Supporting Information

Palladium-Catalyzed Intramolecular Redox-Relay Heck Cyclization:

Access to Heterocycles Bearing All-Carbon Quaternary Centers

Linjun Qi, Rongjing He, Xiaofeng Tong, Shuling Yu*

School of Pharmaceutical and Chemical Engineering & Institute for Advanced

Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China

E-mail: <u>yushuling@tzc.edu.cn</u>

Table of Contents

1. General Information	S2
2. Optimization of Reaction Conditions	S 3
3. Preparation of Starting Materials	S6
4. General Procedure and Data for Products	S23
5. Synthetic Applications	S40
6. HPLC Chromatograms	S42
7. ¹ H and ¹³ C NMR Spectra	S43

1. General Information

All reactions were carried out in glassware under ambient atmosphere unless otherwise noted. Reactions were concentrated under reduced pressure using a rotary evaporator unless otherwise noted. Commercial reagents, including all of solvents, were used as received or purified using the methods indicated herein. All of chiral ligands were obtained from commercial sources.

Chromatography: Analytical thin-layer chromatography (TLC) was carried out with silica gel pre-coated glass plates. The TLC was visualized with a UV lamp (254 or 365 nm). Flash Column chromatography was carried out on silica gel (200-300 mesh) with technical grade solvents as the eluent.

Nuclear magnetic resonance (NMR) spectroscopy: NMR spectra were recorded using CDCl₃ as the solvent and on the Bruker AVANCE spectrometer, operating at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR. Chemical shifts (δ) were given in parts per million from tetramethylsilane (δ 0) and were measured relative to the signal of CDCl₃ (¹H NMR: δ 7.26 ppm and ¹³C NMR: 77.0 ppm). Coupling constants (*J* values) were given in Hertz (Hz) and reported to the nearest 0.1 Hz. ¹H NMR spectral data are tabulated in the order: multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; sept, septet; m, multiplet; br broad), coupling constants, number of protons.

High resolution mass spectrometry (HRMS): HRMS were recorded on a liquid chromatography/quadrupole time-of-flight mass spectrometer (MicroTof-Q II mass spectrometer, Bruker Daltonics) using electrospray ionization-time of flight (ESI-TOF). The calculated values are based on the most abundant isotope.

High performance liquid chromatography (HPLC): HPLC analysis was performed on a SHIMADZU LC-20AT equipped with a variable wavelength UV-Vis detector SPD-20A and Daicel Chiralpak chiral column.

Optical rotations: Optical rotations were measured on an Autopol IV-T polarimeter. The optical rotation values ($[\alpha]_D$) were reported at the indicated temperature in deg. mL $g^{-1} dm^{-1}$.

2. Optimization of Reaction Conditions

	Ph- N Ts (E)-1a	[Pd] ligan bas solv	(10 mol%) d (20 mol%) se (3 equiv) ent, 80 °C, 6 h	Ph N Ts 2a	
entry	catalyst	ligand	base	solvent	2a (yield ^b %)
1	Pd ₂ (dba) ₃	bpy	-	DMF	13
2	Pd ₂ (dba) ₃	bpy	-	DMA	10
3	Pd ₂ (dba) ₃	bpy	-	CH ₃ CN	<10
4	Pd ₂ (dba) ₃	bpy	-	MeOH	trace
5	Pd ₂ (dba) ₃	bpy	-	THF	ND
6	Pd ₂ (dba) ₃	bpy	-	DCE	ND
7	Pd ₂ (dba) ₃	bpy	Li ₂ CO ₃	DMF	46
8	Pd ₂ (dba) ₃	bpy	Cs ₂ CO ₃	DMF	58
9	Pd ₂ (dba) ₃	bpy	Na ₂ CO ₃	DMF	83
10	Pd ₂ (dba) ₃	bpy	K ₂ CO ₃	DMF	93
11	Pd ₂ (dba) ₃	bpy	K ₃ PO ₄	DMF	88
12	[Pd(allyl)Cl]2	bpy	K ₂ CO ₃	DMF	65
13	Pd(MeCN) ₂ Cl ₂	bpy	K ₂ CO ₃	DMF	90
14	Pd(OAc) ₂	bpy	K ₂ CO ₃	DMF	<10
15	Pd(OAc) ₂	PPh ₃	K ₂ CO ₃	DMF	62
16	Pd(OAc) ₂	dppb	K ₂ CO ₃	DMF	82
17	-	bpy	K ₂ CO ₃	DMF	ND
18	Pd ₂ (dba) ₃	-	K ₂ CO ₃	DMF	<10
19	-	-	K ₂ CO ₃	DMF	ND

Table S1: Optimization for the Synthesis of 2a

^{*a*}Reaction conditions: **(E)-1a** (0.1 mmol), Pd catalyst (0.01 mmol), ligand (0.02 mmol) in solvent (1.5 mL) at 80 °C for 6 h under air. ^{*b*}Determined by ¹HNMR with 1,3,5-trimethoxybenzene as the internal standard.

Ph- N Ts		Pd ₂ (dba) ₃ (10 mol% L (20 mol%)) Ph	Ph Me	
		K ₂ CO ₃ (3 equiv) DMF, T, 6 h	N Ts	J	
(<i>E</i>)-1a			2a		
entry	L	T (°C)	2a (yield ^b %)	ee ^c (%)	
1	L1	80	93	<1	
2	L2	80	94	16	
3	L3	80	90	<1	
4	L4	80	86	8	
5	L5	80	87	7	
6	L6	80	93	7	
7	L7	80	93	10	
8	L8	80	86	<1	
9	L9	80	82	<1	
10	L10	80	92	<1	
11	L2	60 (12 h)	90	23	
12	L2	50	86	22	
13	$L2^d$	60	90	23	
14	$L2^{e}$	60	90	23	
15	L11	60	24	16	
16	L12	60	35	28	
17	L13	60	39	24	
18	L14	60	<10	<1	
19	L15	60	58	8	
20	L16	60	76	53	
21	L17	60	75	46	
22	L18	60	72	42	
23	L19	60	65	35	
24	L20	60	64	14	
25	L21	60	55	37	

 Table S2: Optimization for the Synthesis of Chiral Product 2a

^{*a*}Reaction conditions: **(***E***)-1a** (0.1 mmol), Pd₂(dba)₃ (0.01 mmol), **L** (0.02 mmol) in DMF (1.5 mL) under air. ^{*b*}Determined by ¹HNMR with 1,3,5-trimethoxybenzene as the internal standard. ^{*c*}Determined by HPLC analysis. ^{*d*}[Pd(allyl)Cl]₂. ^{*e*}Pd(MeCN)₂Cl₂.

Table S3: Unsuccessful Substrates

3. Preparation of Starting Materials

General Synthetic Procedures for the Preparation of (E)-1:

To a solution of compound S-1 (200 mmol), in DCM (200 mL) was added ethyl 2-(triphenyl- λ 5-phosphanylidene) propanoate (1.5 eq, 300 mmol) and the resulting mixture was stirred at 45 °C for 72 h. The reaction was quenched with water, and extracted with DCM. It was purified by column chromatography to give compound **II**. After completion, concentrate the solvent under reduced pressure. The obtained crude product S-3 was used in the next step without further purification.

To a solution of compound S-2 (200 mmol), in DCM (200 mL) was added ethyl 2-(triphenyl- λ 5-phosphanylidene) propanoate (1.5 eq, 300 mmol) and MnO₂ (20 equiv). The resulting mixture was stirred at room temperature for 72 h and then filter through Celite. Wash the filtrate with DCM then concentrate the combined organic layer in vacuo. Purify the crude residue by flash chromatography obtain product S-3.

To a solution of S-3 (100 mmol) and imidazol (250 mmol, 2.5 equiv) in DCM (100 mL) at 0 $^{\circ}$ C was slowly added TBSCl (120 mmol, 1.2 equiv). Then, the reaction mixture was warmed up to room temperature and further stirred overnight. Concentrate the combined organic layer in vacuo and purify the crude residue by flash chromatography obtain product S-4.

To a solution of **S-4** (50 mmol) in DCM (70 mL) at -78 °C was slowly added DIBALH (1,5 M in toluene, 2 equiv). The resulting mixture was stirred at -78 °C for 2 h and further warmed up to 0 °C for 30 min. After completion, the mixture was quenched with the addition of MeOH (5 mL) at 0 °C. Allow the reaction mixture to reach ambient temperature and add saturated aqueous NaCl solution (50 mL) and DCM (50 mL) to the reaction mixture. Filter the reaction mixture through a plug of Celite and extracted

with DCM. Concentrate the combined organic layer in vacuo and purify the crude residue by flash chromatography to give the **S-5**.

To a solution of **S-5** (30 mmol), TsNHBoc (36 mmol, 1.2 equiv) and PPh₃ (45 mmol, 1.5 equiv) in THF (60 mL) at 0 °C was slowly added DIAD (45 mmol, 1.5 equiv). Then, the reaction mixture was warmed up to room temperature and further stirred overnight. Concentrate the combined organic layer in vacuo and purify the crude residue by flash chromatography obtain product **S-6**.

To a solution of **S-6** (20 mmol) in DCM (40 mL) at 0 °C was slowly added TFA (200 mmol, 10 equiv). Then, the reaction mixture was warmed up to room temperature and further stirred for 3 h. After completion, the solution was washed with saturated NaHCO₃ solution and extracted with DCM. Concentrate the combined organic layer in vacuo. The crude residue was dissolved in THF (20 mL), then TBAF (100 mmol, 5 equiv) was added into the mixture. The reaction mixture was stirred at room temperature for 3 h. After completion, the mixture was quenched by saturated NaCl solution and extracted with EtOAc. The combined organic layers were dried with Na₂SO₄ and concentrated under reduced pressure. Purify the crude residue by flash chromatography obtain product **S-7**.

In an oven-dried tube, alcohol S-7 (6 mmol), K_2CO_3 (15 mmol, 2.5 eq) and LiI (0.6 mmol, 0.1 eq) was dissolved in acetone (12 mL), the reaction mixture was stirred at room temperature for 30 min. Then a solution of vinyl/aryl iodines (6 mmol) in acetone was added dropwise and the mixture was stirred at 60 °C for overnight. After completion, the reaction was quenched with water, and extracted with EtOAc. Organic solvents were removed under reduced pressure and the crude reaction mixture was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 2/1) to afford the compound (*E*)-1.

Compound 1a was prepared according to the general procedure. Colorless oil. ¹H NMR

(400 MHz, CDCl₃) δ 7.53 (d, J = 8.0 Hz, 2H), 7.21 – 7.17 (m, 7H), 6.47 (s, 1H), 5.33 (t, J = 6.4 Hz, 1H), 4.33 (s, 2H), 3.97 (d, J = 6.4 Hz, 2H), 3.37 (s, 2H), 2.35 (s, 3H), 1.93 (s, 1H), 1.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 143.6, 138.3, 135.7, 133.4, 129.7, 128.4, 128.3, 127.5, 127.5, 127.2, 82.9, 59.2, 56.0, 54.0, 21.6, 14.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₅INO₃S⁺: 498.0594; found: 498.0594.

Compound **1b** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 2H), 7.31 – 7.28 (m, 2H), 7.24 – 7.21 (m, 2H), 6.83 – 6.79 (m, 2H), 6.46 (s, 1H), 5.45 – 5.42 (m, 1H), 4.40 (s, 2H), 4.07 (d, J = 6.4 Hz, 2H), 3.80 (s, 3H), 3.47 (s, 2H), 2.44 (s, 3H), 1.90 (s, 1H), 1.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 145.5, 143.5, 135.8, 133.6, 130.7, 129.7, 128.4, 127.5, 127.3, 113.7, 81.1, 59.2, 56.0, 55.3, 54.1, 21.6, 14.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₇INO₄S⁺: 528.0700; found: 528.0701.

Compound **1c** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.51 (s, 1H), 5.42 (t, *J* = 6.4 Hz, 1H), 4.41 (s, 2H), 4.07 (d, *J* = 6.4 Hz, 2H), 3.46 (s, 2H), 2.44 (s, 3H), 2.32 (s, 3H), 1.85 (s, 3H), 1.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 143.5, 138.3, 135.9, 135.4, 133.7, 129.7, 129.1, 127.5, 127.2, 127.0, 82.1, 59.3, 55.8, 54.0, 21.6, 21.2, 14.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₇INO₃S⁺: 512.0751; found: 512.0750.

Compound 1d was prepared according to the general procedure. Colorless oil. ¹H NMR

(400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 2H), 7.31 – 7.28 (m, 4H), 7.23 (d, *J* = 8.4 Hz, 2H), 6.55 (s, 1H), 5.43 (t, *J* = 5.6 Hz, 1H), 4.43 (s, 2H), 4.06 (d, *J* = 6.4 Hz, 2H), 3.46 (s, 2H), 2.44 (s, 3H), 2.00 (s, 1H), 1.32 (s, 9H), 1.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 146.0, 143.5, 135.7, 135.4, 133.5, 129.7, 127.6, 127.4, 126.9, 125.3, 82.2, 59.2, 55.9, 54.0, 34.6, 31.3, 21.6, 14.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₃₃INO₃S⁺: 554.1220; found: 554.1219.

Compound **1e** was prepared according to the general procedure. Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, J = 8.0 Hz, 2H), 7.21 – 7.14 (m, 4H), 6.86 (t, J = 8.4 Hz, 2H), 6.42 (s, 1H), 5.34 (t, J = 6.0 Hz, 1H), 4.29 (s, 2H), 3.98 (d, J = 6.4 Hz, 2H), 3.37 (s, 2H), 2.34 (s, 3H), 2.12 (s, 1H), 1.16 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 162.6 (d, $J_{C-F} = 246.7$ Hz), 144.5 (d, $J_{C-F} = 167.0$ Hz), 135.7, 134.4 (d, $J_{C-F} = 3.3$ Hz), 133.2, 129.8, 129.0 (d, $J_{C-F} = 8.1$ Hz), 127.7, 127.4, 115.4, 115.2, 82.7, 59.1, 56.3, 54.2, 21.6, 14.1. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.4. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₄FINO₃S⁺: 516.0500; found: 516.0502.

Compound **1f** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.0 Hz, 2H), 7.31 – 7.28 (m, 2H), 7.22 – 7.18 (m, 1H), 6.87 – 6.85 (m, 3H), 6.59 (s, 1H), 5.51 – 5.42 (m, 1H), 4.41 (s, 2H), 4.08 (d, J = 6.4 Hz, 2H), 3.82 (s, 3H), 3.48 (s, 2H), 2.45 (s, 3H), 1.86 (s, 1H), 1.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 146.2, 143.5, 139.7, 135.7, 133.5, 129.7, 129.3, 127.6, 127.5, 119.8, 114.1, 112.7, 82.9, 59.2, 56.2, 55.4, 54.2, 21.6, 14.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₇INO₄S⁺: 528.0700; found: 528.0701.

Compound 1g was prepared according to the general procedure. Colorless oil. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.63 \text{ (d, } J = 8.4 \text{ Hz}, 2\text{H}), 7.30 \text{ (d, } J = 8.4 \text{ Hz}, 2\text{H}), 7.18 \text{ (t, } J = 7.6 \text{ Hz}, 2\text{Hz})$ Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 7.07 – 7.03 (m, 2H), 6.54 (s, 1H), 5.45 (td, J = 6.4, 1.2 Hz, 1H), 4.44 (s, 2H), 4.10 (d, J = 6.4 Hz, 2H), 3.49 (s, 2H), 2.46 (s, 3H), 2.33 (s, 3H), 1.62 (s, 1H), 1.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 143.4, 138.4, 138.0, 136.0, 133.7, 129.6, 129.0, 128.2, 128.0, 127.5, 127.4, 124.3, 82.6, 59.3, 55.8, 53.8, 21.6, 21.4, 14.2. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₇INO₃S⁺: 512.0751; found: 512.0750.

Compound 1h was prepared according to the general procedure. Colorless oil. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.54 \text{ (d}, J = 8.4 \text{ Hz}, 2\text{H}), 7.19 - 7.12 \text{ (m}, 3\text{H}), 7.05 - 7.01 \text{ (m}, 2\text{H}),$ 6.86 (d, J = 7.6 Hz, 1H), 6.21 (s, 1H), 5.35 (dd, J = 6.4, 5.6 Hz, 1H), 4.20 (s, 2H), 4.05 (d, J = 6.4 Hz, 2H), 3.40 (s, 2H), 2.38 - 2.32 (m, 4H), 2.14 (s, 3H), 1.26 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 147.4, 143.3, 138.6, 136.1, 135.4, 132.9, 130.2, 129.6, 129.5, 128.5, 128.1, 127.6, 125.7, 82.9, 59.1, 56.1, 53.3, 21.6, 19.6, 14.0. HRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₂H₂₇INO₃S⁺: 512.0751; found: 512.0750.

Compound 1i was prepared according to the general procedure. Colorless oil. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.62 \text{ (d, } J = 8.4 \text{ Hz}, 2\text{H}), 7.29 - 7.27 \text{ (m, 2H)}, 6.94 \text{ (s, 1H)}, 6.79 \text{ (s, 2H)}, 6.79 \text{ (s, 2H)}, 6.94 \text{ (s, 2H)}, 6.79 \text{ (s$

(s, 2H), 6.49 (s, 1H), 5.46 (td, J = 6.4, 1.2 Hz, 1H), 4.42 (s, 2H), 4.12 (d, J = 6.4 Hz, 2H), 3.50 (s, 2H), 2.45 (s, 3H), 2.28 (s, 6H), 1.78 (s, 1H), 1.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 143.3, 138.4, 137.8, 136.2, 133.6, 129.9, 129.6, 127.5, 125.0, 82.5, 59.2, 55.6, 53.5, 21.6, 21.3, 14.2. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₉INO₃S⁺: 526.0907; found: 526.0906.

Compound **1j** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.00 (s, 1H), 5.49 (t, *J* = 6.0 Hz, 1H), 4.11 (d, *J* = 6.4 Hz, 2H), 3.84 (s, 2H), 3.59 (s, 2H), 2.42 (s, 3H), 1.86 (s, 3H), 1.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 142.8, 136.4, 132.9, 129.8, 128.6, 127.4, 59.2, 56.4, 55.3, 22.0, 21.6, 14.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₃INO₃S⁺: 436.0438; found: 436.0436.

Compound **1k** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 5.96 (s, 1H), 5.41 (t, *J* = 6.0 Hz, 1H), 4.01 (d, *J* = 6.4 Hz, 2H), 3.80 (s, 2H), 3.49 (s, 2H), 2.34 (s, 3H), 2.21 (s, 1H), 2.15 (q, *J* = 7.6 Hz, 2H), 1.49 (s, 3H), 0.93 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 143.6, 136.0, 132.7, 129.8, 128.4, 127.4, 77.8, 59.0, 56.4, 54.6, 27.9, 21.6, 14.4, 12.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₅INO₃S⁺: 450.0594; found: 450.0593.

Compound **11** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.03 (s, 1H), 5.49 (td, J = 6.4, 1.0 Hz, 1H), 4.10 (d, J = 6.4 Hz, 2H), 3.87 (s, 2H), 3.57 (s, 2H), 2.42 (s, 3H), 2.17 – 2.13 (m, 2H), 1.74 (s, 1H), 1.58 (s, 3H), 1.45 (dt, J = 13.6, 6.8 Hz, 1H), 1.28 – 1.22 (m, 2H), 0.85 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 143.6, 136.0, 132.7, 129.8, 128.4, 127.4, 77.8, 59.0, 56.4, 54.6, 27.9, 21.6, 14.4, 12.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₃₁INO₃S⁺: 492.1064; found: 492.1066.

Compound **1m** was prepared according to the general procedure. Pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.64 (d, J = 8.4 Hz, 2H), 7.24 – 7.18 (m, 4H), 7.14 – 7.08 (m, 3H), 5.99 (s, 1H), 5.42 (td, J = 6.4, 1.0 Hz, 1H), 4.02 (d, J = 6.4 Hz, 2H), 3.86 (s, 2H), 3.53 (s, 2H), 2.69 – 2.65 (m, 2H), 2.46 – 2.42 (m, 2H), 2.34 (s, 3H), 1.50 – 1.48 (m, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 145.7, 143.7, 140.9, 136.2, 133.1, 129.8, 128.5, 128.4, 128.1, 127.4, 126.1, 79.4, 59.2, 56.4, 54.4, 36.8, 34.3, 21.6, 14.4. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₉INO₃S⁺: 526.0907; found: 526.0908.

Compound **1n** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 6.01 (s, 1H), 5.46 (t, J = 6.0 Hz, 1H), 4.05 (d, J = 6.4 Hz, 2H), 3.85 (s, 2H), 3.53 (s, 2H), 2.38 (s, 3H), 2.22 (s, 1H), 2.15 (t, J = 12.0 Hz, 1H), 1.69 – 1.56 (m, 8H), 1.21 – 0.96 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 143.6, 136.0, 133.0, 129.8, 128.0, 127.4, 78.9, 59.1, 56.4, 54.3, 41.7, 32.5, 26.6, 26.2, 21.6, 14.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₃₁INO₃S⁺: 504.1064; found: 504.1064.

Compound **10** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.6 Hz, 2H), 7.31 (d, J = 7.6 Hz, 2H), 6.06 (s, 1H), 5.75 – 5.65 (m, 1H), 5.49 (t, J = 6.0 Hz, 1H), 5.01 – 4.95 (m, 2H), 4.10 (d, J = 6.4 Hz, 2H), 3.86 (s, 2H), 3.58 (s, 2H), 2.42 (s, 3H), 2.31 – 2.27 (m, 2H), 2.18 – 2.13 (m, 2H), 1.66 (s, 1H), 1.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 143.6, 137.2, 136.1, 133.0, 129.8, 128.2, 127.4, 115.5, 78.9, 59.2, 56.4, 54.4, 34.1, 31.7, 21.6, 14.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₇INO₃S⁺: 476.0751; found: 476.0750.

Compound **1p** was prepared according to the general procedure. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 6.83 (s, 1H), 6.68 (s, 2H), 6.37 (s, 1H), 5.29 (t, J = 6.8 Hz, 1H), 4.32 (s, 2H), 3.99 (d, J = 6.4 Hz, 2H), 3.39 (s, 2H), 2.33 (s, 3H), 2.17 (s, 6H), 1.91 (s, 1H), 1.65 – 1.62 (m, 2H), 1.20 – 1.06 (m, 8H), 0.78 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 143.3, 138.5, 137.7, 137.3, 136.3, 129.9, 129.6, 127.9, 127.5, 125.1, 82.5, 59.0, 53.6, 53.4, 31.6, 29.3, 28.5, 28.2, 22.7, 21.6, 21.3, 14.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₃₉INO₃S⁺: 596.1690; found: 596.1690.

Compound **1q** was prepared according to the general procedure. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.4 Hz, 2H), 7.25 – 7.19 (m, 7H), 6.52 (s, 1H), 5.42 (t, J = 6.4 Hz, 1H), 4.35 (s, 2H), 4.00 (d, J = 6.4 Hz, 2H), 3.43 (s, 2H), 2.38 (s, 3H), 1.85 – 1.76 (m, 4H), 1.67 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.9, 144.0, 138.0, 135.1, 134.4, 130.0, 129. 9, 128.5, 127.6, 127.2, 120.4 (t, $J_{C-F} = 36.0$ Hz), 115.4 (q, $J_{C-F} = 37.5$ Hz), 83.0, 58.7, 54.5, 54.0, 29.1 (t, $J_{C-F} = 21.6$ Hz), 21.6, 18.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -85.4, -118.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₂₆ F₅INO₃S⁺: 630.0593; found: 630.0595.

Compound **1r** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.4 Hz, 2H), 7.32 – 7.27 (m, 7H), 6.57 (s, 1H), 5.39 (t, J = 6.8 Hz, 1H), 4.45 (s, 2H), 4.05 (d, J = 6.8 Hz, 2H), 3.59 (s, 2H), 2.46 (s, 3H), 1.60 (s, 3H), 0.64 – 0.57 (m, 1H), 0.39 – 0.36 (m, 2H), 0.01 – -0.03 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 143.6, 138.4, 137.2, 135.7, 129.7, 128.4, 128.3, 127.6, 127.4, 127.2, 82.9, 59.0, 54.2, 54.1, 32.5, 21.6, 10.2, 4.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₂₉INO₃S⁺: 538.0907; found: 538.0907.

