Supplementary Information

1,2,3-Trifunctionalization of α,α-Disubstituted Vinyl Aldehydes

Enabled by Radical 1,2-Migration of Formyl

Contents

1. General Information	2
2. Synthesis of Starting Materials	2-8
3. General Procedure for Radical 1,2,3-Trifunctionalization of α , α -Disubstitu	ted Vinyl
Aldehydes Enabled by 1,2-Formyl Migration	8-19
4. Photocatalyzed 1,2,3-Trifunctionalization of α,α-Disubstituted Vinyl Aldehydes	21-22
5. Synthetic Utility	22-23
6. Mechanistic Experiments	24-26
7. NMR Spectra	27-84
8. X Ray Crystallographic Data	84-85
9. Computational Data	86-100
10. References	100-101

1. General Information

Unless otherwise noted, materials obtained from commercial suppliers were used directly without further purification. ¹H, ¹³C, and ¹⁹F NMR spectra were measured on a 600 MHz or 400 MHz NMR spectrometer. Chemical shifts are given in parts per million on the delta (δ) scale, and the coupling constants are given in hertz. ¹H NMR chemical shifts were determined relative to the internal standard tetramethylsilane (TMS) at 0.00 ppm, ¹³C NMR shifts were determined relative to the residual solvent peaks of CDCl₃ at δ 77.00 ppm, and ¹⁹F NMR chemical shifts were determined relative to the relative to outside standard CFCl₃ at δ 0.00 ppm. High-resolution mass spectrometry (HRMS) analysis was carried out using a TOF MS instrument with an ESI source. Flash column chromatography was carried out on the silica gel (200-300 mesh).

2. Synthesis of Starting Materials

2.1 Synthesis of Allyl Aldehydes¹

To a solution of diisopropylamine (24 mmol, 2.4 equiv) in 40 mL of dry THF was added dropwise *n*-BuLi (8.4 mL, 2.4 M in hexane, 2.0 equiv) at -78 °C under nitrogen atmosphere. After stirring at -78 °C for 1 h, 3-butenenitrile (10 mmol, 1.0 equiv) in dry THF (10 mL) and the dibromodate (20 mmol, 2.0 equiv) in dry THF (15 mL) were added dropwise slowly and kept at this temperature for another 10 h. The reaction mixture was quenched by addition of saturated aqueous NH₄Cl solution, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 30:1) gave the desired product.

To a solution of the product (5 mmol, 1.0 equiv) in 10 mL of dry DCM was added dropwise DIBAL-H (7.5 mL, 1 M in hexane, 1.5 equiv) at -78 °C and kept at this temperature for another 4 h. The reaction mixture was quenched by addition of saturated aqueous NH₄Cl solution, extracted with DCM, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 40:1) gave the desired product allyl aldehydes **1**.

To a solution of the **1** (5 mmol, 1.0 equiv) in 10 mL of dry THF was added dropwise CH₃MgBr (7.5 mL, 1 M in THF, 1.5 equiv) at 0 °C and kept at this temperature for another 2 h. The reaction mixture was quenched by addition of dilute hydrochloric acid, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was dissolved in 15 mL DCM and added DMP (6.5 mmol, 1.3 equiv) at 0 °C. After stirring at for 2 h at room temperature, the reaction mixture was quenched by addition of saturated aqueous Na₂S₂O₃ solution, extracted with EtOAc, washed with brine, dried over anhydrous Na₂Gr₃ solution, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. (1h, 1i).

To a solution of the **1b** (5 mmol, 1.0 equiv) in dry THF (10 mL) was added dropwise TMSCF₃ (10 mmol, 2.0 equiv) in dry THF (5 mL) and TBAF (0.5 mL, 1 M in THF, 0.1 equiv) in dry THF (1 mL) sequentially at -40 °C under nitrogen atmosphere. After stirring at for 4 h at -40 °C, the reaction mixture was quenched by addition of dilute hydrochloric acid, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was dissolved in 15 mL THF and added dropwise TBAF (7.5 mL, 1 M in THF, 1.5 equiv) at room temperature. After stirring at for 2 h at room temperature, the reaction mixture was quenched by addition of dilute hydrochloric acid, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated over anhydrous Na₂SO₄, filtered, and concentrated by addition of dilute hydrochloric acid, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude product was dissolved in 15 mL DCM and added DMP (6.5 mmol, 1.3 equiv) at 0 °C. After stirring at for 2 h at room temperature, the reaction mixture was quenched by addition of saturated aqueous Na₂S₂O₃ solution, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 10:1) gave the desired product **1j**.

To a Schlenk flask containing **S2** (5 mmol, 1.0 equiv) in 5 mL of dry THF was added 9-BBN (1.3 mL, 0.5 M in THF, 1.05 equiv) under nitrogen atmosphere. The flask was immersed in an oil bath and heated at 40 °C for 4 h. After cooling to room temperature, the reaction mixture was added TsCN (5 mmol, 1.0 equiv) under nitrogen atmosphere. After stirring at for 10 h at room temperature, the reaction mixture was quenched by addition of saturated aqueous NH₄Cl solution, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 50:1) gave the desired product.

To a solution of the product (1.0 equiv) in 10 mL of dry DCM was added dropwise DIBAL-H (1 M in hexane, 1.5 equiv) at -78 °C and kept at this temperature for another 4 h. The reaction mixture was quenched by addition of saturated aqueous NH_4Cl solution, extracted with DCM, washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 60:1) gave the desired product **1f**.

2.2 Synthesis of Acetylenic Triflones²

Ar
$$\longrightarrow$$
 n -BuLi, Et₂O, -78 °C, 0.5 h
then Tf₂O, -78 °C, 4 h
S3 2 2

To a solution of d alkyne **S3** (10 mmol, 1.0 equiv) in dry Et₂O (25 mL) was added dropwise *n*-BuLi (4.4 mL, 2.4 M in hexane, 1.05 equiv) at -78 °C under nitrogen atmosphere. After stirring at -78 °C for 30 min, triflic anhydride (1.9 mL, 11 mmol, 1.1 equiv) was added dropwise slowly and kept at this temperature for another 4 h. The reaction mixture was quenched by addition of saturated aqueous NH₄Cl solution, extracted with Et₂O, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 50:1) gave the desired product acetylenic triflone **2**.

CHO 1a

1-vinylcyclohexane-1-carbaldehyde (1a)³: 871 mg, 63% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 9.30 (s, 1H), 5.61 (dd, *J* = 17.8, 10.8 Hz, 1H), 5.29 (d, *J* = 10.6 Hz, 1H), 5.13 (d, *J* = 17.8 Hz, 1H), 1.94-1.90 (m, 2H), 1.61-1.57 (m, 2H), 1.55-1.46 (m, 3H), 1.42-1.33 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 202.7, 138.8, 117.3, 53.4, 30.3, 25.7, 22.3; HRMS (ESI) *m*/*z*: [*M* + NH₄]⁺ Calcd for C₉H₁₄O +NH₄⁺: 156.1383; found 156.1390.

4-vinyltetrahydro-2H-pyran-4-carbaldehyde (1b): 981 mg, 70% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 20:1; ¹H NMR (400 MHz, CDCl₃) δ 9.35 (s, 1H), 5.65 (dd, *J* = 17.6, 10.6 Hz, 1H), 5.39 (d, *J* = 10.6 Hz, 1H), 5.19 (d, *J* = 17.4 Hz, 1H), 3.81-3.76 (m, 2H), 3.59-3.53 (m, 2H), 2.06-2.00 (m, 2H), 1.80-1.73 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 201.8, 136.4, 120.1, 64.4, 50.4, 30.2; HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₈H₁₂O₂+H⁺: 141.0910; found 141.0913.

tert-butyl 4-formyl-4-vinylpiperidine-1-carboxylate (1c): 1.6 g, 66% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 5:1; ¹H NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 5.63 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.39 (d, *J* = 10.8 Hz, 1H), 5.19 (d, *J* = 17.6 Hz, 1H), 3.64-3.60 (m, 2H), 3.24-3.18 (m, 2H), 2.02-1.96 (m, 2H), 1.71-1.65 (m, 2H), 1.45 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 201.9, 154.7, 136.9, 119.1, 79.7, 52.0, 40.6, 29.9, 28.4; HRMS (ESI) *m/z*: [*M* + Na]⁺ Calcd for C₁₃H₂₁NO₃+Na⁺: 262.1414; found 262.1412.

8-vinyl-1,4-dioxaspiro[4.5]decane-8-carbaldehyde (1d): 687 mg, 70% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 10:1; ¹H NMR (600 MHz, CDCl₃) δ 9.33 (s, 1H), 5.62 (dd, *J* = 17.8, 10.8 Hz, 1H), 5.33 (d, *J* = 10.8 Hz, 1H), 5.17 (d, *J* = 17.8 Hz, 1H), 3.94 (s, 4H), 2.07-2.03 (m, 2H), 1.80-1.76 (m, 2H), 1.72-1.68 (m, 2H), 1.61-1.56 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 201.6, 137.3, 118.0, 108.2, 64.3, 52.4, 31.0, 27.8; HRMS (ESI) *m/z*: [*M* + Na]⁺ Calcd for C₁₃H₂₁NO₃+Na⁺: 219.0992; found 219.0989.

1-vinylcyclopentane-1-carbaldehyde (1e): 943 mg, 76% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (400 MHz, CDCl₃) δ 9.35 (s, 1H), 5.82 (dd, J = 17.6, 10.8 Hz, 1H), 5.15 (d, J = 10.6 Hz, 1H), 5.03 (d, J = 17.6 Hz, 1H), 2.04-2.00 (m, 2H), 1.64-1.49 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 200.8, 137.2, 115.0, 60.6, 31.3, 23.6; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₈H₁₂O+H⁺: 125.0961; found 125.0960.

2-propyl-2-vinylpentanal (**1f**): 1.1 g, 69% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 9.38 (s, 1H), 5.73 (dd, J = 17.8, 10.8 Hz, 1H), 5.30 (d, J = 11.0 Hz, 1H), 5.11 (d, J = 17.8 Hz, 1H), 1.61-1.57 (m, 4H), 1.24-1.19 (m, 4H), 0.91 (t, J = 7.4 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 203.5, 138.2, 116.9, 56.1, 35.0, 17.1, 14.7; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₀H₁₈O+Na⁺: 177.1250; found 177.1252.

2-methyl-2-phenylbut-3-enal (1g): 408 mg, 51% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 9.58 (s, 1H), 7.40-7.37 (m, 2H), 7.32-7.29 (m, 1H), 7.26-7.24 (m, 2H), 6.22 (dd, *J* = 17.6, 10.8 Hz, 1H), 5.42 (d, *J* = 10.8 Hz, 1H), 5.18 (d, *J* = 17.6 Hz, 1H), 1.54 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 198.4, 139.0, 137.4, 127.9, 126.4, 126.4, 116.4, 56.8, 19.1; HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₁H₁₂O+H⁺: 161.0961; found 161.0961.

1-(4-vinyltetrahydro-2H-pyran-4-yl)ethan-1-one (1h): 486 mg, 63% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 10:1; ¹H NMR (600 MHz, CDCl₃) δ 5.74 (dd, J = 17.6, 10.8 Hz, 1H), 5.34 (d, J = 10.8 Hz, 1H), 5.20 (d, J = 16.6 Hz, 1H), 3.74-3.70 (m, 2H), 3.62-3.58 (m, 2H), 2.12 (s, 3H), 2.09-2.04 (m, 2H), 1.81-1.76 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 208.9, 139.7, 117.6, 64.5, 52.8, 32.4, 25.3; HRMS (ESI) *m*/*z*: [*M* + Na]⁺ Calcd for C₉H₁₄O₂+Na⁺: 177.0886; found 177.0887.

1-(8-vinyl-1,4-dioxaspiro[4.5]decan-8-yl)ethan-1-one (**1i**): 725 mg, 69% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 10:1; ¹H NMR (600 MHz, CDCl₃) δ 5.73 (dd, J = 17.6, 10.8 Hz, 1H), 5.27 (d, J = 10.8 Hz, 1H), 5.18 (d, J = 17.6 Hz, 1H), 3.93 (s, 4H), 2.12 (s, 3H), 2.10-2.07 (m, 2H), 1.84-1.79 (m, 2H), 1.70-1.66 (m, 2H), 1.60-1.56 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 209.6, 139.9, 116.9, 108.3, 64.2, 54.3, 31.4, 29.7, 25.3; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₂H₁₈O₃+Na⁺: 233.1148; found 233.1147.

2,2,2-trifluoro-1-(4-vinyltetrahydro-2H-pyran-4-yl)ethan-1-one (1j): 738 mg, 71% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 20:1; ¹H NMR (400 MHz, CDCl₃) δ 5.85 (dd, J = 17.6, 10.6 Hz, 1H), 5.48 (d, J = 10.8 Hz, 1H), 5.23 (d, J = 17.6 Hz, 1H), 3.79-3.73 (m, 2H), 3.67-3.61 (m, 2H), 2.22-2.16 (m, 2H), 1.95-1.89 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 191.3 (q, J = 31.4 Hz), 136.2, 120.3, 116.1 (q, J = 295.1 Hz), 63.9, 50.4, 32.2; ¹⁹F NMR (377 MHz, CDCl₃) δ -71.45; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₉H₁₁F₃O₂+Na⁺: 231.0603; found 231.0605.

(Z/E)-1-(prop-1-en-1-yl)cyclohexane-1-carbaldehyde (1k): (Z/E=10/1) 2.1 g, 68% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 9.25 (s, 1H), 5.56-5.49 (m, 1H), 5.20 (d, *J* = 15.8 Hz, 1H), 1.91-1.87 (m, 2H), 1.72 (dd, *J* = 6.6, 1.4 Hz, 3H), 1.60-1.55 (m, 2H), 1.51-1.45 (m, 3H), 1.39-1.29 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 202.8, 131.6, 128.3, 52.5, 31.2, 25.7, 22.4, 18.5; HRMS (ESI) *m*/*z*: [*M* + H]⁺ Calcd for C₁₀H₁₆O +H⁺: 153.1274; found 153.1279.

