Supporting Information

BF₃-Enabled unusual (3 + 2) cycloaddition of bicyclobutanes

with aldimine ester: access to 2-azabicyclo[2.1.1]hexanes

Qin Jiang, Jianyang Dong,* Dejiang Yu, Fang Lei, Ting Li, Tengfei Kang, Juan Fan, Huaming Sun, and Dong Xue*

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China

*Correspondence to: jydong@snnu.edu.cn; xuedong_welcome@snnu.edu.cn

Table of contents

1. General information	S2
2. Optimization of reaction conditions	S2
3. General procedure for reactions	S5
4. Gram-scale reaction	S17
5. Post-functionalizations	S17
6. Mechanistic studies	S20
7. X-ray crystallographic data	S23
8. References	S25
9. Copies of NMR spectra of the products	S26

1. General information

Commercially available reagents were used without further purification unless otherwise stated. All reactions were carried out under argon atmosphere with dry solvents under anhydrous conditions, all solvents were purchased from Energy Chemical and stored over molecular sieves. Analytical thin-layer chromatography (TLC) was conducted with TLC plates (Silica gel 60 F254, Qingdao Haiyang) and visualization on TLC was achieved by UV light or Phosphomolybdic acid. Flash column chromatography was performed on silica gel 200-300 mesh with freshly distilled solvents. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker 600, 400 and JEOL 400 MHz in CDCl₃ solvent. All chemical shifts in ¹H NMR spectra were given in parts per million (ppm) relative to the residual or CDCl₃ (7.26 ppm) as internal standards and coupling constants (J) were given in Hertz (Hz). ¹³C NMR chemical shifts were reported in ppm relative to the central peak of CDCl₃ (77.16 ppm) as internal standards. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets), coupling constant (Hz), and integration. HRMS data were obtained by ESI or APCI method with Bruker mass spectrometer (MAXIS). The absolute configurations of **3a** were assigned by the X-ray analysis and the configurations of other cycloaddition products were assigned by analogy. The X-ray single-crystal determination was performed on Bruker D8 VENTURE X-ray single crystal diffractometer.

1a-1r were prepared according to the literature procedure.¹ **1s-1y** were prepared according to the literature procedure.²

2. Optimization of reaction conditions

Table S1. The screening of Lewis acid.^[a]

Ph +	EtO ₂ C N Ph	Lewis acid (10 mol%) THF, r.t.	EtO ₂ C-N-	Ph Py
1a	2a			3a
entry	Lewis acid (1	10 mol%)	yield (%)	
1	Sc(OT	ſf) ₃	trace	
2	Cu(OT	[f]) ₂	trace	
3	Zn(OT	[f) ₂	NR	
4	Mg(O)	$\Gamma f)_2$	NR	
5	Eu(OT	[f) ₃	NR	

6	Cu(MeCN) ₄ PF ₆	trace
7	Bi(OTf) ₃	trace
8	Ag(OTf)	NR
9	Yb(OTf) ₃	trace
10	La(OTf) ₃	trace
11	Ga(OTf) ₃	trace
12	$BF_3 \bullet OEt_2$ (1 equiv.)	16

[a] Standard conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), Lewis acid (10 mol%), THF (1 mL), Ar atmosphere, r.t., 16 h. Yields were determined by ¹H NMR spectroscopy with CH_2Br_2 as an internal standard.

Table S2. The screening of solvent.[a]

Pyr +	EtO ₂ C N Ph BF ₃ •I	Et ₂ O (100 mol%) EtO ₂ C Ph solvent, r.t. Ph
1a	2a	3a ()
entry	solvent	yield (%)
1	THF	16
2	DME	19
3	DCM	trace
4	DCE	10
5	MeCN	trace
6	DMF	34
7	DMA	39
8	NMP	48
9	DMSO	48
10	dioxane	trace

[a] Standard conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), $BF_3 \cdot OEt_2$ (1 equiv.), solvent (1 mL), Ar atmosphere, r.t., 16 h. Yields were determined by ¹H NMR spectroscopy with CH_2Br_2 as an internal standard.

Table S3. The screening of material ratio.^[a]

1	3:1	40
2	2:1	43
3	1:1	33
4	1:1.5	44
5	1:2	48
6	1:3	48
7	1:5	50

[a] Standard conditions: **1a** (x mmol), **2a** (y mmol), $BF_3 \cdot OEt_2$ (1 equiv.), DMSO (1 mL), Ar atmosphere, T °C, 16 h. Yields were determined by ¹H NMR spectroscopy with CH_2Br_2 as an internal standard.

