Chelation-Controlled Stereospecific Ring-Opening Arylation of α-

Aminoaryl-Tethered Alkylidenecyclopropanes: Stereoselective

Synthesis of Polysubstituted Conjugated Dienes

Miao-Miao Ji,[†] Ying Tang,[†] Wen-Mei Luo,[†] Yong-Yu He,[†] Ai-Jun Ma^{*,†} and Jin-Bao Peng^{*,†}

[†]School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, P. R. China;

*E-mail: maaijun@wyu.edu.cn; pengjb_05@126.com

Supporting Information

Table of Contents

1. General Information	S1
2. Preparation of the Starting Materials.	S2
3. Optimization of the Reaction Conditions	S4
4. General Procedure	S7
5. Characterization Data of the Corresponding Products	S8
6. X-ray Crystal Structure Determination of the Products	S31
7 Reference	S35
8 Spectroscopic Data of Products	S36

1. General Information

Reagents, solvents, and analytical methods:

All reactions were carried out under a nitrogen atmosphere unless otherwise stated. Starting materials were synthesized according to existing methods. All reagents were purchased from TCI, Energy Chemical, and Bidepharm and used without purification. ¹H NMR spectra were recorded in CDCl₃ on a Bruker Ascend 500 spectrometer (500 MHz), and chemical shifts (δ values) were reported in parts per million (ppm) relative to internal tetramethylsilane standard (TMS, 0 ppm). The number of protons (n) for a given resonance is reported as nH. Coupling constants (J) were given in Hertz (Hz). ¹³C NMR spectra were recorded in CDCl₃ on a Bruker Ascend 500 spectrometer (126 MHz) relative to internal CDCl₃ standard (77.16 ppm). ¹⁹F NMR spectra were recorded in CDCl₃ on a Bruker Ascend 500 spectrometer (471 MHz). The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, dd = double doublet, ddd = double doublet, t = triplet, dt = double triplet, q = quatriplet, m = multiplet. All highresolution mass spectra (HRMS) were obtained on a Thermo ScientificTM Q ExactiveTM UHMR (Ultra High Mass Range) Hybrid Quadrupole-OrbitrapTM mass spectrometer.

2. Preparation of the Starting Materials.

2.1 Synthesis of 1a-1k

Compounds $1a^{[1]}$, $1b^{[2]}$, $1d^{[3]}$, $1f^{[3]}$, $1n^{[3]}$, $1n^{[3]}$, $1n^{[3]}$ were prepared according to the previous literatures.

Figure S2 Unsuccessful substrates

2.2 Synthesis of 2a-2z

Figure S3 Substrates of nitrobenzene Compounds **2a-2u** are commercially available.

Figure S4 Substrates of nitrobenzene Compounds **2r'-2z** are commercially available.

3. Optimization of the Reaction Conditions

3.1 Optimization of the Reaction Conditions for the Ring Opening Arylation.

	I Pd(OAc) ₂ , L, K ₂ CO ₃	Ts NH OMe
Entry	Ligand	Yield (%) ^[b]
1	PPh ₃	50
2	PCy ₃	trace
3	2,2-bpy	ND.
4	4,4- <i>t</i> Bu-2,2-bpy	ND.
5	BuPAd ₂	30
	dppf 75	
6	dppp	64
7	DPEphos	72
8	Xantphos	70
[a] Reaction conditions: 1a (0.2 mmol), 2f (0.24 mmol), Pd(OAc) ₂ (10 mol%), L, K ₂ CO ₃ (2.0		

Table S1. Screening of Ligand^a

Table S2. Screening of Catalyst ^a

Ts NH + 0	/ [Pd], dppf, K ₂ CO ₃ DMF, 50 °C, 12h, N ₂	Ts NH OMe
Entry	Catalyst	Yield (%) ^[b]
1	PdCl ₂	23
2	$Pd(acac)_2$	19
3	Pd(TFA) ₂	67
4	Pd(MeCN) ₂ Cl ₂	59
	$Pd(OAc)_2$	75
5	Pd(MeCN) ₄ (BF ₄) ₂	64
[a] Reaction conditions: 1a (0.2 mmol), 2f (0.24 mmol), catalyst, dppf (10 mol%), K ₂ CO ₃ (2.0		

eq.), DMF (2 mL), N2 atmosphere, 50 °C for 12 h. [b] Isolated yield.

eq.), DMF (2 mL), N2 atmosphere, 50 °C for 12 h. [b] Isolated yield.

Table S3. Screening of the temperature ^a

3 60 °C	58
2 50 °C	74
1 40 °C	60

[a] Reaction conditions: **1a** (0.2 mmol), **2f** (0.24 mmol), Pd(OAc)₂ (10 mol%), dppf (10 mol%), K₂CO₃ (2.0 eq.), DMF (2 mL), N₂ atmosphere, T °C for 12 h. [b] Isolated yield.

 \sim

Table S4. Screening of solvent^a

Ts NH + O	Pd(OAc) ₂ , dppf, K ₂ CO ₃ Sol, 50 °C, 12h, N ₂	Ts NH OMe
Entry	Solvent	Yield (%) ^[b]
1	THF	trace
2	DME	23
3	Tol.	22
4	DMSO	14
5	MeCN	30
6	DCM	trace
7	DMAc	70
8	DMF	75
9	NMP	73

[a] Reaction conditions: **1a** (0.2 mmol), **2f** (0.24 mmol), Pd(OAc)₂ (10 mol%), dppf (10 mol%), K₂CO₃ (2.0 eq.), Solvent (2 mL), N₂ atmosphere, 50 °C for 12 h. [b] Isolated yield.

Table S5. Screening of the Base^{*a*}

Ts NH + 0	Pd(OAc) ₂ , dppf, Base DMF, 50 °C, 12h, N ₂	Ts NH OMe
Entry	Base	Yield (%) ^[b]
1	NEt ₃	trace
2	t-BuONa	65
3	pyridine	trace
4	t-BuOLi	63
5	Na ₂ CO ₃	53
6	K ₂ CO ₃	75
7	Cs ₂ CO ₃	70
8	t-BuOK	72

[a] Reaction conditions: **1a** (0.2 mmol), **2f** (0.24 mmol), Pd(OAc)₂ (10 mol%), dppf (10 mol%), Base (2.0 eq.), DMF (2 mL), N₂ atmosphere, 50 °C for 12 h. [b] Isolated yield.

Table S6. Screening of the time ^a

Ts NH +	O Pd(OAc) ₂ , dppf, 1 DMF, 50 °C, h,	K ₂ CO ₃ N ₂ Ts NH OMe
Entry	Time	Yield (%) ^[b]
1	12	75
2	8	82
3	6	82
4	4	78
[]]]] []]		

[a] Reaction conditions: **1a** (0.2 mmol), **2f** (0.24 mmol), Pd(OAc)₂ (10 mol%), dppf (10 mol%), K₂CO₃ (2.0 eq.), DMF (2 mL), N₂ atmosphere, 50 °C for t h. [b] Isolated yield.

3.2 Optimization of the Reaction Conditions for the Synthesis of Dihydroquinolines.

Table S7. Screening of the Ligand ^a

	Pd(MeCN) ₂ Cl ₂ , L, K ₂ CO ₃ DMSO, 100 °C, 12h, N ₂	Ts N	
Entry	Ligand	Yield (%) ^[b]	
1	None	70	
2	BINAP	30	
3	2,2-bpy	69	
4	BuPAd ₂	60	
5	dppp	70	
6	DPEphos	trace	
7	Xantphos	67	
[a] Reaction conditions: 1a (0.2 mmol), 2f (0.24 mmol), Pd(OAc) ₂ (10 mol%), L, K ₂ CO ₃ (2.0			
eq.), DMF (2 mL), N ₂ atmosphe	eq.), DMF (2 mL), N ₂ atmosphere, 100 °C for 12 h. [b] Isolated vield.		

Table S8. Screening of the Catalyst ^a

	[Pd], K ₂ CO ₃ DMSO, 100 °C, 12h, N ₂	Ts N
Entry	Catalyst	Yield (%) ^[b]
1	PdI ₂	45
2	$Pd(acac)_2$	68
3	$Pd(OAc)_2$	50
4	Pd(MeCN) ₂ Cl ₂	70
5	Pd(dba) ₂	52
6	Pd(dppf)Cl ₂	46

[a] Reaction conditions: **1a** (0.2 mmol), **2f** (0.24 mmol), catalyst, K_2CO_3 (2.0 eq.), DMSO (2 mL), N_2 atmosphere, 100 °C for 12 h. [b] Isolated yield.

Table S9. Screening of reaction temperature ^a

Entry	Temp.	Yield (%) ^[b]
1	60 °C	67
2	80 °C	78
3	90 °C	73
4	100 °C	70

[a] Reaction conditions: **1a** (0.2 mmol), **2f** (0.24 mmol), Pd(MeCN)₂Cl₂ (10 mol%), K₂CO₃ (2.0 eq.), DMSO (2 mL), N₂ atmosphere, T °C for 12 h. [b] Isolated yield.

Table 10. Screening of the Base ^a

TS NH THE T	Pd(MeCN) ₂ Cl ₂ , Base	Ts N
Entry	Base	Yield (%) ^[b]
1	DIPEA	86
2	t-BuOLi	ND
3	Na ₂ CO ₃	70
4	K ₂ CO ₃	78
5	<i>t</i> -BuOK	ND
[a] Reaction conditions: 1a (0.2 mmol), 2f (0.24 mmol), Pd(MeCN) ₂ Cl ₂ (10 mol%), L, Base (2.0		

eq.), DMF (2 mL), N₂ atmosphere, 80 °C for 12 h. [b] Isolated yield.

4. General Procedure

4.1 General Procedure A.

In a glove box, to an oven-dried 15 mL reaction tube which equipped with a magnetic stir bar was added **1** (0.2 mmol, 1 eq.), **2** (0.24 mmol, 1.2 eq.), $Pd(OAc)_2$ (10 mol%), dppf (10 mol%) K₂CO₃ (0.4 mmol, 2 eq.) DMF (2 mL). The reaction tube was then sealed with a screw-top septum cap, removed from the glove box and placed in a heating block that was preheated to 50 °C. After a time period of 8 h. The mixture was concentrated under reduced pressure and the residue was purified

by flash chromatography on silica gel eluting with petroleum ether / EtOAc (v/v = 10:1 to 5:1) to afford the products **3**.

4.2 General Procedure B.

In a glove box, to an oven-dried 15 mL reaction tube which equipped with a magnetic stir bar was added 1 (0.2 mmol, 1 eq.), 2 (0.24 mmol, 1.2 eq.), Pd(MeCN)₂Cl₂ (10 mol%), DIPEA (0.4 mmol, 2 eq.) DMSO (2 mL). The reaction tube was then sealed with a screw-top septum cap, removed from the glove box and placed in a heating block that was preheated to 80 °C. After a time period of 12 h.The mixture was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel eluting with petroleum ether / EtOAc (v/v = 10:1 to 5:1) to afford the products 4.