1-vinylcyclohexane-1-carbonitrile (11): 959 mg, 71% yield, colorless oil; Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (600 MHz, CDCl₃) δ 5.69 (dd, J = 17.2, 10.2 Hz, 1H), 5.46 (d, J = 17.2 Hz, 1H), 5.19 (d, J = 10.4 Hz, 1H), 1.95-1.93 (m, 2H), 1.78-1.74 (m, 3H), 1.71-1.64 (m, 2H), 1.43 (td, J = 13.2, 3.6 Hz, 2H), 1.24-1.17 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 139.0, 121.9, 115.1, 42.2, 35.9, 24.9, 22.8; HRMS (ESI) m/z: $[M + NH_4]^+$ Calcd for C₉H₁₃N+NH₄⁺: 153.1386; found 153.1379.

3. General Procedure for Radical 1,2,3-Tifunctionalization of Allyl Aldehyde Enabled by 1,2-Formyl Migration

To a Schlenk flask containing 1 (0.2 mmol) and 2 (0.4 mmol) in 2 mL of DMC was added BPO (0.06 mmol, 30 mol%) under nitrogen atmosphere. The flask was immersed in an oil bath and heated at 85 °C for 10 h. Then the reaction mixture was quenched with water, extracted with EtOAc, washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated. Column chromatography on silica gel gave the desired product.

Gram-Scale Synthesis of 3aa

To a solution of BPO (581.4 mg, 2.4 mmol)) in 80 mL of DMC was added **1a** (1.1 g, 8 mmol) and **2a** (3.7 g, 16 mmol) under nitrogen atmosphere. The reaction mixture was immersed in an oil bath and heated at 85 °C for 10 h. Then the reaction mixture was quenched by water, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 100:1) gave 1.4 g (57.8% yield) of **3aa** as a yellow oil.

4,4,4-trifluoro-2-(1-(phenylethynyl)cyclohexyl)butanal (**3aa**): 43 mg, 70% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 150:1; ¹H NMR (**400 MHz**, **CDCl₃**) δ 9.91 (d, J = 3.4 Hz, 1H), 7.45-7.39 (m, 2H), 7.34-7.30 (m, 3H), 3.01-2.86 (m, 1H), 2.65 (ddd, J = 10.2, 3.4, 1.8 Hz, 1H), 2.54-2.41 (m, 1H), 1.95-1.89 (m, 1H), 1.87-1.81 (m, 1H), 1.81-1.68 (m, 5H), 1.45 (td, J = 12.2, 4.0 Hz, 1H), 1.35 (td, J = 12.4, 3.6 Hz, 1H), 1.23-1.12 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 201.3, 131.6, 128.4, 128.3, 126.6 (q, J = 276.4 Hz), 122.8, 90.1, 86.3, 54.4, 39.2, 35.7, 35.6, 29.6 (q, J = 29.2 Hz), 25.5, 22.7, 22.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.43; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₁₈H₁₉F₃O+Na⁺: 331.1280; found 331.1279.

4,4,4-trifluoro-2-(1-(p-tolylethynyl)cyclohexyl)butanal (**3ab**): 42 mg, 65% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 150:1; ¹H NMR (**600 MHz**, **CDCl₃**) δ 9.90 (d, *J* = 3.4 Hz, 1H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 2.97-2.88 (m, 1H), 2.63 (ddd, *J* = 10.2, 3.4, 2.2 Hz, 1H), 2.49-2.45 (m, 1H), 2.35 (s, 3H), 1.92-1.88 (m, 1H), 1.84-1.80 (m, 1H), 1.79-1.66 (m, 5H), 1.42 (td, *J* = 12.4, 3.6 Hz, 1H), 1.31 (td, *J* = 12.6, 3.6 Hz, 1H), 1.21-1.13 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 201.4, 139.4, 131.5, 129.1, 126.5 (q, *J*=276.4 Hz), 119.7, 89.4, 86.4, 54.4, 39.1, 35.7, 35.6, 29.6 (q, *J* = 29.7 Hz), 25.6, 22.7, 22.6, 21.4; ¹⁹F NMR (565 MHz, CDCl₃) δ -64.42; HRMS (ESI) *m/z*: [*M* + Na]⁺ Calcd for C₁₉H₂₁F₃O+Na⁺: 345.1437; found 345.1434.

2-(1-((4-(tert-butyl)phenyl)ethynyl)cyclohexyl)-4,4,4-trifluorobutanal (3ac): 44 mg, 60% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 150:1; ¹H NMR **(600 MHz, CDCl₃)** δ 9.90 (d, *J* = 3.4 Hz, 1H), 7.38-7.32 (m, 4H), 2.97-2.87 (m, 1H), 2.63 (ddd, *J* = 10.2, 3.4, 2.0 Hz, 1H), 2.52-2.43 (m, 1H), 1.92-1.89 (m, 1H), 1.85-1.81 (m, 1H), 1.79-1.66 (m, 5H), 1.42 (td, *J* = 12.6, 3.6 Hz, 1H), 1.31 (td, *J* = 12.4, 3.6 Hz, 1H), 1.31(s, 9H), 1.21-1.13(m, 1H); ¹³C NMR **(151 MHz, CDCl₃)** δ 201.4, 151.7, 131.4, 126.7 (q, *J* = 276.8 Hz), 125.4, 119.8, 89.4,

86.3, 54.5, 39.1, 35.8, 35.7, 34.8, 31.2, 29.6 (q, J = 29.2 Hz), 25.6, 22.7, 22.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -64.41; HRMS (ESI) m/z: $[M + \text{Na}]^+$ Calcd for C₂₂H₂₇F₃O+Na⁺: 387.1906; found 387.1904.

4,4,4-trifluoro-2-(1-((4-methoxyphenyl)ethynyl)cyclohexyl)butanal (**3ad**): 37 mg, 55% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 100:1; ¹H NMR (**400 MHz, CDCl₃**) δ 9.90 (d, *J* = 3.8 Hz, 1H), 7.35 (d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 3.82 (s, 3H), 2.97-2.85 (m, 1H), 2.63 (ddd, *J* = 10.4, 3.8, 2.6 Hz, 1H), 2.50-2.43 (m, 1H), 1.94-1.87 (m, 1H), 1.84-1.80 (m, 1H), 1.78-1.62 (m, 5H), 1.42 (td, *J* = 12.0, 3.6 Hz, 1H), 1.35-1.28 (td, *J* = 12.6, 3.8 Hz, 1H), 1.23-1.16 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 201.5,159.6, 133.0, 126.5 (q, *J* = 277.9 Hz), 114.9, 113.9, 88.6, 86.1, 55.3, 54.44, 39.1, 35.8, 35.7, 29.6 (q, *J* = 29.2 Hz), 25.6, 22.7, 22.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.42; HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₉H₂₁F₃O₂+H⁺: 339.1566; found 339.1563.

4,4,4-trifluoro-2-(1-((4-fluorophenyl)ethynyl)cyclohexyl)butanal (**3ae**): 40 mg, 61% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 150:1; ¹H NMR (**600 MHz, CDCl₃**) δ 9.90 (d, J = 3.6 Hz, 1H), 7.42-7.37 (m, 2H), 7.04-6.98 (m, 2H), 2.99-2.85 (m, 1H), 2.65 (ddd, J = 10.2, 3.6, 2.8 Hz, 1H), 2.52-2.39 (m, 1H), 1.93-1.89 (m, 1H), 1.86-1.82 (m, 1H), 1.77-1.68 (m, 5H), 1.44 (td, J = 12.8, 4.4 Hz, 1H), 1.33 (td, J = 12.6, 4.0 Hz, 1H), 1.23-1.15 (m, 1H); ¹³C NMR (**101 MHz, CDCl₃**) δ 201.1, 162.5 (d, J = 250.5 Hz), 133.5 (d, J = 8.4 Hz), 126.6 (q, J = 277.9 Hz), 118.8 (d, J = 3.6 Hz), 115.6 (d, J = 21.9 Hz), 89.8, 85.2, 54.3, 39.2, 35.6, 35.6,

29.6 (q, J = 29.5 Hz), 25.5, 22.7, 22.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -64.49, -110.89; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₈H₁₈F₄O+H⁺: 327.1367; found 327.1372.

2-(1-((4-chlorophenyl)ethynyl)cyclohexyl)-4,4,4-trifluorobutanal (**3af**): 50 mg, 73% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 150:1; ¹H NMR (**400 MHz, CDCl₃**) δ 9.90 (d, *J* = 3.6 Hz, 1H), 7.36-7.26 (m, 4H), 2.99-2.85 (m,1H), 2.66 (ddd, *J* = 10.4, 3.6, 2.8 Hz, 1H), 2.50-2.39 (m, 1H), 1.92-1.89 (m, 1H), 1.86-1.82 (m, 1H), 1.78-1.64 (m, 5H), 1.44 (td, *J* = 12.8, 3.8 Hz, 1H), 1.34 (td, *J* = 12.8, 3.6 Hz, 1H), 1.22-1.12 (m, 1H); ¹³C NMR (**151 MHz, CDCl₃**) δ 201.0, 134.4, 132.9, 128.7, 126.6 (q, *J* = 276.4 Hz), 121.2, 91.2, 85.2, 54.2, 39.3, 35.6, 35.5, 29.5 (q, *J* = 29.2 Hz), 25.5, 22.7, 22.6; ¹⁹F NMR (**565 MHz, CDCl₃**) δ -64.48; HRMS (**ESI**) *m/z*: [*M* + Na]⁺ Calcd for C₁₈H₁₈ClF₃O+Na⁺: 365.0890; found 365.0890.

2-(1-((4-bromophenyl)ethynyl)cyclohexyl)-4,4,4-trifluorobutanal (**3ag**): 50 mg, 65% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 150:1; ¹H NMR (**600 MHz, CDCl₃**) δ 9.90 (d, J = 3.6 Hz, 1H), 7.45 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.8 Hz, 2H), 2.97-2.87 (m, 1H), 2.66 (ddd, J = 10.4, 3.4, 2.6 Hz, 1H), 2.49-2.40 (m, 1H), 1.92-1.89 (m, 1H), 1.86-1.82 (m, 1H), 1.77-1.68 (m, 5H), 1.44 (td, J = 12.8, 5.0 Hz, 1H), 1.34 (td, J = 12.8, 4.0 Hz, 1H), 1.22-1.15 (m, 1H); ¹³C NMR (**151 MHz, CDCl₃**) δ 200.9, 133.1, 131.6, 126.6 (q, J = 276.9 Hz), 122.5, 121.7, 91.4, 85.3, 54.2, 39.3, 35.6, 35.5, 29.5 (q, J = 29.6 Hz), 25.5, 22.6, 22.7; ¹⁹F NMR (**565 MHz, CDCl₃**) δ -64.49; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₈H₁₈BrF₃O+H⁺: 387.0566; found 387.0570.

ethyl 4-((1-(4,4,4-trifluoro-1-oxobutan-2-yl)cyclohexyl)ethynyl)benzoate (3ah): 39 mg, 51% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 100:1; ¹H NMR (600 MHz, CDCl₃) δ 9.91 (d, J = 3.8 Hz, 1H), 8.0 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 4.39 (q, J = 7.2 Hz, 2H), 2.98-2.89 (m, 1H), 2.68 (ddd, J = 10.2, 3.6, 2.8 Hz, 1H), 2.50-2.42 (m, 1H), 1.96-1.92 (m, 1H), 1.88-1.84 (m, 1H), 1.78-1.69 (m, 5H), 1.47 (td, J = 12.8, 4.4 Hz, 1H), 1.40 (t, J = 7.2 Hz, 3H), 1.36 (td, J = 12.8, 4.0 Hz, 1H), 1.22-1.17 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 200.9, 166.0, 131.5, 130.0, 129.5, 127.3, 126.5 (q, J = 276.8 Hz), 93.2, 85.7, 61.2, 54.2, 39.4, 35.6, 35.5, 29.6 (q, J = 29.2 Hz), 25.5, 22.7, 22.6, 14.3; ¹⁹F NMR (565 MHz, CDCl₃) δ - 64.49; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₁H₂₃F₃O₃+H⁺: 381.1672; found 381.1676.

2-(1-([1,1'-biphenyl]-4-ylethynyl)cyclohexyl)-4,4,4-trifluorobutanal (**3ai**): 48 mg, 63% yield, corlorless liquid. Flash column chromatography conditions: petroleum ethers/EtOAc = 150:1; ¹H **NMR (600 MHz, CDCl₃)** δ 9.93 (d, J = 3.6 Hz, 1H), 7.59-7.54 (m, 4H), 7.49-7.43 (m, 4H), 7.38-7.36 (m, 1H), 2.98-2.92 (m, 1H), 2.67 (ddd, J = 10.2, 3.0, 2.4 Hz, 1H), 2.51-2.46 (m, 1H), 1.95-1.92 (m, 1H), 1.88-1.84 (m, 1H), 1.81-1.68 (m, 5H), 1.45 (td, J = 12.4, 3.6 Hz, 1H), 1.34 (td, J = 12.6, 3.6 Hz, 1H), 1.22-1.18 (m, 1H); ¹³C **NMR (151 MHz, CDCl₃)** δ 201.4, 141.3, 140.4, 132.2, 129.0, 127.8, 127.2, 127.1, 126.9 (q, J = 276.4 Hz), 121.8, 90.9, 86.3, 54.5, 39.4, 35.9, 35.8, 29.8 (q, J = 29.2 Hz), 25.7, 22.9, 22.8; ¹⁹F **NMR (565 MHz, CDCl₃)** δ -64.41; **HRMS (ESI)** m/z: $[M + Na]^+$ Calcd for C₂₄H₂₃F₃O+Na⁺: 407.1593; found 407.1589.

2-(1-((3-chlorophenyl)ethynyl)cyclohexyl)-4,4,4-trifluorobutanal (3aj): 38 mg, 55% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 150:1; ¹H NMR **(400 MHz, CDCl₃)** δ 9.90 (d, *J* = 3.6 Hz, 1H), 7.40 (s, 1H), 7.32-7.28 (m, 2H), 7.26-7.23 (m, 1H), 2.97-2.87 (m, 1H), 2.66 (ddd, *J* = 10.4, 3.6, 2.8 Hz, 1H), 2.49-2.40 (m, 1H), 1.94-1.89 (m, 1H), 1.87-1.81 (m, 1H), 1.77-1.68 (m, 5H), 1.45 (td, *J* = 12.8, 5.0 Hz, 1H), 1.34 (td, *J* = 12.8, 4.2 Hz, 1H), 1.22-1.11(m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 200.9, 134.2, 131.5, 129.8, 129.6, 128.6, 126.3 (q, *J* = 276.4 Hz), 124.4, 91.5, 84.9, 54.2, 39.3, 35.6, 35.5, 29.6 (q, *J* = 29.2 Hz), 25.5, 22.7, 22.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.49; HRMS (ESI) *m*/*z*: [*M* + Na]⁺ Calcd for C₁₈H₁₈ClF₃O+Na⁺: 365.0890; found 365.0892.

