Supporting Information

Copper-Catalyzed Cloke-Wilson Rearrangement for the Synthesis of Dihydrofurans Containing Tetrasubstituted Carbon Atoms

Qinqin Cui,^{§,a} Shouang Lan,^{§,b} Xiang Lei,^b Chao Xu,^b Chunyun Jiang,^b Lili Zhao,^{b,c} Liyuan Zhou,^{b,c} Jinggong Liu,^d Cheng-Zhi Gu,^{*a} Shuang Yang,^{*b} and Xinqiang Fang^{*b}

^a Shihezi University, Shihezi 832000, China.

^b State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China.

^c Fujian Normal University, Fuzhou 350108, China.

^d State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.

Ι	General Information						
II	X-Ray Crystallographic Analysis						
III	I Typical Procedures for the Preparation of Substrates						
IV	IV Typical Procedure of the Synthesis of Compounds 2						
V	V Gram-scale Reaction of 2a						
VI	VI Procedures for the Product Derivatizations						
VII	VII Asymmetric Catalysis						
VIII	VIII Characterizations of New Compounds						
IX	X NMR Spectra of New Compounds						

Table of Contents

I. General Information

Commercially available chemicals were directly used without further purification, unless otherwise mentioned, all experiments and manipulations involving air- or moisture-sensitive compounds were performed using standard Schlenk technique. All solvents were purified and dried using typical procedures. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker AVANCE III HD400 (400 MHz), a JEOL ECZ400S (400 MHz) and a ECZ600S (600 MHz). Chemical shifts were recorded in parts per million (ppm, δ) relative to tetramethylsilane (δ = 0.00 ppm) or chloroform (δ = 7.26 ppm). ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets); m (multiplet), and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker AVANCE III HD400 (101 MHz), a JEOL ECZ400S (101 MHz) and a ECZ600S (151 MHz). High resolution mass spectral analysis (HRMS) was performed on Thermo Fisher Scientific Q Exactive Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer. X-ray crystallography analysis was performed on Agilent Super Nova X-ray diffractionmeter. Analytical thin-layer chromatography (TLC) was carried out on WFH-203 F254 pre-coated silica gel plate (0.2 mm thickness). Visualization was performed using a UV lamp or potassium permanganate stain.

II. X-Ray Crystallographic Analysis

Method for single crystals cultivation: a pure solid sample (10–20 mg) was dissolved in dichloromethane/ethyl acetate (1 mL) in a vial at room temperature, and petroleum ether/hexane (1 mL) was added into the above solution slowly while keeping the sample completely dissolved. The vial was properly sealed with parafilm and kept at room temperature to allow the slow evaporation of the solvents until a single crystal was obtained.

Table S1: Crystal data and structure refinement for 2j

Identification code	2j
Empirical formula	$C_{21}H_{18}O_4$
Formula weight	334.35

Temperature/K	100(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	8.2453(6)
b/Å	9.2017(3)
c/Å	21.5805(5)
a/°	90
β/°	90.328(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1635.98(14)
Z	4
$\rho_{calc}g/cm^3$	1.357
μ/mm^{-1}	0.485
F(000)	704.0
Crystal size/mm ³	0.1 imes 0.1 imes 0.1
Radiation	GaK α ($\lambda = 1.3405$)
2Θ range for data collection/°	7.128 to 110.07
Index ranges	$-9 \le h \le 10, -11 \le k \le 11, -18 \le l \le 26$
Reflections collected	16570
Independent reflections	3092 [R _{int} = 0.0248, Rsigma = 0.0177]
Data/restraints/parameters	3092/0/229
Goodness-of-fit on F ²	1.033
Final R indexes [I>=2 σ (I)]	R1 = 0.0316, wR2 = 0.0782
Final R indexes [all data]	R1 = 0.0349, wR2 = 0.0805
Largest diff. peak/hole / e Å ⁻³	0.23/-0.18

III. Typical Procedures for the Preparation of Substrates

1. Typical procedures for the preparation of substrates 1a-1v

A 50 mL flask was purged with argon and charged with **S2-a** (15 mmol, 2.1 mL) and dry-THF (15.0 mL). The solution was cooled down to -78 °C. *"*BuLi (15 mmol, 2.5 M in hexane, 6.0 mL) was added dropwise. The mixture was stirred at -78 °C for 30 min, then **S1-a** (10 mmol, 1.2 mL) in THF (5.0 mL) was added by syringe. The

result mixture was allowed to reach room temperature within 1 h. Then, the reaction was quenched with aqueous NH₄Cl solution and extracted with ethyl acetate (3×30 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure to get **S3-a** without purification.

S3-a (10 mmol, 2.184 g) was dissolved in CH₂Cl₂ (20 mL) and cooled to 0 °C, and Et₃N (50 mmol, 7.0 mL) was added followed by MsCl (25 mmol, 1.9 mL). The reaction mixture was allowed to stir at 0 °C for 30 min and then quenched with aqueous NaHCO₃ solution. The mixture was extracted with CH₂Cl₂ (2×40 mL). The combined organic fractions were dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash aluminum oxide chromatography (petroleum ether) to afford **S4-a** as yellow oil (1.460 g, 73% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.69–7.65 (m, 2H), 7.40–7.35 (m, 2H), 7.35– 7.30 (m, 1H), 5.95 (s, 1H), 5.74 (s, 1H), 0.28 (s, 9H). Spectral data agreed with those reported previously by Malcolmson et al.^[1]

CH₂Cl₂ (36.5 mL) was added to S4-a (7.3 mmol, 1.460 g) in a 100 mL twonecked flask equipped with a stir bar at room temperature under argon atmosphere. After 10 min, the reaction mixture was cooled to 0 °C. Then, Rh₂(esp)₂ (1.5 µmol, 1.1 mg) and methyl 2-diazo-3-oxo-3-phenylpropanoate (11 mmol, 2.234 g) was added to the mixture. After stirred at room temperature for 3 h, the reaction was quenched with H₂O and extracted with CH₂Cl₂ (3×20 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1) to afford S5-a as yellow oil (1.859 g, 68% yield).

To a solution of **S5-a** (5 mmol, 1.859 g) in THF (25 mL) was added TBAF (10 mmol, 3.150 g) at room temperature. When the reaction was completed as monitored by TLC, the mixture was quenched with saturated NH₄Cl solution. The product was extracted with ethyl acetate (3×25 mL), and dried over anhydrous Na₂SO₄. After filtration and evaporation in vacuo, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1) to afford the product **1a** (1.216 g, 80% yield, 1:1 dr).

IV. Typical Procedure of the Synthesis of Compounds 2

To a solution of **1a** (0.1 mmol, 30.4 mg) and Cu(OTf)₂ (0.001 mmol, 0.36 mg) in CH₂Cl₂ (1.0 mL) was added Et₃N (0.1 mmol, 13.9 μ L) at room temperature under argon atmosphere. After stirring for 4 h, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1) to afford the product **2a** (29.6 mg, 97% yield).

V. Gram-scale Reaction of 2a

To a solution of **1a** (3.3 mmol, 1.0 g) and Cu(OTf)₂ (0.033 mmol, 23.8 mg) in CH₂Cl₂ (33 mL) was added Et₃N (3.3 mmol, 0.46 mL) at room temperature under argon atmosphere. After stirring for 4 h, the reaction was quenched with aqueous NH₄Cl solution and extracted with CH₂Cl₂ (3×20 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1) to afford the product **2a** (963.4 mg, 96% yield).

VI. Procedures for the Product Derivatizations

2a (0.2 mmol, 60.8 mg), iodobenzene (0.24 mmol, 26.8 μ L), Pd(PPh₃)₄ (0.02 mmol, 23.0 mg), and CuI (0.02 mmol, 3.8 mg) were added successively to a Schlenk tube charged with a stirring bar at room temperature under argon atmosphere. Et₃N

(1.0 mL) and toluene (1.0 mL) were added by a syringe and the resulting solution was then stirred at room temperature for 12 h and monitored by TLC. The crude mixture was passed through a short pad of silica gel, washed with ethyl acetate (20 mL), and evaporated under reduced pressure. The residue was purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1) to afford the desired product **3a** (53.8 mg, 71% yield) as yellow oil.

To a dry 10 mL flask was added a solution of **2a** (0.2 mmol, 60.8 mg) in CH₂Cl₂ (1.0 mL). The reaction mixture was stirred at -40 °C. DIBAL-H (0.6 mmol, 1 M in hexane, 0.6 mL) was added to the mixture under argon. The reaction was stirred at -40 °C for 1 h. Then the reaction was quenched by H₂O and extracted with CH₂Cl₂ (3×10 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. To the residue in dry CH₂Cl₂ (0.5 mL) was added 4-methoxybenzoyl chloride (0.4 mmol, 68.2 mg) in CH₂Cl₂ (0.5 mL) and TMEDA (0.2 mmol, 30 μ L) at -40 °C. The mixture was slowly warmed to room temperature and stirred for 1 h. Then the reaction was quenched with aqueous NH₄Cl solution and extracted with CH₂Cl₂ (3×10 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography (petroleum ether/ethyl acetate, v:v = 15:1) to afford the product **3b** (67.1 mg, 82% yield) as yellow oil.

To a dry 10 mL flask with **2a** (0.2 mmol, 60.8 mg) was added EtOH (0.50 mL) and aqueous KOH solution (0.6 mmol, 1.2 M, 0.50 mL). The resulting mixture was stirred at 50 °C for 12 h. After this time, aqueous HCl solution (1.2 mmol, 1.0 M, 1.2

mL) was added and the solution was then extracted with EtOAc (3×10 mL). The combined organic layer was dried over Na₂SO₄, filtered and evaporated under reduced pressure. To the residue in CH₂Cl₂ (2.0 mL) with a stirring bar was added K₂CO₃ (0.2 mmol, 27.6 mg) at room temperature under argon atmosphere. After 10 min, NBS (0.2 mmol, 35.6 mg) was added followed by addition of H₂O (0.4 mmol, 7.2 µL). When the reaction was completed as monitored by TLC, the reaction was quenched by Na₂S₂O₃ and extracted with CH₂Cl₂ (3×10 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography (petroleum ether/ethyl acetate, v:v = 10:1) to afford the product **3c** (47.6 mg, 73% yield) as yellow oil.

