Supporting Information

Palladium-catalyzed site-selective C-H polyfluoroarylation of arenes

via aryl thianthrenium salts

Chen Chen,^{*a,d} Jin-Ping Liu,^a Xin-Yu Hu,^a Zi-Yi Wang,^a Xiao-Xu Zhang,^a Jia-Hui Song,^a Yan-Ping Zhu,^{*b} Chunjie Ni,^{*c} and Bolin Zhu^{*a}

- ^a Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China. Email: hxxycc@tjnu.edu.cn; hxxyzbl@tjnu.edu.cn.
- ^b Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Shandong, Yantai, 264005, P. R. China. Email: chemzyp@ytu.edu.cn.
- ^c School of Pharmacy, Yancheng Teachers University, Yancheng 224007, P. R. China. E-mail: nicj@yctu.edu.cn.

^d Dean-Cavalry (Tianjin) Ltd., Tianjin 300304, P. R. China.

Table of Contents

General Information	S03
General Procedures for the Synthesis of Substrates	S03
Experimental Procedures	S10
Further Explorations	S10
Mechanistic Investigations	S14
Characterization of Products	S21
X-ray Date	S54
References	S56
NMR Spectra	\$57

General Information:

The ¹H NMR, ¹³C NMR, ¹⁹F NMR, ³¹P NMR were recorded with Bruker 400 MHz spectrometer instruments in CDCl₃. The chemical shifts (δ) of ¹H NMR, ¹³C NMR, ¹⁹F NMR, ³¹P NMR were measured in ppm, referenced to residual ¹H and ¹³C signals of nondeuterated CDCl₃ (δ = 7.26 and 77.00) as internal standards. All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of products was accomplished by flash chromatography using silica gel (200~300 mesh). Thin layer chromatography (TLC) was performed on Merck silica gel GF254 plates and visualized by UV-light (254 nm). Melting points were obtained on a Yanaco-241 apparatus and are uncorrected. HRMS analysis of compounds was performed with an orbitrap (Thermo fisher Q-Exactive, APCI source).

General Procedures for the Synthesis of Substrates:

1. General procedures for the synthesis of aryl thianthrenium salts 1

(1)

$$(1.0 \text{ equiv}) \quad (1.0 \text{ equiv}) \quad 1 \quad Tf_2O(1.2 \text{ equiv}) \quad Tf^+ \bar{O}Tf$$

A 50 mL two-necked flask was charged with thianthrene S-oxide (TTSO, 5.0 mmol, 1.0 equiv), DCM (10.0 mL) and arenes (5.0 mmol, 1.0 equiv) under a nitrogen atmosphere. The reaction mixture was then cooled to -40 °C and stirred at this temperature, and then Tf_2O (6.0 mmol, 1.2 equiv) was added dropwise. The reaction mixture was stirred at -40 °C for 1 h, and then allowed to stir at room temperature for 12 h, neutralized by a saturated NaHCO₃ solution, and extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product was purified by crystallization from DCM/MTBE system as a white solid.

A 50 mL two-necked flask was charged with thianthrene S-oxide (TTSO, 5.0 mmol, 1.0 equiv), DCM (10.0 mL) and 4-dimethylbenzenesulfonamide (5.0 mmol, 1.0 equiv) under a nitrogen atmosphere. The reaction mixture was then cooled to -40 °C and stirred at this temperature, trifluoroacetic anhydride (TFAA, 15.0 mmol, 3.0 equiv) and trifluoromethanesulfonic acid (TfOH, 7.5 mmol, 1.5 equiv) were added dropwise. The reaction mixture was stirred at -40 °C for 1 h, and then allowed to stir at room temperature for 12 h, neutralized by a saturated aqueous NaHCO₃ solution, and extracted with DCM. Drying of organic phase with anhydrous Na₂SO₄, and concentrated to dryness under reduced pressure. The crude product **1h** was purified by crystallization from DCM/MTBE system as a white solid.

In a 38 mL sealed tube, the mixture of (4-(methoxycarbonyl)phenyl)boronic acid (3.0 mmol, 1.0 equiv), thianthrene (TT, 4.5 mmol, 1.5 equiv), Cu(OTf)₂ (6.0 mmol, 2.0 equiv), H₂O (6.0 mmol, 2.0 equiv) were added in 3.0 mL MeCN. Then, the tube was purged with N₂ for three times and sealed with PTEF cap. The reaction mixture was stirred in a 100 °C heating mantle for 3 h. After cooling to room temperature, the reaction mixture was added into ammonia solution (50.0 mL, 25-28% solution in water), and the water phase was extracted with DCM (3 x 30.0 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product **11** was purified by crystallization from DCM/Et₂O system as a white solid.

(4)

To an oven-dried 100 mL round-bottom flask was charged with flurbiprofen (10.0 mmol, 1.0 equiv), Cs_2CO_3 (10.5 mmol, 1.05 equiv) and acetone (20.0 mL). To the flask was added iodomethane (MeI, 20.0 mmol, 2.0 equiv) and the heterogeneous solution was stirred at reflux for overnight. After the reaction, the crude mixture was diluted with Et_2O (20.0 mL), washed with brine, dried over Na_2SO_4 and concentrated in vacuo. The crude mixture was used without any further purification. The residue was purified by chromatography on silica gel eluting with petroleum ether/ethyl acetate to afford flurbiprofen methyl ester.

A 50 mL two-necked flask was charged with thianthrene S-oxide (TTSO, 5.0 mmol, 1.0 equiv), DCM (10.0 mL) and flurbiprofen methyl ester (5.0 mmol, 1.0 equiv) under a nitrogen atmosphere. The reaction mixture was then cooled to -40 °C and stirred at

(3)

this temperature, and then Tf_2O (6.0 mmol, 1.2 equiv) was added dropwise. The reaction mixture was stirred at -40 °C for 1 h, and then allowed to stir at room temperature for 12 h, neutralized by a saturated NaHCO₃ solution, and extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product **1y** was purified by crystallization from DCM/MTBE system as a brown solid.

(5)

A 50 mL two-necked flask was charged with thianthrene S-oxide (TTSO, 5.0 mmol, 1.0 equiv), CH₃CN (10.0 mL) and toluene (5.0 mmol, 1.0 equiv) under a nitrogen atmosphere. The reaction mixture was then cooled to 0 °C and stirred at this temperature. (CF₃CO)₂O (10.0 mmol, 2.0 equiv) and HBF₄·Et₂O (11.0 mmol, 2.2 equiv) were added dropwise. The reaction mixture was stirred at 0 °C for 1 h, and then allowed to stir at room temperature for 12 h, neutralized by a saturated NaHCO₃ solution, and extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude product **1a-BF₄** was purified by crystallization from DCM/Et₂O system as a white solid.

2. General procedures for the synthesis of polyfluorobenzenes 2

(1)

1-bromobutane (3.4 mmol, 1.125 equiv) was added to a stirred suspension of 2,3,5,6-tetrafluorophenol (3.0 mmol, 1.0 equiv) and K_2CO_3 (4.5 mmol, 1.5 equiv) in MeCN (6.0 mL) under argon atmosphere. The reaction mixture was then stirred for 7 hours under reflux conditions. Upon completion, the reaction mixture was allowed to

cool to ambient temperature, and H_2O (20.0 mL) and pentane (30.0 mL) were added. After phase separation, the organic layer was washed with 1 M NaOH (20.0 mL) and brine, dried over Na₂SO₄, and evaporated to dryness, affording a pale-yellow oil. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **2d**.

(2)

To a magnetically stirred solution of 2,3,5,6-tetrafluorophenol (4.5 mmol, 1.5 equiv) dissolved in dichloromethane (3.0 mL) and NEt₃ (4.5 mmol, 1.5 equiv) was added *p*-toluenesulfonyl chloride (3.0 mmol, 1.0 equiv) in dichloromethane (1.0 mL). A colourless precipitate immediately formed and stirring was continued for 16 h. The mixture was then treated with water (5.0 mL) and extracted with dichloromethane (3 x 5.0 mL). The combined organic extracts were washed with saturated sodium chloride (5.0 mL), dried (NaSO₄) and concentrated under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **2e**.

(3)

To an oven-dried 50 mL round-bottom flask was charged with phenols (1.0 equiv), pentafluorobenzene (1.5 equiv), Cs_2CO_3 (1.5 equiv) in DMSO (5.0 mL). The reaction mixture was stirred at room temperature for 12 h, neutralized by a saturated NaCl solution, and extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude

mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the products **2f**, **2p**, **2q**.

(5)

To an oven-dried 50 mL round-bottom flask was charged with phenols (3.0 mmol, 1.0 equiv), pentafluorobenzene (4.5 mmol, 1.5 equiv), Cs_2CO_3 (4.5 mmol, 1.5 equiv) in DMSO (5.0 mL). The reaction mixture was stirred at in a 60 °C heating mantle for 12 h, neutralized by a saturated NaCl solution, and extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **2g**. (6)

Sodium tert-butoxide (4.3 mmol, 1.1 equiv) was added to a glass vial containing indole (4.7 mmol, 1.2 equiv) in DMA (10.0 mL). The mixture was stirred at room temperature for 10 min, then the mixture was cooled in -10 °C and added to a cooled solution of pentafluorobenzene (3.9 mmol, 1.0 equiv) in DMA (10.0 mL) under stirring. After 15 min the cooling bath was removed to room temperature for 1h. The reaction was mixed with sat. NH₄Cl (aq) (5.0 mL) and water (5.0 mL) then extracted with diethyl ether (4 x 5.0 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **2h**.

(7)

Benzyl alcohol (2.8 mmol, 1.0 equiv) was weighed directly into a Schlenk tube and dried under vacuum for 15 min. Then THF was added and stirred, and NaH (4.2 mmol, 1.5 equiv) was slowly added at 0 °C. After stirring for 30 min, benzyl bromide (3.1 mmol, 1.1 equiv) was added. The mixture was then warmed up to room temperature and the resulting reaction mixture was monitored by TLC. The reaction was quenched by H_2O and extracted with Et_2O . The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated to dryness under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **2j**.

(8)

In an oven-dried 50 mL round-bottomed flask, DCC (4.5 mmol, 1.5 equiv) and DMAP (10 mol%) were added sequentially to an ice-cold solution of the corresponding alcohol (3.0 mmol, 1.0 equiv) and 2,3,5,6-tetrafluorobenzoic acid (3.0 mmol, 1.0 equiv) in DCM (15.0 mL). After 30 min, the ice-water cooling bath was removed, and the resulting suspension was stirred vigorously at room temperature overnight. Then, the reaction mixture was concentrated to dryness under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the products **20**, **2r**, **2s**, **2t**, **2u**, **2v**, **2w**, **2x**.

Experimental Procedures:

General procedure: In a 38 mL sealed tube, the mixture of 1 (0.2 mmol, 1.0 equiv), 2 (0.4 mmol, 2.0 equiv) or 1 (0.4 mmol, 2.0 equiv), 2 (0.2 mmol, 1.0 equiv), Pd(OAc)₂ (10 mol%), P'Bu₃-HBF₄ (20 mol%), K₃PO₄ (0.4 mmol, 2.0 equiv) were added in 2.0 mL EtOAc. Then, the tube was purged with N₂ for three times and sealed with PTEF cap. The reaction mixture was in a 75 °C heating mantle for 12 h. When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the products **3aa-3za**, **3ab-3ax**.