Table S4. Investigation of reaction temperature.^[a]

Ph Pyr +	EtO ₂ C N Ph $BF_3 \cdot Et_2O$ (100 mol9 DMSO, temp. (°C)	EtO ₂ C Ph Ph Pyr
1a	2a	3a
entry	temp.(°C)	yield (%)
1	0	34
2	r.t.	48
3	30	47
6	40	36
7	50	19

[a] Standard conditions: **1a** (x mmol), **2a** (y mmol), $BF_3 \cdot OEt_2$ (1 equiv.), DMSO (1 mL), Ar atmosphere, r.t., 16 h. Yields were determined by ¹H NMR spectroscopy with CH_2Br_2 as an internal standard.

Table S5. The screening amount of BF₃·OEt₂.^[a]

Pyr +	EtO_2C N Ph $BF_3 \cdot Et_2O$ (x r DMSO, r.	nol%) t. EtO ₂ C Ph Ph Ph Ph Pyr
1a	2a	3a
entry	$BF_3 \cdot OEt_2 (x \mod\%)$	yield (%)
1	10 mol%	
2	30 mol%	9
3	50 mol%	26
4	70 mol%	43
5	80 mol%	44

6	90 mol%	46
7	100 mol%	48
8	120 mol%	53 (52 ^[b])
9	150 mol%	54
10	200 mol%	54

[a] Standard conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), BF₃·OEt₂ (x equiv.), DMSO (1 mL), Ar atmosphere, r.t., 16 h. Yields were determined by ¹H NMR spectroscopy with CH₂Br₂ as an internal standard. [b] Isolated yield.

3. General procedure for reactions

To a 10 mL reaction vial equipped with a magnetic stir bar was added compounds 1 (0.2 mmol, 1.0 equiv), 2 (0.6 mmol, 3.0 equiv), $BF_3 \cdot OEt_2$ (BF_3 46.5%) (120 mol%), and the tube was evacuated and backfilled with argon three times. DMSO (2 mL) was added under argon atmosphere. The mixture was then stirred rapidly for 16 hours. Upon completion of the reaction, the aqueous phases were extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with saturated brine (20 mL), then dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified by silica gel chromatography to afford the products **3a-3y**.

ethyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1,3-diphenyl-2-azabicyclo[2.1.1] hexan-2-yl)acetate 3a

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). Colorless oil, 46.0 mg, 52% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.5 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 3H), 7.26 – 7.12 (m, 3H), 5.99 (s, 1H), 4.88 (s, 1H), 3.85 –

3.67 (m, 2H), 3.43 (d, J = 15.2 Hz, 1H), 3.27 (d, J = 15.2 Hz, 1H), 3.03 (t, J = 8.6 Hz, 1H), 2.60 (d, J = 7.3 Hz, 1H), 2.54 (t, J = 8.6 Hz, 1H), 2.44 (s, 3H), 2.29 (s, 3H), 1.92 (d, J = 7.5 Hz, 1H), 0.90 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.2, 171.1, 152.6, 144.1, 141.0, 138.2, 128.5, 127.9, 127.8, 127.4, 127.4, 127.1, 110.8, 73.9, 71.2, 60.3, 57.5, 55.0, 45.0, 42.8, 14.2, 14.1, 13.7. **HRMS** (APCI-TOF) m/z: [M + H]⁺

Calcd for C₂₇H₃₀N₃O₃ 444.2282, found 444.2287.

ethyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1-phenyl-3-(*p*-tolyl)-2 -azabicyclo[2.1.1]hexan-2-yl)acetate 3b

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). Colorless oil, 15.5 mg, 17% yield. ¹**H NMR** (400 MHz, CDCl₃): δ ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.1 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.18 (d, *J* = 7.9 Hz, 2H), 7.04 (d, *J* = 7.8 Hz, 2H), 6.01 (s, 1H), 4.83 (s, 1H), 4.00 – 3.68 (m, 2H), 3.43 (d, *J* = 15.3 Hz, 1H), 3.27 (d, *J* =

15.3 Hz, 1H), 3.10 - 2.80 (m, 1H), 2.60 (d, J = 7.4 Hz, 1H), 2.57 - 2.49 (m, 1H), 2.46 (s, 3H), 2.31 (s, 3H), 2.29 (s, 3H), 1.91 (d, J = 7.4 Hz, 1H), 0.95 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.4, 171.3, 152.7, 144.2, 138.4, 138.0, 136.5, 128.6, 128.6, 127.9, 127.6, 127.3, 110.8, 73.8, 71.3, 60.4, 57.5, 55.1, 45.1, 43.0, 21.3, 14.3, 14.2, 13.9. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₃₂N₃O₃ 458.2438, found 458.2437.

