Supporting Information

Brønsted acid enabled metal-free remote oxygenation and amidation of unstrained C–C bonds *via* 1,4-heteroaryl migration chaperoned radical-polar crossover

Xiaofei Xie^{a‡}, Yun Shi^{a,b‡}*, Yukun Li^{a‡}, Jinge Gui^a, Yingguang Zhu^{a,*}, Kang Chen^{a,*}

^aJiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China ^bSchool of Pharmacy, Jiangsu Medical College, Yancheng, 224000, China

E-mail: shiyun210@163.com; ygzhu@njau.edu.cn; kchen@njau.edu.cn; kchen@njau.edu; <a href="mai

Table of Contents

1.	General information	S 2
2.	General procedure for remote oxygenation and amidation of unstrained C-C bor	nds
via	1,4-group migration	S 3
3.	X-Ray single crystal diffraction analysis of the products 2g and 3i	S 9
4.	Synthetic applications	\$11
5.	Mechanistic studies	512
6.	Characterization data	17
7.	References	41
8.	NMR spectra	\$42

1.General information

All commercially available reagents were used without further purification. Column chromatography was performed on silica gel (200-300 mesh). ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on Bruker 400 MHz and JOEL 500 MHz NMR spectrometers. Chemical shifts (δ) were reported in ppm, and coupling constants (*J*) were given in Hertz (Hz). Data were reported as s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, br = broad, m = multiplet. High-resolution mass spectra (HRMS) were recorded on an AB SCIEX Triple ESI-TOF 5600+ mass spectrometer. The electrochemical measurements were carried out on a CS2350M electrochemical workstation (Wuhan Corrtest Instrument Co., Ltd). The 15W and 36 W blue LED lamp (λ max = 445 nm) was manufactured by Hongye Photoelectricity Co., Ltd. Photo reactions were carried out in 20 mL reaction tubes at the distance of 2.0 cm from the LED lamp. An electronic fan is equipped to maintain the reaction temperature could in a range of $30 \pm 2^{\circ}$ C.

Figure S1. The spectrum of the lamp and the visible-light irradiation instrument

2. General procedure for remote oxygenation and amidation of unstrained C–C bonds *via* 1,4-group migration

2.1 Procedure for the synthesis of substrates 1^[1]

To a 100 mL oven-dried round-bottomed flask equipped with a stirring bar was charged with NaH (800 mg, 20 mmol, 60% suspension in mineral oil), DMF (20 mL) were added under N₂ atmosphere. The aryl acetonitrile and heteroaryl acetonitrile (10 mmol) were added dropwise after the mixture was cooled down by ice bath. Then the reaction mixture was warmed to room temperature and stirred 1 h, the **S1** (15 mmol) were added under the same conditions as above. After stirring at room temperature for 16 h, the reaction mixture was quenched with NH₄Cl (20 mL), and extracted with EtOAc (20 mL×3). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄, the crude product was further purified by flash chromatography to give the ester **S2**.

To a round-bottomed flask equipped with a magnetic stir bar were added **S2** (10.0 mmol) and EtOH (20 mL). Then the KOH solution (5.0 mL, 6.0 M) was added dropwise, and the reaction mixture was stirred at rt for 12 h. After that, the reaction mixture was brought to pH = 2 ~ 4 with HCl (6.0 M), and extracted with EtOAc (10 mL×3). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was further purified by flash chromatography to give corresponding acids.

To the acid (10 mmol) were added *N*-hydroxyphthalimide (15 mmol), *N*,*N*-dimethylpyridine (1.0 mmol), *N*,*N*-dicyclohexylcarbodiimide (15 mmol), and CH₂Cl₂ (10 mL). The reaction mixture was stirred at rt for 12 h. After that, the mixture was filtered through a pad of silica gel and rinsed with CH₂Cl₂. The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford substrates **1**.

2.2 Optimization of reaction conditions

Table S1. Screening of photocatlysts, acids and solvents^a

16	4DPAIPN	TsOH•H ₂ O (3.0)	DMF	47
17	4DPAIPN	TsOH•H ₂ O (3.0)	Acetone	45
18	-	TsOH•H ₂ O (3.0)	MeCN	n.d.
19	4DPAIPN	-	MeCN	n.d.
20 ^c	4DPAIPN	TsOH•H ₂ O (3.0)	MeCN	n.d.
21 ^{<i>d</i>}	4DPAIPN	TsOH•H ₂ O (3.0)	MeCN	n.d.

^{*a*}Reaction conditions: **1a** (0.1 mmol), photocatlyst (1.0 mol%), acid (x equiv.), H₂O (100 equiv.), solvent (1.0 mL), room temperature, N₂, under blue LEDs (15 W) irradiation for 48 h. ^{*b*}Isolated yileds were reported. ^{*c*}Without light. ^{*d*}Under air atmosphere. n.d.= not detected.

Table S2. Screening of photocatlysts and acids^a

s s	1a, 0.2 mmol	Photocatlyst (2.0 mol%) Acid (x equiv.) MeCN (0.1 M), N ₂ , rt 36 W blue LEDs, 48 h	O NH J J Ja	S N
Entry	Photocatlysts	Acids (x equiv.)	Solvent	Yield (%) ^b
1^c	4DPAIPN	TsOH•H ₂ O (2.0)	MeCN	49
2	4DPAIPN	TsOH•H ₂ O (2.0)	MeCN	55
3	4DPAIPN	TsOH•H ₂ O (1.0)	MeCN	37
4	4DPAIPN	TsOH•H ₂ O (3.0)	MeCN	52
5	3DPA2FBN	TsOH•H ₂ O (2.0)	MeCN	40
6	4CzIPN	TsOH•H ₂ O (2.0)	MeCN	31
7	5CzBN	TsOH•H ₂ O (2.0)	MeCN	39
8^d	4DPAIPN	TsOH•H ₂ O (2.0)	MeCN	45
9 ^e	4DPAIPN	TsOH•H ₂ O (2.0)	MeCN	51
10	4DPAIPN	TFA (2.0)	MeCN	46
11	4DPAIPN	H ₃ PO ₄ (2.0)	MeCN	54
12	4DPAIPN	HBF ₄ (2.0)	MeCN	52
13	4DPAIPN	MeSO ₃ H (2.0)	MeCN	60
14	-	MeSO ₃ H (2.0)	MeCN	n.d.
15	4DPAIPN	-	MeCN	n.d.
16 ^f	4DPAIPN	MeSO ₃ H (2.0)	MeCN	n.d.

^{*a*}Reaction conditions: **1a** (0.2 mmol), photocatlyst (2.0 mol%), acid (x equiv.), MeCN (0.1 M), room temperature, N₂, under blue LEDs (36 W) irradiation for 48 h. ^{*b*}Isolated yields were reported. ^{*c*}Under blue LEDs (15 W) irradiation for 48 h. ^{*d*}MeCN (0.05 M). ^{*e*}MeCN (0.2 M). ^{*f*}In the dark. n.d.= not detected.

2.3 General procedure for remote oxygenation of NHPI esters *via* 1,4-group migration

To a 20 mL test tube flask equipped with a stirring bar was charged with **1a** (45.7 mg, 0.1 mmol), 4DPAIPN (0.8 mg, 1.0 mol%) and TsOH•H₂O (57.1 mg, 3.0 equiv.) under N₂ atmosphere. Then, H₂O (180 mg, 10 mmol, 0.18 mL) and MeCN (1.0 mL) were added *via* a syringe. The reaction vessel was exposed to blue LED (450-455 nm, 15 W) irradiation at room temperature stirring for 48 h. After completion of the reaction, the reaction mixture was diluted with EtOAc (10 mL), and washed with saturated aq. NaHCO₃ (10 mL). The aqueous layer was extracted by EtOAc (10 mL × 2). The combined organic phase was dried over anhydrous Na₂SO₄ and then concentrated in *vacuo*. The residue was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate/triethylamine = 10:1:0.1, V/V/V) to give the product **2a** (21.8 mg, 77%).

2.4 Procedure for a scale-up reaction of 1a

To a 100 mL round bottom flask equipped with a stirring bar was charged with **1a** (1.370 g, 3.0 mmol), 4DPAIPN (1.6 mg, 0.02 mmol) and TsOH•H₂O (1.712 g, 3.0 equiv.) under N₂ atmosphere. Then, H₂O (5.4 g, 300 mmol, 5.4 mL) and MeCN (30 mL) were added *via* a syringe. The reaction vessel was exposed to blue LED (450-455 nm,

15 W×2) irradiation at room temperature stirring for 96 h. After completion of the reaction, MeCN was removed in *vacuo*, and the residue was diluted with EtOAc (30 mL), and washed with saturated aq. NaHCO₃ (15 mL). The aqueous layer was extracted by EtOAc (15 mL×2). The combined organic phase was dried over anhydrous Na₂SO₄ and then concentrated in *vacuo*. The crude product was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate/triethylamine = 10:1:0.1, V/V/V) to give the product **2a** (527 mg, 62%).

2.5 General procedure for remote amidation of NHPI esters *via* 1,4-group migration

To a 20 mL test tube flask equipped with a stirring bar was charged with **1a** (91.3 mg, 0.2 mmol), 4DPAIPN (3.2 mg, 2.0 mol%) and MeSO₃H (38.4 mg, 2.0 equiv.) dissolved in MeCN (2.0 mL) under N₂ atmosphere. The reaction vessel was exposed to blue LED (450-455 nm, 36 W) irradiation at room temperature stirring for 48 h. After completion of the reaction, the crude mixture was concentrated in *vacuo*. The residue was further purified by flash chromatography for two times (silica gel, petroleum ether/ethyl acetate/triethylamine = 2:1:0.02, V/V/V and afterwards DCM/MeOH = 100: 1, V/V) to give the product **3a** (38.9 mg, 60%).

