SUPPORTING INFORMATION

α-Sulfonylated ketazine synthesis from vinyl azides and sodium sulfinates using CAN: Radical C-S/N-N coupling cascade as a key reaction pathway

Mikhail M. Doronin, ^a Alexander S. Klikushin, ^{a,b} Olga M. Mulina,^a Michael G. Medvedev, ^a Vera A. Vil', ^a Liang-Nian He ^c and Alexander O. Terent'ev ^{a *}

^a Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prospect, Moscow, 119991, Russian Federation

^b Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation.

^c State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China

e-mail: terentev@ioc.ac.ru

Table of contents

General	S2
Synthesis of the starting compounds	S3
Sulfonylation of vinyl azides with sodium sulfinates	S15
Radical trapping experiments	S29
X-ray crystallographic data and refinement details	S38
Computation details	S47
References	S60
NMR spectra of the synthesized compounds	S64
HRMS spectra of the synthesized compounds 3aa - 3ta	S126

General

NMR spectra were registered on Bruker Avance II 300 MHz instrument. Chemical shifts were measured relative to residual solvent peaks as an internal standard set to δ 7.26 and δ 77.0 (CDCl₃) or δ 2.50 and δ 39.0 (DMSO-d6). The TLC analyses were carried out on standard silica gel chromatography plates. The melting points were determined on a Kofler hot-stage apparatus. Column chromatography was performed on silica gel (60-200 mesh). 4-Methoxybenzenesulfonyl chloride, 4-acetamidobenzenesulfonyl chloride, 4-fluorobenzenesulfonyl chloride, 4-chlorobenzenesulfonyl chloride, naphthalene-2-sulfonyl chloride, thiophene-2-sulfonyl chloride, mesyl chloride (MsCl), ethanesulfonyl chloride, propane-2-sulfonyl chloride, cyclopropanesulfonyl chloride, sodium benzenesulfinate, styrene, 1-methyl-4-vinylbenzene, 1-isopropyl-4-1-(tert-butyl)-4-vinylbenzene, 1-methoxy-4-vinylbenzene, 1-fluoro-4vinvlbenzene. vinylbenzene, 1-chloro-4-vinylbenzene, 1-bromo-4-vinylbenzene, 1-(chloromethyl)-4vinylbenzene, 4-ethynylbenzonitrile, 1-ethynyl-4-nitrobenzene, 1-methyl-3-1-chloro-3-vinylbenzene, 1-bromo-3-vinylbenzene, vinylbenzene, 1-chloro-2vinylbenzene, 1-fluoro-2-vinylbenzene, 2-vinylnaphthalene, 1,2-dihydronaphthalene, 1ethynylcyclohexan-1-ol, oct-1-yne, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO), 2,6-Di-tert-butyl-4-methylphenol (BHT), Na₂SO₄, MgSO₄, Na₂SO₃, NaHCO₃, Na₂S₂O₃, NaN₃, AgNO₃, Mn(OAc)₂·4H₂O, (NH₄)₂[Ce(NO₃)₆] (CAN), t-BuOK, Et₃N, trimethylsilyl azide, ICl, Br₂, concentrated hydrochloric acid, petroleum ether (PE, 40/70), ethyl acetate (EA), THF, DMSO, MeOH, Et₂O, MeCN, EtOH, DCM, CHCl₃ were purchased from commercial sources and were used as is.

Synthesis of the starting compounds

Synthesis of sodium sulfinates 2c-2l.

Following the slightly modified literature procedure,¹ Na₂SO₃ (20 mmol, 2 eq.), NaHCO₃ (20 mmol, 2 eq.) and the corresponding aryl sulfonyl chloride (10 mmol, 1 eq.) was dissolved in H₂O (9.6 mL). After that the resulting mixture was stirred for 4 hours at 80°C. After the competition of the reaction water was evaporated under reduced pressure. Then the resulted solid was dissolved in 50 mL of EtOH and stayed under magnetic stirring for 20 minutes at room temperature. Formed precipitate was removed by vacuum filtration, and resulted supernatant was evaporated under reduced pressure. The residue was used as is without purification to give pure sodium sulfinate.

Sodium 4-methoxybenzenesulfinate (2c).¹ 4-methoxybenzenesulfonyl chloride (2.07 g, 10 mmol) gave the title compound as a colorless solid (1.70 g), yield 87%. ¹H NMR (D₂O), δ: 3.88 (s, 3H), 7.08-7.13 (m, 2H), 7.60-7.65 (m, 2H). ¹³C NMR, (D₂O), δ: 55.5, 114.4, 125.2, 146.0, 160.5.

Sodium 4-acetamidobenzenesulfinate (2d).² 4-acetamidobenzenesulfonyl chloride (2.34 g, 10 mmol) gave the title compound as a colorless solid (1.81 g), yield 82%. ¹H NMR (D₂O), δ : 2.14 (s, 3H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.61 (d, *J* = 8.5 Hz, 2H).¹³C NMR, (D₂O), δ : 23.1, 121.5, 124.4, 138.8, 149.8, 172.8.

Sodium 4-fluorobenzenesulfinate (2e).¹ 4-fluorobenzenesulfonyl chloride (3.89 g, 10 mmol) gave the title compound as a colorless solid (2.70 g), yield 74%. ¹H NMR (D₂O), δ : 7.24-7.31 (m, 2H), 7.65-7.71 (m, 2H).¹³C NMR, (D₂O), δ : 115.8 (d, *J* = 22.2 Hz), 125.8 (d, *J* = 9.0 Hz), 149.5 (d, *J* = 2.5 Hz), 163.7 (d, *J* = 246.4 Hz).

Sodium 4-chlorobenzenesulfinate (2f).³ 4-chlorobenzenesulfonyl chloride (2.11 g, 10 mmol) gave the title compound as a a colorless solid (1.87 g), yield 95%. ¹H NMR (D₂O), δ: 7.51-7.56 (m, 2H), 7.59-7.63 (m, 2H).¹³C NMR, (D₂O), δ: 125.1, 129.0, 135.7, 152.1. doi/10.1021/jacs.0c03239

Sodium naphthalene-2-sulfinate (2g).¹ naphthalene-2-sulfonyl chloride (2,27 g, 10 mmol) gave the title compound as a colorless solid (1.79 g), yield 84%. ¹H NMR (D₂O), δ: 7.51-7.57 (m, 2H), 7.74 (dd, J = 8.6, 1.6 Hz, 1H), 7.86-7.98 (m, 3H), 8.05 (s, 1H).¹³C NMR, (D₂O), δ: 120.0, 123.5, 126.9, 127.4, 127.8, 128.6, 129.2, 132.5, 133.9, 150.6.

Sodium thiophene-2-sulfinate (2h).⁴ thiophene-2-sulfonyl chloride (1.83 g, 10 mmol) gave the title compound as a colorless solid (1.53 g), yield 90%. ¹H NMR (D₂O), δ : 7.15 (dd, *J* = 4.8, 3.6 Hz, 1H), 7.36 (dd, *J* = 3.6, 1.1 Hz, 1H), 7.62 (dd, *J* = 4.8, 1.1 Hz, 1H).¹³C NMR, (D₂O), δ : 126.4, 127.6, 128.5, 158.4.

Sodium ethanesulfinate (2j).⁵ ethanesulfonyl chloride (1.29 g, 10 mmol) gave the title compound as a colorless solid (0.99 g), yield 85%. ¹H NMR (D₂O), δ : 1.12 (t, *J* = 7.6 Hz, 3H), 2.38 (q, *J* = 7.6 Hz, 2H).¹³C NMR, (D₂O), δ : 5.3, 53.8.

Sodium propane-2-sulfinate (2k).⁵ propane-2-sulfonyl chloride (1.43 g, 10 mmol) gave the title compound as a colorless solid (1.20 g), yield 92%. ¹H NMR (D₂O), δ : 1.12 (d, *J* = 7.0 Hz, 6H), 2.25 (sep, *J* = 7.0, 1H). ¹³C NMR, (D₂O), δ : 13.3, 56.0.

Sodium cyclopropanesulfinate (2I).⁶ cyclopropanesulfonyl chloride (1.83 g, 10 mmol) gave the title compound as a colorless solid (1.17 g), yield 91%. ¹H NMR (D₂O), δ : 0.75-0.83 (m, 4H), 1.98 (tt, *J* = 7.9, 5.3 Hz, 1H).¹³C NMR, (D₂O), δ : 0.6, 36.0.

Synthesis of vinyl azides 1a-1d, 1f, 1g and 1i-1n.

Following the literature procedure,⁷ the corresponding styrene (28.8 mmol) was dissolved in DCM (10 mL) and the mixture was cooled to 0°C. Bromine (4.61 g, 28.8 mmol) was dissolved in DCM (10 mL) and was added dropwise to the styrene solution under magnetic stirring at 0°C. Then, the reaction mixture was stirred for 1 h at room temperature. A saturated solution of Na₂S₂O₃ was added until the color of bromine faded. The resulting mixture was washed with water (2×10 mL). The organic layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. The resulting dibromide was dissolved in DMF (20 mL) and NaN₃ (5.62 g, 86.4 mmol) was added under magnetic stirring. The reaction mixture was stirred overnight at room temperature. Then, it was diluted with water (20 mL) and was washed with Et₂O (3×10 mL). The organic layer was dried over Na₂SO₄, and the solvent Na₂SO₄, and the solvent was removed under reduced pressure. The resulting mixture was diluted with water (20 mL) and was washed with Et₂O (3×10 mL). The organic layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. The resulting mixture was purified using column chromatography (eluent - PE) to give pure vinyl azide.

Synthesis of vinyl azides 1e, 1h, 1o and 1p.

Following the slightly modified literature procedure,⁸ to a suspension of NaN₃ (3.26 g, 50.2 mmol) in acetonitrile (16 mL) a solution of ICI (4.06 g, 25 mmol) in acetonitrile (8 mL) was added dropwise at – 10 °C and the mixture was stirred at the same temperature for 30 min. After that a solution of alkene (20 mmol) in acetonitrile (8 mL) was added slowly, and the mixture was stirred at room temperature for 30 min. Then, the reaction mixture was quenched portionwise with saturated aqueous solution of Na₂S₂O₃, and the organic phase was extracted twice with Et₂O (20 mL). The combined organic layer was washed with brine and dried over MgSO₄. After evaporation of solvent, resulting crude materials were used immediately for the next step without purification.

To the solution of obtained compound in Et_2O (40 mL) at 0 °C t-BuOK (2.30 g, 20.5 mmol) was added, and the mixture was stirred for 90 min at the same temperature. After completition of the reaction resulted mixture was quenched with water (50 mL). The

organic phase was extracted twice with Et₂O (20 mL), dried over MgSO₄ and evaporated under reduced pressure. Resulting crude materials were purified by column chromatography (eluent - PE) to give pure vinyl azide.

Synthesis of 1-ethynylcyclohex-1-ene (X).

Following the literature procedure,⁹ the solution of 1-ethynylcyclohexan-1-ol (3.11 g, 25 mmol) in DCM (22 mL) was added Et₃N (17.5 mL, 125 mmol). Then MsCI (4.8 mL, 62.5 mmol) in DCM (7 mL) was slowly added to the mixture under 0°C. The mixture was warmed to room temperature and stirred overnight. Then the mixture was quenched with H_2O (50 mL). The organic layer was separated and washed with brine (2×10 mL), dried over anhydrous MgSO₄, filtered, and concentrated under vacuum. The residue was subjected to flash column chromatography for purification using petroleum ether as eluent to give 1-ethynylcyclohex-1-ene **X** (1.96 g, 63%) as colourless oil.

1-ethynylcyclohex-1-ene (X).⁹ 1-ethynylcyclohexan-1-ol (3.11 g, 25 mmol) gave the title compound as a colorless oil (1.96 g), yield 63%. ¹H NMR (CDCl₃): 1.57 – 1.63 (m, 4H), 2.07 – 2.12 (m, 4H), 2.78 (s, 1H), 6.18 (s, 1H). δ: ¹³C NMR, (CDCl₃), δ: 21.5, 22.3, 25.7, 29.1, 74.4, 85.8, 119.9, 136.5.

Synthesis of AgN_{3.}

Silver azide was synthesized following literature procedure¹⁰. A-100 mL round bottom flask was equipped with a magnetic stir bar. During synthesis the flask was protected from the light with aluminum foil. NaN₃ (130 mg, 2 mmol, 1 equiv) was added into this flask and then was dissolved in deionized water (4 mL) under magnetic stirring. AgNO₃ (357 mg, 2.1 mmol, 1.05 equiv) was dissolved in deionized water (2 mL). After that solution of silver nitrate was added into the round bottom flask by a syringe and stirred for 10 min at room temperature. When the reaction was completed mixture was filtered

to remove the supernatant. The solid AgN₃ was washed by deionized water (3×10 mL) and anhydrous ethanol (3×5 mL). The sample was dried at 45 °C for 3 h to obtain the product of white silver azide solid in a yield of 90%. The product was stored in dark at room temperature.

Synthesis of vinyl azides 1j, 1k, 1s and 1t.

Compounds **1j**, **1k**, **1s** and **1t** were synthesized according to the literature procedure¹⁰. A 20-mL sealed tube was equipped with magnetic stir bar, then alkyne (8 mmol, 1 equiv.) and dimethylsulfoxide (DMSO) (8 mL) were added. After that trimethylsilyl azide (1.6 mL, 12 mmol, 1.5 equiv.) was added into this flask through a 2-mL syringe, and water (0.3 mL, 16 mmol, 2 equiv.) was added by using a 1-mL syringe. Finally, the freshly synthesized AgN₃ (60 mg, 0.4 mmol, 5 mol% equiv.) was added and stirred under air. With all reagents added the sealed tube was equipped with silicone rubber septa and then pierced by a needle. The flask was placed in an oil bath at an ambient temperature of 80 °C and was stirred for 100 min. After completition of reaction the mixture was diluted with water (50 mL) and extracted with DCM (3×10 mL). The organic layer was separated and washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The residue was subjected to flash column chromatography for purification using petroleum ether as eluent to give title compound.

(1-azidovinyl)benzene (1a).¹¹ styrene (3 g, 28.8 mmol) gave the title compound as a yellow oil (1.96 g), yield 63%. ¹H NMR (CDCl₃), δ: 4.98 (d, *J* = 2.4 Hz, 1H), 5.45 (d, *J* = 2.4 Hz, 1H), 7.35-7.40 (m, 3H), 7.57-7.60 (m, 2H). ¹³C NMR, (CDCl₃), δ: 98.1, 125.7, 128,6, 129.2, 134.4, 145.2.

1-(1-azidovinyl)-4-methylbenzene (1b).¹² 1-methyl-4-vinylbenzene (3.4 g, 28.8 mmol) gave the title compound as a yellow oil (2.38 g), yield 52%. ¹H NMR (CDCl₃), δ : 2.38 (s, 3H), 4.93 (d, *J* = 2.3 Hz, 1H), 5.40 (d, *J* = 2.3 Hz, 1H), 7.18 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 2H). ¹³C NMR, (CDCl₃), δ : 21.3, 97.3, 125,6, 129.3, 131.7, 139.3, 145.2.

1-(1-azidovinyl)-4-isopropylbenzene (1c). 1-isopropyl-4-vinylbenzene (4.21 g, 28.8 mmol) gave the title compound as a yellow oil (2.38 g), yield 52%. ¹H NMR (CDCl₃), δ: 1.26 (d, *J* = 6.9 Hz, 6H), 2.92 (sep, *J* = 7.0 Hz, 1H), 4.92 (d, *J* = 2.3 Hz, 1H), 5.39 (d, *J* = 2.3 Hz, 1H), 7.22 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H). ¹³C NMR, (CDCl₃), δ: 24.0, 34.0, 97,4, 125.7, 126.6, 132.0, 145.2, 150.2.

1-(1-azidovinyl)-4-(tert-butyl)benzene (1d).¹³ 1-(tert-butyl)-4-vinylbenzene (2.88 g, 18 mmol) gave the title compound as a yellow oil (1.58 g), yield 44%. ¹H NMR (CDCl₃), δ: 1.35 (s, 9H), 4.94 (d, *J* = 2.3 Hz, 1H), 5.42 (d, *J* = 2.3 Hz, 1H), 7.39 – 7.42 (m, 2H), 7.50 – 7.53 (m, 2H).¹³C NMR, (CDCl₃), δ: 31.4, 34.8, 97,4, 125.4, 125.5, 131.6, 145.1, 152.5.

1-(1-azidovinyl)-4-methoxybenzene (1e).¹² 1-methoxy-4-vinylbenzene (2.68 g, 20 mmol) gave the title compound as a white solid (1.82 g), yield 52%. ¹H NMR (CDCl₃), δ :

3.82 (s, 3H), 4.86 (d, *J* = 2.2 Hz, 1H), 5.32 (d, *J* = 2.2 Hz, 1H), 6.88 (d, *J* = 8.8 Hz, 2H), 7.50 (d, *J* = 8.8 Hz, 2H). ¹³C NMR, (CDCl₃), δ: 55.4, 96.3, 113,9, 114.1, 127.0, 144.8, 160.4.

1-(1-azidovinyl)-4-fluorobenzene (1f).¹² 1-fluoro-4-vinylbenzene (1.22 g, 10 mmol) gave the title compound as a yellow oil (865 mg), yield 53%. ¹H NMR (CDCl₃), δ : 4.94 (d, *J* = 2.4 Hz, 1H), 5.37 (d, *J* = 2.4 Hz, 1H), 7.01 – 7.07 (m, 2H), 7.52 – 7.56 (m, 2H). ¹³C NMR, (CDCl₃), δ : 97.7, 115.5 (d, *J* = 21.7 Hz), 127.6 (d, *J* = 8.3 Hz), 130.6 (d, *J* = 3.0 Hz), 144.3, 163.4 (d, *J* = 248.9 Hz).