ethyl 2-(3-([1,1'-biphenyl]-4-yl)-4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1phenyl-2-azabicyclo[2.1.1]hexan-2-yl)acetate 3c

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). White solid, 32.2 mg, 31% yield. ¹**H NMR** (400 MHz, CDCl₃): δ 7.57 (d, *J* = 7.6 Hz, 2H), 7.53 – 7.45 (m, 4H), 7.45 – 7.38 (m, 5H), 7.38 – 7.29 (m, 3H), 6.03 (s, 1H), 4.92 (s, 1H), 4.02 – 3.72 (m, 2H), 3.47 (d, *J* = 15.3 Hz, 1H), 3.31 (d, *J* = 15.3 Hz, 1H), 3.06 (t, *J* = 8.6 Hz, 1H), 2.64 (d, *J* = 7.3 Hz, 1H), 2.59

(t, J = 8.6 Hz, 1H), 2.49 (s, 3H), 2.32 (s, 3H), 1.98 (d, J = 7.4 Hz, 1H), 1.05 – 0.86 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.32, 171.3, 152.8, 144.3, 141.4, 140.2, 139.9, 138.3, 128.8, 128.6, 128.0, 127.9, 127.5, 127.2, 127.1, 126.64, 110.9, 73.8, 71.4, 60.5, 57.6, 55.2, 45.1, 43.1, 14.3, 14.2, 13.8. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₃₄N₃O₃ 520.2595, found 520.2592.

ethyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-3-(4-fluorophenyl)-1-phenyl-2azabicyclo[2.1.1]hexan-2-yl)acetate 3d

The crude product was purified by column chromatography on silica gel (n-Hexane/acetone = 100:1). Colorless oil, 38.8

mg, 42% yield. ¹**H** NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 7.1 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.33 (d, J = 7.2 Hz, 1H), 7.28 (td, J = 8.2, 2.5 Hz, 2H), 6.92 (t, J = 8.7 Hz, 2H), 6.00 (s, 1H), 4.84 (s, 1H), 3.92 – 3.67 (m, 2H), 3.42 (d, J = 15.3 Hz, 1H), 3.26 (d, J = 15.3 Hz, 1H), 3.00 (dd, J = 9.7, 7.6 Hz, 1H), 2.60 (d, J = 7.5 Hz, 1H), 2.53 – 2.47 (m, 1H), 2.46 (s, 3H), 2.30 (s, 3H), 1.93 (d, J = 7.6 Hz, 1H), 0.94 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.31, 171.3, 162.3 (d, J = 244.5 Hz), 153.0, 144.4, 138.2, 136.9, 129.1 (d, J = 7.9 Hz), 128.7, 128.2, 127.6, 114.8 (d, J = 21.2 Hz), 111.1, 73.4, 71.5, 60.6, 57.7, 55.1, 45.2, 43.0, 14.4, 14.3, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.20. HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₉FN₃O₃ 462.2187, found 462.2189.

ethyl 2-(3-(4-chlorophenyl)-4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1-phenyl-2azabicyclo[2.1.1]hexan-2-yl)acetate 3e

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). Colorless oil, 49.7 mg, 52% yield. ¹**H NMR** (400 MHz, CDCl₃): δ 7.44 (d, *J* = 7.1 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.1 Hz, 1H), 7.28 – 7.23 (m, 2H), 7.20 (d, *J* = 8.5 Hz, 2H), 6.01 (s, 1H), 4.83 (s, 1H), 3.81 (q, *J* = 7.1 Hz, 2H), 3.42 (d, *J* = 15.4 Hz, 1H), 3.26 (d, *J* = 15.4 Hz, 1H), 3.00 (dd, *J* = 9.6, 7.8 Hz, 1H),

2.60 (d, J = 7.5 Hz, 1H), 2.54 – 2.41 (m, 4H), 2.29 (s, 3H), 1.93 (d, J = 7.6 Hz, 1H), 0.95 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 171.0, 152.9, 144.3, 139.7, 138.0, 132.9, 128.9, 128.6, 128.1, 128.0, 127.5, 111.0, 73.4, 71.4, 60.5, 57.5, 55.0, 45.0, 42.9, 14.3, 14.2, 13.9. HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₉ClN₃O₃ 478.1892, found 478.1897.

ethyl 2-(3-(4-bromophenyl)-4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1-phenyl-2azabicyclo[2.1.1]hexan-2-yl)acetate 3f