Compound **1s** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.4 Hz, 2H), 7.33 – 7.28 (m, 7H), 6.58 (s, 1H), 5.35 (t, J = 6.8 Hz, 1H), 4.46 (s, 2H), 4.07 (d, J = 6.8 Hz, 2H), 3.51 (s, 2H), 2.47 (s, 3H), 1.69 (q, J = 7.6 Hz, 2H), 1.53 (s, 1H), 0.81 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 143.5, 139.1, 138.3, 135.8, 129.7, 128.4, 128.3, 127.6, 127.21, 127.0, 82.8, 59.0, 54.0, 53.4, 21.6, 21.1, 13.3. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₇INO₃S⁺: 512.0751; found: 512.0750.

Compound **1t** was prepared according to the general procedure. Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 2H), 7.35 – 7.19 (m, 10 H), 7.06 (d, J = 6.8 Hz, 2H), 6.52 (s, 1H), 5.56 (t, J = 6.8 Hz, 1H), 4.45 (s, 2H), 4.19 (d, J = 6.8 Hz, 2H), 3.45 (s, 2H), 3.06 (s, 2H), 2.45 (s, 3H), 1.68 (s, 1H). ¹³**C** NMR (100 MHz, CDCl₃) δ 146.1, 143.6, 138.6, 138.3, 135.4, 135.3, 129.7, 128.6, 128.6, 128.5, 128.4, 128.3, 127.6, 127.2, 126.3, 83.0, 59.3, 54.2, 53.7, 34.1, 21.6. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₉INO₃S⁺: 574.0907; found: 574.0905.

Compound **1u** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.4 Hz, 2H), 7.34 – 7.26 (m, 8H), 7.21 (d, J = 8.0 Hz, 2H), 7.01 – 6.99 (m, 2H), 6.68 (s, 1H), 5.64 (t, J = 6.8 Hz, 1H), 4.56 (s, 2H), 3.94 (d, J = 6.8 Hz, 2H), 3.87 (s, 2H), 2.44 (s, 3H), 1.62 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 143.3, 138.4, 137.4, 137.3, 136.3, 129.6, 129.1, 128.5, 128.4, 128.3, 127.6, 127.4, 127.1, 83.8, 60.0, 53.5, 53.4, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₇INO₃S⁺: 560.0751; found: 560.0751.

Compound **1v** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.0 Hz, 2H), 7.32 – 7.25 (m, 7H), 6.61 (s, 1H), 5.67 (dt, J = 15.2, 5.2 Hz, 1H), 5.41 – 5.34 (m, 1H), 4.46 (s, 2H), 3.99 (d, J = 5.2 Hz, 2H), 3.53 (d, J = 6.4 Hz, 2H), 2.42 (s, 3H), 2.09 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.5, 143.6, 138.5, 136.1, 134.1, 129.7, 128.5, 128.4, 127.5, 127.2, 125.1, 83.0, 62.7, 52.6, 49.0, 21.6. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₃INO₃S⁺: 484.0438; found: 484.0439.

Compound **1w** was prepared according to the general procedure. Pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.27 (dt, J = 7.6, 1.6 Hz, 1H), 6.09 – 6.04 (m, 1H), 5.30 (d, J = 8.4 Hz, 1H), 4.61 – 4.54 (m, 1H), 3.76 (dd, J = 5.6, 1.6 Hz, 2H), 3.65 (q, J = 14.4 Hz, 2H), 2.42 (s, 3H), 2.16 – 2.02 (m, 2H), 1.69 (s, 1H), 1.21 (d, J = 6.4 Hz, 3H), 1.00 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.7, 137.0, 136.5, 136.3, 133.8, 129.9, 127.3, 84.1, 64.2, 53.2, 51.6, 23.7, 21.6, 21.2, 13.4. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₅INO₃S⁺: 450.0594; found: 450.0596.

Compound **1x** was prepared according to the general procedure. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 6.77 (dd, J = 8.0, 1.6 Hz, 1H), 6.72 – 6.70 (m, 2H), 6.45 (s, 1H), 5.95 (s, 2H), 5.25 (dd, J = 8.4, 1.2 Hz, 1H), 4.51– 4.44 (m, 1H), 4.40– 4.30 (m, 2H), 3.46 (q, J = 15.2 Hz, 2H), 2.43 (s, 3H), 1.74 (s, 1H), 1.36 (d, J = 0.8 Hz, 3H), 1.18 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 147.5, 145.8, 143.5, 135.9, 132.4, 132.3, 132.2, 129.7, 127.5, 121.2, 108.1, 107.6, 101.3, 81.7, 64.5, 55.9, 54.0, 23.2, 21.6, 14.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₇INO₅S⁺: 556.0649; found: 556.0647.

Compound **1y** was prepared according to the general procedure. Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 6.01 (s, 1H), 5.26 (d, J = 8.4 Hz, 1H), 4.51 – 4.45 (m, 1H), 3.87 (q, J = 14.8 Hz, 2H), 3.57 – 3.49 (m, 2H), 2.40 (s, 3H), 2.18 – 2.14 (m, 2H), 1.89 (s, 1H), 1.60 (s, 3H), 1.50 – 1.40 (m, 1H), 1.29 – 1.23 (m, 2H), 1.14 (d, J = 6.4 Hz, 3H), 0.85 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 143.6, 136.2, 132.6, 131.6, 129.8, 127.4, 78.2, 64.4, 56.2, 54.7, 36.8, 32.8, 27.7, 23.0, 22.5, 22.4, 21.6, 14.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₃₃INO₃S⁺: 506.1220; found: 506.1220.

Compound **1z** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.4 Hz, 2H), 7.30 – 7.28 (m, 2H), 6.22 (d, J = 1.6 Hz, 1H), 5.83 (d, J = 1.6 Hz, 1H), 5.29 – 5.27 (m, 1H), 4.54 – 4.47 (m, 1H), 3.99 – 3.90 (m, 2H), 3.74 (d, J = 14.4 Hz, 1H), 3.63 (d, J = 14.4 Hz, 1H), 2.41 (s, 3H), 2.07 (s, 1H), 1.57 (d, J = 0.8 Hz, 3H), 1.18 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 136.8, 134.6, 130.7, 129.7, 127.8, 127.4, 104.6, 64.4, 58.3, 55.6, 23.2, 21.6, 14.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₃INO₃S⁺: 436.0438; found: 436.0439.

Compound **1aa** was prepared according to the general procedure. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 6.21 (d, J = 1.6 Hz, 1H), 5.83 (s, 1H), 5.48 (t, J = 6.4 Hz, 1H), 4.12 (d, J = 6.4 Hz, 2H), 3.97 (s, 2H), 3.74 (s, 2H), 2.41 (s, 3H), 1.72 (s, 1H), 1.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 137.0, 132.7, 129.7, 129.2, 127.9, 127.4, 104.4, 59.1, 58.2, 55.4, 21.6, 14.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₂₁INO₃S⁺: 422.0281; found: 422.0281.

Compound **1ab** was prepared according to the general procedure. Colorless oil. ¹H **NMR** (400 MHz, CDCl₃) δ 7.45 (d, J = 8.0 Hz, 2H), 7.21 – 7.14 (m, 7H), 6.59 (s, 1H), 5.21 (t, J = 6.4 Hz, 1H), 4.42 (s, 2H), 3.96 (d, J = 6.8 Hz, 2H), 2.92 – 2.88 (m, 2H), 2.32 (s, 3H), 2.04 – 2.00 (m, 2H), 1.78 (s, 1H), 1.48 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 146.4, 143.4, 138.2, 136.2, 135.8, 129.7, 128.6, 128.50, 127.4, 127.0, 125.0, 83.3, 59.1, 52.8, 46.4, 37.7, 21.6, 16.4. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₇INO₃S⁺: 512.0751; found: 512.0753.

Compound **1ac** was prepared according to the general procedure. Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.69 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.08 (d, J = 0.8 Hz, 1H), 5.40 – 5.37 (m, 1H), 4.09 (d, J = 6.8 Hz, 2H), 3.93 (s, 2H), 3.15 – 3.11 (m, 2H), 2.42 (s, 3H), 2.20 – 2.16 (m, 2H), 1.90 (d, J = 1.2 Hz, 3H), 1.62 (s, 3H), 1.58 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 143.5, 143.0, 136.8, 135.8, 129.8, 127.2, 126.0, 77.7, 59.2, 55.1, 47.2, 38.0, 22.0, 21.6, 16.4. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₅INO₃S⁺: 450.0594; found: 450.0594.

Compound 1ad was prepared according to the general procedure. Colorless oil. ¹H

NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 6.16 (d, J = 1.6 Hz, 1H), 5.76 (s, 1H), 5.22 (t, J = 7.2 Hz, 1H), 3.87 (s, 2H), 3.64 (s, 2H), 3.51 (t, J = 6.4 Hz, 2H), 2.34 (s, 3H), 2.20 – 2.15 (m, 2H), 2.11 (s, 1H), 1.45 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 143.6, 136.8, 132.0, 129.7, 127.5, 127.3, 126.9, 104.8, 61.9, 58.1, 55.9, 31.5, 21.6, 14.5. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₇INO₃S⁺: 476.0751; found: 476.0753.

Compound **1ae** was prepared according to the general procedure. Colorless oil. ¹H **NMR** (400 MHz, CDCl₃) δ 7.72 (d, J = 8.4 Hz, 3H), 7.48 (dd, J = 8.0, 1.2 Hz, 1H), 7.34 – 7.27 (m, 3H), 6.92 (td, J = 7.6, 1.6 Hz, 1H), 5.31 (td, J = 6.4, 0.8 Hz, 1H), 4.32 (s, 2H), 3.89 (d, J = 6.4 Hz, 2H), 3.67 (s, 2H), 2.43 (s, 3H), 1.48 (s, 1H), 1.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 139.2, 138.5, 136.4, 132.9, 129.9, 129.6, 129.2, 128.8, 128.4, 127.3, 98.6, 59.0, 56. 9, 56.7, 21.6, 14.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₃INO₃S⁺: 472.0438; found: 472.0436.

Compound **1af** was prepared according to the general procedure. Colorless oil. ¹H **NMR** (400 MHz, CDCl₃) δ 7.70 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.12 (s, 1H), 6.71 (dd, J = 8.0, 1.6 Hz, 1H), 5.30 (t, J = 6.0 Hz, 1H), 4.28 (s, 2H), 3.88 (d, J = 6.8 Hz, 2H), 3.65 (s, 2H), 2.41 (s, 3H), 2.19 (s, 3H), 1.62 (s, 1H), 1.43 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 143.6, 138.9, 138.4, 137.9, 136.7, 132.8, 130.3, 130.2, 129.9, 128.9, 127.2, 94.6, 58.9, 56.6, 56.4, 21.6, 21.0, 14.4. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₅INO₃S⁺: 486.0594; found: 486.0592.

Compound **1ag** was prepared according to the general procedure. Colorless oil. ¹H **NMR** (400 MHz, CDCl₃) δ 7.69 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.28 – 7.27 (m, 1H), 6.88 (dd, J = 8.4, 2.4 Hz, 1H), 5.34 – 5.31 (m, 1H), 4.25 (s, 2H), 3.90 (d, J = 6.4 Hz, 2H), 3.66 (s, 2H), 2.41 (s, 3H), 1.98 (s, 1H), 1.45 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 143.9, 140.4, 140.2, 136.2, 134.8, 132.2, 130.0, 129.5, 129.2, 127.2, 95.2, 58.9, 57.0, 56.2, 21.6, 14.4. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₂ClINO₃S⁺: 506.0048; found: 506.0050.

Compound (*E*)-1ah was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.37 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.26 (td, *J* = 7.6, 1.2 Hz, 1H), 6.89 (td, *J* = 7.6, 1.6 Hz, 1H), 5.64 – 5.60 (m, 1H), 4.38 (s, 2H), 4.11 (d, *J* = 7.6 Hz, 2H), 3.90 (s, 2H), 2.71 (s, 1H), 1.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 139.2, 134.9, 129.3, 128.9, 128.3, 126.8, 98.0, 76.0, 75.8, 58.8, 14.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₆INO₂⁺: 319.0189; found: 319.0189.

Compound (*Z*)-1ah was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.42 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.34 (td, *J* = 7.6, 1.2 Hz, 1H), 6.98 (td, *J* = 7.6, 1.6 Hz, 1H), 5.67 – 5.64 (m, 1H), 4.46 (s, 2H), 4.15 (dd, *J* = 7.2, 0.8 Hz, 2H), 4.09 (s, 2H), 2.00 (s, 1H), 1.85 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 139.3, 135.9, 129.4, 128.9, 128.4, 128.3, 98.0, 76.1, 69.2, 58.6, 22.1. **HRMS** (ESI) m/z: $[M+H]^+$ calcd for $C_{12}H_{16}INO_2^+$: 319.0189; found: 319.0188.

Compound **1ah'** was prepared according to the general procedure. Colorless oil. ¹H **NMR** (400 MHz, CDCl₃) δ 7.22 – 7.16 (m, 2H), 7.13 – 7.07 (m, 3H), 6.00 (s, 1H), 5.62 – 5.59 (m, 1H), 4.12 (d, J = 6.8 Hz, 2H), 4.04 (s, 2H), 3.78 (s, 2H), 2.71 – 2.67 (m, 2H), 2.51 – 2.48 (m, 2H), 1.87 (s, 1H), 1.63 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 147.4, 141.2, 135.2, 128.5, 128.4, 126.7, 126.1, 77.8, 75.6, 73.5, 59.0, 37.6, 34.3, 14.2. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₂IO₂⁺: 373.0659; found: 373.0657.

Compound **1ai** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.4 Hz, 2H), 7.20 – 7.19 (m, 7H), 6.46 (s, 1H), 5.14 (t, J = 6.8 Hz, 1H), 4.33 (s, 2H), 3.49 (t, J = 6.4 Hz, 2H), 3.35 (s, 2H), 2.35 (s, 3H), 2.12 (q, J = 6.4 Hz, 2H), 1.90 (s, 1H), 1.15 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 143.5, 138.4, 135.6, 133.3, 129.7, 128.4, 128.3, 127.6, 127.3, 124.6, 82.6, 62.0, 56.5, 54.1, 31.5, 21.6, 14.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₇INO₃S⁺: 512.0751; found: 512.0753.

Compound **1aj** was prepared according to the general procedure. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.99 (d, J = 1.2 Hz, 1H), 5.30 – 5.26 (m, 1H), 3.83 (s, 2H), 3.61 – 3.57 (m, 4H), 2.42 (s, 3H), 2.24 (q, J = 6.4 Hz, 2H), 1.88 (d, J = 1.2 Hz, 3H), 1.70 (s, 1H), 1.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 143.0, 136.2, 132.8, 129.8, 127.4, 125.6, 77.42, 76.9, 62.0, 57.0, 55.6, 31.6, 22.0, 21.6. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₅INO₃S⁺: 450.0594; found: 450.0592.

Compound **1ak** was prepared according to the general procedure. Colorless oil. ¹H **NMR** (400 MHz, CDCl₃) δ 7.67 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 6.06 – 5.98 (m, 1H), 5.74 – 5.64 (m, 1H), 5.27 (t, J = 6.8 Hz, 1H), 5.00 – 4.93 (m, 2H), 3.84 (s, 2H), 3.58 – 3.54 (m, 4H), 2.40 (s, 3H), 2.31 – 2.12 (m, 6H), 1.97 (s, 1H), 1.56 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 145.9, 143.6, 137.2, 136.0, 132.8, 129.8, 127.4, 125.2, 115.5, 78.5, 61.9, 57.0, 54.6, 34.2, 31.7, 31.5, 21.6, 14.5. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₉INO₃S⁺: 490.0907; found: 490.0908.

Compound **1al** was prepared according to the general procedure. Colorless oil. ¹H **NMR** (400 MHz, CDCl₃) δ 7.71 (d, J = 8.4 Hz, 3H), 7.51 (dd, J = 8.0, 1.2 Hz, 1H), 7.33 – 7.27 (m, 3H), 6.91 (td, J = 7.6, 1.6 Hz, 1H), 5.14 – 5.11 (m, 1H), 4.28 (s, 2H), 3.66 (s, 2H), 3.39 (t, J = 6.4 Hz, 2H), 2.42 (s, 3H), 2.07 – 2.02 (m, 2H), 1.70 (s, 1H), 1.40 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 143.6, 139.4, 138.6, 136.4, 132.5, 129.9, 129.4, 129.1, 128.4, 127.5, 126.1, 98.3, 61.8, 57.5, 56.8, 31.5, 21.6, 14.5. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₅INO₃S⁺: 486.0594; found: 486.0594.

4. General Reaction Procedures

In an oven-dried 25 mL Schlenk tube, the mixture of vinyl/aryl iodide–alkenol substrates (*E*)-1 (0.2 mmol), $Pd_2(dba)_3$ (0.02 mmol, 18.3 mg), bpy (0.04 mmol, 6.2 mg) and K₂CO₃ (0.6 mmol, 82.9 mg) were dissolved in DMF (3.0 mL). The tube was stirred at 80 °C in oil bath for 6 h. Upon completion, the mixture was cooled to room temperature and was washed with water (20 mL), brine (20 mL). The resulting mixture was extracted with EtOAc (2 × 20 mL) and the organic phase was dried with Na₂SO₄. The solvents were removed under reduced pressure and the crude reaction mixture was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to afford the product **2**.

Compound **2a** was obtained in 92% yield (68.0 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.83 (t, J = 2.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 2H), 7.37 – 7.28 (m, 7H), 6.02 (s, 1H), 4.14 (d, J = 15.6 Hz, 1H), 3.67 (dd, J = 15.6, 1.6 Hz, 1H), 3.42 (d, J = 11.4 Hz, 1H), 2.76 (dd, J = 16.0, 2.4 Hz, 1H), 2.68 (d, J = 11.4 Hz, 1H), 2.61 (dd, J = 16.0, 2.0 Hz, 1H), 2.44 (s, 3H), 1.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.2, 144.0, 137.9, 132.9, 132.9, 130.0, 129.9, 128.6, 128.2, 127.7, 125.5, 53.2, 53.0, 46.5, 36.2, 24.7, 21.6. The spectroscopic data is consistent with the reported values in the literature (*ACS Catal.* **2025**, *15*, 72–80).

Compound **2b** was obtained in 88% yield (70.3 mg). Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 9.82 (t, J = 2.0 Hz, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.24 – 7.20 (m, 2H), 6.86 – 6.83 (m, 2H), 5.90 (s, 1H), 4.10 (dd, J = 15.6, 1.2 Hz, 1H), 3.80 (s, 3H), 3.60 (dd, J = 15.6, 1.6 Hz, 1H), 3.37 (d, J = 11.2 Hz, 1H), 2.74 (dd, J = 15.6, 2.4 Hz, 1H), 2.64 – 2.56 (m, 2H), 2.43 (s, 3H), 1.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.3, 159.6, 143.9, 132.9, 132.3, 130.3, 129.9, 128.4, 127.7, 126.6, 114.0, 55.4, 53.2, 53.1, 46.5, 36.2, 24.7, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₆NO₄S⁺: 400.1577; found: 400.1581.

Compound **2c** was obtained in 95% yield (72.9 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.82 (t, J = 2.4 Hz, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 5.96 (s, 1H), 4.11 (dd, J = 15.6, 1.2 Hz, 1H), 3.62 (dd, J = 15.6, 2.0 Hz, 1H), 3.38 (d, J = 11.2 Hz, 1H), 2.75 (dd, J = 15.6, 2.8 Hz, 1H), 2.64 – 2.57 (m, 2H), 2.43 (s, 3H), 2.33 (s, 3H), 1.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.3, 143.9, 138.1, 135.0, 133.0, 132.8, 129.9, 129.3, 129.1, 127.7, 125.3, 53.2, 53.1, 46.5, 36.2, 24.7, 21.6, 21.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₆NO₃S⁺: 384.1628; found: 384.1626.

Compound **2d** was obtained in 93% yield (79.2 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.82 (t, J = 2.0 Hz, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.36-7.33 (m, 4H), 7.23 (d, J = 8.4 Hz, 2H), 5.97 (s, 1H), 4.13 (d, J = 15.6 Hz, 1H), 3.64 (dd, J = 15.6, 1.6 Hz, 1H), 3.38 (d, J = 11.2 Hz, 1H), 2.74 (dd, J = 16.0, 2.4 Hz, 1H), 2.64 (d, J = 11.2 Hz, 1H), 2.59 (dd, J = 15.6, 2.0 Hz, 1H), 2.43 (s, 3H), 1.31 (s, 9H), 1.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.2, 151.4, 143.9, 134.9, 133.0, 132.7, 129.9, 129.3, 127.7, 125.5,

125.2, 53.2, 53.1, 46.5, 36.2, 34.6, 31.2, 24.7, 21.6. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₅H₃₂NO₃S⁺: 426.2097; found: 426.2095.

Compound **2e** was obtained in 92% yield (71.3 mg). Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 9.75 (t, J = 2.0 Hz, 1H), 7.64 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.20 – 7.16 (m, 2H), 6.97 – 6.91 (m, 2H), 5.88 (s, 1H), 4.01 (dd, J = 15.6, 1.2 Hz, 1H), 3.53 (dd, J = 15.6, 2.0 Hz, 1H), 3.32 (d, J = 11.6 Hz, 1H), 2.69 (dd, J = 16.0, 2.0 Hz, 1H), 2.58-2.51 (m, 2H), 2.36 (s, 3H), 1.17 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 201.0, 162.6 (d, $J_{C-F} = 248.5$ Hz), 144.0, 134.0 (d, $J_{C-F} = 3.0$ Hz), 133.0, 132.0, 130.0, 129.9, 127.7, 127.2 (d, $J_{C-F} = 8.1$ Hz), 115.5 (d, $J_{C-F} = 22.2$ Hz), 53.1, 53.0, 46.5, 36.2, 24.6, 21.6. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.7. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₃FNO₃S⁺: 388.1377; found: 388.1378.

Compound **2f** was obtained in 86% yield (68.7 mg). Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 9.82 (t, *J* = 2.0 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 1H), 6.88-6.86 (m, 1H), 6.84 – 6.80 (m, 2H), 6.00 (s, 1H), 4.10 (dd, *J* = 16.0, 1.2 Hz, 1H), 3.81 (s, 3H), 3.61 (dd, *J* = 16.0, 1.6 Hz, 1H), 3.39 (d, *J* = 11.6 Hz, 1H), 2.75 (dd, *J* = 16.0, 2.4 Hz, 1H), 2.65-2.58 (m, 2H), 2.43 (s, 3H), 1.23 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 201.1, 159.7, 143.9, 139.4, 132.9, 132.8, 130.2, 129.9, 129.6, 127.7, 118.0, 113.1, 111.7, 55.4, 53.2, 53.0, 46.6, 36.2, 24.6, 21.6. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₆NO₄S⁺: 400.1577; found: 400.1577.

Compound **2g** was obtained in 90% yield (69.0 mg). Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 9.83 (t, J = 2.0 Hz, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.21 (t, J = 8.0 Hz, 1H), 7.09 (dd, J = 11.6, 8.0 Hz, 3H), 5.97 (s, 1H), 4.12 (d, J = 16.0 Hz, 1H), 3.64 (dd, J = 16.0, 1.6 Hz, 1H), 3.38 (d, J = 11.6 Hz, 1H), 2.75 (dd, J = 16.0, 2.4 Hz, 1H), 2.64 (d, J = 11.6 Hz, 1H), 2.59 (dd, J = 16.0, 2.0 Hz, 1H), 2.43 (s, 3H), 2.35 (s, 3H), 1.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.1, 143.9, 138.3, 137.9, 133.1 (2C), 129.9, 129.8, 128.9, 128.5, 127.7, 126.2, 122.6, 53.2, 53.1, 46.6, 36.2, 24.6, 21.5, 21.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₆NO₃S⁺: 384.1628; found: 384.1629.

Compound **2h** was obtained in 89% yield (68.3 mg). Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 9.86 (t, J = 2.4 Hz, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.22 – 7.11 (m, 3H), 7.01 (d, J = 7.2 Hz, 1H), 5.55 (s, 1H), 3.83 (dd, J = 16.0, 1.2 Hz, 1H), 3.44 – 3.40 (m, 2H), 2.77 – 2.68 (m, 2H), 2.60 (dd, J = 15.6, 2.0 Hz, 1H), 2.43 (s, 3H), 2.23 (s, 3H), 1.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.2, 143.9, 138.6, 135.5, 134.3, 133.0, 131.8, 130.4, 129.9, 128.6, 127.9, 127.7, 125.8, 53.2, 53.1, 48.2, 36.1, 24.8, 21.6, 19.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₆NO₃S⁺: 384.1628; found: 384.1627.

