcel AD-H column, *n*-hexane/*i*-PrOH = 85/15, flow rate = 0.8 mL/min, λ = 228 nm, t₁(major) = 23.0 min, t₁(minor) = 33.4 min, ee = >99%; t₂(major) = 40.1 min, t₂(minor) = 15.2 min, ee = 98%.

Ethyl (S)-2-((R)-3-((2,3-dihydrobenzofuran-6-yl)sulfonyl)-2-methyl-2-(p-tolyl)propanamido)-3,3-dimethylbutanoate (3t)

3t: 55.1 mg, 55% yield, > 99% ee₁, 97% ee₂, 84:16 dr, yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = 7.43–7.38 (m, 1H), 7.35 (s, 1H), 7.31 (s, 1H), 7.14–7.10 (m, 1H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.69 (d, *J* = 8.4 Hz, 1H), 5.73 (d, *J* = 8.8 Hz, 1H), 4.63 (t, *J* = 8.8 Hz, 2H), 4.29 (d, *J* = 8.8 Hz, 1H), 4.18–4.02 (m, 3H), 3.74 (d, *J* = 14.8 Hz, 1H), 3.20–3.07 (m, 2H), 2.31 (s, 3H), 2.03 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 3H), 0.87 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 174.7, 170.7, 164.1, 137.5, 136.3, 132.9, 129.3, 129.2, 128.0, 127.0, 124.9, 109.3, 72.3, 64.1, 60.9, 60.4, 49.4, 34.7, 28.9, 26.5, 22.8, 21.0, 14.1. HRMS (ESI) m/z Calcd for [C₂₇H₃₅NO₆S+H⁺: M+H]⁺: 502.2258, found: 502.2267. [α]_D²⁵ = -1.5 (c = 0.20, CHCl₃).

HPLC analysis: Chiralcel AD-3 column, *n*-hexane/*i*-PrOH = 85/15, flow rate = 0.8 mL/min, λ = 215 nm, t₁(major) = 24.4 min, t₁(minor) = 31.9 min, ee = >99%; t₂(major) = 46.4 min, t₂(minor) = 19.2 min, ee = 97%.

Methyl 3-(((*R*)-3-(((*S*)-1-ethoxy-3,3-dimethyl-1-oxobutan-2-yl)amino)-2-methyl-3-oxo-2-(*p*-tolyl)propyl)sulfonyl)thiophene-2-carboxylate (**3**u)

3u: 40.8 mg, 39% yield, 97% ee₁, 64% ee₂, 89:11 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.22 (d, J = 5.2 Hz, 1H), 7.14–7.05 (m, 3H), 6.97 (d, J = 8.4 Hz, 2H), 5.62 (d, J = 9.2 Hz, 1H), 4.70 (d, J = 15.2 Hz, 1H), 4.31–4.22 (m, 2H), 4.17–4.01 (m, 2H), 3.92 (s, 3H), 2.27 (s, 3H), 2.03 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H), 0.85 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.9, 170.7, 159.9, 144.9, 137.8, 135.5, 133.5, 131.2, 129.2, 128.9, 127.3, 62.7, 60.9, 60.2, 53.0, 49.5, 34.8, 26.5, 23.3, 21.0, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₅H₃₃NO₇S₂+H⁺: M+H]⁺: 524.1771, found: 524.1775. [α]_D²⁵ = -1.6 (c = 0.20, CHCl₃).

HPLC analysis: Chiralcel AD-3 column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.8 mL/min, n, λ = 209 nm, t₁(major) = 32.4 min, t₁(minor) = 42.7 min, ee = 97%; t₂(major) = 59.3 min, t₂(minor) = 28.7 min, ee = 64%.

Ethyl (S)-2-((R)-3-((9-ethyl-9H-carbazol-4-yl)sulfonyl)-2-methyl-2-(ptolyl)propanamido)-3,3-dimethylbutanoate (3v)

3v: 43.8 mg, 38% yield, > 99% ee₁, 96% ee₂, 80:20 dr, brown oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.09 (d, J = 1.2 Hz, 1H), 8.00 (d, J = 7.6 Hz, 1H), 7.73–7.69 (m, 1H), 7.55–7.51 (m, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.33–7.29 (m, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.76 (d, J = 8.0 Hz, 2H), 5.64 (d, J = 8.8 Hz, 1H), 4.37 (q, J = 7.2 Hz, 2H), 4.26 (d, J = 9.2 Hz, 1H), 4.18–4.09 (m, 2H), 4.06–3.98 (m, 2H), 3.93 (d, J = 14.8 Hz, 1H), 2.07 (s, 3H), 1.73 (s, 2H), 1.44 (t, J = 7.2 Hz, 3H), 1.13 (t, J = 7.2 Hz, 3H), 0.84 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃) δ (ppm) = 175.1, 170.7, 141.8, 140.6, 137.6, 135.5, 130.5, 129.0, 126.9, 126.8, 124.6, 122.5, 122.5, 121.4, 121.0, 120.2, 109.0, 108.3, 64.1, 60.8, 60.3, 49.4, 37.8, 34.7, 26.5, 23.0, 20.4, 14.0, 13.7. **HRMS** (ESI) m/z Calcd for [C₃₃H₄₀N₂O₅S+H⁺: M+H]⁺: 577.2731, found: 577.2746. [α]_D²⁵ = +35.4 (c = 0.12, CHCl₃).

HPLC analysis: Chiralcel IA column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 0.8 mL/min, $\lambda = 254$ nm, t₁(major) = 14.0 min, t₁(minor) = 22.5 min, ee = > 99%; t₂(major) = 38.1 min, t₂(minor) = 10.3 min, ee = 96%.

