Supporting Information for

Understanding the Reaction Mechanism of anti-Addition of (NHC)Au(I)-H and (NHC)Au(I)-F across

Alkyne

Wing Chun Chan and Zhenyang Lin*

Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay,

Kowloon 999077, Hong Kong

*Corresponding Author

Email: chzlin@ust.hk

Figures and Tables

Fig. S1 Gibbs energy profile for addition reaction of LAu-H across PhC=CPh

Fig. S2 Gibbs energy profile for addition reaction of LAu-H across MeC≡CMe

Fig. S3 Gibbs energy profile for addition reaction of L'Au-F across MeOOCC=CCOOMe

Table S1 $\Delta G_{TS1 P Ar Z}$ of addition reactions of LAu-H across ArC=CAr.

Table S2 $\Delta G_{2,2,Ar}$ and $\Delta G_{TS2,P,Ar,E}$ of addition reactions of L'Au-F across ArC=CAr.

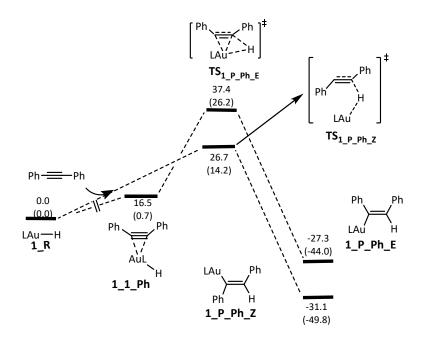

Fig. S4 Gibbs energy profile for addition reaction of LAu-Me across MeOOCC=CCOOMe.

Table S3 Gibbs energies of selected intermediates and transition states calculated for addition reactions of L'Au-X (X = Cl, Br and I) across PhC \equiv CMe.

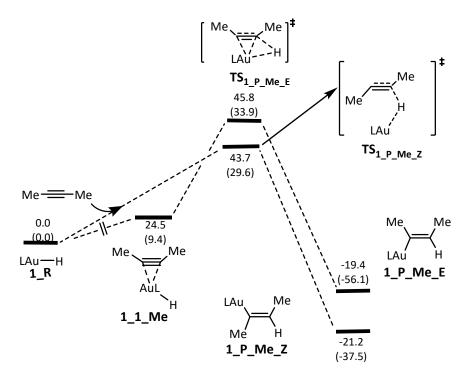

Table S4 Calculated barriers and reaction energies for the addition reactions of LAu-H, (CAAC)Au-H and PPh₃Au-H with MeOOCC≡CCOOMe.

Table S5 Calculated barriers and reaction energies for the addition reactions of LAu-H, (CAAC)Au-H and PPh₃Au-H with MeC≡CPh.

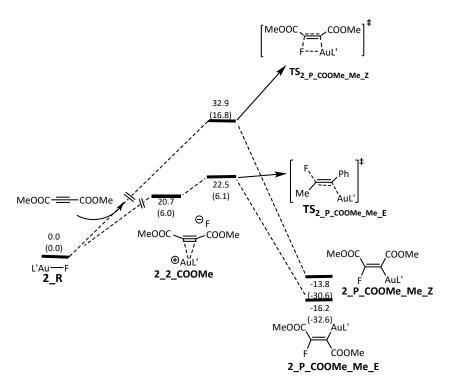

Figures and Tables

Fig. S1 Gibbs energy profile for addition reaction of LAu-H across PhC≡CPh. Relative Gibbs energies and relative electronic energies (in parenthesis) are given in kcal/mol. See Scheme 1 in the main text for the structure of the N-heterocyclic carbene (NHC) ligand L.

Fig. S2 Gibbs energy profile for addition reaction of LAu-H across MeC≡CMe. Relative Gibbs energies and relative electronic energies (in parenthesis) are given in kcal/mol. See Scheme 1 in the main text for the structure of the N-heterocyclic carbene (NHC) ligand L.

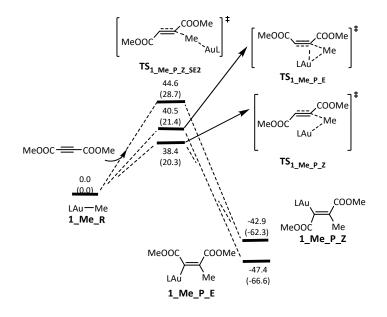

Fig. S3 Gibbs energy profile for addition reaction of L'Au-F across MeOOCC=CCOOMe. Relative Gibbs energies and relative electronic energies (in parenthesis) are given in kcal/mol. See Scheme 1 in the main text for the structure of the N-heterocyclic carbene (NHC) ligand L'.