Further Explorations:

Gram scale reaction:

A 100 mL two-necked flask, the mixture of **1f** (3.0 mmol, 1.42 g, 1.0 equiv), **2b** (6.0 mmol, 0.9 g, 2.0 equiv), $Pd(OAc)_2$ (5 mol%), $P'Bu_3$ -HBF₄ (10 mol%), K_3PO_4 (6.0 mmol, 1.27g, 2.0 equiv) were added in 30.0 mL EtOAc. Then, the tube was purged with N₂ for three times. The reaction mixture was in a 75 °C heating mantle for 12 h. When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **3fb** (0.61 g) in 80% yield.

A 100 mL two-necked flask, the mixture of **1k** (3.0 mmol, 1.56 g, 1.0 equiv), **2a** (6.0 mmol, 1.0 g, 2.0 equiv), $Pd(OAc)_2$ (5 mol%), $P'Bu_3$ -HBF₄ (10 mol%), K_3PO_4 (6.0 mmol, 1.27 g, 2.0 equiv) were added in 30.0 mL EtOAc. Then, the tube was purged with N₂ for three times. The reaction mixture was in a 75 °C heating mantle for 12 h. When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **3ka** (0.78 g) in 81% yield.

Derivatization:

In a 38 mL sealed tube, the mixture of **3fb** (0.2 mmol, 1.0 equiv), **alkene** (0.6 mmol, 3.0 equiv), $Pd(OAc)_2$ (10 mol%), Ag_2CO_3 (0.4 mmol, 2.0 equiv), PivOH (0.6 mmol, 3.0 equiv) were added in 2.0 mL DMF. Then, the tube was purged with N₂ for three times and sealed with PTEF cap. The reaction mixture was in a 120 °C heating mantle for 12 h. Then, the reaction was cooled to room temperature, and EtOAc (80.0 mL) and water (40.0 mL) were added. The organic layer was separated, and the aqueous phase was extracted with EtOAc (40.0 mL x 2). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the products **4a**, **4b**, **4c**.

In a 38 mL sealed tube, the mixture of **3ka** (0.2 mmol, 1.0 equiv), NaI (1.0 mmol, 5.0 equiv) were added in acetone (2.0 mL). Then, the tube sealed with PTEF cap. The reaction mixture was in a 80 °C heating mantle for 10 h. When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **5a** in 99% yield.

In a 38 mL sealed tube, the mixture of **3ka** (0.3 mmol, 1.0 equiv), CuSO₄ (0.3 mmol, 1.0 equiv) were added in H₂O (0.35 mL) and DMSO (0.8 mL). Then, the tube sealed with PTEF cap. The reaction mixture was in a 100 °C heating mantle for 72 h. When the reaction was finished, the mixture was cooled to room temperature and extracted with EtOAc. The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, then the solvents were removed under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **5b** in 71% yield.

In a 38 mL sealed tube, the mixture of **3aa** (0.2 mmol, 1.1 equiv), pyrazole (0.2 mmol, 1.0 equiv), NaO'Bu (0.22 mmol, 1.1 equiv) were added in DMA (0.2 mL) in 0 °C. Then, the tube sealed with PTEF cap. The reaction mixture was heated to room temperature for 12 h. When the reaction was finished, the mixture was cooled to room

temperature and the solvents were removed under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **6** in 96% yield.

Late-stage modification of drugs:

In a 38 mL sealed tube, the mixture of 1y (0.2 mmol, 1.0 equiv), 2 (0.4 mmol, 2.0 equiv), Pd(OAc)₂ (10 mol%), P'Bu₃-HBF₄ (20 mol%), K₃PO₄ (0.4 mmol, 2.0 equiv) were added in 2.0 mL EtOAc. Then, the tube was purged with N₂ for three times and sealed with PTEF cap. The reaction mixture was in a 75 °C heating mantle for 12 h. When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the products **3ys**, **3yr**, **3yw**.

One-pot C-H thianthrenation/sulfonylation and TT recovery:

A 10 mL two-necked flask was charged with thianthrene S-oxide (TTSO, 0.2 mmol, 1.0 equiv), DCM (1.0 mL) and toluene (0.2 mmol, 1.0 equiv) under a nitrogen atmosphere. The reaction mixture was then cooled to -40 °C and stirred at this temperature, Tf₂O (0.24 mmol, 1.2 equiv) was added dropwise. The reaction mixture was stirred at -40 °C for 0.5 h, and then allowed to stir at room temperature for 12 h. The mixture was concentrated to dryness under reduced pressure to give the crude product of **1a**.

In a 38 mL sealed tube, the mixture of **1a** (0.2 mmol, 1.0 equiv), **2a** (0.4 mmol, 2.0 equiv), $Pd(OAc)_2$ (10 mol%), $P'Bu_3$ -HBF₄ (20 mol%), K_3PO_4 (0.4 mmol, 2.0 equiv)

were added in 2.0 mL EtOAc. Then, the tube was purged with N_2 for three times and sealed with PTEF cap. The reaction mixture was in a 75 °C heating mantle for 12 h. When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **3aa** in 86% yield and TT recovery in 95% yield.

Applicability of ArTT tetrafluoroborate:

In a 38 mL sealed tube, the mixture of $1a-BF_4$ (0.2 mmol, 1.0 equiv), 2a (0.4 mmol, 2.0 equiv), Pd(OAc)₂ (10 mol%), P'Bu₃-HBF₄ (20 mol%), K₃PO₄ (0.4 mmol, 2.0 equiv) were added in 2.0 mL EtOAc. Then, the tube was purged with N₂ for three times and sealed with PTEF cap. The reaction mixture was in a 75 °C heating mantle for 12 h. When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **3aa** in 87% yield.

Mechanistic Investigations:

Free radical inhibition test:

In a 38 mL sealed tube, the mixture of **1a** (0.2 mmol, 1.0 equiv), **2a** (0.4 mmol, 2.0 equiv), $Pd(OAc)_2$ (10 mol%), $P'Bu_3$ -HBF₄ (20 mol%), K_3PO_4 (0.4 mmol, 2.0 equiv), BHT (0.4 mmol, 2.0 equiv) were added in 2.0 mL EtOAc. Then, the tube was purged with N₂ for three times and sealed with PTEF cap. The reaction mixture in a 75 °C

heating mantle for 12 h. When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **3aa** in 93% yield.

In a 38 mL sealed tube, the mixture of **1a** (0.2 mmol, 1.0 equiv), **2a** (0.4 mmol, 2.0 equiv), $Pd(OAc)_2$ (10 mol%), $P'Bu_3$ -HBF₄ (20 mol%), K_3PO_4 (0.4 mmol, 2.0 equiv), TEMPO (0.4 mmol, 2.0 equiv) were added in 2.0 mL EtOAc. Then, the tube was purged with N₂ for three times and sealed with PTEF cap. The reaction mixture was in a 75 °C heating mantle for 12 h. When the reaction was finished, the mixture was cooled to room temperature and the solvents were removed under reduced pressure. The crude mixture was purified by silica gel flash column chromatography using EtOAc and PE as the eluent to afford the product **3aa** in 95% yield.

Kinetic isotope effect (KIE) experiments:

The reaction of **2f** or its deuterated form **2f-D** was carried out with **1a** in two tubes for the given time under the optimized conditions, respectively. The reaction mixtures were concentrated and then examined by ¹H NMR spectroscopy using 1,3,5trimethoxybenzene as the internal standard.

Table S1. Yield determined while varying the reaction time (with 2f)

Entry	1	2	3	4	5
Reaction time (min)	20	40	60	80	100

	Yield (%)	15.3	20.6	29.5	35.3	49.0		
Fable S2. Yield determined while varying the reaction time (with 2f-D)								
	Entry	1	2	3	4	5		
	Reaction time (min)	20	40	60	80	100		
	Yield (%)	7.3	9.1	15.3	20.4	25.0		

Figure S1. KIE measured from the parallel reactions of polyfluoroarenes (2f and 2f-D) with 1a.

Kinetic data: order in catalyst:

The order in catalyst's kinetic data was determined using the generally amounts of **1a** (45.7 mg, 0.1 mmol), **2a** (33.6 mg, 0.2 mmol), K_3PO_4 (42.5 mg, 0.2 mmol), a stock solution was prepared of Pd(OAc)₂ (0.002 mmol to 0.015 mmol), P'Bu₃-HBF₄ (0.004 mmol to 0.0300 mmol) in EtOAc (4.0 mL). Subsequently, 1.0 mL of the solution was added to corresponding test tubes respectively. The reactions were worked up by following the general procedure and the yields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard.

Table S3. Amounts of catalyst and results used to determine the order in catalyst

Entry	Concentration of	Reaction time	Average yield	3aa	
	catalyst	(min)	(%)	(mM)	

1	2.0 mol % Cat.	50	4.3	4.3
2	2.0 mol % Cat.	90	11.3	11.3
3	2.0 mol % Cat.	130	18.6	18.6
4	2.0 mol % Cat.	170	24.7	24.7
Entry	Concentration of	Reaction time	Average yield	3 aa
	catalyst	(min)	(%)	(mM)
1	5.0 mol % Cat.	40	13.0	13.0
2	5.0 mol % Cat.	80	20.3	20.3
3	5.0 mol % Cat.	120	31.6	31.6
4	5.0 mol % Cat.	160	43.0	43.0
Entry	Concentration of	Reaction time	Average yield	3 aa
Entry	Concentration of catalyst	Reaction time (min)	Average yield (%)	3aa (mM)
Entry 1	Concentration of catalyst 10.0 mol % Cat.	Reaction time (min) 40	Average yield (%) 18.2	3aa (mM) 18.2
Entry 1 2	Concentration of catalyst 10.0 mol % Cat. 10.0 mol % Cat.	Reaction time (min) 40 80	Average yield (%) 18.2 36.9	3aa (mM) 18.2 36.9
Entry 1 2 3	Concentration of catalyst 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat.	Reaction time (min) 40 80 120	Average yield (%) 18.2 36.9 53.1	3aa (mM) 18.2 36.9 53.1
Entry 1 2 3 4	Concentration of catalyst 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat.	Reaction time (min) 40 80 120 160	Average yield (%) 18.2 36.9 53.1 66.5	3aa (mM) 18.2 36.9 53.1 66.5
Entry 1 2 3 4	Concentration of catalyst 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat.	Reaction time (min) 40 80 120 160	Average yield (%) 18.2 36.9 53.1 66.5	3aa (mM) 18.2 36.9 53.1 66.5
Entry 1 2 3 4 Entry	Concentration of catalyst 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat. Concentration of	Reaction time (min) 40 80 120 160 Reaction time	Average yield (%) 18.2 36.9 53.1 66.5 Average yield	3aa (mM) 18.2 36.9 53.1 66.5 3aa
Entry 1 2 3 4 Entry	Concentration of catalyst 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat. Concentration of catalyst	Reaction time (min) 40 80 120 160 Reaction time (min)	Average yield (%) 18.2 36.9 53.1 66.5 Average yield (%)	3aa (mM) 18.2 36.9 53.1 66.5 3aa (mM)
Entry 1 2 3 4 Entry 1	Concentration of catalyst 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat. Concentration of catalyst 15.0 mol % Cat.	Reaction time (min) 40 80 120 160 Reaction time (min) 40	Average yield (%) 18.2 36.9 53.1 66.5 Average yield (%) 27.3	3aa (mM) 18.2 36.9 53.1 66.5 3aa (mM) 27.3
Entry 1 2 3 4 Entry 1 2	Concentration of catalyst 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat. Concentration of catalyst 15.0 mol % Cat. 15.0 mol % Cat.	Reaction time (min) 40 80 120 160 Reaction time (min) 40 80	Average yield (%) 18.2 36.9 53.1 66.5 Average yield (%) 27.3 41.6	3aa (mM) 18.2 36.9 53.1 66.5 3aa (mM) 27.3 41.6
Entry 1 2 3 4 Entry 1 2 3	Concentration of catalyst 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat. 10.0 mol % Cat. Concentration of catalyst 15.0 mol % Cat. 15.0 mol % Cat. 15.0 mol % Cat.	Reaction time (min) 40 80 120 160 Reaction time (min) 40 80 120	Average yield (%) 18.2 36.9 53.1 66.5 Average yield (%) 27.3 41.6 63.9	3aa (mM) 18.2 36.9 53.1 66.5 3aa (mM) 27.3 41.6 63.9

Figure S1. Plot of 3aa (mM) verse time (min) using different concentrations of catalyst

Table S4. Rates determined while varying the concentrations of catalyst

Entry	Concentration of	Rate
	catalyst	(mM/min)
1	0.0200	0.1713
2	0.0500	0.2533
3	0.1000	0.3588
4	0.1500	0.3940

Figure S2. Rates determined while varying the concentrations of catalyst

Time-course of yield:

Seven reactions of **1a** and **2a** were carried out by following the general procedure of the coupling reaction. Each of the reactions was stopped at the times indicated in the following table. The reactions were worked up by following the general procedure and the yields were determined by ¹H NMR spectroscopy using 1,3,5trimethoxybenzene as the internal standard.