2.6 General procedure for remote functionalization of NHPI esters with HOAc and Et_3N •3HF as nucleophiles

HOAc as the nucleophile:

To a 20 mL test tube flask equipped with a stirring bar were charged with **1a** (45.7 mg, 0.1 mmol) and 4DPAIPN (1.6 mg, 2.0 mol%) under N₂ atmosphere. Then HOAc (1.0 mL) was added *via* a syringe. The reaction vessel was exposed to blue LED (450-455 nm, 36 W) irradiation at room temperature stirring for 48 h. After completion of the reaction, the AcOH was removed in *vacuo*. The residue was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 20:1, V/V) to give the product **5n** (14.6 mg, 45%).

Et₃N•3HF as the nucleophile:

To two 20 mL test tube flasks equipped with a stirring bar were charged with **1a** (45.7 mg, 0.1 mmol), 4DPAIPN (1.6 mg, 2.0 mol%) under N₂ atmosphere. Then Et₃N•3HF (322.4 mg, 10 equiv.) and MeCN (2.0 mL) were added *via* a syringe. The reaction vessel was exposed to blue LED (450-455 nm, 36 W) irradiation at room temperature stirring for 48 h. After completion of the reaction, the crude mixture was concentrated in vacuo. The residue was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 20:1, V/V) to give the product **5o** (10.0 mg, 35%).

3. X-Ray single crystal diffraction analysis of the products (CCDC:

2416854, 2416902)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 1

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1

Bond precision:	C-C = 0.0042 A	Wavelength	=0.71073		
Cell:	a=5.8254(11) alpha=87.425(3)	b=7.5174(14) beta=84.849(3)	c=18.148(4) gamma=84.586(4)		
Temperature:	296 K				
	Calculated	Reported			
Volume	787.5(3)	787.5(3)			
Space group	P -1	P -1			
Hall group	-P 1	-P 1			
Moiety formula	C17 H16 Br N O S	?			
Sum formula	C17 H16 Br N O S	C17 H16 E	Br N O S		
Mr	362.27	362.28			
Dx,g cm-3	1.528	1.528			
Z	2	2			
Mu (mm-1)	2.740	2.740			
F000	368.0	368.0			
F000'	367.80				
h,k,lmax	6,8,21	6,8,21			
Nref	2769	2758			
Tmin, Tmax	0.495,0.518				
Tmin'	0.486				
Correction method= Not given					
Data completene:	ss= 0.996	Theta(max) = 24.99	9		
R(reflections) =	0.0399(2224)		wR2(reflections)= 0.0985(2758)		
S = 1.022	Npar= 19	91	, ,		

3i, CCDC: 2416902

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 1

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 1

Bond precision:	C-C = 0.0050 A	Wavelength=1.54178	
Cell:	a=16.4672(4) b=13 alpha=90 beta	.2488(3) c=9.8017(2) =107.031(1) gamma=90	
Temperature:	273 K		
	Calculated	Reported	
Volume	2044.67(8)	2044.66(8)	
Space group	P 21/c	P 1 21/c 1	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C20 H19 F3 N2 O2 S	C20 H19 F3 N2 O2 S	
Sum formula	C20 H19 F3 N2 O2 S	C20 H19 F3 N2 O2 S	
Mr	408.43	408.43	
Dx,g cm-3	1.327	1.327	
Z	4	4	
Mu (mm-1)	1.805	1.805	
F000	848.0	848.0	
F000'	852.18		
h,k,lmax	19,15,11	19,15,11	
Nref	3757	3748	
Tmin,Tmax	0.759,0.791	0.567,0.753	
Tmin'	0.629		
Correction metho AbsCorr = ?	d= # Reported T Limits:	Tmin=0.567 Tmax=0.753	
Data completenes	s= 0.998 The	ta(max)= 68.475	
R(reflections)=	0.0678(2578)	wR2(reflections)) =
S = 1.075	Npar= 254	0.2413(3740)	

4. Synthetic applications

4.1 The synthesis of ketone 6^[2]

To a reaction tube equipped with a magnetic stir bar were added **2a** (56.7 mg, 0.2 mmol), Dess-Martin periodinane (77.7 mg, 2.0 equiv.) and DCM (2.0 mL). The reaction was stirred at room temperature for 1 h. Then the crude mixture was concentrated in *vacuo*. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50:1, V/V) to give ketone **6** (51.2 mg, 91%).

4.2 The synthesis of benzyl benzoate 7^[3]

To a reaction tube equipped with a magnetic stir bar were added **2a** (56.7 mg, 0.2 mmol), BzCl (28.1 mg, 1.0 equiv.) ZnO (0.8 mg, 5.0 mol%) and DCM (2.0 mL). The reaction was stirred at room temperature for 10 min. Then the crude mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20:1, V/V) to give benzoate **7** (62.0 mg, 80%).

4.3 The synthesis of aryl ether 8^[4]

To a reaction tube equipped with a magnetic stir bar were added **2a** (56.7 mg, 0.2 mmol), *p*-iodobenzene (21.6 mg, 1.0 equiv.), CuI (1.9 mg, 5.0 mol%), Ligand (4.8 mg,

10 mol%), Cs₂CO₃ (195.5 mg, 3.0 equiv.) and tolenue (2.0 mL). The reaction was stirred at 110 °C for 24 h. The reaction mixture was concentrated in *vacuo*. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20:1, V/V) to give aryl ether **8** (44.8 mg, 60%).

To a 20 mL test tube flask equipped with a stirring bar was charged with **1a** (45.7 mg, 0.1 mmol), 4DPAIPN (0.8 mg, 1.0 mol%) and TsOH•H₂O (57.1 mg, 3.0 equiv.) under N₂ atmosphere. Then, Chinese liquor *Erguotou* (alc/vol: 52%vol) was added *via* a syringe. The reaction vessel was exposed to blue LED (450-455 nm, 15 W) irradiation at room temperature stirring for 48 h. After completion of the reaction, the reaction mixture was diluted with EtOAc (10 mL), and washed with saturated aq. NaHCO₃ (10 mL). The aqueous layer was extracted by EtOAc (10 mL×2). The combined organic phase was dried over anhydrous Na₂SO₄ and then concentrated in *vacuo*. The residue was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate/triethylamine = 10:1:0.1, V/V/V) to give the recovered **1a** (15.1 mg, 33%), alcohol **2a** (8.8 mg, 31%) and ether **5b** (8.7 mg, 28%), respectively.

5. Mechanistic studies

5.1 Radical-trapping experiment

To a 20 mL test tube flask equipped with a stirring bar was charged with **1a** (45.7 mg, 0.1 mmol), 4DPAIPN (0.8 mg, 1.0 mol%), TsOH•H₂O (57.1 mg, 3.0 equiv.) and TEMPO (93.8 mg, 0.6 mmol) under N₂ atmosphere. Then, H₂O (180 mg, 10 mmol,

0.18 mL) and MeCN (1.0 mL) were added *via* a syringe. The reaction vessel was exposed to blue LED (450-455 nm, 15 W) irradiation at room temperature stirring for 48 h. Thin-layer chromatography (TLC) analysis indicated that the formation of product **2a** was not observed, and radical trapping adduct was detected by HRMS analysis (Figure S2).

Figure S2. HRMS analysis of the TEMPO trapping adduct.

5.2 Isotope labeling experiment

To a 20 mL test tube flask equipped with a stirring bar was charged with **1a** (45.7 mg, 0.1 mmol), 4DPAIPN (0.8 mg, 1.0 mol%) and TsOH•H₂O (57.1 mg, 3.0 equiv.) under N₂ atmosphere. Then, H₂¹⁸O (200 mg, 10 mmol, 0.20 mL) and MeCN (1.0 mL) were added *via* a syringe. The reaction vessel was exposed to blue LED (450-455 nm, 15 W) irradiation at room temperature stirring for 48 h. Then, the reaction mixture was diluted with EtOAc (10 mL), and washed with saturated aq. NaHCO₃ (10 mL). The aqueous layer was extracted by EtOAc (10 mL×2). The combined organic phase was dried over anhydrous Na₂SO₄ and then concentrated in *vacuo*. The residue was purified by chromatography (silica gel, petroleum ether/ethyl acetate/triethylamine = 10:1:0.1, V/V/V) to afford the products **2a/2a'** (19.9 mg, 70%). The ¹⁸O-labeled product **2a'** was

the dominant product detected by HRMS (abundance ratio: 2a/2a' = 7:93), suggesting the hydroxyl group in product 2a originated from H₂O (Figure S3).

Figure S3. HRMS analysis of 2a and the ¹⁸O-labeled product 2a'

To a 20 mL test tube flask equipped with a stirring bar was charged with **1p** (23.1 mg, 0.05 mmol), **1v** (24.5 mg, 0.05 mmol), 4DPAIPN (0.8 mg, 1.0 mol%) and TsOH•H₂O (57.1 mg, 3.0 equiv.) under N₂ atmosphere. Then, H₂O (180 mg, 10 mmol, 0.18 mL) and MeCN (1.0 mL) were added *via* a syringe. The reaction vessel was exposed to blue LED (450-455 nm, 15 W) irradiation at room temperature stirring for 48 h. After completion of the reaction, the reaction mixture was diluted with EtOAc (10 mL), and washed with saturated aq. NaHCO₃ (10 mL). The aqueous layer was extracted by EtOAc (10 mL×2). The combined organic phase was dried over anhydrous Na₂SO₄ and then concentrated in *vacuo*. The residue was further purified by flash chromatography (silica gel, petroleum ether/ethyl acetate/triethylamine = 10:1:0.1, V/V/V) to give the product **2p** (5.2 mg, 36%) and **2v** (10.8 mg, 68%), respectively.