1-(1-azidovinyl)-4-chlorobenzene (1g).¹² 1-chloro-4-vinylbenzene (762 mg, 5.5 mmol) gave the title compound as a yellow oil (542 mg), yield 66%. ¹H NMR (CDCl₃), δ: 4.97 (d, *J* = 2.6 Hz, 1H), 5.43 (d, *J* = 2.6 Hz, 1H), 7.30 – 7.34 (m, 2H), 7.47 – 7.51 (m, 2H). ¹³C NMR, (CDCl₃), δ: 98.3, 127.0, 128,8, 132.9, 135.2, 144.3.

1-(1-azidovinyl)-4-bromobenzene (1h).¹¹ 1-bromo-4-vinylbenzene (762 mg, 5.5 mmol) gave the title compound as a yellow oil (542 mg), yield 66%. ¹H NMR (CDCl₃), δ: 4.97 (d, *J* = 2.6 Hz, 1H), 5.44 (d, *J* = 2.6 Hz, 1H), 7.40 – 7.51 (m, 4H).¹³C NMR, (CDCl₃), δ: 98.4, 123.4, 127.3, 131.7, 133.4, 144.3.

S10

1-(azidomethyl)-4-(1-azidovinyl)benzene (1i).¹⁴ 1-(chloromethyl)-4-vinylbenzene (9.3 g, 61 mmol) gave the title compound as a yellow oil (4.24 g), yield 35%. ¹H NMR (CDCl₃), δ: 4.35 (s, 2H), 4.99 (d, *J* = 2.5 Hz, 1H), 5.47 (d, *J* = 2.5 Hz, 1H), 7.31 (d, *J* = 8.3 Hz, 2H), 7.59 (d, *J* = 8.3 Hz, 2H).¹³C NMR, (CDCl₃), δ: 54.5, 98.4, 126.1, 128.3, 134.4, 136.4, 144.7.

4-(1-azidovinyl)benzonitrile (1j).¹⁵ 4-ethynylbenzonitrile (445 mg, 3.5 mmol) gave the title compound as a colourless solid (304 mg), yield 51%. ¹H NMR (CDCl₃), δ : 5.11 (d, *J* = 2.9 Hz, 1H), 5.58 (d, *J* = 2.9 Hz, 1H), 7.62 – 7.69 (m, 4H).¹³C NMR, (CDCl₃), δ : 100.5, 112.8, 118.6, 126.2, 132.4, 138.5, 143.7.

1-(1-azidovinyl)-4-nitrobenzene (1k).¹⁶ 1-ethynyl-4-nitrobenzene (589 mg, 4 mmol) gave the title compound as a yellow solid (311 mg), yield 41%. ¹H NMR (CDCl₃), δ : 5.15 (d, *J* = 2.7 Hz, 1H), 5.64 (d, *J* = 2.7 Hz, 1H), 7.73 (d, *J* = 8.7 Hz, 2H), 8.20 (d, *J* = 8.7 Hz, 2H).¹³C NMR, (CDCl₃), δ : 101.2, 123.9, 126.4, 140.3, 143.5, 148.2.

1-(1-azidovinyl)-3-methylbenzene (1I).¹² 1-methyl-3-vinylbenzene (3.4 g, 28.8 mmol) gave the title compound as a yellow oil (1.6 g), yield 35%. ¹H NMR (CDCl₃), δ: 2.38 (s, 3H), 4.95 (d, *J* = 2.3 Hz, 1H), 5.42 (d, *J* = 2.3 Hz, 1H), 7.16-7.19 (m, 1H), 7.23-7.28 (m, 1H), 7.36-7.39 (m, 2H).¹³C NMR, (CDCl₃), δ: 21.6, 98.0, 122.9, 126.4, 128.5, 130.0, 134.4, 138.2, 145.3.

1-(1-azidovinyl)-3-chlorobenzene (1m).¹⁰ 1-chloro-3-vinylbenzene (762 mg, 5.5 mmol) gave the title compound as a yellow oil (622 mg), yield 63%. ¹H NMR (CDCl₃), δ : 4.98 (d, J = 2.7 Hz, 1H), 5.44 (d, J = 2.7 Hz, 1H), 7.32 – 7.26 (m, 2H), 7.42 (dt, J = 7.2, 1.8 Hz, 1H), 7.54 (t, J = 1.8 Hz, 1H). ¹³C NMR, (CDCl₃), δ : 98.9, 123.8, 125.9, 129.2, 129.8, 134.7, 136.2, 144.0.

1-(1-azidovinyl)-3-bromobenzene (1n).¹⁷ 1-bromo-3-vinylbenzene (1 g, 5.5 mmol) gave the title compound as a yellow oil (677 mg), yield 55%. ¹H NMR (CDCl₃), δ : 4.99 (d, *J* = 2.6 Hz, 1H), 5.46 (d, *J* = 2.6 Hz, 1H), 7.22 (t, *J* = 7.9 Hz, 1H), 7.46 – 7.50 (m, 2H), 7.72 (t, *J* = 1.5 Hz, 1H). ¹³C NMR, (CDCl₃), δ : 99.0, 122.8, 124.2, 128.8, 130.1, 132.2, 136.4, 143.9.

1-(1-azidovinyl)-2-chlorobenzene (1o).¹⁸ 1-chloro-2-vinylbenzene (762 mg, 5.5 mmol) gave the title compound as a yellow oil (217 mg), yield 22%. ¹H NMR (CDCl₃), δ: 4.91 (d, *J* = 1.0 Hz, 1H), 5.14 (d, *J* = 1.0 Hz, 1H), 7.28 – 7.39 (m, 3H), 7.42 – 7.45 (m, 1H).¹³C NMR, (CDCl₃), δ: 104.2, 127.0, 130.1, 130.5, 131.0, 132.9, 134.3, 143.3.

1-(1-azidovinyl)-2-fluorobenzene (1p).¹⁸ 1-fluoro-2-vinylbenzene (672 mg, 5.5 mmol) gave the title compound as a yellow oil (368 mg), yield 41%. ¹H NMR (CDCl₃), δ : 5.19 - 5.20 (m, 1H), 5.43 (d, *J* = 1.4 Hz, 1H), 7.08 - 7.18 (m, 2H), 7.29 - 7.37 (m, 1H), 7.47 - 7.52 (m, 1H). ¹³C NMR, (CDCl₃), δ : 103.7 (d, *J* = 8.9 Hz), 116.3 (d, *J* = 22.6 Hz), 122.5 (d, *J* = 11.6 Hz), 124.3 (d, *J* = 3.7 Hz), 129.4 (d, *J* = 2.5 Hz), 130.7 (d, *J* = 8.6 Hz), 139.8 (d, *J* = 2.7 Hz), 160.1 (d, *J* = 251.5 Hz).

2-(1-azidovinyl)naphthalene (1q).¹² 2-vinylnaphthalene (3.0 g, 20 mmol) gave the title compound as a yellow solid (2.33 g), yield 61%. ¹H NMR (CDCl₃), δ: 5.09 (d, *J* = 2.5 Hz, 1H), 5.61 (d, *J* = 2.5 Hz, 1H), 7.61 – 7.46 (m, 2H), 7.69 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.93 – 7.78 (m, 3H), 8.08 (d, *J* = 1.2 Hz, 1H). ¹³C NMR, (CDCl₃), δ: 98.4, 123.2, 125.1, 126.6, 126.8, 127.7, 128.3, 128.7, 131.6, 133.2, 133.7, 145.1.

4-azido-1,2-dihydronaphthalene (1r).¹⁶ 1,2-dihydronaphthalene (1.95 g, 15 mmol) gave the title compound as a yellow oil (642 mg), yield 25%. ¹H NMR (CDCl₃), δ: 2.46 (td, *J* = 8.4, 4.8 Hz, 2H), 2.84 (t, *J* = 8.0 Hz, 2H), 5.73 (t, *J* = 4.8 Hz, 1H), 7.25 – 7.13 (m, 3H), 7.42 – 7.37 (m, 1H).¹³C NMR, (CDCl₃), δ: 22.8, 27.8, 111.9, 122.3, 126.6, 127.5, 128.3, 130.5, 136.0, 136.4.

2-azidooct-1-ene (1s).¹⁰ oct-1-yne (882 mg, 8 mmol) gave the title compound as a colorless oil (777 mg), yield 63%. ¹H NMR (CDCl₃), δ: 0.89 (t, *J* = 6.5 Hz, 3H), 1.26-1.32 (m, 6H), 1.43-1.50 (m, 2H), 2.07 (t, *J* = 7.5 Hz, 2H), 4.62 (s, 2H). ¹³C NMR, (CDCl₃), δ: 14.2, 22.7, 27.4, 28.7, 31.7, 33.8, 98.1,147.0.

1-(1-azidovinyl)cyclohex-1-ene (1t).¹⁰ 1-ethynylcyclohex-1-ene (849 mg, 8 mmol) gave the title compound as a colorless oil (788 mg), yield 66%. ¹H NMR (CDCl₃), δ: 1.56-1.70 (m, 4H), 2.14-2.16 (m, 4H), 4.70 (s, 1H), 4.95 (s, 1H), 6.22 (s, 1H).¹³C NMR, (CDCl₃), δ: 22.0, 22.6, 25.4, 25.6, 95.4, 127.3, 130.9, 146.2.

Sulfonylation of vinyl azides with sodium sulfinates

General procedure for the optimization of the reaction conditions for the synthesis of (1Z,2Z)-1,2-bis(1-phenyl-2-(phenylsulfonyl)ethylidene)hydrazine 3aa from (1-azidovinyl)benzene 1a and sodium benzenesulfinate 2a (Table 1): A 50 mL round-bottom flask was equipped with a magnetic stir bar. Sodium benzenesulfinate 2a (164-246 mg, 1-1.5 mmol, 1.0-1.5 equiv.) and (1-azidovinyl)benzene 1a (145-218 mg, 1-1.5 mmol, 1.0-2.0 equiv.) were dissolved in 10 mL of appropriate solvent. After that, cerium (IV) ammonium nitrate (274-822 mg, 0.5-1.5 mmol, 0.5-1.5 equiv.) were added in one portion under magnetic stirring and stayed for 30 min (entry 4), 60 min (entries 1-3 and 7-13) or 90 min (entry 5) at room temperature or heated to 40°C (entry 6). When reaction was completed, the reaction mixture was diluted with water (50 mL). The organic materials were extracted with DCM (4×10 mL). Combined organic layer was washed with water (10 mL) and brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The yield of the desired product **3aa** was determined by ¹H NMR spectroscopy using 1,4-dinitrobenzene as an internal standard.

Synthesis of α -sulfonylated ketazines 3aa-3ta (Table 2).

A 50 mL round-bottom flask was equipped with a magnetic stir bar. Vinyl azide **1** (1.5 mmol, 1.5 equiv.) and sodium sulfinate **2** (1 mmol, 1.0 equiv.) were dissolved in 10 mL of THF-DMSO (1:1). After that, cerium (IV) ammonium nitrate (1.5 mmol, 1.5 equiv.) were added in one portion under magnetic stirring and stayed for 60 min at room temperature. When reaction was completed, the reaction mixture was diluted with water (50 mL). The organic materials were extracted with DCM (4×10 mL). Combined organic layer was washed with water (10 mL) and brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The desired products **3aa-3ta** were isolated by chromatography on SiO₂ with elution using CHCl₃-EA in a gradient of the latter from 2 to 5 vol%. (*Note:* due to low solubility of ketazine **3ai** isolation procedure should be changed to filtration. After completition of the reaction resulted mixture was diluted with 50 mL of water and filtered by vacuum filtration. Bright yellow precipitate was

subsequently washed with 20 mL of water, 10 mL of cold EtOH and 20 mL of diethyl ether. Dried precipitate was characterized without any additional purification)

(1Z,2Z)-1,2-bis(1-phenyl-2-(phenylsulfonyl)ethylidene)hydrazine (3aa). Bright orange solid. 222 mg (yield 86%). $R_f = 0.33$ (CHCl₃:EA 50:1), mp = 185.0-186.0°C. ¹H NMR (CDCl₃), δ : 4.90 (s, 4H), 7.25-7.31 (m, 4H), 7.38-7.51 (m, 8H), 7.71-7.79 (m, 8H). ¹³C NMR (CDCl₃), δ : 55.2, 128.2, 128.4, 128.6, 129.0, 131.3, 133.8, 135.3, 139.8, 155.6. HRMS (ESI) m/z (M+Na⁺) calculated for [C₂₈H₂₄N₂NaO₄S₂]⁺: 539.1070. Found: 539.1061.

(1Z,2Z)-1,2-bis(1-phenyl-2-tosylethylidene)hydrazine (3ab). Bright orange solid. 229 mg (yield 84%). R_f = 0.41 (CHCl₃:EA 50:1), mp = 190.0-192.0°C. ¹H NMR (CDCl₃), δ : 2.27 (s, 6H), 4.87 (s, 4H), 7.05 (d, J = 8.1 Hz, 4H), 7.38-7.43 (m, 4H), 7.46-7.51 (m, 2H), 7.59 (d, J = 8.2 Hz, 4H), 7.77 (d, J = 7.4 Hz, 4H), ¹³C NMR (CDCl₃), δ : 21.7, 55.3, 128.2, 128.5, 128.5, 129.6, 131.3, 135.4, 137.0, 144.9, 155.8. HRMS (ESI) m/z (M+H⁺) calculated for [C₃₀H₂₉N₂O₄S₂]⁺: 545.1563. Found: 545.1565.

(1Z,2Z)-1,2-bis(2-((4-methoxyphenyl)sulfonyl)-1-phenylethylidene)hydrazine

(3ac). Bright orange solid. 225 mg (yield 78%). $R_f = 0.34$ (CHCl₃:EA 50:1), mp = 171.0-173.0°C. ¹H NMR (DMSO-d6), δ : 3.70 (s, 6H), 5.09 (s, 4H), 6.86-6.89 (m, 4H), 7.41-7.46 (m, 4H), 7.49-7.54 (m, 2H), 7.57-7.60 (m, 4H), 7.79-7.82 (m, 4H). ¹³C NMR, (CDCl₃) δ : 54.4, 55.6, 114.3, 128.0, 128.1, 130.0, 130.9, 131.2, 135.3, 155.9, 163.2. HRMS (ESI) m/z (M+Na⁺) calculated for [C₃₀H₂₈N₂NaO₆S₂]⁺: 599.1281. Found: 599.1289.

N,N'-(((2Z,2'Z)-hydrazine-1,2-diylidenebis(2-phenylethan-1-yl-2

ylidenesulfonyl))bis(4,1-phenylene))diacetamide (3ad). Bright orange solid. 202 mg (yield 64%). $R_f = 0.31$ (CHCl₃:EA 50:1), mp = 238.0-240.0°C. ¹H NMR (DMSO-d6), δ : 2.08 (s, 6H), 5.04 (s, 4H), 7.39-7.44 (m, 4H), 7.48-7.56 (m, 10H), 7.75-7.78 (m, 4H), 10.25 (s, 2H). ¹³C NMR (DMSO-d6), δ : 24.2, 54.4, 118.5, 128.0, 128.1, 129.0, 130.9, 133.0, 135.1, 144.1, 155.5, 169.0. HRMS (ESI) m/z (M+H⁺) calculated for [C₃₂H₃₁N₄O₆S₂]⁺: 631.1680. Found: 631.1680.

(1Z,2Z)-1,2-bis(2-((4-fluorophenyl)sulfonyl)-1-phenylethylidene)hydrazine (3ae). Bright orange solid. 227 mg (yield 82%). $R_f = 0.62$ (CHCl₃:EA 50:1), mp = 189.0-191.0°C. ¹H NMR (DMSO-d6), δ : 5.22 (s, 4H), 7.16-7.22 (m, 4H), 7.41-7.46 (m, 4H), 7.50-7.55 (m, 2H), 7.72-7.77 (m, 4H), 7.79-7.82 (m, 4H). ¹³C NMR (DMSO-d6), δ : 54.1, 116.3 (d, J = 22.9 Hz), 128.1 (d, J = 9.4 Hz), 131.0, 131.0 131.2, 135.1, 135.8 (d, J = 2.6 Hz), 156.1, 165.0 (d, J = 253.4 Hz). HRMS (ESI) m/z (M+K⁺) calculated for [C₂₈H₂₂F₂N₂KO₄S₂]⁺: 591.0621. Found: 591.0624.

(1Z,2Z)-1,2-bis(2-((4-chlorophenyl)sulfonyl)-1-phenylethylidene)hydrazine (3af). Bright orange solid. 243 mg (yield 83%). $R_f = 0.63$ (CHCl₃:EA 50:1), mp = 249.0-250.0°C. ¹H NMR (DMSO-d6), δ : 5.18 (s, 4H), 7.42-7.46 (m, 8H), 7.51-7.53 (m, 2H), 7.68-7.71 (m, 4H), 7.78-7.81 (m, 4H). ¹³C NMR (DMSO-d6), δ : 54.0, 128.1, 128.2, 129.2, 129.7, 131.0, 135.1, 138.3, 139.1, 156.1. HRMS (ESI) m/z (M+H⁺) calculated for [C₂₈H₂₃³⁷Cl₂N₂O₄S₂]⁺: 587.0443. Found: 587.0440.