Compound **2i** was obtained in 88% yield (70.0 mg). Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 9.82 (t, J = 2.0 Hz, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 6.94 – 6.89 (m, 3H), 5.94 (t, J = 2.0 Hz, 1H), 4.11 (dd, J = 15.6, 1.2 Hz, 1H), 3.61 (dd, J = 15.6, 2.0 Hz, 1H), 3.37 (d, J = 11.6 Hz, 1H), 2.75 (dd, J = 16.0, 2.4 Hz, 1H), 2.64 – 2.55 (m, 2H), 2.43 (s, 3H), 2.30 (s, 6H), 1.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.3, 143.9, 138.2, 137.9, 133.2, 133.0, 129.9, 129.8, 129.6, 127.7, 123.4, 53.2, 53.1, 46.6, 36.2, 24.7, 21.6, 21.3. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₈NO₃S⁺: 398.1784; found: 398.1785.

Compound **2j** was obtained in 95% yield (58.4 mg). Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 9.76 (t, J = 2.4 Hz, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 5.36 (s, 1H), 3.56 (d, J = 16.0 Hz, 1H), 3.26 (d, J = 11.6 Hz, 1H), 3.15 (d, J = 16.0 Hz, 1H), 2.60 (dd, J = 15.6, 2.4 Hz, 1H), 2.50 (d, J = 11.6 Hz, 1H), 2.47 – 2.41 (m, 4H), 1.63 (s, 3H), 1.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.7, 143.8, 132.9, 129.8, 129.6, 127.8, 127.6, 53.3, 53.1, 48.3, 35.8, 24.8, 21.6, 20.4.**HRMS** (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₂NO₃S⁺: 308.1315; found: 308.1314.

Compound **2k** was obtained in 94% yield (60.4 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (t, J = 2.4 Hz, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 5.35 (s, 1H), 3.60 (d, J = 15.6 Hz, 1H), 3.26 (d, J = 11.6 Hz, 1H), 3.19 (d, J = 15.6 Hz,

1H), 2.60 (dd, J = 15.6, 2.6 Hz, 1H), 2.51 (d, J = 11.6 Hz, 1H), 2.48 – 2.41 (m, 4H), 1.94 (q, J = 7.6 Hz, 2H), 1.11 (s, 3H), 0.97 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 201.7, 143.8, 135.2, 133.0, 129.8, 127.7, 126.0, 53.5, 53.2, 47.3, 35.6, 27.1, 24.9, 21.6, 12.1. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₄NO₃S⁺: 322.1471; found: 322.1470.

Compound **21** was obtained in 92% yield (66.9 mg). Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 9.76 (t, J = 2.4 Hz, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 5.35 (s, 1H), 3.59 (d, J = 15.6 Hz, 1H), 3.25 (d, J = 11.2 Hz, 1H), 3.19 (d, J = 16.0 Hz, 1H), 2.60 (dd, J = 15.6, 2.4 Hz, 1H), 2.51 (d, J = 11.2 Hz, 1H), 2.46 – 2.43 (m, 4H), 1.93 – 1.89 (m, 2H), 1.52 – 1.42 (m, 1H), 1.26 – 1.20 (m, 2H), 1.10 (s, 3H), 0.85 (d, J = 6.8 Hz, 6H). ¹³C **NMR** (100 MHz, CDCl₃) δ 201.6, 143.7, 134.1, 133.1, 129.8, 127.7, 126.8, 53.5, 53.2, 47.3, 36.8, 35.7, 32.3, 27.8, 24.9, 22.5, 22.4, 21.5. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₀H₃₀NO₃S⁺: 364.1941; found: 364.1942.

Compound **2m** was obtained in 92% yield (73.1 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.61 (t, J = 2.4 Hz, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 7.6 Hz, 2H), 7.18 – 7.15 (m, 1H), 7.09 (d, J = 7.2 Hz, 2H), 5.32 (s, 1H), 3.63 (d, J = 16.0 Hz, 1H), 3.24 – 3.17 (m, 2H), 2.75 – 2.63 (m, 2H), 2.56 (dd, J = 15.6, 2.4 Hz, 1H), 2.48 (d, J = 11.2 Hz, 1H), 2.45 (s, 3H), 2.40 (dd, J = 15.6, 2.4 Hz, 1H), 2.24 (t, J = 8.0 Hz, 2H), 1.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.7, 143.8, 140.9, 133.0, 132.7, 129.8, 128.4 (2C), 128.2, 127.7, 126.1, 53.4, 53.1, 47.2, 36.0, 35.7, 34.1, 24.7, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₈NO₃S⁺: 398.1784; found: 398.1785.

Compound **2n** was obtained in 88% yield (66.1 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (t, J = 2.4 Hz, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 5.34 (s, 1H), 3.63 (d, J = 15.6 Hz, 1H), 3.26 – 3.19 (m, 2H), 2.59 (dd, J = 15.6, 2.8 Hz, 1H), 2.50 (d, J = 11.6 Hz, 1H), 2.46 – 2.41 (m, 4H), 1.78 – 1.62 (m, 6H), 1.27 – 1.07 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 201.8, 143.7, 138.9, 133.0, 129.8, 127.7, 125.4, 53.6, 53.3, 46.3, 42.9, 35.6, 32.1, 32.0, 26.5, 26.1, 25.1, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₃₀NO₃S⁺: 376.1941; found: 376.1943.

Compound **20** was obtained in 86% yield (59.8 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (t, J = 2.4 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 5.77 – 5.67 (m, 1H), 5.39 (s, 1H), 5.00 – 4.94 (m, 2H), 3.60 (d, J = 16.0 Hz, 1H), 3.26 (d, J = 11.2 Hz, 1H), 3.20 (d, J = 16.0 Hz, 1H), 2.61 (dd, J = 15.6, 2.4 Hz, 1H), 2.52 (d, J = 11.2 Hz, 1H), 2.48 – 2.42 (m, 4H), 2.16 – 2.11 (m, 2H), 2.04 – 2.00 (m, 2H), 1.11 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.6, 143.8, 137.3, 133.0, 132.9, 129.8, 127.7 (2C), 115.3, 53.4, 53.1, 47.3, 35.7, 33.5, 31.8, 24.9, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₆NO₃S⁺: 348.1628; found: 348.1628.

Compound **2p** was obtained in 88% yield (82.3 mg). Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 9.81 (t, J = 2.4 Hz, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 6.94 – 6.89 (m, 3H), 5.96 (s, 1H), 4.06 (dd, J = 15.6, 1.2 Hz, 1H), 3.65 (dd, J = 15.6,

1.6 Hz, 1H), 3.28 (d, J = 11.2 Hz, 1H), 2.75 (d, J = 11.2 Hz, 1H), 2.70 (dd, J = 15.6, 2.8 Hz, 1H), 2.59 (dd, J = 15.6, 2.4 Hz, 1H), 2.44 (s, 3H), 2.31 (s, 6H), 1.62 – 1.53 (m, 2H), 1.26 (s, 8H), 0.87 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.6, 143.9, 138.2, 138.0, 133.6, 133.0, 129.9, 129.8, 128.9, 127.7, 123.4, 51.4, 51.1, 46.8, 39.2, 38.1, 31.7, 29.8, 23.8, 22.6, 21.6, 21.3, 14.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₃₈NO₃S⁺: 468.2567; found: 468.2568.

Compound **2q** was obtained in 87% yield (87.3 mg). Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (t, J = 2.0 Hz, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.39 – 7.27 (m, 7H), 5.96 (s, 1H), 4.03 (dd, J = 16.0, 1.2 Hz, 1H), 3.80 (dd, J = 16.0, 1.6 Hz, 1H), 3.25 (d, J = 11.6 Hz, 1H), 2.89 (d, J = 11.6 Hz, 1H), 2.77 (dd, J = 16.6, 2.0 Hz, 1H), 2.67 (dd, J = 16.6, 1.6 Hz, 1H), 2.44 (s, 3H), 2.13 – 2.03 (m, 2H), 1.99 – 1.92 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 144.2, 137.5, 135.4, 132.8, 130.0, 128.8, 128.6, 127.7, 127.0, 125.5, 50.9, 50.6, 46.6, 38.3, 27.0 (d, $J_{C-F} = 233.3$ Hz), 25.8 (d, $J_{C-F} = 43.4$ Hz), 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -85.2, -118.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₂₅F₅NO₃S⁺: 502.1470; found: 502.1471.

Compound **2r** was obtained in 85% yield (69.6 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.83 (t, J = 2.0 Hz, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.36 – 7.28 (m, 7H), 6.12 (s, 1H), 4.08 (dd, J = 15.6, 1.2 Hz, 1H), 3.68 (dd, J = 15.6, 2.0 Hz, 1H), 3.36 (d, J = 11.6 Hz, 1H), 2.90 (d, J = 11.6 Hz, 1H), 2.84 (dd, J = 16.0, 2.4 Hz, 1H), 2.75 (dd, J = 16.0, 2.4 Hz, 1H), 2.44 (s, 3H), 1.60 – 1.51 (m, 2H), 0.71 – 0.61 (m, 1H), 0.54 – 0.46 (m, 2H), 0.13 – 0.03 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 201.6, 144.0, 138.0,

133.1, 132.8, 129.9, 129.4, 128.6, 128.2, 127.7, 125.5, 51.7, 51.1, 46.7, 42.8, 40.4, 21.6,
6.0, 5.3, 4.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₂₈NO₃S⁺: 410.1784; found:
410.1784.

Compound **2s** was obtained in 91% yield (69.8 mg). Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 9.82 (t, J = 2.4 Hz, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.37 – 7.27 (m, 7H), 6.02 (s, 1H), 4.08 (dd, J = 15.6, 1.2 Hz, 1H), 3.68 (dd, J = 15.6, 2.0 Hz, 1H), 3.30 (d, J = 11.6 Hz, 1H), 2.78 (d, J = 11.6 Hz, 1H), 2.71 (dd, J = 16.0, 2.4 Hz, 1H), 2.61 (dd, J = 16.0, 2.4 Hz, 1H), 2.44 (s, 3H), 1.71 – 1.59 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.4, 143.9, 138.0, 133.6, 132.9, 129.9, 129.0, 128.6, 128.2, 127.7, 125.5, 51.0, 50.5, 46.7, 39.4, 30.5, 21.6, 8.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₆NO₃S⁺: 384.1628; found: 384.1627.

Compound **2t** was obtained in 89% yield (79.3 mg). Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 9.66 (t, J = 2.0 Hz, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.29 – 7.19 (m, 10H), 7.11 (d, J = 7.2 Hz, 2H), 5.97 (s, 1H), 3.86 (dd, J = 16.0, 1.6 Hz, 1H), 3.89 (dd, J = 16.0, 1.6 Hz, 1H), 3.04 – 2.98 (m, 2H), 2.94 (d, J = 13.6 Hz, 1H), 2.86 (d, J = 13.6 Hz, 1H), 2.56 – 2.46 (m, 2H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.4, 144.0, 137.9, 136.2, 133.5, 132.7, 130.6, 129.9, 128.7 (2C), 128.4, 128.2, 127.7, 126.9, 125.5, 51.4, 50.1, 46.8, 43.7, 40.0, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₈NO₃S⁺: 446.1784; found: 446.1785.

Compound 2u was obtained in 74% yield (63.9 mg). Colorless oil. ¹H NMR (400 MHz,

CDCl₃) δ 9.75 (t, J = 2.0 Hz, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.38 – 7.28 (m, 12H), 6.48 (s, 1H), 4.34 (d, J = 16.0 Hz, 1H), 3.66 – 3.61 (m, 2H), 3.31 – 3.22 (m, 2H), 2.81 (d, J = 11.6 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.5, 144.0, 142.6, 137.8, 134.5, 132.9, 129.9, 129.0, 128.8, 128.4, 128.3, 127.7, 127.4, 126.5, 125.6, 54.9, 52.3, 46.6, 43.1, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₆NO₃S⁺: 432.1628; found: 432.1628.

Compound **2v** was obtained in 86% yield (61.1 mg). Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 7.70 (d, J = 8.0 Hz, 2H), 7.34 – 7.27 (m, 7H), 6.03 – 6.02 (m, 1H), 4.15 (d, J = 16.0 Hz, 1H), 3.67 (d, J = 16.0 Hz, 1H), 3.24 (dd, J = 12.8, 5.2 Hz, 1H), 3.04 – 3.01 (m, 2H), 2.82 (dd, J = 18.0, 6.8 Hz, 1H), 2.68 (dd, J = 18.0, 7.0 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.5, 143.8, 138.1, 134.5, 133.2, 129.8, 128.6, 128.1, 127.7, 125.4, 125.1, 47.2, 46.9, 46.6, 30.0, 21.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₂NO₃S⁺: 356.1315; found: 356.1317.

Compound **2w** was obtained in 82% yield (52.7 mg). White solid (mp 63–65 °C). ¹**H NMR** (400 MHz, CDCl₃) δ 7.59 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 5.69 – 5.66 (m, 1H), 5.54 – 5.50 (m, 1H), 3.70 – 3.64 (m, 1H), 3.25 (d, J = 11.6 Hz, 1H), 3.19 (dt, J = 16.0, 2.4 Hz, 1H), 2.66 (d, J = 16.8 Hz, 1H), 2.55 (d, J = 16.8 Hz, 1H), 2.48 (d, J = 11.6 Hz, 1H), 2.36 (s, 3H), 2.06 (s, 3H), 1.57 – 1.48 (m, 2H), 0.73 (t, J = 7.6 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 207.6, 143.6, 133.1 (2C), 129.7, 127.6, 121.5, 51.1, 48.9, 45.0, 38.7, 31.8, 28.8, 21.5, 8.2. The spectroscopic data is consistent with the reported values in the literature (*ACS Catal.* **2025**, *15*, 72–80).

Compound **2x** was obtained in 84% yield (71.8 mg). Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 6.78 – 6.73 (m, 3H), 5.96 – 5.94 (m, 3H), 4.09 (d, J = 15.6 Hz, 1H), 3.48 (dd, J = 15.6, 2.0 Hz, 1H), 3.43 (d, J = 11.6 Hz, 1H), 2.83 (d, J = 16.8 Hz, 1H), 2.63 (d, J = 16.8 Hz, 1H), 2.47 (d, J = 11.6 Hz, 1H), 2.42 (s, 3H), 2.13 (s, 3H), 1.20 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 207.4, 147.9, 147.4, 143.8, 133.0, 132.4, 131.3, 130.1, 129.8, 127.6, 118.9, 108.2, 106.0, 101.2, 53.2, 51.8, 46.7, 35.9, 31.8, 23.8, 21.6. The spectroscopic data is consistent with the reported values in the literature (*ACS Catal.* **2025**, *15*, 72–80).

Compound **2**y was obtained in 86% yield (64.9 mg). Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 5.38 (s, 1H), 3.61 (d, J = 15.6 Hz, 1H), 3.32 (d, J = 11.2 Hz, 1H), 3.09 (d, J = 15.6 Hz, 1H), 2.69 (d, J = 16.4 Hz, 1H), 2.50 (d, J = 16.4 Hz, 1H), 2.41 (s, 3H), 2.36 (d, J = 11.2 Hz, 1H), 2.10 (s, 3H), 1.89 – 1.85 (m, 2H), 1.50 – 1.40 (m, 1H), 1.23 – 1.18 (m, 2H), 1.08 (s, 3H), 0.83 (dd, J = 6.8, 1.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 207.7, 143.6, 133.1, 132.9, 129.7, 127.8, 127.6, 53.5, 51.8, 47.4, 36.8, 35.4, 32.3, 31.9, 27.8, 23.9, 22.5, 22.4, 21.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₃₂NO₃S⁺: 378.2097; found: 378.2098.

Compound **2z** was obtained in 72% yield (44.3 mg). Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.90 (t, J = 1.6 Hz, 1H), 4.83 (t, J = 2.0 Hz, 1H), 3.90 – 3.80 (m, 2H), 3.32 (d, J = 9.6 Hz, 1H), 3.12 (d, J = 9.6

Hz, 1H), 2.61 (d, J = 17.2 Hz, 1H), 2.49 – 2.43 (m, 4H), 2.07 (s, 3H), 1.15 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 206.4, 152.3, 143.7, 132.6, 129.7, 127.9, 106.0, 58.6, 51.7, 50.8, 43.6, 31.5, 23.8, 21.6. The spectroscopic data is consistent with the reported values in the literature (*ACS Catal.* **2025**, *15*, 72–80).

Compound **2aa** was obtained in 78% yield (45.8 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.65 (t, J = 2.0 Hz, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.97 (t, J = 2.0 Hz, 1H), 4.88 (t, J = 2.0 Hz, 1H), 3.91 (dt, J = 14.4, 2.4 Hz, 1H), 3.83 (dt, J = 14.4, 2.4 Hz, 1H), 3.30 (d, J = 9.6 Hz, 1H), 3.07 (d, J = 9.6 Hz, 1H), 2.56 (dd, J = 16.4, 2.4 Hz, 1H), 2.47 – 2.41 (m, 4H), 1.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.5, 150.9, 143.9, 132.4, 129.8, 127.8, 107.0, 58.83, 51.7, 51.5, 43.4, 24.0, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₂₀NO₃S⁺: 294.1158; found: 294.1158.

Compound **2ab** was obtained in 90% yield (69.0 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.82 (t, J = 2.4 Hz, 1H), 7.68 (d, J = 8.4 Hz, 2H), 7.39 – 7.28 (m, 7H), 5.65 (s, 1H), 4.29 (d, J = 16.8 Hz, 1H), 4.13 (d, J = 16.9 Hz, 1H), 3.50 – 3.43 (m, 1H), 3.38 – 3.32 (m, 1H), 2.66 – 2.58 (m, 2H), 2.42 (s, 3H), 2.08 – 2.01 (m, 1H), 1.91 – 1.84 (m, 1H), 1.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.9, 143.5, 142.2, 138.6, 137.8, 135.2, 129.8, 128.5, 127.6, 127.2, 126.7, 54.3, 47.8, 44.6, 38.8, 35.7, 27.6, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₆NO₃S⁺: 384.1628; found: 384.1626.

Compound **2ac** was obtained in 92% yield (59.1 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (t, J = 2.8 Hz, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 5.28 (s, 1H), 3.76 (d, J = 16.8 Hz, 1H), 3.59 (d, J = 16.8 Hz, 1H), 3.43 – 3.36 (m, 1H), 3.26 – 3.20 (m, 1H), 2.56 – 2.47 (m, 2H), 2.42 (s, 3H), 1.93 – 1.87 (m, 1H), 1.79 – 1.72 (m, 4H), 1.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.5, 143.4, 135.2, 134.1, 133.4, 129.7, 127.2, 54.4, 48.4, 44.6, 38.0, 36.4, 27.9, 24.2, 21.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₄NO₃S⁺: 322.1471; found: 322.1470.

Compound **2ad** was obtained in 84% yield (58.4 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.76 (t, J = 2.4 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.61 (s, 1H), 5.02 (s, 1H), 4.97 (s, 1H), 4.15 (d, J = 16.4 Hz, 1H), 3.93 (d, J = 16.4 Hz, 1H), 3.46 – 3.40 (m, 1H), 3.29 – 3.23 (m, 1H), 2.58 (d, J = 2.4 Hz, 2H), 2.42 (s, 3H), 1.98 – 1.92 (m, 1H), 1.89 (s, 3H), 1.81 – 1.74 (m, 1H), 1.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.9, 143.4, 143.1, 137.6, 136.0, 135.2, 129.7, 127.2, 112.6, 54.2, 44.8, 44.6, 38.4, 35.6, 27.8, 21.8, 21.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₆NO₃S⁺: 348.1628; found: 348.1628.

Compound **2ae** was obtained in 91% yield (62.5 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.66 – 9.95 (m, 1H), 7.75 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.30 – 7.28 (m, 1H), 7.24 – 7.16 (m, 2H), 7.06 – 7.04 (m, 1H), 4.43 (d, J = 14.8 Hz, 1H), 4.06 (d, J = 14.8 Hz, 1H), 3.59 (dd, J = 12.0, 0.8 Hz, 1H), 2.89 (dd, J = 15.6, 2.0 Hz, 1H), 2.83 (d, J = 11.8 Hz, 1H), 2.72 (dd, J = 15.6, 3.2 Hz, 1H), 2.44 (s, 3H), 1.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.3, 144.0, 139.7, 132.7, 130.8, 129.9, 127.8, 127.5, 127.0, 126.7, 126.0, 53.9, 53.8, 48.5, 37.8, 25.8, 21.6. HRMS (ESI) m/z: [M+H]⁺

calcd for C₁₉H₂₂NO₃S⁺: 344.1315; found: 344.1315.

Compound **2af** was obtained in 92% yield (65.8 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.64 (t, J = 2.4 Hz, 1H), 7.73 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 6.85 (s, 1H), 4.38 (d, J = 14.8 Hz, 1H), 4.00 (d, J = 14.8 Hz, 1H), 3.55 (d, J = 11.6 Hz, 1H), 2.85 (dd, J = 15.6, 2.1 Hz, 1H), 2.79 (d, J = 11.6 Hz, 1H), 2.69 (dd, J = 15.6, 3.2 Hz, 1H), 2.43 (s, 3H), 2.27 (s, 3H), 1.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.5, 144.0, 136.7, 136.6, 132.8, 130.6, 129.9, 128.3, 127.8, 127.1, 125.9, 54.1, 53.8, 48.4, 37.5, 25.8, 21.6, 20.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₄NO₃S⁺: 358.1471; found: 358.1472.

Compound **2ag** was obtained in 81% yield (61.2 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.65 (t, J = 2.4 Hz, 1H), 7.72 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.22 – 7.17 (m, 2H), 7.04 (s, 1H), 4.38 (d, J = 14.8 Hz, 1H), 4.01 (d, J = 14.8 Hz, 1H), 3.57 (d, J = 12.0 Hz, 1H), 2.88 (dd, J = 15.6, 2.0 Hz, 1H), 2.79 (d, J = 12.0 Hz, 1H), 2.70 (dd, J = 15.6, 2.4 Hz, 1H), 2.44 (s, 3H), 1.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 200.7, 144.2, 138.4, 132.7, 132.7, 132.6, 130.0, 127.8, 127.7, 127.6, 126.5, 53.7, 53.5, 48.1, 37.6, 25.7, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₁ClNO₃S⁺: 378.0925; found: 378.0923.

Compound 2ah was obtained in 83% yield (31.6 mg). Colorless oil. ¹H NMR (400
MHz, CDCl₃) δ 9.53 – 9.52 (m, 1H), 7.27 (d, J = 7.6 Hz, 1H), 7.20 – 7.16 (m, 1H), 7.15 – 7.11 (m, 1H), 6.92 (dd, J = 7.6, 0.8 Hz, 1H), 4.79 – 4.71 (m, 2H), 3.86 (d, J = 11.6 Hz, 1H), 3.56 (d, J = 11.6 Hz, 1H), 2.66 (dd, J = 15.2, 2.0 Hz, 1H), 2.55 (dd, J = 15.2, 3.2 Hz, 1H), 1.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 139.5, 133.8, 127.2, 126.7, 125.8, 124.4, 75.0, 68.9, 54.8, 36.4, 24.3. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₅O₂⁺: 191.1067; found: 191.1066.

Compound **2ah'** was obtained in 79% yield (38.6 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.67 (t, J = 2.8 Hz, 1H), 7.32 – 7.28 (m, 2H), 7.23 – 7.17 (m, 3H), 5.41 (d, J = 1.2 Hz, 1H), 4.07 – 3.98 (m, 2H), 3.65 (dd, J = 11.2, 0.8 Hz, 1H), 3.34 (d, J = 11.2 Hz, 1H), 2.81 – 2.69 (m, 2H), 2.45 (dd, J = 14.8, 3.2 Hz, 1H), 2.31 (dd, J = 14.8, 2.4 Hz, 1H), 2.25 (t, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 202.7, 141.3, 136.1, 128.4, 128.4, 126.9, 126.1, 74.3, 67.9, 53.3, 34.6, 34.4, 34.1, 24.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₁O₂⁺: 245.1536; found: 245.1537.