4.3 A 1mmol synthesis of 3af.

In a glove box, to an oven-dried 15 mL reaction tube which equipped with a magnetic stir bar was added **1a** (1 mmol, 1 eq.), **2f** (1.2 mmol, 1.2 eq.), $Pd(OAc)_2$ (10 mol%), dppf (10 mol%) K₂CO₃ (2 mmol, 2 eq.) DMF (10 mL). The reaction tube was then sealed with a screw-top septum cap, removed from the glove box and placed in a heating block that was preheated to 50 °C. After a time period of 8 h. The mixture was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel eluting with petroleum ether / EtOAc (v/v = 10:1 to 5:1) to afford the products **3af** (385 mg, 80%).

4.4 A 1mmol synthesis of 4af.

In a glove box, to an oven-dried 15 mL reaction tube which equipped with a magnetic stir bar was added **1a** (1 mmol, 1 eq.), **2f** (1.2 mmol, 1.2 eq.), Pd(MeCN)₂Cl₂ (10 mol%), DIPEA (2 mmol, 2 eq.) DMSO (10 mL). The reaction tube was then sealed with a screw-top septum cap, removed from the glove box and placed in a heating block that was preheated to 80 °C. After a time period of 12 h.The mixture was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel eluting with petroleum ether / EtOAc (v/v = 10:1 to 5:1) to afford the products **4af** (409 mg, 85%).

5. Characterization Data of the Corresponding Products

Materials

N-(2-(cyclopropylidene(phenyl)methyl)-4-(trifluoromethyl)phenyl)-4-methylbenzenesulfonamide (1c)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), 1c was obtained as a white solid (80 mg, 90%), R_f =0.45 (PE/EA=10/1).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.00 (d, *J* = 1.8 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.35 (d, *J* = 1.8 Hz, 1H), 7.22 (dd, *J* = 20.9, 8.5 Hz, 4H), 7.15 – 7.08 (m, 4H), 6.60 (s, 1H), 2.38 (s, 3H), 1.59 – 1.57 (m, 2H), 0.99 – 0.92 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 144.1, 137.6, 135.8, 135.2, 131.2, 129.6, 128.9, 128.9, 127.9, 127.3, 126.2, 124.6, 121.2, 121.1, 117.3, 117.2, 21.5, 5.9, 1.7.

N-(5-chloro-2-(cyclopropylidene(4-methoxyphenyl)methyl)phenyl)-4-methylbenzenesulfonamide (1e)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **1e** was obtained as a white solid (78 mg, 89%), R_f=0.40 (PE/EA=8/1). **¹H NMR (500 MHz, Chloroform-***d***)** δ 7.74 (d, *J* = 2.1 Hz, 1H), 7.46 (d, *J* = 8.3 Hz, 2H), 7.15 – 7.10 (m, 2H), 7.09 – 7.04 (m, 3H), 6.99 (d, *J* = 8.2 Hz, 1H), 6.77 – 6.72 (m, 2H), 6.52 (s, 1H), 3.82 (s, 3H), 2.38 (s, 3H), 1.55 – 1.45 (m, 2H), 0.94 – 0.83 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 159.2, 143.9, 136.0, 135.6, 133.9, 131.6, 130.6, 130.6, 129.5, 127.5, 127.2, 125.8, 124.8, 124.1, 120.5, 114.1, 55.3, 21.6, 5.7, 1.6.

N-(2-(1-cyclopropylidene-2-methylpropyl)phenyl)-4-methylbenzenesulfonamide (1h)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **1h** was obtained as a white solid (63 mg, 92%), R_f =0.58 (PE/EA=15/1).

¹**H NMR (500 MHz, Chloroform-***d***)** δ 7.70 (d, *J* = 8.2 Hz, 2H), 7.61 (d, *J* = 8.3 Hz, 1H), 7.25 – 7.16 (m, 3H), 7.04 – 6.97 (m, 2H), 6.78 (s, 1H), 2.48 – 2.39 (m, 1H), 2.37 (s, 3H), 1.38 (td, *J* = 7.4, 1.4 Hz, 2H), 0.98 (d, *J* = 6.9 Hz, 6H), 0.80 (ddd, *J* = 9.2, 5.9, 1.4 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 144.2, 143.6, 139.7, 139.6, 135.9, 134.4, 130.8, 130.4, 129.30, 129.28, 129.0, 127.1, 124.9, 124.7, 124.4, 123.7, 122.1, 121.9, 121.6, 121.5, 29.7, 21.4, 6.4, 3.5.

2-chloro-*N*-(2-(cyclopropylidene(phenyl)methyl)phenyl)benzenesulfonamide (1m)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), 1k was obtained as a white solid (67 mg, 85%), $R_f=0.43$ (PE/EA=10/1).

¹**H NMR (400 MHz, Chloroform-d)** δ 7.97 (dd, J = 7.8, 1.7 Hz, 1H), 7.67 (d, J = 8.2 Hz, 1H), 7.39 – 7.34 (m, 1H), 7.32 – 7.20 (m, 9H), 7.16 – 7.05 (m, 2H), 7.01 (s, 1H), 1.67 – 1.61 (m, 2H), 0.98 – 0.92 (m, 2H).

¹³C NMR (101 MHz, CDCl3) δ 138.5, 137.0, 134.2, 133.9, 132.7, 132.0, 131.5, 130.9, 128.7, 128.4, 127.6, 127.2, 127.0, 126.6, 125.7, 125.1, 121.7, 77.5, 77.2, 76.8, 29.8, 6.2, 1.7.

N-(2-(cyclopropylidene(phenyl)methyl)phenyl)naphthalene-1-sulfonamide (1n)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), 11 was obtained as a white solid (72 mg, 87%), $R_f=0.52$ (PE/EA=15/1).

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.16 (d, *J* = 1.9 Hz, 1H), 7.87 – 7.77 (m, 3H), 7.72 (d, *J* = 8.7 Hz, 1H), 7.60 (dddd, *J* = 24.4, 8.1, 6.9, 1.4 Hz, 2H), 7.47 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.33 (td, *J* = 7.8, 1.7 Hz, 1H), 7.16 – 7.00 (m, 7H), 6.54 (s, 1H), 1.41 – 1.32 (m, 2H), 0.81 – 0.68 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 138.5, 136.3, 135.0, 134.4, 132.8, 132.1, 130.9, 129.4, 129.03, 128.98, 128.7, 128.7, 128.6, 127.9, 127.89, 127.7, 127.6, 126.3, 125.6, 125.2, 122.5, 121.8, 5.7, 1.7.

Products

(*E*)-*N*-(2-(1,2-Diphenylbuta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3aa**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3aa** was obtained as a white solid (78 mg, 87%), R_f =0.48 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.33 – 7.27 (m, 6H), 7.14 – 7.06 (m, 7H), 7.03 – 6.96 (m, 3H), 6.91 – 6.82 (m, 2H), 6.74 (td, J = 7.5, 1.2 Hz, 1H), 6.69 (s, 1H), 5.32 (dd, J = 10.8, 1.5 Hz, 1H), 5.03 (dd, J = 17.3, 1.5 Hz, 1H), 2.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.1, 136.3, 134.5, 132.5, 132.2, 130.4, 130.3, 129.6, 128.5, 128.1, 127.9, 127.3, 127.3, 123.3, 120.7, 118.0, 77.4, 77.1, 76.7, 21.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{29}H_{26}NO_2S^+$ 452.1679; Found 452.1671.

(*E*)-4-Methyl-*N*-(2-(1-phenyl-2-(*p*-tolyl)buta-1,3-dien-1-yl)phenyl)benzenesulfonamide (**3ab**) The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ab** was obtained as a white solid (88 mg, 95%), R_f =0.48 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.34 – 7.26 (m, 6H), 7.09 (d, J = 8.0 Hz, 2H), 7.05 – 7.03 (m, 2H), 7.02 – 6.98 (m, 1H), 6.95 – 6.90 (m, 4H), 6.87 – 6.82 (m, 2H), 6.77 (td, J = 7.5, 1.1 Hz, 1H), 6.71 (s, 1H), 5.30 (dd, J = 10.8, 1.5 Hz, 1H), 5.05 (dd, J = 17.3, 1.5 Hz, 1H), 2.35 (s, 3H), 2.25 (s, 3H). ¹³**C NMR (126 MHz, CDCl₃)** δ 143.6, 142.5, 140.2, 137.3, 136.9, 136.4, 135.7, 134.2, 132.9, 132.3, 130.4, 129.6, 128.7, 128.4, 127.9, 127.8, 127.3, 123.4, 120.4, 118.3, 21.6, 21.3.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{30}H_{28}NO_2S^+$ 466.1835; Found 466.1827.

(*E*)-4-methyl-*N*-(2-(1-phenyl-2-(*o*-tolyl)buta-1,3-dien-1-yl)phenyl)benzenesulfonamide (**3ac**) The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ac** was obtained as a white solid (87 mg, 94%, E/Z = 8:1), $R_f=0.48$ (PE/EA=10/1).

¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.28 (m, 4H), 7.26 – 7.23 (m, 2H), 7.21 – 7.17 (m, 2H), 7.08 – 7.03 (m, 4H), 6.99 – 6.85 (m, 5H), 6.75 – 6.69 (m, 2H), 5.25 (dd, *J* = 10.6, 1.6 Hz, 1H), 4.81 (dd, *J* = 17.2, 1.6 Hz, 1H), 2.34 (s, 3H), 2.23 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.6, 136.1, 136.1, 135.9, 134.4, 130.3, 129.9, 129.7, 129.5, 129.3, 128.6, 128.2, 128.0, 127.9, 127.9, 127.4, 127.3, 127.3, 127.2, 122.9, 119.9, 117.3, 21.5, 20.21.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{30}H_{28}NO_2S^+$ 466.1835; Found 466.1827.

(*E*)-*N*-(2-(2-(4-Ethylphenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3ad**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ad** was obtained as a white solid (76mg, 79%), R_f =0.48 (PE/EA=10/1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.35 – 7.28 (m, 5H), 7.07 (dd, J = 20.7, 7.3 Hz, 5H), 7.03 – 6.90 (m, 6H), 6.87 – 6.80 (m, 2H), 6.70 (s, 1H), 5.30 (d, J = 10.7 Hz, 1H), 5.06 (d, J = 17.3 Hz, 1H), 2.55 (q, J = 7.6 Hz, 2H), 2.35 (s, 3H), 1.17 (t, J = 7.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.6, 143.3, 142.6, 140.3, 137.3, 136.39, 136.36 135.9, 134.3, 132.9, 132.3, 130.4, 130.4, 129.6, 128.4, 127.9, 127.8, 127.4, 127.3, 123.4, 120.5, 118.3, 28.5, 21.6, 15.2.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{31}H_{30}NO_2S^+$ 480.1992; Found 480.1998.

(E)-N-(2-(2-(4-(Tert-butyl)phenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-

methylbenzenesulfonamide (3ae)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ae** was obtained as a white solid (95mg, 94%), R_f =0.48 (PE/EA=10/1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.37 – 7.27 (m, 6H), 7.13 – 7.04 (m, 6H), 6.99 (ddd, *J* = 8.5, 7.2, 1.7 Hz, 1H), 6.94 – 6.90 (m, 2H), 6.89 – 6.79 (m, 2H), 6.74 (td, *J* = 7.4, 1.2 Hz, 1H), 6.69 (s, 1H), 5.30 (dd, *J* = 10.7, 1.6 Hz, 1H), 5.08 (dd, *J* = 17.3, 1.6 Hz, 1H), 2.35 (s, 3H), 1.24 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 150.2, 143.5, 142.6, 140.2, 137.3, 136.5, 136.4, 135.7, 134.3, 133.0, 132.3, 130.4, 130.1, 129.6, 128.4, 127.9, 127.8, 127.3, 124.8, 123.4, 120.5, 118.4, 34.5, 31.3, 21.6.
HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₃H₃₄NO₂S⁺ 508.2305; Found 508.2296.