Ethyl (S)-2-((R)-3-(benzo[d]thiazol-5-ylsulfonyl)-2-methyl-2-(p-tolyl)propanamido)-3,3dimethylbutanoate (**3w**)

3w: 61.9 mg, 60% yield, > 99% ee₁, > 99% ee₂, 81:19 dr, yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 9.11 (s, 1H), 8.22 (s, 1H), 7.95–7.91 (m, 1H), 7.69–7.64 (m, 1H), 7.03 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.0 Hz, 2H), 5.61 (d, J = 9.2 Hz, 1H), 4.27 (d, J = 9.2 Hz, 1H), 4.20–4.01 (m, 3H), 3.93 (d, J = 15.2 Hz, 1H), 2.11 (s, 3H), 2.07 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H), 0.85 (s, 9H). ¹³**C NMR** (100MHz, CDCl₃) δ (ppm) = 174.7, 170.6, 156.1, 152.6, 139.3, 138.5, 137.9, 135.4, 129.2, 129.1, 127.1, 123.7, 122.5, 64.1, 60.9, 60.3, 49.4, 34.7, 26.5, 23.1, 20.8, 14.0. **HRMS** (ESI) m/z Calcd for [C₂₆H₃₂N₂O₅S₂, M+Na]⁺: 517.1825, found: 517.1837. [α]_D²⁵ = +15.5 (c = 0.12, CHCl₃).

HPLC analysis: Chiralcel AD-3 column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 217 nm, t₁(major) = 20.9 min, t₁(minor) = 49.6 min, ee = > 99%; t₂(major) = 34.6 min, t₂(minor) = 18.9 min, ee = > 99%.

Ethyl (S)-3,3-dimethyl-2-((R)-2-methyl-2-phenyl-3-tosylpropanamido)butanoate (3x)

3x: 51.4 mg, 56% yield, > 99% ee₁, > 99% ee₂, 86:14 dr, yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.53–7.47 (m, 2H), 7.25 (s, 5H), 7.16 (d, J = 8.0 Hz, 2H), 5.73 (d, J = 9.2 Hz, 1H), 4.29 (d, J = 9.2 Hz, 1H), 4.18–4.02 (m, 3H), 3.75 (d, J = 16.0 Hz, 1H), 2.38 (s, 3H), 2.07 (s, 3H), 1.17 (t, J = 6.8 Hz, 3H), 0.88 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.4, 171.0, 144.0, 139.5 138.3, 129.5, 128.8, 127.9, 127.5, 127.0, 63.9, 61.1, 60.4, 49.8, 34.7, 26.5, 22.8, 21.5, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₅H₃₃NO₅S+H⁺: M+H]⁺: 460.2152, found: 460.2164. [α]_D²⁵ = +1.8 (c = 0.18, CHCl₃).

HPLC analysis: Chiralcel IG column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 222 nm, t₁(major) = 38.3 min, t₁(minor) = 43.1 min, ee = > 99%; t₂(major) = 35.3 min, t₂(minor) = 31.6 min, ee = > 99%.

Ethyl (S)-2-((R)-2-(4-methoxyphenyl)-2-methyl-3-tosylpropanamido)-3,3-dimethylbutanoate (3y)

3y: 76.3 mg, 78% yield, > 99% ee₁, 99% ee₂, 81:19 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.47 (d, J = 8.0 Hz, 2H), 7.16–7.12 (m, 4H), 6.73 (d, J = 8.8 Hz, 2H), 5.75 (d, J = 9.2 Hz, 1H), 4.28 (d, J = 9.2 Hz, 1H), 4.16–4.00 (m, 3H), 3.86–3.74 (m, 4H), 2.38 (s, 3H), 2.03 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H), 0.87 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.8, 170.7, 159.1, 143.8, 138.3, 130.9, 129.4, 128.3, 127.5, 114.0, 64.0, 60.9, 60.4, 55.2, 49.1, 34.7, 26.5, 23.1, 21.5, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₆H₃₅NO₆S+H⁺: M+H]⁺: 490.2258, found: 490.2271. [α]_D²⁵ = +2.3 (c = 0.18, CHCl₃).

HPLC analysis: Chiralcel AZ-H column, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ = 228 nm, t₁(major) = 27.6 min, t₁(minor) = 40.1 min, ee = >99%; t₂(major) = 34.3 min, t₂(minor) = 22.4 min, ee = 99%.

Ethyl (S)-2-((R)-2-(4-fluorophenyl)-2-methyl-3-tosylpropanamido)-3,3-dimethylbutanoate

3z: 48.7 mg, 51% yield, 99% ee₁, > 99% ee₂, 82:18 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.50 (d, J = 8.4 Hz, 2H), 7.25–7.16 (m, 4H), 6.95–6.90 (m, 2H), 5.72 (d, J = 8.8 Hz, 1H), 4.29 (d, J = 9.2 Hz, 1H), 4.19–4.02 (m, 3H), 3.74 (d, J = 14.8 Hz, 1H), 2.39 (s, 3H), 2.06 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H), 0.89 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.2, 170.7, 162.3 (J = 162.3 Hz), 144.2, 138.2, 135.1, 129.6, 128.9 (J = 8.2 Hz), 127.5, 115.6 (J = 21.4 Hz), 63.9, 61.0, 60.4, 49.2, 34.7, 26.5, 23.0, 21.5, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₅H₃₂FNO₅S+H⁺: M+H]⁺: 478.2058, found: 478.2073. [α]_D²⁵ = +3.5 (c = 0.12, CHCl₃).

HPLC analysis: Chiralcel AZ-H column, *n*-hexane/*i*-PrOH = 88/12, flow rate = 0.8 mL/min, λ = 222 nm, t₁(major) = 67.3 min, t₁(minor) = 79.5 min, ee = 99%; t₂(major) = 56.8 min, t₂(minor) = 76.9 min, ee = > 99%.