(1Z,2Z)-1,2-bis(2-(naphthalen-2-ylsulfonyl)-1-phenylethylidene)hydrazine (3ag). Bright orange solid. 234 mg (yield 76%). $R_f = 0.51$ (CHCl₃:EA 50:1), mp = 168.0-169.0°C. ¹H NMR (DMSO-d6), δ : 5.07 (s, 4H), 7.21-7.26 (m, 4H), 7.36-7.41 (m, 2H), 7.59-7.72 (m, 10H), 7.72-8.00 (m, 6H), 8.37 (d, J = 1.4 Hz, 2H). ¹³C NMR (DMSO-d6), δ : 54.3, 122.5, 127.6, 127.8, 127.8, 128.0, 129.2, 129.3, 129.4, 129.4, 130.8, 131.5, 134.8, 134.9, 136.8, 155.1. HRMS (ESI) m/z (M+Na⁺) calculated for [C₃₆H₂₈N₂NaO₄S₂]⁺: 639.1383. Found: 639.1381.

(1Z,2Z)-1,2-bis(1-phenyl-2-(thiophen-2-ylsulfonyl)ethylidene)hydrazine (3ah). Bright orange solid. 193 mg (yield 73%). $R_f = 0.36$ (CHCl₃:EA 50:1), mp = 211.0-212.0°C. ¹H NMR (DMSO-d6), δ : 5.27 (s, 4H), 7.02-7.04 (m, 2H), 7.43-7.55 (m, 8H), 7.88-7.92 (m, 6H).¹³C NMR (DMSO-d6), δ : 55.2, 128.1, 128.1, 128.2, 131.0, 134.8, 135.1, 135.8, 139.9, 155.6. HRMS (ESI) m/z (M+Na⁺) calculated for [C₂₄H₂₀N₂NaO₄S₄]⁺: 551.0198. Found: 551.0184.

(1Z,2Z)-1,2-bis(2-(methylsulfonyl)-1-phenylethylidene)hydrazine (3ai). Pale yellow solid. 131 mg (yield 68%). $R_f = 0.32$ (CHCl₃:EA 50:1), mp = 262.0-263.0°C. ¹H NMR (DMSO-d6), δ : 3.02 (s, 6H), 5.18 (s, 4H), 7.52-7.55 (m, 6H), 8.14-8.17 (m, 4H). ¹³C NMR (DMSO-d6), δ : 42.6, 52.8, 128.2, 128.5, 131.1, 135.6, 156.4. HRMS (ESI) m/z (M+H⁺) calculated for [C₁₈H₂₁N₂O₄S₂]⁺: 393.0937. Found: 393.0932.

(1Z,2Z)-1,2-bis(2-(ethylsulfonyl)-1-phenylethylidene)hydrazine (3aj). Yellow solid. 182 mg (yield 87%). $R_f = 0.36$ (CHCl₃:EA 30:1), mp = 185.0-186.0°C. ¹H NMR (CDCl₃), δ : 1.31 (t, J = 7.4 Hz, 6H), 3.07 (q, J = 7.4 Hz, 4H), 4.94 (s, 4H), 7.45-7.55 (m, 6H), 8.05-8.07 (m, 4H). ¹³C NMR (CDCl₃), δ : 6.7, 49.6, 51.9, 128.1, 129.0, 131.7, 135.7, 156.8. HRMS (ESI) m/z (M+H⁺) calculated for [C₂₀H₂₅N₂O₄S₂]⁺: 421.1250. Found: 421.1254.

(1Z,2Z)-1,2-bis(2-(isopropylsulfonyl)-1-phenylethylidene)hydrazine (3ak). Bright yellow solid. 128 mg (yield 57%). $R_f = 0.41$ (CHCl₃:EA 30:1), mp = 213.0-214.0°C. ¹H NMR (CDCl₃), δ : 1.33 (d, J = 6.9 Hz, 12H), 3.25 (sep, J = 6.9 Hz, 2H), 4.85 (s, 4H), 7.44-7.53 (m, 6H), 8.03-8.07 (m, 4H). ¹³C NMR (CDCl₃), δ : 15.6, 49.5, 55.4, 128.1, 128.8, 131.4, 135.9, 155.8. HRMS (ESI) m/z (M+H⁺) calculated for [C₂₂H₂₉N₂O₄S₂]⁺: 449.1563. Found: 449.1558.

(1Z,2Z)-1,2-bis(2-(cyclopropylsulfonyl)-1-phenylethylidene)hydrazine (3al). Bright yellow solid. 189 mg (yield 85%). $R_f = 0.35$ (CHCl₃:EA 50:1), mp = 204.0-205.0°C. ¹H NMR (DMSO-d6), δ : 0.84-0.94 (m, 8H), 2.69-2.77 (m, 2H), 5.22 (s, 4H), 7.47-7.54 (m, 6H), 8.12-8.16 (m, 4H). ¹³C NMR (DMSO-d6), δ : 4.8, 31.1, 52.0, 128.2, 128.5, 131.1, 135.6, 155.9. HRMS (ESI) m/z (M+H⁺) calculated for [C₂₂H₂₅N₂O₄S₂]⁺ : 445.1250. Found: 445.1251

(1Z,2Z)-1,2-bis(2-(phenylsulfonyl)-1-(p-tolyl)ethylidene)hydrazine (3ba). Bright orange solid. 223 mg (yield 82%). $R_f = 0.55$ (CHCl₃:EA 50:1), mp = 245.0-246.0°C. ¹H NMR (DMSO-d6), δ : 2.39 (s, 6H), 5.08 (s, 4H), 7.25 (d, J = 8.2 Hz, 4H), 7.39-7.44 (m, 4H), 7.55-7.60 (m, 2H), 7.63-7.70 (m, 8H). ¹³C NMR (DMSO-d6), δ : 21.0, 53.9, 127.7, 128.1, 128.8, 129.1, 132.5, 134.0, 139.6, 141.0, 155.3. HRMS (ESI) m/z (M+Na⁺) calculated for [C₃₀H₂₈N₂NaO₄S₂]⁺: 567.1383. Found: 567.1387.

(1Z,2Z)-1,2-bis(1-(4-isopropylphenyl)-2-(phenylsulfonyl)ethylidene)hydrazine

(3ca). Bright orange solid. 279 mg (yield 93%). $R_f = 0.73$ (CHCl₃:EA 50:1), mp = 226.0-228.0°C. ¹H NMR (DMSO-d6), δ : 1.28 (d, J = 6.9 Hz, 12H), 2.98 (m, 2H), 5.08 (s, 4H), 7.28 (d, J = 8.3 Hz, 4H), 7.39-7.44 (m, 4H), 7.54-7.59 (m, 2H), 7.68-7.73 (m, 8H). ¹³C NMR, (DMSO-d6) δ : 23.5, 33.3, 54.1,126.1, 127.6, 128.0, 128.9, 132.8, 133.7, 139.6, 151.5, 155.1. HRMS (ESI) m/z (M+K⁺) calculated for [C₃₄H₃₆N₂KO₄S₂]⁺ : 639.1748. Found: 639.1736.

(1Z,2Z)-1,2-bis(1-(4-(tert-butyl)phenyl)-2-(phenylsulfonyl)ethylidene)hydrazine

(3da). Bright orange solid. 195 mg (yield 62%). $R_f = 0.35$ (CHCl₃:EA 50:1), mp = 229.0-230.0°C. ¹H NMR (DMSO-d6), δ : 1.36 (s, 18H), 5.09 (s, 4H), 7.38-7.44 (m, 8H), 7.54-7.58 (m, 2H), 7.67-7.73 (m, 8H). ¹³C NMR (DMSO-d6), δ : 30.9, 34.6, 54.1, 125.0, 127.7, 127.9, 129.0, 132.5, 133.9, 139.6, 153.8, 155.1. HRMS (ESI) m/z (M+Na⁺) calculated for [C₃₆H₄₀N₂NaO₄S₂]⁺: 651.2322. Found: 651.2314.

(1Z,2Z)-1,2-bis(1-(4-methoxyphenyl)-2-(phenylsulfonyl)ethylidene)hydrazine (3ea). Bright orange solid. 262 mg (yield 91%). $R_f = 0.75$ (CHCl₃:EA 50:1), mp = 249.0-251.0°C. ¹H NMR (DMSO-d6), δ : 3.86 (s, 6H), 5.08 (s, 4H), 6.97-7.00 (m, 4H), 7.39-7.44 (m, 4H), 7.54-7.60 (m, 2H), 7.63-7.66 (m, 4H), 7.74-7.77 (m, 4H). ¹³C NMR, (DMSO-d6) δ : 53.7, 55.4, 113.7, 127.7, 127.8, 129.1, 129.9, 133.9, 139.5, 154.7, 161.6. HRMS (ESI) m/z (M+H⁺) calculated for [C₃₀H₂₉N₂O₆S₂]⁺: 577.1462. Found: 577.1467.

(1Z,2Z)-1,2-bis(1-(4-fluorophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine (3fa). Bright orange solid. 221 mg (yield 80%). $R_f = 0.38$ (CHCl₃:EA 50:1), mp = 205.0-206.0°C. ¹H NMR (DMSO-d6), δ : 5.14 (s, 4H), 7.24-7.30 (m, 4H), 7.39-7.44 (m, 4H), 7.53-7.58 (m, 2H), 7.66-7.68 (m, 4H), 7.84-7.89 (m, 4H). ¹³C NMR (DMSO-d6), δ : 53.9, 115.2 (d, *J* = 21.8 Hz), 127.8, 129.1, 130.6 (d, *J* = 8.8 Hz), 131.7 (d, *J* = 2.9 Hz), 134.0, 139.3, 155.0, 163.8 (d, *J* = 249.7 Hz), HRMS (ESI) m/z (M+K⁺) calculated for [C₂₈H₂₂F₂N₂KO₄S₂]⁺: 591.0621. Found: 591.0613.

(1Z,2Z)-1,2-bis(1-(4-chlorophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine (3ga). Bright orange solid. 263 mg (yield 90%). $R_f = 0.46$ (CHCl₃:EA 50:1), mp = 247.0-249.0°C. ¹H NMR (DMSO-d6), δ : 5.10 (s, 4H), 7.41-7.51 (m, 8H), 7.56-7.61 (m, 2H), 7.68-7.71 (m, 4H), 7.80-7.83 (m, 4H). ¹³C NMR, (DMSO-d6) δ : 53.9, 127.7, 128.2, 129.1, 129.9, 133.9, 134.0, 135.9, 139.2, 155.2. HRMS (ESI) m/z (M+H⁺) calculated for [C₂₈H₂₃³⁵Cl₂N₂O₄S₂]⁺: 585.0471. Found: 585.0476.

(1Z,2Z)-1,2-bis(1-(4-bromophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine (3ha). Bright orange solid. 277 mg (yield 82%). $R_f = 0.71$ (CHCl₃:EA 50:1), mp = 265.0-267.0°C. ¹H NMR (DMSO-d6), δ : 5.11 (s, 4H), 7.40-7.45 (m, 4H), 7.52-7.60 (m, 2H), 7.63-7.67 (m, 8H), 7.72-7.75 (m, 4H). ¹³C NMR, (DMSO-d6) δ : 53.8, 125.0, 127.8, 129.2, 130.2, 131.2, 134.1, 134.3, 139.2, 155.4. HRMS (ESI) m/z (M+Na⁺) calculated for [C₂₈H₂₂⁷⁹Br₂N₂NaO₄S₂]⁺: 694.9280. Found: 694.9270.

(1Z,2Z)-1,2-bis(1-(4-(azidomethyl)phenyl)-2-(phenylsulfonyl)ethylidene)hydrazine (3ia). Bright orange solid. 279 mg (yield 89%). $R_f = 0.60$ (CHCl₃:EA 50:1), mp = 183.0185.0°C. ¹H NMR (DMSO-d6), δ : 4.56 (s, 4H), 5.14 (s, 4H), 7.37-7.45 (m, 8H), 7.52-7.57 (m, 2H), 7.67-7.69 (m, 4H), 7.82-7.85 (m, 4H). ¹³C NMR, (DMSO-d6) δ : 53.2, 54.0, 127.7, 128.1, 128.5, 129.1, 134.0, 134.9, 138.6, 139.5, 155.4. HRMS (ESI) m/z (M+H⁺) calculated for [C₃₀H₂₇N₈O₄S₂]⁺: 627.1591. Found: 627.1587.

4,4'-((1Z,1'Z)-hydrazine-1,2-diylidenebis(2-(phenylsulfonyl)ethan-1-yl-1-ylidene)) dibenzonitrile (3ja). Bright orange solid. 221 mg (yield 78%). $R_f = 0.38$ (CHCl₃:EA 30:1), mp = 162.0-163.0°C. ¹H NMR (DMSO-d6), δ : 5.19 (s, 4H), 7.39-7.44 (m, 4H), 7.53-7.58 (m, 2H), 7.66-7.69 (m, 4H), 7.91 (d, J = 8.4 Hz, 4H), 7.99 (d, J = 8.4 Hz, 4H). ¹³C NMR, (DMSO-d6), δ : 54.0, 113.2, 118.5, 127.9, 127.9, 129.0, 129.2, 132.1, 134.2, 139.1, 155.5. HRMS (ESI) m/z (M+Na⁺) calculated for [C₃₀H₂₂N₄NaO₄S₂]⁺: 589.0975. Found: 589.0975.

(1Z,2Z)-1,2-bis(1-(4-nitrophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine (3ka). Bright orange solid. 215 mg (yield 71%). $R_f = 0.49$ (CHCl₃:EA 30:1), mp = 181.0-182.0°C. ¹H NMR (DMSO-d6), δ : 5.22 (s, 4H), 7.39-7.44 (m, 4H), 7.52-7.57 (m, 2H), 7.67-7.69 (m, 4H), 8.09 (d, J = 9.0 Hz, 4H), 8.28 (d, J = 9.0 Hz, 4H). ¹³C NMR, (DMSO-d6) δ : 54.2, 123.2, 127.9, 129.3, 129.7, 134.3, 140.0, 140.7, 148.7, 155.4. HRMS (ESI) m/z (M+H⁺) calculated for [C₂₈H₂₃N₄O₈S₂]⁺: 607.0952. Found: 607.0942.

(1Z,2Z)-1,2-bis(2-(phenylsulfonyl)-1-(m-tolyl)ethylidene)hydrazine (3la). Bright orange solid. 261 mg (yield 96%). $R_f = 0.43$ (CHCl₃:EA 50:1), mp = 225.0-227.0°C. ¹H NMR (DMSO-d6), δ : 2.36 (s, 6H), 5.10 (s, 4H), 7.31-7.32 (m, 4H), 7.41-7.46 (m, 4H), 7.56-7.63 (m, 6H), 7.70-7.73 (m, 4H). ¹³C NMR, (DMSO-d6) δ : 21.0, 54.2, 125.3, 127.6, 128.1, 128.4, 129.0, 131.6, 133.9, 135.1, 137.3, 139.7, 155.4. HRMS (ESI) m/z (M+Na⁺) calculated for [C₃₀H₂₈N₂NaO₄S₂]⁺: 567.1383. Found: 567.1389.

(1Z,2Z)-1,2-bis(1-(3-chlorophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine (3ma). Bright orange solid. 234 mg (yield 80%). $R_f = 0.61$ (CHCl₃:EA 50:1), mp = 237.0-239.0°C. ¹H NMR (DMSO-d6), δ : 5.14 (s, 4H), 7.43-7.49 (m, 6H), 7.55-7.59 (m, 4H), 7.71-7.74 (m, 4H), 7.77-7.80 (m, 2H), 7.84-7.85 (m, 2H). ¹³C NMR, (DMSO-d6), δ : 54.1, 126.9, 127.7, 127.7, 129.1, 130.0, 130.8, 133.2, 134.0, 137.1, 139.3, 155.1. HRMS (ESI) m/z (M+Na⁺) calculated for [C₂₈H₂₂³⁵Cl₂N₂NaO₄S₂]⁺: 607.0290. Found: 607.0286.

(1Z,2Z)-1,2-bis(1-(3-bromophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine (3na). Bright orange solid. 287 mg (yield 85%). $R_f = 0.50$ (CHCl₃:EA 50:1), mp = 233.0-235.0°C. ¹H NMR (DMSO-d6), δ : 5.16 (s, 4H), 7.38-7.48 (m, 6H), 7.55-7.60 (m, 2H),

7.70-7.73 (m, 6H), 7.82-7.84 (m, 2H), 8.00 (s, 2H). ¹³C NMR (CDCl₃), δ : 54.1, 121.7, 127.2, 127.7, 129.1, 130.2, 130.5, 133.7, 134.0, 137.3, 139.3, 155.1. HRMS (ESI) m/z (M+Na⁺) calculated for [C₂₈H₂₂⁷⁹Br₂N₂NaO₄S₂]⁺: 694.9280. Found: 694.9278.

(1Z,2Z)-1,2-bis(1-(2-chlorophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine (major) (3oa). Mixture of diastereomeres ZZ : ZE+EE (2.8:1). Bright orange solid. 217 mg (yield 74%). R_f = 0.31 (CHCl₃:EA 50:1). ¹H NMR (DMSO-d6), δ: *ZZ-isomer (major)* : 5.08 (s, 4H), 7.23-7.98 (m, 18H); *ZE- and EE-isomers (minor)*: 4.79 (s, 4H, ZE-or EE-isomer), 4.85 (s, 4H, ZE-or EE-isomer), 7.23-7.98 (m, 18H).¹³C NMR (DMSO-d6), δ: 55.78, 56.56, 62.33, 126.39, 126.78, 126.95, 127.39, 127.51, 127.62, 127.92, 129.00, 129.10, 129.31, 129.67, 130.10, 130.20, 130.26, 130.71, 130.94, 131.05, 131.25, 131.43, 133.92, 134.09, 153.21, 154.04, 154.56. HRMS (ESI) m/z (M+Na⁺) calculated for [C₂₈H₂₂³⁵Cl₂N₂NaO₄S₂]⁺: 607.0290. Found: 607.0280.