5.4 Stern-Volmer fluorescence quenching experiments

The luminescence quenching experiment was taken using a FluoroMax-4

Spectrophotometer. The experiments were carried out in 3×10^{-5} mol/L of 4DPAIPN in MeCN at rt. The excitation wavelength was 425 nm and the emission intensity was collected at 573 nm (Figure S4). The concentrations of quenchers in MeCN were 1.0 mM, 2.0 mM, 3.0 mM, and 4.0 mM.

Figure S4 Stern-Volmer emission quenching experiments.

Cyclic Voltammetry was performed on a CS2350M electrochemical workstation

(Wuhan Corrtest Instrument Co., Ltd). CV measurements of **1a** (1.0 mM) and **1a** (1.0 mM) + TsOH•H₂O (3.0 mM) were carried out in MeCN solutions with Bu₄NPF₆ (0.10 M) as the electrolyte at a scan rate of 50 mV/s under N₂ atmosphere. The working electrode is a glassy carbon, the counter electrode is a Pt wire, and the reference electrode is Ag/AgCl (3.5 M KCl). The reduction peak of **1a** and **1a** + TsOH•H₂O was shown in Figure S5.

5.6 Light on/off experiment

To a reaction tube equipped with a magnetic stir bar were added substrate **1a** (0.1 mmol), 4DPAIPN (0.8 mg, 1.0 mol%) and TsOH•H₂O (57.1 mg, 3.0 equiv.) under N₂ atmosphere. Then, H₂O (180 mg, 10 mmol, 0.18 mL) and MeCN (1.0 mL) were added *via* a syringe. The yields of **2a** were determined by ¹H NMR with 1,3,5-trimethoxybenzene as an internal standard with the light turned on and off at intervals (Figure S6).

Figure S6 Reaction profile with the light on/off over time.

5.6 NMR analysis of NHPI ester and Brønsted acid mixture

The mixture of NHPI ester **1a** (22.8 mg, 0.05 mmol) and MeSO₃H (4.8 mg, 0.05 mmol, 1.0 equiv) was dissolved in CDCl₃ (1.0 mL), and the sample was analyzed by a 500 MHz NMR spectrometer. The spectrum was than compared with that of **1a** alone. Upon the addition of 1.0 equiv of MeSO₃H, the signal of H_a which were adjacent to N

atom shifted from 8.02 to 8.24. And the signal of H_b at the benzylic position shifted from 4.43 to 4.96. These observations revealed the interaction between MeSO₃H and the benzothiazole moiety.

Figure S7 NMR spectra for the coordination of MeSO₃H with benzothiazole moiety

6. Characterization data

4-(Benzo[*d*]**thiazol-2-yl)-1-phenylbutan-1-ol** (**2a**, white solid, 21.8 mg, 77%). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.33 (m, 5H), 7.28 – 7.25 (m, 1H), 4.74 (t, *J* = 6.3 Hz, 1H), 3.15 (t, *J* = 6.7 Hz, 2H), 2.43 (br, 1H), 2.08 – 2.01 (m, 1H), 1.96 – 1.91 (m, 2H), 1.88 – 1.84 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 153.0, 144.5, 135.0, 128.5, 127.6, 125.9, 125.8, 124.7, 122.4, 121.5, 73.9, 38.3, 33.9, 25.6. HRMS(ESI) m/z: [M+H]⁺ cacld. for

C₁₇H₁₈NOS 284.1104, found 284.1098.

4-(benzo[*d*]**thiazol-2-yl)-1-(***p***-tolyl)butan-1-ol** (**2b**, white solid, 24.7 mg, 83%) ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.33 (m, 1H), 7.24 – 7.23 (m, 2H), 7.15 – 7.14 (m, 2H), 4.71 (t, *J* = 6.3 Hz, 1H), 3.15 (t, *J* = 6.5 Hz, 2H), 2.33 (s, 3H), 2.21 (br, 1H), 2.05 – 2.02 (m, 1H), 1.94 – 1.91 (m, 2H), 1.86 – 1.82 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 153.0, 141.5, 137.3, 135.0, 129.2, 125.9, 125.8, 124.7, 122.5, 121.5, 73.8, 38.2, 33.9, 25.7, 21.1. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₈H₂₀NOS 298.1260, found 298.1289.

4-(Benzo[*d*]**thiazol-2-yl)-1-(4-(tert-butyl)phenyl)butan-1-ol** (**2c**, colorless oil, 22.7 mg, 67%). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.37 – 7.34 (m, 3H), 7.29 – 7.27 (m, 2H), 4.72 (t, *J* = 6.2 Hz, 1H), 3.15 (t, *J* = 7.1 Hz, 2H), 2.39 (br, 1H), 2.08 – 2.04 (m, 1H), 1.99 – 1.90 (m, 2H), 1.88 – 1.82 (m, 1H), 1.31 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 153.1, 150.5, 141.5, 135.0, 125.9, 125.5, 125.4, 124.7, 122.5, 121.5, 73.8, 38.1, 34.5, 33.9, 31.3, 25.8. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₁H₂₆NOS 340.1730, found 340.1727.

1-([1,1'-Biphenyl]-4-yl)-4-(benzo[*d*]**thiazol-2-yl)butan-1-ol** (**2d**, white solid, 26.6 mg, 74%), ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.59 - 7.56 (m, 4H), 7.47 - 7.41 (m, 5H), 7.37 - 7.33 (m, 2H), 4.83 - 4.77 (m, 1H), 3.19 (t, *J* = 6.7 Hz, 2H), 2.12 - 2.05 (m, 1H), 2.03 - 1.94 (m, 2H), 1.91 - 1.87 (m, 1H),

1.81 (br, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 170.4, 152.0, 143.5, 140.8, 140.5, 137.1, 135.0, 128.7, 127.2, 127.1, 126.3, 126.0, 124.8, 122.5, 121.5, 73.7, 38.2, 33.9, 25.6. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₃H₂₂NOS 360.1417, found 360.1412.

4-(Benzo[d]thiazol-2-yl)-1-(4-fluorophenyl)butan-1-ol (**2e**, pale yellow solid, 18.4 mg, 61%). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.45 – 7.42 (m, 1H), 7.36 – 7.33 (m, 1H), 7.31 – 7.28 (m, 2H), 7.02 – 6.98 (m, 2H), 4.72 (t, *J* = 6.4 Hz, 1H), 3.14 (t, *J* = 7.1 Hz, 2H), 2.56 (br, 1H), 2.04 – 1.99 (m, 1H), 1.92 – 1.89 (m, 2H), 1.84 – 1.79 (m, 1H); ¹⁹F NMR (471 MHz, CDCl₃) δ -114.98 – -115.05 (m, 1F); ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 162.1 (d, *J* = 250.7 Hz), 153.0, 140.3 (d, *J* = 3.0 Hz), 135.0, 127.4 (d, *J* = 7.9 Hz), 126.0, 124.8, 122.4, 121.5, 115.2 (d, *J* = 21.3 Hz), 73.2, 38.3, 33.8, 25.5. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₇H₁₇FNOS 302.1009, found 302.1009.

4-(Benzo[*d*]**thiazol-2-yl)-1-(4-chlorophenyl)butan-1-ol** (**2f**, white solid, 18.7 mg, 59%). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.33 (m, 1H), 7.30 – 7.28 (m, 4H), 4.72 (t, *J* = 6.3 Hz, 1H), 3.17 – 3.13 (m, 2H), 2.67 (br, 1H), 2.04 – 2.00 (m, 1H), 1.96 – 1.87 (m, 2H), 1.83 – 1.79 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 153.0, 143.0, 135.0, 133.2, 128.6, 127.2, 126.0, 124.8, 122.5, 121.5, 73.2, 38.3, 33.7, 25.3. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₇H₁₇ClNOS 318.0714, found 318.0712.

4-(Benzo[*d*]**thiazol-2-yl)-1-(4-bromophenyl)butan-1-ol** (**2g**, white solid, 22.7 mg, 63%). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.43 (m, 3H), 7.37 – 7.34 (m, 1H), 7.22 – 7.21 (m, 2H), 4.72 – 4.70 (m, 1H), 3.16 – 3.13 (m, 2H), 2.61 (br, 1H), 2.04 – 2.00 (m, 1H), 1.94 – 1.89 (m, 2H), 1.83 – 1.81 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 152.9, 143.6, 135.0, 131.5, 127.5, 126.0, 124.8, 122.4, 121.5, 121.2, 73.1, 38.2, 33.7, 25.3. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₇H₁₇BrNOS 362.0209, found 362.0211.

4-(Benzo[*d*]**thiazol-2-yl)-1-(4-(trifluoromethyl)phenyl)butan-1-ol** (**2h**, white solid, 14.4 mg, 41%), ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.2 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.60 – 7.58 (m, 2H), 7.47 – 7.46 (m, 3H), 7.37 – 7.34 (m, 1H), 4.83 (dd, J = 7.7, 5.0 Hz, 1H), 3.20 – 3.16 (m, 2H), 2.82 (br, 1H), 2.06 – 1.99 (m, 2H), 1.92 – 1.86 (m, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ -62.3 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 171.7, 152.9, 148.5, 134.9, 129.6 (q, *J* = 32.4 Hz), 126.04, 126.02, 125.4 (q, *J* = 4.0 Hz), 124.9, 124.1 (q, *J* = 272.5 Hz), 122.4, 121.5, 73.1, 38.3, 33.6, 25.1. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₈H₁₇F₃BNOS 352.0977, found 352.0979.