2-(1-((2-chlorophenyl)ethynyl)cyclohexyl)-4,4,4-trifluorobutanal (**3ak**): 24 mg, 35% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 150:1; ¹H NMR (**400 MHz, CDCl₃**) δ 9.91 (d, *J* = 4.0 Hz, 1H), 7.45 (dd, *J* = 7.4, 2.0 Hz, 1H), 7.40 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.29-7.24 (m, 1H), 7.24-7.19 (m, 1H), 3.05-2.90 (m, 1H), 2.65 (ddd, *J* = 10.6, 3.6, 2.4 Hz, 1H), 2.58-2.46 (m, 1H), 2.00-1.92(m, 1H), 1.90-1.85 (m, 1H), 1.84-1.66 (m, 5H), 1.44 (td, *J* = 12.4, 3.4, 1H), 1.34 (td, *J* = 12.6, 3.6 Hz, 1H), 1.24-1.15 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 201.3, 136.1, 133.3, 129.3, 129.3, 126.8 (q, *J* = 276.4 Hz), 126.5, 122.7, 95.7, 83.1, 54.4, 39.3, 35.7, 35.6, 29.7 (q, *J* = 29.2 Hz), 25.5, 22.7, 22.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.36; HRMS (ESI) *m/z*: [*M* + Na]⁺ Calcd for C₁₈H₁₈ClF₃O+Na⁺: 365.0890; found 365.0892.

2-(1-((3,5-dimethylphenyl)ethynyl)cyclohexyl)-4,4,4-trifluorobutanal (3al): 35 mg, 52% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 150:1; ¹H NMR (600 MHz, CDCl₃) δ 9.90 (d, *J* = 3.8 Hz, 1H), 7.04 (s, 2H), 6.96 (s, 1H), 2.95-2.89 (m, 1H), 2.62 (ddd, *J* = 10.2, 3.6, 2.8 Hz, 1H), 2.49-2.44 (m, 1H), 2.29 (m, 6H), 1.91-1.88 (m, 1H), 1.84-1.80 (m, 1H), 1.79-1.66 (m, 5H), 1.42 (td, *J* = 12.4, 3.6, 1H), 1.31 (td, *J* = 12.6, 3.6 Hz, 1H), 1.22-1.13 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 201.4, 137.9, 130.2, 129.3, 126.6 (q, *J* = 276.4 Hz), 121.8, 89.3, 86.6, 54.4, 39.7, 35.8, 35.7, 29.6 (q, *J* = 29.2 Hz), 25.6, 22.7, 22.6, 21.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -64.39; HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₂₀H₂₃F₃O+H⁺: 337.1774; found 337.1774.

4,4,4-trifluoro-2-(1-(naphthalen-2-ylethynyl)cyclohexyl)butanal (**3am**): 39 mg, 55% yield, corlorless liquid. Flash column chromatography conditions: petroleum ethers/EtOAc = 150:1; ¹H **NMR (600 MHz, CDCl₃)** δ 9.95 (d, *J* = 3.6 Hz, 1H), 7.93 (s, 1H), 7.80-7.77 (m, 3H), 7.49-7.48 (m, 2H), 7.45 (d, *J* = 8.4 Hz, 1H), 3.00-2.95 (m, 1H), 2.69 (ddd, *J* = 10.4, 3.2, 2.4 Hz, 1H), 2.55-2.47 (m, 1H), 1.97-1.94 (m, 1H), 1.89-1.86 (m, 1H), 1.84-1.69 (m, 5H), 1.47 (td, *J* = 12.6, 3.6 Hz, 1H), 1.36 (td, *J* = 12.6, 3.6 Hz, 1H), 1.22-1.17 (m, 1H); ¹³C **NMR (151 MHz, CDCl₃)** δ 201.3, 132.9, 132.8, 131.4, 128.4, 128.0, 127.8, 127.6, 126.7, 126.6, 126.6 ((q, *J* = 276.9 Hz), 120.0, 90.4, 86.7, 54.4, 39.3, 35.8, 35.7, 29.6 (q, *J* = 29.2 Hz), 25.6, 22.8, 22.7; ¹⁹F **NMR (565 MHz, CDCl₃)** δ - 64.40; **HRMS (ESI)** *m/z*: [*M* + Na]⁺ Calcd for C₂₂H₂₁F₃O+Na⁺: 381.1437; found 381.1429.

4,4,4-trifluoro-2-(1-(thiophen-3-ylethynyl)cyclohexyl)butanal (3an): 15 mg, 24% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 100:1; ¹H NMR (400 MHz, CDCl₃) δ 9.89 (d, *J* = 3.8 Hz, 1H), 7.41-7.40 (m, 1H), 7.29-7.27 (m, 1H), 7.08 (d, *J* = 5.0 Hz, 1H), 2.96-2.85 (m, 1H), 2.63 (ddd, *J* = 10.4, 3.6, 2.6 Hz, 1H), 2.49-2.42 (m, 1H), 1.93-1.87 (m, 1H), 1.86-1.80 (m, 1H), 1.78-1.65 (m, 5H), 1.42 (td, *J* = 12.4, 4.2 Hz, 1H), 1.33 (td, *J* = 12.4, 4.0 Hz, 1H), 1.22-1.16 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 201.2, 129.9, 128.5, 126.6 (q, *J* = 276.9 Hz), 125.4, 121.7, 89.7, 81.3, 54.3, 39.2, 35.7, 35.6, 29.6, (q, *J* = 29.2 Hz), 25.5, 22.6, 22.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -64.43; HRMS (ESI) *m*/*z*: [*M* + Na]⁺ Calcd for C₁₆H₁₇F₃OS+Na⁺: 337.0844; found 337.0845.

4,4,4-trifluoro-2-(4-(phenylethynyl)tetrahydro-2H-pyran-4-yl)butanal (**3ba**): 45 mg, 72% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 10:1; ¹H NMR (**600 MHz, CDCl₃**) δ 9.91 (d, *J* = 3.4 Hz, 1H), 7.45-7.40 (m, 2H), 7.37-7.31 (m, 3H), 3.96-3.91 (m, 2H), 3.86 (ddd, *J* = 20.6, 11.6, 2.2 Hz, 2H), 3.02-2.92 (m, 1H), 2.65 (ddd, *J* = 10.2, 3.6, 2.8 Hz, 1H), 2.49-2.41 (m, 1H), 1.85 (ddd, *J* = 13.2, 12.0, 4.6 Hz, 1H), 1.80-1.72 (m, 2H), 1.71-1.66 (m, 1H); ¹³C NMR (**151 MHz, CDCl₃**) δ 200.4, 131.7, 128.8, 128.5, 126.4 (q, *J* = 276.8 Hz), 122.1, 88.1, 87.4, 64.4, 64.2, 54.4, 36.9, 35.9, 35.6, 29.3 (q, *J* = 29.8 Hz); ¹⁹F NMR (**565 MHz, CDCl₃**) δ -64.34; HRMS (ESI) *m/z*: [*M* + Na]⁺ Calcd for C₁₇H₁₇F₃O₂+Na⁺: 333.1073; found 333.1080.

tert-butyl-4-(phenylethynyl)-4-(4,4,4-trifluoro-1-oxobutan-2-yl)piperidine-1-carboxylate

(3ca): 47 mg, 57% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 2:1; ¹H NMR (600 MHz, CDCl₃) δ 9.91 (d, J = 3.4 Hz, 1H), 7.44-7.39 (m, 2H), 7.37-7.31 (m, 3H), 4.29-3.98 (m, 2H), 3.27-3.07 (m, 2H), 3.01-2.92 (m, 1H), 2.67 (ddd, J = 10.4, 3.6, 2.8 Hz, 1H), 2.49-2.41 (m, 1H), 1.91-1.74 (m, 2H), 1.64-1.63 (m, 1H), 1.51 (td, J = 12.8, 4.4 Hz, 1H), 1.46 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 200.5, 154.7, 131.8, 128.9, 128.6, 126.5 (q, J = 276.9 Hz), 122.1, 87.9, 87.8, 80.0, 54.1, 53.7, 40.9, 40.1, 38.1, 34.9, 29.5 (q, J = 29.2 Hz), 28.5 ; ¹⁹F NMR (565 MHz, CDCl₃) δ -64.43; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₆F₃NO₃+Na⁺: 432.1757; found 432.1755.

3da

4,4,4-trifluoro-2-(8-(phenylethynyl)-1,4-dioxaspiro[4.5]decan-8-yl)butanal (3da): 48 mg, 66% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 5:1; ¹H NMR (600 MHz, CDCl₃) δ 9.93 (d, J = 3.4 Hz, 1H), 7.41-7.38 (m, 2H), 7.36-7.28 (m, 3H), 3.99-3.92 (m, 4H), 3.00-2.91 (m, 1H), 2.70 (ddd, J = 10.4, 3.6, 2.8 Hz, 1H), 2.50-2.40 (m, 1H), 2.11-2.03 (m, 2H), 1.92-1.84 (m, 2H), 1.80 (td, J = 13.0, 3.6 Hz, 1H), 1.76-1.66 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 200.6, 131.7, 128.5, 128.4, 126.5 (q, J = 276.4 Hz), 122.4, 107.7, 88.9, 86.1, 64.5, 64.3, 53.6, 38.2, 33.1, 32.9, 31.6, 31.5, 29.7 (q, J = 29.8 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ - 64.56; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₀H₂₁F₃O₃+Na⁺: 389.1335; found 389.1331.

3ea

4,4,4-trifluoro-2-(1-(phenylethynyl)cyclopentyl)butanal (3ea): 33 mg, 56% yield, yellow oil.

Flash column chromatography conditions: petroleum ethers/EtOAc = 150:1; ¹H NMR (600 MHz, CDCl₃) δ 9.84 (d, J = 3.4 Hz, 1H), 7.37-7. 35 (m, 2H), 7.32-7.28 (m, 3H), 3.11-3.05 (m, 1H), 2.70 (ddd, J = 10.4, 3.6, 2.8 Hz, 1H), 2.44-2.35 (m, 1H), 2.14-2.05 (m, 2H), 2.01-1.90 (m, 2H), 1.85-1.72 (m, 3H), 1.69-1.64 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 200.5, 131.6, 128.3, 128.2, 126.4 (q, J = 276.8 Hz), 122.8, 91.3, 84.2, 53.9, 44.4, 39.7, 38.6, 31.5 (q, J = 29.8 Hz), 24.2, 23.2; ¹⁹F NMR (377 MHz, CDCl₃) δ -64.55; HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₇H₁₇F₃O+H⁺: 295.1304; Found 295.1314.

3-(phenylethynyl)-3-propyl-2-(2,2,2-trifluoroethyl)hexanal (3fa): 49 mg, 76% yield, yellow oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 150:1; **¹H NMR (600 MHz, CDCl₃)** δ 9.96 (d, *J* = 3.4 Hz, 1H), 7.40-7.39 (m, 2H), 7.33-7.30 (m, 3H), 2.96-2.87 (m, 2H), 2.37-2.29 (m, 1H), 1.57-1.47 (m, 8H), 0.96 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 201.3, 131.6, 128.3, 128.2, 126.7 (q, *J* = 276.4 Hz), 122.8, 90.9, 85.8, 50.5, 41.3, 38.9, 38.6, 29.2 (q, *J* = 29.2 Hz), 17.7, 14.4, 14.3; ¹⁹F NMR (565 MHz, CDCl₃) δ -64.69; HRMS (ESI) *m/z*: [*M* + Na]⁺ Calcd for C₁₉H₂₃F₃O+Na⁺: 347.1593; found 347.1590.

3-methyl-3,5-diphenyl-2-(2,2,2-trifluoroethyl)pent-4-ynal (**3ga**, both isomers): 22 mg, 33% yield, yellow oil, 2:1 dr, determined by ¹⁹F NMR analysis of the crude mixture. Flash column chromatography conditions: petroleum ethers/EtOAc = 100:1. Major isomer: ¹H NMR (**600 MHz**, **CDCl**₃) δ 9.85 (d, *J* = 4.0 Hz, 1H), 7.59-7.57 (m, 2H), 7.52-7.49 (m, 2H), 7.42-7.40 (m, 1H), 7.37-7.31 (m, 5H), 3.00 (ddd, *J* = 11.0, 4.0, 2.0 Hz, 1H), 2.90-2.82 (m, 1H), 2.07-1.99 (m, 1H), 1.73 (s, 3H); ¹³C NMR (**151 MHz, CDCl**₃) δ 200.9, 141.8, 131.7, 129.0, 128.7, 128.5, 127.8, 126.3 (q, *J* = 276.9 Hz), 126.2, 122.3, 89.1, 87.7, 55.1, 42.2, 31.1 (q, *J* = 29.2 Hz), 28.4; ¹⁹F NMR (**565 MHz**,

CDCl₃) δ -64.29. Minor isomer: ¹**H NMR (600 MHz, CDCl₃)** δ 9.54 (s, 1H), 7.62-7.60 (m, 2H), 7.48-7.46 (m, 2H), 7.44-7.42 (m, 2H), 7.38-7.36 (m, 4H), 3.14 (ddd, J = 11.2, 4.0, 2.2 Hz, 1H), 2.96-2.92 (m, 1H), 2.41-2.33 (m, 1H), 1.77 (s, 3H); ¹³**C NMR (151 MHz, CDCl₃)** δ 199.8, 141.3, 131.7, 128.9, 128.7, 128.4, 127.9, 126.4, (q, J = 277.1 Hz), 126.5, 122.4, 90.0, 87.0, 54.9, 42.3, 29.6 (q, J = 29.2 Hz), 27.2; ¹⁹**F NMR (565 MHz, CDCl₃)** δ -64.70; Both isomers: **HRMS (ESI)** m/z: [M+ Na]⁺ Calcd for C₂₀H₁₇F₃O+Na⁺: 353.1124; found 353.1124.