(1Z,2Z)-1,2-bis(1-(2-fluorophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine (major) (3pa). Mixture of diastereomeres ZZ : ZE+EE (4.1:1). Bright orange solid. 116 mg (yield 42%). R_f = 0.47 (CHCl₃:EA 50:1), mp = 192.0-194.0°C. ¹H NMR (DMSO-d6), δ: ZZ*isomer (major)*: 4.97 (s, 4H), 7.03-7.86 (m, 18H); ZE- and EE-isomers (minor): 4.63 (s, 4H, ZE-or EE-isomer), 4.76 (s, 4H, ZE-or EE-isomer), 7.03-7.86 (m, 18H).¹³C NMR (DMSO-d6), δ: 55.5, 55.5, 56.0, 56.1, 62.8, 115.1, 115.4, 115.8, 116.1, 116.4, 123.5, 123.7, 123.8, 124.3, 124.3, 124.4, 124.4, 127.6, 127.7, 127.9, 129.0, 129.1, 129.3, 129.6, 129.6, 130.3, 130.3, 130.7, 130.8, 132.2, 132.2, 132.2, 132.3, 132.3, 132.4, 132.7, 132.8, 134.0, 134.1, 134.2, 138.8, 139.1, 150.7, 151.5, 151.5, 153.0, 153.0, 158.1, 158.3, 161.7. HRMS (ESI) m/z (M+NH₄⁺) calculated for $[C_{28}H_{26}F_2N_3O_4S_2]^+$: 570.1327. Found: 570.1327.

(1Z,2Z)-1,2-bis(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethylidene)hydrazine (3qa). Bright orange solid. 265 mg (yield 86%). $R_f = 0.74$ (CHCl₃:EA 50:1), mp = 246.0-248.0°C. ¹H NMR (DMSO-d6), δ : 5.30 (s, 4H), 7.36-7.41 (m, 4H), 7.48-7.53 (m, 2H), 7.61-7.65 (m, 4H), 7.74-7.76 (m, 4H), 7.96-8.00 (m, 8H), 8.40 (s, 2H). ¹³C NMR (DMSO-d6), δ : 54.0, 124.2, 126.6, 127.5, 127.7, 127.7, 128.9, 129.0, 129.6, 129.6, 132.3, 132.6, 133.9, 134.0, 139.5, 155.5. HRMS (ESI) m/z (M+K⁺) calculated for [C₃₆H₂₈KN₂O₄S₂]⁺: 655.1122. Found: 655.1116

1,2-bis((S,Z)-2-(phenylsulfonyl)-3,4-dihydronaphthalen-1(2H)-ylidene)hydrazine

(3ra). Bright orange solid. 145 mg (yield 51%). R_f = 0.39 (CHCl₃:EA 50:1), mp = 246.0-247.0°C. ¹H NMR (CDCl₃), δ : 2.07 – 2.20 (m, 2H), 2.84 (dd, *J* = 16.6, 6.0 Hz, 4H), 3.57 – 3.69 (m, 2H), 5.40 (dd, *J* = 5.4, 1.8 Hz, 2H), 7.13 – 7.20 (m, 8H), 7.27 – 7.32 (m, 2H), 7.35 – 7.40 (m, 2H), 7.64 – 7.67 (m, 6H).¹³C NMR (CDCl₃), δ : 23.2, 25.5, 59.3, 126.1, 126.6, 128.7, 128.7, 129.2, 130.9, 131.2, 133.3, 139.7, 139.9, 156.3. HRMS (ESI) m/z (M+H⁺) calculated for [C₃₂H₂₉N₂O₄S₂]⁺: 569.1563. Found: 569.1563.

S26

(1Z,2Z)-1,2-bis(1-(phenylsulfonyl)octan-2-ylidene)hydrazine (3sa). Colorless solid. 83 mg (yield 31%). $R_f = 0.78$ (CHCl₃:EA 50:1), mp = 106.0-107.0°C. ¹H NMR (CDCl₃), δ : 0.88-0.91 (m, 6H), 1.22-1.35 (m, 16H), 2.40 (t, J = 7.4 Hz, 4H), 4.22 (s, 4H), 7.48-7.53 (m, 4H), 7.60-7.62 (m, 2H), 7.81-7.84 (m, 4H). ¹³C NMR (CDCl₃), δ : 14.2, 22.7, 25.6, 29.1, 31.8, 37.2, 56.8, 128.2, 129.2, 133.9, 140.0, 158.6. HRMS (ESI) m/z (M+H⁺) calculated for [C₂₈H₄₁N₂O₄S₂]⁺: 533.2502. Found: 533.2504.

(1Z,2Z)-1,2-bis(1-(cyclohex-1-en-1-yl)-2-(phenylsulfonyl)ethylidene)hydrazine (3ta). Pale yellow solid. 197 mg (yield 75%). $R_f = 0.6$ (CHCl₃:EA 50:1), mp = 170.0-171.0°C. ¹H NMR (CDCl₃), δ : 1.59-1.62 (m, 8H), 2.15-2.21 (m, 8H), 4.59 (s, 4H), 6.44 (d, *J* = 4.0 Hz, 2H), 7.43-7.48 (m, 4H), 7.55-7.60 (m, 2H), 7.79-7.81 (m, 4H). ¹³C NMR (CDCl₃), δ : 21.9, 22.3, 25.0, 26.7, 53.6, 128.4, 128.9, 133.7, 135.8, 137.3, 140.2, 154.9. HRMS (ESI) m/z (M+H⁺) calculated for [C₂₈H₃₃N₂O₄S₂]⁺: 525.1876. Found: 525.1866.

Procedure for scaled synthesis of sulfonylated azine 3aa (Table 2)

A 100-mL round bottom flask was equipped with a magnetic stir bar. Vinyl azide **1** (1088 mg, 7.5 mmol) and sodium sulfinate **2** (821 mg, 5 mmol) were dissolved in 50 mL of THF–DMSO (1:1). After that, cerium (IV) ammonium nitrate (4,11 g, 7.5 mmol) were added in one portion at room temperature under magnetic stirring. When reaction was completed, the reaction mixture was diluted with water (100 mL) and extracted with DCM (4×30 mL). Combined organic layer was washed with water (30 mL) and brine (30mL), dried over Na₂SO₄ and concentrated under reduced pressure. The desired products **3aa**

was isolated by chromatography on SiO₂ with elution using CHCl₃-EA in a gradient of the latter from 2 to 5 vol% to give title compound in yield 70%.

Procedure for the synthesis of β -ketosulfone 10aa from ketazine 3aa

A 20-mL sealed tube was equipped with a magnetic stir bar. (1Z,2Z)-1,2-bis(1-phenyl-2-(phenylsulfonyl)ethylidene)hydrazine **3aa** (258 mg, 0.5 mmol) and 12 N hydrochloric acid (0.5 mL) were dissolved in 5 mL of THF. With all reagents added the sealed tube was equipped with silicone rubber septa and then the tube was placed in an oil bath at an ambient temperature of 80 °C and was stirred for 3 hours. After completition of reaction the mixture was diluted with water (50 mL) and extracted with DCM (3×10 mL). The organic layer was separated and washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The residue was characterized without any additional purification.

1-phenyl-2-(phenylsulfonyl)ethan-1-one (10aa).¹⁹ Colorless solid. 247 mg (yield 95%). R_f = 0.51 (PE:EA = 2:1), mp = 92.0-93.0°C. ¹H NMR (CDCl₃), δ : 4.74 (s, 4H), 7.44-7.67 (m, 6H), 7.88-7.94 (m, 4H). ¹³C NMR (CDCl₃), δ : 63.5, 128.7, 129.0, 129.3, 129.4, 134.3, 134.5, 135.8, 138.9, 188.1.

Procedure for the experiment with Mn(OAc)₂·4H₂O addition (Scheme 5, A)

A 100-mL round bottom flask was equipped with a magnetic stir bar. (1-Azidovinyl)benzene **1a** (218 mg, 1.5 mmol), sodium benzenesulfinate **2a** (164 mg, 1 mmol) and Mn(OAc)₂·4H₂O (245 mg, 1 mmol) were dissolved in 10 mL of THF-DMSO (1:1). After that, cerium (IV) ammonium nitrate (822 mg, 1.5 mmol) were added in one portion at room temperature under magnetic stirring. When the reaction was completed, the reaction mixture was diluted with water (50 mL) and extracted with DCM (4×10 mL). Combined organic layer was washed with water (10 mL) and brine (10 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The yield of the desired products **3aa** and **9aa** was determined by ¹H NMR spectroscopy using 1,4-dinitrobenzene as an internal standard.

Procedure for the experiment with Mn(OAc)₃·2H₂O (Scheme 5, B)

A 100-mL round bottom flask was equipped with a magnetic stir bar. (1-Azidovinyl)benzene **1a** (218 mg, 1.5 mmol), sodium benzenesulfinate **2a** (164 mg, 1 mmol) and Mn(OAc)₂·4H₂O (245 mg, 1 mmol) were dissolved in 10 mL of THF–DMSO (1:1). After that Mn(OAc)₃·2H₂O (402 mg, 1.5 mmol) were added in one portion at room temperature under magnetic stirring. When the reaction was completed, the reaction mixture was diluted with water (50 mL) and extracted with DCM (4×10 mL). Combined organic layer was washed with water (10 mL) and brine (10 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The yield of product **9aa** was determined by ¹H NMR spectroscopy using 1,4-dinitrobenzene as an internal standard.

Radical trapping experiments

Procedure for radical trapping experiment with addition of TEMPO (Scheme 2)

A 100-mL round bottom flask was equipped with a magnetic stir bar. (1-Azidovinyl)benzene **1a** (218 mg, 1.5 mmol), sodium benzenesulfinate **2a** (164 mg, 1 mmol) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) (469 mg, 3 mmol) were dissolved in 10 mL of THF-DMSO (1:1). After that, cerium (IV) ammonium nitrate (822 mg, 1.5 mmol) were added in one portion at room temperature under magnetic stirring. When the reaction was completed, the reaction mixture was diluted with water (50 mL) and extracted with DCM (4×10 mL). Combined organic layer was washed with water (10 mL) and brine (10 mL), dried over Na₂SO₄ and concentrated under reduced pressure.

The yield of the desired product **3aa** was determined by ¹H NMR spectroscopy using 1,4-dinitrobenzene as an internal standard.

Procedure for radical trapping experiment with addition of BHT (Scheme 2)

A 100-mL round bottom flask was equipped with a magnetic stir bar. (1-Azidovinyl)benzene **1a** (218 mg, 1.5 mmol), sodium benzenesulfinate **2a** (164 mg, 1 mmol) and 2,6-Di-tert-butyl-4-methylphenol (BHT) (469 mg, 3 mmol) were dissolved in 10 mL of THF–DMSO (1:1). After that, cerium (IV) ammonium nitrate (822 mg, 1.5 mmol) were added in one portion at room temperature under magnetic stirring. When reaction was completed, the reaction mixture was diluted with water (50 mL) and extracted with DCM (4×10 mL). Combined organic layer was washed with water (10 mL) and brine (10 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The yield of the desired product **3aa** was determined by ¹H NMR spectroscopy using 1,4-dinitrobenzene as an internal standard. After that, the remaining reaction mixture was purified by chromatography on SiO₂ with elution using PE-EA in a gradient of the latter from 2 to 50 vol% to give adduct **6** (14 mg).

2,6-di-tert-butyl-4-methyl-4-(phenylsulfonyl)cyclohexa-2,5-dien-1-one (6).²⁰ Colorless solid. 14 mg (yield 4%). $R_f = 0.71$ (PE:EA 5:1), mp = 170.0-171.0°C. ¹H NMR (CDCl₃), δ : 1.10 (s, 18H), 1.83 (s, 3H), 6.65 (s, 2H), 7.40 (t, J = 7.7 Hz, 2H), 7.56 (d, J = 7.5 Hz, 1H), 7.65 (d, J = 7.5 Hz, 2H). ¹³C NMR (CDCl₃), δ : 18.6, 29.1, 35.4, 66.0, 128.4, 130.5, 133.8, 134.4, 135.7, 151.5, 183.8. HRMS (ESI) m/z (M+H⁺) calculated for [C₂₁H₂₉O₃S]⁺: 361.1832. Found: 361.1835.

EPR-spectra of spin-adducts of sulfonyl radicals with DMPO

EPR spectrum was recorded under Ar atmosphere on Adani Spinscan X instrument (X-Band, ca. 9.4 GHz) at 30–32 °C with modulation amplitude of 100 μ T, center field – 336 mT, sweep width – 7 mT, sweep time – 60 s, MW power 2.8 mW, one scan per spectrum. All solutions were prepared using dried DMSO stored under molecular sieves. DMPO (5,5-dimethyl-1-pyrroline N-oxide, 8 mg, 7×10⁻² mmol) was added into glass vial equipped with rubber septum. After that, 0.01M solution of sodium benzenesulfinate (1.6 mL) was added using 2 mL syringe, which was preliminary back-filled with argon. This solution was purged with argon for 3 minutes and then 0.01M solution of cerium (IV) ammonium nitrate (1.6 mL) was added using 2 mL syringe. Right after that resultant solution was transferred into a capillary tube (internal diameter was ca. 1.2 mm) preliminary purged with argon, placed into spectrometer cavity, and the spectrum was recorded 2 min after mixing of reagents. Experimental spectrum was successfully fitted and simulated using EasySpin 6.0.0 software²¹ applying following parameters (q_{iso} =2.00572, a_N = 1.27 mT, a_H = 1.40 mT) (Figure S1).^{22, 23}

Figure S1. Experimental spectrum of spin-adduct 7 (blue line) and simulated spectrum of 7 (red line).

In addition, g-factor and hyperfine splitting constants for spin-adduct **7** were calculated $(g_{iso}=2.00564, a_N=0.99 \text{ mT}, a_H=1.97 \text{ mT})$. EPR calculations were performed on the level of theory PBE0-D3(BJ)/ZORA-def2-QZVPP/CPCM(DMSO)//B3LYP/def2-QZVP/CPCM(DMSO) with zeroth order regular approximation in ORCA 5.0.3 program package.

EPR spectrum was recorded under Ar atmosphere on Adani Spinscan X instrument (X-Band, ca. 9.4 GHz) at 30–32 °C with modulation amplitude of 100 μ T, center field – 336 mT, sweep width – 7 mT, sweep time – 60 s, MW power 2.8 mW, one scan per spectrum. All solutions were prepared using dried DMSO stored under molecular sieves. DMPO (5,5-dimethyl-1-pyrroline N-oxide, 8 mg, 7×10⁻² mmol) was added into glass vial equipped with rubber septum. After that, 0.01M solution of sodium methanesulfinate (1.6 mL) was added using 2 mL syringe, which was preliminary back-filled with argon. This solution was purged with argon for 3 minutes and then 0.01M solution of cerium (IV) ammonium nitrate (1.6 mL) was added using 2 mL syringe. Right after that resultant solution was transferred into a capillary tube (internal diameter was ca. 1.2 mm) preliminary purged with argon, placed into spectrometer cavity, and the spectrum was recorded 2 min after mixing of reagents. Experimental spectrum was successfully fitted and simulated using EasySpin 6.0.0 software²¹ applying following parameters (q_{iso} =2.00566, a_N = 1.30 mT, a_H = 1.48 mT) (Figure S2).^{22, 23}

Figure S2. Experimental spectrum of spin-adduct 7' (blue line) and simulated spectrum of 7' (red line).

In addition, g-factor and hyperfine splitting constants for spin-adduct **7**' were calculated $(g_{iso}=2.00582, a_N=1.00 \text{ mT}, a_H=1.28 \text{ mT})$. EPR calculations were performed on the level of theory PBE0-D3(BJ)/ZORA-def2-QZVPP/CPCM(DMSO)//B3LYP/def2-QZVP/CPCM(DMSO) with zeroth order regular approximation in ORCA 5.0.3 program package.

EPR-spectra of spin-adducts of iminyl radicals with DMPO.

EPR spectrum was recorded under Ar atmosphere on Adani Spinscan X instrument (X-Band, ca. 9.4 GHz) at 30–32 °C with modulation amplitude of 100 μ T, center field – 336 mT, sweep width – 7 mT, sweep time – 60 s, MW power 2.8 mW, one scan per spectrum. For detection of spin-adduct **8**, DMPO (5,5-dimethyl-1-pyrroline N-oxide, 5 mg, 4×10⁻² mmol) was added into glass vial equipped with rubber septum. After that, 0.01M solution of sodium benzenesulfinate **2a** (1 mL) and 0.01M solution of (1-azidovinyl)benzene **1a** (1 mL) was added using 2 mL syringe, which was preliminary back-filled with argon. This solution was purged with argon for 3 minutes and then 0.01M solution of cerium (IV) ammonium nitrate (1 mL) was added using 2 mL syringe. Right after that resultant solution was transferred into a capillary tube (internal diameter was ca. 1.2 mm) preliminary purged with argon, placed into spectrometer cavity, and the spectrum was recorded 2 min after mixing of reagents. Experimental spectrum was successfully fitted and simulated using EasySpin 6.0.0 software applying following parameters (g_{iso}=2.00583, aN¹= 0.27 mT, aN²= 1.39 mT, aH= 1.57 mT) (Figure S3).