Compound **2ai** was obtained in 82% yield (62.9 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.78 (t, J = 1.2 Hz, 1H), 7.71 (d, J = 8.0 Hz, 2H), 7.36 – 7.27 (m, 7H), 5.78 (s, 1H), 4.04 (dd, J = 15.6, 1.2 Hz, 1H), 3.67 (dd, J = 15.6, 1.8 Hz, 1H), 3.19 (d, J = 11.2 Hz, 1H), 2.64 (d, J = 11.2 Hz, 1H), 2.60 – 2.54 (m, 2H), 2.43 (s, 3H), 1.92 – 1.80 (m, 2H), 1.10 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 143.8, 138.1, 132.9, 132.7, 130.8, 129.8, 128.6, 128.0, 127.7, 125.4, 52.7, 46.4, 39.3, 36.0, 31.9, 24.8, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₆NO₃S⁺: 384.1628; found: 384.1629.

Compound **2aj** was obtained in 80% yield (51.4 mg). Colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 9.75 (t, J = 1.6 Hz, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 5.16 (s, 1H), 3.50 (d, J = 15.6 Hz, 1H), 3.17 (d, J = 15.6 Hz, 1H), 3.07 (d, J = 11.2 Hz, 1H), 2.52 – 2.45 (m, 3H), 2.43 (s, 3H), 1.80 – 1.68 (m, 2H), 1.63 (s, 3H), 0.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 143.6, 132.9, 129.8, 129.2, 128.6, 127.7, 52.9, 48.2, 39.3, 35.4, 31.9, 24.8, 21.6, 20.4. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₁₇H₂₄NO₃S⁺: 322.1471; found: 322.1470.

Compound **2ak** was obtained in 76% yield (55.0 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.75 (t, J = 1.6 Hz, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 5.77 – 5.67 (m, 1H), 5.17 (s, 1H), 5.00 – 4.93 (m, 2H), 3.53 (d, J = 15.6 Hz, 1H), 3.20 (d, J = 15.6 Hz, 1H), 3.06 (d, J = 11.2 Hz, 1H), 2.51 – 2.45 (m, 3H), 2.43 (s, 3H), 2.15 – 2.10 (m, 2H), 2.03 – 1.99 (m, 2H), 1.80 – 1.67 (m, 2H), 0.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 143.7, 137.5, 132.9, 132.5, 129.8, 128.4, 127.7, 115.3, 53.0, 47.2, 39.3, 35.4, 33.7, 32.0, 31.8, 25.0, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₈NO₃S⁺: 362.1784; found: 362.1784.

Compound **2al** was obtained in 73% yield (52.2 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 7.73 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.25 – 7.13 (m, 3H), 7.02 (d, J = 7.6 Hz, 1H), 4.42 (d, J = 14.4 Hz, 1H), 3.96 (d, J = 14.4 Hz, 1H), 3.39 (d, J = 11.6 Hz, 1H), 2.67 (d, J = 11.6 Hz, 1H), 2.57 – 2.48 (m, 1H), 2.43 – 2.35

(m, 4H), 2.16 - 2.09 (m, 1H), 1.99 - 1.91 (m, 1H), 1.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.0, 144.0, 140.6, 132.6, 130.9, 129.9, 127.8, 127.3, 126.6, 126.5, 126.0, 53.5, 48.4, 39.5, 37.5, 33.4, 25.9, 21.6. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₄NO₃S⁺: 358.1471; found: 358.1472.

Compound **2a'** was obtained in 58% yield (44.5 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.0 Hz, 2H), 7.34 – 7.27 (m, 7H), 5.83 (t, J = 2.0 Hz, 1H), 5.79 – 5.67 (m, 2H), 4.14 (d, J = 4.8 Hz, 2H), 3.97 (dd, J = 15.6, 1.6 Hz, 1H), 3.79 (dd, J = 15.6, 1.6 Hz, 1H), 3.15 (d, J = 11.6 Hz, 1H), 2.83 (d, J = 11.6 Hz, 1H), 2.42 (s, 3H), 1.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 138.2, 136.6, 133.3, 132.3, 130.1, 129.8, 128.9, 128.6, 128.0, 127.7, 125.4, 63.5, 53.4, 46.3, 38.9, 24.7, 21.6. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₂₅NNaO₃S⁺: 406.1447; found: 406.1446.

5. Synthetic Applications

Gram-scale reaction: In an 100 mL Schlenk tube, the mixture of vinyl iodide–alkenol substrate (*E*)-1a (4.0 mmol, 1.99 g), Pd(OAc)₂ (0.2 mmol, 183.1 mg), bpy (0.4 mmol, 62.5 mg) and K₂CO₃ (12.0 mmol, 1.66 g) were dissolved in DMF (30 mL). The tube was stirred at 80 °C in oil bath for 18 h. Upon completion, the mixture was cooled to room temperature and was washed with water (40 mL), brine (40 mL). The resulting mixture was extracted with EtOAc (3×20 mL) and the organic phase was dried with Na₂SO₄. The solvents were removed under reduced pressure and the crude reaction mixture was purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to afford the product **2** (84%, 1.24 g).

In an 25 mL Schlenk tube, a solution of compound **2a** (0.2 mmol, 73.9 mg) in MeOH (2.0 mL) at 0 °C was slowly added NaBH₄ (0.5 mmol, 18.9 mg), Then, the reaction mixture was warmed up to room temperature and further stirred for 30 min. After completion, the solution was quenched by saturated NaCl solution and extracted with EtOAc. The combined organic layers were dried with Na₂SO₄ and concentrated under reduced pressure. The obtained crude product was used in the next step without further purification.

To a solution of the crude product in DCM (3 mL) at 0 °C was added imidazole (0.24 mmol, 16.3 mg), PPh₃ (0.22 mmol, 57.8 mg) and I₂ (0.22 mmol, 55.8 mg) sequentially. Then, the reaction mixture was warmed up to room temperature and further stirred for 1 h. After completion, the solution was quenched by saturated Na₂S₂O₃ solution and extracted with DCM. The combined organic layers were dried with Na₂SO₄ and concentrated under reduced pressure. the crude reaction mixture was purified by chromatography on silica gel (petroleum ether/ethyl acetate) to afford the compound **3**

in 82% yield (78.9 mg). Pale red solid (mp 115 – 117 °C). ¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, J = 8.4 Hz, 2H), 7.36 – 7.28 (m, 7H), 5.80 (t, J = 1.6 Hz, 1H), 4.04 (dd, J = 15.6, 1.2 Hz, 1H), 3.65 (dd, J = 15.6, 1.6 Hz, 1H), 3.31 – 3.15 (m, 3H), 2.61 (d, J = 11.6 Hz, 1H), 2.44 (s, 3H), 2.28 – 2.13 (m, 2H), 1.11 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 138.2, 133.2, 132.9, 130.2, 130.0, 128.8, 128.3, 127.9, 125.6, 52.5, 46.6, 45.6, 39.2, 24.8, 21.8, -0.0. **HRMS** (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₅INO₂S⁺: 482.0645; found: 482.0644.

Under N₂ atmosphere, a solution of Ph₃PMeBr (0.3 mmol, 108.0 mg) in THF was added "BuLi (0.6 mmol, 0.3 mL, 2.0 M in hexane) at 0 °C for 30 min, then **2a** (0.2 mmol, 73.9 mg) dissolved in THF was added and the reaction mixture stirred at room temperature for 6 h. Upon completion, the mixture was quenched by saturated aq. NH₄Cl and extracted with EtOAc. The organic layers were combined, dried over Na₂SO₄, concentrated under reduce pressure. The residue was purified by chromatography on silica gel to afford the desired product **4** in 90% yield (66.2 mg). Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.28 – 7.19 (m, 7H), 5.80 – 5.70 (m, 2H), 5.06 – 5.02 (m, 2H), 3.83 (dd, *J* = 15.6, 1.6 Hz, 1H), 3.73 (dd, *J* = 15.6, 1.6 Hz, 1H), 2.97 (d, *J* = 11.2 Hz, 1H), 2.70 (d, *J* = 11.2 Hz, 1H), 2.36 (s, 3H), 2.17 (d, *J* = 7.2 Hz, 2H), 1.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 138.4, 133.6, 133.2, 131.9, 131.6, 129.8, 128.5, 127.8, 127.7, 125.4, 118.6, 52.6, 46.5, 44.0, 36.7, 24.1, 21.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₆NO₂S⁺: 368.1679; found: 368.1678.

6. HPLC Chromatograms

2a: AYH *i*-PrOH/hexane = 25/75, v = 1.0 mL/min, $\lambda = 254$ nm

7. ¹H and ¹³C NMR Spectra

2 - 5	00-70	N 6
4 N C	$\circ \circ \circ \circ$	9 9
ഗഗറ	10	- 4
~ ~ ~	· ~ ~ ~ .	Ю.
	~1/	
		1

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	295.8
4	Number of Scans	16
5	Spectrometer Frequency	400.13
6	Spectral Width	8012.8
7	Lowest Frequency	-1574.3
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

√ 5.349
 −5.333
 √5.318
 √5.318

3.9833.966

--3.368

-4.335

—1.164

—1.932

—2.347

2.92 7.50 7.18 5.87	9.20 5.00 1.05	
\searrow	$\langle \langle \rangle \rangle$	

—14.16

—21.60

		· 1	· 1	•	·	· 1	· 1	' '		'	' '				' '	· 1	· 1	- I	· 1	-
200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90)	80	70	60	50	40	30	20	10	0

Parameter Origin Solvent Temperature Number of Scans Spectrometer Frequency 	Value Bruker BioSpin GmbH CDC13 0.0 200 100.61		MeO-	Me OH		
6 Spectral Width 7 Lewest Frequency	24038.5			1b		
7 Lowest Frequency 8 Nuclous	-1958.9		1			
9 Acquired Size	32768	l				
10 Spectral Size	32768					
<u> </u>	 70 160 150	140 130 120	110 100 90	80 70 6	0 50 40 30	20 10 0

0 100 f1 (ppm)

3	33	8	8	0	3	ŝ	4	4	6
2	2	ω.	S.	S.	Q	J	æ	g	0
Ģ	Ģ	Ċ.	Ċ.	Ċ.	ς.	ς	9	Q.	ĽÚ.
	\sim			\sim			\sim	\sim	9
L				$ \leq $		ノー	_		

.435	.419	.405
ŝ	Ъ	S
<u> </u>		

-4.409 -4.074 -4.057 —3.464

~2.324 ~2.324 —1.854 —1.284

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	295.1
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.3
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

∞	\sim	~	δ	
0	4	<u></u>		
i	~	~	റ്	
6			\sim	
ĩ	Ĺ	ίι.	<u>ر</u>	
	<u>``</u>	\sim	/	

27	79	98	
59.	55.	53.	
Ň	Ň	7	

21.6021.25

—14.24

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	295. 5
4	Number of Scans	250
5	Spectrometer Frequency	100.64
6	Spectral Width	23809.5
7	Lowest Frequency	-1840.5
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768

ഗഗ	40	4	\odot	Ω		\sim
$4 \vee$	- 0	6	∞	\sim	·	4
ى ف	m m	\sim	\sim	\sim	\sim	LÓ.
7.7	7.7	1	۷.	7.	٦.	<u>.</u>
		1	ノー	_	_	1
			1			

	Parameter	Value
 1	Origin	Bruker BioSpin GmbH
 2	Solvent	CDC13
 3	Temperature	295.6
 4	Number of Scans	16
 5	Spectrometer Frequency	400.13
 6	Spectral Width	8012.8
 7	Lowest Frequency	-1535.4
 8	Nucleus	1H
 9	Acquired Size	32768
 10	Spectral Size	65536

5.441 5.427 5.412

~1.323 ~1.251

	2.04 4.07 2.09 4	1.02	1.00 J	2.04 2.07 2.07	2.04	3.05-1 1.14-1	9.16 3.20 Å	
10.0 9.5 9.0 8.5 8.0	7.5 7.0	6.5 6.0	5.5 5.0 f1 (ppm)	4.5 4.0	3.5 3.0	2.5 2.0	1.5 1.0 0.5 0	.0

Parameter 1 Origin 2 Solvent 3 Temperature 4 Number of Scans 5 Spectrometer Frequen 6 Spectral Width 7 Lowest Frequency 8 Nucleus 9 Acquired Size 10 Spectral Size	Value Bruker BioSpin GmbH CDC13 296. 1 220 acy 100. 61 24038. 5 -1958. 9 13C 32768 32768	^t Bu	Me OH N Ts 1d		
					1

						·												1 1			
200	190	180	170	160	150	140	130	120	110	100	90	80	70) 60) 50) 4	0 3	30	20	10	0
										f1 (ppm	ר) ו				_			-			-

.35	.35	01.07 0000000000	21 21 39	22	14
163 161	145 143	128 129 1128 1157 1157 1157	82.6 77.5 76.8	59.7	21.5
17	57			517	

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	299.0
4	Number of Scans	250
5	Spectrometer Frequency	100.64
6	Spectral Width	23809.5
7	Lowest Frequency	-1840.5
8	Nucleus	13C
9	Acquired Size	32768
1	0 Spectral Size	32768

200	190	180	170	160	150	140	130	120	110 f1	100 1 (ppm)	90	80	70	60	50	40	30	20	10	0

I

36
d.
-
<u></u>
1
1

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	298.0
4	Number of Scans	16
5	Spectrometer Frequency	376.61
6	Spectral Width	90909.1
7	Lowest Frequency	-83115.3
8	Nucleus	19F
9	Acquired Size	65536
10	Spectral Size	65536

т т				· · ·	·	· · ·	· .	· · ·	· · · ·	· · ·	· .	· · ·	· · ·	1	· · · ·	, , , , , , , , , , , , , , , , , , , 			, , , , , ,
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90		-110		-130	-150	-170	-190	-210
												f1 (pp	m)						

4400000000-000	6 N M O O	0 L L U O	9	0
5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 4 4 0	- 10 - N - N	4	9
0 0 0 0 7 7 N N N N 0 0	4 4 4 4 4	40004	4	8
0.0000000000000000000000000000000000000	ഗഗഗഗഗ	4 4 4 m m	Ň	·
		$2 \sqrt{2}$		1
		r ir í h	1	1

—1.278

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	0.0
4	Number of Scans	16
5	Spectrometer Frequency	400.13
6	Spectral Width	8012.8
7	Lowest Frequency	-1535.4
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ń	<u> </u>
6.	ю.
Ś	4 4 M M M N N N N N
7	<u> </u>

balled

9	9	4	\sim	
ω	4	<u> </u>	∞	
N N	N 1		ف	
8		/	\sim	
 	<u> </u>	2	/	
	1 I	זור		

√59.19
√56.21
√55.42
√54.17

—14.14
-141

Para	umeter Value									
1 Origin	Bruker BioSp	in GmbH								
2 Solvent	CDC13									
3 Temperature	e 0.0		MeO							
4 Number of S	Scans 200									
5 Spectromete	er Frequency 100.61									
6 Spectral W	idth 24038.5									
7 Lowest Free	quency -1958.9			N						
8 Nucleus	13C			Ťs						
9 Acquired S	ize 32768			1£						
10 Spectral S:	ize 32768			11						
3										
									providence by the second second	Mada Pa
· · · · ·	· · · · · · · ·				· · · · ·				, ,	T
.00 190 1	180 170 160	150 140 1	30 120 110 f1	100 90 80 (ppm)	70 60	50 40	30	20 1	10	D

64 42 78 78	26 78 82
82. 77. 77. 76.	59. 53.
\searrow	557

.59	41
,21	51
	<u> </u>

-14.19

	Parameter	Value
 1	Origin	Bruker BioSpin GmbH
 2	Solvent	CDC13
 3	Temperature	0.0
 4	Number of Scans	200
 5	Spectrometer Frequency	100.61
 6	Spectral Width	24038.5
 7	Lowest Frequency	-1958.9
 8	Nucleus	13C
 9	Acquired Size	32768
 10	Spectral Size	32768

Ω.	0	4	∞	σ	\sim	\sim	\sim	4	\sim	∞	S	\sim
4	m.	.e	O.	m.	õ	Υ.	ь.	ь.	ь.	O,	ь.	<u> </u>
\sim	\mathbf{c}	∞	9	ъ	\sim	0	δ	σ	ω	ω	\sim	പ
4	4	\sim	∞	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim
· · · · · ·	<u></u>	<u></u>	·	<u></u>	<u></u>	<u></u>	·	<u></u>	·	·	<u></u>	·
L_									ノ	_		
								J 1				

0629	- 1 5 0
0 V N 0	
<u>, , , , , , , , , , , , , , , , , , , </u>	ര്ശ്ന്
2 1 1 2 2	ഗഗവ
$\overline{\langle}$	517

-21.58 ~19.60 -13.98

Parameter 1 Origin 2 Solvent 3 Temperature 4 Number of Scans 5 Spectrometer Frequency 6 Spectral Width 7 Lowest Frequency 8 Nucleus 9 Acquired Size 10 Spectral Size	Value Bruker BioSpin GmbH CDC13 295.4 200 100.64 23809.5 -1840.5 13C 32768 32768		/le Me N Ts 1h	-OH		
					r 19. ouer la bit 1 annue 1 annue	

110 100 f1 (ppm)

 $\begin{array}{c} 7.627\\ 7.607\\ 7.290\\ 7.295\\ 7.285\\ 7.285\\ 7.270\\ 6.938\\ 6.795\\ 6.795\\ 6.795\\ 6.795\\ 6.795\\ 6.795\\ 6.795\\ 6.795\\ 6.795\\ 6.795\\ -2.279\\ -3.501\\ -3.501\\ -1.777\\ -1.362\\ -1.362\end{array}$

-82.46	77.45	L77.13	√76.81	

4	-	4	
Ň	9	٠Ò.	
ດ່	Ś	m.	
S	S	S	
- L		1	
)	Ì	(

<21.58<21.28

—14.21

Parameter 1 Origin	Value Bruker BioSpin GmbF	1						
2 Solvent	CDC13	-	\backslash					
3 Temperature	0.0			≻′N	1e /—OH			
4 Number of Scans	150		<pre></pre>	> <u>/</u> /				
5 Spectrometer Freque	ency 100.61				J			
6 Spectral Width	24038.5		/	N Te				
7 Lowest Frequency	-1958.9		I	13				
8 Nucleus	13C			1i				
9 Acquired Size	32768							
10 Spectral Size	32768						I	
					I			
					· · ·			
						1	1	
				1				
lefenderseletersteletersteletersteletersteletersteletersteletersteletersteletersteletersteletersteletersteleter	aingleumhaggerheutheadhagahahairinghaanhahd	www.lanendustlangs.dl.unlynssikhanseed	han han han an a	the and the part of the state o	ngalmangunangunahangul Adalapangi ^M balan nginasayadar	warneten in the first of the state of the second states and the second states a	permapping has been been been been been been been bee	eleoninte deput
	· · · · · ·	· · · ·	· · ·	· · · ·		· · · · ·		· · ·
0 190 180	170 160 15	0 140 13	0 120	110 100	QA 8A 7(60 50	40 20 20 1	Λ

704 684 319 299	998	507 492 476	115 099 840 590	420	859	578
インンン	ഹ	ഗഗ്ഗ്	4 4 m m	N.		<u>.</u>
\checkmark \checkmark		\searrow	\bigvee \downarrow \downarrow \downarrow			

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	0.0
4	Number of Scans	16
5	Spectrometer Frequency	400.13
6	Spectral Width	8012.8
7	Lowest Frequency	-1545.4
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

√59.20 √56.40 √55.28

11

∑21.96 ∑21.55 ─14.40

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	0.0
4	Number of Scans	200
5	Spectrometer Frequency	100.61
6	Spectral Width	24038.5
7	Lowest Frequency	-1958.9
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768

		· 1	· 1				1									· 1	· 1	'	' '	· · ·		1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
										f	1 (ppm)											

2.05⊣

7.5

8.0

10.0

9.5

9.0

8.5

2.14⊣⊥

7.0

6.5

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	298.3
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1647.4
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

	თ	~	$\sim \sim$	
	∞	0	-0	
	4	ω	00	
	m.	m.	4.4.	
	1	/	11	
	m'	Š	44	

2.06 Å 2.00 Å 2.01 ∖

4.0

3.5

3.0

3.08_년 1.00^년 2.00^년

2.0

2.5

3.01⊣

1.5

Et
n Ts

1.00⊣

6.0

1.00⊣

5.5

5.0 f1 (ppm)

4.5

0.5

0.0

3.04⊣

1.0

-147.92 -143.58 -143.58 -143.58 -129.75 -127.39 -127.39	77.79 77.58 77.58 76.94 56.42 56.42 54.56 -27.93 -27.93 -14.37 -12.26
Et—	Me N Ts 1k

		·	· 1			. 1	. 1	'	' 1	·		·	· 1		. 1		. 1		· 1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
									f	[:] 1 (ppm))									

9	∞	0		4	0	ω
\sim	0	0	ω	Ó		9
0	S	S	4	4	4	4
<u>ن</u>	<u>ы</u> .	ഹ	ഹ	ഹ	ы.	ഹ
1	5	5	1	1_		_

6 M M M	o o a
0691	- 9 4
1080	4
4 4 m m	n n n
レント	

\mathcal{L}	\cup	w	\mathbf{U}		<u> </u>	N	<u> </u>	$-\omega$	<u> </u>
4	4	\sim	\sim	00	ω	9	9	40	4
	<u></u>	<u></u>	<u> </u>	ഹ	\sim	\sim	\sim	$\sim \infty$	ω
N.	N.	N.	N.		<u> </u>	<u> </u>	<u> </u>	<u>~-</u> 0	o.
		5		<i>ر</i>		5	~	$\neg \setminus$	2

. .

 \sim

	Parameter	Value
1	Origin	Bruker BioSpin Gmb
2	Solvent	CDC13
3	Temperature	295.9
4	Number of Scans	16
5	Spectrometer Frequency	400.13
6	Spectral Width	8012.8
7	Lowest Frequency	-1545.0
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

о m t – о	004
-4-7	$^{-4}$
6.7 7.8	<u>6, 6, 4</u> ,
\frown \frown \frown \frown	ப்ப்ப
	557

78	.73 .55 .46	
322	14 212	
2	$\langle \langle \rangle $	

	Parameter	Value
 1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	296.4
 4	Number of Scans	220
 5	Spectrometer Frequency	100.61
 6	Spectral Width	24038.5
7	Lowest Frequency	-1958.9
8	Nucleus	13C
9	Acquired Size	32768
 10	Spectral Size	32768

т

			1					'					· 1				· 1	' '	' '			
200	190	180	170	160	150	140	130	120	110	100 f1 (ppm	90	80	70	0	60	50	40	30	20	10	0	

N 0	- $ -$
4 0	4 N O & & 6 O N & M N N N O O
ù ú	
~ ~	
٦٢	

6 M O M	0.000 - 000 - 000	2 M
5075	8 N 9 4 9 4 M N 4	$\circ \infty$
0000	00004444m	04
4 4 m m		<u> </u>
$ $		\leq

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.4
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1667.4
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

1m

8050	A - M	<u>б</u>	6	ഹ
∞ 4 – \vee	0 7 M	2 7	L)	4
6 N N 9	0'0' 4 '	.4	<u>.</u>	4
ファファ	ப்பப	n n	2	<u></u>
$\searrow}$	517	17		

	Value						
1 Origin	Bruker BioSpin GmbH	Ph-	∖ /́Me /─Oŀ				
2 Solvent	CDC13						
3 Temperature	295.2						
4 Number of Scans	300		N Te				
5 Spectrometer Freque	ncy 100.64		13				
6 Spectral Width	23809. 5		1m				
7 Lowest Frequency	-1840. 5			-			
8 Nucleus	13C						
9 Acquired Size	32768						
10 Spectral Size	32768						
					, ,		

666	645	288	267	260
7.	7.	77.	1 7	1.

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.7
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.3
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

√5.473 -5.458 ∿5.442

-6.008

3.530	2.378 2.224 2.176 2.147 2.118 2.118	1.662 1.560	1.214 1.196 1.178 1.178 1.142 1.142 1.076 1.076 1.044 1.013
		سرخ	

—151.39	-143.57 136.05 132.99 122.92 128.02 127.39	78.90 77.57 77.25 76.93	~59.08 ~56.35 ~54.32	—41.69	~32.52 ~26.60 ~26.22 ~21.55	—14.38
---------	--	----------------------------------	----------------------------	--------	--------------------------------------	--------

Parameter	Value				
Origin	Bruker BioSpin GmbH				
2 Solvent	CDC13				
Temperature	295.4	──	(OH		
Number of Scans	200				
5 Spectrometer Frequer	ncy 100.64	/ / / /			
Spectral Width	23809.5	\sim N			
Lowest Frequency	-1840.5	Ťs			
Nucleus	13C	1n			
Acquired Size	32768	111			
0 Spectral Size	32768				

					. .															
200	100	180	170	160	150	1/0	120	120	110	100	۵n	80	70	60	50	10	20	20	10	\cap
200	190	100	170	100	150	140	150	120	110	100	50	00	10	00	50	40	50	20	10	0
									-	f1 (nnm`	۱									
										n (hhui)	,									

704 685 323 304 2560 752 735 735 735	665 653 653 653 653 013 973 952	107 091 864 578	423 307 291 272 272 167 150 134 150 134 580
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		4.4.	