5,5,5-trifluoro-3-(4-(phenylethynyl)tetrahydro-2H-pyran-4-yl)pentan-2-one (3ha): 39 mg, 60% yield, white solid, mp 64-65 °C ; Flash column chromatography conditions: petroleum ethers/EtOAc = 10:1; ¹H NMR (600 MHz, CDCl₃) δ 7.47-7.41 (m, 2H), 7.38-7.30 (m, 3H), 3.93-3.89 (m, 2H), 3.88-3.81 (m, 2H), 2.98 (d, *J* = 11.2 Hz, 1H), 2.85-2.79 (m, 1H), 2.51-2.42 (m, 1H), 2.36 (s, 3H), 1.90 (td, *J* = 12.6, 4.6 Hz, 1H), 1.82-1.79 (m, 1H), 1.63 (td, *J* = 12.2, 4.6 Hz, 1H), 1.51-1.48 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 207.7, 131.6, 128.6, 128.4, 126.7 (q, *J* = 276.9 Hz), 122.4, 89.3, 86.9, 64.7, 64.5, 54.3, 37.6, 35.4, 34.2, 32.8 (q, *J* = 28.6 Hz), 32.7; ¹⁹F NMR (565 MHz, CDCl₃) δ -64.86; HRMS (ESI) *m/z*: [*M* + Na]⁺ Calcd for C₁₈H₁₉F₃O₂+Na⁺: 347.1229; found 347.1230.

5,5,5-trifluoro-3-(8-(phenylethynyl)-1,4-dioxaspiro[4.5]decan-8-yl)pentan-2-one (**3ia**): 49 mg, 65% yield, colorless oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 100:1; ¹H NMR (600 MHz, CDCl₃) δ 7.43-7.39 (m, 2H), 7.34-7.28 (m, 3H), 3.97-3.91 (m, 4H), 3.00 (d, *J* =10.0 Hz, 1H), 2.86-2.79 (m, 1H), 2.51-2.42 (m, 1H), 2.36 (s, 3H), 2.10-2.02 (m, 2H), 1.98-1.94 (m, 1H), 1.85 (td, *J* = 12.8, 3.4 Hz, 1H), 1.74-1.67 (m, 2H), 1.67-1.58 (m, 2H); ¹³C NMR (**151 MHz, CDCl₃**) δ 208.2, 131.6, 128.3, 126.7 (q, *J* = 277.9 Hz), 122.7, 107.8, 89.9, 85.6, 64.4, 64.2, 53.7, 38.8, 33.4 (q, *J* = 28.8 Hz), 32.8, 32.7, 31.9, 31.8, 31.6; ¹⁹F NMR (**377 MHz, CDCl₃**) δ

-65.03; **HRMS (ESI)** m/z: $[M + Na]^+$ Calcd for $C_{21}H_{23}F_3O_3 + Na^+$: 403.1491; found 403.1495.

1,1,1,5,5,5-hexafluoro-3-(4-(phenylethynyl)tetrahydro-2H-pyran-4-yl)pentan-2-one (**3ja**): 46 mg, 61% yield, colorless oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 10:1; ¹H NMR (600 MHz, CDCl₃) δ 7.48-7.43 (m, 2H), 7.38-7.31 (m, 3H), 3.97-3.91 (m, 2H), 3.89-3.81 (m, 2H), 3.52 (dd, *J* = 11.4, 1.8 Hz, 1H), 2.91-2.81 (m, 1H), 2.70-2.62 (m, 1H), 1.93 (td, *J* = 12.4, 4.6 Hz, 1H), 1.87-1.84 (m, 1H), 1.66 (td, *J* = 12.0, 4.4 Hz, 1H), 1.57-1.54 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 192.6 (q, *J* = 36.4 Hz), 131.7, 128.8, 128.4, 125.8 (q, *J* = 276.8 Hz), 122.0, 114.8 (q, *J* = 292.0 Hz), 87.7, 87.5, 64.5, 64.3, 48.1, 39.5, 35.7, 33.9, 33.7 (q, *J* = 29.2 Hz); ¹⁹F NMR (565 MHz, CDCl₃) δ -65.24 (q, *J* = 2.7 Hz), -77.70 (q, *J* = 2.0 Hz); HRMS (ESI) *m/z*: [*M* + Na]⁺ Calcd for C₁₈H₁₆F₆O₂+Na⁺: 401.0947; found 401.0945.

1-(5,5,5-trifluoro-1-phenylpent-1-yn-3-yl)cyclohexane-1-carbonitrile (**3la**): 49 mg, 81% yield, colorless oil. Flash column chromatography conditions: petroleum ethers/EtOAc = 50:1; ¹H NMR (**600 MHz, CDCl₃**) δ 7.43-7.42 (m, 2H), 7.35-7.29 (m, 3H), 3.02 (dd, J = 11.2, 2.8 Hz, 1H), 2.66-2.59 (m, 1H), 2.58-2.50 (m, 1H), 2.15-2.12 (m, 1H), 2.02-2.19 (m, 1H), 1.86-1.77 (m, 3H), 1.69-1.63 (m, 3H), 1.62-1.55 (m, 1H), 1.24-1.17 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 131.7, 128.6, 128.3, 126.0 (q, J = 277.5 Hz), 122.4, 121.4, 86.4, 84.5, 43.1, 35.8 (q, J = 28.6 Hz), 35.8, 34.1, 32.4, 25.0, 23.1, 22.9; ¹⁹F NMR (565 MHz, CDCl₃) δ -64.15; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₈F₃N+Na⁺: 328.1284; found 328.1288.

4. Photocatalyzed 1,2,3-Trifunctionalization of α, α -Disubstituted Vinyl Aldehydes

To a mixture of *fac*-Ir(ppy)₃ (0.004 mmol, 2 mol%), TsCl (0.3 mmol, 1.5 equiv), Na₂CO₃ (0.4 mmol, 2.0 equiv) and H₂O (0.4 mmol, 2.0 equiv) in 2 mL of DMA was added **1a** (0.2 mmol, 1.0 equiv) under nitrogen atmosphere. After 10 h of irradiation at a distance of ~5 cm (light intensity: 3.58 mW/cm² at 5 cm distance) with 30 W blue LEDs (GeAo Chemical lamps, 450 nm) at room temperature, the reaction mixture was quenched by water, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 2:1) gave 52.0 mg (89% yield) of **2-cyclohexylidene-3-tosylpropanal** (**4**) as a colorless oil. ¹**H** NMR (**400 MHz, CDCl₃)** δ 9.92 (s, 1H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 4.24 (m, 2H), 2.80 (t, *J* = 5.8 Hz, 2H), 2.57 (t, *J* = 6.2 Hz, 2H), 2.43 (s, 3H), 1.87 - 1.81 (m, 2H), 1.79-1.74 (m, 2H), 1.72-1.66 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 187.4, 171.1, 144.7, 136.4, 129.7, 128.6, 122.8, 51.7, 34.9, 30.1, 28.8, 28.2, 26.2, 21.8; HRMS (ESI) *m/z*: [*M* + Na]⁺ Calcd for C₁₆H₂₀O₃S+Na⁺: 315.1025; found 315.1021.

To a mixture of DABCO (0.4 mmol, 2.0 equiv) and K₂CO₃ (0.2 mmol, 1.0 equiv) in 2 mL of DMA was added **1a** (0.2 mmol, 1.0 equiv) under nitrogen atmosphere. After 48 h of irradiation at a distance of ~5 cm (light intensity: 3.58 mW/cm^2 at 5 cm distance) with 30 W blue LEDs (GeAo Chemical lamps, 450 nm) at room temperature, the reaction mixture was quenched by water, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 10:1) gave 20.8 mg (40% yield) of **ethyl 4-cyclohexylidene-2,2-difluoro-5-oxopentanoate** (**5**) as a colorless liquid. ¹H NMR (600 MHz, CDCl₃) δ 10.2 (s, 1H), 4.29 (q, *J* = 7.2 Hz, 2H), 3.17 (t, *J* = 16.6 Hz, 2H), 2.80 (dd, *J* = 8.2, 6.0 Hz, 2H), 2.47 (dd, *J* = 8.2, 6.0 Hz, 2H), 1.78-1.74 (m, 4H), 1.70-1.67 (m, 2H), 1.36 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 189.3, 168.7, 164.1 (t, *J* = 29.9 Hz), 124.8, 115.1 (t, *J* = 252.0 Hz), 63.1, 34.3, 30.0, 29.9 (t, *J* = 24.7 Hz), 28.9, 28.2, 26.4, 14.1; ¹⁹F NMR (377 MHz, **C**CCl₃)

CDCl₃) δ -104.68; **HRMS (ESI)** m/z: $[M + H]^+$ Calcd for C₁₃H₁₈F₂O₃+H⁺: 261.1297; found 261.1294.

5. Synthetic Utility

To a solution of TMSCN (0.2 mmol, 1.0 equiv) in 2 mL of THF was added TBAF (20 µL, 1.0 M in THF, 0.1 equiv) and **3aa** (0.2 mmol, 1.0 equiv) at 0 °C under nitrogen atmosphere. After stirring at room temperature for 2 h, the reaction mixture was quenched by 1.0 M aqueous solution of HCl, extracted with EtOAc, dried over anhydrous Na₂SO₄, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc = 10:1) gave 52 mg (77% yield) of **5,5,5-trifluoro-2-hydroxy-3-(1-(phenylethynyl)cyclohexyl)pentanenitrile** (**6**) as a colorless liquid, dr = 2:1, determined by ¹⁹F NMR analysis of the crude mixture. ¹H NMR (**400 MHz, CDCl₃**) δ 7.46-7.39 (m, 2H), 7.34-7.28 (m, 3H), 5.12-5.10 (m, 0.3H, minor), 5.00-4.98 (m, 0.6H, major), 3.20 (d, *J* = 4.6 Hz, 0.3H, minor), 3.01 (d, *J* = 6.8 Hz, 0.6H, major), 2.78-2.51 (m, 2H), 2.11 (dt, *J* = 9.4, 3.2 Hz, 1H), 2.07-1.95 (m, 2H), 1.83-1.69 (m, 5H), 1.54-1.40 (m, 1H), 1.34-1.27 (m, 1H), 1.26 -1.16 (m, 1H); ¹³C NMR (**101 MHz, CDCl₃, major**) δ 131.8, 128.6, 128.5, 126.6, (a, *J* = 277.5 Hz), 122.7, 118.9, 90.2, 87.4, 62.6, 46.7, 39.8, 36.3, 36.2, 32.7 (q, *J* = 29.5 Hz), 25.6, 23.1, 22.6; ¹³C NMR (**101 MHz, CDCl₃, major**) δ 131.8, 128.8, 128.5, 126.7 (q, *J* = 277.4 Hz), 122.2, 118.7, 91.0, 87.5, 61.6, 46.5, 40.5, 36.2, 35.6, 30.3 (q, *J* = 30.0 Hz), 25.5, 23.1, 22.6; ¹⁹F NMR (**377 MHz, CDCl₃**) δ - 63.73; **HRMS (ESI)** *m/z*: [*M* + Na]⁺ Calcd for C₁₉H₂₀F₃NO +Na⁺: 358.1389; found 358.1383.

To a solution of **3aa** (0.2 mmol, 1.0 equiv) in 2 mL of EtOH was added NaBH₄ (0.1 mmol, 0.5 equiv). After stirring at room temperature for 2 h, EtOH was removed under reduced pressure. The reaction mixture was quenched by water, extracted with EtOAc, washed with brine, dried over

anhydrous Na₂SO₄, and concentrated. Column chromatography on silica gel (petroleum ethers/EtOAc 10:1) gave 53 (85%) vield) 4,4,4-trifluoro-2-(1-= mg of (phenylethynyl)cyclohexyl)butan-1-ol (7) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.41-7.38 (m, 2H), 7.31-7.28 (m, 3H), 4.06-4.03 (m, 1H), 3.86-3.82 (m, 1H), 2.62-2.58 (m, 1H), 2.48-2.39 (m, 1H), 2.02-1.99 (m, 1H), 1.97-1.93 (m, 2H), 1.79-1.66 (m, 6H), 1.36 (td, J = 12.6, 4.0 Hz, 1H), 1.27 (td, J = 12.4, 3.8 Hz, 1H), 1.23-1.15 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 131.6, 128.3, 128.1, 127.6 (q, J = 276.4 Hz), 122.9, 92.6, 85.8, 62.1, 44.4, 39.2, 36.3, 35.8, 31.3 (q, J = 28.1 Hz), 25.8, 23.0, 22.7; ¹⁹F NMR (565 MHz, CDCl₃) δ -64.19; HRMS (ESI) m/z: [M + H]⁺ Calcd for $C_{18}H_{21}F_{3}O + H^+$: 311.1615; found 311.1617.

To a solution of methyltriphenylphosphonium bromidethe (0.24 mmol, 1.2 equiv) in 2 mL of THF was added *t*-BuOK (0.3 mmol, 1.5 equiv) at 0 °C under nitrogen atmosphere. After stirring at for 2 h at room temperature, **3aa** was added dropwise slowly and kept at this temperature for another 8 h. The reaction mixture was quenched by addition of saturated aqueous NH₄Cl solution, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. Column chromatography on silica gel (petroleum ethers) gave 49 mg (50% yield) of **((1-(5,5,5-trifluoropent-1-en-3-yl)cyclohexyl)ethynyl) benzene (8)** as a yellow liquid. ¹H NMR (**600 MHz**, **CDCl₃**) δ 7.42-7.40 (m, 2H), 7.32-7.27 (m, 3H), 5.78 (dt, *J* = 19.2, 9.4 Hz, 1H), 5.18 (dd, *J* = 10.2, 1.8 Hz, 1H), 5.12 (dd, *J* = 17.0, 1.8 Hz, 1H), 2.66-2.58 (m, 1H), 2.34-2.24 (m, 2H), 1.88-1.81 (m, 2H), 1.76-1.62 (m, 5H), 1.31-1.25 (m, 1H), 1.19-1.13 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 137.0, 131.6, 128.3, 127.8, 127.3 (q, *J* = 277.5 Hz), 123.6, 118.2, 92.4, 84.8, 48.6, 39.8, 36.3, 35.4, 35.0 (q, *J* = 27.0 Hz), 25.9, 23.1, 23.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.70; HRMS (ESI) *m/z*: [*M* + H]⁺ Calcd for C₁₉H₂₁F₃+H⁺: 307.1668; found 307.1667.

6. Mechanistic Experiments

To a Schlenk flask containing **1a** (0.2 mmol, 1.0 equiv), **2a** (0.4 mmol, 2.0 equiv) and TEMPO (0.4 mmol, 2.0 equiv) in 2 mL of DMC was added BPO (0.06 mmol, 30 mol%) under nitrogen atmosphere. The flask was immersed in an oil bath and heated at 85 °C for 10 h. Then the reaction mixture was quenched with water, extracted with EtOAc, washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated. The crude product was analyzed by HRMS and **9** was detected while **3aa** was not observed.