= 8.8 Hz, 1H), 2.62 (d, J = 7.5 Hz, 1H), 2.52 – 2.43 (m, 4H), 2.30 (s, 3H), 1.95 (d, J = 7.6 Hz, 1H), 1.00 – 0.91 (m, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.1, 170.9, 152.9,

144.3, 140.2, 138.0, 130.9, 129.3, 128.6, 128.1, 127.4, 121.1, 111.0, 73.4, 71.4, 60.5, 57.5, 54.9, 45.0, 42.9, 14.3, 14.2, 13.9. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₉BrN₃O₃ 522.1387, found 522.1386.

ethyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1-phenyl-3-(4-(trifluoromethoxy)phenyl)-2-azabicyclo[2.1.1]hexan-2-yl)acetate 3g

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). Colorless oil, 37.9 mg, 36% yield. ¹H NMR (400 MHz, CDCl₃): δ 7.50 – 7.43 (m, 2H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.38 – 7.30 (m, 3H), 7.09 (d, *J* = 8.2 Hz, 2H), 6.01 (s, 1H), 4.87 (s, 1H), 3.80 (q, *J* = 6.9 Hz, 2H), 3.44 (d, *J* = 15.4 Hz, 1H), 3.27 (d, *J* = 15.4 Hz, 1H),

3.01 (dd, J = 9.7, 7.7 Hz, 1H), 2.62 (d, J = 7.5 Hz, 1H), 2.53 – 2.48 (m, 1H), 2.47 (s, 3H), 2.29 (s, 3H), 1.97 (d, J = 7.6 Hz, 1H), 0.91 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 171.0, 152.9, 148.4 (d, J = 1.7 Hz), 144.3, 139.9, 138.0, 128.9, 128.7, 128.1, 127.5, 120.6 (q, J = 256.5 Hz), 120.3, 111.1, 73.3, 71.4, 60.6, 57.5, 55.1, 45.1, 43.0, 14.3, 14.2, 13.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.79. HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₂₉F₃N₃O₄ 528.2105, found 528.2109.

ethyl 2-(3-(4-cyanophenyl)-4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1-phenyl-2azabicyclo[2.1.1]hexan-2-yl)acetate 3h

2.29 (s, 3H), 1.96 (d, J = 7.7 Hz, 1H), 0.95 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 170.6, 153.1, 147.0, 144.4, 137.6, 131.7, 128.7, 128.3, 128.2, 127.4, 119.3, 111.2, 110.9, 73.6, 71.5, 60.6, 57.7, 54.8, 45.0, 42.9, 14.30, 14.2, 13.9. HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₂₉N₄O₃ 469.2234, found 469.2234.

ethyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-3-(3-fluorophenyl)-1-phenyl-2azabicyclo[2.1.1]hexan-2-yl)acetate 3i

0.5 Hz, 1H), 4.87 (s, 1H), 3.83 (qd, J = 7.1, 1.1 Hz, 2H), 3.44 (d, J = 15.3 Hz, 1H), 3.27 (d, J = 15.3 Hz, 1H), 3.02 (dd, J = 9.8, 7.6 Hz, 1H), 2.62 (d, J = 7.5 Hz, 1H), 2.52 – 2.48 (m, 1H), 2.47 (d, J = 0.6 Hz, 3H), 2.31 (s, 3H), 0.96 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 171.0, 162.8 (d, J = 244.4 Hz), 152.9, 144.3, 144.0 (d, J = 6.9 Hz), 138.0, 129.2 (d, J = 8.2 Hz), 128.7, 128.1, 127.5, 122.8 (d, J = 2.7 Hz), 114.8 (d, J = 22.4 Hz), 114.0 (d, J = 21.4 Hz), 111.1, 73.4 (d, J = 1.9 Hz), 71.4, 60.6, 57.6, 55.0, 45.1, 42.9, 14.3, 14.2, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.79 – -113.91 (m). HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₉FN₃O₃ 462.2187, found 462.2189.

ethyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1-phenyl-3-(*m*-tolyl)-2azabicyclo[2.1.1]hexan-2-yl)acetate 3j

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). Colorless oil, 18.3 mg, 20% yield. ¹**H NMR** (400 MHz, CDCl₃, ppm): δ 7.51 – 7.45 (m, 2H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.36 – 7.29 (m, 1H), 7.16 – 7.10 (m, 1H), 7.08 (d, *J* = 7.7 Hz, 1H), 7.04 (s, 1H), 7.00 (d, *J* = 7.1 Hz, 1H), 6.02