Ethyl (S)-2-((R)-2-(4-cyanophenyl)-2-methyl-3-tosylpropanamido)-3,3-dimethylbutanoate

3aa: 33.9 mg, 35% yield, > 99% ee₁, 98% ee₂, 81:19 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.49–7.42 (m, 4H), 7.34 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 5.67 (d, J = 8.8 Hz, 1H), 4.24 (d, J = 8.8 Hz, 1H), 4.16–3.88 (m, 3H), 3.66 (d, J = 14.8 Hz, 1H), 2.34 (s, 3H), 2.02 (s, 3H), 1.12 (t, J = 6.8 Hz, 3H), 0.84 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 172.9, 170.7, 144.9, 144.6, 138.0, 132.4, 129.7, 127.9, 127.5, 118.2, 112.0, 63.6, 61.2, 60.5, 49.9, 34.8, 26.5, 22.4, 21.6, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₆H₃₂N₂O₅S+H⁺: M+H]⁺: 485.2105, found: 485.2119. [α]_D²⁵ = -1.5 (c = 0.16, CHCl₃).

HPLC analysis: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 228 nm, t₁(major) = 16.1 min, t₁(minor) = 23.6 min, ee = >99%; t₂(major) = 36.7 min, t₂(minor) = 20.6 min, ee = 98%.

$Ethyl\,(S)\mbox{-}2\mbox{-}((R)\mbox{-}2\mbox{-}(4\mbox{-}bromophenyl)\mbox{-}2\mbox{-}methyl\mbox{-}3\mbox{-}tosylpropanamido)\mbox{-}3\mbox{-}3\mbox{-}dimethylbutanoate$

3ab: 66.9 mg, 62% yield, > 99% ee₁, 99% ee₂, 85:15 dr, yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = 7.44 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 5.69 (d, *J* = 8.8 Hz, 1H), 4.29 (d, *J* = 9.2 Hz, 1H), 4.19–3.95 (m, 3H), 3.77 (d, *J* = 15.2 Hz, 1H), 2.41 (s, 3H), 2.04 (s, 3H), 1.18 (t, *J* = 7.2 Hz, 3H), 0.89 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 173.9, 170.6, 144.2, 138.1, 137.9, 131.7, 129.6, 128.9, 127.4, 122.4, 63.7, 61.0, 60.4, 49.3, 34.8, 26.5, 22.7, 21.6, 14.1. HRMS (ESI) m/z Calcd for [C₂₅H₃₂Br⁸¹NO₅S+H⁺: M+H]⁺: 540.1237, found: 540.1243. [α]_D²⁵ = -2.3 (c = 0.24, CHCl₃). HPLC analysis: Chiralcel AZ-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 231 nm, t₁(major) = 31.8 min, t₁(minor) = 45.0 min, ee = > 99%; t₂(major) = 41.4 min, t₂(minor) = 25.3 min, ee = 99%.

S49

Ethyl (R)-2-((R)-2-(2-bromophenyl)-2-methyl-3-tosylpropanamido)-3,3-dimethylbutanoate

3ac: 82.7 mg, 77% yield, > 99% ee₁, > 99% ee₂, 64:36 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.68 (d, J = 8.0 Hz, 1H), 7.45–7.41 (m, 1H), 7.3–7.34 (m, 2H), 7.31 –7.25 (m, 1H), 7.17–7.13 (m, 1H), 7.11–7.07 (m, 2H), 5.58 (d, J = 8.8 Hz, 1H), 4.62 (d, J = 15.6 Hz, 1H), 4.37 (d, J = 9.2 Hz, 1H), 4.19–3.99 (m, 2H), 3.85 (d, J = 15.6 Hz, 1H), 2.35 (s, 3H), 2.13 (s, 3H), 1.16 (t, J = 7.2 Hz, 3H), 0.85 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 174.5, 170.4, 143.8, 137.4, 136.6, 134.5, 131.1, 130.1, 129.3, 128.0, 127.4, 124.8, 61.2, 61.0, 60.1, 59.0, 50.5, 35.3, 26.4, 21.5, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₅H₃₂NO₅S+H⁺: M+H]⁺: 540.1237, found: 540.1245 [α]_D²⁵ = -3.5 (c= 0.28, CHCl₃).

HPLC analysis: Chiralcel AD-3 column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.8 mL·min⁻¹, n, λ = 219 nm, t₁(major) = 66.1 min, t₁(minor) = 95.9 min, ee = >99%; t₂(major) = 61.7 min, t₂(minor) = 45.0 min, ee = >99%.

Ethyl (S)-2-((R)-2-(3,5-bis(trifluoromethyl)phenyl)-2-methyl-3-tosylpropanamido)-3,3dimethylbutanoate (3ad)

3ad: 76.2 mg, 64% yield, 98% ee1, 99% ee2, 79:21 dr, yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = 7.72–7.67 (m, 3H), 7.47 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 5.79 (d, J = 8.8 Hz, 1H), 4.36 (d, J = 9.2, 1H), 4.25–4.03 (m, 3H), 3.82 (d, J = 14.8 Hz, 1H), 2.37 (s, 3H), 2.15 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H), 0.94 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 172.6, 170.8, 144.7, 142.4, 137.5, 132.0 (J = 33.5 Hz), 129.8, 127.4, 122.9 (J = 273.0 Hz), 121.6, 63.5, 61.2, 60.6, 49.6, 34.8, 26.5, 22.4, 21.5, 14.0. HRMS (ESI) m/z Calcd for [C₂₇H₃₁F₆NO₅S+H⁺: M+H]⁺: 596.1900, found: 496.1917. [α]_D²⁵ = +7.3 (c = 0.16, CHCl₃).

HPLC analysis: Chiralcel IC column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 215 nm, t₁(major) = 12.5 min, t₁(minor) = 19.1 min, ee = 98%; t₂(major) = 22.1 min, t₂(minor) = 16.1 min, ee = 99%.