To a dry 10 mL flask was added the solution of **2a** (0.2 mmol, 60.8 mg) and CuTc (0.02 mmol, 3.8 mg) in toluene (0.4 mL) at room temperature under argon atmosphere. The solution was allowed to stir until a pale yellow color was obtained. At this time, TsN₃ (0.2 mmol, 40.7 μ L) was added dropwise carefully and slowly. After stirring for 3 h, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 5:1) to afford the product **3d** (76.6 mg, 76% yield).

VII. Asymmetric Catalysis

CH₂Cl₂ (0.5 mL) was added to CuEH (0.01 mmol, 3.5 mg,) and L₁ (0.012 mmol, 4.0 mg) in a Schlenk tube at room temperature under argon atmosphere. After stirred

at 38 °C for 30 min, the solution was cooled to room temperature within 30 min. Then, a solution of singe **isomer-I** (0.1 mmol, 30.4 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (0.5 mL) was added to the mixture via a syringe. After stirring for 1.5 h, the reaction mixture was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1) to afford the product **2a** (21.8 mg, 72% yield, 0% ee).

 L_1 are known compounds and were prepared according to the literature reports.^[2]

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	3.749	5951075	409535	49.393			
2	4.900	6097392	292552	50.607		V	
Total		12048468	702087				

<Peak Table>

Ρ	'eak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
	1	3.748	8012149	552046	49.127				
	2	4.891	8296780	401118	50.873		V		
	Total		16308929	953163					

<Peak Table>

Detector A 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
1	3.749	5951075	409535	49.393				
2	4.900	6097392	292552	50.607		V		
Total		12048468	702087					

<Chromatogram>

m٧

<Peak Table>

D	Detector A 254nm								
P	eak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name	
Γ	1	3.343	9715425	717922	50.117				
	2	4.306	9670196	533266	49.883		V		
	Total		19385621	1251188					

References

[1] Adamson, N. J.; Park, S.; Zhou, P. F.; Nguyen, A. L.; Malcomson, S. J. *Org. Lett.* **2020**, *22*, 2032–2037.
[2] Konowalchuk, D. J.; Hall, D. G. *Angew. Chem. Int. Ed.* **2023**, *62*, e202313503.

VIII. Characterizations of New Compounds

Methyl 1-benzoyl-2-phenyl-2-((trimethylsilyl)ethynyl)cyclopropane-1-carboxylate (S5-a):

The general procedure was followed using **S4-a** (7.3 mmol, 1.460 g), Rh₂(esp)₂ (1.5 μ mol, 1.1 mg) and methyl 2-diazo-3-oxo-3-phenylpropanoate (11 mmol, 2.234 g) in CH₂Cl₂ (36.5 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), amorphous white solid, mp 63–68 °C, 1.859 g, 68% yield, 1:1 dr. ¹H NMR (400 MHz, CDCl₃, after column 1:0.7 dr) δ 8.15–8.10 (m, 1.4H), 7.74–7.67 (m, 2H), 7.59 (d, *J* = 7.7 Hz, 2H), 7.55–7.49 (m, 1.4H), 7.44–7.37 (m, 2.4H), 7.37–7.32 (m, 0.7H), 7.32–7.26 (m, 4.1H), 7.13–6.99 (m, 3H), 3.70 (s, 3H), 3.35 (s, 2.1H), 2.68 (d, *J* = 5.9 Hz, 1H), 2.58 (d, *J* = 5.4 Hz, 0.7H), 2.47 (d, *J* = 5.9 Hz, 1H), 2.38 (d, *J* = 5.4 Hz, 0.7H), 0.23 (s, 9H), -0.23 (s, 6.3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 191.6, 167.8, 167.6, 136.8, 136.3, 135.2, 134.3, 133.2, 133.1, 129.9, 129.6, 129.1, 128.4, 128.2, 128.08, 128.05, 127.9, 127.7, 105.3, 104.4, 88.1, 87.7, 52.7, 52.5, 48.2, 46.3, 33.2, 32.9, 24.7, 23.8, 0.2, -0.6. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₃H₂₄O₃SiNa 399.1387; Found 399.1388. IR (KBr thin film, cm⁻¹): v 2958, 2164, 1730, 1678, 1448, 1224, 914, 838, 747, 688.

Methyl 1-benzoyl-2-ethynyl-2-phenylcyclopropane-1-carboxylate (1a):

The general procedure was followed using **S5-a** (5 mmol, 1.859 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), amorphous white solid, mp 66–70 °C, 1.216 g, 80%

yield, 1:1 dr. ¹H NMR (400 MHz, CDCl₃, after column 1:1 dr) δ 8.11–8.07 (m, 2H), 7.74–7.67 (m, 2H), 7.63–7.56 (m, 3H), 7.54–7.48 (m, 2H), 7.43–7.38 (m, 3H), 7.36– 7.32 (m, 1H), 7.31–7.25 (m, 4H), 7.10–6.99 (m, 3H), 3.68 (s, 3H), 3.33 (s, 3H), 2.73 (d, *J* = 5.9 Hz, 1H), 2.59 (d, *J* = 5.4 Hz, 1H), 2.45 (s, 1H), 2.40–2.34 (m, 2H), 1.99 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 191.1, 168.2, 167.5, 136.7, 136.1, 135.3, 133.9, 133.3, 133.1, 129.5, 129.3, 129.0, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 83.6, 82.8, 71.3, 71.2, 52.8, 52.6, 47.0, 45.8, 31.92, 31.88, 24.5, 23.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₀H₁₆O₃Na 327.0992; Found 327.0991. IR (KBr thin film, cm⁻¹): v 3264, 2956, 1727, 1681, 1436, 1323, 1227, 1138, 742, 689.

Methyl 1-benzoyl-2-(4-bromophenyl)-2-ethynylcyclopropane-1-carboxylate (1b): The general procedure was followed using **S5-b** (5 mmol, 2.275 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), amorphous yellow solid, mp 95–97 °C, 1.608 g, 84% yield, 1:1 dr. ¹H NMR (400 MHz, CDCl₃, after column 1:1.7 dr) δ 8.04 (d, J = 7.7 Hz, 3.4H), 7.71 (d, J = 7.8 Hz, 2H), 7.63–7.58 (m, 1.7H), 7.55–7.48 (m, 6.8H), 7.47–7.42 (m, 4.4H), 7.34–7.29 (m, 2H), 7.21 (d, J = 8.6 Hz, 2H), 7.16 (d, J = 8.6 Hz, 2H), 3.68 (s, 3H), 3.38 (s, 5.1H), 2.66 (d, J = 5.9 Hz, 1H), 2.54 (d, J = 5.5 Hz, 1.7H), 2.46 (s, 1H), 2.41–2.35 (m, 2.7H), 2.00 (s, 1.7H). ¹³C NMR (101 MHz, CDCl₃) δ 191.5, 190.8, 168.0, 167.4, 136.5, 136.1, 134.4, 133.42, 133.39, 133.3, 131.6, 131.2, 130.7, 130.0, 129.4, 129.2, 128.5, 128.2, 122.3, 122.1, 83.1, 82.3, 71.6, 71.5, 52.9, 52.7, 46.9, 45.7, 31.3, 24.7, 23.9. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₀H₁₅BrO₃Na 405.0097 (100.0%), 407.0076 (97.3%); Found 405.0096 (100.0%), 407.0076 (97.3%). IR (KBr thin film, cm⁻¹): v 3260, 2956, 1727, 1680, 1435, 1246, 1221, 1009, 724, 688, 658.

Methyl 1-benzoyl-2-(3-chloro-4-fluorophenyl)-2-ethynylcyclopropane-1-carboxylate (1c):

The general procedure was followed using S5-c (5 mmol, 2.140 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), amorphous yellow solid, mp 101–104 °C, 1.021 g, 57% yield, 1:1 dr. ¹H NMR (400 MHz, CDCl₃, after column 1:1.4 dr) δ 8.02 (d, J = 7.3 Hz, 2.8H), 7.71 (d, J = 7.3 Hz, 2H), 7.64–7.57 (m, 2.8H), 7.54–7.49 (m, 2.8H), 7.48–7.42 (m, 2.4H), 7.41–7.37 (m, 1H), 7.36–7.30 (m, 2H), 7.18–7.13 (m, 1.4H), 7.10–7.04 (m, 1H), 6.86–6.79 (m, 1H), 3.69 (s, 3H), 3.40 (s, 4.2H), 2.60 (d, J = 6.0 Hz, 1H), 2.52 (d, J = 5.5 Hz, 1.4H), 2.48 (s, 1H), 2.40 (d, J = 6.0 Hz, 1H), 2.36 (d, J = 5.6 Hz, 1.4H), 2.04 (s, 1.4H). ¹³C NMR (151 MHz, CDCl₃) δ 191.1, 190.7, 167.8, 167.3, 157.8 (C-F, d, ${}^{1}J_{C-F}$ = 250.3 Hz), 157.4 (C-F, d, ${}^{1}J_{C-F}$ = 250.4 Hz), 136.3, 135.9, 133.48, 133.46, 132.5 (C-F, d, ${}^{4}J_{C-F} = 3.5$ Hz), 131.5 (C-F, d, ${}^{4}J_{C-F} = 3.6$ Hz), 131.4, 131.1, 129.3, 129.1, 128.8 (C-F, d, ${}^{3}J_{C-F} = 7.2$ Hz), 128.5, 128.2, 127.7 (C-F, d, ${}^{3}J_{C-F} = 7.5$ Hz), 121.0 (C-F, d, ${}^{2}J_{C-F}$ = 18.2 Hz), 120.7 (C-F, d, ${}^{2}J_{C-F}$ = 18.1 Hz), 116.5 (C-F, d, ${}^{2}J_{C-F}$ = 21.4 Hz), 116.0 (C-F, d, ${}^{2}J_{C-F} = 21.4$ Hz), 82.8, 82.0, 71.9, 52.9, 52.8, 46.8, 45.6, 30.64, 30.60, 24.9, 23.9. ¹⁹F NMR (376 MHz, CDCl₃) δ –115.7, –116.2. HRMS (ESI-Quadrupole-Orbitrap) m/z: $[M + Na]^+$ Calcd for C₂₀H₁₄ClFO₃Na 379.0508 (100.0%), 381.0478 (32.0%); Found 379.0512 (100.0%), 381.0483 (32.0%). IR (KBr thin film, cm⁻¹): v 3233, 1726, 1676, 1500, 1436, 1329, 1218, 750, 710, 689, 622.