Figure S1. HRMS analysis of the radical-trapping experiment

To a Schlenk flask containing β-pinene (0.2 mmol, 1.0 equiv), 2a (0.4 mmol, 2.0 equiv) in 2

mL of DMC was added BPO (0.06 mmol, 30 mol%) under nitrogen atmosphere. The flask was immersed in an oil bath and heated at 85 °C for 10 h. Then the reaction mixture was quenched by water, extracted with EtOAc, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. Column chromatography on silica gel (petroleum ethers) gave 43 mg (70% yield) of **(3-methyl-3-(4-(2,2,2-trifluoroethyl)cyclohex-3-en-1-yl)but-1-yn-1-yl)benzene** (10) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.45-7.38 (m, 2H), 7.33-7.26 (m, 3H), 5.69-5.69 (m, 1H), 2.76 (m, 2H), 2.28-2.24 (m, 1H), 2.22-2.00 (m, 4H), 1.53-1.48 (m, 1H), 1.47-1.40 (m, 1H), 1.29 (s, 3H), 1.27 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 131.6, 128.9, 128.1, 127.5, 127.4 (q, *J* = 2.6 Hz), 126.2 (q, *J* = 278.7 Hz), 124.0, 96.1, 81.2, 43.3, 41.7 (q, *J* = 28.9 Hz), 34.6, 29.7, 27.8, 27.2, 26.9, 24.6 ; ¹⁹F NMR (565 MHz, CDCl₃) δ -64.76; HRMS (ESI) *m/z*: [*M* + Na]⁺ Calcd for C₁₉H₂₁F₃+Na⁺: 329.1488; found 329.1488.

To a Schlenk flask containing **1a** (0.2 mmol, 1.0 equiv), **2a** (0.4 mmol, 2.0 equiv) in 2 mL of DMC was added BPO (0.06 mmol, 30 mol%) under nitrogen atmosphere. The flask was immersed in an oil bath and heated at 85 °C for 10 h. The crude product was analyzed by HRMS. The compounds **11** and **12** was detected.⁴

Figure S2. HRMS analysis of the model reaction

10 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

CF₃ **1j** ¹⁹FNMR (377 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

110 100 90 -10 200 190 180 170 160 130 120 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 200 190 180 170 160 110 100 90 -130 120 f1 (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

110 100 90 _____ 200 190 180 170 160 130 120 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

СНО

— -64.5478

3ea ¹⁹F NMR (377 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

CF₃ ÇΝ Ph

3ia ¹⁹F NMR (565 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

8. X Ray Crystallographic Data

The crystal of **3ha** was recrystallized in petroleum ether and dichloromethane via slow evaporation at room temperature. Crystallographic data for the structure **3ha** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 2409040.

Crystal data and structure refinement for compound 3h	a
---	---

Crystal data and structure fermionic	
Empirical formula	$C_{18}H_{19}F_{3}O_{2}$
Formula weight	324.33
Temperature/K	273.15
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	13.5172(14)
b/Å	9.3987(10)
c/Å	13.5553(14)
α'°	90
β/°	106.810(5)
$\gamma/^{\circ}$	90
Volume/Å ³	1648.5(3)
Z	4
$\rho_{calc}g/cm^3$	1.307
μ/mm ⁻¹	0.906
F(000)	680.0
Crystal size/mm ³	$0.38 \times 0.34 \times 0.26$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2\Theta range for data collection/°	10.964 to 136.646
Index ranges	$-16 \le h \le 16, -11 \le k \le 11, -16 \le l \le 16$
Reflections collected	21741

Independent reflections	$3011[R_{int} = 0.0586, R_{sigma} = 0.0341]$
Data/restraints/parameters	3011/0/209
Goodness-of-fit on F ²	1.031
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0483, wR_2 = 0.1177$
Final R indexes [all data]	$R_1 = 0.0609, wR_2 = 0.1293$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.22

9. Computational Data

Computational details: All density functional theory (DFT) calculations were performed using Gaussian 16.⁵ Geometry optimizations and frequencies were calculated at the M06-2X-D3/def2-SVP-SMD(CH₂Cl₂) level of theory.^{6,7} Frequency calculations confirmed that optimized structures are minima (no imaginary frequency) or transition structures (one imaginary frequency). To obtain more accurate electronic energies, single-point energy calculations were performed at the M06-2X-D3/6-Def2-TZVP-SMD(CH₂Cl₂) level of theory with the optimized structures. Structures were generated using CYLview.⁸

Figure S3. Calculated Gibbs free energy profile for the reactions of 1a and 2a.

Figure S4. Calculated Gibbs free energy profile for the reactions of 1i and 2a.

Figure S5. Calculated Gibbs free energy profile for the reactions of 1j and 2a.

Figure S6. Calculated Gibbs free energy profile for the reactions of 1k and 2a.

The	calculat	ed Car	tesian	coordinates	and o	energies	of struc	tures.
				С	-0.3478	0.45542	1.26578	
Ι				С	-1.44784	-1.07904	-0.99869	
С	0.64218	1.16008	-0.9437	Н	0.1422	9 -2.06971	0.08823	
0	0.31657	2.3025	-0.75847	Н	0.6386	8 -1.4411	-1.49113	
Η	1.09432	0.84212	-1.91648	С	-1.82247	0.55584	0.87381	
С	1.98424	-0.10578	0.5694	Н	-0.22799	-0.2977	2.06266	
С	2.81209	-1.11433	0.29398	Н	0.0091	4 1.416	1.66706	
Η	2.34167	0.72807	1.18597	C C	-2.31399	-0.72934	0.21017	
Η	3.8311	-1.12013	0.68795	Н	-1.79512	2 -2.01096	-1.46949	
Η	2.51207	-1.96789	-0.31871	Н	-1.55166	5 -0.28469	-1.7601	
С	0.5526	0.04143	0.09055	Н	-2.42467	0.78385	1.76636	
С	0.02251	-1.21973	-0.6044	Н	-1.95534	1.39898	0.17674	

Н	-3.36761	-0.62571	-0.09067	С	3.58692	-0.95601	-0.19851	
Н	-2.26863	-1.5584	0.93799	Н	2.35249	1.18259	-1.5036	
M06-	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E = -	Н	0.89141	0.32129	-2.00612	
426.5	564876072 ł	nartree		Н	1.81399	-1.81403	-1.08797	
ZPG	= 0.178326	hartree		Н	2.93506	-1.11515	-2.26745	
				Н	2.86866	1.4605	1.01235	
Π				Н	1.73463	0.76934	2.19757	
С	0.54062	0.85261	0.49123	Η	3.79739	-0.64994	1.94568	
С	1.73506	0.84247	-0.40538	Н	2.33562	-1.53025	1.46846	
Н	0.64059	1.3355	1.4665	Н	4.31754	-0.16343	-0.43588	
С	2.77335	-0.16011	0.03804	Н	4.13665	-1.90921	-0.20572	
Η	1.48363	0.59598	-1.44636	С	1.13307	0.56361	0.13413	
Η	2.24417	1.81994	-0.40406	С	-0.21238	0.13797	0.50416	
F	3.8564	-0.12882	-0.7452	Н	-0.36512	-0.09545	1.56291	
F	3.18699	0.0698	1.28969	С	-1.14643	-0.55169	-0.45378	
F	2.30854	-1.4157	0.01005	С	-2.56869	-0.49683	0.03118	
С	-0.80339	-0.9006	-0.74845	Н	-0.88363	-1.61422	-0.56767	
С	-1.73582	0.25628	1.30555	Н	-1.12574	-0.07593	-1.4419	
С	-2.21245	-1.37998	-1.09669	F	-3.01678	0.7573	0.14919	
Н	-0.28318	-1.66602	-0.15002	F	-2.71396	-1.07145	1.23406	
Η	-0.2116	-0.75644	-1.66653	F	-3.39628	-1.13288	-0.80454	
С	-3.12996	-0.269	0.96341	С	-0.01759	1.69981	0.28703	
Н	-1.23835	-0.44109	2.00045	Н	0.08989	2.2785	1.22101	
Н	-1.80552	1.23021	1.81319	0	-0.46032	2.23333	-0.77329	
С	-3.05866	-1.56696	0.16111	M06-	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E =	= -
Н	-2.15124	-2.31841	-1.66791	764.2	221663904 ł	nartree		
Н	-2.70091	-0.64033	-1.75682	ZPG	= 0.189036	hartree		
Н	-3.70169	-0.42102	1.89142					
Н	-3.67031	0.49217	0.3781	IV				
Н	-4.07059	-1.90802	-0.10525	С	3.99218	-0.49053	-0.0446	
Η	-2.6066	-2.35901	0.78343	С	3.408	0.31677	1.11245	
С	-0.83169	0.40359	0.07401	С	2.08912	0.98609	0.7099	
С	-1.31745	1.54383	-0.82264	С	1.12847	0.01811	0.0884	
0	-2.13042	2.37328	-0.50868	С	1.67219	-0.90925	-0.9571	
Η	-0.81014	1.58996	-1.81871	С	2.99817	-1.54655	-0.52246	
M06-	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E = -	Н	1.62149	1.48335	1.57402	
764.2	27565001 ł	nartree		Н	3.22355	-0.35881	1.96467	
ZPG	= 0.185885	hartree		Н	4.12209	1.08043	1.45492	
				Н	4.2309	0.19029	-0.88083	
III				Н	4.93681	-0.96624	0.25978	
С	2.49602	-0.96558	-1.26981	Н	0.94306	-1.69214	-1.21382	
С	1.68854	0.33852	-1.2532	Н	1.85425	-0.3386	-1.89281	
С	2.19479	0.61052	1.21106	Н	2.80207	-2.25408	0.30089	
С	3.00023	-0.69498	1.18879	Н	3.41854	-2.12937	-1.35557	

Н	2.31389	1.79377	-0.01892	Н	-3.12706	-1.91142	-0.87447	
С	-0.33836	0.36042	0.14483	Н	-3.64685	-1.20683	0.68007	
Н	-0.56358	0.77962	1.13891	С	-4.41619	-0.24375	-1.01479	
С	-0.51714	1.49151	-0.85827	F	-4.08403	0.16461	-2.24793	
0	-0.4223	2.65707	-0.5766	F	-5.50061	-1.0143	-1.13665	
Н	-0.66644	1.16178	-1.91652	F	-4.78935	0.85102	-0.33881	
С	-1.26191	-0.81608	-0.16083	С	0.02065	-2.54885	2.03073	
С	-2.69091	-0.50377	0.18039	С	-0.51416	-2.01948	3.35991	
Н	-0.97144	-1.70336	0.41928	С	-0.62957	-0.49657	3.33558	
Н	-1.23742	-1.08254	-1.22781	С	-1.5115	-0.02747	2.17892	
F	-3.51203	-1.50541	-0.14641	С	-1.01063	-0.53485	0.81167	
F	-3.12871	0.58844	-0.46758	С	-0.83711	-2.06621	0.85947	
F	-2.8624	-0.26759	1.48624	Н	-1.04905	-0.12492	4.28219	
M06	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E = -	Н	-1.51131	-2.45372	3.54892	
764.2	230275425 h	nartree		Н	0.13565	-2.34051	4.18766	
ZPG	= 0.186438	hartree		Н	1.06598	-2.22547	1.90162	
				Н	0.03307	-3.64895	2.03021	
V				Η	-2.53334	-0.41325	2.32363	
S	0.48262	1.88836	0.74513	Η	-1.59944	1.07061	2.16969	
0	0.87565	2.2113	2.1075	Н	-1.83941	-2.50581	0.97481	
0	-0.64845	2.56863	0.12535	Н	-0.43729	-2.42654	-0.10188	
С	1.94801	2.38755	-0.30422	Н	0.37239	-0.04641	3.23823	
F	1.94507	3.70573	-0.3353	M06-	2X-D3-SM	D(CH2Cl2)	/def2-TZVP:	E = -
F	3.07524	1.96466	0.2311	1958	.353784801	nartree		
F	1.83256	1.92136	-1.53395	ZPG	= 0.300422	hartree		
С	0.36278	0.09111	0.4882					
С	1.43365	-0.4935	0.04291	VI				

С

С

С

С

Η

С

Η

С

Η

Н

Η

С

Η

С

Н

0

С

2.59136 -1.05626

-1.23018

-1.45798

-1.78699

-0.92755

-2.01369

-1.3154

-2.18136

-1.91968

-2.31903

-0.12307

0.931

-0.19308

-1.16407

-0.97088

0.71757

-2.61918 -1.92386

2.73985

3.64759

3.90293

1.92779

4.79898

3.53776

4.93521

4.01134

5.60633

5.84704

-2.02081

-2.28104

-1.31579

-0.74252

-1.32775

-3.29149

-0.4659

-1.87211

-2.37653

-2.53494

-0.13139

-1.51555

-3.45405

-0.31688

-0.14281

-1.66332

-1.94992

-2.37395

-0.33189

0.53595

1.47667

0.40068

210	0.300 122	indi ti ee	
VI			
С	0.17241	4.09917	-0.63392
С	0.10697	3.02104	-1.71206
С	1.0403	1.85434	-1.39529
С	0.79575	2.33915	1.06305
С	-0.13441	3.50526	0.73798
Н	0.95745	1.09193	-2.18217
Н	-0.92758	2.64689	-1.79513
Н	0.3727	3.43774	-2.69512
Н	1.18537	4.53776	-0.62085
Н	-0.52742	4.91638	-0.86462
Н	0.54146	1.91983	2.0475
Н	1.83734	2.69855	1.12337
Н	-1.18011	3.1537	0.76006
Н	-0.04098	4.27069	1.52272
Η	2.08548	2.20807	-1.38362
С	1.85688	0.15803	0.31862
Н	2.82602	0.6791	0.28555