(*E*)-*N*-(2-(2-(4-Methoxyphenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamid (**3af**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3af** was obtained as a white solid (80 mg, 82%), R_f =0.48 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.35 – 7.26 (m, 6H), 7.12 – 7.07 (m, 2H), 7.05 – 6.95 (m, 5H), 6.88 – 6.75 (m, 3H), 6.71 (s, 1H), 6.69 – 6.65 (m, 2H), 5.31 (dd, *J* = 10.8, 1.6 Hz, 1H), 5.08 (dd, *J* = 17.2, 1.6 Hz, 1H), 3.74 (s, 3H), 2.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.7, 143.6, 142.2, 140.3, 137.4, 136.4, 136.3, 134.2, 132.9, 132.3, 132.3, 131.8, 130.9, 130.4, 130.2, 129.7, 129.6, 128.4, 128.1, 127.9, 127.8, 127.3, 127.3, 123.5, 120.3, 118.3, 113.6, 113.4, 55.1, 21.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{30}H_{28}NO_3S^+$ 482.1784; Found 482.1776.

(*E*)-*N*-(2-(2-(2-methoxyphenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamid (**3ag**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ag** was obtained as a white solid (72mg, 75%), R_f =0.48 (PE/EA=10/1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.53 (s, 1H), 7.36 (d, *J* = 7.1 Hz, 3H), 7.26 – 7.10 (m, 4H), 7.10 – 7.01 (m, 2H), 7.00 – 6.72 (m, 9H), 5.24 – 5.12 (m, 1H), 4.82 (d, *J* = 17.2 Hz, 1H), 3.87 (s, 3H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 136.2, 134.4, 132.4, 131.5, 130.3, 129.5, 128.8, 127.9, 127.7, 127.4, 127.2, 123.2, 120.4, 118.9, 118.1, 110.6, 55.5, 26.9, 21.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{30}H_{28}NO_3S^+$ 482.1784; Found 482.1776.

(E)-4-methyl-N-(2-(2-(4-(methylthio)phenyl)-1-phenylbuta-1,3-dien-1-

yl)phenyl)benzenesulfonamide (3ai)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ai** was obtained as a white solid (95 mg, 95 %), Rf=0.62(PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.31 – 7.23 (m, 6H), 7.09 – 7.03 (m, 4H), 7.00 – 6.94 (m, 3H), 6.91 (d, J = 8.4 Hz, 2H), 6.85 – 6.77 (m, 2H), 6.74 (td, J = 7.5, 1.1 Hz, 1H), 6.66 (s, 1H), 5.28 (dd, J = 10.7, 1.5 Hz, 1H), 5.03 (dd, J = 17.3, 1.5 Hz, 1H), 2.39 (s, 3H), 2.32 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.6, 142.0, 139.9, 137.6, 137.1, 136.6, 136.3, 135.4, 134.4, 132.5, 132.2, 130.9, 130.30 129.6, 128.5, 128.2, 127.9, 127.3, 125.6, 123.5, 120.5, 118.1, 29.7, 21.6, 15.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₈NO₂S₂⁺ 489.1556; Found 489.1546.

(*E*)-*N*-(2-(2-(4-Fluorophenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3aj**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1),**3aj** was obtained as a white solid (83 mg, 88%), Rf=0.48 (PE/EA=10/1).

1H NMR (500 MHz, CDCl3) δ 7.32 (dd, J = 9.9, 7.6 Hz, 6H), 7.14 – 7.08 (m, 4H), 7.03 – 6.94 (m, 3H), 6.90 – 6.74 (m, 5H), 6.66 (s, 1H), 5.33 (dd, J = 10.7, 1.4 Hz, 1H), 5.02 (dd, J = 17.3, 1.4 Hz, 1H), 2.35 (s, 3H).

13C NMR (126 MHz, CDCl3) δ 162.8, 160.8, 143.7, 141.8, 139.6, 137.1, 136.9, 136.2, 134.8, 134.7, 134.6, 132.2, 132.1, 132.2, 130.2, 129.6, 128.6, 128.2, 128.1, 127.3, 123.4, 120.7, 117.9, 115.0, 114.8, 21.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₉H₂₅FNO₂S⁺ 470.1585; Found 470.1576. ¹⁹F NMR (377 MHz, CDCl3) δ -114.41 - -114.48 (m).

(*E*)-*N*-(2-(2-(2-Fluorophenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3ak**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ak** was obtained as a white solid (83 mg, 88%), Rf=0.48 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.38 – 7.27 (m, 6H), 7.18 (d, J = 7.3 Hz, 2H), 7.14 – 7.09 (m, 1H), 7.07 (d, J = 8.1 Hz, 2H), 7.01 – 6.88 (m, 6H), 6.76 (td, J = 7.6, 1.2 Hz, 2H), 5.28 (dd, J = 10.6, 1.3 Hz, 1H), 4.92 (dt, J = 17.2, 1.2 Hz, 1H), 2.34 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.7, 139.9, 138.7, 136.9, 136.9, 136.9, 136.5, 134.3, 133.3, 131.9, 130.3, 129.6, 129.4, 128.4, 128.2, 127.9, 127.3, 125.9, 124.7, 123.8, 120.1, 118.9, 21.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{29}H_{25}FNO_2S^+$ 470.1585; Found 470.1576. ¹⁹F NMR (377 MHz, CDCl₃) δ -113.09.

(E)-N-(2-(2-(4-Fluoro-3-methylphenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-

methylbenzenesulfonamide (3al)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1),**3al** was obtained as a white solid (86 mg, 89%), Rf=0.48 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.35 – 7.27 (m, 6H), 7.09 (dd, J = 8.0, 1.4 Hz, 4H), 7.02 (ddd, J = 8.5, 7.3, 1.7 Hz, 1H), 6.91 (t, J = 7.9 Hz, 1H), 6.86 – 6.81 (m, 2H), 6.81 – 6.75 (m, 1H), 6.71 – 6.64 (m, 3H), 5.32 (dd, J = 10.7, 1.4 Hz, 1H), 5.04 (dd, J = 17.3, 1.5 Hz, 1H), 2.35 (s, 3H), 2.17 (d, J = 1.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.7, 141.5, 139.7, 136.9, 136.8, 136.2, 134.5, 132.2, 132.0, 130.94(d, *J* = 21.76 Hz), 130.2, 130.0, 129.6, 128.9, 128.5, 128.3, 128.1, 128.1, 127.3, 127.3, 125.9, 125.9, 123.4, 120.7, 118.0, 117.0, 116.8, 21.61 (d, *J* = 63.24 Hz), 14.37 (d, *J* = 13.56 Hz)

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{30}H_{27}FNO_2S^+$ 484.1741; Found 484.1738. ¹⁹F NMR (471 MHz, CDCl₃) δ -117.89 – -117.97 (m).

(*E*)-*N*-(2-(2-(4-chlorophenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3am**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3am** was obtained as a white solid (89 mg, 92%), Rf=0.48 (PE/EA=10/1).

¹H NMR (500 MHz, CDCl₃) δ 7.32 (ddd, J = 10.4, 5.9, 3.2 Hz, 6H), 7.14 – 7.06 (m, 6H), 7.02 (ddd, J = 8.5, 7.3, 1.8 Hz, 1H), 6.93 (d, J = 8.4 Hz, 2H), 6.88 – 6.74 (m, 3H), 6.64 (s, 1H), 5.33 (dd, J = 10.8, 1.4 Hz, 1H), 5.01 (dd, J = 17.3, 1.3 Hz, 1H), 2.36 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.8, 141.6, 139.6, 137.4, 137.2, 136.9, 136.2, 134.6, 133.1, 132.1, 132.0, 131.8, 130.2, 129.6, 128.6, 128.4, 128.2, 127.3, 123.4, 120.8, 117.9, 21.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{29}H_{25}CINO_2S^+$ 486.1289; Found 486.1287.

(*E*)-*N*-(2-(2-(3-chlorophenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (3**an**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3an** was obtained as a white solid (82 mg, 85%), Rf=0.48 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.38 – 7.28 (m, 6H), 7.18 – 7.13 (m, 2H), 7.12 – 7.07 (m, 4H), 7.02 (q, *J* = 7.5 Hz, 2H), 6.89 – 6.82 (m, 3H), 6.77 (td, *J* = 7.5, 1.1 Hz, 1H), 6.63 (s, 1H), 5.35 (dd, *J* = 10.7, 1.3 Hz, 1H), 5.03 (dd, *J* = 17.3, 1.3 Hz, 1H), 2.35 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.7, 141.5, 140.9, 139.4, 137.4, 136.6, 136.2, 134.7, 133.6, 131.9, 131.9, 130.4, 130.2, 129.6, 129.4, 128.7, 128.6, 128.4, 128.3, 127.4, 127.3, 123.4, 120.9, 117.9, 21.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₂₅ClNO₂S⁺ 486.1289; Found 486.1287.

(*E*)-*N*-(2-(2-(4-formylphenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3ao**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ao** was obtained as a white solid (91 mg, 95%), Rf=0.48 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 9.90 (s, 1H), 7.62 (d, J = 8.1 Hz, 2H), 7.38 – 7.28 (m, 6H), 7.17 (dd, J = 8.0, 1.9 Hz, 4H), 7.10 (d, J = 8.0 Hz, 2H), 7.04 – 6.96 (m, 1H), 6.89 (dd, J = 17.3, 10.8 Hz, 1H), 6.80 (dd, J = 7.6, 1.7 Hz, 1H), 6.75 – 6.70 (m, 1H), 6.62 (s, 1H), 5.36 (dd, J = 10.7, 1.2 Hz, 1H), 4.97 (dd, J = 17.4, 1.2 Hz, 1H), 2.36 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 191.8, 145.9, 143.8, 141.8, 139.1, 137.81, 136.6, 136.1, 134.9, 134.8, 132.0, 131.7, 131.1, 130.2, 129.6, 129.3, 128.7, 128.6, 128.4, 127.3, 123.4, 121.1, 117.9, 21.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₆NO₃S⁺ 480.1628; Found 480.1619.

(*E*)-*N*-(2-(2-(4-cyanophenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3ap**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ap** was obtained as a white solid (86 mg, 90%), Rf=0.48 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.41 – 7.29 (m, 8H), 7.21 – 7.15 (m, 2H), 7.12 – 7.08 (m, 4H), 7.03 (ddd, *J* = 8.6, 6.9, 2.1 Hz, 1H), 6.87 (dd, *J* = 17.4, 10.8 Hz, 1H), 6.79 – 6.72 (m, 2H), 6.57 (s, 1H), 5.37 (dd, *J* = 10.8, 1.1 Hz, 1H), 4.94 (dd, *J* = 17.4, 1.1 Hz, 1H), 2.36 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 144.4, 143.9, 141.3, 138.9, 138.2, 136.4, 136.1, 134.9, 131.9, 131.7, 131.5, 131.2, 130.2, 129.6, 128.84, 128.79, 128.6, 127.3, 123.5, 121.2, 118.8, 117.9, 110.9, 21.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₅N₂O₂S⁺ 477.1631; Found 477.1621.