	Parameter	Value
 1	Origin	Bruker BioSpin GmbH
 2	Solvent	CDC13
 3	Temperature	0.0
 4	Number of Scans	16
 5	Spectrometer Frequency	400.13
 6	Spectral Width	8012.8
 7	Lowest Frequency	-1545.7
 8	Nucleus	1H
 9	Acquired Size	32768
 10	Spectral Size	65536

78.86 77.43 77.11 76.79	59.20 56.35 54.41	34.13 31.72	21.57	14.44
	S	Υ /		

1 2 3 4 5 6 7 8 9 10	Parameter Origin Solvent Temperature Number of Scans Spectrometer Frequency Spectral Width Lowest Frequency Nucleus Acquired Size Spectral Size	Value Bruker BioSpin GmbH CDC13 0.0 250 7 100.61 24038.5 -1958.9 13C 32768 32768	Ι] 1	Me S Is	_ОН										
na fin da stanto	nterfer die ander soften steren die den mei die die der soft die soften soft die soften soften soften soften s	h dan ya kulikata yanga kana kanakata kangata kana kanga	field with Level and		he da a sta da a sta a sta a sta a sta	Many des Josepher Pyrel Age	uytartett flysteraenetheligat	- on Standing and Apple to		aller of the state	ayidal anak ya	1.11.11.11.11.11.11.11.11.11.11.11.11.1	Alter of the state of the state of the state	ین اندوا میداده به	layerdesyne Alsonorranger	V-y	falfytinsanops
200	190 180 1	70 160 150) 130	120		100 1 (npm)	90	80	70	60	50	40		20	10	0

		€5.308 €5.291 5.275	-4.316 $\int 3.996$ $\int 3.980$	—3.393	2.334 2.172 1.909 1.653 1.618	71.161 1.095 1.083 1.074 1.074 1.055 0.780
ParameterValue1OriginBruker Bill2SolventCDC133Temperature294.74Number of Scans165Spectrometer Frequency400.256Spectral Width8196.77Lowest Frequency-1667.58Nucleus1119Acquired Size3276810Spectral Size65536	alue ioSpin GmbH	nPr N Ts 1p	-ОН			
	2.02 _ 2.25 _ 1.04 ^Æ 2.00 ^Æ 1.00 [√]	1.03-1	2.01 고 2.03 고	2.00J	3.05 ∄ 6.05 ∄ 1.15 ≟ 2.01 प	8.12] 3.06 म
9.5 9.0 8.5 8.0	7.5 7.0 6.5 6.0	5.5 5.0 f1 (ppm)	4.5 4.0	3.5 3.0	2.5 2.0 1.5	1.0 0.5 0.0

× 282.4 77.5 76.9

59.01	53.55 53.40	
Ň	$\overline{\mathbf{v}}$	

64	32	51	22	68	57	29	17
~	റ്	Ω	σ	N	~	<u></u>	4
∞	\sim	\sim	\sim	\sim	\sim	\sim	<u></u>
5			1	\langle	F		

	Parameter	Value						
	1 Origin	Bruker BioSpin GmbH						
	2 Solvent	CDC13						
	3 Temperature	295.3						
	4 Number of Scans	200			nn.			
	5 Spectrometer Frequenc	cy 100.64			/ Pr			
	6 Spectral Width	23809.5			\langle			
	7 Lowest Frequency	-1840.5		\backslash				
	8 Nucleus	13C			Г' (_—ОН			
	9 Acquired Size	32768		// ///////////////////////////////////				
	10 Spectral Size	32768						
				/	N Ts			I
					10			
					Ip			
				I				
			I					
						(<mark>)</mark> 1	1	
		I	i ill.					
					1			
int () and ()	Anamyaach,gordon-lega anatanaga nyodh walay gopponyat pengaara, namya, pelawan nestadiyya	ปู <i>ลสองสุขม</i> างสีขางอยู่ที่มารูปที่จะสูบที่จะสูงสีของสองสีของสีของสีของสีของสีของสีของส	nya Atrau kapanga di Usahamana nya	[๛] ไขสุข ^า นั้นและที่ไปและสำนักและสมไหร์สูงของรูสุขางหลูกระจะและ 	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	สระประเทศให้การกระสะการท ¹⁷⁴ ใจจุดกรุงสูมสะสไทยกระบบสูมรุงประเทศไทยการมีของม	weenhaa Aborisiaana hal bacataraa ahoringa axaa ayaa ayaa ayaa ayaa ayaa ah	๛๛๚๛๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛

			·	·	·	·	'	·								•		· ·		
200	100	180	170	160	150	1/0	120	120	110	100	۵n	80	70	60	50	10	20	20	10	Δ
200	190	100	170	100	150	140	100	120	110	100	50	00	10	00	50	40	50	20	10	0
										f1 (nnn	<u>_</u>)									
										ii (ppi	U									

\sim	~	4	∞	С	ω	б	∞		\sim	9	· · · · ·
ω	9	LÓ.	∞	\sim	~	0	0	σ	б	ω	\sim
S	S	\sim	\sim	\sim	\sim	\sim	\sim	~	~	~	S
7.	7.	7.	Ч.	Ζ.	7	7	٦.	٦.	7	Γ.	ю.
L		_					1	1			
				and the second	- 11			COLUMN TWO IS NOT			

	Parameter	Value						
1	Origin	Bruker BioSpin GmbH						
2	Solvent	CDC13						
3	Temperature	294.8						
4	Number of Scans	16						
5	Spectrometer Frequency	400.25						
6	Spectral Width	8196.7						
7	Lowest Frequency	-1666.1						
8	Nucleus	1H						
9	Acquired Size	32768						
10	Spectral Size	65536						

—4.347 ∠4.013 ∠3.997 ---3.426

I

82	
100	
<u> </u>	

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.8
4	Number of Scans	16
5	Spectrometer Frequency	376.61
6	Spectral Width	90909.1
7	Lowest Frequency	-83115.7
8	Nucleus	19F
9	Acquired Size	65536
10	Spectral Size	65536

т т	- · ·	1	· · · · ·			· · · ·	· · ·	· · ·	· · ·	· · · ·		·	· · ·					<u> </u>
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90 f	[:] 1 (pp	-110 m)	-130	-150	-170	-190	-210

7 7	4	σ	∞	4	Ы	4	∞
2	N	0	0	5	ω		9
99	∞	∞	∞	\sim	\sim	\sim	Ś
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	7	7	۲.	۲.	7.	0
		_	- 1	1			1
	and the second value of th		-				

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294. 7
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1626.3
8	Nucleus	1Н
9	Acquired Size	32768
10	Spectral Size	65536



1r

<a>4.058</a><a>4.041</a><a>3.592</a>

-4.452

-1.602

---2.463

0.389 0.378 0.375 0.364 0.364 0.358 0.355 0.355 0.355 0.355 0.355 0.000





midual

9	4	$\sim$	0	
$\infty$	4	~	$\infty$	
, vi	~	~		
00			$\sim$	
	5	1	/	
	٦	-)1		

.02	19	.07	
60	4	4	
Ň	Ľ	Ĵ	
1		$\checkmark$	

2.46	
ň	
I	

—21.60

—10.19

---4.70

Parameter 1 Origin 2 Solvent 3 Temperature 4 Number of Scans 5 Spectrometer Frequ 6 Spectral Width 7 Lowest Frequency 8 Nucleus 9 Acquired Size 10 Spectral Size	Value Bruker BioSpin Gmb CDC13 295.4 104 100.64 23809.5 -1840.5 13C 32768 32768	H		Ph- N Ts 1r	> _/OH						I
00 190 180 ⁻		140	130 120	110 100 f1 (ppm)	90 80	70	60 5	0 40	 20	10	

<b>7</b>	<u></u>	9	0	9	$\sim$	Ъ	$\infty$	S	С	4
2	Ъ	$\sim$	$\sim$	<del>~~~</del>	<del>~</del>	0	σ	σ	ω	Ó
9	9	$\infty$	$\infty$	$\infty$	$\infty$	$\infty$	$\sim$	$\sim$	$\sim$	S
٦.	7	7.	7.	7	7.	٦.	7	7.	7	

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	0.0
4	Number of Scans	16
5	Spectrometer Frequency	400.13
6	Spectral Width	8012.8
7	Lowest Frequency	-1535.4
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536



4.0834.066

--3.512

-4.458

1.722 1.703 1.665 1.533

—2.467

 $\frac{0.833}{0.814}$ 

√ 5.368
 −5.351
 √ 5.335
 √ 5.335

Ts 1s





(Handa)

5	0	$\infty$	9	
ø	4	0		
oi	~	~	u.	
6	~	~	~	
ų	1	17	17	
	``	$\rightarrow$		

3.96	4.00	3.35	
<u>کر</u>	2 ⁷	ы Л	

<pre>21.59 21.10</pre>	—13.29
$\mathbf{Y}$	

Parameter	Value					
1 Origin	Bruker BioSpin GmbH					
Solvent	CDC13					
Temperature	0.0					
Number of Scans	250					
Spectrometer Freque	ancy 100.61		_/ ^{OH}			
Spectral Width	24038.5	Ph—(′ )				
Lowest Frequency	-1958.9					
Acquired Size	32768	Τ̈́s				
10 Spectral Size	32768	1.				
o opectiai oize	32100	15		!		
		l.				
		1				
					I	
	. !					
	i .					
ուներություներությունը Աներություներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությությու Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությունը Աներությությունը Աներությությությունը Աներությությությությունը Աներությությությությունը Աներությությությունը Աներությությությությությությությությությությ	เฉพาประทุนไปสูงสนุงสนุงสนุกระสมสินกรุญรายรูกสาวสมสมสรรณ	and approximate for the particular second	որեպումներկեցիայիսկեմիններկերապեցինաներինենի	water house the second	annound and an and the second se	andantartatantantartartartartartarantariantariantariantariantariantariantariantariantariantariantariantariantar
			· _ · _ · _ ·		· · · · · ·	
190 180 170	0 160 150 140	130 120	110 100 90	80 7	0 60 50	40 30 20 10
			f1 (ppm)			



74	57	40	
S	S	ú	
<u>.</u> .	<u>ю</u> .	<u>ю</u> .	
<u> </u>			

-3.065

3.447

---2.454

—1.682

Parameter	Value			
1 Origin	Bruker BioSpin GmbH			
2 Solvent	CDC13		Bn /—OH	
3 Temperature	0.0	Ph—∜		
4 Number of Scans	16			
5 Spectrometer Frequer	ncy 400.13	<u>_</u> Ň	[	
6 Spectral Width	8012.8	1:	S	
7 Lowest Frequency	-1535.4	1	t	
8 Nucleus	1H			
9 Acquired Size	32768			
10 Spectral Size	65536			
		I		
		Ì		



	146.10 146.10 1138.61 138.31 135.38 129.74	128.57 128.49 128.49 128.41 128.41 128.41 128.29 127.63	L126.29	83.04 77.46 77.14 76.83		53.67	—34.10		
Parameter 1 Origin 2 Solvent 3 Temperature 4 Number of Scans 5 Spectrometer Frequency 6 Spectral Width 7 Lowest Frequency 8 Nucleus 9 Acquired Size 10 Spectral Size	Value Bruker BioSpin GmbH CDC13 0.0 200 y 100.61 24038.5 -1958.9 13C 32768 32768	P	h N Ts 1t	/—ОН					
Specific years de manage de manage de la segurite de segurite de segurite			ng ba d Mandan ng gali parta si sayan da daga na Madada da Marada da Marada da Marada da Marada da Marada da Ma	nincijajanja, Jacabar Wijipaljanji	mentione want by dithe op tight all op tight of the start by the				Lanath Lank, Majd Haff, Kang Jak
) 190 180 170	0 160 150 140	130 120	110 100 f1 (ppm)	90 80	70 60	50 40	30	20 10	0

hilde



Value Parameter Bruker BioSpin GmbH 1 Origin 2 Solvent CDC13 3 Temperature 296.1 4 Number of Scans 16 5 Spectrometer Frequency 400.13 6 Spectral Width 8012.8 7 Lowest Frequency -1535.4 8 Nucleus  $1\mathrm{H}$ 9 Acquired Size 32768 10 Spectral Size 65536



-1.617

-2.437



σ	·	S	ω	<b>~</b>	9	$\sim$	$\sim$	$\sim$	<b>~~~</b>	9	~	$\infty$	ω
<u> </u>	$\mathbf{\omega}$	$\mathbf{c}$	$\mathbf{c}$	$\mathbf{c}$	$\sim$	9	0	S	4	$\sim$	9	4	0
்	m.	ω	~	~	்	റ്	റ്	ω	ω	ω	~	~	~
4	4	ŝ	$\infty$	$\infty$	$\infty$	N.	N.	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$
<u></u>	<u></u>	<u></u>	<u></u>	<u> </u>	<u> </u>	<u></u>	<u></u>	<u></u>	<u></u>	· · · · · · · · · · · · · · · · · · ·	<b>T</b>	<u></u>	· · · · · · · · · · · · · · · · · · ·
L						_ L		5	1	1			
				7	T		7	Contraction of the local division of the loc		CONTRACTOR OF THE OWNER			

·	Ъ	$\odot$	$\sim$	
ø	4	~	$\infty$	
ന്	~	~	ശ്	
8	~	~		
Ū,		Ľ.	5	
			<	

59.96	53.49	53.39
Ĩ	Ľ	٦,

—21.57

1 origin Braker BisSpin Gabl 2 Solvern (UK1) 3 Temperature 296 1 4 Nuaber of Sams 250 5 Spectral Frequency 106.51 6 Spectral Fize 2008.5 7 Leves frequency - 198.9 8 Nucleas 200 9 Acquired Size 20768 10 Spectral Size 20768 10 Spectral Size 20768	Parameter	Value								
2 Solvent DC(3 Tomporture 28, 1 4 Number of Scans 220 5 Spectral frequency 100, 81 6 Spectral Vith 2008; 5 7 Lavest Frequency - 1958; 9 8 Nucleus 13C 9 Anguired Size 32768 10 10 10 10 10 10 10 10 10 10	1 Origin	Bruker BioSpin GmbH								
3 Teacersture 396.1 4 Nucleo 55688 250 5 Spectral Vidtb 2403.5 7 Levest Frequency - 195.9 3 Nucleus 13C 9 Acquired Size 32768 10 Spectral Size 32768 10 Nucleus 13C 10 Spectral Size 32768 10 Nucleus 14 Nucleus 1	2 Solvent	CDC13								
4 Multer of Scens 250         Spectral With 24036.5         7 Loosof Frequency - 1955.9         8 Multers 13C         9 Acquired Size 32768         10 Spectral Size 32768	3 Temperature	296.1								
5 Spectrol Proponery 10. 61 6 Spectrol Vidh 2048.5 7 Lawest Frequency -1958.9 8 Nacleus 106 9 Acquired Size 32768 10 Spectrol Size 32768	4 Number of Scans	250			0.11					
6 Spectral Width 24038.5 7 Lowest Frequency -1958.9 8 Nacleos 13C 9 Appired Size 12768 10 Spectral Size 32768 10	5 Spectrometer Frequer	ncy 100.61		Ph /	-OH					
7       Lowest Prequency       -1958.9         8       Nucleus       130         9       Arguired Size       32768         10       Spectral Size       32768	6 Spectral Width	24038.5	Ph-	~~ ) <u> </u>						
8 Nocloss 32768 32768 10	7 Lowest Frequency	-1958.9								
9 Acquired Size 32768 10 Spectral Size 32768 IU	8 Nucleus	13C								
	9 Acquired Size	32768		10						
	10 Spectral Size	32768		lu						
								aga da da fasta agreca est	-los - and	Development of

м И Ф М <del>Г</del> Г	·	<u> </u>	ŝ	9
$0.70 \pm 0.00$	·	$\delta $	$\sim$	õ
	9	0000007mmm 0000007mm 0000007mm	4	0
アンシントン	0	ഗഗഗഗഗഗഗഗഗഗഗഗ്ഗറ്റ് നന്ന്ന്	Ň	N.
				1
	1		1	1

	Parameter	Value
1	Origin	Bruker BioSpin Gmbl
2	Solvent	CDC13
3	Temperature	296.0
4	Number of Scans	16
5	Spectrometer Frequency	400.13
6	Spectral Width	8012.8
7	Lowest Frequency	-1535.4
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536







$\infty 4 \omega -$	ø
ഗഗര	9
6.7.7.	N.
8 7 7 7	9
$\searrow$	

—52.62 —48.99 —21.60

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	296. 5
4	Number of Scans	220
5	Spectrometer Frequency	100.61
6	Spectral Width	24038.5
7	Lowest Frequency	-1958.9
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768





	1				1	1				·	· 1	1	'	· 1		· 1	' 1	·		1
200	190	180	170	160	150	140	130	120	110 f	100 1 (nnm)	90	80	70	60	50	40	30	20	10	0
										' (ppin)										

<pre>7.699 7.678 7.320 7.300 7.260</pre>	6.279 6.264 6.264 6.266 6.256 6.072 6.058 5.286 5.286	(4.598) (4.593) (4.582) (4.577) (4.561)	3.769 3.755 3.755 3.757 3.751 3.675 3.634	$\begin{array}{c} 2.423\\ 2.128\\ 2.093\\ 2.070\\ 2.052\\ 1.204\\ 1.204\\ 1.204\\ 0.981\\ 0.981\\ \end{array}$
Value				

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.6
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.2
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536







Parameter	Value
1 Origin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	295.3
4 Number of Scans	250
5 Spectrometer Freque	ncy 100.64
6 Spectral Width	23809.5
7 Lowest Frequency	-1840.5
8 Nucleus	13C
9 Acquired Size	32768
10 Spectral Size	32768
didalisingapatapenasionangipapatikahanjarengenakonglefikipate	adin/adihaangaangaannaaniningahabaningahangaanaa.aosaymay

							· 1	·		· 1		·		·	·					· · ·
200	190	180	170	160	150	140	130	120	110	100 f1 (ppm	90 )	80	70	60	50	40	30	20	10	0

000 m	6 S O O V-	0 N O M	ი ს ს ი ი ი ს ს ს - ს - ს - ს - ს ს ს ს	Ω.	0 0 0 0 0
40000	077 - C - O - 40	004 m	の フ ト ら 4 m – フ 4 O	$\tilde{\mathbf{n}}$	0 0 U 0 M
5550	NNN 946	$\square \square \square \square \square$	4 4 4 4 M WU 4 4 4	4	7 - M M /
シンンン		ഗഗഗഗ	4 4 4 4 4 4 <u>4</u> m m m m	N.	········
		$\leq$		1	
אר ור					

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	0.0
4	Number of Scans	16
5	Spectrometer Frequency	400.13
6	Spectral Width	8012.8
7	Lowest Frequency	-1545.2
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536





0080066-9-N	സഹയ					
- N O N N M O N / N O	- 0 - 1	~ 0 @ N	$\sim$	6 N	6 N	
	∞ r –	<u> </u>	4	مون	- ri	m.
4 4 4 4 M M M M M N N N	000	6 1 1 1	4	ц со	- m	4
		8 7 7 7	9	ഗഗ	$\sim$ $\sim$	<u></u>
VII VVIII				57	52	

Parameter	Value
Origin	Bruker BioSpin Gmb
Solvent	CDC13
Temperature	0.0
Number of Scans	250
Spectrometer Frequency	100.61
Spectral Width	24038.5
Lowest Frequency	-1958.9
Nucleus	13C
Acquired Size	32768
0 Spectral Size	32768
	Parameter Origin Solvent Temperature Number of Scans Spectrometer Frequency Spectral Width Lowest Frequency Nucleus Acquired Size 0 Spectral Size



·	· · ·	1	· 1	· I	'	' 1		'	'	' '	' '	'	'	' '	' '	· · ·		' '	·	· I	-
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (	ppm)										

~7.687 ~7.667 ~7.306 ~7.286 ~7.286

5.272 5.251	4.513 4.498 4.482 4.477 4.461	3.917 3.880 3.851 3.815 3.815 3.531 3.490	2.158 2.158 2.158 2.158 1.472 1.472 1.455 1.439 1.262 1.262 1.262 1.262 1.262 1.262 1.262 1.262 1.262 1.262 0.856 0.856
$\mathbf{S}$			

1.0			
		Parameter	Value
	1	Origin	Bruker BioSpin GmbH
	2	Solvent	CDC13
	3	Temperature	294. 7
	4	Number of Scans	16
	5	Spectrometer Frequency	400.25
	6	Spectral Width	8196.7
	7	Lowest Frequency	-1636.3
	8	Nucleus	1H
	9	Acquired Size	32768
	10	Spectral Size	65536



--6.008



	146.91	-143.56 136.22 132.65 131.60 127.40	78.22 77.46 77.15 76.83	64.45	~56.16 ~54.68	<pre>/ 36.77 36.77 32.83 / 27.74 23.03 / 23.03 / 21.55</pre>
Parameter	Value					
1 Origin	Bruker BioSpin GmbH					
2 Solvent	CDC13					
3 Temperature	295.6					
4 Number of Scans	250		\ \			
5 Spectrometer Frequence	ey 100.64		)—он			
6 Spectral Width	23809.5					
7 Lowest Frequency	-1840.5					
8 Nucleus	13C					
9 Acquired Size	32768	Ts				
10 Spectral Size	32768	1v				

I T

11

· 1			' 1	· 1	'					· 1			· 1	' '	· 1	' '	- I	·	· 1	
200	190	180	170	160	150	140	130	120	110 f	100	90	80	70	60	50	40	30	20	10	0
										i (ppiii)										

TAXABLE IN CONTRACTOR OF CONTR		Parameter	Value
************	1	Origin	Bruker BioSpin GmbH
TAXABLE IN CONTRACTOR OF CONTA	2	Solvent	CDC13
A REAL PROPERTY AND ADDRESS OF AD	3	Temperature	295.7
A COLUMN TWO IS NOT	4	Number of Scans	16
ALL DATABASED IN CONTRACTOR OF	5	Spectrometer Frequency	400.13
	6	Spectral Width	8012.8
TAXABLE IN CONTRACTOR OF CONTA	7	Lowest Frequency	-1535.4
And a statement of the	8	Nucleus	1H
A NAME AND ADDRESS OF OWNER, OR OTHER	9	Acquired Size	32768
CONTRACTOR OF STREET,	10	Spectral Size	65536





	<pre>143.66 136.83 134.65 130.71 129.72 127.76 127.35</pre>	—104.55	77.49 77.17 76.85	~64.37 ~58.29 ~55.57	ン23.25 、21.57 シー14.61
ParameterValue1OriginBruker BioSpin Gm2SolventCDC133Temperature296.14Number of Scans2205Spectrometer Frequency100.616Spectral Width24038.57Lowest Frequency-1958.98Nucleus13C9Acquired Size3276810Spectral Size32768	bH	N Ts 1z	ЭН		

· 1	· 1	'	· 1	· 1	· · ·	· · · ·	· · · ·	' 1	'	· · ·	· 1	·	1	1	· 1	· 1	· I	· 1	1	· 1
200	190	180	170	160	150	140	130	120	110 f1	100 (ppm)	90	80	70	60	50	40	30	20	10	0

697	676	295	274	260
.7.	-1-	77	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1



~4.130 ~4.114 ~3.967 ~3.737

-1.719 -1.566

—2.407

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	0.0
4	Number of Scans	16
5	Spectrometer Frequency	400.13
6	Spectral Width	8012.8
7	Lowest Frequency	-1545.4
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

10.0





		Parameter	Value
	1	Origin	Bruker BioSpin GmbH
	2	Solvent	CDC13
	3	Temperature	0.0
	4	Number of Scans	250
-	5	Spectrometer Frequency	100.61
	6	Spectral Width	24038.5
	7	Lowest Frequency	-1958.9
	8	Nucleus	13C
-	9	Acquired Size	32768
	10	Spectral Size	32768



T di dilo coi	Value				
1 Origin	Bruker BioSpin GmbH	I			
2 Solvent	CDC13				
3 Temperature	0.0				
4 Number of Scans	250		-OH		
5 Spectrometer Frequency	7 100.61				
3 Spectral Width	24038.5				
7 Lowest Frequency	-1958.9	1			
8 Nucleus	13C		N ⁻		
9 Acquired Size	32768		IS		
10 Spectral Size	32768		laa		

—104.40

							-		1	· · · ·	י י		- I - I	- I I	- I - I	- T - T				- I - I	
200	190	180	170	160	150	140	130	120	110	100 f1 (ppm	9) )	)	80	70	60	50	40	30	20	10	0





83.29 77.55 77.23 76.91

$\sim$	$\sim$	S
0.	ø.	Ċ.
6	2	9
2	1	,
$\sim$	1	

--37.73

—21.59 —16.42

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	293.9
4	Number of Scans	100
5	Spectrometer Frequency	100.64
6	Spectral Width	23809.5
7	Lowest Frequency	-1840.5
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768



· · ·																				_
200	100	180	170	160	150	1/0	120	120	110	100	90	80	70	60	50	40	30	20	10	0
200	190	100	170	100	150	140	150	120	110	100	50	00	10	00	50	40	50	20	10	0
	f1 (ppm)																			

701	680	320	300	260
7.	7.	7.	~ /	7.