С	1.67184	-0.34635	1.73765		С	-0.88985	-0.90075	2.59282	
0	2.36953	-0.01757	2.65974		F	-1.58244	-0.69447	3.69589	
Η	0.81401	-1.04684	1.8859		F	-1.54634	-1.74657	1.81684	
С	1.85667	-1.01271	-0.66608		F	0.28452	-1.41686	2.90451	
С	3.03176	-1.92966	-0.47245		С	-0.16903	0.29184	0.04697	
Н	1.90909	-0.66013	-1.70404		С	-1.16356	-0.1186	-0.68564	
Н	0.94629	-1.62204	-0.5592		С	-2.43551	-0.46796	-1.12681	
F	3.01877	-2.93721	-1.34948		С	-2.84563	-1.82717	-1.17047	
F	3.04738	-2.48006	0.75216		С	-3.33469	0.54543	-1.55635	
F	4.19981	-1.29427	-0.62149		С	-4.11446	-2.14839	-1.62695	
С	0.75992	1.2216	-0.00949		Н	-2.15559	-2.60538	-0.84147	
С	-2.96299	-0.56573	-0.0048		С	-4.59697	0.19796	-2.01023	
С	-3.09805	-1.93836	-0.27281		Н	-3.01845	1.5885	-1.51174	
С	-4.10901	0.19872	0.27245		С	-4.99374	-1.14427	-2.04941	
С	-4.35773	-2.53168	-0.26237		Н	-4.42689	-3.19341	-1.65572	
Н	-2.20843	-2.53252	-0.4884		Н	-5.28555	0.97989	-2.33428	
С	-5.36472	-0.40269	0.28018		Н	-5.98978	-1.40786	-2.40787	
Н	-4.00397	1.26458	0.4816		С	2.03717	-0.67837	-0.83198	
С	-5.4926	-1.76705	0.0136		С	3.54218	-0.34032	-1.01263	
Η	-4.45388	-3.59848	-0.4711		С	1.89322	-1.80916	0.21766	
Η	-6.24972	0.19787	0.49693		С	4.4454	-1.55817	-1.21917	
Η	-6.47834	-2.23521	0.0212		Н	3.86026	0.18962	-0.09804	
С	-0.56887	0.5799	-0.01123		Н	3.67368	0.35973	-1.85087	
С	-1.66322	0.05311	-0.01125		С	2.81242	-3.01185	0.00206	
M06-	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP:]	E = -	Н	2.12834	-1.35898	1.19742	
1072	.09375838 h	nartree			Н	0.84372	-2.14043	0.26411	
ZPG	= 0.282367	hartree			С	4.27187	-2.58171	-0.10202	
					Н	5.48906	-1.2138	-1.27019	
VII					Н	4.22874	-2.0344	-2.18968	
С	1.50389	-1.16206	-2.16461		Н	2.67332	-3.71301	0.83843	
0	0.67187	-0.59517	-2.8285		Н	2.52438	-3.55796	-0.91129	
Η	1.94645	-2.11476	-2.5361		Н	4.91955	-3.45396	-0.27554	
С	1.35396	1.80015	-1.24241		Н	4.58657	-2.13141	0.85536	
С	1.03595	3.08191	-0.52259		M06-	2X-D3-SM	D(CH2Cl2)	/def2-TZVP:	: E = -
Н	2.36724	1.93099	-1.64462		1958.	.35238289 ł	nartree		
Н	0.65846	1.70061	-2.08463		ZPG	= 0.300776	hartree		
F	1.08135	4.12746	-1.35369						
F	-0.191	3.0794	0.02703		VIII				
F	1.89783	3.33192	0.46903		С	-1.69841	-0.85279	1.5115	
С	1.28263	0.57534	-0.31714		0	-2.39599	-0.48997	2.42271	
Н	1.79365	0.84661	0.61982		Н	-0.76471	-1.43439	1.70822	
S	-0.67244	0.74494	1.73544		С	-1.12363	1.87105	0.34441	
0	-2.01463	1.3023	1.72467		С	-0.248	2.98691	-0.16349	
0	0.42215	1.39529	2.44218		Н	-2.15487	2.22211	0.21326	

Н	-0.92914	1.77008	1.42225	F	2.75866	0.21542	-1.16185	
F	-0.65197	4.16548	0.32603	F	2.08833	-1.52456	-0.072	
F	1.03736	2.85312	0.18081	F	3.72673	-0.3401	0.68752	
F	-0.28437	3.08661	-1.49877	С	-0.11513	0.42922	1.25919	
С	-0.92984	0.53878	-0.39699	Н	-0.36012	-0.31612	2.02241	
Н	-1.13473	0.71846	-1.46632	С	-1.13248	2.18264	-0.10496	
С	0.45737	0.06075	-0.28771	0	-0.88817	2.67574	-1.17449	
С	1.60883	-0.30987	-0.19649	Н	-1.37776	2.82381	0.77719	
С	2.98394	-0.71912	-0.08683	С	-1.15146	0.69208	0.18501	
С	3.33415	-2.07796	-0.1511	С	-2.56882	0.35847	0.70928	
С	3.98921	0.24733	0.08658	С	-0.86022	-0.10592	-1.09857	
С	4.66911	-2.45955	-0.04385	С	-2.78856	-1.14579	0.87576	
Η	2.55255	-2.8276	-0.28543	Н	-3.30403	0.74857	-0.01544	
С	5.32114	-0.14366	0.1927	Н	-2.74187	0.88578	1.66124	
Η	3.7127	1.30176	0.1361	С	-1.07072	-1.60615	-0.90466	
С	5.66414	-1.49554	0.12784	Н	-1.53921	0.2624	-1.88556	
Η	4.93443	-3.51685	-0.0948	Н	0.16287	0.11701	-1.43809	
Η	6.09689	0.61207	0.32676	С	-2.48923	-1.90029	-0.41867	
Η	6.70927	-1.79843	0.21131	Н	-3.82492	-1.32632	1.19888	
С	-1.96579	-0.54972	0.04467	Н	-2.14014	-1.53368	1.67899	
С	-3.4007	-0.04202	-0.15786	Н	-0.87022	-2.13207	-1.85041	
С	-1.71974	-1.8309	-0.77416	Н	-0.34494	-1.9906	-0.16905	
С	-4.45699	-1.13099	0.04495	Н	-2.62863	-2.98167	-0.26897	
Η	-3.47565	0.35873	-1.1837	Н	-3.20954	-1.58864	-1.1951	
Η	-3.60526	0.78473	0.53588	M00	5-2X-D3-SM	D(CH2Cl2)	/def2-TZVP	: E = -
С	-2.77951	-2.9012	-0.5213	764	.161947251 h	artree		
Η	-1.72041	-1.55413	-1.84236	ZPC	G = 0.182595	hartree		
Η	-0.71675	-2.22439	-0.54742					
С	-4.17925	-2.3655	-0.80764	Ts-l	II_III			
Η	-5.44965	-0.71547	-0.18489	С	3.41667	0.68885	0.35296	
Η	-4.47401	-1.42105	1.108	С	3.86945	-0.76508	0.12528	
Η	-2.5629	-3.78433	-1.14062	С	2.679	-1.69585	-0.1628	
Η	-2.7254	-3.23337	0.53133	С	1.56794	-0.95454	-0.90819	
Η	-4.93636	-3.1409	-0.61651	С	2.01871	0.73663	0.96283	
Η	-4.25327	-2.10033	-1.87679	Н	3.00644	-2.5694	-0.74456	
M06	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E = -	• Н	4.5815	-0.7995	-0.71346	
1072	.09230206 ł	nartree		Н	4.41138	-1.13238	1.01022	
ZPG	= 0.282351	hartree		Н	1.99594	0.14726	1.89367	
				Н	3.39305	1.23337	-0.60505	
Ts-I	II			Н	1.98248	-0.50828	-1.82698	
С	1.09174	1.03333	1.30389	Н	0.78068	-1.65215	-1.2241	
С	2.58471	-0.31084	0.03323	Н	1.72169	1.76375	1.21473	
Η	1.76892	0.8636	2.14425	Н	4.1345	1.21955	0.99446	
Η	1.35249	1.84467	0.61556	Н	2.2662	-2.0861	0.78132	

С	0.99957	0.16073	-0.02071					
С	-0.37147	0.05897	0.49273					
Η	-0.60445	0.64608	1.38516					
С	-1.41174	-0.8958	0.0095					
С	-2.79833	-0.31393	0.09433					
Η	-1.41266	-1.81292	0.62545					
Η	-1.25139	-1.20234	-1.03305					
F	-2.94212	0.75575	-0.69578					
F	-3.10492	0.07735	1.33679					
F	-3.72391	-1.2034	-0.27659					
С	0.23508	1.24999	-0.8089					
0	0.24077	2.44809	-0.51356					
Η	-0.22221	0.88127	-1.75136					
M06	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E = -					
764.2	208495427 ł	nartree						
ZPG	ZPG = 0.187131 hartree							

Ts-III_IV

С	-3.36144	1.03664	0.41077
С	-3.90895	-0.14109	-0.39346
С	-2.92383	-1.3083	-0.39105
С	-1.55703	-0.89324	-0.94284
С	-1.99887	1.48599	-0.12191
Н	-2.78314	-1.66776	0.64223
Н	-4.87894	-0.46119	0.01572
Н	-4.09132	0.18066	-1.43383
Н	-2.12892	1.92743	-1.12943
Н	-3.24993	0.73296	1.46546
Н	-0.84024	-1.71859	-0.84918
Н	-1.64993	-0.66195	-2.0214
Н	-1.56142	2.27413	0.50922
Н	-4.06378	1.88292	0.39126
Н	-3.31832	-2.15088	-0.97777
С	-1.03565	0.3414	-0.26625
С	0.39299	0.55198	-0.011
Н	0.67217	1.60648	0.09891
С	1.43475	-0.30618	-0.69175
С	2.81446	0.03706	-0.20569
Н	1.42637	-0.16807	-1.78239
Н	1.27161	-1.36778	-0.46578
F	3.74361	-0.74277	-0.76746
F	2.93127	-0.10416	1.12013
F	3.14995	1.30454	-0.48647
0	-0.08742	-1.2372	1.57803

С	-0.18702	-0.02914	1.29498				
Η	-0.54468	0.71994	2.02608				
M06	-2X-D3-SM	D(CH2Cl2)/	def2-TZVP: E =	-			
764.2	764.223508087 hartree						
ZPG	ZPG = 0.187707 hartree						

Ts-V_VI

S	0.47413	1.339	1.47803
0	1.12128	0.99572	2.7473
0	-0.67787	2.25477	1.46214
С	1.79009	2.30512	0.53507
F	1.77631	3.5548	0.95221
F	2.97749	1.77909	0.75606
F	1.52524	2.27568	-0.7598
С	0.33138	-0.56862	0.13153
С	1.4719	-0.72271	-0.34034
С	2.80608	-0.77582	-0.80424
С	3.14283	-0.22152	-2.05847
С	3.80894	-1.36164	-0.00093
С	4.46031	-0.25929	-2.49516
Н	2.36237	0.23196	-2.67129
С	5.12137	-1.39121	-0.45254
Н	3.54017	-1.77988	0.97047
С	5.44887	-0.8418	-1.69613
Н	4.72214	0.16868	-3.46374
Н	5.89759	-1.84176	0.16741
Н	6.48258	-0.86693	-2.04468
С	-2.04088	-0.08151	-0.45757
Н	-2.05655	0.85752	0.11883
С	-1.45767	0.24498	-1.82589
Н	-0.68042	1.04219	-1.83745
0	-1.77666	-0.31965	-2.83857
С	-3.45918	-0.63007	-0.59982
Н	-3.53384	-1.2865	-1.477
Н	-3.78154	-1.19179	0.28629
С	-4.45361	0.48272	-0.77936
F	-4.13943	1.28639	-1.80517
F	-5.68271	0.01349	-1.01109
F	-4.53192	1.2638	0.30617
С	-0.27125	-3.48138	0.47023
С	-0.60717	-3.4927	1.96152
С	-0.54123	-2.08935	2.56434
С	-1.44753	-1.12802	1.79873
С	-1.07908	-1.05459	0.30091

С	-1.13887	-2.48194	-0.29536
Н	-0.84654	-2.11043	3.62081
Н	-1.62839	-3.88865	2.09793
Н	0.07169	-4.17216	2.49807
Н	0.79357	-3.23254	0.33293
Н	-0.41591	-4.48262	0.03805
Н	-2.48701	-1.48361	1.86901
Н	-1.4426	-0.12405	2.25022
Н	-2.18917	-2.81026	-0.24039
Н	-0.85969	-2.45131	-1.35975
Н	0.49505	-1.71175	2.54419
M06-	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E = -

1958.33898321 hartree

ZPG = 0.297109 hartree

Ts-II	_VII		
С	-3.34987	0.613	-1.81406
С	-4.41673	-0.37295	-2.32341
С	-3.98577	-1.83227	-2.10785
С	-3.16941	-1.97626	-0.82621
С	-1.81022	-1.18759	-0.90161
С	-1.95635	-0.00298	-1.8946
Н	-4.8657	-2.49048	-2.06598
Η	-5.36839	-0.18552	-1.80292
Η	-4.60717	-0.20426	-3.3943
Η	-1.77819	-0.36337	-2.92195
Η	-3.54942	0.8895	-0.76652
Η	-3.75019	-1.57578	0.02103
Η	-2.97097	-3.03477	-0.59519
Η	-1.18175	0.74475	-1.67976
Η	-3.3822	1.55034	-2.38771
Η	-3.38007	-2.1798	-2.9598
С	-0.79601	-2.15054	-1.48121
0	0.23014	-2.5055	-0.96096
Η	-1.08413	-2.54829	-2.48563
С	-1.01709	-1.6578	1.53934
С	-1.13617	-1.0391	2.90218
Η	-1.62497	-2.58021	1.54878
Η	0.02901	-1.96981	1.39492
F	-0.6448	-1.83353	3.85748
F	-0.47655	0.12684	2.98404
F	-2.40953	-0.7777	3.22736
С	-1.45805	-0.70707	0.47401
Н	-2.01058	0.1794	0.79635

S	0.08989	2.17406	0.65601				
0	0.61865	2.60126	1.93454				
0	-1.31355	2.35283	0.33309				
С	0.99335	3.17427	-0.62613				
F	0.60169	4.42701	-0.50659				
F	2.29398	3.09431	-0.43442				
F	0.69694	2.73111	-1.83419				
С	0.65937	0.59698	0.27303				
С	1.66455	-0.05165	-0.01464				
С	2.76995	-0.88002	-0.3518				
С	3.03285	-1.18757	-1.69961				
С	3.59602	-1.39282	0.66545				
С	4.11609	-1.99732	-2.01928				
Н	2.38219	-0.78919	-2.47922				
С	4.67305	-2.20588	0.32987				
Н	3.38221	-1.14856	1.707				
С	4.93484	-2.50776	-1.00842				
Н	4.32261	-2.23636	-3.06346				
Н	5.31339	-2.6062	1.11715				
Н	5.78219	-3.14542	-1.26577				
M06-	-2X-D3-SMI	D(CH2Cl2)	/def2-TZVP: E =				
1958	1958.28565304 hartree						
ZPG	= 0.294118	hartree					