Figure S3. Experimental spectrum of spin-adduct 8 (blue line) and simulated spectrum of 8 (red line).

In addition, g-factor and hyperfine splitting constants for spin-adduct **8** were calculated $(g_{iso}=2.00564, a_N^1= 0.17 \text{ mT}, a_N^2= 1.19 \text{ mT}, a_H= 2.02 \text{ mT})$. EPR calculations were performed on the level of theory PBE0-D3(BJ)/ZORA-def2-

QZVPP/CPCM(DMSO)//B3LYP/def2-QZVP/CPCM(DMSO) with zeroth order regular approximation in ORCA 5.0.3 program package.

EPR spectrum was recorded under Ar atmosphere on Adani Spinscan X instrument (X-Band, ca. 9.4 GHz) at 30–32 °C with modulation amplitude of 100 µT, center field – 336 mT, sweep width – 7 mT, sweep time – 60 s, MW power 2.8 mW, one scan per spectrum. For detection of spin-adduct **8'**, DMPO (5,5-Dimethyl-1-pyrroline N-oxide, 5 mg, 4×10^{-2} mmol) was added into glass vial equipped with teflon rubber septum. After that, 0.01M solution of sodium benzenesulfinate **2a** (1 mL) and 0.01M solution of 2-azidooct-1-ene **1s** (1 mL) was added using 2 mL syringe, which was preliminary back-filled with argon. This solution was purged with argon for 3 minutes and then 0.01M solution of cerium (IV) ammonium nitrate (1 mL) was added using 2 mL syringe. Right after that resultant solution was transferred into a capillary tube (internal diameter was ca. 1.2 mm) preliminary purged with argon, placed into spectrometer cavity, and the spectrum was recorded 2 min after mixing of reagents. Experimental spectrum was successfully simulated using EasySpin 6.0.0 software²¹ applying following parameters (g_{iso}=2.00572, a_N¹= 0.32 mT, a_N²= 1.42 mT, a_H= 1.47 mT) (Figure S4).

Figure S3. Experimental spectrum of spin-adduct 8' (blue line) and simulated spectrum of 8' (red line).

In addition, g-factor and hyperfine splitting constants for spin-adduct **8**' were calculated $(g_{iso}=2.00569, a_N^1= 0.16 \text{ mT}, a_N^2= 1.12 \text{ mT}, a_H= 2.05 \text{ mT})$. EPR calculations were performed on the level of theory PBE0-D3(BJ)/ZORA-def2-

QZVPP/CPCM(DMSO)//B3LYP/def2-QZVP/CPCM(DMSO) with zeroth order regular approximation in ORCA 5.0.3 program package.

Excluding the formation of analogous EPR-spectra when cerium (IV) ammonium nitrate was used with DMPO we carried out control experiments confirming the source of resulting signals.

EPR spectrum was recorded under Ar atmosphere on Adani Spinscan X instrument (X-Band, ca. 9.4 GHz) at 30–32 °C with modulation amplitude of 100 μ T, center field – 336 mT, sweep width – 7 mT, sweep time – 60 s, MW power 2.8 mW, one scan per spectrum. DMPO (5,5-Dimethyl-1-pyrroline N-oxide, 5 mg, 4×10⁻² mmol) was added into glass vial equipped with teflon rubber septum and dissolved in DMSO (1mL). This solution was purged with argon for 3 minutes and then 0.01M solution of cerium (IV) ammonium nitrate (1 mL) was added using 2 mL syringe. Right after that resultant solution was transferred into a capillary tube (internal diameter was ca. 1.2 mm) preliminary purged with argon, placed into spectrometer cavity, and the spectrum was recorded 2 min after mixing of reagents. Experimental spectrum was successfully simulated using EasySpin 6.0.0 software²¹ applying following parameters (g_{iso}= 2.00691, a_N= 0.70 mT, a_H¹= 0.36 mT, a_H²= 0.34 mT) (Figure S5).

Figure S5. Experimental spectrum of DMPO-Ox (blue line) and simulated spectrum of DMPO-Ox (red line)

EPR spectrum was recorded under Ar atmosphere on Adani Spinscan X instrument (X-Band, ca. 9.4 GHz) at 30–32 °C with modulation amplitude of 100 µT, center field – 336 mT, sweep width – 7 mT, sweep time – 60 s, MW power 2.8 mW, one scan per spectrum. DMPO (5,5-Dimethyl-1-pyrroline N-oxide, 3.4 mg, 3×10^{-2} mmol) was added into glass vial equipped with teflon rubber septum. After that, 0.01M solution of solution of 2-azidooct-1-ene **1s** (1 mL) was added using 2 mL syringe, which was preliminary back-filled with argon. This solution was purged with argon for 3 minutes and then 0.01M solution of cerium (IV) ammonium nitrate (1 mL) was added using 2 mL syringe. Right after that resultant solution was transferred into a capillary tube (internal diameter was ca. 1.2 mm) preliminary purged with argon, placed into spectrometer cavity, and the spectrum was recorded 2 min after mixing of reagents. Experimental spectrum was successfully fitted and simulated using EasySpin 6.0.0 software²¹ applying following parameters (g_{iso} =2.00671, a_N = 0.70 mT, a_H ¹= 0.37 mT, a_H ²= 0.36 mT) (Figure S6).

Figure S6. Experimental spectrum of DMPO-Ox (blue line) and simulated spectrum of DMPO-Ox (red line)

In addition, g-factor and hyperfine splitting constants for **DMPO-Ox** were calculated $(g_{iso}=2.00661, a_N=0.53 \text{ mT}, a_H^1=0.34 \text{ mT}, a_H^2=0.44 \text{ mT})$. The observed EPR spectra of the radical **DMPO-Ox** were also consistent with the literature data²⁴. EPR calculations were performed on the level of theory PBE0-D3(BJ)/ZORA-def2-QZVPP/CPCM(DMSO)//B3LYP/def2-QZVP/CPCM(DMSO) with zeroth order regular approximation in ORCA 5.0.3 program package.
As a result, in absence of sulfinate-anions signals detecting the formation of DMPO oxidation product **DMPO-Ox** were observed. Therefore, there were no signals similar to spin-adducts **7**, **8** or **8'** in absence of sulfonyl radical source.

X-ray crystallographic data and refinement details

X-ray diffraction data were collected at 100K on a Bruker Quest D8 diffractometer equipped with a Photon-III area-detector (graphite monochromator, shutterless φ - and ω -scan technique), using Mo K_a-radiation (0.71073 Å). The intensity data were integrated by the SAINT program and corrected for absorption and decay using SADABS. The structure was solved by direct methods using SHELXT and refined on F^2 using SHELXL-2018. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters. The SHELXTL program suite was used for molecular graphics.

Sample preparation: compound **3aa** was dissolved in dichloromethane and crystallized. CCDC 2429110 contains supplementary crystallographic data for **3aa**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>https://www.ccdc.cam.ac.uk/structures</u>.

Figure S7. Molecular structure of 3aa presented in thermal ellipsoids (P = 50%)

Table S1. Crystal data and structure refinement for 3aa.

Identification code	3aa	
Empirical formula	C28 H24 N2 O4 S2	
Formula weight	516.61	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 5.3963(2) Å	α = 90°.
	b = 17.4674(7) Å	$\beta = 99.1140(12)^{\circ}.$
	c = 13.4272(5) Å	γ = 90°.
Volume	1249.66(8) Å ³	
Z	2	
Density (calculated)	1.373 g/cm ³	
Absorption coefficient	0.251 mm ⁻¹	
F(000)	540	
Crystal size	0.53 x 0.035 x 0.035 mi	^{m3}
Theta range for data collection	2.332 to 30.000°.	
Index ranges	-7<=h<=7, -24<=k<=24, -18<=l<=18	
Reflections collected	40667	
Independent reflections	3652 [R(int) = 0.0965]	
Observed reflections	2961	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from eq	uivalents
Max. and min. transmission	0.6952 and 0.6240	
Refinement method	Full-matrix least-square	s on F ²
Data / restraints / parameters	3652 / 0 / 163	
Goodness-of-fit on F ²	1.063	
Final R indices [I>2sigma(I)]	R1 = 0.0424, wR2 = 0.0	910
R indices (all data)	R1 = 0.0587, wR2 = 0.1	015
Largest diff. peak and hole	0.376 and -0.457 e.Å ⁻³	

	x	у	Z	U(eq)	
S(1)	8934(1)	6500(1)	6554(1)	16(1)	
O(1)	11517(2)	6415(1)	6423(1)	24(1)	
O(2)	7630(2)	7193(1)	6215(1)	23(1)	
N(1)	9227(2)	5177(1)	4604(1)	16(1)	
C(1)	7197(3)	5700(1)	5981(1)	15(1)	
C(2)	7512(3)	5610(1)	4887(1)	14(1)	
C(3)	5789(3)	6002(1)	4080(1)	16(1)	
C(4)	6115(3)	5909(1)	3070(1)	21(1)	
C(5)	4453(3)	6246(1)	2301(1)	27(1)	
C(6)	2446(3)	6676(1)	2520(1)	26(1)	
C(7)	2126(3)	6777(1)	3514(1)	24(1)	
C(8)	3794(3)	6448(1)	4294(1)	19(1)	
C(9)	8799(3)	6376(1)	7849(1)	16(1)	
C(10)	10664(3)	5950(1)	8430(1)	23(1)	
C(11)	10621(4)	5881(1)	9459(1)	30(1)	
C(12)	8751(4)	6237(1)	9884(1)	30(1)	
C(13)	6898(3)	6660(1)	9298(1)	26(1)	
C(14)	6900(3)	6732(1)	8266(1)	20(1)	

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **3aa**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(2)	1.4382(12)
S(1)-O(1)	1.4394(12)
S(1)-C(9)	1.7659(15)
S(1)-C(1)	1.7867(15)
N(1)-C(2)	1.2981(19)
N(1)-N(1)#1	1.388(2)
C(1)-C(2)	1.514(2)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-C(3)	1.478(2)
C(3)-C(8)	1.395(2)
C(3)-C(4)	1.405(2)
C(4)-C(5)	1.387(2)
C(4)-H(4)	0.9500
C(5)-C(6)	1.387(3)
C(5)-H(5)	0.9500
C(6)-C(7)	1.384(3)
C(6)-H(6)	0.9500
C(7)-C(8)	1.392(2)
C(7)-H(7)	0.9500
C(8)-H(8)	0.9500
C(9)-C(10)	1.388(2)
C(9)-C(14)	1.389(2)
C(10)-C(11)	1.390(2)
C(10)-H(10)	0.9500
C(11)-C(12)	1.383(3)
C(11)-H(11)	0.9500
C(12)-C(13)	1.383(3)
C(12)-H(12)	0.9500
C(13)-C(14)	1.391(2)
C(13)-H(13)	0.9500
C(14)-H(14)	0.9500
O(2)-S(1)-O(1)	118.86(8)
O(2)-S(1)-C(9)	108.62(7)
O(1)-S(1)-C(9)	107.41(7)
O(2)-S(1)-C(1)	109.00(7)
O(1)-S(1)-C(1)	108.65(7)

 Table S3.
 Bond lengths [Å] and angles [°] for 3aa.

C(9)-S(1)-C(1)	103.17(7)
C(2)-N(1)-N(1)#1	113.97(15)
C(2)-C(1)-S(1)	111.50(10)
C(2)-C(1)-H(1A)	109.3
S(1)-C(1)-H(1A)	109.3
C(2)-C(1)-H(1B)	109.3
S(1)-C(1)-H(1B)	109.3
H(1A)-C(1)-H(1B)	108.0
N(1)-C(2)-C(3)	116.78(13)
N(1)-C(2)-C(1)	122.60(13)
C(3)-C(2)-C(1)	120.59(13)
C(8)-C(3)-C(4)	118.76(14)
C(8)-C(3)-C(2)	121.62(14)
C(4)-C(3)-C(2)	119.59(14)
C(5)-C(4)-C(3)	120.32(16)
C(5)-C(4)-H(4)	119.8
C(3)-C(4)-H(4)	119.8
C(4)-C(5)-C(6)	120.44(16)
C(4)-C(5)-H(5)	119.8
C(6)-C(5)-H(5)	119.8
C(7)-C(6)-C(5)	119.61(15)
C(7)-C(6)-H(6)	120.2
C(5)-C(6)-H(6)	120.2
C(6)-C(7)-C(8)	120.51(16)
C(6)-C(7)-H(7)	119.7
C(8)-C(7)-H(7)	119.7
C(7)-C(8)-C(3)	120.33(15)
C(7)-C(8)-H(8)	119.8
C(3)-C(8)-H(8)	119.8
C(10)-C(9)-C(14)	121.93(15)
C(10)-C(9)-S(1)	118.65(12)
C(14)-C(9)-S(1)	119.37(12)
C(9)-C(10)-C(11)	118.68(16)
C(9)-C(10)-H(10)	120.7
C(11)-C(10)-H(10)	120.7
C(12)-C(11)-C(10)	119.92(17)
C(12)-C(11)-H(11)	120.0
C(10)-C(11)-H(11)	120.0
C(13)-C(12)-C(11)	120.93(16)
C(13)-C(12)-H(12)	119.5

C(11)-C(12)-H(12)	119.5
C(12)-C(13)-C(14)	120.04(16)
C(12)-C(13)-H(13)	120.0
C(14)-C(13)-H(13)	120.0
C(9)-C(14)-C(13)	118.49(16)
C(9)-C(14)-H(14)	120.8
C(13)-C(14)-H(14)	120.8

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z+1

	U11	U22	U33	U23	U13	U12	
S(1)	18(1)	18(1)	13(1)	-3(1)	3(1)	-4(1)	
O(1)	17(1)	34(1)	21(1)	-8(1)	7(1)	-8(1)	
O(2)	33(1)	16(1)	19(1)	0(1)	1(1)	-2(1)	
N(1)	19(1)	17(1)	13(1)	0(1)	-1(1)	2(1)	
C(1)	16(1)	17(1)	14(1)	-2(1)	3(1)	-2(1)	
C(2)	14(1)	15(1)	13(1)	-2(1)	0(1)	-2(1)	
C(3)	15(1)	16(1)	16(1)	1(1)	1(1)	-2(1)	
C(4)	23(1)	23(1)	16(1)	0(1)	1(1)	4(1)	
C(5)	32(1)	30(1)	16(1)	1(1)	-2(1)	4(1)	
C(6)	24(1)	23(1)	25(1)	5(1)	-8(1)	1(1)	
C(7)	18(1)	22(1)	31(1)	4(1)	0(1)	3(1)	
C(8)	17(1)	20(1)	20(1)	1(1)	3(1)	1(1)	
C(9)	18(1)	18(1)	13(1)	-3(1)	3(1)	-2(1)	
C(10)	23(1)	26(1)	20(1)	-1(1)	2(1)	3(1)	
C(11)	29(1)	38(1)	20(1)	5(1)	-3(1)	0(1)	
C(12)	36(1)	39(1)	14(1)	-2(1)	4(1)	-9(1)	
C(13)	29(1)	30(1)	21(1)	-8(1)	10(1)	-4(1)	
C(14)	20(1)	21(1)	19(1)	-4(1)	5(1)	-1(1)	

Table S4. Anisotropic displacement parameters ($^{A2}x \ 10^{3}$) for **3aa**. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U^{11} + ... + 2h k a^{*}b^{*}U^{12}]$

	Х	У	Z	U(eq)	
H(1A)	7777	5228	6355	18	
H(1B)	5396	5771	6024	18	
H(4)	7480	5614	2912	25	
H(5)	4689	6182	1620	32	
H(6)	1299	6901	1991	31	
H(7)	758	7074	3666	28	
H(8)	3573	6528	4974	23	
H(10)	11944	5710	8131	28	
H(11)	11875	5590	9870	36	
H(12)	8738	6191	10588	36	
H(13)	5624	6900	9600	31	
H(14)	5630	7018	7856	24	

Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **3aa**.

 Table S6.
 Torsion angles [°] for 3aa.