Ethyl (S)-3,3-dimethyl-2-((R)-2-methyl-2-(thiophen-2-yl)-3-tosylpropanamido)butanoate

3ad: 65.1 mg, 70% yield, > 99% ee₁, > 99% ee₂, 72:28 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.66 (d, J = 8.4 Hz, 2H), 7.26–7.24 (m, 3H), 7.03–6.98 (m, 1H), 6.95–6.92 (m, 1H), 6.17 (d, J = 8.8 Hz, 1H), 4.30 (d, J = 8.8 Hz, 1H), 4.23–4.06 (m, 3H), 3.67 (d, J = 14.4 Hz, 1H), 2.40 (s, 3H), 2.11 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H), 0.92 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 172.7, 170.8, 144.6, 144.3, 138.4, 129.7, 127.6, 127.2, 126.1, 125.8, 64.5, 61.0, 60.5, 48.0, 34.9, 26.5, 24.2, 21.6, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₃H₃₁NO₅S₂+H⁺: M+H]⁺: 466.1716, found: 466.1732. [α]_D²⁵ = -6.8 (c = 0.25, CHCl₃).

HPLC analysis: Chiralcel AZ-H column, *n*-hexane/*i*-PrOH = 92/8, flow rate = 0.8 mL/min, λ = 226 nm, t₁(major) = 102.0 min, t₁(minor) = 119.8 min, ee = > 99%; t₂(major) = 111.7 min, t₂(minor) = 82.5 min, ee = > 99%.

Ethyl (S)-3,3-dimethyl-2-((R)-2-methyl-2-(pyridin-3-yl)-3-tosylpropanamido)butanoate (3af)

3af: 44.2 mg, 48% yield, 97% ee₁, 99% ee₂, 80:20 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.57 (s, 1H), 8.51 (s, 1H), 7.68–7.53 (m, 3H), 7.24–7.18 (m, 3H), 5.84 (d, J = 8.8 Hz, 1H), 4.35 (d, J = 8.0 Hz, 1H), 4.21–4.01 (m, 3H), 3.71 (d, J = 14.8 Hz, 1H), 2.40 (s, 3H), 2.12 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H), 0.93 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 173.0, 170.7, 149.1, 148.3, 144.5, 138.1, 135.6, 134.7, 129.8, 127.5, 123.3, 63.7, 61.1, 60.6, 48.4, 34.8, 26.6, 22.3, 21.6, 14.1. **HRMS** (ESI) m/z Calcd for [C₂₄H₃₂N₂O₅S+H⁺: M+H]⁺: 461.2105, found: 461.2109. [α]_D²⁵ = +1.8 (c = 0.18, CHCl₃).

HPLC analysis: Chiralcel OJ-H column, *n*-hexane/*i*-PrOH = 95/5, flow rate = 0.5 mL/min, λ = 224 nm, t₁(major) = 59.7 min, t₁(minor) = 67.5 min, ee = 97%; t₂(major) = 84.7 min, t₂(minor) = 44.3 min, ee = 99%.

3ag: 40.7 mg, 38% yield, 99% ee₁, > 99% ee₂, 83:17 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.66 (m, 6H), 7.33 – 7.23 (m, 3H), 7.15 (s, 2H), 7.01 (s, 2H), 6.02 (s, 1H), 5.71 (s, 1H), 4.94 (s, 1H), 4.29 – 4.21 (m, 2H), 4.12 – 4.07 (m, 1H), 2.39 – 2.38 (m, 4H), 2.23 (s, 2H), 1.31 (t, J = 7.2 Hz, 3H), 1.26 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.0, 168.0, 145.7, 144.4), 141.4, 138.3, 1356, 130.0, 129.6, 129.3, 128.0, 127.7, 127.2, 126.4, 61.2, 36.4, 28.8, 21.6, 21.4, 14.3. **HRMS** (ESI) m/z Calcd for [C₃₁H₃₇NO₅S+H⁺: M+H]⁺: 536.2466, found: 536.2469. [α]_D²⁵ = -59.6 (c = 0.12, CHCl₃).

HPLC analysis: Chiralcel ID column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 239 nm, t₁(major) = 32.2 min, t₁(minor) = 36.6 min, ee₁ = 99%; t₂(minor) = 44.3 min, t₂(major) = 51.3 min, ee₂ = > 99%.

Ethyl (S)-3,3-dimethyl-2-((R)-2-(p-tolyl)-3-tosylpropanamido)butanoate (3ah)

3ah: 72.6 mg, 79% yield, 97% ee₁, 98% ee₂, 91:9 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.66 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.08 (dd, J = 14.0, 8.4 Hz, 4H), 6.04 (d, J = 9.2 Hz, 1H), 4.26–4.16 (m, 4H), 4.03 (t, J = 6.4 Hz, 1H), 3.45–3.39 (dd, J = 14.4, 6.0 Hz, 1H), 2.40 (s, 3H), 2.30 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H), 0.70 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 171.0, 169.7, 144.5, 137.8, 136.5, 134.3, 129.8, 129.6, 128.1, 127.6, 61.1, 59.8, 58.3, 47.0, 35.4, 26.3, 21.6, 21.1, 14.2. **HRMS** (ESI) m/z Calcd for [C₂₅H₃₃NO₅S+H⁺: M+H]⁺: 460.2152, found: 460.2156. [α]_D²⁵ = -25.9 (c = 0.12, CHCl₃).

HPLC analysis: Chiralcel AZ-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 213 nm, t₁(minor) = 23.0 min, t₁(major) = 37.9 min, ee₁ = 97%; t₂(major) = 26.5 min, t₂(minor) = 31.3 min, ee₂ = 98%.

Ethyl (S)-2-((R)-3-((4-bromophenyl)sulfonyl)-2-(p-tolyl)propanamido)-3,3dimethylbutanoate (3ai)

3ai: 69.0 mg, 66% yield, > 99% ee₁, > 99% ee₂, 89:11 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.56 (dd, J = 23.2, 8.4 Hz, 4H), 7.06 (s, 4H), 5.95 (d, J = 9.2 Hz, 1H), 4.25–4.16 (m, 4H), 4.02–3.99 (m, 1H), 3.46 (dd, J = 14.4, 6.6 Hz, 1H), 2.31 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H), 0.69 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 171.1, 169.5, 138.4, 138.2, 133.7, 132.2, 129.9, 129.6, 128.8, 127.6, 61.3, 59.8, 58.3, 47.1, 35.3, 26.3, 21.1, 14.2. **HRMS** (ESI) m/z Calcd for [C₂₄H₃₀BrNO₅S+H⁺: M+H]⁺: 524.1101, found: 524.1102. [α]_D²⁵ = -20.6 (c = 0.12, CHCl₃).