Ts-VII_VIII

С	2.93902	-2.02175	-0.7512
С	4.42393	-1.74131	-1.06135
С	4.62282	-0.3513	-1.6819
С	3.69256	0.67033	-1.03283
С	2.18827	0.3471	-1.28864
С	2.03026	-1.1588	-1.62216
Н	5.66723	-0.02789	-1.56641
Н	5.01384	-1.81728	-0.13523
Н	4.8185	-2.5057	-1.74742
Н	2.2889	-1.31869	-2.68174
Н	2.71392	-1.81943	0.30858
Η	3.86712	0.66073	0.05585
Η	3.92591	1.69029	-1.37654
Η	0.97629	-1.45063	-1.51807
Η	2.70442	-3.08391	-0.90971
Н	4.42697	-0.38466	-2.76537
С	1.75121	1.10772	-2.52215
0	0.80548	1.84803	-2.60112
Н	2.39902	0.91909	-3.4137

С	1.49044	2.22052	0.33253	Ν	-2.63965	2.52852	-0.09774	
С	0.73719	2.58762	1.58647	С	-0.82389	0.62127	0.02762	
Н	2.54591	2.45721	0.52098	С	-0.96059	-0.26976	-1.22657	
Н	1.11825	2.86612	-0.47245	С	-1.10485	-0.22842	1.29995	
F	1.19115	3.73101	2.10695	С	-2.31022	-0.98269	-1.28319	
F	-0.57392	2.75493	1.37791	Н	-0.15323	-1.01673	-1.17666	
F	0.8535	1.64778	2.53858	Н	-0.79678	0.33668	-2.13022	
С	1.3623	0.73235	-0.03578	С	-2.44982	-0.94792	1.23334	
Н	1.8063	0.16455	0.79764	Н	-0.28471	-0.96112	1.36656	
S	-0.39249	-0.91579	1.76945	Н	-1.04245	0.42011	2.18647	
0	-1.57789	-0.47023	2.50479	С	-2.55637	-1.81097	-0.02286	
0	0.84615	-1.28024	2.47588	Н	-2.34278	-1.62213	-2.17749	
С	-0.92674	-2.53657	0.99449	Н	-3.11593	-0.23733	-1.39803	
F	-1.14511	-3.42653	1.94312	Н	-2.57649	-1.56171	2.13741	
F	-2.03291	-2.36062	0.29584	Н	-3.26427	-0.2032	1.23927	
F	0.03039	-2.9768	0.19503	Н	-3.54392	-2.29334	-0.0712	
С	-0.06986	0.34009	-0.13924	Н	-1.80634	-2.61894	0.02977	
С	-1.19986	0.41944	-0.65282	M06-	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP:	E = -
С	-2.54714	0.44421	-1.0776	743.1	51363514 ł	artree		
С	-3.01406	-0.46553	-2.05066	ZPG	= 0.177077	hartree		
С	-3.43417	1.38352	-0.50807					
С	-4.34499	-0.42771	-2.44388	III-C	CN			
Н	-2.3229	-1.19112	-2.482	С	-2.45611	-0.87139	-1.28965	
С	-4.76256	1.40747	-0.91223	С	-0.97257	-0.75742	-0.93415	
Н	-3.06253	2.07563	0.24867	С	-1.61992	-0.04566	1.42319	
С	-5.21917	0.50589	-1.87796	С	-3.09642	-0.17665	1.05023	
Н	-4.70803	-1.13015	-3.19541	С	-3.29898	-1.20826	-0.05972	
Н	-5.44951	2.13108	-0.47125	Н	-0.59353	-1.73272	-0.58374	
Н	-6.2642	0.52932	-2.1912	Н	-0.38423	-0.47543	-1.81849	
M06-	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E = -	Н	-2.79266	0.09159	-1.71121	
1958	.33166005 ł	nartree		Н	-2.59222	-1.63273	-2.07194	
ZPG	= 0.296133	hartree		Н	-1.25353	-0.99198	1.85919	
				Н	-1.46975	0.74328	2.1752	
II-CI	N			Н	-3.68455	-0.44465	1.94048	
С	0.5168	1.30212	0.14808	Н	-3.46086	0.80622	0.70469	
С	1.72272	0.9489	-0.65353	Н	-3.00879	-2.20546	0.31485	
Н	0.63263	2.00674	0.97442	Н	-4.3631	-1.26768	-0.33316	
С	2.55682	-0.13838	-0.01392	С	-0.78195	0.24313	0.19123	
Н	1.47647	0.60309	-1.66734	С	-0.71547	1.70373	-0.22813	
Н	2.38882	1.81956	-0.74451	Ν	-1.26997	2.65202	-0.74565	
F	3.66836	-0.38304	-0.71261	С	0.49552	1.03581	0.36446	
F	2.93283	0.18482	1.22761	С	1.72152	0.84128	-0.49509	

Н

Н

0.69436

1.46301

1.34593

1.3965

0.61713 -1.53826

F

1.8914

C -1.84506

-1.30077

1.69244 -0.04488

0.07738

Η	2.34626	1.745	-0.4857	(С	1.48295	0.79555	0.31359	
С	2.56882	-0.29148	0.01848	(С	2.83456	0.1679	0.09886	
F	3.66742	-0.45989	-0.7221]	Η	1.58621	1.4935	1.16218	
F	1.90855	-1.45675	0.01335]	Η	1.25908	1.38941	-0.58321	
F	2.97101	-0.0835	1.27831]	F	2.8488	-0.64903	-0.95775	
M06-	2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E = -]	F	3.22367	-0.55752	1.15563	
743.1	25662016 h	nartree]	F	3.7752	1.09515	-0.10585	
ZPG	= 0.177631	hartree		(С	-0.41628	-0.84637	-0.80517	
]	N	-0.14004	-1.46536	-1.78214	
IV-C	N			(С	-1.01997	-0.04697	0.27385	
С	4.00279	-0.33806	-0.15561	(С	-2.00176	-0.81936	1.15354	
С	3.42193	-0.07628	1.23217	(С	-1.54713	1.32677	-0.13319	
С	2.07426	0.64513	1.14074	(С	-3.37032	-0.92472	0.48511	
С	1.1313	-0.018	0.18462]	Η	-2.08273	-0.2661	2.10463	
С	1.67678	-0.47285	-1.13456]	Η	-1.59217	-1.81406	1.38274	
С	3.03499	-1.1685	-0.99524	(С	-2.92179	1.20357	-0.79025	
Н	1.60653	0.7331	2.13423]	Η	-1.61745	1.93122	0.78735	
Η	3.28064	-1.04003	1.74962]	Η	-0.84275	1.83078	-0.80835	
Н	4.11841	0.51783	1.84189	(С	-3.90823	0.45445	0.10477	
Н	4.19169	0.6255	-0.66096]	Η	-4.0705	-1.44194	1.15752	
Н	4.97248	-0.85156	-0.07256]	Η	-3.27869	-1.54543	-0.42262	
Н	0.96267	-1.13171	-1.65202]	Η	-3.30315	2.20651	-1.03203	
Н	1.79942	0.41773	-1.78834]	Η	-2.81193	0.66305	-1.74602	
Н	2.88872	-2.14799	-0.50962]	Η	-4.88047	0.35731	-0.40077	
Н	3.45249	-1.36352	-1.99398]	Η	-4.08211	1.04148	1.02331	
Н	2.25319	1.68594	0.79431	Ν	106-	2X-D3-SM	D(CH2Cl2)	/def2-TZVP:	: E =
С	-0.32869	0.36749	0.28078	74	43.1	21526545 h	artree		
Н	-0.57972	0.51254	1.34443	Ζ	PG	= 0.175958	hartree		
С	-1.27569	-0.68676	-0.31062						
С	-2.70651	-0.48262	0.1052	Т	s-II	I_IV-CN			
Н	-0.97193	-1.67901	0.05142	(С	3.3537	-0.95633	-0.42448	
Н	-1.24813	-0.6925	-1.40829	(С	3.89888	0.42954	-0.0821	
F	-3.50079	-1.42043	-0.41658	(С	2.89182	1.22707	0.74491	
F	-3.18499	0.70366	-0.28869	(С	1.5487	1.35951	0.01937	
F	-2.85517	-0.53661	1.43465	(С	2.0197	-0.85803	-1.1683	
С	-0.50876	1.68431	-0.3693]	Η	2.71946	0.71018	1.70416	
Ν	-0.57032	2.71014	-0.89479]	Η	4.8495	0.33854	0.46452	
M06-	2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E = -]	Η	4.11852	0.97626	-1.01616	
743.1	52572963 h	nartree]	Η	2.18774	-0.40676	-2.16579	
ZPG	= 0.175853	hartree]	Η	3.1942	-1.52389	0.50806	
]	Η	0.81694	1.86834	0.66222	
Ts-II	_III-CN]	Η	1.67988	1.99123	-0.8809	
С	0.433	-0.23424	0.58904]	Η	1.58667	-1.85544	-1.33729	
Н	0.67762	-1.04506	1.281]	Η	4.07822	-1.5205	-1.03012	

-

Η	3.28634	2.22685	0.97886
С	1.04423	0.01437	-0.42622
С	-0.41792	-0.33232	-0.45182
Η	-0.65284	-1.14838	-1.1471
С	-1.48954	0.73936	-0.39945
С	-2.8414	0.15147	-0.09922
Η	-1.55788	1.24598	-1.37262
Н	-1.28414	1.48993	0.37381
F	-3.78854	1.09278	-0.07903
F	-2.86831	-0.46201	1.08874
F	-3.20825	-0.75595	-1.01279
С	0.1517	-0.82979	0.80688
Ν	0.40058	-1.27641	1.88123
M06	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E = -
743.	121917399 ł	nartree	
ZPG	= 0.175825	hartree	
II-C	OCF3		
С	-1.39706	-0.89952	-0.50134
0	-1.10632	-1.85305	-1.16958
С	0.90099	-0.08733	-0.68902
С	1.67071	-1.08869	0.10232
Η	1.256	0.13614	-1.69774
С	3.14592	-0.78975	0.10107
Η	1.35092	-1.13123	1.15343
Η	1.55754	-2.10541	-0.31646
F	3.84087	-1.71611	0.76859
F	3.64785	-0.74203	-1.13912
F	3.42223	0.39095	0.67229
С	-2.77488	-0.95356	0.21441
F	-3.53417	-1.90058	-0.31203
F	-3.44406	0.19707	0.14192
F	-2.59666	-1.23998	1.50573
С	-0.49706	0.32048	-0.31538
С	-0.98947	1.41352	-1.30436
С	-0.56734	0.87777	1.12961
С	-0.16745	2.69462	-1.15924
Н	-2.04835	1.63498	-1.1039
Н	-0.92105	1.01895	-2.32988
С	0.2714	2.14763	1.26572
Н	-1.61291	1.12216	1.37242
Н	-0.24317	0.11304	1.85091
С	-0.19095	3.21678	0.27648

Н -0.56155 3.45377 -1.85132

Н	0.87505	2.50054	-1.46087	
Н	0.19555	2.52249	2.2972	
Η	1.33302	1.90824	1.08817	
Η	0.43722	4.11585	0.36337	
Η	-1.22106	3.51929	0.53332	
M06	-2X-D3-SMI	D(CH2Cl2)/	def2-TZVP: E =	= -
1101	.31225049 h	artree		
ZPG	= 0.187755 1	hartree		
III-C	COCF3			
C	2 58076	-2 1108	-0 74471	

C	2.38076	-2.1108	-0./44/1	
С	1.73942	-0.96141	-1.31124	
С	2.21842	0.4117	0.75688	
С	3.0587	-0.74657	1.31489	
С	3.66532	-1.58959	0.19584	
Н	2.38178	-0.2973	-1.91209	
Н	0.95257	-1.33821	-1.97404	
Н	1.9214	-2.80456	-0.19543	
Н	3.02469	-2.6793	-1.57497	
Н	2.86597	1.09512	0.18527	
Н	1.76909	0.97898	1.58098	
Н	3.84451	-0.33669	1.96609	
Н	2.41442	-1.38168	1.94631	
Н	4.37595	-0.97118	-0.37881	
Н	4.2391	-2.4271	0.61979	
С	1.15944	-0.15245	-0.1709	
С	-0.18074	-0.42095	0.34801	
С	-0.06457	0.83464	-0.60243	
Н	-0.34853	-0.11934	1.38683	
0	-0.45594	0.75888	-1.80551	
С	-1.06665	-1.52983	-0.15367	
С	-2.50552	-1.27336	0.20453	
Н	-0.78128	-2.48942	0.30195	
Н	-1.01437	-1.62789	-1.24453	
F	-2.95094	-0.11812	-0.30181	
F	-2.68826	-1.20855	1.53009	
F	-3.30385	-2.24055	-0.25388	
С	-0.13305	2.22396	0.02721	
F	-1.23591	2.8485	-0.37726	
F	-0.15397	2.21027	1.36378	
F	0.90771	2.97687	-0.34423	
M06-	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E	<u> </u>
1101	.31263377 ł	nartree		
700	0 100105	1 .		