Methyl 1-benzoyl-2-ethynyl-2-(p-tolyl)cyclopropane-1-carboxylate (1d):

The general procedure was followed using **S5-d** (5 mmol, 1.950 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), yellow oil, 1.103 g, 69% yield, 1:0.7 dr. ¹H NMR (400

MHz, CDCl₃, after column 1:1 dr) δ 8.08 (d, J = 7.7 Hz, 2H), 7.71 (d, J = 7.9 Hz, 2H), 7.56–7.50 (m, 1H), 7.50–7.40 (m, 4H), 7.36–7.30 (m, 1H), 7.25–7.20 (m, 2H), 7.16 (d, J = 8.0 Hz, 4H), 6.83 (d, J = 8.0 Hz, 2H), 3.58 (s, 3H), 3.26 (s, 3H), 2.69 (d, J = 5.8 Hz, 1H), 2.53 (d, J = 5.4 Hz, 1H), 2.42 (s, 1H), 2.37–2.26 (m, 5H), 2.06 (s, 3H), 1.93 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.6, 190.7, 167.9, 167.2, 137.6, 137.2, 136.5, 136.0, 133.0, 132.8, 132.0, 130.7, 129.2, 129.0, 128.9, 128.6, 128.5, 128.1, 127.9, 127.7, 83.5, 82.8, 71.0, 70.9, 52.4, 52.2, 46.6, 45.5, 31.6, 31.5, 24.2, 23.4, 21.0, 20.6. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₁H₁₈O₃Na 341.1148; Found 341.1146. IR (KBr thin film, cm⁻¹): v 3252, 2952, 1734, 1679, 1433, 1240, 1043, 792, 752, 690.

Methyl 1-benzoyl-2-ethynyl-2-(4-(methoxymethoxy)phenyl)cyclopropane-1-carboxylate (1e):

The general procedure was followed using **S5-e** (5 mmol, 2.180 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), yellow oil, 1.321 g, 73% yield, 1:0.2 dr. ¹H NMR (400 MHz, CDCl₃, after column single diastereoisomer) δ 8.08 (d, *J* = 7.6 Hz, 2H), 7.66–7.57 (m, 1H), 7.55–7.45 (m, 4H), 7.07 (d, *J* = 7.8 Hz, 2H), 5.20 (q, *J* = 6.8 Hz, 2H), 3.49 (s, 3H), 3.37 (s, 3H), 2.55 (d, *J* = 4.8 Hz, 1H), 2.36 (d, *J* = 5.1 Hz, 1H), 1.99 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 192.1, 167.6, 157.2, 136.8, 133.3, 130.2, 129.5, 128.4, 116.1, 94.6, 83.8, 71.1, 56.3, 52.6, 45.9, 31.6, 24.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₂H₂₀O₅Na 387.1203; Found 387.1206. IR (KBr thin film, cm⁻¹): v 3282, 2953, 1732, 1677, 1511, 1434, 1236, 1149, 1077, 994, 795, 688.

Methyl 1-benzoyl-2-ethynyl-2-(naphthalen-2-yl)cyclopropane-1-carboxylate (1f):

The general procedure was followed using **S5-f** (5 mmol, 2.130 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 15:1), amorphous yellow solid, mp 115–119 °C, 1.330 g, 75% yield, 1:1 dr. ¹H NMR (400 MHz, CDCl₃, after column 1:1.3 dr) δ 8.08 (d, *J* = 7.6 Hz, 2.6H), 7.93 (s, 1.3H), 7.84–7.76 (m, 3.9H), 7.68–7.52 (m, 7.8H), 7.51–7.39 (m, 7.4H), 7.33–7.27 (m, 2.6H), 7.19–7.14 (m, 2H), 3.63 (s, 3H), 3.22 (s, 3.9H), 2.80 (d, *J* = 5.8 Hz, 1H), 2.68 (d, *J* = 5.4 Hz, 1.3H), 2.46–2.35 (m, 3.3H), 1.98 (s, 1.3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 191.0, 168.3, 167.5, 136.7, 136.2, 133.4, 133.2, 133.1, 133.0, 132.8, 132.7, 132.6, 131.6, 129.5, 129.2, 128.5, 128.3, 128.22, 128.18, 128.1, 128.0, 127.81, 127.77, 127.5, 127.1, 126.6, 126.50, 126.49, 126.4, 126.2, 83.6, 82.9, 76.8, 71.5, 71.4, 52.9, 52.6, 47.0, 45.9, 32.1, 24.8, 24.0. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₄H₁₉O₃ 355.1329; Found 355.1331. IR (KBr thin film, cm⁻¹): v 3303, 3265, 1673, 1324, 1252, 1208, 1094, 819, 773, 697, 608.

Methyl 1-benzoyl-2-ethynyl-2-(thiophen-3-yl)cyclopropane-1-carboxylate (1g):

The general procedure was followed using **S5-g** (5 mmol, 1.910 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), amorphous yellow solid, mp 67–70 °C, 992 mg, 64% yield, 1:0.5 dr. ¹H NMR (400 MHz, CDCl₃, after column 1:0.25 dr) δ 8.05 (d, *J* = 7.7 Hz, 0.5H), 7.74 (d, *J* = 7.6 Hz, 2H), 7.62–7.57 (m, 0.25H), 7.52–7.47 (m, 0.5H), 7.46–7.39 (m, 1.25H), 7.35–7.27 (m, 2.5H), 7.05–6.99 (m, 1H), 6.96–6.91 (m, 1H), 6.84 (d, *J* = 4.9 Hz, 1H), 3.68 (s, 3H), 3.39 (s, 0.75H), 2.54–2.50 (m, 1.25H), 2.48 (s, 1H), 2.45–2.39 (m, 1.25H), 1.99 (s, 0.25H). ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 191.6, 168.0, 167.2, 136.7, 136.0, 135.84, 135.75, 133.3, 133.2, 129.6, 129.4, 128.4, 128.1, 128.0, 127.5, 125.7, 125.6, 124.6, 123.5, 83.0, 82.1, 71.2, 52.8, 52.7, 46.9, 46.1, 28.5, 27.8, 25.6. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₈H₁₄O₃SNa 333.0556; Found 333.0559. IR (KBr thin film, cm⁻¹): v 3280, 2957, 1727, 1678, 1435, 1318, 1242, 1225, 757,687, 671.

Methyl 2-ethynyl-1-(4-fluorobenzoyl)-2-phenylcyclopropane-1-carboxylate (1h): The general procedure was followed using S5-h (5 mmol, 1.970 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), colorless oil, 1.208 g, 75% yield, 1:1 dr. ¹H NMR (400 MHz, CDCl₃, after column 1:1 dr) δ 8.12-8.02 (m, 2H), 7.72-7.64 (m, 2H), 7.52 (d, J = 7.7 Hz, 2H), 7.40–7.32 (m, 2H), 7.29 (d, J = 7.3 Hz, 1H), 7.23 (d, J = 7.7 Hz, 2H), 7.18–7.09 (m, 2H), 7.06–6.95 (m, 3H), 6.93–6.84 (m, 2H), 3.63 (s, 3H), 3.27 (s, 3H), 2.68 (d, J = 5.9 Hz, 1H), 2.55 (d, J = 5.4 Hz, 1H), 2.42 (s, 1H), 2.35 (d, J = 5.9 Hz, 1H), 2.31 (d, J = 5.4 Hz, 1H), 1.95 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 190.4, 189.5, 167.8, 167.1, 165.7 (C-F, d, ${}^{1}J_{C-F} = 256.3$ Hz), 165.4 (C-F, d, ${}^{1}J_{C-F} = 256.4$ Hz), 135.0, 133.6, 133.0 (C-F, d, ${}^{4}J_{C-F} = 2.5$ Hz), 132.4 (C-F, d, ${}^{4}J_{C-F} = 2.3$ Hz), 132.1 (C-F, d, ${}^{3}J_{C-F} = 9.4$ Hz), 132.0 (C-F, d, ${}^{3}J_{C-F} = 9.3$ Hz), 128.8, 128.4, 128.2, 128.0, 127.88, 127.86, 115.5 (C-F, d, ${}^{2}J_{C-F}$ = 22.1 Hz), 115.0 (C-F, d, ${}^{2}J_{C-F}$ = 22.1 Hz), 83.4, 82.4, 71.4, 71.3, 52.7, 52.5, 47.0, 45.7, 31.9, 31.8, 24.3, 23.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.6, -104.7. HRMS (ESI-Quadrupole-Orbitrap) m/z: $[M + Na]^+$ Calcd for C₂₀H₁₅FO₃Na 345.0897; Found 345.0906. IR (KBr thin film, cm⁻¹): v 3282, 2952, 1729, 1672, 1596, 1433, 1229, 1138, 840, 737, 696.

Methyl 1-(4-chlorobenzoyl)-2-ethynyl-2-phenylcyclopropane-1-carboxylate (1i): The general procedure was followed using **S5-i** (5 mmol, 2.050 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 15:1), amorphous white solid, mp 96–101 °C, 1.184 g, 70% yield, 1:1 dr. ¹H NMR (400 MHz, CDCl₃, after column single diastereoisomer) δ 8.03 (d, J = 7.8 Hz, 2H), 7.56 (d, J = 7.5 Hz, 2H), 7.50 (d, J = 7.8 Hz, 2H), 7.45–7.38 (m, 2H), 7.38–7.32 (m, 1H), 3.35 (s, 3H), 2.60 (d, J = 5.4 Hz, 1H), 2.38 (d, J = 5.4 Hz, 1H), 2.00 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.0, 167.2, 139.7, 135.1, 135.0, 131.0, 128.9, 128.8, 128.6, 128.3, 83.5, 71.4, 52.6, 45.8, 32.1, 24.4. HRMS (ESI-Quadrupole-Orbitrap) m/z: $[M + Na]^+$ Calcd for C₂₀H₁₅ClO₃Na 361.0602 (100.0%), 363.0572 (32.0%); Found 361.0604 (100.0%), 363.0575 (32.0%). IR (KBr thin film, cm⁻¹): v 3258, 2949, 1740, 1674, 1587, 1429, 1328, 1215, 934, 756, 696, 664.