4-(Benzo[*d*]thiazol-2-yl)-1-(4-(trifluoromethoxy)phenyl)butan-1-ol (2i, colorless oil, 12.8 mg, 35%), ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 8.2 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.45 – 7.42 (m, 1H), 7.37 – 7.33 (m, 3H), 7.17 – 7.16 (m, 2H), 4.76 (t, *J* = 6.1 Hz, 1H), 3.15 (t, *J* = 7.2 Hz, 2H), 3.03 (br, 1H), 2.06 – 2.02 (m, 1H), 1.98 – 1.88 (m, 2H), 1.84 – 1.81 (m, 1H); ¹⁹F NMR (471 MHz, CDCl₃) δ -57.7 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 152.9, 148.4, 143.4, 134.9, 127.2, 126.0, 124.8, 122.4, 121.5, 120.9, 120.4 (q, *J* = 322.1 Hz), 73.0, 38.3, 33.7, 25.4. HRMS(ESI) m/z: [M+H]⁺

cacld. for C₁₈H₁₇F₃NO₂S 368.0927, found 368.0930.

4-(Benzo[*d*]**thiazol-2-yl)-1-(3-methoxyphenyl)butan-1-ol** (**2j**, colorless oil. 20.7 mg, 66%). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.38 – 7.35 (m, 1H), 7.29 – 7.24 (m, 1H), 6.94 – 6.93 (m, 2H), 6.83 – 6.81 (m, 1H), 4.73 (t, *J* = 6.3 Hz, 1H), 3.81 (s, 3H), 3.15 (t, *J* = 7.1 Hz, 2H), 2.75 (br, 1H), 2.08 – 2.02 (m, 1H), 1.97 – 1.92 (m, 2H), 1.88 – 1.85 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 173.1, 141.2, 135.0, 128.9, 128.0, 127.5, 125.9, 124.8, 122.8, 121.5, 119.3, 61.1, 50.6, 41.2, 34.9, 33.8, 31.5, 23.1. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₈H₂₀NO₂S 314.1209, found 314.1209.

4-(Benzo[*d*]**thiazol-2-yl)-1-(3-chlorophenyl)butan-1-ol** (**2k**, yellow oil, 14.9 mg, 47%). ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 8.2 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.45 – 7.42 (m, 1H), 7.36 – 7.32 (m, 2H), 7.24 – 7.20 (m, 3H), 4.71 (dd, *J* = 7.7, 4.9 Hz, 1H), 3.18 (br, 1H), 3.14 (t, *J* = 7.4 Hz, 2H), 2.05 – 1.99 (m, 1H), 1.95 – 1.86 (m, 2H), 1.84 – 1.78 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 152.9, 146.8, 134.9, 134.3, 129.7, 127.5, 126.0, 124.8, 123.9, 122.4, 121.5, 73.1, 38.2, 33.7, 25.3. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₇H₁₇ClNOS 318.0714, found 318.0712.

4-(Benzo[*d*]thiazol-2-yl)-1-(*o*-tolyl)butan-1-ol (2l, colorless oil, 25.6 mg, 86%). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.49 – 7.43 (m, 2H), 7.37 – 7.33 (m, 1H), 7.24 – 7.20 (m, 1H), 7.17 – 7.15 (m, 1H), 7.12 –

7.11 (m, 1H), 5.00 (dd, J = 7.9, 4.7 Hz, 1H), 3.18 (t, J = 7.5 Hz, 2H), 2.34 (br, 1H), 2.31 (s, 3H), 2.16 – 2.09 (m, 1H), 2.05 – 2.01 (m, 1H), 1.88 – 1.83 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 152.9, 142.7, 134.8, 134.3, 130.4, 127.2, 126.3, 125.9, 125.1, 124.7, 122.5, 121.5, 70.1, 37.2, 33.9, 25.8, 19.0. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₈H₂₀NOS 298.1260, found 298.1257.

4-(Benzo[*d*]**thiazol-2-yl**)-**1-(2-chlorophenyl)butan-1-ol** (**2m**, pale yellow oil, 17.2 mg, 54%), ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.60 – 7.58 (m, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.33 (m, 1H), 7.31 – 7.28 (m, 2H), 7.20 – 7.17 (m, 1H), 5.19 (dd, *J* = 8.4, 4.0 Hz, 1H), 3.20 (td, *J* = 7.5, 2.5 Hz, 2H), 2.83 (br, 1H), 2.14 – 2.05 (m, 2H), 1.97 – 1.91 (m, 1H), 1.87 – 1.83 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 153.0, 142.0, 135.0, 131.7, 129.3, 128.4, 127.1, 127.0, 125.9, 124.7, 122.5, 121.5, 70.0, 36.8, 33.7, 25.4. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₇H₁₇ClNOS 318.0714, found 318.0713.

4-(Benzo[*d*]thiazol-2-yl)-1-(3,5-dimethylphenyl)butan-1-ol (2n, white solid, 28.3 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.36 – 7.32 (m, 1H), 6.95 (s, 2H), 6.90 (s, 1H), 4.66 (dd, *J* = 7.3, 5.2 Hz, 1H), 3.15 (t, *J* = 7.1 Hz, 2H), 2.46 (br, 1H), 2.30 (s, 6H), 2.07 – 2.00 (m, 1H), 1.97 – 1.89 (m, 2H), 1.87 – 1.80 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 153.1, 144.5, 138.0, 135.0, 129.2, 125.9, 124.7, 123.6, 122.5, 121.4, 74.0, 38.2, 33.9, 25.8, 21.3. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₉H₂₂NOS 312.1417, found 312.1410.

4-(Benzo[*d*]**thiazol-2-yl)-1-(naphthalen-2-yl)butan-1-ol** (**2o**, white solid, 23.3 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.1 Hz, 1H), 7.82 – 7.76 (m, 5H), 7.48 – 7.43 (m, 3H), 7.41 – 7.39 (m, 1H), 7.34 – 7.31 (m, 1H), 4.87 (t, *J* = 5.7 Hz, 1H), 3.29 (br, 1H), 3.11 (t, *J* = 6.8 Hz, 2H), 2.07 – 1.88 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 152.9, 141.9, 134.9, 133.2, 132.9, 128.2, 127.9, 127.6, 126.0, 125.9, 125.7, 124.7, 124.5, 124.0, 122.4, 121.4, 76.7, 38.1, 33.8, 25.6. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₁H₂₀NOS 334.1260, found 334.1252.

4-(Benzo[*d*]**thiazol-2-yl)-1-(thiophen-2-yl)butan-1-ol** (**2p**, yellow oil, 13.6 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.63 (m, 1H), 7.48 – 7.45 (m, 1H), 7.35 – 7.34 (m, 3H), 7.30 – 7.28 (m, 2H), 4.78 – 4.71 (m, 1H), 2.97 (td, *J* = 7.0, 3.0 Hz, 2H), 2.42 (br, 1H), 2.07 – 1.82 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 150.7, 144.5, 141.2, 128.5, 127.6, 125.8, 124.5, 124.1, 119.5, 110.3, 73.9, 38.3, 28.3, 22.8. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₅H₁₆NOS₂ 290.0668, found 290.0667.

5-(Benzo[*d*]**thiazol-2-yl**)-**2-phenylpentan-2-ol** (**2q**, colorless oil, 24.4 mg, 82%). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.2 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.43 (m, 3H), 7.36 – 7.32 (m, 3H), 7.25 – 7.22 (m, 1H), 3.08 (t, *J* = 7.2 Hz, 2H), 2.22 (br, 1H), 1.98 – 1.89 (m, 3H), 1.78 – 1.73 (m, 1H), 1.57 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 153.0, 147.6, 135.0, 128.2, 126.6, 125.9, 124.73, 124.69, 122.5, 121.5, 74.4, 43.1, 34.1, 30.5, 24.0. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₈H₂₀NOS 298.1260, found 298.1253.

4-(Benzo[*d*]**thiazol-2-yl)-1,1-diphenylbutan-1-ol** (**2r**, white solid, 30.2 mg, 84%). ¹H NMR (500 MHz, CDCl₃) δ 7.90 – 7.89 (m, 1H), 7.80 – 7.78 (m, 1H), 7.43 – 7.41 (m, 5H), 7.37 – 7.34 (m, 5H), 7.29 – 7.27 (m, 2H), 2.48 – 2.45 (m, 2H), 2.37 (t, *J* = 7.0 Hz, 2H), 2.24 (br, 1H), 1.71 – 1.68 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 168.0, 146.3, 134.3, 132.6, 128.3, 128.1, 127.2, 126.0, 125.9, 123.6, 119.7, 77.8, 40.5, 20.1, 17.4. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₃H₂₂NOS 360.1417, found 360.1414.

4-(Benzo[*d*]**thiazol-2-yl)-4-methyl-1-phenylpentan-1-ol** (**2s**, colorless oil, 13.4 mg, 43%). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.84 – 7.80 (m, 2H), 7.73 – 7.71 (m, 1H), 7.43 – 7.39 (m, 1H), 7.32 – 7.29 (m, 1H), 7.27 – 7.26 (m, 2H), 7.22 – 7.19 (m, 1H), 4.60 (dd, *J* = 7.4, 5.5 Hz, 1H), 2.61 (br, 1H), 2.05 – 1.99 (m, 1H), 1.83 – 1.79 (m, 1H), 1.74 – 1.69 (m, 2H), 1.45 (s, 3H), 1.44 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 181.0, 152.8, 144.5, 134.3, 128.4, 127.4, 125.8, 124.6, 123.6, 122.6, 121.4, 74.4, 41.3, 39.2, 34.3, 28.9, 28.8. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₉H₂₂NOS 312.1417, found 312.1446.

3-(1-(Benzo[*d*]thiazol-2-yl)cyclopentyl)-1-phenylpropan-1-ol (2t, white solid, 10.8 mg, 32%). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 1H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.44 – 7.41 (m, 1H), 7.34 – 7.31 (m, 1H), 7.28 – 7.22 (m, 5H), 4.58 (t, *J* = 6.7 Hz, 1H), 2.30 – 2.25 (m, 2H), 2.10 – 2.04 (m, 1H), 1.87 – 1.82 (m, 4H), 1.73 – 1.72 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 180.6, 152.9, 144.5, 135.0, 128.4, 127.4, 125.8,

125.7, 124.6, 123.6, 122.6, 121.4, 74.5, 53.3, 39.7, 39.5, 37.5, 35.0, 24.4. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₁H₂₄NOS 338.1573, found 338.1578.