ZPG = 0.190195 hartree

				F	3.54651	0.20483	1.15795	
IV-C	COCF3			F	2.79737	1.42847	-0.44157	
С	4.1969	-0.56469	-0.26929	F	4.02129	-0.28654	-0.88087	
С	3.65836	-0.71006	1.15193	С	-1.0131	-0.73872	0.79902	
С	2.27778	-0.05583	1.28783	0	-1.45815	-0.87621	1.94298	
С	1.33036	-0.51944	0.22229	С	-1.31574	-1.88847	-0.18089	
С	1.83974	-0.51816	-1.18681	F	-2.44281	-1.62906	-0.85297	
С	3.22716	-1.17014	-1.28114	F	-1.50268	-3.01813	0.48806	
Η	1.8518	-0.24147	2.28597	F	-0.36487	-2.11784	-1.09065	
Η	3.57374	-1.78177	1.39838	С	-0.4374	0.60568	0.28905	
Η	4.35167	-0.26413	1.88027	С	-0.82959	1.76698	1.20052	
Η	4.33971	0.50625	-0.49742	С	-0.61754	0.93521	-1.19211	
Η	5.18369	-1.04431	-0.35428	С	-2.2318	2.28097	0.88993	
Η	1.14057	-1.01638	-1.87311	Н	-0.08824	2.56613	1.03238	
Η	1.92999	0.52953	-1.5414	Н	-0.7457	1.45047	2.24817	
Η	3.12938	-2.25127	-1.08605	С	-2.00817	1.50272	-1.48718	
Η	3.61318	-1.0595	-2.30527	Н	0.15345	1.68493	-1.43879	
Η	2.40449	1.04398	1.20437	Н	-0.42195	0.06489	-1.83211	
С	-0.13293	-0.59547	0.5806	С	-2.35186	2.68073	-0.57884	
Η	-0.22112	-1.0552	1.57747	Н	-2.46555	3.13194	1.54667	
С	-0.55836	0.84607	0.82629	Н	-2.96476	1.48821	1.11889	
Ο	-0.7456	1.31454	1.91563	Н	-2.05572	1.80106	-2.5449	
С	-1.006	-1.38634	-0.39696	Н	-2.75813	0.70848	-1.34507	
С	-2.46339	-1.29727	-0.04331	Н	-3.36722	3.04316	-0.79818	
Η	-0.71617	-2.44578	-0.36306	Н	-1.66063	3.51646	-0.78433	
Н	-0.91435	-1.04129	-1.43284	M06-	2X-D3-SM	D(CH2Cl2)	/def2-TZVP:	E = -
F	-3.22048	-2.02272	-0.86544	1101.	30249454 ł	artree		
F	-2.90478	-0.02589	-0.12322	ZPG	= 0.188664	hartree		
F	-2.71734	-1.70918	1.20204					
С	-0.56548	1.83913	-0.36019	Ts-II	I_IV-COC	F3		
F	-1.5547	2.7091	-0.22882	С	3.26997	-0.22535	0.92037	
F	-0.6901	1.24128	-1.54419	С	3.73842	-1.33255	-0.02194	
F	0.58444	2.51833	-0.37431	С	2.71916	-1.57913	-1.13219	
M06-	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E = -	С	1.3387	-1.92086	-0.56241	
1101	.31584838 ł	nartree		С	1.87983	-0.52834	1.48646	
ZPG	= 0.188228	hartree		Η	2.61895	-0.67232	-1.75262	
				Н	4.71573	-1.07176	-0.4546	
Ts-II	LIII-COCF	73		Н	3.88074	-2.26416	0.55283	
С	0.754	-0.1389	0.71638	Н	1.94147	-1.43114	2.1258	
Η	1.01293	-0.05704	1.77525	Н	3.23073	0.72969	0.37241	
С	1.81538	-0.70107	-0.17785	Η	0.6091	-2.05296	-1.36923	
С	3.05178	0.16322	-0.0832	Н	1.39433	-2.87539	-0.00569	
Н	1.52414	-0.71854	-1.23367	Н	1.51471	0.28196	2.12795	
Η	2.11341	-1.71625	0.12331	Н	3.98045	-0.0934	1.74922	

Н	3.0544	-2.39097	-1.79375	
С	0.8822	-0.88035	0.41873	
С	-0.52693	-0.47443	0.52632	
Н	-0.75591	0.02719	1.47369	
С	-1.64069	-1.35999	0.01138	
С	-2.96624	-0.65736	0.11634	
Н	-1.70886	-2.28931	0.59382	
Η	-1.48935	-1.61141	-1.04575	
F	-3.95737	-1.39879	-0.38433	
F	-2.96801	0.50635	-0.54532	
F	-3.28899	-0.37761	1.38618	
0	-0.02832	0.28799	-1.74034	
С	0.04632	0.49221	-0.51744	
С	0.41993	1.91103	-0.09854	
F	0.49581	2.08846	1.22201	
F	-0.50472	2.75795	-0.55575	
F	1.58728	2.28371	-0.62653	
M06	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E =	
1101	.313216981	nartree		
ZPG	= 0.189006	hartree		
II-C	OMe			
С	1.78492	1.43956	-0.22336	
0	2.46022	1.60842	-1.21144	
С	-0.56924	1.02807	-0.42669	
С	-1.78034	0.98848	0.44316	
Η	-0.66032	1.51438	-1.40174	
С	-2.76122	-0.07804	0.01262	
Η	-1.54243	0.78895	1.49728	
Η	-2.33435	1.93847	0.39277	
F	-3.85109	-0.092	0.78663	
F	-3.17549	0.10242	-1.24638	
F	-2.2291	-1.30814	0.06854	
С	1.89501	2.36104	0.96816	
Η	2.44135	3.26601	0.67692	
Η	0.90414	2.6227	1.36564	
Η	2.45181	1.85184	1.77034	

0.72783 0.31275 -0.15496

0.75873 -0.38954 1.21381

0.98356 -0.71755 -1.27634 2.05309 -1.17461 1.42588

-0.09406 -1.08679 1.25345

0.33818

2.25629 -1.53564 -1.05408

2.02552

С

С

С

C H

Η

С

0.60852

Η	0.11094	-1.39128	-1.30601			
Η	1.0281	-0.18994	-2.23966			
С	2.25824	-2.20619	0.31814			
Η	2.02958	-1.66445	2.411			
Η	2.91264	-0.48031	1.43966			
Η	2.34989	-2.28978	-1.85052			
Η	3.13162	-0.87206	-1.13923			
Η	3.19884	-2.75576	0.47522			
Η	1.4419	-2.94809	0.36386			
$M(\Delta \mathbf{X} \mathbf{D} 2 \mathbf{C}) = M(\mathbf{D} (\mathbf{C} \mathbf{U} 2 \mathbf{C}))/1$ (2) $\mathbf{T} \mathbf{T} \mathbf{U} \mathbf{D} \mathbf{C}$						

M06-2X-D3-SMD(CH2Cl2)/def2-TZVP: E = -803.546539986 hartree

ZPG = 0.214186 hartree

III-COMe

С	2.51098	-1.55315	-0.87337
С	1.69433	-0.32975	-1.30735
С	2.20081	0.79443	0.89845
С	3.02001	-0.43401	1.32248
С	3.60783	-1.16082	0.1149
Η	2.3533	0.37452	-1.84241
Η	0.89603	-0.61234	-2.00265
Η	1.83791	-2.28798	-0.39886
Η	2.94271	-2.04005	-1.76058
Η	2.86801	1.53134	0.42059
Η	1.75519	1.26725	1.7831
Η	3.81587	-0.11974	2.0141
Η	2.36278	-1.12384	1.87916
Η	4.32979	-0.49696	-0.39144
Н	4.16635	-2.05108	0.44114
С	1.13561	0.37279	-0.09024
С	-0.22076	0.11685	0.38752
С	-0.06318	1.48641	-0.40394
Н	-0.38144	0.29686	1.4559
0	-0.43611	1.50424	-1.61419
С	-1.13542	-0.90398	-0.23572
С	-2.563	-0.67565	0.17668
Η	-0.86736	-1.92557	0.07333
Н	-1.10336	-0.84433	-1.33038
F	-3.00826	0.53318	-0.18459
F	-2.72455	-0.76193	1.50541
F	-3.38445	-1.57683	-0.37207
С	-0.05656	2.77311	0.39364
Н	0.69213	3.47018	-0.01184
Н	-1.04681	3.23993	0.28622

Н	0.13929	2.6208	1.46111	С	-1.5216	-0.9254	0.40819	
M06-	-2X-D3-SM	D(CH2Cl2)	/def2-TZVP: E = -	С	-2.85223	-0.25592	0.18852	
803.534409860 hartree			Н	-1.65697	-1.61825	1.25736		
ZPG	= 0.214872	hartree		Н	-1.30521	-1.53934	-0.47532	
				F	-2.83217	0.57995	-0.85619	
IV-C	COMe			F	-3.23243	0.46341	1.25103	
С	-4.04662	-0.57685	0.0958	F	-3.81662	-1.15115	-0.04481	
С	-3.45367	-0.08345	-1.22252	С	0.40125	0.97041	-0.60523	
С	-2.15981	0.70589	-0.98696	Ο	0.54022	2.17911	-0.3335	
С	-1.19275	-0.05136	-0.12825	С	-0.01272	0.55842	-2.00338	
С	-1.74264	-0.65194	1.13006	Н	-0.68806	1.32645	-2.40192	
С	-3.03851	-1.43059	0.86218	Н	0.88573	0.52988	-2.64018	
Н	-1.6875	0.98247	-1.942	Н	-0.50289	-0.41854	-2.06996	
Н	-3.23155	-0.95235	-1.86482	С	0.97546	-0.10105	0.38922	
Н	-4.17853	0.54197	-1.76488	С	1.97373	0.49454	1.37424	
Н	-4.33045	0.29255	0.71502	С	1.4758	-1.39947	-0.23227	
Н	-4.96771	-1.14983	-0.09065	С	3.34683	0.67499	0.73165	
Н	-1.00401	-1.30061	1.62426	Н	2.04834	-0.19537	2.23253	
Н	-1.97765	0.15848	1.85288	Н	1.58785	1.45178	1.74689	
Н	-2.80025	-2.32917	0.26828	С	2.86369	-1.22167	-0.85174	
Н	-3.46683	-1.77638	1.81494	Н	1.52568	-2.15158	0.575	
Н	-2.42096	1.6632	-0.48794	Н	0.77447	-1.78947	-0.98158	
С	0.27864	0.20135	-0.33017	С	3.86009	-0.64145	0.15053	
Н	0.47049	0.23608	-1.41471	Н	4.05687	1.07422	1.47147	
С	0.53829	1.63364	0.16543	Н	3.26398	1.42644	-0.07212	
0	0.47829	2.55884	-0.61014	Н	3.22106	-2.1885	-1.23688	
С	1.17778	-0.85633	0.30822	Н	2.78609	-0.54208	-1.71758	
C	2.59409	-0.76245	-0.18453	Н	4.8395	-0.49498	-0.32957	
Н	0.81896	-1.86371	0.05197	Н	4.01139	-1.36466	0.97102	
Н	1.20634	-0.781	1.40396	M06-	2X-D3-SM	D(CH2Cl2)	/def2-TZVP:	E = -
F	3.38894	-1.65223	0.41753	803.5	30956359 ł	artree		2
F	3.12824	0.45001	0.03824	ZPG	= 0.214784	hartree		
F	2.688	-0.98288	-1 50107	210	0.211701	1141 11 00		
C	0.77171	1.84005	1.64143	Ts-II	I IV-COM	e		
Н	1.80988	1.56536	1.88291	C	3.01734	-0.49376	1.32467	
н	0.61723	2 89708	1 889	C	3 60962	-1 17838	0.09476	
н	0.11055	1 20328	2 24641	C	2 51743	-1 54028	-0.91035	
$M06-2X-D3-SMD(CH2Cl2)/def2-TZVP \cdot F = -$			C	1 69892	-0.30218	-1 30635		
803 549902412 hartree			C C	2 19639	0.74892	0.937		
7PG = 0.212272 hartree			н	2 95319	-1 99548	-1 81225		
210	U.2122/2			H	4 33255	-0 49711	-0 38636	
Te-II		2		н Н	4 16798	-2 07830	0 30338	
гэ-н С	_0 43787	0.05135	0 73324	н Н	1 74/87	1 1021	1 82278	
н	-0.67351	0.80272	1.49083	H	3,8101	-0.19978	2.02864	
		5.00212			2.0101	~··///0		

Н	2.36111	0.41619	-1.81858	F	-2.67703	-0.92333	1.48427	
Н	0.90022	-0.56278	-2.01015	F	-3.38538	-1.55524	-0.44495	
Н	2.86924	1.49946	0.4884	F	-3.0445	0.53274	-0.0515	
Н	2.35941	-1.20228	1.85611	0	-0.41472	1.60002	-1.60475	
Н	1.84418	-2.29157	-0.46307	С	-0.11759	1.53852	-0.38668	
С	1.14552	0.35259	-0.06774	С	-0.0373	2.80129	0.44202	
С	-0.24526	0.1667	0.35164	Н	0.1663	2.6121	1.5021	
Н	-0.41499	0.29874	1.42635	Н	0.7319	3.47618	0.03836	
С	-1.14682	-0.84534	-0.31236	Н	-1.00861	3.31255	0.36214	
С	-2.56293	-0.6971	0.1672	M06-	2X-D3-SM	D(CH2Cl2)	/def2-TZV	P: E = -
Н	-0.83336	-1.87683	-0.09462	803.5	34967700 1	hartree		
Н	-1.15612	-0.69673	-1.39944	ZPG	=	0.2142	219	hartree

10. References

- (a) X. Meng, L. Zhu, J. Liang, H. Shi, J. Lv, M. Wang, L. Zhang and C. Wang, Nickel-Catalyzed 1,2-Arylboration of Unactivated Alkenes to Access Boryl-Functionalized Aliphatic Amines, *Org. Lett.*, 2022, 24, 6962-6967. (b) K. Kiyokawa, S. Hata, S. Kainuma and S. Minakata, Electrophilic cyanation of allylic boranes: synthesis of β,γ-unsaturated nitriles containing allylic quaternary carbon centers, *Chem. Commun.*, 2019, 55, 458-461.
- 2. Z. Xiong, F. Zhang, Y. Yu, Z. Tan and G. Zhu, AIBN-Induced Remote Trifluoromethyl-Alkynylation of Thioalkynes, *Org. Lett.*, 2020, **22**, 4088-4092.
- G. Xu and P. Renaud, Intramolecular Cyclopropanation of 1,4-Dienes through Hydroboration– Homologation: Easy Access to Bicyclo[3.1.0]hexanes, *Angew. Chem. Int. Ed.*, 2016, 55, 3657-3661.
- 4. M. Zheng, K. Gao, Y. Zhang and H. Lu, Visible-light photoredox-catalyzed aryl radical in situ SO₂-capture reactions, *Org. Chem. Front.*, 2021, **8**, 1830-1835.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F. Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; and Fox, D. J. *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, 2016.
- 6. Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry. *Acc. Chem. Res.* **2008**, *41*, 157–167.
- Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* 2009, 113, 6378.
- 8. Legault, C. Y. CYLview, 1.0b; Université de Sherbrooke, Sherbrooke, Canada, 2009;

http://www.cylview.org.