Table S5. Yield determined while varying the reaction time

Entry	1	2	3	3	4	5	6	7
Reaction time	40	80	120	160	240	360	480	600
(min)								
Yield (%)	18.2	36.9	53.1	66.5	77.2	85.4	90.0	94.0

Figure S3. Yield determined while varying the reaction time

Characterization of Products:

2,3,4,5,6-pentafluoro-4'-methyl-1,1'-biphenyl (3aa)^[1]

Purification via silica gel column chromatography (petroleum ether) afforded 3aa.

Yield: 96%, 49.6 mg; appearance: white solid; M.P.: 102-104 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.32 (s, 4H), 2.43 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.5 – 145.3 (m), 143.0 – 142.9 (m), 141.6 – 141.3 (m), 139.4, 139.1 – 138.9 (m), 136.6 – 136.4 (m), 130.0, 129.4, 123.3, 116.1 – 115.8 (m), 21.3.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -143.39 (dd, J = 22.6, 7.5 Hz, 2F), -156.17 (t, J = 22.6 Hz, 1F), -161.65 to -163.30 (m, 2F).

4'-ethyl-2,3,4,5,6-pentafluoro-1,1'-biphenyl (3ba)

Purification via silica gel column chromatography (petroleum ether) afforded 3ba.

Yield: 90%, 49.0 mg; appearance: white solid; M.P.: 78-80 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 4H), 2.74 (q, J = 7.6 Hz, 2H), 1.31 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.6, 145.5 – 145.1 (m), 143.1 – 142.8 (m), 141.6 – 141.1 (m), 139.3 – 138.8 (m), 136.8 – 136.3 (m), 130.0, 128.2, 123.6, 116.2 – 115.7 (m), 28.7, 15.3.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -143.39 (dd, J = 23.3, 8.6 Hz, 2F), -156.21 (t, J = 21.1 Hz, 1F), -162.37 to -162.65 (m, 2F).

HRMS(APCI) m/z: [M]⁺ calcd for C₁₄H₉F₅ 272.0624, found 272.0618.

2,3,4,5,6-pentafluoro-4'-isopropyl-1,1'-biphenyl (3ca)^[5]

Purification via silica gel column chromatography (petroleum ether) afforded **3ca**. Yield: 92%, 52.7 mg; appearance: white solid; M.P.: 67-68 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 (s, 4H), 3.04 – 2.94 (m, 1H), 1.31 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 150.2, 145.5 – 145.2 (m), 143.1 – 142.8 (m), 141.6 – 141.3 (m), 139.2 – 138.8 (m), 136.8 – 136.4 (m), 130.1, 126.8, 123.7, 116.2 – 115.7 (m), 34.0, 23.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -143.38 (dd, J = 23.3, 8.6 Hz, 2F), -156.22 (t, J = 21.1 Hz, 1F), -162.33 to -162.63 (m, 2F).

2,3,4,5,6-pentafluoro-4'-octyl-1,1'-biphenyl (3da)

Purification via silica gel column chromatography (petroleum ether) afforded 3da.

Yield: 95%, 67.7 mg; appearance: white solid; M.P.: 54-56 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 4H), 2.69 (t, J = 7.6 Hz, 2H), 1.73 –

1.63 (m, 2H), 1.44 – 1.28 (m, 10H), 0.94 – 0.89 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.6 (m), 144.4, 143.1 – 142.8 (m), 141.6 – 141.3 (m), 139.3 – 138.7 (m), 136.8 – 136.4 (m), 130.0, 128.7, 123.5, 116.2 – 115.7 (m), 35.8, 31.9, 31.3, 29.5, 29.4, 29.3, 22.7, 14.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -143.38 (dd, J = 22.6, 7.5 Hz, 2F), -156.25 (t, J = 18.8 Hz, 1F), -162.40 to -162.63 (m, 2F).

HRMS(APCI) m/z: [M]⁺ Calcd for C₂₀H₂₁F₅ 356.1563, found 356.1557.

4'-cyclohexyl-2,3,4,5,6-pentafluoro-1,1'-biphenyl (3ea)

Purification via silica gel column chromatography (petroleum ether) afforded **3ea**. Yield: 99%, 64.6 mg; appearance: white solid; M.P.: 93-95 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.39 – 7.32 (m, 4H), 2.64 – 2.53 (m, 1H), 1.92 (dd, *J* = 21.2, 9.2 Hz, 4H), 1.80 (d, *J* = 12.8 Hz, 1H), 1.52 – 1.38 (m, 4H), 1.35 – 1.26 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 149.4, 145.5 - 145.3 (m), 143.1 - 142.7 (m), 141.4 - 141.2 (m), 139.1 - 138.7 (m), 136.9 - 136.2 (m), 130.0, 127.2, 123.7, 116.0 - 115.8 (m), 44.4, 34.3, 26.8, 26.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -143.37 (dd, J = 22.6, 7.5 Hz, 2F), -156.23 (t, J = 18.8 Hz, 1F), -162.40 to -162.60 (m, 2F).

HRMS(APCI) m/z: [M+H]⁺ calcd for C₁₈H₁₆F₅ 327.1167, found 327.1170.

2,3,4,5,6-pentafluoro-4'-methoxy-1,1'-biphenyl (3fa)^[1]

Purification via silica gel column chromatography (petroleum ether) afforded 3fa.

Yield: 95%, 52.1 mg; appearance: white solid; M.P.: 114-116 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 8.4 Hz, 2H), 3.87 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.2, 145.5 – 145.2 (m), 143.0 – 142.8 (m), 141.3 – 141.1 (m), 139.1 – 138.8 (m), 136.7 – 136.4 (m), 131.4, 118.4, 115.7 – 115.5 (m), 114.2, 55.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -143.67 (dd, J = 22.6, 7.5 Hz, 2F), -156.50 (t, J = 18.8 Hz, 1F), -162.49 to -163.27 (m, 2F).

4'-(dodecyloxy)-2,3,4,5,6-pentafluoro-1,1'-biphenyl (3ga)

Purification via silica gel column chromatography (petroleum ether) afforded 3ga.

Yield: 87%, 74.6 mg; appearance: white solid; M.P.: 78-79 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.34 (d, J = 7.6 Hz, 2H), 7.00 (d, J = 7.2 Hz, 2H), 4.00 (t, J = 6.4 Hz, 2H), 1.85 – 1.76 (m, 2H), 1.51 – 1.43 (m, 2H), 1.33 – 1.23 (m, 16H), 0.92 – 0.85 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.8, 131.4, 114.7, 68.1, 31.9, 29.7, 29.6, 29.4, 29.2, 26.0, 22.7, 14.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -143.64 (dd, J = 23.7, 8.6 Hz, 2F), -156.64 (t, J =

21.1 Hz, 1F), -162.49 to -162.70 (m, 2F).

HRMS(APCI) m/z: [M]⁺ Calcd for C₂₄H₂₉F₅O 428.2139, found 428.2133.

N,4-dimethyl-*N*-(2',3',4',5',6'-pentafluoro-[1,1'-biphenyl]-4-yl)benzenesulfonamide (3ha)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) afforded **3ha**.

Yield: 81%, 69.2 mg; appearance: white solid; M.P.: 111-113 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.49 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.33 – 7.26 (m, 4H), 3.24 (s, 3H), 2.46 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.7 – 144.8 (m), 143.9, 143.0 – 142.6 (m), 142.5, 141.8 – 141.3 (m), 139.3 – 139.0 (m), 138.9 – 138.7 (m), 136.6 – 136.3 (m), 133.1, 130.6, 129.4, 127.7, 126.3, 124.9, 37.7, 21.4.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -143.10 (dd, J = 23.7, 9.0 Hz, 2F), -155.10 (t, J = 21.1 Hz, 1F), -161.90 to -162.15 (m, 2F).

HRMS(APCI) m/z: [M+H]⁺ Calcd for C₂₀H₁₅F₅NO₂S 428.0738, found 428.0739. 4'-(4-bromophenoxy)-2,3,4,5,6-pentafluoro-1,1'-biphenyl (3ia)^[8]

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3ia**.

Yield: 54%, 44.8 mg; appearance: white solid; M.P.: 113-115 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.0 Hz, 4H), 7.19 (d, J = 7.6 Hz, 4H).
¹³C NMR (100 MHz, CDCl₃) δ 157.4, 145.7 – 145.2 (m), 143.2 – 142.7 (m), 142.0 – 141.4 (m), 139.5 – 138.8 (m), 137.0 – 136.2 (m), 131.9, 121.6, 119.2, 115.5 – 115.0 (m).

¹⁹F NMR (376 MHz, CDCl₃) δ -143.33 (dd, J = 23.7, 8.6 Hz, 2F), -155.48 (t, J = 21.1 Hz (15) -1(1.01) (-1(2.21) (-2F))

21.1 Hz, 1F), -161.91 to -162.21 (m, 2F).

4'-(difluoromethoxy)-2,3,4,5,6-pentafluoro-1,1'-biphenyl (3ja)

Purification via silica gel column chromatography (petroleum ether) afforded **3ja**. Yield: 70%, 43.4 mg; appearance: colourless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H),

6.58 (t, *J* = 73.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 151.8 – 151.7 (m), 145.5 – 145.2 (m), 143.1 – 142.7 (m), 141.9 – 141.7 (m), 139.4 – 139.0 (m), 131.8, 123.4, 119.7, 118.2, 115.6, 115.0 – 114.6 (m), 113.0.

¹⁹F NMR (376 MHz, CDCl₃) δ -81.28 (d, *J* = 4.1 Hz, 2F), -143.31 (dd, *J* = 23.3, 8.6 Hz, 2F), -155.02 (t, *J* = 21.1 Hz, 1F), -161.80 to -162.10 (m, 2F).

HRMS(APCI) m/z: [M]⁺ Calcd for C₁₃H₅F₇O 310.0229, found 310.0223.

4'-(3-chloropropyl)-2,3,4,5,6-pentafluoro-1,1'-biphenyl (3ka)

Purification via silica gel column chromatography (petroleum ether) afforded 3ka.