5-(Benzo[*d*]thiazol-2-yl)-1-phenylpentan-1-ol (2u, pale yellow oil, 10.7 mg, 36%). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.1 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.38 – 7.35 (m, 1H), 7.28 – 7.23 (m, 5H), 7.20 – 7.18 (m, 1H), 4.61 (dd, *J* = 7.7, 5.5 Hz, 1H), 3.01 (t, *J* = 7.7 Hz, 2H), 2.26 (br, 1H), 1.86 – 1.77 (m, 3H), 1.73 – 1.67 (m, 1H), 1.55 – 1.48 (m, 1H), 1.42 – 1.35 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 172.1, 153.1, 144.7, 135.0, 128.4, 127.5, 125.9, 125.8, 124.6, 122.4, 121.4, 74.2, 38.6, 34.0, 29.3, 25.3. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₈H₂₀NOS 298.1260, found 298.1258.

4-(5-Chlorobenzo[*d*]**thiazol-2-yl**)-**1-phenylbutan-1-ol** (**2v**, white solid, 25.1 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 2.0 Hz, 1H), 7.72 (d, *J* = 8.5 Hz, 1H), 7.34 – 7.27 (m, 6H), 4.74 (dd, *J* = 7.1, 5.1 Hz, 1H), 3.13 (t, *J* = 7.1 Hz, 2H), 2.52 (br, 1H), 2.06 – 1.82 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 153.9, 144.5, 133.3, 131.9, 128.5, 127.6, 125.8, 125.2, 122.4, 122.1, 73.9, 38.2, 33.9, 25.6. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₇H₁₇ClNOS 318.0714, found 318.0713.

4-(Benzo[*d*]**oxazol-2-yl**)-**1-phenylbutan-1-ol** (**2w**, pale yellow oil, 11.2 mg, 42%). ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.63 (m, 1H), 7.48 – 7.44 (m, 1H), 7.36 – 7.31 (m, 4H), 7.30 – 7.28 (m, 3H), 4.76 – 4.73 (m, 1H), 3.00 – 2.95 (m, 2H), 2.43 (br, 1H), 2.08 – 2.02 (m, 1H), 1.99 – 1.91 (m, 2H), 1.89 – 1.82 (m, 1H); ¹³C NMR (101 MHz, CDCl₃)

δ 167.0, 150.7, 144.5, 141.2, 128.5, 127.6, 125.8, 124.5, 124.1, 119.5, 110.3, 73.9, 38.3, 28.3, 22.8. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₇H₁₈NO₂ 268.1332, found 268.1331.

N-(4-(benzo[*d*]oxazol-2-yl)-1-phenylbutyl)acetamide (3a, white solid, 38.9 mg, 60%). ¹H NMR (500 MHz, CDCl₃) δ 7.96 – 7.94 (m, 1H), 7.84 – 7.82 (m, 1H), 7.47 – 7.43 (m, 1H), 7.37 – 7.31 (m, 3H), 7.28 – 7.25 (m, 3H), 5.95 (d, *J* = 8.0 Hz, 1H), 5.02 (q, *J* = 7.3 Hz, 1H), 3.19 – 3.09 (m, 2H), 1.99 (s, 3H), 1.97 – 1.83 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 169.3, 153.0, 141.8, 135.0, 128.8, 127.5, 126.5, 126.0, 124.8, 122.4, 121.5, 53.3, 35.1, 33.7, 26.1, 23.5. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₉H₂₁N₂OS 325.1369, found 325.1371.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(p-tolyl)butyl)acetamide (3b, yellow solid, 39.9 mg, 59%). ¹H NMR (500 MHz, CDCl₃) δ 7.95 – 7.83 (m, 2H), 7.44 – 7.34 (m, 2H), 7.15 – 7.13 (m, 4H), 5.97 (br, 1H), 4.98 (s, 1H), 3.13 (s, 2H), 2.31 (s, 3H), 1.97 (s, 3H), 1.95 – 1.71 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 169.2, 153.1, 138.8, 137.2, 135.1, 129.4, 126.5, 125.9, 124.7, 122.4, 121.5, 53.0, 35.1, 33.7, 26.2, 23.4, 21.0. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₀H₂₃N₂OS 339.1526, found 339.1528.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(4-(tert-butyl)phenyl)butyl)acetamide (3c, brown oil, 51.8 mg, 68%), ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 7.44 – 7.42 (m, 1H), 7.35 – 7.31 (m, 3H), 7.20 – 7.18 (m, 2H), 6.11 (d, *J* = 8.0 Hz, 1H), 5.00 (q, *J* = 7.1 Hz, 1H), 3.15 – 3.08 (m, 2H), 1.95 (s, 3H), 1.94 – 1.83 (m,

4H), 1.28 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 169.3, 153.1, 150.3, 138.7, 135.0, 126.2, 125.9, 125.6, 124.7, 122.4, 121.5, 52.8, 35.1, 34.4, 33.7, 31.2, 26.2, 23.4.
HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₃H₂₉N₂OS 381.1995, found 381.1993.

N-(1-([1,1'-biphenyl]-4-yl)-4-(benzo[d]thiazol-2-yl)butyl)acetamide (3d, white solid, 49.7 mg, 62%). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.56 – 7.53 (m, 4H), 7.47 – 7.41 (m, 3H), 7.37 – 7.32 (m, 4H), 6.15 (dd, *J* = 7.5, 4.4 Hz, 1H), 5.06 (q, *J* = 7.2 Hz, 1H), 3.19 – 3.12 (m, 2H), 2.01 (s, 3H), 1.98 – 1.88 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 169.4, 153.1, 140.8, 140.6, 140.4, 135.0, 128.7, 127.4, 127.3, 127.0, 126.9, 125.9, 124.8, 122.4, 121.5, 53.0, 35.1, 33.7, 26.1, 23.4. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₅H₂₅N₂OS 401.1682, found 401.1690.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(4-fluorophenyl)butyl)acetamide (3e, white solid, 52.7 mg, 77%). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.37 – 7.34 (m, 1H), 7.24 – 7.21 (m, 2H), 7.00 – 6.97 (m, 2H), 6.17 (d, *J* = 7.7 Hz, 1H), 4.97 (q, *J* = 7.3 Hz, 1H), 3.18 – 3.08 (m, 2H), 1.97 (s, 3H), 1.95 – 1.77 (m, 4H); ¹⁹F NMR (471 MHz, CDCl₃) δ -114.94 (dt, *J* = 13.5, 6.0 Hz, 1F); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 169.6, 162.1 (d, *J* = 245.5 Hz), 153.1, 137.9 (d, *J* = 3.1 Hz), 135.1, 128.3 (d, *J* = 8.0 Hz), 126.1, 125.0, 122.5, 121.7, 115.6 (d, *J* = 21.4 Hz), 52.8, 35.2, 33.7, 26.1, 23.5. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₉H₂₀FN₂OS 343.1275, found 343.1281.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(4-chlorophenyl)butyl)acetamide (3f, white solid, 50.2 mg, 70%). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.33 (m, 1H), 7.26 – 7.25 (m, 2H), 7.19 – 7.17 (m, 2H), 6.31 (d, *J* = 7.7 Hz, 1H), 4.95 (q, *J* = 7.4 Hz, 1H), 3.17 – 3.06 (m, 2H), 1.97 (s, 3H), 1.93 – 1.82 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 169.6, 153.1, 140.7, 135.1, 133.2, 128.9, 128.0, 126.1, 125.0, 122.5, 121.7, 52.8, 35.1, 33.7, 26.0, 23.4. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₉H₂₀ClN₂OS 359.0979, found 359.0977.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(4-bromophenyl)butyl)acetamide (3g, white solid, 54.0 mg, 67%). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.47 – 7.42 (m, 3H), 7.38 – 7.35 (m, 1H), 7.15 – 7.13 (m, 2H), 6.14 (d, *J* = 7.6 Hz, 1H), 4.95 (q, *J* = 7.4 Hz, 1H), 3.17 – 3.08 (m, 2H), 1.99 (s, 3H), 1.93 – 1.85 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 169.4, 152.8, 141.0, 135.1, 131.8, 128.2, 126.0, 124.9, 122.4, 121.6, 121.2, 52.8, 34.9, 33.5, 25.9, 23.4. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₉H₂₀BrN₂OS 403.0474, found 403.0475.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(4-(trifluoromethyl)phenyl)butyl)acetamide (3h, white solid, 24.3 mg, 31%). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.55 – 7.53 (m, 2H), 7.46 – 7.43 (m, 1H), 7.37 – 7.33 (m, 3H), 6.55 (d, *J* = Hz, 1H), 5.02 (q, *J* = Hz, 1H), 3.18 – 3.06 (m, 2H), 1.99 (s, 3H), 1.98 – 1.82 (m, 4H); ¹⁹F NMR (471 MHz, CDCl₃) δ -62.4 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 171.1, 169.6, 153.0, 146.3, 135.0, 129.5 (q, *J* = 32.4 Hz), 126.8, 126.0, 125.6 (q, *J* = 4.12) (m, 4.12) (m, 4.12) (m, 4.12) (m, 4.13) (m, 4.14) (m