(s, 1H), 4.80 (s, 1H), 4.05 – 3.73 (m, 2H), 3.44 (d, J = 15.2 Hz, 1H), 3.27 (d, J = 15.2 Hz, 1H), 3.04 (dd, J = 9.7, 7.6 Hz, 1H), 2.62 (d, J = 7.4 Hz, 1H), 2.53 (dd, J = 9.7, 7.5 Hz, 1H), 2.46 (s, 3H), 2.32 (s, 3H), 2.28 (s, 3H), 1.93 (d, J = 7.4 Hz, 1H), 0.94 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.4, 171.3, 152.7, 144.2, 140.9, 138.3, 137.1, 128.6, 128.0, 128.0, 127.9, 127.7, 127.6, 124.6, 110.8, 73.9, 71.3, 60.4, 57.5, 55.2, 45.1, 42.9, 21.7, 14.2, 14.2, 13.8. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₃₂N₃O₃ 458.2438, found 458.2444.

ethyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-3-(2-fluorophenyl)-1-phenyl-2azabicyclo[2.1.1]hexan-2-yl)acetate 3k

The crude product was purified by column chromatography on silica gel (n-Hexane/acetone = 100:1). Colorless oil, 45.2

mg, 49% yield. ¹**H** NMR (400 MHz, CDCl₃, ppm): δ 8.34 – 8.13 (m, 1H), 7.48 (d, J = 7.2 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.33 (t, J = 7.2 Hz, 1H), 7.25 – 7.12 (m, 2H), 6.90 – 6.76 (m, 1H), 5.95 (s, 1H), 4.87 (s, 1H), 3.91 – 3.69 (m, 2H), 3.45 (d, J = 15.5 Hz, 1H), 3.31 (d, J = 15.5 Hz, 1H), 3.11 (dd, J = 9.7, 8.1 Hz, 1H), 2.67 (d, J = 7.8 Hz, 1H), 2.59 (dd, J = 9.7, 7.8 Hz, 1H), 2.50 (s, 3H), 2.22 (s, 3H), 1.94 (d, J = 7.6 Hz, 1H), 0.93 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 171.1, 160.5 (d, J = 244.7 Hz), 152.0, 144.0, 138.0, 131.8 (d, J = 4.6 Hz), 128.7 (d, J = 8.2 Hz), 128.6 , 128.0, 127.8 (d, J = 13.8 Hz), 127.6, 123.6 (d, J = 3.1 Hz), 114.2 (d, J = 21.7 Hz), 110.6, 71.1, 68.7, 60.5, 56.5, 54.9, 44.8, 44.2, 14.4, 14.1, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.28 – -118.48 (m). HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₉FN₃O₃ 462.2187, found 462.2184.

ethyl 2-(3-(3-bromo-4-fluorophenyl)-4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1phenyl-2-azabicyclo[2.1.1]hexan-2-yl)acetate 31

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). Colorless oil, 43.1 mg, 40% yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.54 (dd, *J* = 6.8, 1.9 Hz, 1H), 7.43 (dt, *J* = 14.8, 4.6 Hz, 4H), 7.38 – 7.30 (m, 1H), 7.19 – 7.08 (m, 1H), 6.98 (t, *J* = 8.4 Hz, 1H), 6.03 (s, 1H), 4.79 (s, 1H), 3.85 (q, *J* = 7.1 Hz, 2H), 3.43 (d,

J = 15.5 Hz, 1H), 3.25 (d, J = 15.5 Hz, 1H), 3.00 (dd, J = 9.7, 7.7 Hz, 1H), 2.63 (d, J = 7.6 Hz, 1H), 2.48 (s, 3H), 2.44 (dd, J = 9.7, 7.9 Hz, 1H), 2.30 (s, 3H), 1.96 (d, J = 7.7 Hz, 1H), 1.00 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 170.9, 158.3 (d, J = 246.4 Hz), 153.1, 144.4, 138.7 (d, J = 3.3 Hz), 137.8, 132.7, 128.7, 128.2, 127.8 (d, J = 7.2 Hz), 127.4, 115.8 (d, J = 22.2 Hz), 111.2, 108.5 (d, J = 20.9 Hz), 72.8, 71.5, 60.6, 57.6, 54.9, 45.0, 42.8, 14.3, 14.2, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.15 – -110.34 (m). HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₈BrFN₃O₃ 540.1293, found 540.1282.

ethyl 2-(3-(3,4-difluorophenyl)-4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1phenyl-2-azabicyclo[2.1.1]hexan-2-yl)acetate 3m

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). Colorless oil, 48.8 mg, 51% yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.43 (dt, *J* = 14.8, 4.6 Hz, 4H), 7.38 – 7.27