Methyl(*E*)-4-(1-(2-((4-methylphenyl)sulfonamido)phenyl)-1-phenylbuta-1,3-dien-2-yl)benzoate (**3aq**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3aq** was obtained as a white solid (93 mg, 92%), Rf=0.48 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.79 (d, J = 8.0 Hz, 2H), 7.49 – 7.28 (m, 7H), 7.16 – 7.10 (m, 4H), 7.03 (d, J = 8.0 Hz, 2H), 6.85 (dd, J = 17.3, 10.8 Hz, 1H), 6.75 – 6.66 (m, 2H), 6.64 (s, 1H), 5.36 (d, J = 10.8 Hz, 1H), 4.97 (d, J = 17.3 Hz, 1H), 3.89 (s, 3H), 2.38 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 166.8, 144.2, 143.8, 142.6, 138.8, 136.5, 136.3, 135.8, 135.7, 134.1, 132.9, 130.3, 130.2, 130.1, 129.7, 129.3, 129.0, 128.8, 128.5, 127.3, 123.5, 121.5, 117.8, 52.2, 26.9, 21.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{31}H_{28}NO_4S^+$ 510.1734 Found 510.1725.

(*E*)-*N*-(2-(2-(4-acetylphenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3ar**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ar** was obtained as a white solid (92 mg, 93%), Rf=0.48 (PE/EA=10/1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.76 – 7.69 (m, 2H), 7.36 – 7.22 (m, 8H), 7.18 – 7.13 (m, 2H), 7.08 (d, J = 8.0 Hz, 2H), 7.01 – 6.87 (m, 2H), 6.84 (dd, J = 7.7, 1.6 Hz, 1H), 6.76 – 6.69 (m, 2H), 5.36 (dd, J = 10.8, 1.3 Hz, 1H), 5.02 (dd, J = 17.3, 1.3 Hz, 1H), 2.47 (s, 3H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 198.1, 143.7, 142.0, 139.4, 139.4, 137.3, 136.8, 136.7, 136.1, 135.0, 134.7, 131.98, 131.96, 130.9, 130.2, 129.6, 128.7, 128.4, 128.3, 128.2, 127.2, 127.0, 123.4, 121.0, 117.6, 26.7, 21.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₈NO₃S⁺ 494.1784 Found 494.1775.

(*E*)-*N*-(2-(2-(3-aminophenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3as**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3as** was obtained as a white solid (81mg, 87%), Rf=0.48 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.34 (d, *J* = 8.4 Hz, 2H), 7.33 – 7.23 (m, 4H), 7.12 – 7.04 (m, 4H), 6.99 (ddd, *J* = 8.4, 7.3, 1.6 Hz, 1H), 6.93 (t, *J* = 7.7 Hz, 1H), 6.88 (dd, *J* = 7.7, 1.7 Hz, 1H), 6.86 –

6.76 (m, 2H), 6.73 (s, 1H), 6.52 – 6.42 (m, 3H), 5.31 (dd, *J* = 10.8, 1.6 Hz, 1H), 5.12 (dd, *J* = 17.2, 1.6 Hz, 1H), 3.09 (s, 2H), 2.34 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 145.5, 143.6, 142.7, 140.1, 139.9, 136.9, 136.5, 136.4, 134.3, 132.9, 132.1, 130.4, 129.6, 128.9, 128.4, 128.1, 127.8, 127.3, 123.4, 121.3, 120.6, 118.3, 117.4, 114.5, 21.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₂₇N₂O₂S⁺ 467.1788 Found 467.1781.

(*E*)-4-methyl-*N*-(2-(2-(naphthalen-1-yl)-1-phenylbuta-1,3-dien-1-yl)phenyl)benzenesulfonamide (**3at**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3at** was obtained as a white solid (87 mg, 87%), Rf=0.48 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.87 – 7.71 (m, 2H), 7.64 (s, 1H), 7.47 – 7.29 (m, 8H), 7.25 – 7.17 (m, 3H), 7.11 – 7.01 (m, 4H), 6.89 – 6.73 (m, 3H), 6.45 (s, 1H), 5.23 (dd, *J* = 10.6, 1.5 Hz, 1H), 4.71 (dd, *J* = 17.2, 1.4 Hz, 1H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.54, 143.50, 138.5, 134.5, 133.4, 132.3, 131.8, 130.7, 130.3, 129.5, 129.36, 129.0, 128.4, 128.1, 127.8, 127.6, 127.3, 127.2, 126.4, 125.5, 124.8, 122.8, 121.0, 117.2, 21.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₃H₂₈NO₂S⁺ 502.1835; Found 502.1829.

(*E*)-4-methyl-*N*-(2-(1-phenyl-2-(thiophen-3-yl)buta-1,3-dien-1-yl)phenyl)benzenesulfonamide (**3au**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3au** was obtained as a white solid (81 mg, 89%), Rf=0.52 (PE/EA=10/1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.42 – 7.36 (m, 3H), 7.32 – 7.26 (m, 3H), 7.16 – 7.02 (m, 6H), 6.89 – 6.73 (m, 5H), 6.66 (s, 1H), 5.35 (dd, *J* = 10.8, 1.5 Hz, 1H), 5.26 (dd, *J* = 17.2, 1.5 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.7, 139.9, 138.7, 136.9, 136.9, 136.8, 136.5, 134.3, 133.3, 131.8, 130.3, 129.6, 129.5, 128.4, 128.2, 127.9, 127.3, 125.9, 124.7, 123.7, 120.1, 118.9, 21.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{27}H_{24}NO_2S_2^+$ 458.1243 Found 458.1238.

(*E*)-4-methyl-*N*-(2-(1-phenyl-2-(4-(trifluoromethoxy)phenyl)buta-1,3-dien-1-yl)phenyl)benzenesulfonamide (**3av**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3av** was obtained as a white solid (99 mg, 92%), Rf=0.56 (PE/EA=10/1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.39 – 7.30 (m, 6H), 7.20 – 7.13 (m, 2H), 7.10 (d, *J* = 8.1 Hz, 2H), 7.05 – 6.98 (m, 3H), 6.97 – 6.84 (m, 3H), 6.84 – 6.71 (m, 2H), 6.65 (s, 1H), 5.35 (dd, *J* = 10.8, 1.4 Hz, 1H), 5.02 (dd, *J* = 17.3, 1.4 Hz, 1H), 2.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 148.2, 148.1, 143.8, 141.5, 139.4, 137.6, 137.4, 136.8, 136.2, 134.7, 132.0, 131.9, 131.9, 130.2, 129.6, 128.7, 128.4, 128.3, 127.3, 123.4, 120.8, 120.1, 117.9, 26.9, 21.5.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{30}H_{25}FNO_3S^+$ 536.1502 Found 536.1496. ¹⁹F NMR (377 MHz, CDCl₃) δ -58.00.

(*E*)-*N*-(2-(2-(4-bromophenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3aw**)

¹H NMR (500 MHz, CDCl₃) δ 7.32 (ddt, J = 10.7, 8.7, 2.9 Hz, 6H), 7.24 (d, J = 8.4 Hz, 2H), 7.15 – 7.09 (m, 4H), 7.02 (ddd, J = 8.6, 7.3, 1.8 Hz, 1H), 6.89 – 6.80 (m, 4H), 6.77 (td, J = 7.5, 1.1 Hz, 1H), 6.64 (s, 1H), 5.33 (dd, J = 10.7, 1.4 Hz, 1H), 5.01 (dd, J = 17.3, 1.3 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 143.7, 141.6, 139.5, 137.9, 137.1, 136.8, 136.2, 134.5, 132.1, 132.0,

131.9, 131.1, 130.2, 129.6, 128.6, 128.4, 128.2, 127.2, 123.4, 121.3, 120.8, 117.8, 21.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₂₅BrNO₂S⁺ 531.4801 Found 531.4806.

(*E*)-4-methyl-*N*-(2-(1-phenyl-2-(4-vinylphenyl)buta-1,3-dien-1-yl)phenyl)benzenesulfonamide (**3ax**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ax** was obtained as a white solid (91 mg, 95%), Rf=0.62(PE/EA=10/1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.76 – 7.65 (m, 2H), 7.63 – 7.57 (m, 2H), 7.45 – 7.40 (m, 2H), 7.36 – 7.26 (m, 5H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.16 (td, *J* = 8.0, 1.7 Hz, 3H), 7.02 (d, *J* = 8.1 Hz, 2H), 6.96 – 6.87 (m, 3H), 6.79 (s, 1H), 6.70 (td, *J* = 7.5, 1.1 Hz, 1H), 5.36 (dd, *J* = 10.7, 1.5 Hz, 1H), 5.06 (dd, *J* = 17.3, 1.4 Hz, 1H), 2.33 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.6, 142.3, 140.0, 138.5, 137.1, 136.7, 136.5, 136.4, 136.3, 134.4, 132.5, 132.2, 130.7, 130.3, 129.6, 128.5, 128.2, 128.0, 127.3, 125.8, 123.4, 120.6, 118.1, 113.9, 21.5.
HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₈NO₂S⁺ 478.1835; Found 478.1837.

(*E*)-4-methyl-*N*-(2-(2-(naphthalen-2-yl)-1-phenylbuta-1,3-dien-1-yl)phenyl)benzenesulfonamide (**3az**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3az** was obtained as a white solid (92 mg, 91 %), Rf=0.62(PE/EA=10/1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.76 – 7.65 (m, 2H), 7.63 – 7.57 (m, 2H), 7.45 – 7.40 (m, 2H), 7.36 – 7.26 (m, 5H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.16 (td, *J* = 8.0, 1.7 Hz, 3H), 7.02 (d, *J* = 8.1 Hz, 2H), 6.96 – 6.87 (m, 3H), 6.79 (s, 1H), 6.70 (td, *J* = 7.5, 1.1 Hz, 1H), 5.36 (dd, *J* = 10.7, 1.5 Hz, 1H), 5.06 (dd, *J* = 17.3, 1.4 Hz, 1H), 2.33 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.6, 142.5, 140.0, 137.2, 137.1, 136.5, 136.3, 134.4, 133.0, 132.4, 132.4, 132.2, 130.3, 129.7, 129.5, 128.52, 128.47, 128.2, 128.1, 128.0, 127.54, 127.45, 127.2, 126.0, 125.9, 123.4, 120.8, 117.9, 21.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₃H₂₈NO₂S⁺ 502.1835 Found 502.1829.

(*E*)-*N*-(5-chloro-2-(1-phenyl-2-(p-tolyl)buta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3bb**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1),**3bb** was obtained as a white solid (92mg, 92%), Rf=0.57 (PE/EA=10/1).