Methyl 2-ethynyl-1-(4-methoxybenzoyl)-2-phenylcyclopropane-1-carboxylate (1j): The general procedure was followed using S5-j (5 mmol, 2.030 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 5:1), amorphous white solid, mp 83–85 °C, 1.086 g, 65% yield, 1:1 dr. ¹H NMR (400 MHz, CDCl₃, after column 1:0.7 dr) δ 8.08 (d, J = 8.9 Hz, 1.4H), 7.70 (d, J = 8.9 Hz, 2H), 7.57 (d, J = 7.1 Hz, 1.4H), 7.44–7.37 (m, 1.4H), 7.34 (d, J = 7.2 Hz, 0.7H), 7.31–7.27 (m, 2H), 7.13–7.03 (m, 3H), 7.00 (d, J = 8.9 Hz, 1.4H), 6.76 (d, J = 8.9 Hz, 2H), 3.91 (s, 2.1H), 3.80 (s, 3H), 3.69 (s, 3H), 3.35 (s, 2.1H), 2.71 (d, J = 5.8 Hz, 1H), 2.58 (d, J = 5.4 Hz, 0.7H), 2.44 (s, 1H), 2.37 (d, J = 5.8 Hz, 1H), 2.33 (d, J = 5.4 Hz, 0.7H), 2.00 (s, 0.7H). ¹³C NMR (101 MHz, CDCl₃) δ 190.2, 189.3, 168.2, 167.5, 163.7, 163.4, 135.4, 134.0, 131.9, 131.8, 129.6, 129.2, 128.9, 128.4, 128.03, 127.96, 127.9, 127.7, 113.6, 113.1, 83.7, 82.9, 71.1, 71.0, 55.5, 55.4, 52.7, 52.5, 46.9, 45.7, 31.54, 31.47, 24.4, 23.6. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₁H₁₈O₄Na 357.1097; Found 357.1099. IR (KBr thin film, cm⁻¹): v 3298, 2962, 1727, 1657, 1594, 1449, 1225, 1223, 1170, 1026, 934, 840, 696.

Methyl 2-ethynyl-2-phenyl-1-(thiophene-3-carbonyl)cyclopropane-1-carboxylate (1k):

The general procedure was followed using **S5-k** (5 mmol, 1.910 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum

ether/ethyl acetate, v:v = 10:1), amorphous yellow solid, mp 67–70 °C, 1.395 g, 90% yield, 1:1 dr. ¹H NMR (400 MHz, CDCl₃, after column 1:1 dr) δ 8.27–8.21 (m, 1H), 7.93–7.86 (m, 1H), 7.69–7.63 (m, 1H), 7.56–7.50 (m, 2H), 7.43–7.31 (m, 4H), 7.30–7.26 (m, 3H), 7.14–7.04 (m, 4H), 3.74 (s, 3H), 3.37 (s, 3H), 2.69 (d, *J* = 5.9 Hz, 1H), 2.58 (d, *J* = 5.4 Hz, 1H), 2.41 (s, 1H), 2.37 (d, *J* = 5.9 Hz, 1H), 2.32 (d, *J* = 5.4 Hz, 1H), 2.04 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 185.8, 185.0, 168.0, 167.2, 141.6, 141.4, 135.4, 134.2, 134.0, 133.9, 128.8, 128.6, 128.2, 128.1, 128.04, 127.96, 127.9, 127.6, 125.9, 125.3, 83.5, 82.9, 71.2, 71.1, 53.0, 52.7, 48.3, 46.9, 31.5, 24.2, 23.4. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₈H₁₄O₃SNa 333.0556; Found 333.0566. IR (KBr thin film, cm⁻¹): v 3280, 2951, 1731, 1662, 1508, 1433, 1410, 1277, 1133, 756, 694.

Methyl 2-(4-chlorophenyl)-2-ethynyl-1-(4-methoxybenzoyl)cyclopropane-1-carboxylate (11):

The general procedure was followed using **S5-1** (5 mmol, 2.200 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), yellow oil, 1.435 g, 78% yield, 1:0.7 dr. ¹H NMR (400 MHz, CDCl₃, after column 1:1.3 dr) δ 8.03 (d, *J* = 8.8 Hz, 2.6H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2.6H), 7.36 (d, *J* = 8.4 Hz, 2.6H), 7.22 (d, *J* = 8.5 Hz, 2H), 7.06 (d, *J* = 8.6 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2.6H), 6.78 (d, *J* = 8.8 Hz, 2H), 3.81 (s, 3H), 3.68 (s, 3H), 3.38 (s, 3.9H), 2.63 (d, *J* = 5.8 Hz, 1H), 2.53 (d, *J* = 5.4 Hz, 1.3H), 2.45 (s, 1H), 2.37 (d, *J* = 5.9 Hz, 1H), 2.33 (d, *J* = 5.4 Hz, 1.3H), 2.01 (s, 1.3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.9, 189.1, 168.1, 167.6, 163.8, 163.7, 134.1, 134.0, 133.7, 133.0, 131.8, 131.7, 130.3, 129.5, 129.1, 128.6, 128.2, 113.7, 113.4, 83.3, 82.5, 71.5, 71.4, 55.6, 55.5, 52.9, 52.7, 47.0, 45.7, 31.0, 30.9, 24.7, 23.9. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₁H₁₇ClO₄Na 391.0708 (100.0%), 393.0678 (32.0%); Found 391.0707 (100.0%), 393.0679 (32.0%). IR (KBr

thin film, cm⁻¹): v 3286, 2952, 1731, 1667, 1596, 1494, 1316, 1248, 1169, 1022, 830, 612.

Methyl (*E*)-2-(4-chlorostyryl)-2-ethynyl-1-(4-methoxybenzoyl)cyclopropane-1-carboxylate (1m):

The general procedure was followed using **S5-m** (5 mmol, 2.330 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), amorphous yellow solid, mp 131–135 °C, 1.478 g, 75% yield, 1:0.16 dr. ¹H NMR (400 MHz, CDCl₃, after column single diastereoisomer) δ 7.92–7.85 (m, 2H), 7.20–7.08 (m, 2H), 7.00–6.92 (m, 2H), 6.91–6.84 (m, 3H), 5.34 (d, J = 15.6 Hz, 1H), 3.82 (s, 3H), 3.68 (s, 3H), 2.53 (s, 1H), 2.38 (d, J = 5.4 Hz, 1H), 2.08 (d, J = 5.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 190.6, 168.0, 163.9, 134.9, 133.4, 132.1, 131.9, 129.4, 128.7, 127.6, 127.3, 113.8, 79.9, 73.2, 55.6, 52.9, 45.8, 30.0, 26.7. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₃H₂₀ClO₄ 395.1045 (100.0%), 397.1015 (32.0%); Found 395.1054 (100.0%), 397.1021 (32.0%). IR (KBr thin film, cm⁻¹): v 3264, 2947, 1726, 1677, 1597, 1288, 1260, 1169, 930, 818, 702, 666.

Methyl 1-benzoyl-2-ethynyl-2-isopentylcyclopropane-1-carboxylate (1n):

The general procedure was followed using **S5-n** (5 mmol, 1.850 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 15:1), colorless oil, 1.100g, 74% yield, >20:1 dr. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.4 Hz, 2H), 7.62–7.53 (m, 1H), 7.52–7.42 (m, 2H), 3.61 (s, 3H), 2.25 (s, 1H), 2.01 (d, *J* = 4.8 Hz, 1H), 1.71–1.53 (m, 3H), 1.47–1.27 (m, 2H), 0.85–0.65 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 192.7, 168.8, 136.8, 133.6, 129.4, 128.6, 82.6, 70.4, 52.7, 43.6, 36.6, 33.6, 28.4, 27.7, 25.8, 22.8, 22.4. HRMS

(ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₉H₂₂O₃Na 321.1461; Found 321.1468. IR (KBr thin film, cm⁻¹): v 3276, 2953, 1736, 1679, 1423, 1214, 1143, 1110, 798, 689.

Methyl 1-benzoyl-2-ethynyl-2-methylcyclopropane-1-carboxylate (10):

The general procedure was followed using **S5-o** (5 mmol, 1.570 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), amorphous white solid, mp 50–54 °C, 908 mg, 75% yield, >20:1 dr. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.8 Hz, 2H), 7.61–7.55 (m, 1H), 7.52–7.43 (m, 2H), 3.61 (s, 3H), 2.27 (s, 1H), 2.02 (d, *J* = 4.9 Hz, 1H), 1.69 (d, *J* = 4.9 Hz, 1H), 1.21 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.6, 168.8, 136.8, 133.6, 129.2, 128.7, 83.6, 69.9, 52.6, 43.0, 26.6, 23.2, 22.4. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₅H₁₄O₃Na 265.0835; Found 265.0839. IR (KBr thin film, cm⁻¹): v 3274, 2951, 1727, 1683, 1500, 1338, 1244, 1216, 800, 754, 688.

Methyl 1-benzoyl-2-ethynyl-2-phenethylcyclopropane-1-carboxylate (1p):

The general procedure was followed using **S5-p** (5 mmol, 2.020 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), amorphous white solid, mp 112–116 °C, 979 mg, 59% yield, >20:1 dr. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.3 Hz, 2H), 7.62–7.54 (m, 1H), 7.51–7.43 (m, 2H), 7.25–7.19 (m, 2H), 7.16 (d, *J* = 7.2 Hz, 1H), 7.11 (d, *J* = 7.1 Hz, 2H), 3.64 (s, 3H), 3.09–2.98 (m, 1H), 2.88–2.76 (m, 1H), 2.39 (s, 1H), 2.07–1.96 (m, 2H), 1.53 (d, *J* = 5.1 Hz, 1H), 1.17–1.02 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 192.4, 168.7, 140.9, 136.6, 133.6, 129.3, 128.7, 128.5, 126.2, 82.3, 71.1, 52.7, 43.1, 37.7, 33.7, 27.8, 25.9. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₂H₂₀O₃Na 355.1305; Found 355.1310. IR (KBr thin film, cm⁻¹): v 3257, 2951, 1722, 1683, 1448, 1432, 1284, 792, 749, 687.