HPLC analysis: Chiralcel AZ-H column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 226 nm, t₁(minor) = 34.9 min, t₁(major) = 69.8 min, ee₁ = > 99%; t₂(major) = 44.3 min, t₂(minor) = 55.6 min, ee₂ = > 99%.

Ethyl (S)-3,3-dimethyl-2-((R)-2-phenyl-3-tosylpropanamido)butanoate (3aj)

3aj: 49.0 mg, 55% yield, > 99% ee₁, > 99% ee₂, 90:10 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.67 (d, J = 8.4 Hz, 2H), 7.28–7.21 (m, 7H), 5.99 (d, J = 9.6 Hz, 1H), 4.32– 4.14 (m, 4H), 4.07–4.04 (m, 1H), 3.44 (dd, J = 14.4, 6.0 Hz, 1H), 2.41 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H), 0.68 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 171.0, 169.5, 144.6, 137.4, 136.4, 129.7, 129.2, 128.1, 127.8, 61.2, 59.8, 58.2, 47.4, 35.4, 26.2, 21.7, 14.2. **HRMS** (ESI) m/z Calcd for [C₂₄H₃₁NO₅S+H⁺: M+H]⁺: 446.1996, found: 446.2000. [α]_D²⁵ = -27.2 (c = 0.18, CHCl₃).

HPLC analysis: Chiralcel AD-3 column, *n*-hexane/*i*-PrOH = 90/10, flow rate = 0.8 mL/min, λ = 218 nm, t₁(minor) = 10.1 min, t₁(major) = 11.0 min, ee₁ = > 99%; t₂(minor) = 17.3 min, t₂(major) = 26.1 min, ee₂ = > 99%.

Ethyl (S)-2-((R)-2-(4-bromophenyl)-3-tosylpropanamido)-3,3-dimethylbutanoate (3ak)

3ak: 47.1 mg, 45% yield, 99% ee₁, > 99% ee₂, 89:11 dr, yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.63 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 6.11 (d, J = 9.2 Hz, 1H), 4.32–4.03 (m, 5H), 3.45–3.32 (m, 1H), 2.42 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H), 0.72 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 171.0, 169.1, 144.8, 136.2, 132.2, 129.7, 129.5, 128.0, 122.2, 61.3, 59.9, 58.2, 46.8, 35.5, 26.3, 21.7, 14.2. **HRMS** (ESI) m/z Calcd for [C₂₄H₃₀BrNO₅S+H⁺: M+H]⁺: 524.1101, found: 524.1100. [α]_D²⁵ = -13.2 (c = 0.10, CHCl₃).

HPLC analysis: Chiralcel AZ-H column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 225 nm, t₁(minor) = 25.1 min, t₁(major) = 39.2 min, ee₁ = 99%; t₂(major) = 26.6 min, t₂(minor) = 31.8 min, ee₂ = > 99%.

7. Chiral auxiliary cleavage: Synthesis of 6a

The amide **6a** were synthesized according to the reported literature procedure ^{5,6}

Conversion of **3a** to acid **5a**.

A 20 mL reaction tube equipped with a magnetic stirring bar was charged with ethyl (S)-3,3dimethyl-2-((R)-2-methyl-2-(p-tolyl)-3-tosylpropanamido)butanoate 3a (37 mg, 0.5 mmol, 1 eq.) in methanol (2.5 mL). Next to it, an aqueous 2 M NaOH solution (1.0 mL) was added and the reaction mixture was stirred for 24 h at 50 °C till completion (monitored by TLC). After completion, crude mixture was acidified up to pH~1 with 1N HCl and extracted with EtOAc (3 x 20 mL). The organic layer was washed with 1N HCl, brine, dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified by flash chromatography to obtain the desired acid **5a**. Conversion of **5a** to acid **6a**.

To a solution of purified **5a** (134 mg, 0.3 mmol) in glacial acetic acid (1.5 mL) and acetic anhydride (1.5 mL) was added NaNO₂ (6.0 mmol, 20 equiv.) at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred overnight. The resulting solution was poured into ice and the aqueous phase was extracted with diethyl ether twice. The organic phases were washed with a saturated aqueous solution of NaHCO₃ and with brine. The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated. The crude residue was passed through pad of SiO₂ using PET/AcOEt (2/1) as eluents. After concentration under reduce pressure, the product was dissolved in a 1:1 THF / 30% aqueous solution of H_2O_2 (1.0 mL) and a 1.0 M aqueous solution of LiOH (2.0 mL, 1.14 mmol) was added at room temperature. The mixture was monitored by TLC. Once the amide was no longer detectable, a saturated aqueous solution of Na₂SO₃ was added until peroxides were completely reduced. After concentration, the residual aqueous phase was washed with diethyl ether and acidified with a 2.0 M aqueous solution of KHSO₄. The aqueous phase was extracted with EA twice and the combined organic extracts were dried over Na₂SO₄. The crude residue was purified by flash chromatography using a gradient of Petroleum Ether, AcOEt and MeOH as eluents to deliver 66.2 mg of compound **6a** (White solid, 68%).

(R)-2-methyl-2-(p-tolyl)-3-tosylpropanamide (6a)

6a: 66.2 mg, 68% yield, 63% ee, 92% ee (from pure 5a), white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, J = 8.0 Hz, 2H), 7.19 – 7.13 (m, 4H), 7.02 (d, J = 8.0 Hz, 2H), 5.72 (s, 1H), 5.37 (s, 1H), 4.04 (d, J = 14.8 Hz, 1H), 3.72 (d, J = 14.8 Hz, 1H), 2.39 (s, 3H), 2.29 (s, 3H), 2.02 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 177.4, 144.0, 138.3, 137.7, 136.7, 129.5, 1294, .127.6, 126.6, 64.1, 49.0, 22.5, 21.6, 21.0. **HRMS** (ESI) m/z Calcd for [C₁₈H₂₁NO₃S+Na⁺: M+Na]⁺: 354.1135, found: 354.1135. [α]_D²⁵ = +4.6 (c = 0.10, CHCl₃).