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 1.9 Hz, 1H), 7.35 – 7.25 (m, 5H), 7.12 (d, J = 8.1 Hz, 2H), 7.04 (dt, J = 6.7, 1.6 Hz, 2H), 6.96 (d, J = 7.9 Hz, 2H), 6.91 – 6.74 (m, 5H), 6.72 (d, J = 1.5 Hz, 1H), 5.32 (dd, J = 10.7, 1.5 Hz, 1H), 5.06 (dd, J = 17.3, 1.6 Hz, 1H), 2.37 (s, 3H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 143.2, 139.7, 137.2, 137.1, 135.9, 135.5, 135.4, 135.2, 133.6, 133.8, 131.6, 130.3, 130.2, 129.7, 128.9, 128.6, 128.0, 127.3, 123.6, 120.9, 118.6, 26.9, 21.6, 21.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₇ClNO₂S⁺ 500.1446 Found 500.1439.

(*E*)-*N*-(2-(2-(4-(tert-butyl)phenyl)-1-phenylbuta-1,3-dien-1-yl)-4-(trifluoromethyl)phenyl)-4methylbenzenesulfonamide (**3ce**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ce** was obtained as a white solid (107mg, 93%), Rf=0.54 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.65 – 7.59 (m, 1H), 7.37 – 7.28 (m, 5H), 7.14 – 7.05 (m, 6H), 6.96 (dd, J = 7.8, 1.6 Hz, 1H), 6.92 – 6.81 (m, 4H), 6.79 (s, 1H), 5.37 (dd, J = 10.7, 1.5 Hz, 1H), 5.12 (dd, J = 17.3, 1.5 Hz, 1H), 2.35 (s, 3H), 1.23 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 150.7, 144.1, 143.9, 139.2, 136.7, 135.7, 135.2, 135.1, 134.9, 132.7, 130.7, 130.3, 130.1, 129.9, 129.7, 128.7, 128.2, 127.4, 127.3, 124.9, 121.7, 119.7, 114.8, 34.5, 31.2, 21.6.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₄H₃₃F₃NO₂S⁺ 576.2179 Found 576.2175.

¹⁹F NMR (377 MHz, CDCl₃) δ -62.89.

(*E*)-*N*-(2-(2-(4-(tert-butyl)phenyl)-1-(3-methoxyphenyl)buta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3de**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3de** was obtained as a white solid (93mg, 87%), Rf=0.51 (PE/EA=10/1).

¹**H** NMR (400 MHz, CDCl₃ δ 7.33 (dd, J = 8.5, 2.0 Hz, 3H), 7.22 (d, J = 7.9 Hz, 1H), 7.13 – 7.05 (m, 4H), 6.98 (td, J = 8.3, 7.8, 1.7 Hz, 1H), 6.91 – 6.68 (m, 8H), 6.58 (t, J = 2.1 Hz, 1H), 5.30 (dd, J = 10.7, 1.7 Hz, 1H), 5.06 (dd, J = 17.3, 1.6 Hz, 1H), 3.70 (s, 3H), 2.34 (s, 3H), 1.23 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 159.6, 150.1, 143.5, 142.9, 141.5, 137.3, 136.3, 136.2, 135.7, 134.6, 132.7, 132.2, 130.1, 129.5, 129.4, 127.9, 127.3, 124.7, 123.8, 122.9, 120.5, 118.1, 115.4, 113.8, 55.2, 34.4, 31.2, 21.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₄H₃₆NO₃S⁺538.2410 Found 538.2416.

(*E*)-*N*-(2-(2-(4-(tert-butyl)phenyl)-1-(4-methoxyphenyl)buta-1,3-dien-1-yl)-5-chlorophenyl)-4-methylbenzenesulfonamide (**3ee**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ee** was obtained as a white solid (103 mg, 90 %), Rf=0.62(PE/EA=10/1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.42 (t, J = 1.2 Hz, 1H), 7.37 (d, J = 8.3 Hz, 2H), 7.12 (t, J = 7.8 Hz, 4H), 6.94 (d, J = 8.7 Hz, 2H), 6.88 – 6.82 (m, 3H), 6.78 (d, J = 8.7 Hz, 2H), 6.75 – 6.67 (m, 3H), 5.30 (dd, J = 10.8, 1.6 Hz, 1H), 5.05 (dd, J = 17.3, 1.6 Hz, 1H), 3.86 (s, 3H), 2.37 (s, 3H), 1.25 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 159.4, 150.3, 143.9, 142.4, 137.3, 136.0, 135.7, 135.6, 134.8, 133.4, 133.2, 131.9, 131.6, 131.5, 130.0, 129.6, 127.3 124.9, 123.4, 120.5, 118.3, 113.9, 55.3, 34.5, 31.3, 21.6.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₄H₃₅ClNO₃S⁺ 572.2021 Found 572.2017.

(*E*)-*N*-(2-(2-(4-(tert-butyl)phenyl)-1-(naphthalen-2-yl)buta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3fe**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3fe** was obtained as a white solid (100 mg, 90 %, E/Z = 3:1), Rf=0.43 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.88 (dd, J = 8.0, 1.4 Hz, 1H), 7.72 (dd, J = 8.4, 2.9 Hz, 2H), 7.54 (ddd, J = 6.3, 3.9, 1.5 Hz, 2H), 7.46 (dd, J = 8.2, 1.2 Hz, 1H), 7.27 – 7.24 (m, 1H), 7.20 – 7.17 (m, 3H), 7.13 (d, J = 8.3 Hz, 2H), 7.04 – 7.00 (m, 2H), 6.95 – 6.88 (m, 2H), 6.82 – 6.79 (m, 2H), 6.78 (d, J = 8.0 Hz, 1H), 6.71 – 6.65 (m, 2H), 5.36 (dd, J = 10.7, 1.6 Hz, 1H), 5.15 (dd, J = 17.2, 1.5 Hz, 1H), 2.20 (s, 3H), 1.28 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 150.2, 143.31, 143.29, 137.6, 137.2, 136.3, 135.9, 135.8, 134.7, 133.2, 132.9, 132.8, 132.3, 130.9, 130.0, 129.5, 129.4, 129.2, 128.3, 128.1, 127.9, 127.9, 127.6, 127.0, 126.9, 126.6, 126.4, 125.1, 124.8, 123.4, 120.8, 118.3, 34.5, 31.3, 21.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₇H₃₆NO₂S⁺ 558.2461 Found 558.2465.

(*E*)-*N*-(2-(1-(benzo[b]thiophen-2-yl)-2-(4-(tert-butyl)phenyl)buta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3ge**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ge** was obtained as a white solid (103 mg,91 %, E,Z = 6:1), Rf=0.49 (PE/EA=10/1).

¹**H** NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.2, 1.4 Hz, 1H), 7.69 (dd, J = 8.3, 3.2 Hz, 2H), 7.51 (td, J = 3.7, 3.1, 1.4 Hz, 2H), 7.18 – 7.14 (m, 3H), 7.10 (d, J = 8.3 Hz, 2H), 7.01 – 6.98 (m, 2H), 6.93 – 6.85 (m, 2H), 6.79 – 6.73 (m, 2H), 6.66 (d, J = 8.0 Hz, 2H), 5.33 (dd, J = 10.7, 1.6 Hz, 1H), 5.12 (dd, J = 17.2, 1.6 Hz, 1H), 2.17 (s, 3H), 1.25 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 150.2, 143.31, 143.29, 137.6, 137.2, 136.3, 135.9, 135.8, 134.7, 133.1, 132.9, 132.8, 132.3, 130.0, 129.5, 129.4, 129.1, 128.3, 128.1, 127.92, 127.87, 127.6, 126.9, 126.5, 126.4, 124.8, 123.4, 120.9, 118.3, 34.5, 21.4.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{35}H_{34}NO_2S_2^+$ 564.2104 Found 564.2114.

(E)-N-(2-(4-(4-(tert-butyl)phenyl)-2-methylhexa-3,5-dien-3-yl)phenyl)-4-

methylbenzenesulfonamide (3he)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3he** was obtained as a white solid (85 mg, 90 %), Rf=0.67 (PE/EA=10/1).

¹**H NMR (400 MHz, CDCl₃)** δ 7.82 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 1H), 7.44 (d, *J* = 8.3 Hz, 2H), 7.25 – 7.20 (m, 3H), 7.12 (d, *J* = 8.2 Hz, 2H), 7.04 (dd, *J* = 4.1, 0.8 Hz, 2H), 6.83 (s, 1H), 5.86 (dd, *J* = 17.1, 10.6 Hz, 1H), 4.81 (dd, *J* = 10.6, 1.7 Hz, 1H), 4.59 (dd, *J* = 17.1, 1.7 Hz, 1H),

2.75 (p, *J* = 6.9 Hz, 1H), 2.37 (s, 3H), 1.38 (s, 9H), 0.92 (d, *J* = 6.9 Hz, 3H), 0.70 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 150.0, 143.9, 141.7, 140.9, 136.7, 136.8, 135.4, 134.9, 130.4, 129.6, 129.0, 128.2, 127.7, 126.9, 125.3, 122.7, 119.2, 115.9, 34.6, 32.4, 31.5, 22.1, 21.6, 20.6.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₃₆NO₂S⁺ 474.2461 Found 474.2465.

(*E*)-*N*-(2-(3-(4-chlorophenyl)penta-2,4-dien-2-yl)phenyl)-4-methylbenzenesulfonamide (**3im**) The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3im** was obtained as a white solid (75 mg, 88 %), Rf=0.45 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.58 (d, J = 8.3 Hz, 2H), 7.26 – 7.21 (m, 3H), 7.06 – 7.01 (m, 3H), 7.00 – 6.90 (m, 3H), 6.87 – 6.83 (m, 2H), 6.41 (s, 1H), 5.31 (dd, J = 10.8, 1.4 Hz, 1H), 4.86 (dd, J = 17.2, 1.4 Hz, 1H), 2.39 (s, 3H), 1.83 (s, 3H).

¹³C NMR (126 MHz, CDCl₃)δ 144.0, 139.4, 136.5, 134.5, 134.4, 132.6, 132.3, 131.4, 129.7, 129.6, 128.1, 127.9, 127.2, 124.1, 119.5, 119.5, 21.6, 20.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₃ClNO₂S⁺424.1210; Found 424.1201.

(*E*)-*N*-(2-(2-(4-chlorophenyl)buta-1,3-dien-1-yl)phenyl)-4-methylbenzenesulfonamide (**3jm**) The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3jm** was obtained as a white solid (74 mg, 90 %), Rf=0.47 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.63 (d, J = 8.4 Hz, 2H), 7.33 (dd, J = 8.1, 1.2 Hz, 1H), 7.25 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 7.08 (td, J = 7.7, 1.5 Hz, 1H), 6.87 – 6.81 (m, 3H), 6.62 (dd, J = 7.8, 1.5 Hz, 1H), 6.57 – 6.48 (m, 2H), 6.21 (s, 1H), 5.24 (d, J = 10.7 Hz, 1H), 4.97 (d, J = 17.3 Hz, 1H), 2.40 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 144.0, 143.8, 139.7, 136.7, 134.8, 134.0, 133.5, 131.1, 130.3, 130.1, 129.7, 128.7, 128.2, 127.3, 125.9, 125.3, 123.4, 118.1, 21.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{23}H_{21}CINO_2S^+410.1054$; Found 410.1056.