Methyl 1-benzoyl-2-cyclohexyl-2-ethynylcyclopropane-1-carboxylate (1q):

The general procedure was followed using **S5-q** (5 mmol, 1.910 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), amorphous yellow solid, mp 97–101 °C, 899 mg, 58% yield, >20:1 dr. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.9 Hz, 2H), 7.60–7.51 (m, 1H), 7.48–7.39 (m, 2H), 3.61 (s, 3H), 2.18 (s, 1H), 2.07 (d, *J* = 4.8 Hz, 1H), 1.97–1.87 (m, 1H), 1.74–1.68 (m, 1H), 1.65–1.43 (m, 6H), 1.21–0.94 (m, 3H), 0.92–0.81 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 192.0, 168.9, 136.8, 133.5, 129.2, 128.5, 81.7, 70.6, 52.9, 44.5, 42.1, 33.7, 30.9, 30.1, 26.5, 26.1, 25.92, 25.86. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₀H₂₂O₃Na 333.1461; Found 333.1464. IR (KBr thin film, cm⁻¹): v 3283, 2932, 1730, 1685, 1448, 1287, 1208, 1125, 756, 695, 646.

Ethyl 1-acetyl-2-ethynyl-2-phenylcyclopropane-1-carboxylate (1r):

The general procedure was followed using **S5-r** (5 mmol, 1.640 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 25:1), colorless oil, 845 mg, 66% yield, 1:1.2 dr. ¹H NMR (400 MHz, CDCl₃, after column 1.15:1 dr) δ 7.40 (d, *J* = 6.9 Hz, 2H), 7.38–7.28 (m, 6.45H), 7.28–7.22 (m, 2.3H), 4.31 (q, *J* = 7.1 Hz, 2.3H), 3.80–3.65 (m, 2H), 2.67 (s, 3H), 2.62 (d, *J* = 5.6 Hz, 1.15H), 2.41 (d, *J* = 5.5 Hz, 1H), 2.31 (d, *J* = 5.5 Hz, 1H), 2.27 (s, 1.15H), 2.23–2.18 (m, 2.15H), 2.08 (s, 3.45H), 1.35 (t, *J* = 7.1 Hz, 3.45H), 0.81 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.6, 198.2, 167.3, 166.3, 135.8, 134.2, 128.8, 128.6, 128.4, 128.2, 128.1, 83.4, 83.2, 70.3, 70.1, 61.9, 61.4, 50.2, 49.5, 33.7, 32.6, 30.5, 30.4, 22.7, 22.3, 14.2, 13.5. HRMS (ESI-Quadrupole-Orbitrap)

m/z: [M + Na]⁺ Calcd for C₁₆H₁₆O₃Na 279.0992; Found 279.0996. IR (KBr thin film, cm⁻¹): v 3283, 2982, 1703, 1359, 1303, 1244, 1204, 1100, 1021, 742, 696.

Methyl 2-(4-chlorophenyl)-2-ethynyl-1-propionylcyclopropane-1-carboxylate (1s): The general procedure was followed using **S5-s** (5 mmol, 1.810 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 870 mg, 60% yield, 1:1.4 dr. ¹H NMR (400 MHz, CDCl₃, after column 1:1 dr) δ 7.39–7.26 (m, 8H), 3.86 (s, 3H), 3.36 (s, 3H), 3.20–3.07 (m, 1H), 3.07–2.96 (m, 1H), 2.82–2.69 (m, 1H), 2.61 (d, *J* = 5.6 Hz, 1H), 2.46–2.34 (m, 3H), 2.29 (s, 1H), 2.24 (d, *J* = 5.6 Hz, 1H), 2.21 (s, 1H), 1.20 (t, *J* = 7.2 Hz, 3H), 0.69 (t, *J* = 7.2 Hz, 3H).¹³C NMR (151 MHz, CDCl₃) δ 201.9, 200.7, 167.8, 166.8, 134.4, 134.14, 134.07, 133.0, 130.2, 130.1, 128.7, 128.6, 83.2, 82.9, 70.6, 70.3, 52.8, 52.4, 50.2, 49.2, 36.5, 36.1, 33.0, 31.8, 23.0, 22.9, 8.4, 7.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₆H₁₅ClO₃Na 313.0602 (100.0%), 315.0572 (32.0%); Found 313.0610 (100.0%), 315.0580 (32.0%). IR (KBr thin film, cm⁻¹): v 3266, 2982, 1742, 1693, 1495, 1435, 1312, 1256, 1171, 1092, 836, 724, 687.

Methyl 2-ethynyl-2-isopentyl-1-propionylcyclopropane-1-carboxylate (1t):

The general procedure was followed using **S5-t** (5 mmol, 1.610 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 15:1), colorless oil, 738 mg, 59% yield, 1:0.3 dr. ¹H NMR (400 MHz, CDCl₃, after column 1:0.25 dr) δ 3.75 (s, 3H), 3.73 (s, 0.75H), 2.98–2.71 (m, 2.5H), 2.08 (s, 1H), 1.96 (d, *J* = 4.9 Hz, 0.25H), 1.85 (d, *J* = 4.8 Hz, 1H), 1.76 (d, *J* = 4.8 Hz, 1H), 1.70 (s, 0.25H), 1.66 (d, *J* = 5.1 Hz, 0.25H), 1.58–1.39 (m, 3.75H), 1.38–1.28 (m, 1.25H), 1.28–1.15 (m, 1.25H), 1.11–1.01 (m, 3.75H), 0.88–0.79 (m, 7.5H).¹³C NMR (101 MHz, CDCl₃) δ 202.9, 168.8, 168.7, 83.7, 83.5, 69.7, 69.2,

52.62, 52.57, 47.1, 46.5, 36.7, 36.6, 36.4, 35.7, 31.3, 30.7, 29.8, 29.1, 27.94, 27.87, 25.53, 25.50, 22.82, 22.76, 22.4, 8.5, 8.1. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₅H₂₂O₃Na 273.1461; Found 273.1469. IR (KBr thin film, cm⁻¹): v 3290, 2955, 1731, 1698, 1409, 1309, 1215, 1205, 1116, 762, 666, 555.

Methyl (*E*)-1-benzoyl-2-(4-((3,7-dimethylocta-2,6-dien-1-yl)oxy)phenyl)-2-ethynylcyclopropane-1-carboxylate (1u):

The general procedure was followed using **S5-u** (5 mmol, 2.640 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 30:1), red oil, 1.230 g, 54% yield, 1:1.6 dr. ¹H NMR (600 MHz, CDCl₃, after column single diastereoisomer) δ 8.11–8.06 (m, 2H), 7.63–7.58 (m, 1H), 7.55–7.47 (m, 4H), 6.97–6.92 (m, 2H), 5.53–5.47 (m, 1H), 5.14–5.07 (m, 1H), 4.55 (d, *J* = 6.6 Hz, 2H), 3.36 (s, 3H), 2.56 (d, *J* = 5.3 Hz, 1H), 2.35 (d, *J* = 5.3 Hz, 1H), 2.16–2.11 (m, 2H), 2.11–2.07 (m, 2H), 1.98 (s, 1H), 1.74 (s, 3H), 1.69 (s, 3H), 1.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 167.6, 158.8, 141.5, 136.8, 133.3, 132.0, 130.1, 129.6, 128.4, 127.0, 123.9, 119.4, 114.6, 83.9, 71.0, 65.0, 52.6, 45.9, 39.7, 31.7, 26.4, 25.9, 24.7, 17.9, 16.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₃₀H₃₂O₄Na 479.2193; Found 479.2199. IR (KBr thin film, cm⁻¹): v 3286, 2916, 1712, 1681, 1510, 1448, 1325, 1236, 1177, 1093, 830, 753, 690.

1-benzoyl-2-ethynyl-2-phenylcyclopropane-1-carbonitrile (1v):

The general procedure was followed using **S5-v** (5 mmol, 1.715 g) and TBAF (10 mmol, 3.150 g) in THF (25 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 7:1), amorphous yellow solid, mp 85–90 °C, 501 mg, 37%

yield, 1:0.6 dr. ¹H NMR (600 MHz, CDCl₃, after column 1:0.5 dr) δ 8.00 (d, J = 7.4 Hz, 2H), 7.90 (d, J = 7.4 Hz, 1H), 7.69–7.62 (m, 3H), 7.59–7.50 (m, 4.5H), 7.49–7.43 (m, 2H), 7.40–7.35 (m, 1H), 7.22–7.15 (m, 1.5H), 3.15 (d, J = 5.9 Hz, 0.5H), 2.89 (d, J = 6.2 Hz, 1H), 2.67 (s, 0.5H), 2.52 (d, J = 6.2 Hz, 1H), 2.24 (d, J = 6.0 Hz, 0.5H), 2.15 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 187.8, 186.7, 134.8, 134.7, 134.3, 134.2, 133.5, 131.4, 129.4, 129.30, 129.27, 129.1, 129.0, 128.81, 128.77, 128.6, 127.9, 118.8, 117.3, 82.2, 79.9, 72.7, 72.1, 36.9, 35.2, 35.1, 34.4, 24.7, 23.7. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₉H₁₃NONa 294.0889; Found 294.0887. IR (KBr thin film, cm⁻¹): v 3226, 2923, 2240, 1678, 1448, 1282, 1017, 779, 721, 689.

Methyl 5-ethynyl-2,5-diphenyl-4,5-dihydrofuran-3-carboxylate (2a):

The general procedure was followed using **1a** (0.1 mmol, 30.4 mg, 1:1 dr), Cu(OTf)₂ (0.001 mmol, 0.36 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), colorless oil, 29.6 mg, 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.5 Hz, 2H), 7.66 (d, *J* = 7.9 Hz, 2H), 7.50–7.40 (m, 5H), 7.39–7.34 (m, 1H), 3.81 (d, *J* = 15.4 Hz, 1H), 3.70 (s, 3H), 3.54 (d, *J* = 15.4 Hz, 1H), 2.86 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 163.6, 141.8, 130.8, 129.6, 129.3, 128.7, 128.6, 127.8, 125.1, 101.5, 84.0, 82.5, 75.8, 51.3, 48.6. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₀H₁₆O₃Na 327.0992; Found 327.0990. IR (KBr thin film, cm⁻¹): v 3246, 2953, 1700, 1623, 1491, 1447, 1275, 1235, 1091, 1066, 1018, 764, 694.