HPLC analysis: Chiralcel IB column, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 212 nm, t(major) = 15.43 min, t₁(minor) = 25.65 min, ee = 63%; t(major) = 15.67 min, t₂(minor) = 25.85 min, ee = 92% (from pure 5a).

8. Copies of ¹H and ¹³C NMR spectra

S66

S72

552 502 51 51 50 50 50 50 50 50 50 50 50 50 50 50 50	75 67 65	2466611224668647	02 0 0 0 1 2 3 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	225 21 21 21 21 22 21 22 23 22 23 22 23 22 23 23 23 23 23 23
	က်က်က်က်	4444444444	00000000	
	-			1 1 1 1

S101

712333333333333333333333333333333333333	233334570080111222122288 23334570080111222233 23334570080111222233	333333333333333333333333333333333333333
	444444444444444444444444444444444444444	11111

1000 <th

110 100 f1 (ppm)

1

1 2

-2.38

9. Crystal data and structure refinement for 3a

The crystal structure of compound **3a** has been deposited at the Cambridge Crystallographic Data Centre (**CCDC 2395343**).

The data is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html.

Table 1 Crystal data and structure refinement for 1.

Identification code	1
Empirical formula	$C_{26}H_{35}NO_5S$
Formula weight	473.61
Temperature/K	298.0
Crystal system	monoclinic
Space group	P21
a/Å	6.13820(10)
b/Å	16.9845(3)
c/Å	12.9091(2)
α/°	90
β/°	101.2190(10)
$\gamma/^{\circ}$	90
Volume/Å ³	1320.11(4)
Ζ	2
$\rho_{calc}g/cm^3$	1.191
µ/mm ⁻¹	1.367
	S120

F(000)	508.0
Crystal size/mm ³	$0.23\times0.22\times0.21$
Radiation	CuKa ($\lambda = 1.54178$)
2Θ range for data collection/°	6.98 to 136.832
Index ranges	$\text{-}7 \leq h \leq 6, \text{-}20 \leq k \leq 18, \text{-}15 \leq l \leq 15$
Reflections collected	11135
Independent reflections	$4358 \; [R_{int} = 0.0418, R_{sigma} = 0.0527]$
Data/restraints/parameters	4358/105/305
Goodness-of-fit on F ²	1.172
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0715, wR_2 = 0.1999$
Final R indexes [all data]	$R_1 = 0.0724, wR_2 = 0.2016$
Largest diff. peak/hole / e Å ⁻³	0.40/-0.58
Flack parameter	0.168(11)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
S 1	5636.8(17)	3475.3(18)	9650.7(8)	53.5(4)
03	8405(6)	2985(3)	6773(3)	61.2(9)
O2	3288(6)	3611(4)	9385(3)	73.2(11)
01	6424(8)	2807(3)	10310(3)	75.5(11)
N1	7088(7)	4050(3)	5811(3)	52.4(9)
C11	6444(6)	4724(3)	7751(3)	39.5(7)
C9	5955(6)	3859(3)	7510(3)	42.3(8)
C18	7305(6)	3581(3)	6672(3)	41.8(7)
C19	8393(7)	3930(4)	5002(3)	51.4(9)
C16	8618(6)	4959(3)	8148(3)	43.9(8)
C15	9144(7)	5737(3)	8383(4)	48.6(9)
C10	3500(7)	3682(4)	7032(4)	58.0(13)
C8	6757(7)	3333(3)	8482(3)	46.1(9)
C5	6917(9)	4322(4)	10273(4)	55.1(9)
C12	4827(7)	5302(3)	7590(4)	51.2(9)
O4	11371(10)	4704(5)	4588(7)	118(2)
C14	7493(8)	6318(3)	8241(4)	50.9(9)
C6	9105(10)	4310(5)	10747(4)	68.6(13)
05	8535(13)	5315(5)	5068(7)	123(2)
C17	8085(11)	7156(4)	8539(6)	70.8(14)
C13	5364(8)	6090(4)	7832(4)	57.7(10)
C23	7028(8)	3597(5)	3939(4)	65.1(12)
C20	9638(10)	4681(4)	4847(5)	72.3(13)