Yield: 85%, 54.5 mg; appearance: white solid; M.P.: 68-70 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.31 (d, *J* = 56.4 Hz, 4H), 3.54 (d, *J* = 53.6 Hz, 2H), 2.82 (d, *J* = 54.4 Hz, 2H), 2.10 (d, *J* = 52.8 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 145.5 - 145.2 (m), 143.0 - 142.7 (m), 142.1, 139.3 - 138.8 (m), 136.6 - 136.3 (m), 130.2, 128.9, 124.2, 115.8 - 115.7 (m), 44.1, 33.7, 32.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -143.36 (dd, J = 26.3, 11.3 Hz, 2F), -155.88 (t, J = 18.8 Hz, 1F), -162.23 to -162.47 (m, 2F).

HRMS(APCI) m/z: [M]⁺ Calcd for C₁₅H₁₀ClF₅ 320.0391, found 320.0385.

methyl 2',3',4',5',6'-pentafluoro-[1,1'-biphenyl]-4-carboxylate (3la)^[2]

Purification via silica gel column chromatography (petroleum ether/ethyl acetate =

50:1) afforded 3la.

Yield: 91%, 55.0 mg; appearance: white solid; M.P.: 107-109 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 3.95 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.4, 145.5 – 145.0 (m), 143.1 – 142.4 (m), 139.6 – 138.8 (m), 130.9, 130.2, 129.8, 115.2 – 114.7 (m), 52.4.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -142.78 to -142.00 (m, 2F), -154.13 (t, *J* = 21.1 Hz, 1F), -160.58 to -162.65 (m, 2F).

2,3,4,5,6-pentafluoro-1,1'-biphenyl (3ma)^[6]

Purification via silica gel column chromatography (petroleum ether) afforded 3ma.

Yield: 93%, 45.4 mg; appearance: white solid; M.P.: 96-98 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.40 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 145.5 – 145.2 (m), 143.3 – 142.7 (m), 141.8 – 141.4 (m), 139.3 – 140.0 (m), 137.0 – 136.2 (m), 130.1, 129.3, 128.7, 126.4, 116.2 – 115.1 (m).

¹⁹F NMR (376 MHz, CDCl₃) δ -143.29 (dd, J = 22.6, 11.3 Hz, 2F), -155.67 (t, J = 18.8 Hz, 1F), -162.15 to -162.40 (m, 2F).

2,3,4,5,6-pentafluoro-2',4'-dimethyl-1,1'-biphenyl (3na)^[6]

Purification via silica gel column chromatography (petroleum ether) afforded 3na.

Yield: 68%, 37.0 mg; appearance: colourless oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.19 (s, 1H), 7.15 – 7.06 (m, 2H), 2.40 (s, 3H), 2.16 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.5 – 145.1 (m), 143.0 – 142.7 (m), 141.9 – 141.5 (m), 139.6, 139.5 – 138.6 (m), 137.1, 136.7 – 136.1 (m), 131.3, 130.4, 126.8, 122.8, 115.8 – 115.2 (m), 21.2, 19.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -140.59 (dd, J = 22.6, 7.5 Hz, 2F), -155.74 (t, J = 18.8 Hz, 1F), -162.30 to -162.50 (m, 2F).

2,3,4,5,6-pentafluoro-2',5'-dimethyl-1,1'-biphenyl (30a)^[4]

Purification via silica gel column chromatography (petroleum ether) afforded 30a.

Yield: 78%, 42.5 mg; appearance: white solid; M.P.: 58-60 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.29 (d, *J* = 8.0 Hz, 1H), 7.24 (d, *J* = 7.6 Hz, 1H), 7.06 (s, 1H), 2.41 (s, 3H), 2.19 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.4 – 145.1 (m), 143.0 – 142.6 (m), 142.0 – 141.5 (m), 139.3 – 138.6 (m), 136.6 – 136.1 (m), 135.6, 134.2, 131.0, 130.4, 130.4, 125.6, 115.8 – 115.4 (m), 20.8, 19.1

¹⁹F NMR (376 MHz, CDCl₃) δ -140.62 (dd, J = 24.1, 9.0 Hz, 2F), -155.70 (t, J = 21.1 Hz, 1F), -162.31 to -162.52 (m, 2F).

2,3,4,5,6-pentafluoro-3',4'-dimethyl-1,1'-biphenyl (3pa)^[4]

Purification via silica gel column chromatography (petroleum ether) afforded **3pa**.

Yield: 83%, 45.2 mg; appearance: white solid; M.P.: 60-62 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.31 (d, *J* = 7.2 Hz, 1H), 7.25 – 7.17 (m, 2H), 2.37 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 145.5 - 145.1 (m), 143.2 - 142.7 (m), 139.0 - 138.9 (m), 138.1, 137.1, 131.1, 130.0, 127.5, 123.7, 19.8, 19.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -143.25 (dd, J = 22.6, 7.5 Hz, 2F), -156.38 (t, J = 22.6 Hz, 1F), -162.40 to -162.80 (m, 2F).

2,3,4,5,6-pentafluoro-2',4'-dimethoxy-1,1'-biphenyl (3qa)^[6]

Purification via silica gel column chromatography (petroleum ether/ethyl acetate =

50:1) afforded 3qa.

Yield: 84%, 51.1 mg; appearance: white solid; M.P.: 84-85 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.15 (d, *J* = 8.0 Hz, 1H), 6.63 – 6.58 (m, 2H), 3.87 (s, 3H), 3.80 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.2, 158.2, 145.9 – 145.6 (m), 143.5 – 143.1 (m), 139.1 – 138.5 (m), 136.5 – 136.0 (m), 132.2, 112.7 – 112.6 (m), 107.5, 104.8, 98.9, 55.6, 55.4.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -140.40 (dd, *J* = 24.8, 9.4 Hz, 2F), -156.69 to -156.89 (m, 1F), -162.35 to -163.65 (m, 2F).

2,3,4,5,6-pentafluoro-2'-methoxy-5'-(trifluoromethyl)-1,1'-biphenyl (3ra)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3ra**.

Yield: 81%, 55.4 mg; appearance: white solid; M.P.: 102-104 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.54 – 7.50 (m, 1H), 7.11 (d, *J* = 8.8 Hz, 1H), 3.88 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.6, 145.8 – 145.4 (m), 143.4 – 143.0 (m), 140.0 – 139.5 (m), 139.1 – 138.7 (m), 136.6 – 136.1 (m), 129.0 (q, *J* = 3.0 Hz), 128.6 (q, *J* = 4.0 Hz), 124.0 (q, *J* = 270.0 Hz), 123.2, 122.9, 115.9, 111.2, 56.0.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -61.71 (s, 3F), -139.95 to -140.00 (m, 2F), -154.71 to -154.85 (m, 1F), -162.51 to -163.69 (m, 2F).

HRMS(APCI) m/z: [M]⁺ Calcd for C₁₄H₆F₈O 342.0291, found 342.0285.

2,3,4,5,6-pentafluoro-5'-methoxy-2'-nitro-1,1'-biphenyl (3sa)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate =

50:1) afforded 3sa.

Yield: 65%, 41.5 mg; appearance: white solid; M.P.: 97-99 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, J = 9.2, 2.8 Hz, 1H), 8.18 (d, J = 2.8 Hz, 1H), 7.12 (d, J = 9.2 Hz, 1H), 3.94 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.0, 145.7 – 145.4 (m), 143.3 – 143.0 (m), 142.7 – 142.3 (m), 141.2, 140.2 – 139.7 (m), 139.1 – 138.7 (m), 136.6 – 136.1 (m), 127.7, 127.3, 116.1, 111.0, 56.6.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -139.50 to -139.95 (m, 2F), -153.66 (t, *J* = 21.1 Hz, 1F), -161.82 to -162.18 (m, 2F).

HRMS(APCI) m/z: [M]⁺ Calcd for C₁₃H₆F₅NO₃ 319.0268, found 319.0262.

2,3,4,5,6-pentafluoro-4'-(methyl-d₃)-1,1'-biphenyl-2',3',5',6'-d₄ (3ta)

Purification via silica gel column chromatography (petroleum ether) afforded **3ta**. Yield: 93%, 49.3 mg; appearance: white solid; M.P.: 110-112 °C.

¹³C NMR (100 MHz, CDCl₃) δ 145.6 – 145.2 (m), 143.1 – 142.8 (m), 141.5 – 141.4 (m), 139.3 – 138.8 (m), 136.8 – 136.4 (m), 129.9 – 129.8 (m), 129.7 – 129.5 (m), 129.4 – 129.2 (m), 129.1 – 129.0 (m), 128.9 – 128.7 (m), 123.2 – 123.1 (m), 20.6 – 20.1 (m).

¹⁹F NMR (376 MHz, CDCl₃) δ -143.46 (dd, J = 23.3, 8.6 Hz, 2F), -156.25 (t, J = 21.1 Hz, 1F), -162.40 to -162.64 (m, 2F).

HRMS(APCI) m/z: [M]⁺ Calcd for C₁₃D₇F₅ 265.0907, found 265.0902.

6-(perfluorophenyl)-1,2,3,4-tetrahydronaphthalene (3ua)^[4]

Purification via silica gel column chromatography (petroleum ether) afforded **3ua**. Yield: 97%, 57.9 mg; appearance: white solid; M.P.: 84-86 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.21 (d, *J* = 8.4 Hz, 1H), 7.15 (d, *J* = 7.6 Hz, 2H), 2.89 – 2.81 (m, 4H), 1.89 – 1.83 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 146.0 – 145.2 (m), 143.2 – 142.7 (m), 141.5 – 141.1 (m), 139.4 – 138.8 (m), 138.7, 137.7, 136.8 – 136.2 (m), 130.7, 129.5, 127.0, 123.3, 116.6 – 115.8 (m), 29.34, 29.26, 23.0.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -143.10 to -143.40 (m, 2F), -156.39 (t, *J* = 21.4 Hz, 1F), -162.45 to -162.70 (m, 2F).

5-(perfluorophenyl)benzo[d][1,3]dioxole (3va)^[1]

Purification via silica gel column chromatography (petroleum ether) afforded 3va.

Yield: 95%, 54.8 mg; appearance: white solid; M.P.: 81-82 °C.

¹H NMR (400 MHz, CDCl₃) δ 6.94 – 6.87 (m, 3H), 6.04 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 148.4, 148.0, 145.5 – 145.4 (m), 143.1 – 142.7 (m), 141.6 – 140.6 (m), 139.2 – 138.6 (m), 136.9 – 136.3 (m), 124.2, 119.4, 115.7 – 115.5 (m), 110.3, 108.6, 101.5.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -141.25 to -144.15 (m, 2F), -155.90 to -156.20 (m, 1F), -162.20 to -162.55 (m, 2F).

2-(perfluorophenyl)-9*H*-xanthen-9-one (3wa)^[8]

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3wa**.

Yield: 82%, 59.4 mg; appearance: white solid; M.P.: 204-206 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 8.43 (s, 1H), 8.35 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.81 – 7.73 (m, 2H), 7.63 (d, *J* = 8.8 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.42 (t, *J* = 7.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 176.5, 156.3, 156.1, 145.6 – 145.3 (m), 143.1 – 142.7 (m), 142.2 – 141.6 (m), 139.5 – 139.0 (m), 136.9 – 136.4 (m), 136.1, 135.2, 128.9, 126.8, 124.4, 122.2, 122.0, 121.8, 118.8, 118.1, 114.7 – 114.2 (m).