6.086
6.084
6.084
5.389
6.389
6.389
6.372

4.096 4.079 3.928 3.129 3.123 3.123 3.123 3.123 3.123 3.129 3.129 3.129 3.129 1.19031.576

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	293.3
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.4
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536



	<pre>/143.50 /142.95 /136.79 /135.84 /129.84 /126.03</pre>	77.70 77.42 76.79	—59.18 —55.06 —47.24		√22.03 √21.58 ~16.40
ParameterValue1OriginBruker BioSpin Gm2SolventCDC133Temperature293.94Number of Scans795Spectrometer Frequency100.646Spectral Width23809.57Lowest Frequency-1840.58Nucleus13C9Acquired Size3276810Spectral Size32768					
200 190 180 170 160 15	50 140 130 120 110 100 f1 (ppm)	90 80 70	60 50	40 30	20 10 0

	₹7.623 ₹7.602 ₹7.211	$\begin{cases} 6.161 \\ 6.157 \\ -5.757 \\ -5.236 \\ 5.218 \\ 5.218 \\ 5.200 \end{cases}$	/ 3.875 3.637 3.528 3.528 3.496	2.340 2.204 2.187 2.170 2.113 2.113	
Parameter 1 Origin 2 Solvent 3 Temperature 4 Number of Scans 5 Spectrometer Frequent 6 Spectral Width 7 Lowest Frequency 8 Nucleus 9 Acquired Size 10 Spectral Size	Value Bruker BioSpin GmbH CDC13 292.9 16 ncy 400.25 8196.7 -1648.4 1H 32768 65536	OH V Ts 1ad			
	2.03၂ 2.14ㅓ	1.00 1.00 1.03 1.03 1	2.00 년 2.01 년 2.01 년	3.02 2.05 1.03 3.00 	

5.5 5.0 f1 (ppm)

4.5

3.5

3.0

4.0

2.5

2.0

1.5

1.0

0.5

0.0

10.5

10.0

9.5

9.0

8.5

7.5

8.0

7.0

6.5

6.0

60	82	8	70	54	32	94	
43.	36.	32.	29.	27.	27.	26.	
<del>,</del>	<u></u>	<u></u>	<u></u>	<u></u>		-	
		$\sim$		~	1		

|

04.75
<u></u>

//

N Ts 1ad

_/ 77.55	-77.23	√76.91	

Ь

ЮН

--61.90 --58.09 --55.91

1 1

17
31.4
Î

1

1

—21.59

—14.52

	Parameter	Value							
1	Origin	Bruker BioSpin GmbH							
2	Solvent	CDC13							
3	Temperature	293.6							
4	Number of Scans	150							
5	Spectrometer Frequency	100.64							
6	Spectral Width	23809.5							
7	Lowest Frequency	-1840.5							
8	Nucleus	13C							
9	Acquired Size	32768							
10	Spectral Size	32768							

200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0



		143.65 139.20 138.51 136.43	122.33 129.88 129.65 129.18	L128.81 L128.41 L127.27		— 98.63	r 77.45	<u>√</u> 77.14	58.95	20.03           26.73           26.73		—21.60	—14.40	
Parameter 1 Origin 2 Solvent 3 Temperature 4 Number of Scans 5 Spectrometer Frequency 6 Spectral Width 7 Lowest Frequency 8 Nucleus 9 Acquired Size 10 Spectral Size	Value Bruker BioSpir CDC13 296.5 220 7 100.61 24038.5 -1958.9 13C 32768 32768	ı GmbH			N Ts 1a	Me 	—ОН							
200 100 180	170 160	· · · · · · · · · · · · · · · · · · ·				100 0					 			·

f1 (ppm)

10 5

99	5	5 m	0	0	0	ω	$\infty$	ω	$\infty$	
0 00	5	$-7$ $\infty$	σ	9	$\sim$	<u></u>	<b>~</b>	σ	σ	
N 9	5	ч	$\sim$	$\sim$	~		$\sim$	9	9	
~ ~	~	~~~	~	~	~	i.	പ	പ്	പ്	
<u> </u>			ĽĊ.	5	5	τ	7	7		
			-							

-5.316 -5.301 -5.285	

285	892 875 650
4.	, n, n,

—2.407	—1.618
—2.189	—1.427

Descent des	¥-1														
Parameter	Value														
2 Solvent	CDC13														
3 Temperature	0.0														
4 Number of Scans	16														
5 Spectrometer Frequency	7 400.13														
6 Spectral Width	8012.8														
7 Lowest Frequency	-1545.0		F												
8 Nucleus	1H	Me-	-{\	'Mę ∕—O	H					I					
9 Acquired Size	32768		E-1	)=/											
10 Spectral Size	65536		$\sim$												
				lat											
													JUL		
	۲ H	77		Ţ	4	Ţ	번	Ϋ́		Ч	번				
	2.04	2.05	1.02	1 00		2.10	2.01	2.0(		3.05	3.01	1.05 3.01			
10.0 9.5 9.0	8.5 8.0 7.5	7.0	6.5	6.0 5.5 f1	5.0 (ppm)	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0



Parameter	Value					
1 Origin	Bruker BioSpin GmbH					
2 Solvent	CDC13					
3 Temperature	0.0					
4 Number of Scans	150					
5 Spectrometer Frequen	ncy 100.61					
6 Spectral Width	24038.5					
7 Lowest Frequency	-1958.9			Me	/-OH	
8 Nucleus	13C				-/	
9 Acquired Size	32768					
10 Spectral Size	32768			<u>`N</u> _		
				1af		
		. 1				
		. 9 1				
				I	-	

	·				·															
200	100	100	170	160	150	140	120	120	110	100	00	00	70	60	FO	40	20	20	10	0
200	190	100	170	160	150	140	150	120	110	100	90	00	70	60	50	40	50	20	10	0
									f	1 (ppm)										




				· 1			·						· · ·		1				1 1			1 1	
200	190	180	170	160	150	140	130	120	110	100 f1 (ppr	90 n)	80	7	0	60	50	40	3	0	20	1	0	0





---97.98

77.62 77.30 76.98 75.97

—58.84

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	295.3
4	Number of Scans	300
5	Spectrometer Frequency	100.64
6	Spectral Width	23809.5
7	Lowest Frequency	-1840.5
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768



	1	1		1
		. II.		
 ll			L	

		· 1	· 1	'	'	. 1		·	·		·	·	· 1	· 1	· 1	. 1	'			
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
									f1	(ppm)										

ഗനഗന	N4U0NM04080408N	450000
0050	000000000000000000000	രഗഗനത
$\infty \infty \infty \infty$	44 m m m o o o o o o o o o o o	40
ファフィ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44444
$\sim$		

0	4	· · · · · · · · · · · · · · · · · · ·
0	Ń	S
0	ω	ω
oi.	·	<u> </u>
ĩ	ì	`.

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.5
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.7
8	Nucleus	1H
9	Acquired Size	32768
1	0 Spectral Size	65536









—98.05

77.43 77.11 76.79 76.11 69.20 —58.62

- Ľi

1

-22.13

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	0.0
4	Number of Scans	250
5	Spectrometer Frequency	100.61
6	Spectral Width	24038.5
7	Lowest Frequency	-1958.9
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768





- 1	' '	' '	'	, 1	'	'	' 1	' '	· I	'	' '	· 1	' '	' 1		- I		· I	· 1	- I
20	0 190	180	170	160	150	140	130	120	110 f	100 1 (ppm)	90	80	70	60	50	40	30	20	10	0





57 50 18 86	98 12 12	52	60
82. 77. 76.	61. 54.	31.	21.
$\langle \cdot \rangle$	151		

		/140.00 /143.49 /135.62 /133.28	128.37 128.27 127.56 127.26 124.60	, 82.57	77.50 77.18 76.86	~61.98 ~56.49 ~54.12	-31.52	—21.60	—14.26
Parameter 1 Origin 2 Solvent 3 Temperature 4 Number of Scans 5 Spectrometer Frequent 6 Spectral Width 7 Lowest Frequency 8 Nucleus 9 Acquired Size 10 Spectral Size	Value Bruker BioSpin CDC13 295.1 200 100.64 23809.5 -1840.5 13C 32768 32768	GmbH	Ph-	Me N Ts 1ai					
ngan da wang mang mang mang mang mang mang mang m	na pagtad aantan dag ag ag an tara ay an tarang dad ga ta			an a					alastanja analasta di watanga parta sanya tarangka saya tarangka saya tarangka saya tarang karangka saya sa

f1 (ppm) 



60	$n \omega m \omega \nu$
ωœ	$\circ$
იი	$\Sigma$ $\Sigma$ $\Sigma$ $\Sigma$ $\Sigma$ $\Sigma$
ഗ്ഗ്	ഗഗഗഗ
モデ	
Ý	

⁻¹ Mę

0	$\sim$	$\circ$	o	
$\sim$	0	σ	9	
8	9	S	S	
<i></i>	m.	m.	m.	
	17	11	11 C	
	~ ~	$\sim$		

$\sim$	6	$\sim$	S	б	<u></u>	$\infty$	4	<b>~</b>
$\sim$	9	S	$\infty$	<u></u>	$\infty$	7	0	$\infty$
4	$\sim$	$\sim$	$\sim$	$\sim$	Ω	ω	$\sim$	S
i	~ i	~ i	<u> </u>	~ i	•	•	•	-
			(V	(V	· · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>
<i>C</i>		Ľ	2	2	シ	5	シ	5

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	293.5
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.5
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536



ОН



	I	· 1	'	· · ·		· 1					'		· 1	' '	'			1		· 1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
									•	f1 (ppm)										

0 8 4 4 0	0 & 0 U U O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8820	VW V – V V V V V V V V
0802	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\infty \nabla - 3$	0-6700470
5 5 M Q Q	0 N N N 9 9 9 9 N N 0 0 6 6	യഗഗഗ	4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
フィンシン	。	ന്ന്ന്ന്	
		$\langle \langle \rangle \rangle$	
זר זר		זור ו	





86 57	25 95	80 76	41 24	47
15. 13.	35.	22.	27.	5.
77	~ ~	~ ~		
$\leq$	$\sim$	- 7 7	17	

 ^{34.16} ^{31.70} ^{31.53}
61.91 56.98 54.65

Parameter       Value         1       Origin       Bruker BioSpin GmbH         2       Solvent       CDC13         3       Temperature       0.0         4       Number of Scans       150         5       Spectrometer Frequency 100.61       6         6       Spectral Width       24038.5         7       Lowest Frequency       -1958.9         8       Nucleus       13C         9       Acquired Size       32768         10       Spectral Size       32768	78.53 77.45 77.18 77.18	-61.91 -56.98 -54.65	234.16 31.70 31.53 -21.56	— 14.54
	ОН			

f1 (ppm) 



0	S	4	0		9	0	$\sim$	σ		$\sim$	
9	<u> </u>	9	4	4	8	4	<u> </u>	$\mathbf{c}$	$\sim$	<u> </u>	
ന്	റ്	ω	்	N.	റ്	റ്	റ്	ω	~	0	
4	ŝ	ŝ	$\infty$	$\infty$	Ň	N.	N.	N	$\sim$	$\sim$	
~	<u></u>	<u></u>	<u></u>	<u> </u>	<del>~</del>	~	<u>~</u>	<u>~</u>	~	<u> </u>	
L_							)	1			
			1	T	1	1		-			

77.50 77.18 76.86 61.83 557.46

—21.60

—14.51

—31.46

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	295.2
4	Number of Scans	200
5	Spectrometer Frequency	100.64
6	Spectral Width	23809.5
7	Lowest Frequency	-1840.5
8	Nucleus	13C
9	Acquired Size	32768
1	0 Spectral Size	32768

i iicquei	100.01						
dth	23809.5			OH			
quency	-1840.5		/ Me —	/			
	13C						
ze	32768		- / /				
ze	32768		N/				
			Ts				
			1al				
					I	! .	
				Ľi IL			
		1 j					
				Ĭ			
անների ներակերու որ օգտնունեն։ Դինություն որ	ՠֈֈֈՠֈֈՠֈՠֈֈՠֈՠֈՠֈՠֈՠֈՠֈՠֈֈՠֈՠֈՠֈՠֈՠֈՠֈՠ		มหมุดสุดที่สุดสุดการสุดการสุดการสุดการสุดการสุดการสุดการสุดสุดสุดการสุดการสุดสุดสุดสุดสุดสุดสุดสุดสุดสุดสุดสุด 	anatomatic arcantes and the advantation of the	apaaparahasinaan Helippitaansisteeraadasoon ta	พระกองแปลและละสามหารและสามหารณ์ ไม่เสียไรและเมืองและเมืองและ	angungan angung angung angung angung angung angung angung ang ang ang ang ang ang ang ang ang a

		·			1		·						'	·	· 1		· 1		1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
									f	(ppm)										



-53.17 \53.03 -46.53	-36.21	-24.65 -21.57
> 1		1 1

- 1	'	'		·	'		. 1	'	· 1		. 1	'	· 1		· 1		' '	'		. 1	· 1
210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	0



	Parameter	Value						
1	Origin	Bruker BioSpin GmbH						
2	Solvent	CDC13						
3	Temperature	294.6						
4	Number of Scans	16						
5	Spectrometer Frequency	400.25						
6	Spectral Width	8196.7						
7	Lowest Frequency	-1636.5						
8	Nucleus	1H						
9	Acquired Size	32768						
10	Spectral Size	65536						





0.0

-201.33	-159.57	-143.91	-132.31 -130.29 -129.88 -128.40 -127.69 -173.69

77.39 77.07 76.75	$\sim$ 55.35 $\sim$ 53.21 $\sim$ 53.13 $\sim$ 46.54	—36.16	

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	295.5
4	Number of Scans	250
5	Spectrometer Frequency	100.64
6	Spectral Width	23809.5
7	Lowest Frequency	-1840.5
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768



	· 1									' 1	' '		· 1		· 1							- 1	-
210	200	190	180	170	160	150	140	130	120	110 f	100 f1 (ppm	90 I)	80	70	60	50	40	30	20	10	0	-10	



w04 <i>-</i> -	0 F 4 0	2W - 1 / 1 / 0 / 0 / 0 / 1	2
നനത്ത	4 ~ ~ ~ ~	W 0 4 0 - W W	n
00	n n Q Q	V V Q Q Q Q 4 W	V.
			<u> </u>
<u> </u>			
זר	r (r		



5.957

**alityddyn** 

6	60	95	96	17	87	28	14	69	32
43.	38.	34.	32.	32.	29.	29.	29.	27.	25.
<u> </u>	-	-	1	1	1	5	5	5	5
						1h	$\sim$	_	

37 05 73	19 52
77.77.	53. 46.
	$\vee$ i

Z4.68 21.56 21.12

—36.16

1 Origin Bruker BioSpin GmbH 2 Solvent CDC13 3 Temperature 0.0 4 Mumber of Scans 250 5 SpectralWith 21038.5 7 Lorest Frequency -1958.9 8 Moclous 13C 9 Acquired Size 32768 10 Spectral Size 32768 2 $c$	Parameter	Value									
2 Solvent CDC13 5 Temperature 0.0 5 Spectral Width 24008.5 Lowest Frequency 100.61 5 Spectral Width 24008.5 Lowest Frequency -1968.9 5 Welews 13C Acquired Size 32768 0 Spectral Size 32768 Comparison 232768 0 Spectral Size 32768 1 Sze 32768	Origin	Bruker BioSpin GmbH									
Temperature 0.0 Number of Scans 250 Spectraler Frequency 00.61 Spectral Kidth 24038.5 Lowest Frequency - 1958.9 Nucleus 13C Acquired Size 32768 0 Spectral Size 32768 2 c	Solvent	CDC13									
Number of Scans 250 Spectral Width 24038.5 Lowest Frequency -1958.9 Nucleus 13C Acquired Size 32768 D Spectral Size 32768 2 $c$	Temperature	0.0			1						
Spectral Width 24038.5 Lowest Frequency 1958.9 Nucleus 13C Acquired Size 32768 0 Spectral Size 32768 2 C	Number of Scans	250			I						
i Spectral Width 24038.5 i Lowest Frequency -1958.9 i Nucleus 13C 0 Spectral Size 32768 2 C	Spectrometer Frequency	/ 100. 61	Me 🔪 🦟								
/ Lovest Frequency -1958.9 8 Nucleus 13C 0 Acquired Size 32768 0 Spectral Size 32768 2 C	6 Spectral Width	24038. 5		Mo							
3 Nucleus       13C         ) Acquired Size       32768         (0 Spectral Size       32768         2c       1	7 Lowest Frequency	-1958.9									
Acquired Size 32768 0 Spectral Size 32768 2 c	Nucleus	13C	v Y	Ť							
	Acquired Size	32768	Ĺ								
	10 Spectral Size	32768		N Te							
	ungert von Franzisch statistische ungester statistische statistische der Statistische der Statistische der Stati	an fastadin severa har sa fan sala a sa giften san sala		je i gitte provinst-sport, dit start sports for ditart i gureja	Managantina da sa	Vierileskingspecificationer	wininingiansi py magaininan	na na matalana ang sa	haidanayanayana	Hiteration of the second s	etiringeneringener
	nteri su françusenti de sub-se adamantet esti eti eti da la aca atterna e uprim Norgan for forgan teringa e egen que parte e esti eti eti eti eti eti eti eti eti eti e	อากระบบการที่สุดอาการการที่จะเราะ เรื่องการกล้างทางกล่าง อากระบบการที่สุดอาการการที่จะเราะ เรื่องการกล้างทุกการการที่สุดอาการที่สุดอาการที่สุด		an a		Nativitetantinutenatur	nelja kopiter filosofi (je 1909), de ljenen		urust na hain a hait	Letting di Sprain più	<u>Ազինի արդություն</u>

9.825 9.820 9.814	7.719 7.698 7.357	7.252 7.336 7.331 7.242 7.242 7.221		 T 3.657 3.653 3.3399 3.371	2.726 2.720 2.652 12.652 12.605 12.605	
Parameter 1 Origin 2 Solvent 3 Temperature 4 Number of Scans 5 Spectrometer Frequency 6 Spectral Width 7 Lowest Frequency 8 Nucleus 9 Acquired Size 10 Spectral Size	Value         Bruker       BioSpin GmbH         CDC13       -         298.3       -         16       -         400.25       -         8196.7       -         -1636.5       -         1H       -         32768       -         65536       -		^t Bu			



1.09⊣

4.0

4.5

5.0

1.01⊥ 1.01⊥

3.5

3.0

1.02 1.01 1.05 3.04 €

2.5

2.0

9.36 _` 3.00 [™]

1.0

0.5

1.5

0.0

1.00 ⊥

2.08 ∄ 4.07 2.04 달

7.5

7.0

6.5

0.98-1

9.5

9.0

8.5

8.0

11.0 10.5 10.0

	—151.38	-143.88 $134.92$ $132.74$ $132.74$ $129.30$ $125.12$ $125.13$	<u>77.36</u> 77.05 76.73	T 53.20 753.09 -46.52	
Parameter 1 Origin 2 Solvent 3 Temperature 4 Number of Scans 5 Spectrometer Freque 6 Spectral Width 7 Lowest Frequency 8 Nucleus 9 Acquired Size 10 Spectral Size	Value           Bruker         BioSpin GmbH           CDC13         298.7           298.7         250           ency         100.64           23809.5         -1840.5           13C         32768           32768         -	$^{t}Bu$ $Me$ $Me$ $Ts$ $Ts$ $2d$			

				1	'	· 1			·			·			· 1				·		
210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	0

9.756	7.649 7.628 7.291 7.271 7.199 7.192 7.186	- 7.169 7.164 6.959 6.953 6.920 6.915 - 5.879 - 5.879	4.032 (4.029 (3.993	2.554 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.573 2.574 2.573 2.573 2.574 2.573 2.574 2.573 2.574 2.573 2.574 2.573 2.574 2.573 2.574 2.573 2.574 2.573 2.574 2.573 2.574 2.573 2.574 2.573 2.574 2.5753 2.574 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.5753 2.57532 2.5753 2.5753 2.5753 2.5753 2.57553 2.57553 2.57553 2.575555555555555555555555555555555555
Parameter	Value			
1 Origin	Bruker BioSpin GmbH			
2 Solvent	CDC13			
3 Temperature	297.2			
4 Number of Scans	16			
5 Spectrometer Frequen	су 400.13			
6 Spectral Width	8012.8	F、 🔊		
7 Lowest Frequency	-1572.7	Me		
8 Nucleus	1H			
9 Acquired Size	32768	v ↓ ↓	Ý	1
10 Spectral Size	65536			
		N Ts		



**2e** 

	~163.83 ~161.37	—143.98	$\int_{115.67}^{131.98} 130.05$ $\int_{127.67}^{127.67} 127.67$ $\int_{115.40}^{127.22} 115.40$	77.36 77.05 76.73	₹53.13 53.02 -46.53	—36.20	
Parameter 1 Origin 2 Solvent 3 Temperature 4 Number of Scans 5 Spectrometer Frequence 6 Spectral Width 7 Lowest Frequency 8 Nucleus 9 Acquired Size 10 Spectral Size	Value Bruker BioSpin GmbH CDC13 297.7 512 297.7 512 200.61 24038.5 -1958.9 13C 32768 32768		F Me N Ts 2e				

	· 1	· · · ·	I	· I	· 1	·	· · · ·	·	· 1	· · · ·	I	· · ·	· · ·	· 1	· 1	· .	· · ·	· 1	· · · ·		
210	200	190	180	170	160	150	140	130	120	110 f1 (pr	100 om)	90	80	70	60	50	40	30	20	10	0

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	297.7
4	Number of Scans	16
5	Spectrometer Frequency	376.50
6	Spectral Width	89285.7
7	Lowest Frequency	-82292.5
8	Nucleus	19F
9	Acquired Size	65536
10	Spectral Size	65536



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)



4	<del>~</del>	4	$\sim$	ω	9	$\sim$		$\sim$	<b>~</b>	$\sim$		~~~		7	9		0	Ъ	0	$\odot$
N.	$\sim$	Ó	Ω	0	$\sim$	$\infty$	σ	σ	0				$\odot$	$\infty$	4	<b>~</b>	ω		$\sim$	Ω
~	~	0	0	ω	9	9	S	S	4	$\infty$				$\sim$	9	9	S	S	4	$\sim$
4	4	4	4	m.	m.	m.	m.	m.	m.	m.	~i	~i	~i	~i	~i	~i	~i	N.	~i	<u>.</u>
Ľ	<u> </u>	L.	<u> </u>		Ĺ		Ľ Ľ	j.	j,	`ر	ι,	1	シ	<u> </u>					<u> </u>	1
					CT.			1	$\square$	-		1		and spinster						

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.6
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.7
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536







	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	295. 5
4	Number of Scans	250
5	Spectrometer Frequency	100.64
6	Spectral Width	23809.5
7	Lowest Frequency	-1840.5
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768

OMe Me N Ts 2f

		1				'   '	1		I	'	· 1	· 1		· 1	'		· 1	· · · ·	· · ·			Ĩ
210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	0	



) 5.5 f1 (ppm)



4 ∞ N	000000000000000000000000000000000000000
000	948-97-098895488974887-694
$\infty \infty \infty$	22011111111111000
റ്റ്റ്	2.0
$\checkmark$	