C26	8666(12)	3292(6)	3279(5)	95(3)
C25	5545(13)	4221(7)	3303(6)	98(3)
C24	5663(14)	2915(6)	4199(6)	95(2)
C7	10104(14)	4997(6)	11210(5)	89.2(18)
C4	5689(12)	5018(4)	10251(5)	72.2(14)
C3	6745(17)	5698(5)	10734(7)	95(2)
C2	8870(20)	5695(7)	11189(6)	112(2)
C21	9630(20)	6040(6)	4908(13)	135(3)
C1	10115(19)	6444(8)	11650(10)	122(3)
C22	7940(20)	6663(7)	4519(13)	160(4)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 1. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U22	U 33	U23	U 13	U12
S 1	55.5(6)	58.6(7)	50.5(6)	7.3(4)	20.1(4)	-5.3(5)
03	71(2)	53(2)	66(2)	10.9(16)	29.2(17)	19.6(15)
O2	52.5(12)	99(3)	73(2)	-1(2)	26.4(15)	-12.7(17)
01	100(3)	65(2)	65(2)	22.6(17)	24(2)	-6(2)
N1	61(2)	55(2)	43.4(17)	3.5(14)	16.2(14)	16.0(17)
C11	38.8(15)	43.6(18)	38.1(18)	3.7(14)	12.6(13)	3.1(13)
C9	35.1(15)	46.4(19)	45.6(18)	1.5(15)	8.5(13)	-0.5(15)
C18	40.1(16)	40.6(19)	44.5(16)	-1.1(13)	7.7(13)	0.0(13)
C19	48(2)	64(3)	44.3(19)	1.4(18)	12.5(14)	6.0(17)
C16	37.1(15)	44.4(18)	53(2)	-0.8(16)	14.4(15)	4.8(14)
C15	44.4(19)	47.3(19)	57(2)	-3.5(18)	16.8(18)	-1.6(14)
C10	38.7(17)	72(4)	62(3)	-5(2)	5.4(17)	-9.5(18)
C8	50.2(19)	42(2)	47.1(16)	1.3(15)	11.9(14)	-0.2(16)
C5	66(2)	63(2)	40(2)	0.2(16)	21.0(17)	-2.2(16)
C12	40.3(19)	53(2)	60(2)	6.0(19)	9.6(17)	7.7(15)
O4	98(3)	111(5)	163(6)	30(4)	66(4)	-11(3)
C14	63(2)	38(2)	56(2)	5.2(17)	22.6(18)	3.1(15)
C6	73(2)	75(3)	56(3)	7(2)	8(2)	-2(2)
O5	135(5)	94(3)	149(5)	22(4)	53(4)	32(3)
C17	88(4)	42(2)	87(4)	-9(2)	31(3)	-1(2)
C13	56.0(19)	48(2)	71(3)	8(2)	17(2)	13.9(16)
C23	60(2)	93(4)	42(2)	-5(2)	9.3(16)	11(2)
C20	72(3)	73(3)	74(3)	18(3)	19(2)	-1(2)
C26	97(4)	137(8)	56(3)	-17(4)	27(3)	27(4)
C25	81(4)	145(7)	63(3)	19(4)	-1(3)	33(4)
C24	99(5)	109(6)	73(4) \$122	-29(4)	10(3)	-31(4)

C7	102(5)	107(4)	54(3)	1(3)	5(3)	-38(3)
C4	92(4)	70(3)	64(3)	2(2)	38(3)	11(2)
C3	143(5)	66(4)	89(5)	-13(3)	57(4)	5(4)
C2	161(6)	126(4)	52(3)	-9(4)	32(4)	-8(3)
C21	137(3)	132(3)	137(3)	2.9(14)	28.2(14)	-9.4(13)
C1	122(3)	122(3)	122(3)	-0.1(3)	23.6(6)	-0.2(3)
C22	159(4)	156(4)	164(4)	6(3)	27(3)	10(3)

Table 4 Bond Lengths for 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S 1	O2	1.434(4)	C5	C6	1.363(8)
S 1	01	1.444(4)	C5	C4	1.399(9)
S 1	C8	1.791(4)	C12	C13	1.398(8)
S 1	C5	1.756(6)	O4	C20	1.176(9)
O3	C18	1.209(5)	C14	C17	1.501(7)
N1	C18	1.352(6)	C14	C13	1.367(7)
N1	C19	1.449(6)	C6	C7	1.398(10)
C11	C9	1.519(6)	05	C20	1.333(10)
C11	C16	1.392(5)	05	C21	1.436(15)
C11	C12	1.384(6)	C23	C26	1.530(8)
C9	C18	1.559(5)	C23	C25	1.528(9)
C9	C10	1.543(5)	C23	C24	1.506(12)
C9	C8	1.541(6)	C7	C2	1.402(15)
C19	C23	1.568(7)	C4	C3	1.410(11)
C19	C20	1.520(8)	C3	C2	1.324(14)
C16	C15	1.381(7)	C2	C1	1.542(16)
C15	C14	1.400(7)	C21	C22	1.4993(14)

Table 5 Bond Angles for 1.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O2	S 1	01	118.2(3)	C6	C5	C4	120.1(6)
O2	S 1	C8	110.7(2)	C4	C5	S 1	119.4(5)
O2	S 1	C5	108.5(3)	C11	C12	C13	121.0(4)
01	S 1	C8	104.5(2)	C15	C14	C17	120.1(5)
01	S 1	C5	107.8(3)	C13	C14	C15	117.7(5)
C5	S 1	C8	106.5(2)	C13	C14	C17	122.2(5)
C18	N1	C19	122.0(4)	C5	C6	C7	119.4(7)
C16	C11	C9	119.3(3)	C20	O5	C21	113.0(8)
C12	C11	C9	123.3(4)	C14	C13	C12	121.6(4)
C12	C11	C16	117.4(4)	C26	C23	C19	108.2(4)

C11	C9	C18	108.9(3)	C25	C23	C19	112.4(6)
C11	C9	C10	114.1(4)	C25	C23	C26	108.9(6)
C11	C9	C8	112.1(3)	C24	C23	C19	107.9(5)
C10	C9	C18	105.8(3)	C24	C23	C26	108.5(7)
C10	C9	C8	110.2(4)	C24	C23	C25	110.8(6)
C8	C9	C18	105.1(3)	O4	C20	C19	124.8(7)
O3	C18	N1	123.0(4)	O4	C20	O5	124.0(7)
O3	C18	C9	122.6(4)	05	C20	C19	111.2(6)
N1	C18	C9	114.3(4)	C6	C7	C2	120.5(8)
N1	C19	C23	113.9(4)	C5	C4	C3	118.9(7)
N1	C19	C20	109.9(4)	C2	C3	C4	121.5(8)
C20	C19	C23	112.6(4)	C7	C2	C1	117.7(9)
C15	C16	C11	121.5(4)	C3	C2	C7	119.6(9)
C16	C15	C14	120.9(4)	C3	C2	C1	122.6(10)
C9	C8	S 1	119.5(3)	05	C21	C22	109.9(11)
C6	C5	S 1	120.5(5)				

Table 6 Torsion Angles for 1.