¹⁹**F NMR (376 MHz, CDCl₃)** δ -143.03 (dd, *J* = 23.7, 9.0 Hz, 2F), 154.33 (t, *J* = 21.8 Hz, 1F), -161.40 to -161.76 (m, 2F).

3-(perfluorophenyl)-9-tosyl-9H-carbazole (3xa)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3xa**.

Yield: 72%, 70.2 mg; appearance: white solid; M.P.: 238-240 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 8.46 (d, *J* = 8.8 Hz, 1H), 8.36 (d, *J* = 8.0 Hz, 1H), 8.00 – 7.89 (m, 2H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 7.2 Hz, 2H), 7.43 – 7.36 (m, 1H), 7.17 (d, *J* = 7.6 Hz, 2H), 2.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.4 – 145.1 (m), 139.2 – 138.4 (m), 135.1 – 134.9 (m), 129.8, 129.1, 128.0, 126.6, 124.1, 121.9, 121.8, 120.2, 115.2, 115.1, 21.5.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -142.85 to -143.35 (m, 2F), -155.16 to -155.44 (m, 1F), -161.75 to -162.20 (m, 2F).

HRMS(APCI) m/z: [M+H]⁺ Calcd for C₂₅H₁₅F₅NO₂S 488.0738, found 488.0738. methyl 2-(2,2'',3'',4'',5'',6''-hexafluoro-[1,1':4',1''-terphenyl]-4-yl)propanoate (3ya)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3ya**.

Yield: 89%, 75.5 mg; appearance: white solid; M.P.: 128-129 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.67 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.48 – 7.41 (m, 1H), 7.18 (t, *J* = 10.0 Hz, 2H), 3.79 (q, *J* = 7.2 Hz, 1H), 3.72 (s, 3H), 1.56 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.3, 160.9, 158.5, 145.9 – 144.9 (m), 143.2 – 142.7 (m), 142.5 (d, J = 7.0 Hz), 141.7 –141.4 (m), 139.2 – 138.7 (m), 137.0 – 136.1 (m), 130.7 (d, J = 3.0 Hz), 130.2, 129.1 (d, J = 1.0 Hz), 126.7 (d, J = 13.0 Hz), 125.6, 123.7 (d, J = 3.0 Hz), 115.5, 115.2, 52.2, 44.9, 18.3.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -117.28 (s, 1F), -143.10 (dd, *J* = 23.7, 9.0 Hz, 2F), -155.34 to -155.48 (m, 1F), -162.05 to -162.21 (m, 2F).

HRMS(APCI) m/z: [M+H]⁺ Calcd for C₂₂H₁₅F₆O₂ 425.0971, found 425.0973.

isopropyl 2-((5-(4-chlorobenzoyl)-2',3',4',5',6'-pentafluoro-[1,1'-biphenyl]-2yl)oxy)-2-methylpropanoate (3za)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3za**.

Yield: 74%, 78.0 mg; appearance: colourless oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.85 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 3H), 7.45 (d, *J* = 8.4 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 1H), 5.11 – 5.01 (m, 1H), 1.59 (s, 6H), 1.19 (s, 3H), 1.18 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.5, 172.6, 157.2, 138.7, 135.9, 134.6, 132.7 131.9, 131.2, 129.8, 128.7, 117.2, 114.9, 80.2, 69.6, 25.0, 21.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -139.42 (dd, J = 23.7, 8.6 Hz, 2F), -154.94 (t, J = 21.4 Hz, 1F), -162.56 to -162.86 (m, 2F).

HRMS(APCI) m/z: [M+H]⁺ Calcd for C₂₆H₂₁ClF₅O₄ 527.1043, found 527.1043.

2,3,5,6-tetrafluoro-4'-methyl-1,1'-biphenyl (3ab)^[3]

Purification via silica gel column chromatography (petroleum ether) afforded 3ab.

Yield: 85%, 40.8 mg; appearance: white solid; M.P.: 81-83 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.37 (d, *J* = 7.6 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.11 – 6.98 (m, 1H), 2.43 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 147.5 – 147.3 (m), 145.1 – 144.8 (m), 142.6 – 142.4 (m), 139.3, 129.9, 129.3, 124.4, 121.7 – 121.5 (m), 104.7 – 104.3 (m), 21.3.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -139.37 (dd, *J* = 22.6, 11.3 Hz, 2F), -144.02 (dd, *J* = 22.6, 15.0 Hz, 2F).

2,3,5,6-tetrafluoro-4-methoxy-4'-methyl-1,1'-biphenyl (3ac)^[2]

Purification via silica gel column chromatography (petroleum ether) afforded 3ac.

Yield: 90%, 48.6 mg; appearance: white solid; M.P.: 37-39 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 4.12 (s, 3H), 2.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.8 – 145.3 (m), 143.3 – 142.8 (m), 142.5 – 142.1

(m), 140.1 – 139.8 (m), 138.9, 137.4 – 137.0 (m), 130.0, 129.3, 124.2, 114.3 (t, *J* = 17.0 Hz), 62.2, 21.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -145.28 (dd, *J* = 22.2, 9.0 Hz, 2F), -158.37 (dd, *J* = 22.6, 9.4 Hz, 2F).

4-butoxy-2,3,5,6-tetrafluoro-4'-methyl-1,1'-biphenyl (3ad)^[7]

Purification via silica gel column chromatography (petroleum ether) afforded **3ad**. Yield: 92%, 48.6 mg; appearance: white solid; M.P.: 44-46 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 4.28 (t, J = 6.8 Hz, 2H), 2.43 (s, 3H), 1.87 – 1.75 (m, 2H), 1.61 – 1.48 (m, 2H), 1.01 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.7 - 145.2 (m), 143.2 - 142.8 (m), 140.4 - 140.2 (m), 138.8, 136.7 - 136.6 (m), 130.0, 129.3, 124.3, 114.4 - 114.2 (m), 75.1 (t, J = 3.0 Hz), 31.9, 21.3, 18.8, 13.7.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -145.49 (dd, *J* = 22.6, 11.3 Hz, 2F), -157.70 (dd, *J* = 22.6, 11.3 Hz, 2F).

2,3,5,6-tetrafluoro-4'-methyl-[1,1'-biphenyl]-4-yl 4-methylbenzenesulfonate (3ae)

Purification via silica gel column chromatography (petroleum ether) afforded 3ae.

Yield: 57%, 46.8 mg; appearance: white solid; M.P.: 111-113 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.2 Hz, 2H), 7.42 (d, J = 7.6 Hz, 2H), 7.36 – 7.29 (m, 4H), 2.51 (s, 3H), 2.43 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 130.1, 129.9, 129.4, 128.6, 21.9, 21.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -142.88 to -143.13 (m, 2F), -151.60 to -151.92 (m, 2F).

HRMS(APCI) m/z: [M–H]⁺ Calcd for C₂₀H₁₃F₄O₃S 409.0527, found 409.0527. 2,3,5,6-tetrafluoro-4'-methyl-4-(p-tolyloxy)-1,1'-biphenyl (3af)

Purification via silica gel column chromatography (petroleum ether) afforded **3af**. Yield: 95%, 65.8 mg; appearance: white solid; M.P.: 119-121 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H),

7.17 (d, *J* = 8.4 Hz, 2H), 6.97 (d, *J* = 8.4 Hz, 2H), 2.45 (s, 3H), 2.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.3, 145.8 – 145.3 (m), 143.2 – 142.9 (m), 140.8 –

140.4 (m), 139.2, 133.2, 130.2, 130.0, 129.4, 124.0, 115.5, 21.3, 20.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -144.10 (dd, J = 15.0, 11.3 Hz, 2F), -154.80 to - 155.00 (m, 2F).

HRMS(APCI) m/z: [M]⁺ Calcd for C₂₀H₁₄F₄O 346.0981, found 346.0975.

4-(benzyloxy)-2,3,5,6-tetrafluoro-4'-methyl-1,1'-bipheny (3ag)^[7]

Purification via silica gel column chromatography (petroleum ether) afforded 3ag.

Yield: 87%, 60.3 mg; appearance: white solid; M.P.: 116-118 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.51 (d, J = 7.2 Hz, 2H), 7.46 – 7.38 (m, 3H), 7.35 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.31 (s, 2H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.6 - 145.2 (m), 143.1 - 142.6 (m), 140.5 - 140.2 (m), 138.9, 135.7, 130.0, 129.3, 128.8, 128.6, 128.3, 124.2, 114.7 (t, J = 17.0 Hz), 76.4 (t, J = 4.0 Hz), 21.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -145.08 to -145.29 (m, 2F), -156.46 to -156.76 (m, 2F).

1-(2,3,5,6-tetrafluoro-4'-methyl-[1,1'-biphenyl]-4-yl)-1*H*-indole (3ah)^[7]

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3ah**.

Yield: 85%, 60.3 mg; appearance: white solid; M.P.: 131-133 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.79 (d, *J* = 8.4 Hz, 1H), 7.51 (d, *J* = 6.8 Hz, 2H), 7.45 – 7.30 (m, 6H), 6.90 – 6.85 (m, 1H), 2.52 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.8 – 145.4 (m), 144.4 – 144.1 (m), 143.3 – 142.9 (m), 141.9 – 141.6 (m), 139.6, 136.3, 130.0, 129.5, 128.7, 128.3, 123.8, 123.1, 121.2, 120.1 – 119.7 (m), 117.5 – 117.1 (m), 110.5, 105.5, 21.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -142.75 to -143.05 (m, 2F), -146.50 to -146.76 (m, 2F).

4-bromo-2,3,5,6-tetrafluoro-4'-methyl-1,1'-biphenyl (3ai)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate =

50:1) afforded 3ai.

Yield: 45%, 28.7 mg; appearance: white solid; M.P.: 103-105 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 4H), 2.43 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.2 – 145.1 (m), 143.9 – 143.6 (m), 143.0 – 142.6 (m), 139.5, 129.8, 129.4, 123.9, 21.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -133.78 (td, J = 13.2, 4.9 Hz, 2F), -142.18 (td, J = 13.2, 4.5 Hz, 2F).

HRMS(APCI) m/z: [M+H]⁺ C₁₃H₈BrF₄ 318.9740, found 318.9740.

4-((benzyloxy)methyl)-2,3,5,6-tetrafluoro-4'-methyl-1,1'-biphenyl (3aj)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3aj**.

Yield: 93%, 67.0 mg; appearance: white solid; M.P.: 75-77 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.39 – 7.28 (m, 9H), 4.71 (s, 2H), 4.63 (s, 2H), 2.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 139.3, 137.5, 129.9, 129.3, 128.5, 127.9, 127.8, 124.3,

121.0, 124.4 – 124.2 (m), 120.1 – 120.9 (m), 115.0 – 114.6 (m), 72.9, 59.3, 21.4.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -143.89 to -144.05 (m, 2F), -144.20 to -144.37 (m, 2F).

HRMS(APCI) m/z: [M–H]⁺ Calcd for C₂₁H₁₅F₄O 359.1064, found 359.1058.

2,5,6-trifluoro-4'-methyl-[1,1'-biphenyl]-3-carbonitrile (3ak)^[2]

Purification via silica gel column chromatography (petroleum ether) afforded 3ak.

Yield: 87%, 43.0 mg; appearance: white solid; M.P.: 80-82 °C.

¹**H NMR (400 MHz, DMSO-***d*₆) δ 8.31 – 8.24 (m, 1H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 2.35 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 139.5, 129.8, 129.4, 123.0, 121.3 – 120.7 (m), 120.2, 120.0, 112.8, 20.9.