(m, 2H), 7.11 – 6.94 (m, 1H), 6.94 – 6.81 (m, 1H), 6.03 (s, 1H), 4.83 (s, 1H), 3.85 (q, J = 7.1 Hz, 2H), 3.43 (d, J = 15.5 Hz, 1H), 3.26 (d, J = 15.5 Hz, 1H), 3.00 (dd, J = 9.7, 7.7 Hz, 1H), 2.62 (d, J = 7.5 Hz, 1H), 2.48 (s, 3H), 2.45 (dd, J = 9.8, 7.9 Hz, 1H), 2.30 (s, 3H), 1.96 (d, J = 7.7 Hz, 1H), 1.00 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 171.0, 153.2, 151.1 (dd, J = 48.6, 12.7 Hz), 148.7 (dd, J = 48.5, 12.8 Hz), 144.5, 138.5 (dd, J = 5.0, 3.6 Hz), 137.9, 128.8, 128.3, 127.5, 123.1 (dd, J = 6.2, 3.4 Hz), 116.9 (d, J = 18.2 Hz), 116.6 (d, J = 17.1 Hz), 111.3, 73.0, 71.5, 60.7, 57.7, 55.0, 45.2, 42.9, 14.4, 14.3, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.34 – -138.51 (m), -140.67 – -140.85 (m). HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₈F₂N₃O₃ 480.2093, found 480.2101.

ethyl 2-(3-(4-bromo-2-chlorophenyl)-4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1phenyl-2-azabicyclo[2.1.1]hexan-2-yl)acetate 3n

3.90 – 3.70 (m, 2H), 3.39 (d, J = 15.5 Hz, 1H), 3.26 (d, J = 15.5 Hz, 1H), 3.02 (dd, J = 9.7, 8.3 Hz, 1H), 2.77 (dd, J = 9.8, 8.1 Hz, 1H), 2.64 (d, J = 8.0 Hz, 1H), 2.46 (s, 3H), 2.07 (s, 3H), 1.98 (d, J = 7.9 Hz, 1H), 0.92 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 170.8, 151.9, 144.2, 137.9, 137.7, 133.5, 133.4, 131.1, 129.4, 128.7, 128.2, 127.5, 121.2, 110.8, 71.0, 70.7, 60.6, 56.5, 54.7, 45.0, 44.3, 14.5, 13.8, 13.8. HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₈BrClN₃O₃ 556.0997, found 556.0985.

ethyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-3-(naphthalen-1-yl)-1-phenyl-2-azabicyclo[2.1.1]hexan-2-yl)acetate 30

= 9.9, 7.8 Hz, 1H), 2.83 (dd, J = 9.9, 7.7 Hz, 1H), 2.74 (d, J = 7.7 Hz, 1H), 2.27 (s, 3H), 2.04 (s, 3H), 1.93 (d, J = 7.6 Hz, 1H), 0.71 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.2, 171.1, 152.6, 144.6, 138.2, 136.1, 133.4, 131.6, 128.6, 128.5, 127.9, 127.8, 127.7, 127.5, 125.2, 124.7, 124.6, 121.9, 110.6, 70.8, 70.7, 60.3, 56.8, 55.0, 45.3, 44.1, 14.1, 14.0, 13.5. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₃₂N₃O₃ 494.2438, found 494.2429.

methyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1,3-diphenyl-2-azabicyclo [2.1.1]hexan-2-yl)acetate 3p

(s, 3H), 3.28 (d, J = 15.3 Hz, 1H), 3.05 – 2.99 (m, 1H), 2.61 (d, J = 7.4 Hz, 1H), 2.57 – 2.50 (m, 1H), 2.45 (s, 3H), 2.30 (s, 3H), 1.94 (d, J = 7.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 171.2, 152.7, 144.2, 140.8, 138.2, 128.6, 128.0, 127.8, 127.5, 127.4, 127.1, 110.9, 73.9, 71.2, 57.5, 54.7, 51.3, 45.2, 42.9, 14.3, 14.2. HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₂₈N₃O₃ 430.2125; Found 430.2132.

benzyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1,3-diphenyl-2-azabicyclo [2.1.1]hexan-2-yl)acetate 3q

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). Colorless oil, 45.4 mg, 45% yield. ¹**H NMR** (400 MHz, CDCl₃, ppm): δ 7.49 – 7.41 (m, 2H), 7.40 – 7.33 (m, 2H), 7.33 – 7.25 (m, 6H), 7.25 – 7.17 (m, 3H), 7.15 – 7.07 (m, 2H), 6.00 (s, 1H), 4.90 (s, 1H), 4.75 (s, 2H), 3.51 (d, *J* = 15.4 Hz, 1H), 3.33 (d, *J* = 15.4