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
S 1	C5	C6	C7	178.2(5)	C15	C14	C13	C12	1.8(7)
S 1	C5	C4	C3	-178.7(5)	C10	C9	C18	03	-105.4(5)
O2	S 1	C8	C9	41.6(4)	C10	C9	C18	N1	72.8(5)
O2	S 1	C5	C6	170.2(4)	C10	C9	C8	S 1	-67.6(5)
O2	S 1	C5	C4	-11.7(5)	C8	S 1	C5	C6	-70.6(5)
01	S 1	C8	C9	169.9(3)	C8	S 1	C5	C4	107.5(4)
01	S 1	C5	C6	41.1(5)	C8	C9	C18	O3	11.2(5)
01	S 1	C5	C4	-140.8(4)	C8	C9	C18	N1	-170.5(4)
N1	C19	C23	C26	-164.8(6)	C5	S 1	C8	C9	-76.2(4)
N1	C19	C23	C25	74.9(7)	C5	C6	C7	C2	0.0(10)
N1	C19	C23	C24	-47.5(7)	C5	C4	C3	C2	1.2(10)
N1	C19	C20	O4	149.3(8)	C12	C11	C9	C18	120.0(4)
N1	C19	C20	05	-29.2(7)	C12	C11	C9	C10	2.1(6)
C11	C9	C18	O3	131.5(4)	C12	C11	C9	C8	-124.1(4)
C11	C9	C18	N1	-50.3(4)	C12	C11	C16	C15	0.6(6)
C11	C9	C8	S 1	60.7(4)	C6	C5	C4	C3	-0.6(8)
C11	C16	C15	C14	0.8(7)	C6	C7	C2	C3	0.5(11)
C11	C12	C13	C14	-0.4(8)	C6	C7	C2	C1	-176.0(7)
C9	C11	C16	C15	-179.7(4)	C17	C14	C13	C12	-177.9(5)
C9	C11	C12	C13	179.5(4)	C23	C19	C20	O4	-82.6(9)

C18	N1	C19	C23	108.3(5)	C23	C19	C20	05	98.9(7)
C18	N1	C19	C20	-124.4(5)	C20	C19	C23	C26	69.3(7)
C18	C9	C8	S 1	178.8(3)	C20	C19	C23	C25	-51.0(6)
C19	N1	C18	O3	-8.3(7)	C20	C19	C23	C24	-173.5(6)
C19	N1	C18	C9	173.5(4)	C20	05	C21	C22	145.6(11)
C16	C11	C9	C18	-59.7(4)	C4	C5	C6	C7	0.1(8)
C16	C11	C9	C10	-177.6(4)	C4	C3	C2	C7	-1.1(12)
C16	C11	C9	C8	56.2(5)	C4	C3	C2	C1	175.3(8)
C16	C11	C12	C13	-0.8(7)	C21	05	C20	C19	-178.6(9)
C16	C15	C14	C17	177.7(5)	C21	05	C20	O4	2.8(14)
C16	C15	C14	C13	-2.0(7)					

Table 7 Hydrogen Atom	Coordinates (Å×10 ⁴) and Isotropic Displacement
Parameters (Å ² ×10 ³) for	1.

Atom	x	у	Z	U(eq)
H1	6146	4430	5741	63
H19	9518	3533	5275	62
H16	9742	4583	8258	53
H15	10614	5878	8639	58
H10A	2608	3775	7553	87
H10B	3354	3142	6810	87
H10C	3012	4019	6435	87
H8A	8356	3392	8679	55
H8B	6470	2790	8261	55
H12	3360	5166	7317	61
H6	9926	3848	10762	82
H17A	7916	7247	9253	106
H17B	7121	7503	8073	106
H17C	9598	7253	8482	106
H13	4246	6468	7712	69
H26A	9719	3697	3212	143
H26B	7872	3145	2590	143
H26C	9435	2841	3619	143
H25A	4582	4443	3730	147
H25B	4667	3983	2685	147
H25C	6453	4629	3094	147
H24A	6591	2565	4677	142
H24B	5041	2637	3562	142
H24C	4486	3107	4523	142
H7	11596	4992	11535	107

H4	4199	5031	9923	87
H3	5930	6160	10733	114
H21A	10576	5960	4396	162
H21B	10559	6207	5567	162
H1A	11412	6299	12158	183
H1B	9156	6759	11986	183
H1C	10552	6741	11091	183
H22A	6616	6421	4131	241
H22B	8527	7021	4067	241
H22C	7593	6946	5110	241

10. References

- N. Zhang, C. Zhang, X. Hu, X. Xie and Y. Liu, Nickel-Catalyzed C(sp³)–H Functionalization of Benzyl Nitriles: Direct Michael Addition to Terminal Vinyl Ketones, *Org. Lett.*, 2021, 23, 6004–6009.
- M. Lemmerer, H. Zhang, A. J. Fernandes, T. Fischer, M. Mießkes, Y. Xiao and N. Maulide, Synthesis of α-Aryl Acrylamides via Lewis-Base-Mediated Aryl/Hydrogen Exchange, *Angew. Chem. Int. Ed.*, 2022, **61**, e202207475.
- 3. J. G. Mayans, J.-S. Suppo and A. M. Echavarren, Photoredox-Assisted Gold-Catalyzed Arylative Alkoxycyclization of 1,6-Enynes, *Org. Lett.*, 2020, **22**, 3045–3049.
- Y. Wang, L. Deng, J. Zhou, X. Wang, H. Mei, J. Han and Y. Pan, Synthesis of Chiral Sulfonyl Lactones via Copper-Catalyzed Asymmetric Radical Reaction of DABCO·(SO₂)₂, *Adv. Syn. Catal.*, 2018, 360, 1060–1065.
- R. D. Shinde, A. R. Paraskar, J. Kumar, E. Ghosh, T. K. Paine, S. Bhadra, Cobalt Catalyzed α-Hydroxylation of Arylacetic Acid Equivalents with Dioxygen, J. Org. Chem., 2024, 89, 9666– 9671.
- W.-Y. Ma, M. Leone, E. Derat, P. Retailleau, C. R. Reddy, L. Neuville, G. Masson, Photocatalytic Asymmetric Acyl Radical Truce–Smiles Rearrangement for the Synthesis of Enantioenriched α-Aryl Amides, *Angew. Chem. Int. Ed.*, 2024, 63, e202408154