¹⁹F NMR (376 MHz, DMSO- d_6) δ -112.61 (dd, J = 11.3, 7.5 Hz, 1F), -127.18 (dd, J = 22.6, 7.5 Hz, 1F), -139.01 (dd, J = 22.6, 15.0 Hz, 1F).

2,3,5,6-tetrafluoro-4-(p-tolyl)pyridine (3al)^[1]

Purification via silica gel column chromatography (petroleum ether) afforded **3al**. Yield: 98%, 47.3 mg; appearance: white solid; M.P.: 98-100 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 7.6 Hz, 2H), 7.35 (d, *J* = 7.6 Hz, 2H), 2.45 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.5 – 144.9 (m), 143.0 – 142.6 (m), 141.0, 138.2 – 137.7 (m),133.6 – 133.5 (m), 129.6, 122.9, 21.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -91.06 (td, *J* = 30.5, 14.7 Hz, 2F), -145.34 (td, *J* = 30.1, 14.3 Hz, 2F).

2,4,6-trifluoro-4'-methyl-1,1'-biphenyl (3am)^[3]

Purification via silica gel column chromatography (petroleum ether) afforded 3am.

Yield: 54%, 24.0 mg; appearance: white solid; M.P.: 70-72 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 6.82 – 6.73 (m, 2H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.0 – 162.7 (m), 161.6 – 161.4 (m), 159.2 – 158.9 (m), 138.3, 130.1, 129.1, 125.3, 115.2 – 114.9 (m), 100.8 – 100.0 (m), 21.3.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -109.56 to -109.61 (m, 1F), -111.39 to -111.43 (m, 2F).

2,3,5-trifluoro-4-(p-tolyl)pyridine (3an)^[2]

Purification via silica gel column chromatography (petroleum ether) afforded **3an**. Yield: 42%, 18.7 mg; appearance: white solid; M.P.: 55-57 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.95 (s, 1H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.4 – 155.2 (m), 152.8 – 152.6 (m), 150.2 – 150.0 (m), 147.9 – 147.5 (m), 140.4, 129.7, 129.5, 128.8 – 128.2 (m), 123.3 – 123.2 (m), 21.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -89.31 to -89.40 (m, 1F), -132.70 to -132.86 (m, 1F), -141.00 to -141.20 (m, 1F).

cinnamyl 2,3,5,6-tetrafluoro-4'-methyl-[1,1'-biphenyl]-4-carboxylate (3ao)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3ao**.

Yield: 90%, 72.1 mg; appearance: white solid; M.P.: 93-95 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 – 7.42 (m, 2H), 7.39 – 7.34 (m, 4H), 7.32 – 7.25 (m, 3H), 6.79 (d, *J* = 16.0 Hz, 1H), 6.42 – 6.34 (m, 1H), 5.06 (dd, *J* = 6.4, 1.2 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.6, 146.5 – 146.1 (m), 145.3 – 144.9 (m), 143.9 –
143.6 (m), 142.8 – 142.4 (m), 139.9, 135.9, 135.2, 129.8, 129.4, 128.6, 128.3, 126.7,
124.1 – 123.7 (m), 121.8, 111.2 – 110.8 (m), 67.0, 21.4.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -139.46 to -139.74 (m, 2F), -142.48 to -142.84 (m, 2F).

HRMS(APCI) m/z: [M]⁺ Calcd for C₂₃H₁₆F₄O₂ 400.1086, found 400.1081.

5-((2,3,5,6-tetrafluoro-4'-methyl-[1,1'-biphenyl]-4-yl)oxy)benzo[d][1,3]dioxole

Purification via silica gel column chromatography (petroleum ether) afforded 3ap.

Yield: 87%, 65.5 mg; appearance: white solid; M.P.: 140-142 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.37 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.73 (d, *J* = 8.4 Hz, 1H), 6.65 (d, *J* = 2.8 Hz, 1H), 6.50 – 6.46 (m, 1H), 5.98 (s, 2H), 2.43 (s, 3H).

¹³**C NMR (100 MHz, CDCl₃)** δ 152.5, 148.4, 145.7 – 145.2 (m), 143.9, 143.3 – 142.8 (m), 140.8 – 140.3 (m), 139.2, 130.0, 129.4, 108.0, 107.8, 101.7, 99.1, 21.3.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -143.96 (dd, *J* = 22.6, 11.3 Hz, 2F), -155.11 (dd, *J* = 22.6, 11.3 Hz, 2F).

HRMS(APCI) m/z: [M+H]⁺ C₂₀H₁₃F₄O₃ 377.0795, found 377.0800.

4-methoxy-3-((2,3,5,6-tetrafluoro-4'-methyl-[1,1'-biphenyl]-4-

yl)oxy)benzaldehyde (3aq)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate =

5:1) afforded **3aq**.

Yield: 93%, 72.6 mg; appearance: white solid; M.P.: 184-186 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 9.83 (s, 1H), 7.67 – 7.62 (m, 1H), 7.42 – 7.36 (m, 3H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 1H), 4.03 (s, 3H), 2.43 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 190.2, 154.6, 146.9, 139.3, 130.0, 129.8, 129.4, 129.2, 123.7, 117.2, 114.1, 112.0, 56.4, 21.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -143.46 to -143.71 (m, 2F), -155.22 to -155.40 (m, 2F).

HRMS(APCI) m/z: [M+H]⁺ Calcd for C₂₁H₁₅F₄O₃ 391.0952, found 391.0952.

1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl 2,3,5,6-tetrafluoro-4'-methyl-[1,1'-

biphenyl]-4-carboxylate (3ar)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3ar**.

Yield: 95%, 79.9 mg; appearance: white solid; M.P.: 79-81 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.39 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 4.68 (d, *J* = 1.2 Hz, 1H), 2.44 (s, 3H), 1.88 – 1.79 (m, 2H), 1.79 – 1.71 (m, 1H), 1.68 (d, *J* = 10.4 Hz, 1H), 1.56 – 1.45 (m, 1H), 1.28 (d, *J* = 10.0 Hz, 1H), 1.23 (s, 3H), 1.21 – 1.14 (m, 4H), 0.92 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.2, 146.4 – 146.0 (m), 145.3 – 145.0 (m), 143.8 – 143.5 (m), 142.8 – 142.4 (m), 139.8, 129.9, 129.4, 123.7 – 123.3 (m), 111.5, 89.4, 48.4, 48.3, 41.3, 39.6, 29.6, 26.6, 25.7, 21.4, 20.1, 19.2.

¹⁹F NMR (376 MHz, CDCl₃) δ -139.63 to -139.81 (m, 2F), -142.76 to -142.97 (m, 2F).

HRMS(APCI) m/z: [M–H]⁺ Calcd for C₂₄H₂₃F₄O₂ 419.1639, found 419.1640.

(*R*)-2,5,7,8-tetramethyl-2-((4*S*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl 2,3,5,6tetrafluoro-4'-methyl-[1,1'-biphenyl]-4-carboxylate (3as)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3as**.

Yield: 99%, 138.0 mg; appearance: white solid; M.P.: 180-182 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.41 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 2.65 (t, *J* = 6.4 Hz, 2H), 2.45 (s, 3H), 2.16 (s, 6H), 2.12 (s, 3H), 1.90 – 1.75 (m, 2H), 1.64 – 1.48 (m, 4H), 1.46 – 1.34 (m, 4H), 1.29 – 1.25 (m, 7H), 1.20 – 1.02 (m, 7H), 0.92 – 0.82 (m, 14H).

¹³C NMR (100 MHz, CDCl₃) δ 158.6, 150.0, 146.4 – 146.1 (m), 145.3 – 145.0 (m), 143.8 – 143.4 (m), 142.9 – 142.5 (m), 140.3, 140.0, 129.9, 129.5, 126.5, 124.8, 124.3 – 123.8 (m), 123.6, 123.4, 117.7, 111.4 – 110.9 (m), 75.2, 39.4, 37.7 – 37.2 (m), 32.8, 32.7, 31.0, 28.0, 24.8, 24.4, 22.7, 22.6, 21.4, 21.0, 20.7, 19.74, 19.68, 13.0, 12.1, 11.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.95 to 139.20 (m, 2F), -142.25 to 142.49 (m, 2F). HRMS(APCI) m/z: [H]⁺ Calcd for C₄₃H₅₆F₄O₃ 696.4166, found 696.4160.

cyclopenta[a]phenanthren-3-yl 2,3,5,6-tetrafluoro-4'-methyl-[1,1'-biphenyl]-4carboxylate (3at)

(8S,9S,13S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) afforded **3at**.

Yield: 82%, 88.0 mg; appearance: white solid; M.P.: 192-194 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.32 (m, 5H), 7.07 – 6.99 (m, 2H), 2.97 (dd, J = 8.8, 4.0 Hz, 2H), 2.57 – 2.48 (m, 1H), 2.44 (s, 3H), 2.37 – 2.29 (m, 1H), 2.22 – 2.04 (m, 3H), 2.01 – 1.96 (m, 1H), 1.71 – 1.56 (m, 4H), 1.54 – 1.42 (m, 3H), 0.93 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 220.7, 148.1, 140.1, 138.4, 138.3, 129.9, 129.5, 126.6, 123.6 – 123.5 (m), 121.3, 118.5, 50.4, 47.9, 44.2, 38.0, 35.8, 31.5, 29.4, 26.3, 25.8, 21.6, 21.4, 13.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -138.90 to -139.15 (m, 2F), -142.25 to -142.50 (m, 2F).

HRMS(APCI) m/z: [H]⁺ Calcd for C₃₂H₂₈F₄O₃ 536.1975, found 536.1970.

(S)-(4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)methyl 2,3,5,6-tetrafluoro-4'-methyl-

[1,1'-biphenyl]-4-carboxylate (3au)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3au**.

Yield: 96%, 80.3 mg; appearance: white solid; M.P.: 70-72 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 5.90 (s, 1H), 4.83 – 4.78 (m, 2H), 4.76 – 4.71 (m, 2H), 2.43 (s, 3H), 2.23 – 2.14 (m, 4H), 2.07 – 1.98 (m, 1H), 1.92 – 1.85 (m, 1H), 1.75 (s, 3H), 1.57 – 1.50 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 159.7, 149.4, 146.4 – 146.1 (m), 145.2 – 145.0 (m), 143.8 – 143.5 (m), 142.8 – 142.5 (m), 139.9, 131.7, 129.8, 129.4, 127.4, 127.3, 123.7 – 123.5 (m), 111.4 – 111.2 (m), 108.9, 70.6, 40.7, 30.5, 27.2, 26.3, 21.4, 21.3, 20.74, 20.69.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -139.62 to -139.94 (m, 2F), -142.60 to -142.95 (m, 2F).

HRMS(APCI) m/z: [M+H]⁺ Calcd for C₂₄H₂₃F₄O₂ 419.1629, found 419.1629.

2-((1*S*,5*R*)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)ethyl 2,3,5,6-tetrafluoro-4'methyl-[1,1'-biphenyl]-4-carboxylate (3av)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3av**.