3.9 Hz), 124.9, 124.0 (q, J = 272.7 Hz), 122.4, 121.5, 53.0, 34.9, 33.4, 25.7, 23.2. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₀H₂₀F₃N₂OS 393.1243, found 393.1242.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(4-(trifluoromethoxy)phenyl)butyl)acetamide (3i, white solid, 56.4 mg, 69%). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.37 – 7.34 (m, 1H), 7.29 – 7.28 (m, 2H), 7.15 – 7.13 (m, 2H), 6.24 (d, *J* = 7.6 Hz, 1H), 5.00 (q, *J* = 7.0 Hz, 1H), 3.19 – 3.07 (m, 2H), 1.99 (s, 3H), 1.97 – 1.88 (m, 4H); ¹⁹F NMR (471 MHz, CDCl₃) δ -57.7 (s, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 169.5, 153.0, 148.3, 140.8, 135.0, 127.9, 126.0, 124.9, 122.4, 121.6, 121.1, 120.4 (q, *J* = 257.9 Hz), 52.7, 35.0, 33.5, 25.9, 23.3. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₀H₂₀F₃N₂O₂S 409.1192, found 409.1196.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(3-methoxyphenyl)butyl)acetamide (3j, white solid, 44.0 mg, 62%). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.44 – 7.41 (m, 1H), 7.34 – 7.31 (m, 1H), 7.23 – 7.20 (m, 1H), 6.85 – 6.76 (m, 3H), 6.25 (d, *J* = 7.6 Hz, 1H), 4.97 (d, *J* = 7.0 Hz, 1H), 3.75 (s, 3H), 3.14 – 3.07 (m, 2H), 1.95 (s, 3H), 1.92 – 1.82 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 169.3, 159.8, 153.2, 143.5, 135.0, 133.3, 129.8, 125.9, 124.8, 122.4, 121.5, 118.7, 112.6, 55.2, 53.2, 35.2, 33.7, 26.1, 23.4. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₀H₂₃N₂O₂S 355.1475, found 355.1477.

N-(4-(benzo[d]thiazol-2-yl)-1-(3-chlorophenyl)butyl)acetamide (3k, white solid,

35.9 mg, 50%), ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.37 – 7.34 (m, 1H), 7.25 – 7.22 (m, 3H), 7.15 – 7.14 (m, 1H), 6.27 (d, J = 8.0 Hz, 1H), 4.97 (q, J = 7.3 Hz, 1H), 3.18 – 3.09 (m, 2H), 2.00 (s, 3H), 1.99 – 1.83 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 169.6, 152.9, 144.2, 134.9, 134.5, 130.0, 127.6, 126.5, 126.0, 124.88, 124.86, 122.4, 121.6, 52.9, 35.0, 33.5, 25.8, 23.3. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₉H₂₀ClN₂OS 359.0979, found 359.0983.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(o-tolyl)butyl)acetamide (3l, brown oil, 46.0 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 7.9 Hz, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.33 (m, 1H), 7.20 – 7.15 (m, 4H), 5.98 (d, *J* = 7.7 Hz, 1H), 5.25 (q, *J* = 7.6 Hz, 1H), 3.18 – 3.08 (m, 2H), 2.39 (s, 3H), 1.96 (s, 3H), 1.94 – 1.82 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 169.2, 153.0, 140.0, 136.1, 135.0, 130.7, 127.3, 126.3, 125.9, 124.8, 124.7, 122.4, 121.5, 49.2, 34.8, 33.8, 26.2, 23.3, 19.4. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₀H₂₃N₂OS 339.1526, found 339.1532.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(2-chlorophenyl)butyl)acetamide (3m, white solid, 33.0 mg, 46%). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.31 (m, 2H), 7.27 – 7.26 (m, 1H), 7.21 – 7.14 (m, 2H), 6.60 (d, *J* = 7.1 Hz, 1H), 5.33 (q, *J* = 5.8 Hz, 1H), 3.18 – 3.09 (m, 2H), 2.00 (s, 3H), 1.95 – 1.86 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 169.5, 153.0, 139.3, 135.0, 132.8, 130.1, 128.4, 127.7, 127.0, 125.9, 124.8, 122.3, 121.5, 51.3, 34.0, 33.5, 26.0, 23.2. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₉H₂₀ClN₂OS 359.0979, found 359.0977.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(3,5-dimethylphenyl)butyl)acetamide (3n, white solid, 47.9 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.2 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.33 (m, 1H), 6.88 – 6.87 (m, 3H), 5.95 (d, *J* = 8.2 Hz, 1H), 4.93 (q, *J* = 7.4 Hz, 1H), 3.17 – 3.07 (m, 2H), 2.28 (s, 6H), 1.97 (s, 3H), 1.95 – 1.78 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.6, 169.2, 153.1, 141.6, 138.3, 135.1, 129.2, 125.9, 124.7, 124.3, 122.4, 121.5, 53.2, 35.2, 33.8, 26.2, 23.5, 21.3. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₁H₂₅N₂OS 353.1682, found 353.1685.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(naphthalen-2-yl)butyl)acetamide (30, white solid, 48.7 mg, 65%). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.83 – 7.72 (m, 5H), 7.48 – 7.43 (m, 3H), 7.39 – 7.33 (m, 2H), 6.18 (d, *J* = 8.3 Hz, 1H), 5.18 (q, *J* = 7.3 Hz, 1H), 3.19 – 3.09 (m, 2H), 2.05 – 1.82 (m, 4H), 2.00 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.5, 169.5, 153.0, 139.1, 135.0, 133.3, 132.7, 128.6, 127.8, 127.6, 126.2, 125.93, 125.88, 125.3, 124.8, 124.6, 122.4, 121.5, 53.3, 35.0, 33.7, 26.1, 23.4. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₃H₂₃N₂OS 375.1526, found 375.1533.

N-(4-(benzo[d]thiazol-2-yl)-4-methyl-1-phenylpentyl)acetamide (3p, brown wax, 45.1 mg, 64%). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.2 Hz, 1H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.37 – 7.34 (m, 1H), 7.29 – 7.26 (m, 2H), 7.23 – 7.19 (m, 3H), 6.17 (d, *J* = 7.8 Hz, 1H), 4.90 (q, *J* = 7.2 Hz, 1H), 1.99 (s, 3H), 1.96 – 1.93 (m,

1H), 1.78 - 1.71 (m, 3H), 1.47 (s, 3H), 1.45 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 180.7, 169.4, 152.9, 142.2, 134.9, 128.5, 127.2, 126.4, 125.8, 124.7, 122.5, 121.5, 53.6, 41.4, 39.5, 31.4, 29.3, 28.5, 23.4. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₁H₂₅N₂OS 353.1682, found 353.1688.

N-(5-(benzo[*d*]thiazol-2-yl)-1-phenylpentyl)acetamide (3q, brown wax, 42.0 mg, 62%). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.36 – 7.33 (m, 1H), 7.31 – 7.28 (m, 2H), 7.25 – 7.22 (m, 3H), 5.96 (d, *J* = 8.2 Hz, 1H), 4.95 (q, *J* = 7.6 Hz, 1H), 3.07 (t, J = 7.7 Hz, 2H), 1.94 (s, 3H), 1.92 – 1.78 (m, 4H), 1.51 – 1.47 (m, 1H), 1.43 – 1.33 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 169.3, 153.0, 142.0, 135.0, 128.6, 127.4, 126.5, 125.9, 124.7, 122.4, 121.5, 53.2, 35.5, 33.9, 29.2, 25.5, 23.4. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₀H₂₃N₂OS 339.1526, found 339.1540.

N-(4-(5-chlorobenzo[*d*]thiazol-2-yl)-1-phenylbutyl)acetamide (3r, white solid, 23.7 mg, 33%). ¹H NMR (500 MHz, CDCl₃) δ 7.92 (s, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.32 – 7.26 (m, 6H), 5.97 (d, *J* = 8.2 Hz, 1H), 5.01 (q, *J* = 7.2 Hz, 1H), 3.16 – 3.07 (m, 2H), 1.98 (s, 3H), 1.93 – 1.80 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.7, 169.3, 154.0, 141.7, 136.5, 131.9, 128.8, 127.6, 126.5, 125.2, 122.4, 122.2, 53.2, 35.1, 33.8, 26.0, 23.4. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₉H₂₀ClN₂OS 359.0979, found 359.0987.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(4-chlorophenyl)butyl)butyramide (3s, white solid, 37.1 mg, 48%). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.37 – 7.34 (m, 1H), 7.27 – 7.26 (m, 2H), 7.20 – 7.18 (m, 2H), 6.10 (d, *J* = 7.6 Hz, 1H), 4.98 (q, *J* = 7.2 Hz, 1H), 3.19 – 3.09 (m, 2H), 2.18 – 2.14 (m, 2H), 1.97 – 1.83 (m, 4H), 1.68 – 1.60 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 171.3, 153.0, 140.7, 135.0, 133.0, 128.8, 127.8, 126.0, 124.8, 122.4, 121.5, 52.5, 38.6, 34.9, 33.5, 25.9, 19.1, 13.7. HRMS(ESI) m/z: [M+Na]⁺ cacld. for C₂₁H₂₃ClN₂NaOS 409.1112, found 409.1121.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(4-chlorophenyl)butyl)isobutyramide (3t, white solid, 34.1 mg, 44%). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 7.6 Hz, 1H), 7.84 (d, *J* = 7.3 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.38 – 7.35 (m, 1H), 7.28 – 7.26 (m, 2H), 7.20 – 7.19 (m, 2H), 5.93 (d, *J* = 7.5 Hz, 1H), 4.97 (q, *J* = 7.0 Hz, 1H), 3.19 – 3.08 (m, 2H), 2.40 – 2.34 (m, 1H), 1.96 – 1.88 (m, 4H), 1.16 (d, *J* = 6.9 Hz, 3H), 1.13 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.4, 171.3, 159.2, 140.7, 135.0, 133.0, 128.8, 127.8, 126.0, 124.9, 122.4, 121.6, 52.4, 35.6, 35.0, 33.5, 26.0, 19.58, 19.55. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₁H₂₄ClN₂OS 387.1292, found 387.1302.