Hz, 1H), 3.01 (dd, J = 9.8, 7.4 Hz, 1H), 2.61 (d, J = 7.4 Hz, 1H), 2.52 (dd, J = 9.8, 7.5 Hz, 1H), 2.45 (s, 3H), 2.28 (s, 3H), 1.92 (d, J = 7.5 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.2, 171.1, 152.7, 144.2, 140.8, 138.2, 135.8, 128.6, 128.5, 128.3, 128.1, 128.0, 127.9, 127.5, 127.4, 127.2, 110.9, 74.0, 71.3, 66.3, 57.5, 55.0, 45.3, 42.9, 14.3, 14.2. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₃₂H₃₂N₃O₃ 506.2438; Found 506.2427.

methyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1,3-diphenyl-2-azabicyclo [2.1.1]hexan-2-yl)propanoate 3r

1H), 2.42 (s, 3H), 2.33 (s, 3H), 1.85 (d, J = 7.3 Hz, 1H), 1.01 (d, J = 7.2 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 174.5, 171.6, 152.6, 144.1, 142.5, 138.6, 128.4, 127.9, 127.8, 127.6, 127.3, 127.2, 110.8, 71.0, 65.7, 56.4, 55.6, 51.3, 46.1, 43.8, 18.2, 14.2, 14.2. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₃₀N₃O₃ 444.2282; Found 444.2286.

ethyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-3-phenyl-1-(*p*-tolyl)-2azabicyclo[2.1.1]hexan-2-yl)acetate 3s

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). White solid, 53.9 mg, 59% yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.35 (d, *J* = 7.7 Hz, 2H), 7.29 (d, *J* = 6.9 Hz, 2H), 7.26 – 7.12 (m, 5H), 5.99 (s, 1H), 4.86 (s, 1H), 3.87 – 3.71 (m, 2H), 3.44 (d, *J* = 15.2 Hz, 1H), 3.26 (d, *J* = 15.2 Hz, 1H), 3.09 – 2.96 (m, 1H), 2.58 (d,

 $J = 7.4 \text{ Hz}, 1\text{H}, 2.55 - 2.46 \text{ (m, 1H)}, 2.45 \text{ (s, 3H)}, 2.36 \text{ (s, 3H)}, 2.30 \text{ (s, 3H)}, 1.90 \text{ (d, } J = 7.4 \text{ Hz}, 1\text{H}), 0.91 \text{ (t, } J = 7.1 \text{ Hz}, 3\text{H}). {}^{13}\text{C}$ **NMR** (101 MHz, CDCl₃) δ 171.4, 171.3, 152.6, 144.2, 141.1, 137.6, 135.3, 129.2, 127.8, 127.5, 127.4, 127.1, 110.8, 73.9, 71.2, 60.4, 57.5, 55.1, 45.2, 42.8, 21.3, 14.3, 14.2, 13.8. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₃₂N₃O₃ 458.2438; Found 458.2437.

ethyl 2-(1-(4-chlorophenyl)-4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-3-phenyl-2azabicyclo[2.1.1]hexan-2-yl)acetate 3t

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). Colorless oil, 22.9 mg, 24% yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.32 (q, *J* = 8.4 Hz, 4H), 7.25 – 7.11 (m, 5H), 5.95 (s, 1H), 4.81 (s, 1H), 3.74 (qd, *J* = 7.1, 2.3 Hz,

2H), 3.33 (d, J = 15.2 Hz, 1H), 3.20 (d, J = 15.2 Hz, 1H), 2.94 (dd, J = 9.5, 7.8 Hz, 1H), 2.53 (d, J = 7.4 Hz, 1H), 2.44 (dd, J = 9.6, 7.8 Hz, 1H), 2.39 (s, 3H), 2.24 (s, 3H), 1.84 (d, J = 7.5 Hz, 1H), 0.87 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.1, 171.0, 152.8, 144.3, 140.7, 136.8, 133.8, 129.0, 128.8, 127.9, 127.4, 127.2, 110.9, 74.0, 70.8, 60.5, 57.5, 55.0, 45.1, 43.1, 14.3, 14.2, 13.8. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₉ClN₃O₃ 478.1892; Found 478.1885.

ethyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1-(4-fluorophenyl)-3-phenyl-2azabicyclo[2.1.1]hexan-2-yl)acetate 3u