Yield: 97%, 83.9 mg; appearance: white solid; M.P.: 72-74 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 7.6 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 5.38 (s, 1H), 4.48 – 4.37 (m, 2H), 2.47 – 2.39 (m, 6H), 2.30 – 2.20 (m, 2H), 2.11 (d, J = 5.6 Hz, 2H), 1.30 (s, 3H), 1.19 (d, J = 8.4 Hz, 1H), 0.85 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 159.8, 146.3 – 146.0 (m), 145.2 – 144.9 (m), 143.7 –

143.5 (m), 143.3, 142.7 – 142.4 (m), 139.8, 129.8, 129.4, 123.6, 119.4, 111.5 – 111.2 (m), 64.8, 45.6, 40.6, 38.0, 35.7, 31.6, 31.3, 26.2, 21.4, 21.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.65 to -140.62 (m, 2F), -142.65 to -43.00 (m, 2F). HRMS(APCI) m/z: [M+H]⁺ Calcd for C₂₅H₂₅F₄O₂ 433.1785, found 433.1785. (3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-

cyclopenta[*a*]phenanthren-3-yl 2,3,5,6-tetrafluoro-4'-methyl-[1,1'-biphenyl]-4carboxylate (3aw)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3aw**.

Yield: 91%, 118.8 mg; appearance: white solid; M.P.: 199-121 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 (d, *J* = 7.6 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.46 (d, *J* = 3.6 Hz, 1H), 5.02 – 4.90 (m, 1H), 2.54 – 2.47 (m, 2H), 2.43 (s, 3H), 2.08 – 1.70 (m, 6H), 1.63 – 1.45 (m, 5H), 1.40 – 1.09 (m, 12H), 1.06 (s, 3H), 1.04 – 0.97 (m, 3H), 0.93 (d, *J* = 6.4 Hz, 3H), 0.88 (d, *J* = 6.4 Hz, 6H), 0.70 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.1, 146.1 – 145.9 (m), 145.1 – 144.9 (m), 143.6 – 143.4 (m), 142.7 – 142.5 (m), 139.8, 139.1, 129.9, 129.4, 123.7, 123.2, 112.0 – 111.6 (m), 56.7, 56.1, 50.0, 42.3, 39.7, 39.5, 37.9, 36.9, 36.6, 36.2, 35.8, 31.9, 31.8, 28.2, 28.0, 27.7, 24.3, 23.8, 22.8, 22.6, 21.4, 21.0, 19.3, 18.7, 11.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -140.18 to -140.42 (m, 2F), -142.77 to -142.98 (m, 2F).

HRMS(APCI) m/z: $[M-H]^+$ Calcd for $C_{41}H_{51}F_4O_2$ 651.3830, found 651.3831.

((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-

b:4',5'-d]pyran-5-yl)methyl 2,3,5,6-tetrafluoro-4'-methyl-[1,1'-biphenyl]-4carboxylate (3ax)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **3ax**.

Yield: 95%, 100.0 mg; appearance: colourless oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 5.56 (d, *J* = 4.8 Hz, 1H), 4.68 – 4.59 (m, 2H), 4.54 – 4.48 (m, 1H), 4.38 – 4.31 (m, 2H), 4.21 – 4.15 (m, 1H), 2.43 (s, 3H), 1.54 (s, 3H), 1.48 (s, 3H), 1.36 (s, 3H), 1.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.6, 146.5 – 145.9 (m), 145.3 – 145.0 (m), 144.0 – 143.5 (m), 142.7 – 142.4 (m), 139.9, 129.9, 129.4, 123.8 – 123.3 (m), 110.9 – 110.7 (m), 109.8, 108.9, 96.2, 70.9, 70.7, 70.4, 65.9, 65.2, 25.9, 24.9, 24.4, 21.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -139.35 to -139.65 (m, 2F), -142.61 to -142.86 (m, 2F).

HRMS(APCI) m/z: [M+H]⁺ Calcd for C₂₆H₂₇F₄O₇ 527.1687, found 527.1687.

2,3,5,6-tetrafluoro-4'-methoxy-1,1'-biphenyl (3fb)^[1]

3fb

Purification via silica gel column chromatography (petroleum ether) afforded **3fb**. Yield: 80%, 41.0 mg; appearance: white solid; M.P.: 104-106 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.39 (m, 2H), 7.06 – 7.00 (m, 3H), 3.87 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 160.1, 147.6 – 147.2 (m), 145.1 – 144.8 (m), 142.7 – 142.4 (m), 131.4, 121.2 (t, *J* = 17.0 Hz), 119.5, 114.1, 104.2 (t, *J* = 23.0 Hz), 55.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -139.10 to -139.70 (m, 2F), -144.05 to -144.50 (m, 2F).

(3aS,4R,6R,6aS)-6-(2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-

dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl (*E*)-3-(2,3,5,6-tetrafluoro-4'methoxy-[1,1'-biphenyl]-4-yl)acrylate (4a)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) afforded **4a**.

Yield: 95%, 108.0 mg; appearance: white solid; M.P.: 155-157 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.78 (d, *J* = 16.4 Hz, 1H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 16.4 Hz, 1H), 6.29 (s, 1H), 4.95 – 4.91 (m, 1H), 4.82 (d, *J* = 5.6 Hz, 1H), 4.47 – 4.40 (m, 1H), 4.15 – 4.05 (m, 3H), 3.87 (s, 3H), 1.52 (s, 3H), 1.48 (s, 3H), 1.39 (s, 3H), 1.37 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 164.7, 160.5, 147.1 – 146.7 (m), 145.2 – 145.0 (m), 144.6 – 144.0 (m), 142.8 – 142.3 (m), 131.5, 130.8, 124.7 (t, *J* = 8.0 Hz), 118.9, 114.2, 113.3, 112.2 (t, *J* = 14.0 Hz), 109.4, 101.3, 85.1, 82.4, 79.3, 72.9, 66.8, 55.3, 27.0, 25.9, 25.1, 24.6.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -140.50 (dd, *J* = 23.7, 13.9 Hz, 2F), -144.26 (dd, *J* = 23.7, 13.9 Hz, 2F).

HRMS(APCI) m/z: [M]⁺ Calcd for C₂₈H₂₈F₄O₈ 568.1720, found 568.1716.

diethyl

yl)vinyl)phosphonate (4b)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate =

20:1) afforded 4b.

Yield: 88%, 73.6 mg; appearance: white solid; M.P.: 72-74 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.52 (dd, *J* = 24.4, 18.0 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 6.68 (t, *J* = 18.0 Hz, 1H), 4.20 – 4.10 (m, 4H), 3.84 (s, 3H), 1.36 (t, *J* = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 160.4, 146.7 – 146.5 (m), 145.2 – 144.8 (m), 144.4 – 143.9 (m), 142.8 – 142.4 (m), 133.0 – 132.8 (m), 131.4, 124.5 (t, *J* = 8.0 Hz), 122.6 (t, *J* = 9.0 Hz), 121.7 – 121.3 (m), 118.9, 114.1, 113.2 – 112.6 (m), 62.1 (d, *J* = 5.0 Hz), 55.2, 16.3 (d, *J* = 6.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -142.09 to -142.20 (m, 2F), -144.49 to -144.62 (m, 2F).

³¹P NMR (162 MHz, CDCl₃) δ 17.10.

HRMS(APCI) m/z: [M+H]⁺ Calcd for C₁₉H₂₀F₄O₄P 419.1030, found 419.1030.

(E)-N-((3s,5s,7s)-adamantan-1-yl)-3-(2,3,5,6-tetrafluoro-4'-methoxy-[1,1'-

biphenyl]-4-yl)acrylamide (4c)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) afforded **4c**.

Yield: 85%, 78.1 mg; appearance: white solid; M.P.: 231-232 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.66 (d, *J* = 16.0 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.02 (d, *J* = 7.2 Hz, 2H), 6.70 (d, *J* = 16.0 Hz, 1H), 5.44 (s, 1H), 3.87 (s, 3H), 2.10 (s, 9H), 1.72 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 163.9, 160.3, 146.8 – 146.5 (m), 145.1 – 144.9 (m), 144.4 – 144.1 (m), 142.8 – 142.6 (m), 131.4, 129.4, 125.2, 120.8 – 120.4 (m), 119.2, 114.1, 113.2 – 112.9 (m), 55.3, 52.5, 41.5, 36.3, 29.4.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -141.20 to -141.70 (m, 2F), -144.72 to -145.12 (m, 2F).

HRMS(APCI) m/z: [M+H]⁺ Calcd for C₂₆H₂₆F₄NO₂ 460.1894, found 460.1894.

2,3,4,5,6-pentafluoro-4'-(3-iodopropyl)-1,1'-biphenyl (5a)

Purification via silica gel column chromatography (petroleum ether) afforded 5a.

Yield: 99%, 81.6 mg; appearance: white solid; M.P.: 82-84 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 4H), 3.22 (t, *J* = 6.8 Hz, 2H), 2.82 (t, *J* = 7.2 Hz, 2H), 2.25 – 2.13 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 145.4 - 145.1 (m), 143.0 - 142.6 (m), 141.8, 141.7 - 141.4 (m), 139.2 - 138.7 (m), 136.7 - 136.3 (m), 130.2, 128.9, 124.2, 115.8 - 115.2 (m), 36.0, 34.5, 6.1.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -143.31 (dd, J = 23.7, 8.6 Hz, 2F), -155.81 (t, J = 21.1 Hz, 1F), -162.17 to -162.42 (m, 2F).

HRMS(APCI) m/z: [M]⁺ Calcd for C₁₅H₁₀F₅I 411.9747, found 411.9742.

3-(2',3',4',5',6'-pentafluoro-[1,1'-biphenyl]-4-yl)propan-1-ol (5b)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate =

5:1) afforded 5b.

Yield: 71%, 42.9 mg; appearance: white solid; M.P.: 90-92 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 4H), 3.72 (t, *J* = 6.4 Hz, 2H), 2.79 (t, *J* = 7.2 Hz, 2H), 2.00 – 1.90 (m, 2H), 1.51 – 1.39 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 145.5 - 145.1 (m), 143.2, 143.0 - 142.9 (m), 141.7 - 141.4 (m), 139.2 - 138.8 (m), 136.8 - 136.3 (m), 130.1, 128.8, 123.8, 116.0 - 115.6 (m), 62.1, 33.9, 31.8.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -143.35 (dd, *J* = 24.8, 8.6 Hz, 2F), 155.96 (t, *J* = 21.4 Hz, 1F), -161.18 to -163.50 (m, 2F).

HRMS(APCI) m/z: [M+H]⁺ Calcd for C₁₅H₁₂F₅O 303.0803, found 303.0803.

(*R*)-2,5,7,8-tetramethyl-2-((4*S*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl

2,2",3,5,6-pentafluoro-4"-(3-oxobutan-2-yl)-[1,1':4',1"-terphenyl]-4-carboxylate (3ys)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) afforded **3ys**.

Yield: 93%, 160.5 mg; appearance: white solid; M.P.: 102-104 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 8.0 Hz, 2H), 7.47 (t, J = 8.0 Hz, 1H), 7.24 – 7.14 (m, 2H), 3.80 (q, J = 7.2 Hz, 1H), 3.73 (s, 3H), 2.66 (t, J = 6.8 Hz, 2H), 2.17 (d, J = 4.4 Hz, 6H), 2.13 (s, 3H), 1.92 – 1.74 (m, 2H), 1.62 – 1.51 (m, 6H), 1.47 – 1.36 (m, 4H), 1.34 – 1.23 (m, 10H), 1.20 – 1.05 (m, 6H), 0.93 – 0.83 (m, 13H).