Methyl 5-(4-bromophenyl)-5-ethynyl-2-phenyl-4,5-dihydrofuran-3-carboxylate (2b):

The general procedure was followed using **1b** (0.1 mmol, 38.3 mg, 1:1.7 dr), Cu(OTf)₂ (0.001 mmol, 0.36 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), amorphous yellow solid, mp 90–93 °C, 34.5 mg, 90% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 7.8 Hz, 2H), 7.56–7.49 (m, 4H), 7.49–7.41 (m, 3H), 3.78 (d, *J* = 15.4 Hz, 1H), 3.69 (s, 3H), 3.47 (d, *J* = 15.4 Hz, 1H), 2.86 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.9, 163.4, 140.9, 131.9, 131.0, 129.6, 129.1, 127.9, 127.0, 122.8, 101.5, 83.6, 82.0, 76.1, 51.4, 48.5. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₀H₁₅BrO₃Na 405.0097 (100.0%), 407.0076 (97.3%); Found 405.0101 (100.0%), 407.0080 (97.3%). IR (KBr thin film, cm⁻¹): v 3288, 2947, 1701, 1626, 1435, 1246, 1234, 1091, 1071, 790, 755, 693.

Methyl 5-(3-chloro-4-fluorophenyl)-5-ethynyl-2-phenyl-4,5-dihydrofuran-3-carboxylate (2c):

The general procedure was followed using **1c** (0.1 mmol, 35.6 mg, 1:1.4 dr), Cu(OTf)₂ (0.001 mmol, 0.36 mg) and Et₃N (0.1 mmol, 13.9 µL) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), yellow oil, 32.8 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.3 Hz, 2H), 7.69 (d, *J* = 6.6 Hz, 1H), 7.53–7.49 (m, 1H), 7.48–7.42 (m, 3H), 7.21–7.13 (m, 1H), 3.78 (d, *J* = 15.5 Hz, 1H), 3.70 (s, 3H), 3.46 (d, *J* = 15.5 Hz, 1H), 2.89 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.8, 163.3, 158.1 (C-F, d, ¹*J*_{C-F} = 251.6 Hz), 138.9 (C-F, d, ⁴*J*_{C-F} = 3.7 Hz), 131.1, 129.6, 129.0, 128.0, 127.9, 125.2 (C-F, d, ³*J*_{C-F} = 7.6 Hz), 121.4 (C-F, d, ²*J*_{C-F} = 18.0 Hz), 116.9 (C-F, d, ²*J*_{C-F} = 21.6 Hz), 101.5, 83.3, 81.4, 76.4, 51.4, 48.6. ¹⁹F NMR (376 MHz, CDCl₃) δ –115.5. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₀H₁₄ClFO₃Na 379.0508 (100.0%), 381.0478 (32.0%); Found 379.0511 (100.0%), 381.0482 (32.0%). IR (KBr thin film, cm⁻¹): v 3293, 2949, 1700, 1626, 1494, 1434, 1344, 1244, 1091, 1074, 752, 691.

Methyl 5-ethynyl-2-phenyl-5-(p-tolyl)-4,5-dihydrofuran-3-carboxylate (2d):

The general procedure was followed using **1d** (0.1 mmol, 31.8 mg, 1:1 dr), Cu(OTf)₂ (0.001 mmol, 0.36 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified

by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), yellow oil, 30.5 mg, 96% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.96–7.90 (m, 2H), 7.56 (d, *J* = 8.1 Hz, 2H), 7.50–7.41 (m, 3H), 7.23 (d, *J* = 8.1 Hz, 2H), 3.79 (d, *J* = 15.4 Hz, 1H), 3.70 (s, 3H), 3.54 (d, *J* = 15.4 Hz, 1H), 2.85 (s, 1H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 163.6, 138.9, 138.5, 130.8, 129.6, 129.4, 127.8, 125.1, 101.5, 84.2, 82.5, 75.6, 51.3, 48.5, 21.2. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₁H₁₈O₃Na 341.1148; Found 341.1146. IR (KBr thin film, cm⁻¹): v 3284, 2948, 1702, 1625, 1493, 1434, 1343, 1233, 1090, 816, 753, 691.

Methyl 5-ethynyl-5-(4-(methoxymethoxy)phenyl)-2-phenyl-4,5-dihydrofuran-3carboxylate (2e):

The general procedure was followed using **1e** (0.1 mmol, 36.4 mg, single diastereoisomer), Cu(OTf)₂ (0.001 mmol, 0.36 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), yellow oil, 33.1 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.86 (m, 2H), 7.57 (d, *J* = 8.7 Hz, 2H), 7.48–7.38 (m, 3H), 7.06 (d, *J* = 8.7 Hz, 2H), 5.19 (s, 2H), 3.76 (d, *J* = 15.4 Hz, 1H), 3.68 (s, 3H), 3.55–3.45 (m, 4H), 2.85 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 165.1, 163.6, 157.5, 135.1, 130.8, 129.6, 129.4, 127.9, 126.7, 116.3, 101.5, 94.4, 84.2, 82.4, 75.7, 56.2, 51.3, 48.4. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₂H₂₀O₅Na 387.1203; Found 387.1206. IR (KBr thin film, cm⁻¹): v 3283, 2949, 1706, 1609, 1509, 1493, 1435, 1233, 1150, 1091, 1073, 753, 692.

Methyl 5-ethynyl-5-(naphthalen-2-yl)-2-phenyl-4,5-dihydrofuran-3-carboxylate (2f):

The general procedure was followed using **1f** (0.1 mmol, 35.4 mg, 1:1.3 dr), Cu(OTf)₂ (0.002 mmol, 0.72 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1),

amorphous white solid, mp 70–75 °C, 32.7 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.97 (d, *J* = 7.8 Hz, 2H), 7.94–7.83 (m, 3H), 7.71 (d, *J* = 8.6 Hz, 1H), 7.56–7.50 (m, 2H), 7.50–7.41 (m, 3H), 3.87 (d, *J* = 15.4 Hz, 1H), 3.71 (s, 3H), 3.63 (d, *J* = 15.4 Hz, 1H), 2.93 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 165.1, 163.7, 138.9, 133.3, 133.0, 130.9, 129.7, 129.4, 129.0, 128.6, 127.9, 127.8, 126.73, 126.68, 124.2, 123.0, 101.7, 84.1, 82.7, 76.1, 51.3, 48.5. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₄H₁₈O₃Na 377.1148; Found 377.1150. IR (KBr thin film, cm⁻¹): v 3283, 2947, 1704, 1626, 1492, 1434, 1342, 1240, 1190, 1090, 817, 748, 691.

Methyl 5-ethynyl-2-phenyl-5-(thiophen-3-yl)-4,5-dihydrofuran-3-carboxylate (2g):

The general procedure was followed using **1g** (0.1 mmol, 31.0 mg, 1:0.25 dr), Cu(OTf)₂ (0.001 mmol, 0.36 mg) and Et₃N (0.1 mmol, 13.9 µL) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), red oil, 27.0 mg, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.1 Hz, 2H), 7.52 (s, 1H), 7.47–7.32 (m, 4H), 7.24 (d, *J* = 4.9 Hz, 1H), 3.78–3.65 (m, 4H), 3.55 (d, *J* = 15.4 Hz, 1H), 2.83 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 163.5, 142.6, 130.9, 129.6, 129.3, 127.9, 127.3, 125.3, 122.7, 101.5, 83.8, 79.8, 75.1, 51.3, 47.4. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₈H₁₄O₃SNa 333.0556; Found 333.0558. IR (KBr thin film, cm⁻¹): v 3283, 2948, 1705, 1628, 1434, 1361, 1236, 1191, 1091, 846, 790, 755, 691.

Methyl 5-ethynyl-2-(4-fluorophenyl)-5-phenyl-4,5-dihydrofuran-3-carboxylate (2h):

The general procedure was followed using **1h** (0.1 mmol, 32.2 mg, 1:1 dr), Cu(OTf)₂ (0.001 mmol, 0.36 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1),

amorphous yellow solid, mp 56–59 °C, 31.2 mg, 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.04–7.94 (m, 2H), 7.64 (d, J = 7.4 Hz, 2H), 7.47–7.33 (m, 3H), 7.18–7.05 (m, 2H), 3.80 (d, J = 15.4 Hz, 1H), 3.70 (s, 3H), 3.53 (d, J = 15.4 Hz, 1H), 2.87 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.1 (C-F, d, ¹ $J_{C-F} = 252.8$ Hz), 163.8 (C-F, d, ¹ $J_{C-F} = 257.2$ Hz), 141.7, 132.0 (C-F, d, ³ $J_{C-F} = 8.6$ Hz), 128.8, 128.7, 125.4 (C-F, d, ⁴ $J_{C-F} = 3.0$ Hz), 125.1, 115.0 (C-F, d, ² $J_{C-F} = 21.8$ Hz), 101.4, 84.0, 82.5, 75.9, 51.4, 48.6. ¹⁹F NMR (376 MHz, CDCl₃) δ –108.4. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₀H₁₅FO₃Na 345.0897; Found 345.0899. IR (KBr thin film, cm⁻¹): v 3292, 2949, 1710, 1636, 1505, 1430, 1238, 1093, 953, 764, 699.

Methyl 2-(4-chlorophenyl)-5-ethynyl-5-phenyl-4,5-dihydrofuran-3-carboxylate (2i):

The general procedure was followed using **1i** (0.1 mmol, 33.8 mg, single diastereoisomer), Cu(OTf)₂ (0.001 mmol, 0.36 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 15:1), amorphous white solid, mp 54–60 °C, 30.8 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.9 Hz, 2H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.46–7.34 (m, 5H), 3.79 (d, *J* = 15.5 Hz, 1H), 3.70 (s, 3H), 3.52 (d, *J* = 15.5 Hz, 1H), 2.87 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 164.9, 162.3, 141.6, 136.9, 131.0, 128.8, 128.7, 128.2, 127.7, 125.1, 102.0, 83.9, 82.7, 76.0, 51.4, 48.6. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₀H₁₅ClO₃Na 361.0602 (100.0%), 363.0572 (32.0%); Found 361.0603 (100.0%), 363.0574 (32.0%). IR (KBr thin film, cm⁻¹): v 3249, 2947, 1690, 1611, 1489, 1430, 1241, 1089, 1073, 840, 757, 696.