O(2)-S(1)-C(1)-C(2)	75.91(12)
O(1)-S(1)-C(1)-C(2)	-55.01(12)
C(9)-S(1)-C(1)-C(2)	-168.79(11)
N(1)#1-N(1)-C(2)-C(3)	-179.65(15)
N(1)#1-N(1)-C(2)-C(1)	-1.6(2)
S(1)-C(1)-C(2)-N(1)	92.51(16)
S(1)-C(1)-C(2)-C(3)	-89.52(15)
N(1)-C(2)-C(3)-C(8)	176.50(14)
C(1)-C(2)-C(3)-C(8)	-1.6(2)
N(1)-C(2)-C(3)-C(4)	-1.8(2)
C(1)-C(2)-C(3)-C(4)	-179.87(14)
C(8)-C(3)-C(4)-C(5)	-1.0(2)
C(2)-C(3)-C(4)-C(5)	177.30(16)
C(3)-C(4)-C(5)-C(6)	-0.2(3)
C(4)-C(5)-C(6)-C(7)	0.9(3)
C(5)-C(6)-C(7)-C(8)	-0.3(3)
C(6)-C(7)-C(8)-C(3)	-1.0(3)
C(4)-C(3)-C(8)-C(7)	1.6(2)
C(2)-C(3)-C(8)-C(7)	-176.67(15)
O(2)-S(1)-C(9)-C(10)	-154.61(13)
O(1)-S(1)-C(9)-C(10)	-24.86(15)
C(1)-S(1)-C(9)-C(10)	89.81(14)
O(2)-S(1)-C(9)-C(14)	22.84(15)
O(1)-S(1)-C(9)-C(14)	152.59(13)
C(1)-S(1)-C(9)-C(14)	-92.73(14)
C(14)-C(9)-C(10)-C(11)	-0.2(3)
S(1)-C(9)-C(10)-C(11)	177.18(14)
C(9)-C(10)-C(11)-C(12)	-0.3(3)
C(10)-C(11)-C(12)-C(13)	0.5(3)
C(11)-C(12)-C(13)-C(14)	-0.1(3)
C(10)-C(9)-C(14)-C(13)	0.6(2)
S(1)-C(9)-C(14)-C(13)	-176.81(13)
C(12)-C(13)-C(14)-C(9)	-0.4(3)

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z+1

Computation details Routine quantum chemical calculations

The initial geometries of all structures were generated using the CREST program package²⁵ at the GFN2-xTB level of theory²⁶, solvation by DMSO were accounted with generalized Born model with surface area contributions (GBSA)²⁷. Geometry optimizations and vibrational frequency calculations (excluding those related to EPR) were conducted using Gaussian 16 Rev. A.03²⁸, applying density functional theory (DFT) with the PBE0 hybrid functional²⁹ and Grimme's dispersion corrections (D3(BJ))³⁰. The PBE0 functional has demonstrated robust performance across various applications in computational chemistry, as evidenced by studies³¹⁻³⁴. Consequently, it was selected for use in this investigation. For metal atoms, the SBKJC basis set with effective core potentials (ECPs) was employed to incorporate scalar relativistic effects³⁵⁻³⁷, while the def2-TZVP basis set was used for non-metal atoms³⁸. Solvent effects were accounted for using the polarizable continuum model (PCM)³⁹, with DMSO as the chosen solvent. This computational setup corresponds to the PBE0-D3(BJ)/(def2-TZVP, SBKJC(Ce, Mn))/PCM(DMSO) level of theory. For all non-transition-state structures, all elements of the Hessian matrix were found to be positive. Spin density visualizations were generated using the IQmol software⁴⁰.

Quasi-harmonic corrections to Gibbs free energies were applied via Truhlar's method, utilizing a frequency cutoff of 175 cm⁻¹, as implemented in the GoodVibes program package⁴¹. To address convergence difficulties encountered in metal-containing complexes, the SCF convergence process was refined using the quadratic convergence

algorithm (**scf=xqc**). The stability of the wavefunctions was checked using **stable=opt** keyword. The complete workflow is summarized in Scheme S1.

Scheme S1. The workflow of routine quantum chemical calculations.

Transition states were calculated the same way; Hessian matrix contained one imaginary mode, which corresponded to transition from reactants to products by reaction coordinate.

Rate constants were computed from activation energies according to Eyring-Polanyi equation:

$$k = \frac{\kappa k_B T}{h} \exp\left(-\frac{\Delta G^{\ddagger}}{RT}\right),$$

where *k* is the rate constant, κ is the transmission coefficient (were assumed to be equal 1), k_B is the Boltzmann constant, *T* is the temperature, *h* is the Planck constant, ΔG^{\ddagger} is the Gibbs energy of activation and *R* is the gas constant.

Activation barriers were explicitly calculated from the free energies of the reacting molecules. While the transition states for radical coupling could not be identified, it was assumed that the associated activation barrier is below 5 kcal/mol, suggesting that the process is primarily diffusion controlled.

Potential energy surfaces for the formation of ketazines **3aa**, **3ua** and **3va** are represented below in Schemes S2-S4.

Scheme S2. Formation potential energy surface (PES) of ketazine 3aa

Scheme S3. Formation PES of the ketazine 3ua

Scheme S4. Formation PES of the ketazine 3va

Metal complexes models

It is hypothesized that the initial step in the formation of the benzenesulfinate radical involves the substitution of the nitrate anion within the coordination sphere of cerium ammonium nitrate by the benzenesulfinate anion. This step is characterized by a slight energetic favorability as can be seen in Scheme S5.

Cerium in the +3 oxidation state is reported in the literature to exhibit coordination numbers ranging from 4 to $12.^{42}$ To identify the most stable reaction product, additional computational investigations were performed. The primary objectives were to: (a) determine the predominant decomposition product of **Ce-1**, and (b) analyze the dependence of Gibbs free energy (ΔG) on variations in coordination number to elucidate underlying trends.

Scheme S6. Potential pathways for the transformation of the Ce-1 complex.

The computational analysis reveals that the optimal decomposition product of **Ce-1** is cerium (III) ammonium nitrate (**CAN(III)**). Additionally, the results demonstrate a clear trend wherein a reduction in coordination number corresponds to a decrease in the change in Gibbs free energy (Scheme S6).

The theoretical analysis indicates that the substitution of a nitrate ligand in **Ce-1** with a benzenesulfinate anion (**2a**) is feasible; however, it is thermodynamically less favorable compared to the decomposition of **Ce-1** to **CAN(III)** (Scheme S7).

Scheme S7. Comparison of the substitution of the nitrate anion by a benzenesulfinate anion (2a) against the simple decomposition of Ce-1.

Based on the computational data presented above, it is inferred that **Ce-1** predominantly decomposes into **CAN(III)**, while the formation of other products, including **Ce-2**, **Ce-3**, **Ce-4**, and **Ce-5**, is thermodynamically less favorable.

For all manganese containing structures, both low spin and high spin electronic states were evaluated, with the results indicating that the high spin state is energetically more favorable (Table S7).

Table S7. Comparative analysis of the calculated energies for low-spin and high-spinstates in manganese complexes Mn-1, E-1 and D-1.

Structure	Low spin electron configuration, a.u.	High spin electron configuration, a.u.	ΔG(low- high), kcal/mol
Mn-1	Doublet, d⁵ Gฉн = - 1666.3622024	Sextet, d ⁵ Gqн = - 1666.457325	-59.7
	Triplet, d⁵ Gฉн = - 2256.647407	Septet, d ⁵ Gqн = - 2256.690775	-27.2
D-1	Singlet, d⁴ Gฉн = - 2256.618320	Quintet, d ⁴ Gqн = - 2256.697736	-49.8

The conversion of **Mn-1** and **C-1** into **E-1** and **D-1** proceeds through the following thermodynamic reactions (Scheme S8).

Scheme S8. Analysis of the coordination of the iminyl radical C-1 with Mn-1.

The oxidation states of all metal containing structures were analyzed using the localized orbital bonding analysis (LOBA) method, as implemented in the MultiWFN program package.^{43, 44} The results confirmed that the assigned oxidation states of the metal atoms align well with chemical intuition.

Coordination of iminyl radical (C-1) by cerium (III)

To evaluate potential pathways for the stabilization of the iminyl radical C-1, changes in Gibbs free energies were compared for the metalloradical species F-1 and E-2, as well as the unbound radical C-1.

Scheme S9. Prospective complexes of cerium(III) and cerium(IV) with the C-1 iminyl radical.

From the calculations and experimental data, it was concluded that cerium does not exhibit the ability to coordinate with the generated iminyl radicals (Scheme S9).

Relative stability of sulfonyl radicals

Additional quantum chemical computations were performed to investigate the stability trends of selected sulfonyl radicals (Scheme S10).

Scheme S10. Sulfonyl radicals that were analyzed for their stability.

As a metric for assessing the stability of the radical species, we selected the radical stabilization energy (RSE_z) 45 (eq. 1), along with previously described approach 46 .

$$RSE_z = 0.5 * (D[CH_3 - CH_3] - D[R - R]_{calc}),$$
 (eq. 1)

where $D[CH_3 - CH_3]$ is bond dissociation enthalpy (BDE) which we have taken from experimental data, which equals to 88.6 kcal/mol and $D[R-R]_{calc}$ is a hypothetical "strain-free" BDE value was derived by applying Pauling's electronegativity equation to BDEs of CH₃—R and CI—R, where both reference systems were selected to minimize steric contributions.

$$D[CH_3 - R] = 0.5 * (D[CH_3 - CH_3] + D[R - R]_{calc}) + 23 * (\chi[CH_3] - \chi[R])^2, (eq. 2)$$
$$D[Cl - R] = 0.5 * (D[Cl - Cl] + D[R - R]_{calc}) + 23 * (\chi[Cl] - \chi[R])^2. (eq. 3)$$

By utilizing established parameters ($\chi[CH_3] = 2.520$, $\chi[Cl] = 3.176$, $D[CH_3 - CH_3] = 88.6$ kcal/mol, D[Cl - Cl] = 57.2 kcal/mol) in conjunction with computed $D[CH_3 - R]$ and D[Cl - R] values by chemical equations presented below (eq. 4 and eq. 5, respectively), the system of equations can be solved simultaneously to determine two key unknowns: the electronegativity of studied radical species ($\chi[R]$) and its "strain-free" BDE $D[R - R]_{calc}$.

$$CH_3 - R = \bullet CH_3 + \bullet R \Delta_r H \equiv D[CH_3 - R], \qquad (eq. 4)$$

$$Cl - R = \bullet Cl + \bullet R \,\Delta_r H \equiv D[Cl - R]. \tag{eq. 5}$$

The initial molecular geometries were constructed following the standardized computational methodology outlined in Scheme S1. To obtain higher-accuracy electronic energies, single-point calculations were conducted on the optimized DFT

geometries at the DLPNO-CCSD(T)/aug-cc-pVTZ/CPCM(DMSO)⁴⁷⁻⁵⁰ level of theory using ORCA 6.0.0, ⁵¹ employing the following computational settings: ! TightSCF TightPNO AutoAux.

Table S8. Bond dissociation enthalpies of R—R, R—CH₃ and R—CI bonds, electronegativities of sulfur centered radicals and RSEs (kcal/mol) at DLPNO-CCSD(T)/aug-cc-pVTZ/CPCM(DMSO)//PBE0-D3(BJ)/def2-TZVP/CPCM(DMSO) level of theory.

Radicals	$D[R-CH_3], \frac{kcal}{mol}$	$D[R-Cl], \frac{kcal}{mol}$	$D[R-R]_{calc}, \frac{kcal}{mol}$	$\chi(R)$	$RSE_z, \frac{kcal}{mol}$
Me−S∵ O	71.5	60.9	53.2	2.679	17.7
Et-S	70.9	61.4	52.5	2.643	18.05
	70.2	61.5	51.4	2.616	18.6
⊳_ś``o	75.1	64.7	60.5	2.672	14.05
O Ph−S∵ O	72.2	61	54.3	2.699	17.15
Bn-S ⁽⁾ .	71.6	61.1	53.5	2.676	17.55

The computational results quantifying radical stability are summarized in Table S8. Analysis of the RSEz values reveals that the relatively low yields observed for the methylsulfonyl radical system originate not from inherent thermodynamic instability, but rather from alternative factors.

To elucidate the radical addition pathway involving various sulfonyl radicals with (1-azidovinyl)benzene **1a**, we conducted additional thermodynamic calculations of Gibbs free energy changes for relevant species (Table S9).

Table S9. Changes in Gibbs free energy for sulfonyl species calculated at PBE0-D3(BJ)/def2-TZVP/CPCM(DMSO) level of theory.

R	Ph S R	$\Delta_r G, \frac{kcal}{mol}$
o Me−S、 O	N ₃ O Ph S Me	-9.33
O Et−Š∵ O	Ph • S Et	-8.28
	Ph S	-7.02
⊳_ś°́o	Ph S Ph	-9.44
Ph-S ^V . O	Ph S Ph	-8.14
Bn-S ^V . O	Ph S Bn	-7.15

The computational results are consistent with experimental findings, which demonstrate that stability of sulfonyl radicals is not crucial factor affecting on the yields of ketazines **3**.

EPR calculations

For EPR calculations, initial molecular geometries were generated using the CREST program. These geometries were subsequently optimized at the B3LYP/def2-QZVP/CPCM(DMSO) level of theory in Gaussian 16 Rev. A.03. The optimized structures were then employed in ORCA 5.0.3⁵¹ to compute hyperfine splitting constants and the g-tensor at the PBE0-D3(BJ)/ZORA-def2-QZVPP/CPCM(DMSO) level of theory, incorporating the zeroth-order regular approximation (ZORA)⁵² and the !DEFGRID3 keyword. Wavefunction stability was verified using the **stable=opt** keyword in Gaussian. This computational setup provided the best balance of accuracy and computational efficiency.

References

- 1. A. U. Meyer, S. Jäger, D. Prasad Hari and B. König, *Adv. Synth. Catal.*, 2015, **357**, 2050-2054.
- 2. M.-S. Liu, H.-W. Du, H. Meng, Y. Xie and W. Shu, Unified metal-free intermolecular Heck-type sulfonylation, cyanation, amination, amidation of alkenes by thianthrenation, *Nat. Commun.*, 2024, **15**, 529.
- 3. H.-M. Huang, P. Bellotti, P. M. Pflüger, J. L. Schwarz, B. Heidrich and F. Glorius, Three-Component, Interrupted Radical Heck/Allylic Substitution Cascade Involving Unactivated Alkyl Bromides, *J. Am. Chem. Soc.*, 2020, **142**, 10173-10183.
- 4. G. Bogonda, D. V. Patil, H. Y. Kim and K. Oh, Visible-Light-Promoted Thiyl Radical Generation from Sodium Sulfinates: A Radical-Radical Coupling to Thioesters, *Org. Lett.*, 2019, **21**, 3774-3779.
- 5. A. U. Meyer, K. Straková, T. Slanina and B. König, Eosin Y (EY) Photoredox-Catalyzed Sulfonylation of Alkenes: Scope and Mechanism, *Chemistry – A European Journal*, 2016, **22**, 8694-8699.
- 6. T. Chen, J. Lahbi, G. Broggini, A. Pradal and G. Poli, Allylsulfones through Palladium-Catalyzed Allylic C–H Sulfonylation of Terminal Alkenes, *Eur. J. Org. Chem.*, 2023, **26**, e202201493.
- 7. R. Dey and P. Banerjee, Lewis Acid Catalyzed Diastereoselective Cycloaddition Reactions of Donor-Acceptor Cyclopropanes and Vinyl Azides: Synthesis of Functionalized Azidocyclopentane and Tetrahydropyridine Derivatives, *Org. Lett.*, 2017, **19**, 304-307.
- 8. Y.-F. Wang, K. K. Toh, S. Chiba and K. Narasaka, Mn(III)-Catalyzed Synthesis of Pyrroles from Vinyl Azides and 1,3-Dicarbonyl Compounds, *Org. Lett.*, 2008, **10**, 5019-5022.
- H. T. Zhu, C. M. Liang, T. Y. Li, L. Y. Li, R. L. Zhang, J. N. Wang, R. Q. Qi, J. M. Zhang, R. H. Yang, Y. Q. Yang, A. X. Zhou, X. Jin and N. N. Zhou, Dual Proton/Silver-Catalyzed Serial (5 + 2)-Cycloaddition and Nazarov Cyclization of (E)-2-Arylidene-3-hydroxyindanones with Conjugated Eneynes: Synthesis of Indanone-Fused Benzo[cd]azulenes, *J Org Chem*, 2023, **88**, 3409-3423.
- 10. S. Cao, Q. Ji, H. Li, M. Pang, H. Yuan, J. Zhang and X. Bi, AgN₃-Catalyzed Hydroazidation of Terminal Alkynes and Mechanistic Studies, *J. Am. Chem. Soc.*, 2020, **142**, 7083-7091.
- 11. N. S. Y. Loy, S. Kim and C.-M. Park, Synthesis of unsymmetrical pyrazines based on alpha-diazo oxime ethers, *Org. Lett.*, 2015, **17**, 395-397.
- B. Nie, W. Wu, Q. Ren, Z. Wang, J. Zhang, Y. Zhang and H. Jiang, Access to Cycloalkeno[c]-Fused Pyridines via Pd-Catalyzed C(sp(2))-H Activation and Cyclization of N-Acetyl Hydrazones of Acylcycloalkenes with Vinyl Azides, *Org. Lett.*, 2020, 22, 7786-7790.
- 13. J. Chen, X. Shen and Z. Lu, Cobalt-Catalyzed Markovnikov-Type Selective Hydroboration of Terminal Alkynes, *Angew. Chem. Int. Ed.*, 2021, **60**, 690-694.
- O. M. Mulina, N. V. Zhironkina, S. A. Paveliev, D. V. Demchuk and A. O. Terent'ev, Electrochemically Induced Synthesis of Sulfonylated N-Unsubstituted Enamines from Vinyl Azides and Sulfonyl Hydrazides, *Org. Lett.*, 2020, 22, 1818-1824.
- 15. P. Gu, Y. Su, X.-P. Wu, J. Sun, W. Liu, P. Xue and R. Li, Enantioselective Preparation of cis-β-Azidocyclopropane Esters by Cyclopropanation of Azido Alkenes Using a Chiral Dirhodium Catalyst, *Org. Lett.*, 2012, **14**, 2246-2249.
- 16. S. W. Wu and F. Liu, Synthesis of alpha-Fluoroketones from Vinyl Azides and Mechanism Interrogation, *Org Lett*, 2016, **18**, 3642-3645.