(*E*)-*N*-(2-(2-(4-(Tert-butyl)phenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)benzenesulfonamide (**3ke**) The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1),**3ke** was obtained as a white solid (88mg, 89%),Rf=0.54 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.49 – 7.43 (m, 3H), 7.34 – 7.27 (m, 6H), 7.15 – 7.09 (m, 2H), 7.09 – 7.03 (m, 2H), 6.99 (ddd, *J* = 8.5, 7.3, 1.7 Hz, 1H), 6.96 – 6.91 (m, 2H), 6.89 – 6.80 (m, 2H), 6.78 – 6.69 (m, 2H), 5.31 (dd, *J* = 10.7, 1.6 Hz, 1H), 5.08 (dd, *J* = 17.3, 1.6 Hz, 1H), 1.24 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 150.2, 140.2, 137.2, 135.7, 132.7, 132.3, 130.3, 130.1, 128.9, 128.5, 127.9, 127.8, 127.2, 124.8, 123.4, 120.5, 118.2, 31.2.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₂H₃₂NO₂S⁺ 494.2075; Found 494.2076.

(E)-N-(2-(2-(4-(tert-butyl)phenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-4-

fluorobenzenesulfonamide (**3le**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3le** was obtained as a white solid (89 mg, 87%), Rf=0.52 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.43 – 7.39 (m, 2H), 7.34 – 7.28 (m, 4H), 7.15 – 7.11 (m, 2H), 7.09 – 7.05 (m, 2H), 7.03 – 6.98 (m, 1H), 6.97 – 6.91 (m, 4H), 6.88 – 6.80 (m, 2H), 6.78 (dd, J = 7.5, 1.2 Hz, 1H), 6.71 (s, 1H), 5.32 (dd, J = 10.8, 1.6 Hz, 1H), 5.08 (dd, J = 17.3, 1.6 Hz, 1H), 1.24 (s, 9H). ¹³**C NMR (126 MHz, CDCl₃)** δ 166.1, 164.0, 150.3, 142.8, 140.1, 137.1, 136.1, 135.6, 134.1, 133.1, 132.4, 130.3, 130.0, 129,97, 129.92, 128.3 128.0, 127.9, 124.8, 123.7, 120.8, 118.2, 116.2, 116.0, 34.5, 31.2, 29.7.

¹⁹F NMR (377 MHz, CDCl₃) δ -105.04 (dd, J = 8.9, 4.1 Hz).

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{32}H_{31}FNO_2S^+$ 512.2054 Found 512.2045.

(E)-N-(2-(2-(4-(tert-butyl)phenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)-2-

chlorobenzenesulfonamide (**3me**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3me** was obtained as a white solid (94 mg, 90 %), Rf=0.56 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 8.03 (dd, J = 7.8, 1.6 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.40 – 7.35 (m, 2H), 7.25 (dd, J = 4.9, 1.8 Hz, 3H), 7.16 (d, J = 8.3 Hz, 2H), 7.07 – 7.01 (m, 5H), 6.96 (ddd, J = 8.4, 7.1, 1.8 Hz, 1H), 6.92 (d, J = 1.7 Hz, 1H), 6.90 – 6.80 (m, 3H), 5.31 (dd, J = 10.8, 1.6 Hz, 1H), 5.12 (dd, J = 17.2, 1.6 Hz, 1H), 1.25 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 150.4, 141.6, 140.7, 138.1, 137.7, 136.7, 135.7, 135.0, 133.8, 133.4, 132.7, 132.2, 131.9, 131.2, 130.7, 130.5, 128.2, 127.8, 127.7, 127.1, 124.9, 124.9, 124.4, 120.5, 119.9, 34.5, 31.4, 31.3, 26.9.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₂H₃₁ClNO₂S⁺ 529.1759 Found 529.1750.

(*E*)-*N*-(2-(2-(4-(tert-butyl)phenyl)-1-phenylbuta-1,3-dien-1-yl)phenyl)naphthalene-1-sulfonamide (**3ne**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **3ne** was obtained as a white solid (98 mg, 90 %), Rf=0.45 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 8.24 (d, J = 1.9 Hz, 1H), 7.85 (ddd, J = 23.6, 8.1, 1.3 Hz, 2H), 7.72 (d, J = 8.7 Hz, 1H), 7.60 (dddd, J = 20.6, 8.1, 6.9, 1.4 Hz, 2H), 7.44 (dd, J = 8.3, 1.1 Hz, 1H), 7.35 (dd, J = 8.7, 1.9 Hz, 1H), 7.22 – 7.16 (m, 1H), 7.13 – 7.07 (m, 2H), 7.03 – 6.96 (m, 5H), 6.87 – 6.81 (m, 3H), 6.81 – 6.70 (m, 3H), 5.31 (dd, J = 10.7, 1.6 Hz, 1H), 5.07 (dd, J = 17.2, 1.6 Hz, 1H), 1.20 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 150.1, 142.6, 140.1, 137.3, 136.5, 136.4, 135.7, 134.9, 134.2, 133.4, 132.4, 132.0, 130.3, 130.1, 129.4, 129.3, 128.9, 128.9, 128.3, 128.0, 127.9, 127.8, 127.4, 124.7, 123.7, 122.3, 120.5, 118.9, 34.4, 31.2, 26.9.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{36}H_{34}NO_2S^+$ 544.2305; Found 544.2295.

2-Methyl-4-phenyl-3-(*p*-tolyl)-1-tosyl-1,2-dihydroquinoline (4ab)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4ab** was obtained as a white solid (68 mg, 75 %), Rf=0.45 (PE/EA=10/1).

¹**H NMR (500 MHz, CDCl₃)** δ 7.87 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.32 (td, *J* = 7.7, 1.5 Hz, 1H), 7.25 (s, 1H), 7.16 – 7.09 (m, 5H), 7.07 (d, *J* = 8.1 Hz, 2H), 6.89 (d, *J* = 7.9 Hz, 2H), 6.76 (dd, *J* = 7.9, 1.5 Hz, 1H), 6.71 – 6.66 (m, 2H), 6.45 (s, 2H), 5.24 (q, *J* = 6.8 Hz, 1H), 2.36 (s, 3H), 2.24 (s, 3H), 1.38 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.3, 137.6, 136.8, 136.1, 135.4, 132.1, 131.8, 131.7, 130.6, 129.1, 128.6, 128.5, 128.0, 127.9, 127.8, 127.4, 126.9, 126.4, 126.4, 55.4, 29.7, 21.42, 2.12, 19.7.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{30}H_{28}NO_2S^+$ 466.6110; Found 466.6115.

3-(4-methoxyphenyl)-2-methyl-4-phenyl-1-tosyl-1,2-dihydroquinoline (4af)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4af** was obtained as a white solid (82 mg, 86%), Rf=0.47 (PE/EA=10/1).

¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.3 Hz, 1H), 7.32 (td, J = 7.7, 1.5 Hz, 1H), 7.26 – 7.23 (m, 2H), 7.17 – 7.09 (m, 4H), 7.06 (d, J = 8.0 Hz, 2H), 6.77 – 6.70 (m, 3H), 6.65 – 6.57 (m, 2H), 6.45 (s, 2H), 5.23 (q, J = 6.8 Hz, 1H), 3.74 (s, 3H), 2.36 (s, 3H), 1.38 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.4, 143.3, 137.8, 136.3, 136.1, 131.9, 131.8, 131.4, 130.7, 130.6, 129.9, 129.1, 128.0, 127.7, 127.4, 126.9, 126.4, 113.1, 77.3, 77.0, 76.7, 55.4, 55.1, 21.4, 19.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₂₈NO₃S⁺ 482.1712; Found 482.1716.

2-methyl-3-(4-phenoxyphenyl)-4-phenyl-1-tosyl-1,2-dihydroquinoline (4ah)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1),4ah was obtained as a white solid (97 mg, 89%), Rf=0.48 (PE/EA=10/1)

¹**H NMR (400 MHz, CDCl₃)** δ 7.88 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.34 (tt, *J* = 7.8, 2.3 Hz, 3H), 7.29 – 7.24 (m, 2H), 7.17 – 7.05 (m, 7H), 7.01 – 6.94 (m, 2H), 6.80 – 6.69 (m, 5H), 6.47 (s, 2H), 5.24 (q, *J* = 6.8 Hz, 1H), 2.35 (s, 3H), 1.41 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.6, 156.3, 143.4, 137.5, 136.1, 136.0, 133.2, 132.1, 132.1, 131.6, 130.6, 130.1, 129.8, 129.1, 128.0, 127.9, 127.4, 127.1, 126.5, 126.4, 123.6, 119.3, 117.6, 55.3, 26.9, 21.4, 19.7.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₅H₃₀NO₃S⁺ 544.1941; Found 544.1937.

3-(3-fluoro-4-methylphenyl)-2-methyl-4-phenyl-1-tosyl-1,2-dihydroquinoline (4ak)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4ak** was obtained as a white solid (82 mg, 85%), Rf=0.48 (PE/EA=10/1)

¹**H NMR (400 MHz, CDCl₃)** δ 7.87 (d, J = 8.0 Hz, 1H), 7.34 (td, J = 7.7, 1.5 Hz, 1H), 7.28 – 7.23 (m, 2H), 7.21 – 7.06 (m, 6H), 6.91 (t, J = 8.0 Hz, 1H), 6.77 (dd, J = 7.9, 1.5 Hz, 1H), 6.61 – 6.38 (m, 3H), 6.28 (dd, J = 11.4, 1.8 Hz, 1H), 5.17 (q, J = 6.8 Hz, 1H), 2.37 (s, 3H), 2.16 (d, J = 1.8 Hz, 3H), 1.39 (d, J = 6.8 Hz, 3H).

¹³**C NMR (101 MHz, CDCl₃)** δ 161.7, 159.3, 143.5, 137.87(d, *J* = 31.16 Hz), 137.2, 136.1, 135.43(d, *J* = 27.84 Hz), 132.7, 132.2, 131.4, 130.71(d, *J* = 22.28 Hz), 130.4, 129.2, 128.2, 128.09, 128.06, 127.3, 127.2, 126.7, 126.5, 123.93,(d, *J* = 12.72 Hz), 123.7, 123.6, 115.5, 115.24 55.3, 21.4, 19.7, 14.3, 14.25(d, *J* = 21.84 Hz)

¹⁹F NMR (377 MHz, CDCl₃) δ -117.68 (dd, J = 11.2, 8.3 Hz).

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{30}H_{27}FNO_2S^+$ 484.1741; Found 484.1738.

3-(4-chlorophenyl)-2-methyl-4-phenyl-1-tosyl-1,2-dihydroquinoline (4am)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4am** was obtained as a white solid (86 mg, 87%), Rf=0.48 (PE/EA=10/1)

¹**H NMR (400 MHz, CDCl₃)** δ 7.88 (dd, J = 8.0, 1.3 Hz, 1H), 7.35 (td, J = 7.7, 1.5 Hz, 1H), 7.28 – 7.23 (m, 2H), 7.18 – 7.03 (m, 8H), 6.79 (dd, J = 7.8, 1.5 Hz, 1H), 6.73 – 6.68 (m, 2H), 6.46 (s, 2H), 5.19 (q, J = 6.8 Hz, 1H), 2.37 (s, 3H), 1.39 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.5, 137.2, 136.9, 136.1, 135.5, 132.9, 132.8, 132.2, 131.2, 130.4, 130.0, 129.9, 128.3, 128.14, 128.06, 128.0, 127.26, 127.30, 126.7, 126.5, 55.1, 26.9, 21.4, 19.7.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{29}H_{24}CINO_2S^+$ 487.1323; Found 487.1313.