Methyl 5-ethynyl-2-(4-methoxyphenyl)-5-phenyl-4,5-dihydrofuran-3-carboxylate (2j):

The general procedure was followed using 1j (0.1 mmol, 33.4 mg, 1:0.7 dr), Cu(OTf)₂ (0.01 mmol, 3.60 mg) and Et₃N (0.1 mmol, 13.9 µL) in CH₂Cl₂ (1.0 mL). Purified by

chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), amorphous white solid, mp 107–111 °C, 32.6 mg, 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.8 Hz, 2H), 7.64 (d, *J* = 7.5 Hz, 2H), 7.45–7.32 (m, 3H), 6.94 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H), 3.78 (d, *J* = 15.3 Hz, 1H), 3.70 (s, 3H), 3.50 (d, *J* = 15.2 Hz, 1H), 2.84 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 163.6, 161.7, 142.0, 131.5, 128.7, 128.6, 125.1, 121.7, 113.3, 99.9, 84.3, 82.2, 75.6, 55.5, 51.3, 48.7. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₁H₁₈O₄Na 357.1097; Found 357.1095. IR (KBr thin film, cm⁻¹): v 3285, 2931, 1709, 1620, 1510, 1429, 1246, 1233, 1176, 1092, 859, 754, 690.

Methyl 5-ethynyl-5-phenyl-2-(thiophen-3-yl)-4,5-dihydrofuran-3-carboxylate (2k):

The general procedure was followed using **1k** (0.1 mmol, 31.0 mg, 1:1 dr), Cu(OTf)₂ (0.02 mmol, 7.20 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), yellow oil, 12.4 mg, 40% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.56–8.50 (m, 1H), 7.88–7.84 (m, 1H), 7.63–7.58 (m, 2H), 7.42–7.38 (m, 2H), 7.37–7.34 (m, 1H), 7.33–7.31 (m, 1H), 3.77 (d, *J* = 15.4 Hz, 1H), 3.73 (s, 3H), 3.47 (d, *J* = 15.4 Hz, 1H), 2.82 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 165.2, 158.5, 142.0, 131.1, 130.3, 128.8, 128.6, 125.1, 124.8, 100.2, 84.2, 82.1, 75.6, 51.4, 48.7. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₈H₁₄O₃SNa 333.0556; Found 333.0561. IR (KBr thin film, cm⁻¹): v 3264, 2922, 1698, 1618, 1434, 1358, 1100, 1076, 923, 853, 757, 690.

Methyl 5-(4-chlorophenyl)-5-ethynyl-2-(4-methoxyphenyl)-4,5-dihydrofuran-3carboxylate (21):

The general procedure was followed using **11** (0.1 mmol, 36.8 mg, 1:1.3 dr), Cu(OTf)₂ (0.001 mmol, 0.36 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), colorless

oil, 33.1 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.8 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H), 3.76 (d, *J* = 15.3 Hz, 1H), 3.69 (s, 3H), 3.43 (d, *J* = 15.3 Hz, 1H), 2.84 (s, 1H).¹³C NMR (101 MHz, CDCl₃) δ 165.2, 163.4, 161.8, 140.6, 134.5, 131.5, 128.9, 126.7, 121.4, 113.3, 99.9, 83.8, 81.6, 75.9, 55.5, 51.3, 48.6. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₁H₁₈ClO₄ 369.0888 (100.0%), 371.0859 (32.0%); Found 313.0897 (100.0%), 315.0869 (32.0%). IR (KBr thin film, cm⁻¹): v 3283, 2950, 1706, 1609, 1509, 1493, 1233, 1150, 1091, 1074, 832, 753, 692.

Methyl (*E*)-5-(4-chlorostyryl)-5-ethynyl-2-(4-methoxyphenyl)-4,5-dihydrofuran-3-carboxylate (2m):

The general procedure was followed using **1m** (0.1 mmol, 39.4 mg, single diastereoisomer), Cu(OTf)₂ (0.001 mmol, 0.36 mg) and Et₃N (0.1 mmol, 13.9 µL) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), amorphous white solid, mp 90–93 °C, 37.6 mg, 95% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.92–7.85 (m, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 6.7 Hz, 2H), 6.96 (d, *J* = 15.8 Hz, 1H), 6.94–6.88 (m, 2H), 6.38 (d, *J* = 15.8 Hz, 1H), 3.84 (s, 3H), 3.70 (s, 3H), 3.55 (d, *J* = 15.2 Hz, 1H), 3.34 (d, *J* = 15.2 Hz, 1H), 2.84 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 165.4, 163.5, 161.6, 134.23, 134.21, 131.4, 130.8, 129.0, 128.5, 128.4, 121.6, 113.2, 100.0, 82.4, 81.0, 76.2, 55.5, 51.3, 46.0. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₃H₁₉ClO₄Na 417.0864 (100.0%), 419.0835 (32.0%); Found 417.0872 (100.0%), 419.0842 (32.0%). IR (KBr thin film, cm⁻¹): v 3295, 2950, 1696, 1507, 1237, 1177, 1093, 756, 687, 617.

Methyl 5-ethynyl-5-isopentyl-2-phenyl-4,5-dihydrofuran-3-carboxylate (2n):

The general procedure was followed using **1n** (0.1 mmol, 29.8 mg, single diastereoisomer), Cu(OTf)₂ (0.02 mmol, 7.2 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 30:1), colorless oil, 28.3 mg, 95% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.82–7.77 (m, 2H), 7.44–7.37 (m, 3H), 3.68 (s, 3H), 3.38 (d, *J* = 15.1 Hz, 1H), 3.15 (d, *J* = 15.1 Hz, 1H), 2.63 (s, 1H), 2.03–1.97 (m, 1H), 1.92–1.85 (m, 1H), 1.64–1.58 (m, 1H), 1.56–1.48 (m, 1H), 1.48–1.40 (m, 1H), 0.94 (d, *J* = 6.6 Hz, 6H).¹³C NMR (151 MHz, CDCl₃) δ 165.4, 163.8, 130.7, 129.7, 129.5, 127.8, 101.4, 84.4, 82.4, 74.1, 51.2, 44.4, 38.9, 33.1, 28.2, 22.7, 22.6. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₉H₂₂O₃Na 321.1461; Found 321.1465. IR (KBr thin film, cm⁻¹): v 3288, 2952, 1893, 1627, 1599, 1493, 1434, 1247, 1090, 1071, 798, 754, 691.

Methyl 5-ethynyl-5-methyl-2-phenyl-4,5-dihydrofuran-3-carboxylate (20):

The general procedure was followed using **10** (0.1 mmol, 24.2 mg, single diastereoisomer), Cu(OTf)₂ (0.01 mmol, 3.60 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 15:1), amorphous white solid, mp 52–54 °C, 20.3 mg, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.74 (m, 2H), 7.46–7.35 (m, 3H), 3.67 (s, 3H), 3.45 (d, *J* = 15.1 Hz, 1H), 3.12 (d, *J* = 15.1 Hz, 1H), 2.63 (s, 1H), 1.76 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 165.4, 163.7, 130.7, 129.6, 129.5, 127.8, 101.4, 85.1, 78.9, 73.3, 51.2, 45.8, 28.4. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₅H₁₄O₃Na 265.0835; Found 265.0840. IR (KBr thin film, cm⁻¹): v 3239, 2953, 1699, 1634, 1433, 1350, 1260, 1238, 1183, 1100, 1057, 768, 692.

Methyl 5-ethynyl-5-phenethyl-2-phenyl-4,5-dihydrofuran-3-carboxylate (2p):

The general procedure was followed using **1p** (0.1 mmol, 33.2 mg, single diastereoisomer), Cu(OTf)₂ (0.02 mmol, 7.20 mg) and Et₃N (0.1 mmol, 13.9 μ L) in

CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), colorless oil, 31.5 mg, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.0 Hz, 2H), 7.46–7.35 (m, 3H), 7.33–7.26 (m, 2H), 7.25–7.16 (m, 3H), 3.67 (s, 3H), 3.44 (d, *J* = 15.2 Hz, 1H), 3.18 (d, *J* = 15.2 Hz, 1H), 3.02–2.86 (m, 2H), 2.69 (s, 1H), 2.40–2.26 (m, 1H), 2.25–2.11 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 163.7, 141.1, 130.7, 129.54, 129.50, 128.6, 128.5, 127.8, 126.2, 101.4, 83.9, 81.8, 74.7, 51.2, 44.6, 42.8, 30.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₂H₂₀O₃Na 355.1305; Found 355.1309. IR (KBr thin film, cm⁻¹): v 3282, 2948, 1690, 1626, 1493, 1434, 1247, 1189, 1093, 1070, 1023, 752, 691.

Methyl 5-cyclohexyl-5-ethynyl-2-phenyl-4,5-dihydrofuran-3-carboxylate (2q):

The general procedure was followed using **1q** (0.1 mmol, 31.0 mg, single diastereoisomer), Cu(OTf)₂ (0.02 mmol, 7.20 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), amorphous yellow solid, mp 56–61 °C, 29.5 mg, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.76 (m, 2H), 7.45–7.35 (m, 3H), 3.67 (s, 3H), 3.31–3.18 (m, 2H), 2.60 (s, 1H), 2.14–2.00 (m, 1H), 1.87–1.76 (m, 4H), 1.75–1.68 (m, 1H), 1.33–1.19 (m, 5H).¹³C NMR (101 MHz, CDCl₃) δ 165.4, 163.9, 130.6, 129.8, 129.5, 127.8, 101.5, 85.6, 83.8, 74.5, 51.2, 47.1, 42.6, 27.3, 27.2, 26.3, 26.1, 25.9. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₀H₂₂NaO₃ 333.1461; Found 333.1466. IR (KBr thin film, cm⁻¹): v 3248, 2930, 1701, 1630, 1599, 1449, 1244, 1089, 1071, 971, 753.