- 17. Y.-F. Wang, K. K. Toh, J.-Y. Lee and S. Chiba, Synthesis of Isoquinolines from α-Aryl Vinyl Azides and Internal Alkynes by Rh–Cu Bimetallic Cooperation, *Angew. Chem. Int. Ed.*, 2011, **50**, 5927-5931.
- 18. L. Xiang, Y. Niu, X. Pang, X. Yang and R. Yan, I(2)-catalyzed synthesis of substituted imidazoles from vinyl azides and benzylamines, *Chem Commun* (*Camb*), 2015, **51**, 6598-6600.
- D. Enders, A. Grossmann, H. Huang and G. Raabe, Dual Secondary Amine/N-Heterocyclic Carbene Catalysis in the Asymmetric Michael/Cross-Benzoin Cascade Reaction of β-Oxo Sulfones with Enals, *Eur. J. Org. Chem.*, 2011, 2011, 4298-4301.
- 20. H.-L. Wan, Z. Guan and Y.-H. He, Electrochemically Promoted Bifunctionalization of Alkynes for the Synthesis of β-Keto Sulfones, *Asian J. Org. Chem.*, 2021, **10**, 3406-3410.
- 21. S. Stoll and A. Schweiger, *J. Magn. Reson.*, 2006, **178**, 42-55.
- 22. M. Y. Balakirev and V. V. Khramtsov, ESR Study of Free Radical Decomposition of N,N-Bis(arylsulfonyl)hydroxylamines in Organic Solution, *J. Org. Chem.*, 1996, **61**, 7263-7269.
- 23. V. Cholvad, K. Szaboova, A. Staško, O. Nuyken and B. Voit, ESR parameters of 5,5-dimethylpyrrolidine 1-oxide (DMPO) spin adducts in the photochemical decomposition of azo compounds, *Magn. Reson. Chem.*, 1991, **29**, 402-404.
- 24. P. Astolfi, L. Greci and M. Panagiotaki, Spin trapping of nitrogen dioxide and of radicals generated from nitrous acid, *Free Radical Res.*, 2005, **39**, 137-144.
- 25. P. Pracht, S. Grimme, C. Bannwarth, F. Bohle, S. Ehlert, G. Feldmann, J. Gorges, M. Müller, T. Neudecker, C. Plett, S. Spicher, P. Steinbach, P. A. Wesołowski and F. Zeller, *J. Chem. Phys.*, 2024, **160**.
- 26. C. Bannwarth, S. Ehlert and S. Grimme, *J. Chem. Theory Comput.*, 2019, **15**, 1652-1671.
- 27. P. Pracht, F. Bohle and S. Grimme, Automated exploration of the low-energy chemical space with fast quantum chemical methods, *Phys. Chem. Chem. Phys.*, 2020, **22**, 7169-7192.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16 Rev. A.03. *Journal*, 2016.
- 29. J. P. Perdew, M. Ernzerhof and K. Burke, Rationale for mixing exact exchange with density functional approximations, *J. Chem. Phys.*, 1996, **105**, 9982-9985.
- 30. S. Grimme, S. Ehrlich and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, *J. Comput. Chem.*, 2011, **32**, 1456-1465.
- 31. N. Mardirossian and M. Head-Gordon, Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals, *Mol. Phys.*, 2017, **115**, 2315-2372.

- 32. Y. Hordijk, M. Dalla Tiezza, D. Rodrigues Silva and T. A. Hamlin, Radical Addition Reactions: Hierarchical *Ab Initio* Benchmark and DFT Performance Study, *ChemPhysChem*, 2025, **26**, e202400728.
- 33. M. M. Quintal, A. Karton, M. A. Iron, A. D. Boese and J. M. L. Martin, Benchmark study of DFT functionals for late-transition-metal reactions, *J. Phys. Chem. A*, 2006, **110**, 709-716.
- 34. M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew and K. A. Lyssenko, Density functional theory is straying from the path toward the exact functional, *Science*, 2017, **355**, 49-52.
- 35. B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson and T. L. Windus, New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community, *J. Chem. Inf. Model.*, 2019, **59**, 4814-4820.
- 36. W. J. Stevens, M. Krauss, H. Basch and P. G. Jasien, Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms, *Can. J. Chem.*, 1992, **70**, 612-630.
- 37. T. R. Cundari and W. J. Stevens, Effective core potential methods for the lanthanides, *J. Chem. Phys.*, 1993, **98**, 5555-5565.
- 38. F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.
- 39. S. Miertuš, E. Scrocco and J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects, *Chem. Phys.*, 1981, **55**, 117-129.
- 40. A. Gilbert, IQmol, <u>http://iqmol.org/</u>).
- 41. G. Luchini, J. Alegre-Requena, I. Funes-Ardoiz and R. Paton, GoodVibes: automated thermochemistry for heterogeneous computational chemistry data, *F1000Research*, 2020, **9**.
- 42. P. L. Roulhac and G. J. Palenik, Bond valence sums in coordination chemistry. The calculation of the oxidation state of cerium in complexes containing cerium bonded only to oxygen, *Inorg. Chem.*, 2003, **42**, 118-121.
- 43. A. J. W. Thom, E. J. Sundstrom and M. Head-Gordon, LOBA: a localized orbital bonding analysis to calculate oxidation states, with application to a model water oxidation catalyst, *Phys. Chem. Chem. Phys.*, 2009, **11**, 11297-11304.
- 44. T. Lu, A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn, *J. Chem. Phys.*, 2024, **161**.
- 45. N. Matsunaga, D. W. Rogers and A. A. Zavitsas, Pauling's Electronegativity Equation and a New Corollary Accurately Predict Bond Dissociation Enthalpies and Enhance Current Understanding of the Nature of the Chemical Bond, *J. Org. Chem.*, 2003, **68**, 3158-3172.
- 46. I. Degirmenci and M. L. Coote, Effect of Substituents on the Stability of Sulfur-Centered Radicals, *J. Phys. Chem. A*, 2016, **120**, 7398-7403.
- 47. G. Bistoni, C. Riplinger, Y. Minenkov, L. Cavallo, A. A. Auer and F. Neese, Treating Subvalence Correlation Effects in Domain Based Pair Natural Orbital Coupled Cluster Calculations: An Out-of-the-Box Approach, *J. Chem. Theory Comput.*, 2017, **13**, 3220-3227.
- 48. M. Saitow, U. Becker, C. Riplinger, E. F. Valeev and F. Neese, A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory, *J. Chem. Phys.*, 2017, **146**.
- 49. G. L. Stoychev, A. A. Auer and F. Neese, Automatic Generation of Auxiliary Basis Sets, *J. Chem. Theory Comput.*, 2017, **13**, 554-562.

- 50. M. Garcia-Ratés, U. Becker and F. Neese, Implicit solvation in domain based pair natural orbital coupled cluster (DLPNO-CCSD) theory, *J. Comput. Chem.*, 2021, **42**, 1959-1973.
- 51. F. Neese, Software update: The ORCA program system—Version 5.0, *WIREs Comput. Mol. Sci.*, 2022, **12**, e1606.
- 52. C. van Wüllen, Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations, *J. Chem. Phys.*, 1998, **109**, 392-399.

NMR spectra of the synthesized compounds

S67

S70

S124

HRMS spectra of the synthesized compounds 3aa – 3ta HRMS of (1Z,2Z)-1,2-bis(1-phenyl-2-(phenylsulfonyl)ethylidene)hydrazine 3aa

S127

HRMS of (1Z,2Z)-1,2-bis(1-phenyl-2-tosylethylidene)hydrazine 3ab.

HRMS of (1Z,2Z)-1,2-bis(2-((4-methoxyphenyl)sulfonyl)-1phenylethylidene)hydrazine 3ac

					Di	splay	Repo	ort						
Analysis Info Analysis Name Method Sample Name Comment		D:\Data\Kolotyrkina\2020\Mulina\0722024.d tune_50-1600.m /TERN VP-216 C30H28N2O6S2 mH 577.1461 clb added CH3CN							Acquisitio Operator Instrume	on Date nt / Ser#	22.0 BD/ mic	07.2020 1 AL@DE rOTOF	8:01:36 1024	8
Acquisition Source Type Focus Scan Begin Scan End	n Para	ESI Not active 50 m/z 1600 m/z	i.		lon Polarity Set Capillar Set End Pla	y ate Offset	Positive 4500 V -500 V	0	Set Set Set	Nebulizer Dry Heate Dry Gas Divert Va	r er Ive	1.0 E 200 4.0 L Was	3ar ℃ /min te	
Intens [%]-											3	+MS, 0.6-	1.0min #((35-58)
125														
100		577.	1474											
75														
50							500							
25			1				599.1	289			615 1	028		
1%)	-		Ш	ŧ	584.4736	594.2	204	h.	605.4091	C	30H2	28N20652	M+nH.	577.15
100-		577.	1462											
- 80-														
60-														
40-														
20-			1											
19.01				1.						C	201129	N2O6S2	MunNa	500 12
100-							599.1	281		0.		51420002,	wittinga,	555.15
80-														
60-														
40														
40								1						
20-								11.						
[%]										C	C30H2	28N2O6S2 020	, M+nK ,	615.10
100-												020		
80-														
60-														
40-												1		
20-												h –		
01,		·····	, ,	590		500		sho		eio .	_			
	57	v.				100				010		020		11/2
Bruker Con	npass	DataAnalysis	s 4.0			printed:	22.07.	2020 1	18:06:30			Pag	e 1 of 1	8

HRMS of N,N'-(((2Z,2'Z)-hydrazine-1,2-diylidenebis(2-phenylethan-1-yl-2 ylidenesulfonyl))bis(4,1-phenylene))diacetamide 3ad

2		Display	Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Kolotyrkin: tune_50-1600.m /TERN BP-233 C32H30N4O6S2 n	a\2020\Mulina\0929008.d	lded	Acquisition Date Operator Instrument / Ser#	29.09.2020 10:50:02 BDAL@DE micrOTOF 10248
Acquisition Pai Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 1600 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heat Set Dry Gas Set Divert Va	r 1.0 Bar er 200 °C 4.0 l/min Ive Waste
Intens. [%] 100-	631.1680	u yekin yey ar tirkin di kelektin don yekeringi yekeringi yekeringi yekeringi yekeringi yekeringi yekeringi yek	School Brookel	TAGO (1999/65) (* 1999/65)	+MS, 0.3-1.0min #(16-58)
80- 60-					
40- 20-		642 4070	653.1495	i	005 4000 000 1000
[%] [%] 100-	631.1680	638.5721 643.4070 647.4	1586 L LA	···· / · · · · · · · · · · · · · · · ·	665,4222669,1233 14,14,14,12,1233 32H30N4O6S2, M+nH ,631.17
80- 60-					
40-	1				
[%]			653.1499) C3	32H30N4O6S2, M+nNa ,653.15
80- -					
60- 40-			1		
20- 19-01				L	32H30N4O6S2 M+nK 669 12
100-					669.1238
60-					
40- 20-					
0 ¹	630 635	640 645	650 6	55 660	665 670 m/z
Bruker Compas	s DataAnalysis 4.0	printed:	29.09.2020 1	0:55:04	Page 1 of 1

HRMS of (1Z,2Z)-1,2-bis(2-((4-fluorophenyl)sulfonyl)-1phenylethylidene)hydrazine 3ae

		Display	Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Kolotyrkina\/ tune_50-1600.m /TERN BP-229 C28H22F2O4S2 mH	2020\Mulina\0929007.d 553.1061 calibrant add	ded	Acquisition Date Operator Instrument / Ser#	29.09.2020 10:43:23 BDAL@DE micrOTOF 10248
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Not active 50 m/z 1600 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Va	r 1.0 Bar er 200 °C 4.0 l/min Ive Waste
Intens. [%] 100- 	553.1066				+MS, 0.4-0.6min #(22-36)
60-					
40-					
20-		57	575.088	7 584 4869	591.0624
ု%္ရ) 100-	553.1062		0.4000	Č28	H22F2N2O4S2, M+nH ,553.11
80-					
60-					
40-	1				
20-	llí.				
[%] 100-	alat kata		575.088	C28F	122F2N2O4S2, M+nNa ,575.09
- 80-					
60-					
40-			- Le		
20-				1.	
[%]				C28	8H22F2N2O4S2, M+nK ,591.06 591.0621
80-					
60-					
40-					
20-					
<u>م</u> اــــــ	550	560	570	580	
Bruker Compass	s DataAnalysis 4.0	printed:	29.09.2020	10:47:56	Page 1 of 1

HRMS of (1Z,2Z)-1,2-bis(2-((4-chlorophenyl)sulfonyl)-1phenylethylidene)hydrazine 3af

<u>87</u>		Display	Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Kolotyrkina\2 tune_50-1600.m /TERN VP-209 C28H22CI2N2O4S2	2020\Mulina\0722023.d mH 585.0470 clb adde	d CH3CN	Acquisition Date Operator Instrument / Ser#	22.07.2020 17:56:19 BDAL@DE micrOTOF 10248
Acquisition Pa Source Type Focus Scan Begin Scan End	arameter ESI Not active 50 m/z 1600 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulize Set Dry Heat Set Dry Gas Set Divert Va	r 1.0 Bar er 200 °C 4.0 l/min lve Waste
Intens [%] 100-	585.0463				+MS, 0.6-1.0min #(37-58)
80- 60-	587.0440				
40-					
20- 583.11	23			C28	607.0280
100-	585.0471			020	HEORINE 0452, INFIN ,565.00
80- - 60-	587.0443				
40- 20-					
[%]				C28H	22Cl2N2O4S2, M+nNa ,607.03
100-					607.0290
80-					609.0262
60-					
40-					T
20-					
Bruker Compa	585 59 ss DataAnalysis 4.0	0 595 printed:	600 22.07.2020	605	610 m/z Page 1 of 1

HRMS of (1Z,2Z)-1,2-bis(2-(naphthalen-2-ylsulfonyl)-1phenylethylidene)hydrazine 3ag

		Display	Report			
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Kolotyrkin tune_50-1600.m /TERN VP-221 C36H28N2O4S2	a\2020\Mulina\0722025.d mH 617.1563 clb added C	CH3CN	Acquisition Date Operator Instrument / Sere	22.07.2020 BDAL@DE # micrOTOF	18:08:22 10248
Acquisition Par Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 1600 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebuliz Set Dry Hea Set Dry Gas Set Divert V	er 1.0 ter 200 4.0 alve Wa	Bar ℃ I/min ste
Intens. [%]-					+MS, 0.6-	1.0min #(37-58)
150-						
100	617.1558					
50	1.		639.1381	65	5.1114	
[%]		628.5028		1 50 4 KC 14 KC 10 KC 1	C36H28N2O4S	2, M+nH ,617.16
100-	617.1563					
80-						
60-						
40-	T					
20-	1					
[%]				C	36H28N2O4S2,	M+nNa ,639.14
100-			639.1383			
80-						
60-						
40-			1			
20-						
[%]				65	C36H28N2O4S	2, M+nK ,655.11
100-				00		
80-						
60-						
40-					1	
20-						
₀⊥	620	630	640	650	660	 m/z
Bruker Compass	s DataAnalysis 4.0	printed:	22.07.202	0 18:13:41	Pag	e 1 of 1

HRMS of (1Z,2Z)-1,2-bis(1-phenyl-2-(thiophen-2-ylsulfonyl)ethylidene)hydrazine 3ah

0		Display	Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Kolotyrkin tune_50-1600.m /TERN VP-253 C24H20N2O4S4 r	a\2021\Mulina\0128040.d nH 529.0378 calibrant add	led, CH3CN	Acquisition Date 28.01 Operator BDAI Instrument / Ser# micrO	.2021 18:05:21 _@DE DTOF 10248
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Not active 50 m/z 1600 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.0 Bar 200 ℃ 4.0 I/min Waste
Intens.	E00 0004			+	MS, 0.4-0.8min #(25-49
100-	529.0364				
80-					
60-					
40-					
20-	4254	E40 4285	551.0184	566.99	23
[%]	E20 0270	540.4305		C24H20	N2O4S4, M+nH ,529.0
100-	529.0379				
80-					
60-					
40-					
20-	llr -				
[%]			551 0100	C24H20M	204S4, M+nNa ,551.0
100-			551.0198		
80-					
60-					
40-					
20-			In		
[%]				C24H20	N2O4S4, M+nK ,566.9
100-				566.99 	37
80-					
60-					
40-					
20					I
20					Ĕs .
0,,	530	540	550	560	570 m/
Bruker Compass	DataAnalysis 4.0	printed:	28.01.2021	18:08:40	Page 1 of 1

HRMS of (1Z,2Z)-1,2-bis(2-(methylsulfonyl)-1-phenylethylidene)hydrazine 3ai

HRMS of (1Z,2Z)-1,2-bis(2-(ethylsulfonyl)-1-phenylethylidene)hydrazine 3aj

HRMS of (1Z,2Z)-1,2-bis(2-(isopropylsulfonyl)-1-phenylethylidene)hydrazine 3ak

HRMS of (1Z,2Z)-1,2-bis(2-(cyclopropylsulfonyl)-1-phenylethylidene)hydrazine 3al

S138

HRMS of (1Z,2Z)-1,2-bis(2-(phenylsulfonyl)-1-(p-tolyl)ethylidene)hydrazine 3ba

HRMS of (1Z,2Z)-1,2-bis(1-(4-isopropylphenyl)-2-(phenylsulfonyl)ethylidene)hydrazine 3ca

<u></u>		Display	Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Kolotyrkina\2 tune_50-1600.m /TERN BP-237 C34H36N2O4S2 mH	021\Mulina\031037.d 601.2189 calibrant add	ded CH3CN	Acquisition Date Operator Instrument / Ser#	10.03.2021 17:21:06 BDAL@DE micrOTOF 10248
Acquisition Par Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 1600 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulize Set Dry Heat Set Dry Gas Set Divert Va	r 1.0 Bar ter 200 ℃ 4.0 l/min alve Waste
Intens.	001 0170				+MS, 0.6-1.0min #(38-60)
1.25	601.2170				
1.00					
0.75					
0.50	1				
0.25			623 1080		639.1736
0.00					
2000-	601.2189			(-34H36N2O4S2, M+nH ,601.22
1500-					
1000-					
500					
0				G	34H36N2O4S2 M+nNa 623 20
2000			623.2009	Ĩ	o 11 100 120 102, 11 11 14,020.20
1500					
1000					
500			11.		
0				L	C24U26N20452 Musk 620 10
2000					639.1748
1500					
1000-					
					1
500-					
0 <u>1</u> 590	600	610	620	630	640 m/z
Bruker Compass	s DataAnalysis 4 0	printed:	10.03 2021	17:23:51	Page 1 of 1