4-(2-methyl-4-phenyl-1-tosyl-1,2-dihydroquinolin-3-yl)benzaldehyde (4ao)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4ao** was obtained as a white solid (84 mg, 88%), Rf=0.48 (PE/EA=10/1)

¹**H NMR (400 MHz, CDCl₃)** δ 9.89 (s, 1H), 7.90 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.38 (d, *J* = 1.5 Hz, 1H), 7.27 – 7.23 (m, 2H), 7.19 – 7.07 (m, 6H), 6.94 – 6.88 (m, 2H), 6.82 (dd, *J* = 7.9, 1.5 Hz, 1H), 6.47 (s, 2H), 5.24 (q, *J* = 6.8 Hz, 1H), 2.37 (s, 3H), 1.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 191.6, 144.8, 143.6, 136.8, 136.1, 135.4, 134.6, 134.4, 132.4, 131.0, 130.4, 129.3, 129.2, 129.1, 128.7, 128.2, 128.1, 127.5, 127.3, 127.0, 126.6, 55.0, 21.4, 19.8.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{30}H_{26}NO_3S^+$ 480.1628; Found 480.1621.

4-(2-methyl-4-phenyl-1-tosyl-1,2-dihydroquinolin-3-yl)benzonitrile (4ap)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4ap** was obtained as a white solid (78mg, 82%), Rf=0.48 (PE/EA=10/1)

¹**H NMR (500 MHz, CDCl₃)** δ 7.89 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.43 – 7.35 (m, 3H), 7.25 – 7.06 (m, 8H), 6.88 – 6.77 (m, 3H), 6.45 (s, 2H), 5.19 (q, *J* = 6.8 Hz, 1H), 2.37 (s, 3H), 1.42 (d, *J* = 3.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.7, 143.3, 136.5, 136.1, 134.7, 134.7, 132.4, 131.6, 130.8, 130.3, 129.3, 129.3, 128.9, 128.3, 128.1, 127.7, 127.3, 127.0, 126.7, 118.6, 110.6, 77.4, 77.1, 76.7, 54.8, 26.9, 21.5, 19.8.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{30}H_{25}N_2O_2S^+$ 477.1631; Found 477.1626.

methyl 4-(2-methyl-4-phenyl-1-tosyl-1,2-dihydroquinolin-3-yl)benzoate (4aq)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4aq** was obtained as a white solid (84 mg, 83 %), Rf=0.62 (PE/EA=10/1)

¹**H NMR (500 MHz, CDCl₃CDCl₃CDCl₃)** δ 7.90 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.40 – 7.35 (m, 1H), 7.24 (s, 1H), 7.16 – 7.08 (m, 5H), 6.82 (dd, *J* = 8.4, 2.3 Hz, 3H), 6.47 (s, 2H), 5.23 (q, *J* = 6.8 Hz, 1H), 3.87 (s, 3H), 1.43 (d, *J* = 3.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.7, 143.6, 143.2, 136.9, 136.1, 135.6, 133.8, 132.4, 131.2, 130.4, 129.2, 129.0, 128.7, 128.5, 128.4, 128.1, 127.4, 127.3, 126.8, 126.5, 55.0, 52.1, 21.4, 19.76.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{31}H_{26}NO_4S^+$ 509.1661; Found 509.1668.

2-methyl-4-phenyl-3-(thiophen-3-yl)-1-tosyl-1,2-dihydroquinoline (4at)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1),**4at** was obtained as a white solid (82mg, 90%), Rf=0.48 (PE/EA=10/1)

¹**H NMR (500 MHz, CDCl₃)** δ 7.84 (dd, J = 8.1, 1.3 Hz, 1H), 7.31 (td, J = 7.7, 1.5 Hz, 1H), 7.28 – 7.16 (m, 5H), 7.09 (td, J = 7.6, 1.3 Hz, 1H), 7.03 – 6.98 (m, 3H), 6.80 (dd, J = 3.0, 1.4 Hz, 1H), 6.65 (dd, J = 7.8, 1.5 Hz, 1H), 6.63 – 6.29 (m, 2H), 6.25 (dd, J = 5.2, 1.4 Hz, 1H), 5.36 (q, J = 6.9 Hz, 1H), 2.35 (s, 3H), 1.41 (d, J = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.5, 138.9, 138.1, 135.8, 131.8, 131.7, 131.3, 130.9, 130.2, 128.9, 128.5, 128.2, 127.8, 127.51, 127.45, 127.4, 126.6, 126.5, 124.3, 123.7, 54.9, 21.4, 19.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{27}H_{24}NO_2S_2^+$ 458.1243; Found 458.1234.

7-chloro-3-(4-chlorophenyl)-2-methyl-4-phenyl-1-tosyl-1,2-dihydroquinoline (4bm)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4bm** was obtained as a white solid (90 mg, 87 %), Rf=0.48 (PE/EA=10/1)

¹**H NMR (500 MHz, CDCl₃)** δ 7.90 (d, J = 2.2 Hz, 1H), 7.29 (d, J = 8.4 Hz, 2H), 7.19 – 7.05 (m, 8H), 6.72 (d, J = 8.4 Hz, 1H), 6.67 (d, J = 8.6 Hz, 2H), 6.45 (s, 2H), 5.18 (q, J = 6.8 Hz, 1H), 2.38 (s, 3H), 1.39 (d, J = 6.8 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.8, 136.7, 136.5, 135.9, 135.6, 133.6, 133.4, 133.1, 132.3, 130.3, 129.90, 129.86, 129.3, 128.3, 128.1, 127.8, 127.7, 127.5, 127.3, 126.7, 55.2, 21.5, 19.8.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₂₄Cl₂NO₂S⁺521.0933; Found 521.0938.

4-(benzo[b]thiophen-2-yl)-3-(4-chlorophenyl)-2-methyl-1-tosyl-1,2-dihydroquinoline (**4gm**) The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4gm** was obtained as a white solid (85 mg, 90 %), Rf=0.62 (PE/EA=10/1)

¹**H NMR (500 MHz, CDCl₃)** δ 7.89 (dd, J = 8.1, 1.3 Hz, 1H), 7.73 – 7.66 (m, 1H), 7.62 – 7.57 (m, 1H), 7.39 (td, J = 7.6, 1.5 Hz, 1H), 7.33 – 7.26 (m, 3H), 7.25 (s, 1H), 7.18 (td, J = 7.6, 1.3 Hz, 1H), 7.15 – 7.08 (m, 5H), 6.91 – 6.86 (m, 2H), 6.56 (s, 1H), 5.20 (q, J = 6.8 Hz, 1H), 2.41 (s, 3H), 1.39 (d, J = 6.8 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.7, 140.5, 139.4, 139.3, 138.4, 136.4, 135.9, 133.6, 132.1, 130.6, 129.5, 129.5, 128.7, 128.3, 128.1, 127.1, 126.8, 126.6, 125.9, 125.9, 124.4, 124.3, 123.5, 122.1, 55.4, 26.9, 21.6, 19.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₅ClNO₂S₂⁺543.1010; Found 543.1016.

3-(4-chlorophenyl)-4-isopropyl-2-methyl-1-tosyl-1,2-dihydroquinoline (4hm)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4hm** was obtained as a white solid (85 mg, 90 %), Rf=0.62 (PE/EA=10/1)

¹**H NMR (500 MHz, CDCl₃)**δ 7.80 (dd, J = 8.1, 1.1 Hz, 1H), 7.35 – 7.30 (m, 3H), 7.27 (d, J = 2.2 Hz, 1H), 7.26 – 7.20 (m, 2H), 7.11 (d, J = 8.2 Hz, 2H), 7.05 (dd, J = 7.6, 1.5 Hz, 1H), 6.88 (d, J = 8.1 Hz, 2H), 6.28 (s, 1H), 5.41 (q, J = 6.9 Hz, 1H), 2.24 (s, 3H), 1.20 (d, J = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.6, 138.4, 138.3, 136.7, 135.1, 133.5, 133.4, 130.2, 129.7, 129.3, 128.7, 128.6, 127.7, 127.3, 126.2, 125.7, 77.4, 77.2, 76.9, 56.1, 29.3, 23.2, 21.5, 20.6, 17.9.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₇ClNO₂S⁺453.1523; Found 453.1520.

3-(4-chlorophenyl)-2,4-dimethyl-1-tosyl-1,2-dihydroquinoline (4im)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4im** was obtained as a white solid (74 mg, 87 %), Rf=0.59 (PE/EA=10/1)

¹**H NMR (500 MHz, CDCl₃)** δ 7.77 (dd, J = 7.8, 1.4 Hz, 1H), 7.38 – 7.32 (m, 3H), 7.29 (td, J = 7.5, 1.4 Hz, 1H), 7.25 – 7.20 (m, 3H), 7.09 – 7.04 (m, 2H), 7.00 (d, J = 8.0 Hz, 2H), 5.06 (q, J = 6.8 Hz, 1H), 2.26 (s, 3H), 1.56 (s, 3H), 1.02 (d, J = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.5, 138.6, 135.5, 135.5, 134.1, 132.0, 129.4, 129.0, 128.9, 128.3, 1, 126.98, 126.96, 126.9, 126.6, 119.7, 77.4, 77.2, 76.9, 52.5, 21.6.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₄H₂₃ClNO₂S⁺424.1210; Found 424.1201.

3-(4-chlorophenyl)-2-methyl-1-tosyl-1,2-dihydroquinoline (**4jm**)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4jm** was obtained as a white solid (68 mg, 83 %), Rf=0.69 (PE/EA=10/1)

¹**H NMR (400 MHz, CDCl₃)** δ 7.80 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.35 – 7.30 (m, 3H), 7.27 (d, *J* = 2.2 Hz, 1H), 7.26 – 7.20 (m, 2H), 7.11 (d, *J* = 8.2 Hz, 2H), 7.05 (dd, *J* = 7.6, 1.5 Hz, 1H), 6.88 (d, *J* = 8.1 Hz, 2H), 6.28 (s, 1H), 5.41 (q, *J* = 6.9 Hz, 1H), 2.24 (s, 3H), 1.20 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 197.5, 143.6, 143.4, 136.9, 136.0, 135.5, 135.3, 133.9, 132.4, 131.2, 130.4, 129.2, 128.9, 128.6, 128.2, 128.1, 127.8, 127.4, 127.3, 126.9, 126.6, 55.0, 26.9, 26.6, 21.5, 19.8.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{23}H_{21}CINO_2S^+410.1054$; Found 410.1056.