Ethyl 5-ethynyl-2-methyl-5-phenyl-4,5-dihydrofuran-3-carboxylate (2r):

The general procedure was followed using **1r** (0.1 mmol, 25.6 mg, 1.15:1 dr), Cu(OTf)₂ (0.01 mmol, 3.60 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 15:1), yellow oil, 23.1 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.2 Hz, 2H), 7.45–7.28 (m, 3H), 4.17 (q, J = 7.1 Hz, 2H), 3.57 (d, J = 14.8 Hz, 1H), 3.27 (d, J = 14.8 Hz, 1H), 2.82 (s, 1H), 2.33 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H).¹³C NMR (151 MHz, CDCl₃) δ 166.2, 165.6, 142.0, 128.7, 128.6, 125.0, 101.6, 84.2, 82.9, 75.6, 59.9, 47.1, 14.5, 14.3. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₆H₁₆O₃Na 279.0992; Found 279.0995. IR (KBr thin film, cm⁻¹): v 3286, 2980, 1695, 1651, 1448, 1380, 1342, 1279, 1226, 1088, 962, 757, 696.

Methyl 5-(4-chlorophenyl)-2-ethyl-5-ethynyl-4,5-dihydrofuran-3-carboxylate (2s): The general procedure was followed using 1s (0.1 mmol, 29.0 mg, 1:1 dr), Cu(OTf)₂ (0.01 mmol, 3.60 mg) and Et₃N (0.1 mmol, 13.9 μL) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 30:1), yellow oil, 26.7 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 3.70 (s, 3H), 3.54 (d, *J* = 14.8 Hz, 1H), 3.21 (d, *J* = 14.8 Hz, 1H), 2.87–2.68 (m, 3H), 1.21 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 171.0, 165.6, 140.7, 134.5, 128.9, 126.5, 100.3, 83.7, 82.3, 75.9, 51.2, 47.2, 21.3, 11.2. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₆H₁₅ClO₃Na 313.0602 (100.0%), 315.0572 (32.0%); Found 313.0607 (100.0%), 315.0576 (32.0%). IR (KBr thin film, cm⁻¹): v 3293, 2949, 1698, 1645, 1490, 1435, 1350, 1214, 1092, 1040, 827, 760.

Methyl 2-ethyl-5-ethynyl-5-isopentyl-4,5-dihydrofuran-3-carboxylate (2t):

The general procedure was followed using **1t** (0.1 mmol, 25.0 mg, 1:0.25 dr), Cu(OTf)₂ (0.02 mmol, 7.20 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), colorless oil, 22.2 mg, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.70 (s, 3H), 3.13 (d, J = 14.5 Hz, 1H), 2.89 (d, J = 14.5 Hz, 1H), 2.78–2.53 (m, 3H), 1.93–1.81 (m, 1H), 1.80–1.69 (m, 1H), 1.59–1.51 (m, 1H), 1.48–1.30 (m, 2H), 1.12 (t, J = 7.5 Hz, 3H), 0.90 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 166.1, 100.0, 84.5, 82.7, 73.9, 51.0, 42.8, 38.9, 33.0, 28.1, 22.7, 21.4, 11.2. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₅H₂₂O₃Na 273.1461; Found 273.1464. IR (KBr thin film, cm⁻¹): v 3291, 2953, 1701, 1642, 1435, 1367, 1353, 1254, 1095, 1027, 990, 762, 659.

Methyl (*E*)-5-(4-((3,7-dimethylocta-2,6-dien-1-yl)oxy)phenyl)-5-ethynyl-2-phenyl-4,5-dihydrofuran-3-carboxylate (2u):

The general procedure was followed using **1u** (0.1 mmol, 45.6 mg, single diastereoisomer), Cu(OTf)₂ (0.001 mmol, 0.36 mg) and Et₃N (0.1 mmol, 13.9 μ L) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), colorless oil, 41.6 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.87 (m, 2H), 7.57 (d, *J* = 8.7 Hz, 2H), 7.46–7.38 (m, 3H), 6.94 (d, *J* = 8.8 Hz, 2H), 5.49 (t, *J* = 6.3 Hz, 1H), 5.10 (t, *J* = 6.0 Hz, 1H), 4.56 (d, *J* = 6.5 Hz, 2H), 3.76 (d, *J* = 15.4 Hz, 1H), 3.69 (s, 3H), 3.53 (d, *J* = 15.4 Hz, 1H), 2.85 (s, 1H), 2.19–2.06 (m, 4H), 1.75 (s, 3H), 1.69 (s, 3H), 1.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 163.6, 159.2, 141.5, 133.7, 131.9, 130.8, 129.6, 129.4, 127.8, 126.6, 123.9, 119.4, 114.7, 101.5, 84.2, 82.5, 75.7, 65.0, 51.3, 48.4, 39.6, 26.4, 25.8, 17.8, 16.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₃₀H₃₂O₄Na 479.2193; Found 479.2198. IR (KBr thin film, cm⁻¹): v 3287, 2915, 1708, 1609, 1509, 1435, 1343, 1232, 1176, 1091, 829, 752, 692.

5-ethynyl-2,5-diphenyl-4,5-dihydrofuran-3-carbonitrile (2v):

The general procedure was followed using 1v (0.1 mmol, 27.1 mg, 1:0.5 dr), Cu(OTf)₂ (0.001 mmol, 0.36 mg) and Et₃N (0.1 mmol, 13.9 µL) in CH₂Cl₂ (1.0 mL). Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 6:1), amorphous white solid, mp 97–99 °C, 22.2 mg, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.09–8.02 (m, 2H), 7.64–7.58 (m, 2H), 7.56–7.46 (m, 3H), 7.46–7.35 (m, 3H), 3.72 (d, J = 14.9 Hz, 1H), 3.45 (d, J = 14.9 Hz, 1H), 2.91 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 165.5, 140.7, 131.9, 129.1, 129.0, 128.9, 127.6, 127.4, 125.1, 116.9, 84.3, 82.9, 78.9, 76.8, 48.4. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₉H₁₃NONa 294.0889; Found 294.0890. IR (KBr thin film, cm⁻¹): v 3256, 2923, 2201, 1621, 1493, 1448, 1343, 1232, 1182, 1076, 776, 710, 691.

Methyl 2,5-diphenyl-5-(phenylethynyl)-4,5-dihydrofuran-3-carboxylate (3a):

Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), yellow oil, 53.8 mg, 71% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.7 Hz, 2H), 7.73 (d, *J* = 7.7 Hz, 2H), 7.55–7.50 (m, 2H), 7.49–7.41 (m, 5H), 7.40–7.31 (m, 4H), 3.90 (d, *J* = 15.4 Hz, 1H), 3.71 (s, 3H), 3.61 (d, *J* = 15.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 163.8, 142.6, 132.0, 130.8, 129.7, 129.5, 129.0, 128.8, 128.5, 128.4, 127.9, 125.3, 122.2, 101.5, 89.3, 87.5, 83.4, 51.3, 48.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₆H₂₁O₃ 348.1485; Found 348.1485. IR (KBr thin film, cm⁻¹): v 2961, 1706, 1627 1257, 1238, 1091, 1070, 1017, 890, 797, 753, 688.

(5-ethynyl-2,5-diphenyl-4,5-dihydrofuran-3-yl)methyl 4-methoxybenzoate (3b): Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 15:1), yellow oil, 67.1 mg, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.5 Hz, 2H), 7.75–7.63 (m, 4H), 7.48–7.38 (m, 5H), 7.37–7.33 (m, 1H), 6.93 (d, *J* = 8.6 Hz, 2H), 5.11 (d, *J* = 12.5 Hz, 1H), 5.06 (d, *J* = 12.5 Hz, 1H), 3.86 (s, 3H), 3.69 (d, *J* = 15.5 Hz, 1H), 3.40 (d, *J* = 15.5 Hz, 1H), 2.81 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 163.5, 153.4, 142.9, 131.8, 130.0, 129.5, 128.7, 128.6, 128.3, 127.9, 125.1, 122.6, 113.8, 103.9, 85.2, 81.3, 74.7, 60.7, 55.6, 51.0. HRMS (ESI-QuadrupoleOrbitrap) m/z: [M + H]⁺ Calcd for C₂₆H₂₁O₄ 397.1434; Found 397.1445. IR (KBr thin film, cm⁻¹): v 3287, 2934, 1734, 1605, 1447, 1372, 1252, 1166, 1093, 1042, 770, 696.

4-bromo-2-ethynyl-2,5-diphenyl-2,3-dihydrofuran (3c):

Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), yellow oil, 47.6 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 6.4 Hz, 2H), 7.65 (d, *J* = 7.4 Hz, 2H), 7.49–7.32 (m, 6H), 3.74 (d, *J* = 15.5 Hz, 1H), 3.46 (d, *J* = 15.5 Hz, 1H), 2.82 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.1, 142.3, 129.4, 128.8, 128.6, 128.3, 127.4, 125.1, 86.7, 84.6, 80.6, 75.2, 55.4. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₈H₁₄BrO 325.0223; Found 325.0223. IR (KBr thin film, cm⁻¹): v 3287, 2921, 1492, 1446, 1237, 1066, 1015, 902, 757, 691, 666.

Methyl 2,5-diphenyl-5-(1-tosyl-1*H*-1,2,3-triazol-4-yl)-4,5-dihydrofuran-3-carboxylate (3d):

Purified by chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 5:1), amorphous white solid, mp 166–168 °C, 76.6 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.2 Hz, 2H), 7.95–7.86 (m, 3H), 7.53 (d, *J* = 7.5 Hz, 2H), 7.50– 7.42 (m, 3H), 7.42–7.29 (m, 5H), 4.21 (d, *J* = 15.5 Hz, 1H), 3.70–3.60 (m, 4H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1, 163.1, 151.5, 147.7, 143.3, 132.7, 130.9, 130.6, 129.5, 129.3, 129.0, 128.8, 128.3, 128.0, 125.1, 121.4, 102.3, 85.4, 51.3, 45.5, 22.0. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₇H₂₄N₃O₅S 502.1431; Found 502.1431. IR (KBr thin film, cm⁻¹): v 3148, 2947, 1702, 1633, 1391, 1358, 1244, 1195, 1101, 989, 743, 694, 672, 587.
IX. NMR Spectra of New Compounds

-99 -101 -104 -107 -110 -113 -116 -119 -122 -125 -128 -131 -134 f1 (ppm)

cqq250107-2

cqq241025-5

cqq250107-4