HRMS of (1Z,2Z)-1,2-bis(1-(4-(tert-butyl)phenyl)-2-(phenylsulfonyl)ethylidene)hydrazine 3da

HRMS of (1Z,2Z)-1,2-bis(1-(4-methoxyphenyl)-2-(phenylsulfonyl)ethylidene)hydrazine 3ea

8		Display	Repor	t	
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Kolotyrkina tune_50-1600.m /TERN BP-238 C30H28N2O6S2 m	\2020\Mulina\0929010.d H 577.1461 calibrant add	ded	Acquisition Date Operator Instrument / Ser#	29.09.2020 11:02:16 BDAL@DE micrOTOF 10248
Acquisition Par Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 1600 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heat Set Dry Gas Set Divert Va	r 1.0 Bar er 200 ℃ 4.0 l/min lve Waste
Intens. [%] 150- 100- 50- [%] 100- 80- 20- [%] 100- 80- 60- 40- 20- [%] 20- 20- 20- 20- 20- 20- 20- 20-	577.1467			599.1274 C 599.1281	+MS, 0.4-0.8min #(26-48) 30H28N2O6S2, M+nH ,577.15
-					1

HRMS of (1Z,2Z)-1,2-bis(1-(4-fluorophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine 3fa

6		Display	Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Chizhov\T tune_wide.m /TERN BP-251 CH3CN 100 %, dil	erentiev\Mulina\bp-251_& 2000, calibrant added	clb.d	Acquisition Date Operator Instrument / Ser#	22.01.2021 11:12:04 BDAL@DE micrOTOF 10248
Acquisition Par Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulize Set Dry Heat Set Dry Gas Set Divert Va	r 0.4 Bar ter 180 ℃ 4.0 l/min alve Waste
Intens.	550 4054				+MS, 0.0-1.0min #(1-59)
100-	553.1051				
- 80-	338.3419				
60-					
40-					
20-		922.0099	1521.9710	2121.9318 	
		1127.1853	1807	2000	2721.8956 2459.2669
Intens.				2000	+MS, 0.0-1.0min #(1-59)
[%]] 100 5	53.1051				501 0010
50			575.0867		591.0613
	llı.	565.3864			LL.
[%]	53 1062			C2	8H22F2N2O4S2, M+nH ,553.11
100-					
50	1.				
[%]				C28	H22F2N2O4S2, M+nNa ,575.09
100			575.0881		
50					
			1	Ĩ.«	
[%] 100				C2	8H22F2N2O4S2, M+nK ,591.06 591.0621
50					
0 550	555 56	0 565 570	575	580 5	85 590 m/z
Bruker Compas	s DataAnalysis 4.0	printed:	22.01.2021	11:32:05	Page 1 of 1

HRMS of (1Z,2Z)-1,2-bis(1-(4-chlorophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine 3ga

HRMS of (1Z,2Z)-1,2-bis(1-(4-bromophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine 3ha

		Display	Repo	rt				
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Chizhov\Ter tune_wide.m /TERN BP-242 CH3CN 100 %, dil. 3	rentiev\Mulina\bp-242_8 200, calibrant added	clb.d	Acquisitic Operator Instrume	on Date 1 E nt / Ser# n	6.11.2020 17 3DAL@DE nicrOTOF	7:07:44 10248	
Acquisition Pa Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Set Set Set	Nebulizer Dry Heater Dry Gas Divert Valve	0.4 B 180 9 4.0 l/r e Waste	ar C nin ə	
Scan End Intens. x105 1.25 1.00 0.75 0.50 0.25 0.00 Intens. x104 4 2 672.9 2500 2000 1500 1000 672.9 2000 2000 2000 2000 2000	3000 m/z 437.1922 696.9250 696.9250 674.9434 455 676.9416 674.9441 674.9441 461 676.9420 461	922.0108	-500 V	212 2000 690.6002	1.9336 1.9336 694.9270 C28H2 C28H2 69	e Wast +MS, 0.0- +MS, 0.0- 22459,2841 272 2500 +MS, 0.0- 698,9230 698,9230 22Br2N2O4S2, N 22Br2N2O4S2, N 269261	е 1.0min #(1-5 1.0min #(1-5 1.0min #(1-5 4 <u>А</u> 4 <u>А</u> 4 4 4 А+nNa ,694:	
1500 1000 500			<u>10 - 10 - 10</u>		694.9280	698.924	D 	
Bruker Compas	675 s DataAnalysis 4.0	680 685 printed:	16.11.20	690 020 17:25:53	695	7 Page	00 r 1 of 1	n/z

HRMS of (1Z,2Z)-1,2-bis(1-(4-(azidomethyl)phenyl)-2-(phenylsulfonyl)ethylidene)hydrazine 3ia

		Display	Report				
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Kolotyrkina tune_50-1600.m /TERN BP-240 C30H26N8O4S2 m	a\2020\Mulina\0929011.d nH 627.1591 calibrant add	led	Acquisition Date Operator Instrument / Se	e 29.09.2 BDAL@ r# micrOT	2020 11:07 DE OF 1	7:41 0248
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Not active 50 m/z 1600 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebuli Set Dry He Set Dry Ga Set Divert	zer ater Is Valve	1.0 Bar 200 ℃ 4.0 l/min Waste	
Intens [%]_ 80- 60- 40-	627.1587				+M	S, 0.3-0.7m	in #(17-44)
20- [%]		643.4063	649.1398 L	656.5795	665.11 C30H26N	44 804S2, M+	nH ,627.16
100- 80- 60- 40-	627.1591						
20 - [%] 100 - 			649.1411		C30H26N8	O4S2, M+n	Na ,649.14
- 60- 40-			r.				
20- [%9]					C30H26N	804S2, M+	nK ,665.12
100- 80-					665.11	50	
60- 40- 20-						1	
<u>م</u> لــــ	630	640	650	660	, , <u>, </u>	670	m/z
Bruker Compass	s DataAnalysis 4.0	printed:	29.09.2020	11:10:28		Page 1 d	of 1

HRMS of 4,4'-((1Z,1'Z)-hydrazine-1,2-diylidenebis(2-(phenylsulfonyl)ethan-1-yl-1ylidene))dibenzonitrile 3ja

HRMS of (1Z,2Z)-1,2-bis(1-(4-nitrophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine 3ka

HRMS of (1Z,2Z)-1,2-bis(2-(phenylsulfonyl)-1-(m-tolyl)ethylidene)hydrazine 3la

HRMS of (1Z,2Z)-1,2-bis(1-(3-chlorophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine 3ma

		Display	Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Chizhov\Tero tune_wide.m /TERN BP-241 CH3CN 100 %, dil. 2	entiev\Mulina\bp-241_& 00, calibrant added	clb.d	Acquisition Date Operator Instrument / Ser#	16.11.2020 17:03:45 BDAL@DE micrOTOF 10248
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Not active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heat Set Dry Gas Set Divert Va	r 0.4 Bar er 180 °C 4.0 l/min Ive Waste
Intens. x105 2.5 2.0 1.5 1.0	607.0286	1193.0660 922.0105	1521,9707	2121,9337	+MS, 0.0-1.0min #(1-59)
0.0		1000	1500	2000	2500 m/z
2 585.0 1 2500 2000 585.0 1500 1000 2000 1500 1000	465 587.0439 471 587.0443	1.4949		C28I	607.0286 609.0262 H22CI2N2O4S2, M+nH ,585.05 22CI2N2O4S2, M+nNa ,607.03 607.0290 609.0262
0 585	5 590	595	600	605	610 m/z
Bruker Compass	s DataAnalysis 4.0	printed:	16.11.2020	17:23:57	Page 1 of 1

HRMS of (1Z,2Z)-1,2-bis(1-(3-bromophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine 3na

50 10		Displ	ay Repor	t			
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Chizhov\7 tune_wide.m /TERN BP-247 CH3CN 100 %, di	erentiev\Mulina\bp-24	7_&clb.d	Acquisitio Operator Instrumer	n Date 21.1 BDA nt / Ser# micr	2.2020 17:3 L@DE OTOF 1	4:46 0248
Acquisition Par Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offs	Positive 4500 V set -500 V	Set Set Set Set	Nebulizer Dry Heater Dry Gas Divert Valve	0.4 Bar 180 °C 4.0 I/min Waste	
Intens. x10 ⁵	000.000	20			2	+MS, 0.0-1.0	min #(2-60
1.50-	696.926	3					
1.25-							
1.00							
0.75-							
0.50							
0.25	360.3231	1370 922.0100	.8631	01010			
0.00		human	h	l.	1328 1	2721.895	1
Intens .	500	1000	1500	2000	25	00	m/
x10 ⁵		696.9263				+MS, 0.0-1.0	min #(2-60
1.5		A					
1.0-	694.9278		607 0291	698.9241			
0.5	Λ	695.9308	A		699.9267 A	700.9237	
P:B					C28H22Br	2N2O4S2, M+	nH ,672.9
1.0							
0.5							
0.0							
-0.5							
-1.0					C28H22Br2	N2O4S2, M+r	Na ,694.9
2000		696.9261					
1500		A		000 0010			
1000	694.9280			698.9240			
500	Λ	695.9313	697.9293		699.9272		
o		$-\Lambda$	<u>_</u>	Д	<u> </u>	700.9198	~
694	695	696 697	698	699	700	701	m/:
Bruker Compass	s DataAnalysis 4.0	print	ed: 21.12.202	20 17:43:14		Page 1	of 1

HRMS of (1Z,2Z)-1,2-bis(1-(2-chlorophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine 3oa

Analysis Info Analysis Name Sample Name D:Data/Kolotyrkina/2021/Mulina/031038.d tune. 50-1600.m Acquisition Date 10.03.2021 17.26:06 Sample Name D:Data/Kolotyrkina/2021/Mulina/031038.d tune. 50-1600.m Operator Instrument / Ser# BDAL@DE micrOTOF 1024 Comment C28H22CI2N2O452 mH 585.0470 calibrant added CH3CN Operator Instrument / Ser# BDAL@DE micrOTOF 1024 Source Type Focus Scan End Ton Polarity Positive Set Nebulizer 1.0 Bar Source Type Focus Scan End 100 m/z Set Capillary 4500 V Set Divert Valve Value Mathysis 1600 m/z Set Capillary 607.0280 623.0009			Display	y Report			
Acquisition Parameter ESI Ion Polarity Positive Set Nebulizer 1.0 Bar Source Type Focus Not active Set Capillary 4500 V Set Divertibute 4.0 Umin Scan End 1600 m/z Set Capillary 4500 V Set Divertibute 4.0 Umin Scan End 1600 m/z Set End Plate Offset -500 V Set Divert Valve 4.0 Umin Interest 1500 m/z Set End Plate Offset -500 V Set Divert Valve 4.0 Umin 64 585.0458	Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Kolotyrkina\2021\M tune_50-1600.m /TERN BP-261 C28H22Cl2N2O4S2 mH 58	ulina\031038.d 5.0470 calibrant added CH3CN		Acquisition Date Operator Instrument / Ser#	10.03.2021 17:26:06 BDAL@DE micrOTOF	10248
Interest x104 585.0458 601.2175 607.0280 623.0009 585.0451 587.0435 601.2175 607.0280 623.0009 585.0471 587.0443 587.0443 607.0280 623.0009 500 587.0443 607.0280 623.0009 500 587.0443 607.0280 607.0280 500 587.0443 607.0280 628.022 500 587.0443 607.0280 628.022 500 607.0290 628.022 628.002 600 600 600 620 600 600 610 620	Acquisition Paran Source Type Focus Scan Begin Scan End	neter ESI Not active 50 m/z 1600 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.0 Bar 200 ℃ 4.0 l/min Waste	
607.0290 2000 1500 500 500 500 500 500 500	104005 6 4 2 2000 1500 1500 500	585.0458 587.0435 585.0471 585.0471 587.0443	601.2175	607.0280		+MS, (623.0009 <u>1 2281+22012N2O</u> C281+22012N2O	0.8-1.0min #(33-58) 4S2, M+nH ,585.05
1500 1000 500 500 500 500 500 500	0 2000 1500 1000 500 0 2000			607.0290		C28H22Cl2N2O4	S2, M+nNa ,607.03 4S2, M+nK ,623.00
	1500 1000 500 0 580	590	eòo	610	620		630 m/z

HRMS of (1Z,2Z)-1,2-bis(1-(2-fluorophenyl)-2-(phenylsulfonyl)ethylidene)hydrazine 3pa

		Display	Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Kolotyrkina tune_50-1600.m /TERN VP-256 C28H22F2N3O4S2	\\2021\Mulina\0210001.d ? mH549.1225 calibrant a	added CH3CN	Acquisition Date Operator Instrument / Ser#	10.02.2021 15:54:58 BDAL@DE micrOTOF 10248
Acquisition Par Source Type Focus Scan Begin Scan End	ameter ESI Not active 50 m/z 1600 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Val	ar 1.0 Bar ar 200 °C 4.0 l/min Ive Waste
[%] 80 60 40 20 [%] 100 80 60 40 20 [%] 100 80 60 40 20 [%] 100 80 60 40 20 [%] 100 80 60 40 20 [%] 100 80 60 40 20 [%] 100 80 60 40 20 [%] 100 80 60 40 20 [%] 100 80 60 40 20 [%] 100 80 60 40 20 [%] 100 80 60 40 20 [%] 100 80 60 60 60 60 60 60 60 60 60 6	553.1071	570.13	27 575.0888 27 27 27 575.0881	C28 C28H2	591.0628 122F2N2O4S2, M+nH ,553.11 2F2N2O4S2, M+nNH4 ,570.13 122F2N2O4S2, M+nNa ,575.09 1422F2N2O4S2, M+nK ,591.06
100 80 60 40 20					
01,,	550	560 570		580	590 m/z
Bruker Compass	s DataAnalysis 4.0	printed:	10.02.2021 1	6:00:55	Page 1 of 1

HRMS of (1Z,2Z)-1,2-bis(1-(naphthalen-2-yl)-2-(phenylsulfonyl)ethylidene)hydrazine 3qa

		Display	Report		
Analysis Info Analysis Nam Method Sample Name Comment	e D:\Data\Chizhov\Tere tune_wide.m e /TERN BP-243 CH3CN 100 %, dil. 20	ntiev\Mulina\bp-243_8 00, calibrant added	clb.d	Acquisition Date Operator Instrument / Ser#	16.11.2020 17:15:09 BDAL@DE micrOTOF 10248
Acquisition F Source Type Focus Scan Begin Scan End	Parameter ESI Not active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Val	0.4 Bar or 180 °C 4.0 l/min ve Waste
Intens x105	000 1075				+MS, 0.0-1.0min #(1-59)
	639.1375				
1.25-					
0.75					
	437.1921 92	22.0105			
0.50			521 0706		
0.25		100000000		2121.9339	
0.00	سيسب اللبسيجير للالباللاب	1255.2857		., ., ., ., ., ., ., ., ., ., ., ., ., .	2721.8946
Intens.	500	1000	1500	2000	+MS, 0.0-1.0min #(1-59)
x10 ⁵	617.1554		639.1375		
1.0					
0.5	622.0286	628.5027		647.5569	655.1116
2500	617, 1563			С	36H28N2O4S2, M+nH ,617.16
2000					
1000	~				
500					
2500				C3	6H28N2O4S2, M+nNa ,639.14
2000			639.1383 		
1500					
1000					
0					001100N100400 NK 055 11
2500				C	655.1122 655.11
1500					
1000					100
500					
0 ¹ 6	620 62	5 630 6	640	645	650 655 m/z
Bruker Compa	ass DataAnalysis 4.0	printed:	16.11.2020 1	7:28:20	Page 1 of 1

HRMS of 1,2-bis((S,Z)-2-(phenylsulfonyl)-3,4-dihydronaphthalen-1(2H)ylidene)hydrazine 3ra

<u></u>		Displa	ay Report		
Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Kolotyrki tune_50-1600.m /TERN BP-248 C32H28N2O4S2	na\2021\Mulina\0112024 mH 569.1563 calibrant	4.d added CH3CN	Acquisition Date Operator Instrument / Ser#	12.01.2021 16:56:22 BDAL@DE micrOTOF 10248
Acquisition Pa Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 1600 m/z	lon Polarity Set Capillary Set End Plate Offs	Positive 4500 V et -500 V	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Va	r 1.0 Bar er 200 °C 4.0 l/min Ive Waste
Intens. x105 2.0 1.5 1.0 0.5 0.0	569.1563		591.1379	C	+MS, 0.4-0.9min #(25-53) 607.1113 1 32H28N2O4S2, M+nH ,569.16
1500- 1000- 500-				0	2011/2011/2014/2014 No E01.14
2000 1500 1000			591.1383		22H28N2O452, M+nNa ,591.14
0 2000 1500 500					C32H28N2O4S2, M+nK ,607.11 607.1122
565 Bruker Compas	570 57 s DataAnalysis 4.0	5 580 58 printe	ed: 12.01.2021	595 600 17:00:29	605 610 m/z Page 1 of 1

HRMS of (1Z,2Z)-1,2-bis(1-(cyclohex-1-en-1-yl)-2-(phenylsulfonyl)ethylidene)hydrazine 3ta