3-(4-chlorophenyl)-2-methyl-4-phenyl-1-(phenylsulfonyl)-1,2-dihydroquinoline (**4km**) The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4m** was obtained as a white solid (85 mg, 90 %), Rf=0.62 (PE/EA=10/1)

¹**H NMR (500 MHz, CDCl₃)** δ 7.90 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.51 (tt, *J* = 7.3, 1.3 Hz, 1H), 7.42 – 7.34 (m, 3H), 7.34 – 7.28 (m, 2H), 7.18 – 7.11 (m, 4H), 7.07 – 7.01 (m, 2H), 6.78 (dd, *J* = 7.9, 1.5 Hz, 1H), 6.67 – 6.62 (m, 2H), 6.48 (s, 2H), 5.19 (q, *J* = 6.8 Hz, 1H), 1.42 (d, *J* = 2.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 139.1, 137.0, 136.9, 135.3, 133.1, 132.9, 132.7, 132.1, 131.3, 130.4, 129.9, 128.7, 128.4, 128.2, 128.0, 127.9, 127.3, 127.2, 126.8, 126.6, 55.2, 26.9, 19.7.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₂₃ClNO₂S⁺473.1133; Found 473.1124.

1-(4-(2-methyl-4-phenyl-1-tosyl-1,2-dihydroquinolin-3-yl)phenyl)ethan-1-one (4ar)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4ar** was obtained as a white solid (87 mg, 88 %), Rf=0.62 (PE/EA=10/1)

¹**H NMR (400 MHz, CDCl₃)** δ 7.89 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.37 (td, *J* = 7.7, 1.5 Hz, 1H), 7.24 (d, *J* = 8.3 Hz, 2H), 7.19 – 7.05 (m, 6H), 6.89 – 6.83 (m, 2H), 6.80 (dd, *J* =

7.8, 1.5 Hz, 1H), 6.46 (s, 2H), 5.24 (q, *J* = 6.8 Hz, 1H), 2.53 (s, 3H), 2.37 (s, 3H), 1.42 (d, *J* = 2.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 197.5, 143.6, 143.4, 136.9, 136.0, 135.5, 135.3, 133.9, 132.4, 131.2, 130.4, 129.2, 128.9, 128.6, 128.2, 128.1, 127.8, 127.4, 127.3, 126.9, 126.6, 55.0, 26.9, 26.6, 21.5, 19.8.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₈ClNO₃S⁺494.1712; Found 494.1719.

3-(3,5-bis(trifluoromethyl)phenyl)-2-methyl-4-phenyl-1-tosyl-1,2-dihydroquinoline (4ay)

The title compound was prepared via the general procedure, after purification by silica gel column chromatorgraph (PE/EA=4/1), **4ay** was obtained as a white solid (100 mg, 85%), Rf=0.62 (PE/EA=10/1)

¹**H NMR (400 MHz, CDCl₃)** δ 7.92 (d, J = 8.0 Hz, 1H), 7.57 (s, 1H), 7.47 – 7.38 (m, 1H), 7.23 – 7.08 (m, 8H), 7.04 (s, 2H), 6.84 (dd, J = 7.7, 1.5 Hz, 1H), 6.46 (s, 2H), 5.16 (q, J = 6.8 Hz, 1H), 2.37 (s, 3H), 1.50 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.0, 140.6, 136.2, 136.1, 135.8, 132.8, 132.5, 131.2, 130.9, 130.7, 130.3, 129.4, 129.2, 128.7, 128.6, 128.4, 128.3, 127.9, 127.2, 127.1, 126.8, 124.4, 121.7, 120.6, 120.6, 120.5, 54.6, 21.3, 20.1.

¹⁹F NMR (377 MHz, CDCl₃) δ -63.15.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{31}H_{24}F_6NO_2S^+588.1426$; Found 588.1418.

6. X-ray Crystal Structure Determination of the Products

To grow the crystals used to collect the X-ray data for **3af**, the following method was used: the sample was dissolved with 2 mL petroleum ether and 2 mL DCM in a small vial, which was kept aside at room temperature to obtain crystals.

A suitable crystal was selected a ROD, Synergy Custom system, HyPix diffractometer. The crystal was kept at 297.00(2) K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation. The data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2394222).

Figure S5. The X-ray Diffraction Configuration of 3af.

Table S8. Crystallographic data for compounds 3af

, , , , , , , , , , , , , , , , , , , ,	1
Identification code	3af
Empirical formula	C ₃₀ H ₂₇ NO ₃ S
Formula weight	480.58
Temperature/K	170
Crystal system	orthorhombic
Space group	Pbca
a/Å	9.9310(5)

b/Å	18.7108(11)
c/Å	26.5948(14)
α/°	90
β/°	90
γ/°	90
Volume/Å3	4941.8(5)
Z	8
pcalcg/cm3	1.292
µ/mm-1	0.164
F(000)	2024.0
Crystal size/mm3	0.09 imes 0.06 imes 0.04
2 Θ range for data collection/°	4.616 to 52.894
Index ranges	$-12 \le h \le 11, -20 \le k \le 23, -33 \le l \le 32$
Reflections collected	26513
Independent reflections	5066 [Rint = 0.0892, Rsigma = 0.0678]
Data/restraints/parameters	5066/0/319
Goodness-of-fit on F2	1.034
Final R indexes [I>=2σ (I)]	R1 = 0.0567, wR2 = 0.1227
Final R indexes [all data]	R1 = 0.1105, WR2 = 0.1497
Largest diff. peak/hole / e Å-3	0.50/-0.28

To grow the crystals used to collect the X-ray data for **4af**, the following method was used: the sample was dissolved with 2 mL petroleum ether and 2 mL DCM in a small vial, which was kept aside at room temperature to obtain crystals.

A suitable crystal was selected a ROD, Synergy Custom system, HyPix diffractometer. The crystal was kept at 297.00(2) K during data collection. Using Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimisation. The data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2394187).

Figure S6. The X-ray Diffraction Configuration of 4af.

Table S9. Crystallographic data for compounds 4af

Identification code	4af
Empirical formula	C ₃₀ H ₂₇ NO ₃ S
Formula weight	481.58
Temperature/K	173
Crystal system	monoclinic
Space group	C2/c
a/Å	18.3210(6)

b/Å	9.2639(3)
c/Å	30.2884(12)
α/°	90
β/°	105.4480(10)
γ/°	90
Volume/Å3	4954.9(3)
Z	8
ρcalcg/cm3	1.291
μ/mm-1	0.163
F(000)	2032.0
Crystal size/mm3	0.15 imes 0.06 imes 0.05
2Θ range for data collection/°	4.614 to 52.8
Index ranges	$-22 \le h \le 22, -11 \le k \le 11, -33 \le l \le 37$
Reflections collected	28179
Independent reflections	5071 [Rint = 0.0877, Rsigma = 0.0580]
Data/restraints/parameters	5071/0/319
Goodness-of-fit on F2	1.075
Final R indexes [I>=2σ (I)]	R1 = 0.0548, wR2 = 0.1472
Final R indexes [all data]	R1 = 0.0873, WR2 = 0.1734
Largest diff. peak/hole / e Å-3	0.27/-0.41

7 Reference

[1] Gu, X. T.; Shen, J. H.; Xu, Z. Y.; Liu, J. X.; Shi. M.; Wei, Y. Angew. Chem. Int. Ed. 2014, 38, e202409463

[2] Jiang, B.; Liu, J. X.; Wei, Y.; Shi, M. Org. Lett. 2018, 20, 19, 6229-6233

[3] Li, M.; Wei, Y.; Shi, M. Org. Chem. Front., 2023, 10, 440-447
8 Spectroscopic Data of Products

Figure S8. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1c

Figure S10. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1h

Figure S12. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1e

Figure S14. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1k

Figure S16. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1e

Figure S18. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3aa

Figure S20. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ab

Figure S22. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ac

Figure S24. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ad

Figure S26. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ae

Figure S28. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3af

Figure S30. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ag

Figure S32. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ai

Figure S34. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3aj

Figure S36. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ak

Figure S38. ¹⁹F NMR (377 MHz, Chloroform-*d*) spectrum of 3ak

Figure S40. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3al

Figure S42. ¹H NMR (500 MHz, CDCl₃) spectrum of 3am

Figure S44. ¹H NMR (500 MHz, CDCl₃) spectrum of 3an

Figure S46. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ao

Figure S48. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ap

Figure S50. ¹H NMR (500 MHz, CDCl₃) spectrum of 3aq

Figure S52. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ar

Figure S54. ¹H NMR (500 MHz, CDCl₃) spectrum of 3as

Figure S58. ¹H NMR (500 MHz, CDCl₃) spectrum of 3au

Figure S60. ¹H NMR (500 MHz, CDCl₃) spectrum of 3av

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

Figure S62. ¹⁹F NMR (377 MHz,CDCl₃) spectrum of 3av

Figure S64. 13C NMR (126 MHz, CDCl₃) spectrum of 3aw

Figure S66. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ax

Figure S68. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3az

Figure S70. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3bb

Figure S72. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ce

Figure S73. ¹⁹F NMR (377 MHz, CDCl₃) spectrum of 3ce

---62.89

Figure S74. ¹H NMR (500 MHz, CDCl₃) spectrum of 3de

Figure S75. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3de

Figure S76. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ee

Figure S78. ¹H NMR (500 MHz, CDCl₃) spectrum of 3fe

Figure S80. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ge

Figure S82. ¹H NMR (500 MHz, CDCl₃) spectrum of 3he

Figure S84. ¹H NMR (500 MHz, CDCl₃) spectrum of 3im

Figure S86. 1H NMR (500 MHz, CDCl₃) spectrum of 3jm

Figure S87. 13C NMR (126 MHz, CDCl₃) spectrum of 3jm

Figure S88. ¹H NMR (500 MHz, CDCl₃) spectrum of 3ke

Figure S90. ¹H NMR (500 MHz, CDCl₃) spectrum of 3le

Figure S92. ¹⁹F NMR (377 MHz,CDCl₃) spectrum of 3le

Figure S93. ¹H NMR (500 MHz, CDCl₃) spectrum of 3me

Figure S94. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3me

Figure S96. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3ne

Figure S98. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4ab

Figure S100. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4af

Figure S102. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4ah

Figure S104. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4ak

Figure S105. ¹⁹F NMR (377 MHz, CDCl₃) spectrum of 4ak

Figure S106. ¹H NMR (500 MHz, CDCl₃) spectrum of 4am

Figure S108. ¹H NMR (500 MHz, CDCl₃) spectrum of 4ao

Figure S110. ¹H NMR (500 MHz, CDCl₃) spectrum of 4ap

Figure S112. ¹H NMR (500 MHz, CDCl₃) spectrum of 4aq

Figure S114. ¹H NMR (500 MHz, CDCl₃) spectrum of 4at

Figure S116. ¹H NMR (500 MHz, CDCl₃) spectrum of 4bm

Figure S118. ¹H NMR (500 MHz, CDCl₃) spectrum of 4gm

Figure S120. ¹H NMR (500 MHz, CDCl₃) spectrum of 4hm

Figure S122. ¹H NMR (500 MHz, CDCl₃) spectrum of 4im

Figure S124. ¹H NMR (500 MHz, CDCl₃) spectrum of 4jm

Figure S126. ¹H NMR (500 MHz, CDCl₃) spectrum of 4km

Figure S128. ¹H NMR (500 MHz, CDCl₃) spectrum of 4ar

Figure S130. ¹H NMR (500 MHz, CDCl₃) spectrum of 4ay

Figure S132. 19F NMR (377 MHz,CDCl₃) spectrum of 4ay