4-40-000	001-001004N0
00/4m00	$\alpha \land \dot{\alpha} , \alpha$
$\infty$ $\infty$ $\infty$ $\omega$ $4$ $4$ $4$ $4$	<u>vvv</u> 0 0 0 1 4 0 1
m $m$ $m$ $m$ $m$ $m$ $m$ $m$ $m$	$\neg$

	Parameter	Value								
1	Origin	Bruker BioSpin GmbH								
2	Solvent	CDC13								
3	Temperature	294.6								
4	Number of Scans	16								
5	Spectrometer Frequency	400.25								
6	Spectral Width	8196.7								
7	Lowest Frequency	-1636.6								
8	Nucleus	1H								
9	Acquired Size	32768								
10	Spectral Size	65536								





9	
ς.	
5	
2	

3.89	8.65	5.52	4.28	2.97	1.78	0.44	9.87	8.63	7.93	7.66	5.78
r 14	Ē	<u></u>	<u></u>	Ē	Ē	μ m	12	12	112	12	12

689	2 - 4	e	ഗഗയ
M O M	$\gamma - \gamma$	<u></u>	657
6.7	ന്ന്യ്	.0	4.4.6.
$\sim$ $\sim$ $\sim$	ი ი 4	$\sim$	
$\searrow$	$\vee$		557

	Parameter	Value								
 1	Origin	Bruker BioSpin GmbH								
 2	Solvent	CDC13								
3	Temperature	295.2								
 4	Number of Scans	250								
 5	Spectrometer Frequency	100.64								
 6	Spectral Width	23809.5								
 7	Lowest Frequency	-1840.5								
 8	Nucleus	13C								
 9	Acquired Size	32768								
 10	Spectral Size	32768								





1	1 1	· · · ·	'	· 1	·	'	' '		'	'	'		·	· I	' '		· · · ·	'	' 1	· 1	· 1
210	200	190	180	170	160	150	140	130	120	110 f1 (pj	100 pm)	90	80	70	60	50	40	30	20	10	0

6.828 9.823 9.817	,7.725		5.948 5.943 5.939		4.131 4.129 4.092 4.089	T 3.636 3.631 3.385 3.356	2.728 2.722 2.636 2.602 2.602 2.503	-1.231
Parameter	Value	]						
1 Origin	Bruker BioSpin GmbH							
2 Solvent	CDC13							
3 Temperature	0.0							
4 Number of Scans	16							
5 Spectrometer Frequence	ey <b>400.</b> 13							
6 Spectral Width	8012.8		М	le				
7 Lowest Frequency	-1545.4		, iii					

Me

Me

0

8 Nucleus

9 Acquired Size

10 Spectral Size

 $1\mathrm{H}$ 

32768



وبرازي وبرازان والمترافي والم

04 N	
мог	
N' N' 10	
110	

53.20 53.09 46.62	36.16	24.68 21.57 21.32
$\vee$ 1		$\smallsetminus \lor$

	Parameter	Value									
1	Origin	Bruker BioSpin GmbH									
2	Solvent	CDC13									
3	Temperature	0.0									
4	Number of Scans	250									
5	Spectrometer Frequency	100.61									
6	Spectral Width	24038.5									
7	Lowest Frequency	-1958.9									
8	Nucleus	13C									
9	Acquired Size	32768									
10	Spectral Size	32768									



	1	I		• •	· 1	' '	' '		' '			'	· 1	' '	· 1		· 1	· 1	· 1	· · ·	
210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	0

.766 .760 .753	.664 .644 .337 .317 .260
ດດດ	ファファ
$\checkmark$	

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.6
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.3
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536



-5.357





—201.71



0 8 9	мωО
407	n O n
6 7 7	ന്ന്യ്
$ \land \land \land$	ი ი 4
	$\checkmark$

~24.76 ~21.56 ~20.36

—35.76

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	295. 3
4	Number of Scans	250
5	Spectrometer Frequency	100.64
6	Spectral Width	23809.5
7	Lowest Frequency	-1840.5
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768

Temperature 296.3 imber of Seans 250 imber of Seans 20 pertonator Prequency 10.64 spectral Size 32768 spectral Size 32768 2j									
Subtractor Frequency 10.64 Spectral Vidth 23899.5 Locates 13.6 Locates 13.6 Locates 22768 Spectral Size 32768 2j	Temperature	295. 3							
Spectral Width 23805.5 Spectral Nidth 23805.5 Spectral Size 32768 Spectral Size 32768 J	Number of Scans	250							
Spectral Fidth 23809.5 correst Progency -1840.5 tecless 13C tecless 32768 Spectral Size 32788 2j	Spectrometer Frequency	100.64		Мо	Me				
.ovest Frequency -1840.5 kucleus 130 kucleus 330 spectral Size 32768	Spectral Width	23809.5		We					
kacleus 120 kacquired Size 32768 Speetral Size 32768 2j	Lowest Frequency	-1840.5		l	J				
Vequired Size 32768 Ts Spectral Size 32768 2j	Nucleus	13C		1	N				
ipectral Size 32768 2j	Acquired Size	32768		7	Гs				
	Spectral Size	32768			2j				
					0				
						h			
							1	i	1
								!	
	I								
	nykkenyktettainan digalapitikan padalaktetta papatatataa adaa askiet	animanina ana anina a		and the second	ւստոյությունի որոնդություն» Արդիրուսերի հերարուների հերանությունների հերանությո		And the second		ի Դրիսիս անտղում ինդ նուսությունը կերբարունեն և ուսունեն և
		· · · · · · · · · · · · · · · · · · ·				a la contra c			

				· 1				· 1	· 1		·		· 1					· 1	· · · · ·		
210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 opm)	90	80	70	60	50	40	30	20	10	0



	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.6
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.4
8	Nucleus	1H

65536

9 Acquired Size

10 Spectral Size

5.345

 ດໍດີດີ	-000
 • • •	
1	




-143.77 135.20 -132.95 -129.80 127.67125.96

$\begin{array}{c} 77.3 \\ 77.0 \\ 76.7 \\ 76.7 \\ 53.5 \\ 53.1 \\ 53.1 \\ -35.6 \end{array}$	~27.0 ~24.9 ~21.5
----------------------------------------------------------------------------------------------	-------------------------

-12.05

Parameter	Value
1 Origin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	295.1
4 Number of Scans	512
5 Spectrometer Frequ 6 Spectral Width	23809 5
7 Lowest Frequency	-1840 5
8 Nucleus	13C
9 Acquired Size	32768
10 Spectral Size	32768
	Arter Arter and Arter and Arter A

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
										1	f1 (ppm	)										

9.765 9.759 ↓9.753	<pre>7.6727.6517.342 &lt;_7.322 &lt;_7.322 </pre>
$\checkmark$	

5.355

613 574 268 239 239 170	528 500 426	931 911 890 890 890 242 242 242 242 242 221 221 221 862 862

	Parameter		Value	
1	Origin	Bruker	BioSpin	GmbH
2	Solvent	CDC13		
3	Temperature	298.2		
4	Number of Scans	16		
5	Spectrometer Frequency	400.25		
6	Spectral Width	8196.7		
7	Lowest Frequency	-1636.4	E	
8	Nucleus	1H		
9	Acquired Size	32768		
10	Spectral Size	65536		





	<u>10</u>	
	Larameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	299.0
4	Number of Scans	250
5	Spectrometer Frequency	100.64
6	Spectral Width	23809.5
7	Lowest Frequency	-1840.5
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768

I



Т

37	00	74
- 12	77.	76.
$\sim$	$\searrow$	$\sim$

61 0 33	25 25 25 25 25 25 25 25 25 25 25 25 25 2
0. 0. V	
<u>ю</u> ю 4	
$\bigvee$ /	

I

L



1 1	I				· 1	· 1				· 1			' '	· 1	· 1	· 1	' '	' '	1	· 1	
210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	0



.68
6
$\sim$

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	295.3
4	Number of Scans	250
5	Spectrometer Frequency	100.64
6	Spectral Width	23809.5
7	Lowest Frequency	-1840.5
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768

σ	4	9	$\sim$	$\sim$	σ		$\sim$		<u></u>	
$\sim$	σ	σ	$\sim$	ω	$\infty$	$\infty$	$\sim$	9	~	
m.	o.	~i	N.	<u>б</u>	ω.	ω.	ω.	~	0	
4	4	$\infty$	$\sim$	N.	$\sim$	$\sim$	$\sim$	$\sim$	$\sim$	
<u></u>	<b>~</b>	<u></u>	<u></u>	<u>~</u>	~~~~	<u></u>	<u></u>	<u>~</u>	<u></u>	
1	1	5	1		1					
1	(		$\neg$	11	-	and a second second				

	S	$\sim$	
$\infty$	0		
~	~	0	
~			
	$\sim$	$\sim$	

ή





ed une bledeline service o	-	fun lanks ann diffe an mhair	adamente adales kelledet	tant to be allow a share	n-desidife de-diala intern	na dilita na di Banda di Manada di Sana			hiteolon daratoo Mitoo	and the set of the state of the set	. Adduted a second straining	uses Annald the Las be		ha a bhlian a fhli a su bhar aile	-internet on the descent		ľ	l		shiring they have a store from a	Na March Alter, Albergheur
												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	0

69.761 9.755 9.749	∠7.672 7.651 7.345 7.325 7.260		3.650 3.650 3.650 3.257 3.230 3.230 3.257 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.193 3.197 3.193 3.193 3.197 3.193 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.197 3.193 3.197 3.193 3.197 3.193 3.197 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.193 3.1125 3.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.1126 5.112
ParameterValue1OriginBruker BioSpin Gmbl2SolventCDC133Temperature0.04Number of Scans165Spectrometer Frequency400.136Spectral Width8012.87Lowest Frequency-1545.68Nucleus1H9Acquired Size3276810Spectral Size65536		Me N Ts 2n	
1.00	2.07-1 2.05-1	1.03 T	1.03 ⊥         2.07 ⊥         2.07 ⊥         4.00 ↓         8.24 ⊥
11.0 10.5 10.0 9.5 9.0 8.5	8.0 7.5 7.0 6.5	6.0 5.5 5.0 4.5 f1 (ppm)	4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

-201.76

m

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	0.0
4	Number of Scans	350
5	Spectrometer Frequency	100.61
6	Spectral Width	24038.5
7	Lowest Frequency	-1958.9
8	Nucleus	13C
9	Acquired Size	32768
10	Spectrol Size	20760

-143.73 -143.73 -138.93 132.99 -129.80 -125.39

77.36 77.04 76.73

 $\begin{array}{c} & \begin{array}{c} 53.59 \\ 53.27 \\ 53.27 \\ -46.28 \\ -42.90 \\ \hline 35.60 \\ \hline 32.09 \\ 232.06 \\ \hline 226.50 \\ 21.57 \\ 21.57 \end{array}$ 

<ol> <li>Solvent</li> <li>Temperature</li> <li>Number of Scans</li> <li>Spectrometer Free</li> <li>Spectral Width</li> <li>Lowest Frequency</li> <li>Nucleus</li> <li>Acquired Size</li> <li>Spectral Size</li> </ol>	CDC13 0.0 350 equency 100. 61 24038. 5 y -1958. 9 13C 32768 32768		Me N Ts 2n			
			a degra sites bene linga bilanga ta dijanja da dijanja da daga sa ganganga jepenang bene na ganganga s			aftal ¹ maticaliset sets
210 200 190	180 170 160	150 140 130 120	) 110 100 90 f1 (ppm)	80 70	60 50 40 3	 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	77 950 50	333 39 38 57 41 11 11 11 11 11 11 11 11 11 11 11 11	2 C C C C C C C C C C C C C C C C C C C	142 1 3 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9252				
ு எ எ எ	ファファ		44444000000	
$\checkmark$	$\searrow$			

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	297.6
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.4
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536





	-
	0
-	_
è	~
2	5
•	2

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	296.9
4	Number of Scans	1024
5	Spectrometer Frequency	100.61
6	Spectral Width	24038.5
7	Lowest Frequency	-1958.9
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768





4 m O	0
4 - 0	
n n N	
0 0 <del>4</del>	P P m m m
$\bigvee I$	/



årføgeljedisteren	nining). Pigangangan	ามรังเราะรู้สุริษณ์ที่	nighteg kallegi (feren kallegi	ind the part of the	allmaastatika mee kantaka angar	Madit of all and a share a			nudddaru angog byw o Alb	l Mahagpatria (Mangadi	derive the general day of the particular of the	dygilasiya onabiyadata	ana ang sa aka iyo	Martin Martin Stream	ded e ⁿ er requeend		nin graaf hel part of			A gene de seguer de s	en ogsångette forste gjer
210	200	190	180	170	160	150	140	130	120	110 f1 (pr	- 100 om)	90	80	70	60	50	40	30	20	10	0



$\infty$
S
6
ഹ

0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\infty$
0004470m207	0 m - m O- m - m M M M M M M M M M M M M M M M M
NN00000000000000000000000000000000000	レレの4 mの い い ら の の の
4444.0000.000	0.0.0.1.1.1.1.1.0.0.0

0.0

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.3
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.6
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

11.0

10.5

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5





5.0

4.5

3.5

3.0

4.0

2.5

2.0

1.5

1.0

0.5

6.0 5.5 f1 (ppm)

	143.88 138.19 138.05 138.05 129.88 129.88 129.88 128.87 128.87 123.44	77.36 77.05 76.73	51.37 51.07 -46.75 -46.75 39.25 39.25 23.09 23.167 23.167 23.167 23.167 23.167 21.58 21.58 21.58 21.58 21.58 21.58 21.63 21.63 21.63 21.67 21.67 21.67 21.67 21.67 21.67 21.67 21.67 22.63 21.67 21.67 21.67 22.63 21.67 21.67 21.67 21.68 21.67 21.68 21.67 21.68 21.68 21.68 21.68 21.58 21.68 21.58 21.68 21.58 21.58 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.68 21.
ParameterValue1OriginBruker BioSp2SolventCDC133Temperature295.34Number of Scans10245Spectrometer Frequency100.646Spectral Width23809.57Lowest Frequency-1840.58Nucleus13C9Acquired Size3276810Spectral Size32768	in GmbH $\underbrace{\bigvee_{Me} \qquad \stackrel{Me}{\underset{Me}{\leftarrow} \qquad \stackrel{n}{\underset{Ts}{\leftarrow}} \qquad \stackrel{n}{\underset{Ts}{}} $		

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

403	м м о и 4 и 4 8 0 4 0 - 0 0 0 0 0
ത്തയ	00000000000000000000000000000000000000
$ \land \land \land \land$	$\nabla$
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
$\checkmark$	

0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	000000000000000000000000000000000000000
94707787	0 m 0 L 0 0 L 0 0 0 0 0 0 0 0 0 0 0 0 0
0000880	226877779999406660
4444	-

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	0.0
4	Number of Scans	16
5	Spectrometer Frequency	400.13
6	Spectral Width	8012.8
7	Lowest Frequency	-1545.4
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536





22	46	41	75	04	76	58	66	05	52
44.	37.	35.	32.	30.	28.	28.	27.	27.	25.
~	<u> </u>	~	~	~	<b>~</b>	~	~	<del>~ -</del>	<u></u>
L_						4	$\sim$	_	

9	4	$\sim$
$\sim$	0	$\sim$
~	7	<u>ن</u>
$\sim$		/

94 64 57	30	11 01 58 58 58 58
50. 46.	38.	28. 25. 25.
$\mathbf{Y}$		

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	0.0
4	Number of Scans	250
5	Spectrometer Frequency	100.61
6	Spectral Width	24038.5
7	Lowest Frequency	-1958.9
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768



			· · ·	, 1	• 1	' '	· 1	' '	' '	' 1	· 1	' 1					· 1	'	·	'		' '
2	210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	0

Ъ
<u></u>
10
3
Ŷ
1

43
ω.
X.
· · ·
1

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.9
4	Number of Scans	16
5	Spectrometer Frequency	376.61
6	Spectral Width	90909.1
7	Lowest Frequency	-83115.7
8	Nucleus	19F
9	Acquired Size	65536
10	Spectral Size	65536



Т	- I - I	-	· · · ·	1	· · · ·	· · · ·		· 1	· · ·	· I	· 1	· 1	· · · ·		<del>, , , , , , , , , , , , , , , , , , , </del>	<del>, , , , , , , , , , , , , , , , , , , </del>	· · · ·	<del>, , , , , ,</del>
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	f1 (pp	-110 om)	-130	-150	-170	-190	-210

00477000000077400	> N 0 4 - 0 0 0 4 0 0 0 0 m 0		NOW04000NN000
0 1 8 8 9 0 1 7 7 9 0 0 8 8 7 9	-000000000 + -0000-	- 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	04080080000
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		8777749999999999	0000440000000

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.6
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.5
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

\sim	S	\sim
Ω	0	2
7	2.	ശ്
~	~	
· _	1	2

	<51.69 <51.10	~46.70 -42.77 ~40.35	
--	------------------	----------------------------	--

21.58

 $\frac{\int_{-5.26}^{-6.01}}{4.70}$

1 forigin Bruker BioSpin Gubi 2 Solvent CDC13 3 Toperature 296.2 4 Waber of Stoars 1024 5 Spectrometer Propaney 0.641 5 Spectrometer Propaney 0.641 5 Noclous 13C 9 Acquired Size 32768 10 Spectral Size 32768 Ts 2r	Parameter	Value						
$ \begin{array}{c} 2 \text{ solvent} & \text{CDC13} \\ 3 \text{ Tomperature} & 290, 2 \\ 4 \text{ Number of Sears} & 1024 \\ 5 \text{ Spectrater Frequency 100, 64} \\ 6 \text{ Spectral Width} & 23809, 5 \\ 7 \text{ Lowest Prequency } & -1800, 5 \\ 8 \text{ Worbus} & 13C \\ 9 \text{ Acquired Size} & 32768 \\ 10 \text{ Spectral Size} & 32768 \\ \hline \end{array} $	1 Origin	Bruker BioSpin GmbH				1		
3 Tapperature 295.2 4 Vubir of Scans 1024 5 Spectrometer Prequency 100.64 6 Spectral Kith 23899.5 7 Lowest Prequency 180.5 8 Vachnis 137 9 Acquired Size 32768 10 Spectral Size 32768 2 r	2 Solvent	CDC13			I	1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3 Temperature	295.2		/	\wedge I			
5 Spectroalter Frequency 100.64 6 Spectral Width 23809.5 7 Lowst Prequency - 1840.5 8 Nocleus 13C 9 Acquired Size 32768 10 Spectral Size 32768 10 Spectral Size 32768	4 Number of Scans	1024						
6 Spectral Width 23809.5 7 Lovest Frequency -1840.5 8 Nucleus 13C 9 Acquired Size 32768 10 Spectral Size 32768 10 Spectral Size 32768	5 Spectrometer Frequency	y 100.64		Ph,				
7 Lowst Frequency -180.5 8 Nucleus 13C 9 Acquired Size 32768 10 Spectral Size 32768	6 Spectral Width	23809.5		$\uparrow \uparrow \uparrow$	\sim			
8 Norleus 13C 9 Acquired Size 32768 10 Spectral Size 32768	7 Lowest Frequency	-1840.5						
9 Acquired Size 32768 10 Spectral Size 32768 10 In the second s	8 Nucleus	13C		N				
	9 Acquired Size	32768		15 1				
	10 Spectral Size	32768		2r				
			l					
								1.
	1							
	and the second	arith arthorn & howen and the difference of the till of the data of the birth of the data of the birth of the birth of the data of the birth of the birtho birth of the birth of the birth of the birth						

- 1		· 1		'	'					'			'	. 1		'		/]	· · · ·	· · ·	
210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	0

322 316 310	722 701 374 3860 3803 3814 3334 3334 3334 3334 3334 3333 3334 315 271 315 260 315
8.0 8.0 8.0	
\checkmark	

0 WV 4 4 0 0 0 0 -	0 0 - 0 0	~ ^ <u>~ ^ ~ </u> ^ ~ 0
$\infty - 0000000 - \infty$	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 u 4 om – o
N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	レレの4	രാവന്തര
4444.0000.000	55555	

---0.068

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.7
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.8
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

чоч	0 7 0 7 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0
200	400004000-000-00
999	00
ര്റ്റ്	
\leq	
Ŷ	

- ^ -	യന	റ	40	ŝ		4	ഹ		\sim	4	0	4	∞	\sim		∞	4		∞	∞
$\infty \lor 4$	$\infty -$	· O		4	<u></u>	Ó		Ь	\sim		4	Ó	Ъ	\sim	~	0	Ó	9	9	9
ထိထဲထဲ	$\infty \infty$	$\overline{0}$	アア	Ò	0	Ō	5	σ	S	õ	ò	Ś	S	S	S	Ś	ŝ	4	4	ŝ
ന്ന്ന്	ന്ന	i mi	m m	с. С	m.	m.	N.	N.	N.	N.	N.	N.	N.	~i	N.	N.	N.	N.	N.	N.
		11			1	(1111	Champion and	T												

	Parameter	Value
 1	Origin	Bruker BioSpin GmbH
 2	Solvent	CDC13
 3	Temperature	294.3
 4	Number of Scans	16
 5	Spectrometer Frequency	400.25
 6	Spectral Width	8196.7
 7	Lowest Frequency	-1665.9
 8	Nucleus	1H
 9	Acquired Size	32768
 10	Spectral Size	65536

9
\sim
<u> </u>
ò
Ñ

02	91	25	50	73	61	92	70	67	44	24	73	92	48		
44.	37.	36.	33.	32.	30.	29.	28.	28.	28.	28.	27.	26.	25.		
· · · ·	<u></u>	~	~	~	~	~	~ -	~	<u></u>	~	~	~	·		

2	∞	
mΟ		
N N.	<u>ن</u>	
~ ~		
\searrow	\sim	

—21.58

		Parameter	Value							
	1	Origin	Bruker BioSpin GmbH							
_	2	Solvent	CDC13							
_	3	Temperature	296.7							
	4	Number of Scans	250							
	5	Spectrometer Frequency	100.61							
	6	Spectral Width	24038.5							
_	7	Lowest Frequency	-1958.9							
	8	Nucleus	13C							
	9	Acquired Size	32768							
	10	Spectral Size	32768							

I	· · ·	1	, 1	·	· 1	'		1		·	'			' 1	· 1	· 1	· 1	·	· 1
200	190	180	170	160	150	140	130	120	110 f1 (pp	100 m)	90	80	70	60	50	40	30	20	10

ഗഗ		Ω
50	0 1 4 m 0 01 0	0
m m	<u> </u>	4
4.4.	i ni ni ni ni ni ni ni ni	Ň
C/		1

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.8
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.3
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

	[143.97 [142.60 [137.85	134.48 1129.90 128.75 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.45 128.59	=77.36 77.05 76.73	54.87 54.87 46.57 43.11		
Parameter1Origin2Solvent3Temperature4Number of Scans5Spectrometer Frequent6Spectral Width7Lowest Frequency8Nucleus9Acquired Size10Spectral Size	Value Bruker BioSpin GmbH CDC13 295.3 1024 100.64 23809.5 -1840.5 13C 32768 32768	$\begin{array}{c} Ph \underbrace{f}_{V} \stackrel{Ph}{\underbrace{f}_{V}} \stackrel{Ph}{\underbrace{f}_{V} \stackrel{Ph}{\underbrace{f}_{V}} \stackrel{Ph}{\underbrace{f}_{V} \stackrel{Ph}{\underbrace{f}_{V}} \stackrel{Ph}{\underbrace{f}_{V}} \stackrel{Ph}{\underbrace{f}_{V}} \stackrel{Ph}{\underbrace{f}_{V} \stackrel{Ph}{\underbrace{f}_{V}} \stackrel{Ph}{\underbrace{f}_{V}} \stackrel{Ph}{\underbrace{f}_{V}} \stackrel{Ph}{\underbrace{f}_{V} \stackrel{Ph} \underbrace{f}_{V} \stackrel{Ph}{$				
newsen of the balance of the strength of the s	tagilang menang kala nada pinang kalanda ying kan nagima mana kaning kaja d					
210 200 190 1	80 170 160 15	0 140 130 120 110 100 f1 (ppm)	90 80 70	60 50 40	30 20 10	0

byititgi

339	710 590 324 324 324 309 289 289 260	027 022 017
		0.0
		\checkmark

00	δ	б	S	\sim	\sim	0	\sim	<u></u>	<u></u>		0	\sim	∞	9	∞	· · · · ·		∞
N ∩	ω	4	9	S	\sim	\sim	4	\sim	·	4	∞	0	∞	0	σ	9	4	\sim
~ ~	9	9	\sim	\sim	\sim	\sim	0	0	0	∞	ω	ω			9	9	9	4
4 4	с.	ы.	ω.	ы.	с.	m.	с.	с.	с.	N.	,	N.	N.	N.	сi	N.	N.	N.
					2													
11		11		10	n-	nn	m	- F										