N-(4-(benzo[*d*]thiazol-2-yl)-1-(4-chlorophenyl)butyl)benzamide (3u, white solid, 33.7 mg, 40%). ¹H NMR (500 MHz, CDCl₃) δ 7.92 – 7.90 (m, 1H), 7.83 – 7.80 (m, 3H), 7.47 – 7.33 (m, 6H), 7.26– 7.24 (m, 3H), 6.90 – 6.89 (m, 1H), 5.16 – 5.15 (m, 1H), 3.21 – 3.12 (m, 2H), 2.03 – 1.90 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.2, 167.0, 153.0, 140.7, 135.0, 134.2, 133.1, 131.6, 128.8, 128.5, 127.9, 127.0, 126.0, 124.9, 122.4, 121.6, 53.3, 34.9, 33.4, 25.8. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₄H₂₂ClN₂OS

N-(4-(benzo[*d*]thiazol-2-yl)-1-phenylbutyl)acetamide-2,2,2-d₃ (3v, white solid, 41.9 mg, 64%), ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.30 (m, 3H), 7.27 – 7.23 (m, 3H), 5.97 (d, *J* = 8.1 Hz, 1H), 5.02 (q, *J* = 7.3 Hz, 1H), 3.18 – 3.08 (m, 2H), 1.99 – 1.84 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 169.4, 153.1, 141.8, 135.0, 128.7, 127.4, 126.5, 125.9, 124.7, 122.4, 121.5, 53.2, 35.2, 33.7, 26.1, 22.4. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₉H₁₈D₃N₂OS 328.1557, found 328.1560.

2-(4-Methoxy-4-phenylbutyl)benzo[*d*]thiazole (5a, colorless oil, 22.9 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.36 – 7.32 (m, 3H), 7.29 – 7.27 (m, 3H), 4.15 (dd, *J* = 7.3, 5.3 Hz, 1H), 3.21 (s, 3H), 3.12 (t, *J* = 7.5 Hz, 2H), 2.05 – 2.00 (m, 1H), 1.96 – 1.86 (m, 2H), 1.82 – 1.76 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 153.2, 141.9, 135. 1, 128.4, 127.6, 126.6, 125.8, 124.6, 122.5, 121.4, 83.5, 56.6, 37.5, 34.1, 26.0. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₈H₂₀NOS 298.1260, found 298.1260.

2-(4-Ethoxy-4-phenylbutyl)benzo[*d*]**thiazole** (**5b**, colorless oil, 23.0 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.35 – 7.28 (m, 6H), 4.26 (dd, *J* = 7.4, 5.3 Hz, 1H), 3.42 – 3.27 (m, 2H), 3.12 (t, J = 7.4 Hz, 2H), 2.08 – 2.02 (m, 1H), 1.99 – 1.85 (m, 2H), 1.81 – 1.75 (m, 1H), 1.18 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 153.2, 142.7, 135.1, 128.3, 127.4, 126.5, 125.8, 124.6, 122.4, 121.4, 81.6, 64.1, 37.7, 34.1, 26.1, 15.3. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₉H₂₂NOS 312.1417, found 12.1417.

2-(4-Isopropoxy-4-phenylbutyl)benzo[*d*]**thiazole** (**5c**, colorless oil, 23.4 mg, 72%). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.35 – 7.31 (m, 5H), 7.27 – 7.24 (m, 1H), 4.40 – 4.37 (m, 1H), 3.50 – 3.46 (m, 1H), 3.14 – 3.11 (m, 2H), 2.08 – 2.02 (m, 1H), 1.91 – 1.85 (m, 2H), 1.77 – 1.71 (m, 1H), 1.16 (d, *J* = 6.0 Hz, 3H), 1.09 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 153.2, 143.4, 135.1, 128.2, 127.3, 126.4, 125.8, 124.6, 122.4, 121.4, 78.6, 68.7, 38.1, 34.1, 26.3, 23.4, 21.1. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₀H₂₄NOS 326.1573, found 326.1568.

2-(4-(Benzyloxy)-4-phenylbutyl)benzo[d]thiazole (**5d**, colorless oil, 22.0 mg, 59%). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.2 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.37 – 7.30 (m, 11H), 4.48 – 4.45 (m, 1H), 4.37 (dd, *J* = 7.8, 5.2 Hz, 1H), 4.27 – 4.24 (m, 1H), 3.12 – 3.08 (m, 2H), 2.09 – 1.98 (m, 2H), 1.93 – 1.86 (m, 1H), 1.83 – 1.79 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 153.2, 142.2, 138.5, 135.1, 128.5, 128.3, 127.8, 127.7, 127.5, 126.7, 125.8, 124.6, 122.5, 121.5, 80.9, 70.4, 37.7, 34.1, 26.1. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₄H₂₄NOS 374.1573, found 374.1566.

2-(4-Phenyl-4-(2-(thiophen-2-yl)ethoxy)butyl)benzo[*d*]**thiazole** (**5e**, colorless oil, 13.0 mg, 33%). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 7.9 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.30 (m, 3H), 7.27 – 7.25 (m, 3H), 7.11 – 7.10 (m, 1H), 6.90 – 6.88 (m, 1H), 6.81 – 6.80 (m, 1H), 4.29 (dd, *J* = 7.5, 5.3 Hz, 1H), 3.59 – 3.54 (m, 1H), 3.48 – 3.43 (m, 1H), 3.13 – 3.05 (m, 4H), 2.05 – 2.00 (m, 1H), 1.97 – 1.91 (m, 1H), 1.90 – 1.84 (m, 1H), 1.80 – 1.75 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 153.3, 142.2, 141.4, 135.1, 133.5, 128.4, 127.6, 126.6, 125.9, 125.1, 124.7, 123.5, 122.4, 121.5, 82.1, 69.4, 37.6, 34.0, 30.6, 26.0. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₃H₂₄NOS₂ 394.1294, found 394.1302.

3-(4-(Benzo[*d*]thiazol-2-yl)-1-phenylbutoxy)propanenitrile (5f, colorless oil, 15.5 mg, 46%). ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.41 – 7.39 (m, 2H), 7.36 – 7.33 (m, 3H), 7.29 – 7.27 (m, 1H), 4.39 (dd, *J* = 8.4, 7.1 Hz, 1H), 4.25 (t, *J* = 6.4 Hz, 2H), 2.68 (t, *J* = 6.4 Hz, 2H), 2.50 – 2.42 (m, 3H), 2.27 – 2.21 (m, 1H), 1.76 – 1.67 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 174.8, 172.6, 152.9, 141.1, 135.1, 128.9, 127.5, 126.0, 124.9, 122.8, 121.5, 116.7, 58.6, 50.6, 34.8, 33.5, 22.9, 18.0. HRMS(ESI) m/z: [M+Na]⁺ cacld. for C₂₀H₂₀N₂NaOS 359.1189, found 359.1179.

2-(4-(3-Bromopropoxy)-4-phenylbutyl)benzo[*d*]thiazole (5g, colorless oil, 24.6 mg, 61%). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.32 (m, 3H), 7.28 – 7.27 (m, 3H), 4.26 (dd, *J* = 7.5, 5.1
Hz, 1H), 3.56 - 3.48 (m, 2H), 3.43 - 3.36 (m, 2H), 3.14 - 3.11 (m, 2H), 2.08 - 2.05 (m, 3H), 1.94 - 1.87 (m, 2H), 1.79 - 1.74 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.7, 153.2, 141.9, 134.9, 128.4, 127.6, 126.5, 125.9, 124.7, 122.5, 121.5, 82.1, 66.1, 37.6, 34.1, 33.0, 30.8, 26.0. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₀H₂₃BrNOS 404.0678, found 404.0672.

2-(4-Phenyl-4-(3-phenylpropoxy)butyl)benzo[*d*]thiazole (5h, colorless oil, 14.9 mg, 37%). ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 8.1 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.56 – 7.53 (m, 1H), 7.46 – 7.42 (m, 3H), 7.40 – 7.34 (m, 6H), 7.28 – 7.25 (m, 2H), 4.34 (dd, *J* = 7.6, 5.2 Hz, 1H), 3.48 – 3.34 (m, 2H), 3.29 – 3.20 (m, 2H), 2.84 – 2.72 (m, 2H), 2.21 – 2.14 (m, 1H), 2.07 – 1.96 (m, 4H), 1.92 – 1.86 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 153.2, 142.6, 142.0, 135.1, 128.41, 128.35, 128.2, 127.5, 126.5, 125.8, 125.7, 124.6, 122.5, 121.4, 81.9, 68.0, 37.7, 34.1, 32.4, 31.5, 26.1. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₆H₂₈NOS 402.1886, found 402.1890.

2-(4-(3-(4-Chlorophenyl)propoxy)-4-phenylbutyl)benzo[*d*]thiazole (5i, colorless oil, 14.8 mg, 34%). ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.3 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.39 – 7.38 (m, 2H), 7.36 – 7.32 (m, 3H), 7.29 – 7.27 (m, 1H), 7.23 – 7.21 (m, 2H), 7.11 – 7.09 (m, 2H), 4.38 (t, *J* = 7.7 Hz, 1H), 4.23 (t, *J* = 6.9 Hz, 2H), 2.87 (t, *J* = 6.9 Hz, 2H), 2.46 – 2.40 (m, 1H), 2.37 – 2.33 (m, 2H), 2.22 – 2.18 (m, 1H), 1.69 – 1.62 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 173.1, 153.9, 142.9, 141.2, 139.0, 132.3, 130.2, 128.9, 128.6, 128.0, 127.5, 126.0, 124.9, 122.8, 121.5, 64.5, 50.6, 34.9, 34.4, 33.9, 29.7, 23.1. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₆H₂₇CINOS 436.1496, found 436.1498.