¹³C NMR (100 MHz, CDCl₃) δ 174.3, 161.1, 158.5, 150.0, 146.6 – 145.9 (m), 145.5 -145.0 (m), 143.9 – 143.2 (m), 142.9 – 142.5 (m), 140.4 – 139.8 (m), 140.3, 140.1 – 139.9 (m), 137.0, 130.7 (d, *J* = 3.0 Hz), 130.2, 129.2, 126.8, 126.5, 125.8, 124.8, 123.7 (d, *J* = 2.0 Hz), 123.4, 117.7, 115.5, 115.3, 111.7 – 111.2 (m), 75.2, 52.2, 44.9, 39.3, 37.6 – 37.2 (m), 32.8 – 32.6 (m), 28.0, 24.8, 24.4, 22.7, 22.6, 21.0, 20.6, 19.72, 19.65, 18.5, 13.0, 12.1, 11.9.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -117.13 (s, 1F), -138.55 to - 138.90 (m, 2F), -141.92 to -142.22 (m, 2F).

HRMS(APCI) m/z: [H]⁺ Calcd for C₅₂H₆₃F₅O₅ 862.4596, found 862.4590.

1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl 2,2",3,5,6-pentafluoro-4"-(1-methoxy-1oxopropan-2-yl)-[1,1':4',1"-terphenyl]-4-carboxylate (3yr)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) afforded **3yr**.

Yield: 94%, 110.3 mg; appearance: white solid; M.P.: 96-98 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.72 – 7.66 (m, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.45 (t, *J* = 8.0 Hz, 1H), 7.22 – 7.14 (m, 2H), 4.69 (d, *J* = 1.6 Hz, 1H), 3.79 (q, *J* = 7.2 Hz, 1H), 3.71 (s, 3H), 1.86 – 1.65 (m, 4H), 1.55 (d, *J* = 7.2 Hz, 3H), 1.53 – 1.46 (m, 1H), 1.30 – 1.19 (m, 5H), 1.16 (s, 3H), 0.92 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.3, 160.9, 160.1, 158.4, 146.4 – 146.1 (m), 145.3 –145.0 (m), 143.9 – 143.5 (m), 142.9 – 142.6 (m), 142.5 (d, *J* = 7.0 Hz), 136.8, 130.6 (d, *J* = 3.0 Hz), 130.1, 129.1 (d, *J* = 3.0 Hz), 126.7 (d, *J* = 13.0 Hz), 125.9, 123.7 (d, *J* = 3.0 Hz), 122.9 (t, *J* = 16.0 Hz), 115.4 (d, *J* = 24.0 Hz), 111.9 (t, *J* = 16.0 Hz), 89.5, 52.2, 48.4, 48.3, 44.9, 41.3, 39.6, 29.6, 26.6, 25.7, 20.1, 19.2, 18.3.
¹⁹F NMR (376 MHz, CDCl₃) δ -117.17 (s, 1F), -139.25 to -139.55 (m, 2F), -142.42 to -142.66 (m, 2F).

HRMS(APCI) m/z: [H]⁺ Calcd for C₃₃H₃₁F₅O₄ 586.2143, found 586.2137.

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-

cyclopenta[a]phenanthren-3-yl 2,2",3,5,6-pentafluoro-4"-(1-methoxy-1-

oxopropan-2-yl)-[1,1':4',1''-terphenyl]-4-carboxylate (3yw)

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) afforded **3yw**.

Yield: 65%, 106.5 mg; appearance: white solid; M.P.: 198-200 °C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.70 – 7.66 (m, 2H), 7.57 – 7.52 (m, 2H), 7.44 (t, J = 8.0 Hz, 1H), 7.21 – 7.13 (m, 2H), 5.46 (d, J = 3.6 Hz, 1H), 5.03 – 4.88 (m, 1H), 3.78 (q, J = 6.8 Hz, 1H), 3.71 (s, 3H), 2.55 – 2.46 (m, 2H), 2.10 – 1.70 (m, 6H), 1.60 – 1.49 (m, 8H), 1.40 – 1.10 (m, 12H), 1.07 (s, 3H), 1.05 – 0.98 (m, 3H), 0.93 (d, J = 6.4 Hz, 3H), 0.88 (d, J = 1.6 Hz, 3H), 0.86 (d, J = 1.6 Hz, 3H), 0.70 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.3, 160.9, 159.0, 158.5, 146.2 – 145.7 (m), 145.2 – 144.9 (m), 143.7 – 143.3 (m), 142.8 – 142.3 (m), 139.1, 136.8, 130.7 (d, *J* = 4.0 Hz), 130.1, 129.2 (d, *J* = 2.0 Hz), 126.7 (d, *J* = 13.0 Hz), 125.9, 123.7 (d, *J* = 2.0 Hz), 123.3, 123.0 – 122.6 (m), 115.4 (d, *J* = 23.0 Hz), 112.5 – 112.1 (m), 56.6, 56.1, 52.2, 50.0, 44.9, 42.3, 39.7, 39.5, 37.9, 36.9, 36.6, 36.2, 35.8, 31.9, 31.8, 28.2, 28.0, 27.7, 24.3, 23.8, 22.8, 22.5, 21.0, 19.3, 18.7, 18.4, 11.8.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -117.17 (s, 1F), -139.84 to -140.08 (m, 2F), -142.48 to -142.69 (m, 2F).

HRMS(APCI) m/z: [H]⁺ Calcd for C₅₀H₅₉F₅O₄ 818.4334, found 818.4328.

1-(2,3,5,6-tetrafluoro-4'-methyl-[1,1'-biphenyl]-4-yl)-1*H*-pyrazole (6)^[7]

Purification via silica gel column chromatography (petroleum ether/ethyl acetate = 50:1) afforded **6**.

Yield: 96%, 58.8 mg; appearance: white solid; M.P.: 158-160 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 1.6 Hz, 1H), 7.72 – 7.69 (m, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 6.52 – 6.50 (m, 1H), 2.38 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 145.6 – 145.3 (m), 143.5 – 143.2 (m), 143.1 – 142.8 (m), 142.3, 141.0 – 140.7 (m), 139.7, 132.1, 129.9, 129.5, 123.5, 120.7 – 120.2 (m), 118.9 – 118.7 (m), 107.7, 21.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -142.60 to -143.20 (m, 2F), -148.75 to -149.20 (m, 2F).

X-ray Data:

Figure S4. X-ray structure and crystallographic data of 3aq

(CCDC 2413238)

Crystal data and structure refinement for 3aq

CCDC number	2413238
Empirical formula	$C_{21}H_{14}F_4O_3$
Formula weight	390.32
Temperature [K]	293(2)
Crystal system	triclinic
Space group (number)	P1 (2)
α [Å]	7.4827(4)
<i>b</i> [Å]	8.6179(4)
<i>c</i> [Å]	14.3333(7)
α [°]	85.385(4)
β[°]	75.972(5)
γ [°]	81.865(4)
Volume [ų]	886.68(8)
Ζ	2
$ ho_{calc} [gcm^{-3}]$	1.462
μ [mm ⁻¹]	1.083
F(000)	400
Crystal size [mm ³]	0.13×0.14×0.15
Crystal colour	colourless
Crystal shape	block
Radiation	Cu <i>K</i> _α (λ=1.54184 Å)
2θ range [°]	6.36 to 134.15 (0.84 Å)
Index ranges	-8 ≤ h ≤ 8
	$-10 \le k \le 10$
	-17≤ ≤17
Reflections collected	11827
Independent reflections	3155
	<i>R</i> _{int} = 0.0718
	R _{sigma} = 0.0475
Completeness to	99.8 %
θ = 67.077°	

Data / Restraints / Parameters	3155 / 0 / 256
Absorption correction T_{min}/T_{max} (method)	0.0587 / 1.0000
	(multi-scan)
Goodness-of-fit on F ²	1.048
Final R indexes	$R_1 = 0.0568$
[<i>I</i> ≥2σ(<i>I</i>)]	$wR_2 = 0.1621$
Final R indexes	$R_1 = 0.0713$
[all data]	w <i>R</i> ₂ = 0.1827
Largest peak/hole [eÅ ⁻³]	0.20/-0.22
Extinction coefficient	0.0038(11)

References:

[1] Chen, F.; Min, Q.-Q.; Zhang, X. Pd-catalyzed direct arylation of polyfluoroarenes on water under mild conditions using PPh₃ ligand. *J. Org. Chem.* **2012**, *77*, 2992–2998.

[2] Rene, O.; Fagnou, K. Room-temperature direct arylation of polyfluorinated arenes under biphasic conditions. *Org. Lett.* **2010**, *12*, 2116–2119.

[3] Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. Catalytic intermolecular direct arylation of perfluorobenzenes. *J. Am. Chem. Soc.* **2006**, *128*, 8754–8756.

[4] Li, H.; Liu, J.; Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Palladium-catalyzed cross-coupling of polyfluoroarenes with simple arenes. *Org. Lett.* **2011**, *13*, 276–279.

[5] Lin, X.; You, Y.; Weng, Z. Direct palladium-catalyzed desulfitative C–C coupling of polyfluoroarenes with arylsulfinate salts: water-accelerated reactions. *J. Fluor. Chem.* **2014**, *165*, 76–80.

[6] Hofer, M.; Genoux, A.; Kumar, R.; Nevado, C. Gold-catalyzed direct oxidative arylation with boron coupling partners. *Angew. Chem. Int. Ed.* **2017**, *56*, 1021–1025.

[7] Bardin, V. V.; Shabalin, A. Yu.; Adonin, N. Yu. Weakly nucleophilic potassium aryltrifluoroborates in palladium-catalyzed Suzuki–Miyaura reactions: relative reactivity of K[4-RC₆F₄BF₃] and the role of silver-assistance in acceleration of transmetallation. *Beilstein J. Org. Chem.* **2015**, *11*, 608–616.

[8] CN114956924B, Henan Institute of Science and Techenology, Method for synthesizing polyfluorinated aromatic hydrocarbon through series/coupling reaction, 2024-01-30.

NMR Spectra:

-160.23 145.56 145.58 145.24 145.29 142.96 142.96 142.82 143.39 173.39 113.45 114.19 114.19 114.19 114.19 114.19 114.19 114.19 114.19 114.19 114.19

7.524 7.510 7.492 7.443 7.443 7.443

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-139.670 -139.675 -139.769 -139.700 -139.700 -139.734 -139.755 -139.765 -139.765 -139.765 -153.663 -161.807 -161.906 -1006 -10

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

143.15 143.17 143.22 143.22 143.22 143.22 143.22 143.22 143.22 143.22 143.22 143.22 145.59 145.59 145.59 145.22 145.23 14

165.30 165.26 165.26 165.26 165.26 165.26 165.26 165.26 165.26 147.00 129.48 129.48 129.48 129.48 129.48 128.48 128.48 128.48 128.48 128.48 128.48 128.48 128.48 128.48 128.48 128.48 128.48 128.48 128.48 128.29 128.28 12

7.1.696 7.7.678 7.7.499 7.7.499 7.7.449 7.7.449 7.7.449 7.7.202 7.7.202 7.7.155 7.7.155 7.7.155 7.7.155 7.7.155 7.7.155 7.7.155 7.7.168 8.3.3796 8.3.3776 7.7.168 8.3.3776 7.7.168 8.3.3776 7.7.168 8.3.3776 7.7.168 8.3.3776 7.7.168 8.3.3776 7.7.168 8.3.3776 7.7.168 8.3.3776 7.7.168 8.3.3776 7.7.168 8.3.3776 7.7.168 7.7.1768 7.7.1668 7.7.1768 7.7.1668 7.7.1768 7.7.1668 7.7.1768 7.7.1668 7.7.1768 7.7