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	297.5
4	Number of Scans	16
5	Spectrometer Frequency	400. 25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.5
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

- 20		143.8 134.9 134.9 129.8 129.8 125.5 125.5
Parameter	Value	
1 Origin	Bruker BioSpin GmbH	
2 Solvent	CDC13	
3 Temperature	299.2	
4 Number of Scans	1024	
5 Spectrometer Frequency	100.64	
6 Spectral Width	23809.5	
7 Lowest Frequency	-1840.5	Ph Ó
8 Nucleus	13C	FII
9 Acquired Size	32768	
10 Spectral Size	32768	N/

47.19 46.94 46.57

77.34
 77.02
 76.71

—30.05

—21.54

langenstreter, statut	da ali phini deki dena su na kata phini deki dena su	land salah sala Salah salah sala	sone difte at the state of the	terställen, Medellanderen Trepfengig (urtransliger	for a line for the for some for any for Security of years of the grade of the	fillet the level of a second second				Jad Ial, Islanda kumentar pilor por tega yan mejany		elent fall interacy		saastada (ayadi d. Maate ayyyyysy y waastayay	Awatahatan Atan Iwatan Manga Juga Sata Ingga Ju	n të da konta nga ja kolidan Ng Taya ng Pangara ya Taya	lyndfast [(fra fransse tann gynddiann y cardyn	A soft at the first of the soft	l tablication de contra policie policies de roya de provincies de contra policies de	(Aratis Industria) (i) Ning Sector (Spectra	iladas, tants (saras) ing (saras)
210	200	190	180	170	160	150	140	130	120	110 f1 (pp	100 0m)	90	80	70	60	50	40	30	20	10	0

06117	6 8 4 6 7 0 8 7 7 9 7 9 8 7 9 7 9	7005 m-7	4 - v 0 - v 4 v
0 2 7 3 0	89978874	9 M 4 M 6 M	
- 1 2 2 2	000000000000000000000000000000000000000	00 004 r	
~ ~ ~ ~ ~ ~		ന്ന് പ്പ്പ്റ	

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	296.2
4	Number of Scans	16
5	Spectrometer Frequency	400.13
6	Spectral Width	8012.8
7	Lowest Frequency	-1570. 3
8	Nucleus	1H
9	Acquired Size	32768
10) Spectral Size	65536

Et

Ts 2w 0

~121.51

77.36 77.04 76.72

l

~	9	σ	4	4	$\mathbf{\omega}$	4
<u> </u>	8	5		8	8	Ś
· · ·	ω	4	ω	.	ω	.
ŝ	4	4	∞	∞	\sim	\sim
\sim	~	_ ,		1		\leq

	Parameter	Value	
1	Origin	Bruker BioSpin GmbH	
2	Solvent	CDC13	
3	Temperature	296.0	
4	Number of Scans	1024	
5	Spectrometer Frequency	100.61	
6	Spectral Width	24038.5	
7	Lowest Frequency	-1958.9	
8	Nucleus	13C	
9	Acquired Size	32768	
10	Spectral Size	32768	

																						ŕ
				· · · ·	- I - I	1		I	· · ·	· I		· · ·	· · · ·	- I - I	- I - '	1	· · · ·	- I	·		- · ·	-
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	
										f1 (ppm)											

000	-
4 < 0	∞ m m
n n n	
~ ~ ~	000
$\langle 1 \rangle$	\leq
	<pre>/.340 /7.326 /7.260</pre>

5.958
5.935

4.109 4.070	3.499 3.494 3.443 3.443 2.812 2.812 2.482 2.482 2.454 2.454 2.452 2.423 2.134	1.199
\mathbf{V}		Ì

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.5
 4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.5
8	Nucleus	1H
 9	Acquired Size	32768
10	Spectral Size	65536

	<pre>/147.90 /147.36 /143.79</pre>	130.10 1129.84 178:95		77.39 77.07 76.75	53.23 51.85 46.66	—35.87 —31.79	~ 21.56
ParameterValue1OriginBruker BioSpin GmbH2SolventCDC133Temperature295.54Number of Scans2505Spectrometer Frequency100.646Spectral Width23809.57Lowest Frequency-1840.58Nucleus13C9Acquired Size3276810Spectral Size32768			Me V Is 2x				
						I I	
210 200 190 180 170 160	150 140	130 120 <i>°</i>	110 100 90	80 70 60	50 4	U 30	20 10 0

_

		Parameter	Value
1	_	Origin	Bruker BioSpin GmbH
2	2	Solvent	CDC13
3	3	Temperature	294.9
4	ł	Number of Scans	16
5	5	Spectrometer Frequency	400.25
6	5	Spectral Width	8196.7
7	7	Lowest Frequency	-1636.5
8	3	Nucleus	1H
9)	Acquired Size	32768
1	0	Spectral Size	65536

-5.375

_

σ	∞	9
∞	0	
~	~	்
~	~	
1	1	2

ω	\sim	ω	0		\sim	0	σ	\sim		\sim	∞
4	00	$\mathbf{\omega}$	8	$\mathbf{\omega}$	\sim	0	2	6	4	4	S
m.	.	~	்	ഹ	~i	.	~	m.	N.	N.	~
Ś	Ъ	4	m	$\mathbf{\omega}$	ŝ	∞	N	\sim	\sim	N.	\sim
	1	1	5		~~	1			2	_	
1	ſ	(רר	ור	1	1			

5 Spectrometer Frequency 100. 64 6 Spectral Width 23809. 5 7 Lowest Frequency -1840. 5 8 Nucleus 13C	F0	
9 Acquired Size 32768 10 Spectral Size 32768		

		_																				
21	0	200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	0

The second se		Parameter	Value
	1	Origin	Bruker BioSpin GmbH
	2	Solvent	CDC13
	3	Temperature	294. 3
	4	Number of Scans	16
	5	Spectrometer Frequency	400.25
	6	Spectral Width	8196.7
	7	Lowest Frequency	-1636.5
	8	Nucleus	1H
	9	Acquired Size	32768
	10	Spectral Size	65536

200	000000000000000000000000000000000000
7 7 7	0 7 8 8 9 0 7 8 2 9 7 8 7 9 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
$\infty \infty \infty$	P P P P P P P P P P
ര്ര്ര്	スススススススススススススス
\checkmark	

N 0 0 1	0 > 40 4	.0 - 4 0 0 - 00	
720	0404 0	1 – 0 4 0 0 0 1 – 1	•
	44 m m 0	0400000	
ਤ ਤ ਤ ਤ ਤ	ທີ່ຕໍ່ຕໍ່ 🖓		

		Parameter	Value
	1	Origin	Bruker BioSpin GmbH
	2	Solvent	CDC13
	3	Temperature	293. 3
	4	Number of Scans	16
	5	Spectrometer Frequency	400.25
	6	Spectral Width	8196.7
	7	Lowest Frequency	-1636.4
	8	Nucleus	1H
	9	Acquired Size	32768
	10	Spectral Size	65536
- 3			

--5.653

		77.39	 54.37 48.40 44.60 37.98 36.39 21.54 21.54
ParameterValue1OriginBruker BioSpin GmbH2SolventCDC133Temperature293.74Number of Scans10245Spectrometer Frequency100.646Spectral Width23809.57Lowest Frequency-1840.58Nucleus13C9Acquired Size3276810Spectral Size32768	$ \\ N \\ Ts \\ 2ac$		

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (p	pm)										

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	294.3
4	Number of Scans	350
5	Spectrometer Frequency	100.64
6	Spectral Width	23809.5
7	Lowest Frequency	-1840.5
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768

√143.09
√137.56
√135.28
√135.24
√129.73
√127.23

~~~	ω	9	Ь	4	ω	<
00	S	\mathbf{c}	S	×		Ц
4.	4	ω	ഹ	~	. .	~
4	4	∞	∞	\sim	\sim	C
			1			1

1 7

—54.24

Y

-112.55

110 100 f1 (ppm)

2ad

143.41 -

0407000774480440878074608006	7 2 2 7	6 6 M	000-0004N
0 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	ら ー レ 4	$\circ \land \land$	
000111111100000000000000000000000000000	4400	ഗവ	000000NN 44
666677777777777777777777777	444	ന്ന്ന്	- KI

05	66	69	76	92	79	48	96	68	02
4	.68	32.	0.	6	27.	27.	50.	20.	20.
-	-	-	-	-	-	-	-	-	-
					-		nfr		

0	ω	9	C
S	· · ·	00	c
~	~	Ö	с С
\sim	7	\sim	L
	\sim		

—25.78 —21.57

Parameter	Value						
1 Origin	Bruker BioSpin GmbH						
2 Solvent	CDC13	1	1				
3 Temperature	0.0	ΞÌ					
4 Number of Scans	300						
5 Spectrometer Frequency	100.61						
6 Spectral Width	24038.5		l Ì Me				
7 Lowest Frequency	-1958.9)			
8 Nucleus	13C						
9 Acquired Size	32768						
10 Spectral Size	32768		Ts				

			1	' 1			·		1	. 1	' 1	' '			1	'	. 1	' 1	· 1		· 1
210	200	190	180	170	160	150	140	130	120	110 f1 (pj	100 om)	90	80	70	60	50	40	30	20	10	0

and the standards

-143.97 136.68 -136.64 -132.78 -132.78 129.87 127.09 125.90	<u>√</u> 77.40 √77.08 76.76	√54.06 √53.78 ~48.40
--	-----------------------------------	----------------------

~25.80 ~21.57 ~20.89

—37.54

Paramatar	Value
1 Origin	Regular BioSpin Conhu
2 Solvent	CDC13
3 Temperature	0.0
4 Number of Scans	300
5 Spectrometer Frequency	100.61
6 Spectral Width	24038.5
7 Lowest Frequency	-1958.9
8 Nucleus	13C
9 Acquired Size	32768
10 Spectral Size	32768
I	
in a sinte of the first state of the second side of the state of the second second second second second second	a en a filia da Labat bila ante en antidate da Anantilita e da Antidation
ŶŧŧġſſŧġĸĸġĸġſġſġſŶĬġŧŶţġŧġţġĸġĸĸſĿĸġĸĸijĿġċţŶĬţĸţġţġĸŶĸĿţĬĸ	n i an fall an fan fan fan fan fan fan fan fan fan

- 1		1		· · ·	1						· 1			·	·	'		- I	· 1		
210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	0

52 46 40	22 22 22 22 22 22 22 22 22 22 22 22 22
000	
0 0 0 0	
Ϋ́	

96 59 24 86	89 59	60 60 60	03 73 23 17	1200 1200 1200 1200 1200 1200 1200 1200
			-2.8 -2.7 -2.7 -2.7	
$\mathbf{Y} \mathbf{Y}$	$\langle \rangle$			

Parameter Origin	Value Bruker BioSpin GmbH											
Solvent	CDC13								I			
Temperature	0.0											
Number of Scans	16											
Spectrometer Frequer	ncy 400.13											
Spectral Width	8012.8		γ	Mo								
Lowest Frequency	-1545.2		L L									
Nucleus	1H		Ý	\uparrow \checkmark								
Acquired Size	32768		Ĺ									
)Spectral Size	65536			N'								
1.00-≖	1	2.14 ^人 2.15 ^人 2.15 ^人 1.06 ^人			1.06 五 1.06 五	1.06 - 王	1.06 1.07 1.07 1.07	3.26 4	3.11 म			
5 10.0 9.5	9.0 8.5 8.0	7.5 7.0	6.5 6.0	5.5 5.0 f1 (ppm)	4.5 4.0	3.5	3.0	2.5 2.0	1.5	1.0	0.5	

53.67 53.49	~48.14	-37.61
Y	(I

-25.68 -21.58

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	0.0
4	Number of Scans	1024
5	Spectrometer Frequency	100.61
6	Spectral Width	24038.5
7	Lowest Frequency	-1958.9
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768

	1	'		· 1	· 1			·					· 1		· 1	1		- 1	·	- 1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (p	pm)										

the state of the s

~ 0 0	4 co 4	6	$\tilde{\mathbf{\omega}}$	0
1 O M	500	~	4	ŝ
·	o 4 œ	4	Ö	4
	- 1 9	LÚ.	\sim	Ň
$\leq 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 $	~ /			
	r r			

Parameter Valu	
1 Origin Bruker BioS	SmbH
2 Solvent CDC13	
3 Temperature 295.3	
4 Number of Scans 512	Me
5 Spectrometer Frequency 100.64	
6 Spectral Width 23809.5	
7 Lowest Frequency -1840.5	
8 Nucleus 13C	0
9 Acquired Size 32768	2ah
10 Spectral Size 32768	1 J

	1			·		·	. 1			· 1	'		·	' 1							
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										тт (р	pm)										

603	0066-988760770
8 ~ ~	007700077007007
$ \land \land \land$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
റ്റ്റ്	ススススススススススススス
\checkmark	

- N N N N O 7 O N U	2 4 8 9	-0 -1 2 -0
<u> </u>	$\omega \alpha \omega \omega$	$\infty \lor 0.740$
	0004	$-\infty \infty \overline{\infty} \overline{\infty} \overline{\infty}$

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	293. 3
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.7
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

2ai

--5.783

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	0.0
4	Number of Scans	250
5	Spectrometer Frequency	100.61
6	Spectral Width	24038.5
7	Lowest Frequency	-1958.9
8	Nucleus	13C
9	Acquired Size	32768
10	Spectral Size	32768

77.36 77.04 76.72

needa waa da waa da dhaxaa yaa ah Yar ahay xaa yaa yaa yaa yaa yaa ya	lingti i parta en del antegia	na kon si sa kata kata	nghada din ta ta ba ada		indu bite. Disationale many i transmission	h na shana ka sa				la faced a fait som a dette förer a dans		h disea pina dia da	nan Masimit	lanara dina mbarata ini ata Ing gan dina ang pangana ang pa	en este este este a						h den men stadinge
210	200	190	180	170	160	150	140	130	120	110 f1 (pp	100 m)	90	80	70	60	50	40	30	20	10	0

9.750 9.746 9.742	.7.673 .7.652 .7.345 .7.325 .7.325

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	293.6
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.7
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

--5.160

15	76	63	54	81	53	19	90	32	45	41	22	66	57
S	4	<u></u>	~	Õ	0	ഹ	4	4	~	~	\sim	Õ	6
m.	с.	с.	с.	с.	ς.	,	N.	N.	.	<u>, </u>	<u>, </u>	. .	
5		\mathbb{A}^{\sim}		h-		1ri	\square		5	\leftarrow			

0 N M	0	4 4 ∞ − ∩ ∩ 0 04 ∞ 4 ∩ ∩ ∩	0 8 0 0 8 0	4 N O U U N N 4 04
Ω44 Ω	N 10 4 7 0	04070000/0000mm	0 0 - 0	- 8 L 8 L 8 L 8 L
	10 m m Q Q	NNNN000-0000	00-152	0444-007/0
ு எ எ எ	トイン・フ	ហហហហហហហហហ	ന്ന്ന്ന്ന്	
\checkmark			$\searrow \searrow { } { } { } { } { } { } { } { } { } $	

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	293. 7
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.3
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

001-000000400	- 0 4 9 7 7 7 8 8 8 8 4 7 7 7 8 8 8 8 8 7 7 7 8 9 8 8 7 9 7 0 7 7 8 8 8 8 7 9 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	\cdot \land	4 - 0 & 0 & 0 & 0 & 0 & - 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &
8401094400-0	0 A A A A A A A A A A A A A A A A A A A) N C O O O O N N C C O O O O O O O O O O	9 5 6 7 7 7 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
- 10 10 10 10 10 10 10 10 10 10 10 10 10	0 0 4 4 6 6 4 8 9 9) い い い 4 4 4 4 4 4 4 m m m m ぃ	<u> </u>
<u> </u>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	293.6
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1636.4
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

Мe Ts 2al

—201.99

S	S	Ω	4	\sim	\sim	~	ω	σ	\sim
0	S	S	0	8	8	\mathbf{c}	S	4	0
m.	o.	~i	o.	റ്	~	~	<u>ن</u>	<u>ن</u>	்
4	4	∞	\odot	N.	\sim	\sim	\sim	\sim	\sim
<u></u>	<u></u>	~	<u> </u>	<u></u>	<u></u>	<u></u>	<u></u>	<u> </u>	<u></u>
1	1	5	~~	1	1				_
1				11	111	Support Support			

6		9
\sim	0	\sim
~	~	ശ്
Ň	~	
	<u>і</u> г	<u>ر</u>

48	43	54	50	44	87	200
m.	ò	6.	2	ŝ	5	
1	4	- m	2	7		
I		1	ſ	ſ	1	

11111111111111111		Parameter	Value
	1	Origin	Bruker BioSpin GmbH
	2	Solvent	CDC13
	3	Temperature	294.4
	4	Number of Scans	300
	5	Spectrometer Frequency	100.64
	6	Spectral Width	23809.5
	7	Lowest Frequency	-1840.5
	8	Nucleus	13C
	9	Acquired Size	32768
	10	Spectral Size	32768

	1 1	1		'		1	'	'	· I	· 1	'			'	· · ·		'	' '	' 1	'	· · · ·
210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 pm)	90	80	70	60	50	40	30	20	10	0

0 8 9	6	5	Ω	6	N 9
402	4	n.	\mathbf{c}	00	20
N N 0	r.	m.	<u>ن</u>	യ്	4. –
ファフ	9	S	4	Ω	N N
\searrow					1 1

Parameter 1 Origin 2 Solvent 3 Temperature 4 Number of Scans 5 Spectrometer Frequ 6 Spectral Width 7 Lowest Frequency 8 Nucleus 9 Acquired Size 10 Spectral Size	Value Bruker BioSpin GmbH CDC13 295.2 300 295.2 300 4 23809.5 -1840.5 13C 32768 32768 4	Ph N Ts 2:	Me OH					
							. 1	
	nal da ustran makala atala katan dan da sana da katan da kata da kata da kata basar		n gene finnen an de Dinese an angewen de dines an de san de san de					
200 190 180		140 130 120	110 100 f1 (ppm)	90 80	 	40 30	20 1	

803	804	800
Ś	ഹ	ഹ
	\downarrow	

1.066 1.063 1.027 1.024	3.668 3.664 3.625 3.253 3.224	2.626 2.597 2.437 2.437 2.437 2.233 2.216 2.211 2.211 2.202 2.202 2.202 2.202 2.202 2.202

		Parameter	Value
	1	Origin	Bruker BioSpin GmbH
***********	2	Solvent	CDC13
	3	Temperature	294.3
	4	Number of Scans	16
	5	Spectrometer Frequency	400.25
	6	Spectral Width	8196.7
	7	Lowest Frequency	-1636.4
	8	Nucleus	1H
	9	Acquired Size	32768
	10	Spectral Size	65536

9	4	\sim
S	\sim	6
~	~	ശ്
Ň	Ň	$\overline{\sim}$
Ĺ	1	2

2.51	6.56	5.64	9.20	
S	4	4	\sim	
2	1	2	\mathbf{n}	

--24.84 --21.75

----0.00

1			
		Parameter	Value
	1	Origin	Bruker BioSpin GmbH
	2	Solvent	CDC13
	3	Temperature	295.2
	4	Number of Scans	250
	5	Spectrometer Frequency	100.64
	6	Spectral Width	23809.5
	7	Lowest Frequency	-1826.8
	8	Nucleus	13C
	9	Acquired Size	32768
	10	Spectral Size	32768

	. !

					'		I	· 1			I		'			· 1	'	•	· · · ·	· · · · ·
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppn	n)									

Ω4	∞ ∞ \bigcirc ∞ ∞	VV4000004	0 4 7 9 0 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
чс	N 1 3 1 ∕ 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	0 m 0 0 m m 0 0 m 0	0470007778076080
9.9			∞ ∞ ∞ $\overline{\alpha}$ \overline{n} $$
\sim	~ ~ ~ ~ ~	ທ່ທ່ທ່ທ່ທ່ທ່ທ່ທ່	
\leq			

—1.033

Parameter	Value
1 Origin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	294.6
4 Number of Scans	16
5 Spectrometer Frequ	ency 400.25
6 Spectral Width	8196.7
7 Lowest Frequency	-1665.1
8 Nucleus	1H
9 Acquired Size	32768
10 Spectral Size	65536

r 143.61	138.44 133.58 133.58 131.92 131.58 131.58 131.58 131.58 131.58 131.58 127.72 1127.72 118.64	77.36 77.04 76.73	~52.60 _46.53 ~44.00			
ParameterValue1OriginBruker BioSpin Gmb2SolventCDC133Temperature295.24Number of Scans2505Spectrometer Frequency100.646Spectral Width23809.57Lowest Frequency-1840.58Nucleus13C9Acquired Size3276810Spectral Size32768	Ph Me Ph Ts 4					
n de la de ante este substance dista filo montena, constituit, sen da selle de la constituit, a sella de de sen La sen de ante este substance dista filo montena, constituit, sen da selle de la constituit, a sella de de sen d La sen de ante este substance dista filo montena, constituit, sen da selle de la constituit, a sella de de sen d					I I s di hijin di plana dana, na del I je beranande, mate da s page page kan stara page a program da kan anger	Afric Lago () alto area to by an anticipa
200 190 180 170 160 15	0 140 130 120 110 100	90 80 70	60 50 4	10 30	20 10	0

71 10 10 10 10 10 10 10 10 10 10 10 10 10	30 31 31 30 30 30 30 30 30 30 30 30 30 30 30 30	36 5 32	2 2 2 3 3 4 4 7 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4
		113	
		4440	

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	292.7
4	Number of Scans	16
5	Spectrometer Frequency	400.25
6	Spectral Width	8196.7
7	Lowest Frequency	-1674.9
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

v ← o ∧ o ∞	4	- 4
	Ó,	ý n
3.5.6.7.7	ര്	⊢ 4
ファファファ	S	n n

—14.21

1OriginBrukerBioSpin Gmb2SolventCDC133Temperature293.54Number of Scans2505SpectrometerFrequency 100.646Spectral Width23809.57Least Frequency1040.5	Н	Ph—	Me	ОН		
8 Nucleus 13C			1ah'			
9 Acquired Size 32768						
10 Spectral Size 32768						
			L			

Т 110 100 f1 (ppm)

-9.672 -9.665 -9.657	r7.324 7.306 7.285 7.231 7.231 7.231 7.231 7.194 r7.194	-5.415 -5.412	74.070 74.019 74.019 73.979 73.664 73.662 73.662 73.662 73.662 73.636 73.636 73.636 73.636 73.636 73.50 75.50 75.5	-2.753 -2.753 -2.732 -2.433 -2.433 -2.732 -2.335 -2.250 -2.250
\checkmark		\checkmark		

	Parameter	Value
1	Origin	Bruker BioSpin GmbH
2	Solvent	CDC13
3	Temperature	345.3
4	Number of Scans	16
5	Spectrometer Frequency	400.13
6	Spectral Width	8012.8
7	Lowest Frequency	-1535.4
8	Nucleus	1H
9	Acquired Size	32768
10	Spectral Size	65536

2ah'

30	11 87 87 06
4.	26.28.28

41 26 38 38	~	841	8
6.7 7.8 7.8		4 4 4	8
<u></u>	'n	က်ကိုက်	2

1 2 3 4 5 7	Parameter 1 Origin 2 Solvent 3 Temperature 4 Number of Scans 5 Spectrometer Frequen 6 Spectral Width 7 Lowest Frequency	Value Bruker BioSpin GmbH CDC13 344.4 250 ney 100.61 24038.5 -1958.9					Ph		Me	0					
2 2 1	9 Acquired Size 10 Spectral Size	32768 32768						2ah	l '						
												1		1	
		996679	9-9-9-8-9-9-9-8-9-9-9-9-9-9-9-9-9-9-9-9	, du, , arrighy,	ayuraan kub	ka	ни <u>, токи</u> ник, л. доктория, на е	1;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	agency of the second	den open den er	1914-119-01-01-91-91-91-91-91-91-91-91-91-91-91-91-91	n hanne an		M <u>argar</u> anga	
10	200 190 18	30 170 160	150	140	130	120	110 100 f1 (ppm)	90	80	70	60	50	40	30	2