2-(4-Phenyl-4-((3-phenylprop-2-yn-1-yl)oxy)butyl)benzo[*d*]thiazole (5j, colorless oil, 19.9 mg, 50%). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.42 (m, 3H), 7.38 – 7.34 (m, 5H), 7.32 – 7.27 (m, 4H), 4.61 (dd, *J* = 7.8, 5.4 Hz, 1H), 4.35 – 4.32 (m, 1H), 4.11 – 4.08 (m, 1H), 3.17 – 3.14 (m, 2H), 2.14 – 2.07 (m, 1H), 2.06 – 1.99 (m, 1H), 1.97 – 1.88 (m, 1H), 1.86 – 1.80 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 153.2, 141.2, 135.1, 131.7, 128.5, 128.3, 128.2, 127.9, 126.9, 125.8, 124.6, 122.9, 122.5, 121.5, 86.0, 85.3, 80.4, 56.5, 37.2, 34.0, 26.0. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₆H₂₄NOS 398.1573, found 398.1567.

2-(4-((2,3-Dihydro-1*H***-inden-2-yl)oxy)-4-phenylbutyl)benzo[***d***]thiazole (5k, white solid, 12.0 mg, 30%). ¹H NMR (500 MHz, CDCl₃) \delta 8.00 (d,** *J* **= 8.2 Hz, 1H), 7.78 (d,** *J* **= 8.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.38 – 7.31 (m, 5H), 7.27 – 7.25 (m, 1H), 7.23 – 7.17 (m, 4H), 5.52 – 5.50 (m, 1H), 4.37 (t,** *J* **= 7.7 Hz, 1H), 3.29 (dd,** *J* **= 16.9, 6.5 Hz, 2H), 2.98 (dd,** *J* **= 16.9, 3.1 Hz, 2H), 2.45 – 2.40 (m, 1H), 2.35 – 2.32 (m, 2H), 2.24 – 2.18 (m, 1H), 1.70 – 1.65 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) \delta 173.2, 153.0, 141.3, 140.4, 135.2, 128.8, 128.0, 127.4, 126.7, 125.9, 124.8, 124.6, 122.8, 121.5, 75.2, 50.7, 39.6, 34.9, 34.1, 23.1. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₆H₂₆NOS 400.1730, found 400.1732.**

2-(4-(3,5-Dimethylphenyl)-4-(2,2,2-trifluoroethoxy)butyl)benzo[d]thiazole (51,

yellow oil, 11.0 mg, 28%). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.33 (m, 1H), 6.94 (br, 1H), 6.88 (br, 2H), 4.36 (dd, *J* = 8.0, 5.2 Hz, 1H), 3.74 – 3.55 (m, 2H), 3.16 – 3.12 (m, 2H), 2.31 (s, 6H), 2.09 – 2.05 (m, 1H), 2.01 – 1.95 (m, 1H), 1.91 – 1.86 (m, 1H), 1.80 – 1.76 (m, 1H); ¹⁹F NMR (471 MHz, CDCl₃) δ -73.8 (t, *J* = 8.3 Hz, 3F); ¹³C NMR (126 MHz, CDCl₃) δ 171.7, 153.1, 140.2, 138.3, 135.1, 129.9, 125.9, 124.7, 124.42 (q, *J* = 213.4 Hz), 124.4, 122.5, 121.5, 83.4, 65.8 (q, *J* = 34.0 Hz), 37.2, 33.9, 25.9, 21.3. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₁H₂₃F₃NOS 394.1447, found 394.1452.

4-(Benzo[*d*]**thiazol-2-yl)-1-phenylbutyl acetate** (**5m**, colorless oil, 14.6 mg, 45%). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.28 (m, 6H), 5.80 – 5.77 (m, 1H), 3.13 (t, J = 6.8 Hz, 2H), 2.07 (s, 3H), 2.05 – 1.82 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 170.4, 153.1, 140.2, 135.0, 128.5, 128.0, 126.4, 125.9, 124.8, 122.5, 121.5, 75.5, 35.6, 33.8, 25.6, 21.2. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₉H₂₀NO₂S 326.1209, found 326.1211.

2-(4-Fluoro-4-phenylbutyl)benzo[*d*]thiazole (5n, colorless oil, 10.0 mg, 35%). ¹H NMR (500 MHz, CDCl₃) δ 7.97 – 7.96 (m, 1H), 7.85 – 7.83 (m, 1H), 7.47 – 7.44 (m, 1H), 7.38 – 7.32 (m, 6H), 5.50 (ddd, J = 47.7, 7.7, 4.1 Hz, 1H), 3.23 – 3.14 (m, 2H), 2.17 – 2.06 (m, 2H), 2.05 – 1.92 (m, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ -175.2 (ddd, J = 45.9, 29.0, 16.4 Hz, 1F); ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 153.1, 140.0 (d, J = 19.7 Hz), 135.1, 128.5, 128.3 (d, J = 1.3 Hz), 126.0, 125.5 (d, J = 6.9 Hz), 124.8, 122.5, 121.5, 94.10 (d, J = 171.1 Hz), 36.4 (d, J = 23.9 Hz), 33.8, 25.2 (d, J = 4.2 Hz). HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₇H₁₇FNS 286.1060, found 286.1059.

4-(benzo[d]thiazol-2-yl)-1-phenylbutan-1-one (**6**, white solid, 51.2 mg, 91%). ¹H NMR (500 MHz, CDCl₃) δ 7.97 – 7.93 (m, 3H), 7.83 – 7.82 (m, 1H), 7.53 – 7.34 (m, 5H), 3.25 – 3.22 (m, 2H), 3.14 – 3.11 (m, 2H), 2.37 – 2.31 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 199.2, 171.2, 153.1, 136.7, 135.1, 133.0, 128.5, 128.0, 125.9, 124.7, 122.5, 121.5, 37.3, 33.4, 23.7. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₁₇H₁₆NOS 282.0947, found 282.0950.

4-(Benzo[*d*]**thiazol-2-yl)-1-phenylbutyl benzoate** (**7**, white solid, 62.0 mg, 80%). ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 8.07 (m, 2H), 8.00 – 7.95 (m, 1H), 7.83 – 7.82 (m, 1H), 7.57 – 7.54 (m, 1H), 7.46 – 7.41 (m, 5H), 7.36 – 7.33 (m, 3H), 7.30 – 7.27 (m, 1H), 6.06 (dd, *J* = 7.6, 5.2 Hz, 1H), 3.17 (t, *J* = 7.3 Hz, 2H), 2.26 – 2.18 (m, 1H), 2.11 – 2.02 (m, 2H), 1.99 – 1.92 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 171.3, 165.8, 153.1, 140.3, 135.1, 133.0, 130.3, 129.7, 128.6, 128.4, 128.0, 126.4, 125.9, 124.8, 122.5, 121.5, 76.1, 35.8, 33.9, 25.6. HRMS(ESI) m/z: [M+H]⁺ cacld. for C₂₄H₂₂NO₂S 388.1366, found 388.1362.

2-(4-Phenyl-4-(p-tolyloxy)butyl)benzo[*d*]thiazole (8, white solid, 44.8 mg, 60%). ¹H NMR (500 MHz, CDCl₃) δ 7.97 – 7.95 (m, 1H), 7.84 – 7.82 (m, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.29 (m, 5H), 7.24 – 7.22 (m, 1H), 6.97 – 6.95 (m, 2H), 6.74 – 6.72 (m, 2H), 5.11 (dd, *J* = 7.7, 4.5 Hz, 1H), 3.19 – 3.15 (m, 2H), 2.21 (s, 3H), 2.18 – 2.08 (m, 2H), 2.06 – 1.93 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 171.7, 156.0, 153.1, 141.9,

135.1, 129.9, 129.7, 128.6, 127.9, 127.5, 125.9, 124.7, 122.5, 121.5, 115.7, 79.7, 38.0, 34.0, 25.9, 20.4. HRMS(ESI) m/z: $[M+H]^+$ cacld. for C₂₄H₂₄NOS 374.1573, found 374.1570.

7. References

1. K. Guo, C. Han, X. Xie, B. Chen, S. Cao, W. Yuan, K. Chen, F. Liu and Y. Zhu, *Chem. Commun.*, 2022, **58**, 13353–13356.

2. V. Pace and W. Holzer, *Tetrahedron Lett.*, 2012, **53**, 5106–5109.

3. R. Tayebee, F. Cheravi, M. Mirzaee and M. M. Amini, *Chin. J. Chem.*, 2010, 28, 1247–1252.

4. R. A. Altman, A. Shafir, A. Choi, P. A. Lichtor and S. L. Buchwald, *J. Org. Chem.*, 2008, **73**, 284–286.

8. NMR spectra

f1 (ppm)

S53

S54

S56

S59

S60

80 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 £1 (ppm)

so 170 160 150 140 130 120 110 100 90 so 70 60 50 40 30 20 10 0 f1 (ppm)

S75

о∕мн

3i

F₃CO

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 £1 (ppm)

^{170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

S78

So 170 160 150 140 130 120 110 100 90 50 70 60 50 40 30 20 10 0 f1 (ppm)

170 160 150 140 130 120 110 100 90 50 70 60 50 40 30 20 10 0 f1 (ppm)

80 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S82

so 170 160 150 140 150 120 110 100 90 50 70 60 50 40 30 20 10 0 f1 (ppm)

so 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

so 170 160 150 140 130 120 110 100 90 50 70 60 50 40 30 20 10 0 f1 (ppm)

So 170 160 150 140 130 120 110 100 90 So 70 60 50 40 30 20 10 0 f1 (ppm)

so 170 160 150 140 130 120 110 100 90 50 70 60 50 40 30 20 10 0 f1 (ppm)

S90

S91

f1 (ppm)

S98

S99

S104

S107