Table 1 $\Delta G_{TS1_P_Ar_Z}$ of addition reactions of LAu-H across ArC=CAr (see Figure S1 or S2 for the structure label TS1_P_Ar_Z). See Scheme 1 in the main text for the structure of the N-heterocyclic carbene (NHC) ligand L.

Ar	$\Delta G_{TS1_P_Ar_Z}$ (kcal/mol)
C_6H_4 - <i>p</i> -NO ₂	18.2
C ₆ H ₄ - <i>p</i> -CN	19.7
C ₆ H ₄ - <i>p</i> -NMe ₂	33.5
C ₆ H ₄ - <i>p</i> -OMe	32.9

Table 2 $\Delta G_{2,2}Ar$ and $\Delta G_{TS2,P}Ar_E$ of addition reactions of L'Au-F across ArC=CAr (see Figure S3 for the structure labels 2_2Ar and TS2_P_Ar_E). See Scheme 1 in the main text for the structure of the N-heterocyclic carbene (NHC) ligand L'.

Ar	$\Delta G_{2_2_Ar}$ (kcal/mol)	$\Delta G_{TS2_P_Ar_E}$ (kcal/mol)
C_6H_4 - <i>p</i> -NO ₂	13.8	19.3
C ₆ H ₄ - <i>p</i> -CN	14.1	19.3
C ₆ H ₄ -p-NMe ₂	9.2	17.4
C ₆ H ₄ - <i>p</i> -OMe	12.0	19.6

Fig. S4 Gibbs energy profile for addition reaction of LAu-Me across MeOOCC=CCOOMe. Relative Gibbs energies and relative electronic energies (in parenthesis) are given in kcal/mol. See Scheme 1 in the main text for the structure of the N-heterocyclic carbene (NHC) ligand L.

Table S3 Gibbs energies of selected intermediates and transition states calculated for addition reactions of L'Au-X (X = Cl, Br and I) across PhC=CMe. See Scheme 1 in the main text for the structure of the N-heterocyclic carbene (NHC) ligand L'.

	Syn		Anti	
L'Au-X/\DeltaG (kcal/mol)	Reaction barriers	Reaction energies	Reaction barriers	Reaction energies
	$(\Delta G_{TS2_P_Me_Z})$	$(\Delta G_{2_P_Me_Z})$	$(\Delta G_{TS2_P_Me_Z})$	$(\Delta G_{2_P_Me_Z})$
Cl	38.3	16.7	26.0	15.3
Br	40.5	18.5	27.8	16.2
Ι	37.1	20.7	25.8	19.5

	Syn-addition		Anti-addition	
(Ligand)Au-H / ΔG (kcal/mol)	Reaction barrier ΔG^{\ddagger} (TS _{1 P E})	Reaction energy (1_P_E)	Reaction barrier ΔG^{\ddagger} (TS _{1 P Z})	Reaction energy (1_P_Z)
Ligand = L	27.5	-36.8	21.6	-40.7
Ligand = CAAC	32.1	-38.8	25.6	-40.5
Ligand = PPh ₃	31.1	-39.1	21.1	-41.5

Table S4 Calculated barriers and reaction energies for the addition reactions of LAu-H, (CAAC)Au-H and PPh₃Au-H with MeOOCC≡CCOOMe.

L: See Scheme 1 in the main text for the structure of the N-heterocyclic carbene (NHC) ligand L. CAAC: ^{Ad}CAAC from Ref [16] in the main text.

Table S5 Calculated barriers and reaction energies for the addition reactions of LAu-H, (CAAC)Au-H and PPh₃Au-H with MeC=CPh.

	Syn-addition		Anti-addition	
(Ligand)Au-F / ΔG (kcal/mol)	Reaction barrier ΔG^{\ddagger} (TS2_P_Me_Z)	Reaction energy (2_P_Me_Z)	Reaction barrier ΔG^{\ddagger} (TS2_P_Me_E)	Reaction energy (2_P_Me_E)
Ligand = L'	33.7	-0.9	20.8	-1.5
Ligand = CAAC	32.1	-1.1	22.0	-2.7
Ligand = PPh_3	32.1	-1.3	26.5	-1.4

L': See Scheme 1 in the main text for the structure of the N-heterocyclic carbene (NHC) ligand L'. CAAC: ^{Ad}CAAC from Ref [16] in the main text.