3.18 (d, J = 15.2 Hz, 1H), 3.03 – 2.87 (m, 1H), 2.51 (d, J = 7.4 Hz, 1H), 2.46 – 2.39 (m, 1H), 2.37 (s, 3H), 2.21 (s, 3H), 1.82 (d, J = 7.4 Hz, 1H), 0.84 (t, J = 7.1 Hz, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 171.1, 171.0, 162.4 (d, J = 246.5 Hz), 152.7, 144.2, 140.7, 134.0 (d, J = 3.1 Hz), 129.2 (d, J = 8.1 Hz), 127.8, 127.3, 127.1, 115.4 (d, J = 21.4 Hz), 110.8, 73.9, 70.6, 60.4, 57.3, 54.9, 45.2, 42.9, 14.2, 14.1, 13.7. ¹⁹F **NMR** (376 MHz, CDCl₃) δ -114.05 – -114.16 (m). **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₉FN₃O₃ 462.2187; Found 462.2193.

ethyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-3-phenyl-1-(*m*-tolyl)-2azabicyclo[2.1.1]hexan-2-yl)acetate 3v

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). Colorless oil, 32.9 mg, 36% yield. ¹**H NMR** (400 MHz, CDCl₃, ppm): δ 7.33 – 7.22 (m, 7H), 7.21 – 7.11 (m, 2H), 6.00 (s, 1H), 4.85 (s, 1H), 3.85 – 3.73 (m, 2H), 3.44 (d, *J* = 15.2 Hz, 1H), 3.27 (d, *J* = 15.3 Hz, 1H), 3.02 (dd, *J* = 9.8, 7.4 Hz, 1H), 2.59 (d, *J* = 7.4

Hz, 1H), 2.52 (dd, J = 9.9, 7.5 Hz, 1H), 2.45 (s, 3H), 2.39 (s, 3H), 2.30 (s, 3H), 1.91 (d, J = 7.5 Hz, 1H), 0.91 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.4, 171.3, 152.7, 144.2, 141.1, 138.2, 138.2, 128.7, 128.5, 128.1, 127.8, 127.5, 127.1, 124.6, 110.8, 74.0, 71.3, 60.4, 57.5, 55.1, 45.2, 42.84, 21.6, 14.3, 14.2, 13.8. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₃₂N₃O₃ 458.2438; Found 458.2436.

ethyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1-(3-methoxyphenyl)-3-phenyl-2-azabicyclo[2.1.1]hexan-2-yl)acetate 3w

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). Colorless oil, 25.5 mg, 27% yield. ¹**H NMR** (400 MHz, CDCl₃, ppm): δ 7.34 – 7.26 (m, 3H), 7.27 – 7.14 (m, 3H), 7.08 – 7.01 (m, 2H), 6.89 – 6.82 (m, 1H), 6.00 (s, 1H), 4.86 (s, 1H), 3.85 (s, 3H), 3.83 – 3.76 (m, 2H), 3.46 (d, *J* = 15.2 Hz, 1H), 3.27 (d, *J* = 15.3 Hz,

1H), 3.00 (dd, J = 9.8, 7.4 Hz, 1H), 2.60 (d, J = 7.4 Hz, 1H), 2.55 – 2.48 (m, 1H), 2.45 (s, 3H), 2.30 (s, 3H), 1.92 (d, J = 7.5 Hz, 1H), 0.92 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 171.2, 159.9, 152.7, 144.2, 141.0, 139.9, 129.6, 127.8, 127.4, 127.1, 119.8, 113.3, 113.1, 110.9, 74.0, 71.3, 60.4, 57.4, 55.4, 55.1, 45.2, 43.0, 14.3, 14.2, 13.8. HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₃₂N₃O₄474.2387; Found 474.2395.

ethyl 2-(4-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-1-(3,5-dimethylphenyl)-3phenyl-2-azabicyclo[2.1.1]hexan-2-yl)acetate 3x

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). Colorless oil, 34.8 mg, 37% yield. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.29 (d, *J* = 7.5 Hz, 2H), 7.25 – 7.17 (m, 3H), 7.06 (s, 2H), 6.95 (s, 1H), 5.99 (s, 1H), 4.83 (s, 1H), 3.85 – 3.73 (m, 2H), 3.45 (d, *J* = 15.3 Hz, 1H),

3.26 (d, J = 15.3 Hz, 1H), 3.08 – 2.96 (m, 1H), 2.57 (d, J = 7.4 Hz, 1H), 2.55 – 2.48 (m, 1H), 2.45 (s, 3H), 2.35 (s, 6H), 2.30 (s, 3H), 1.89 (d, J = 7.5 Hz, 1H), 0.91 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.4, 171.3, 152.6, 144.2, 141.2, 138.2, 138.1, 129.6, 127.8, 127.5, 127.1, 125.2, 110.8, 74.0, 71.3, 60.4, 57.6, 55.2, 45.3, 42.8, 21.5, 14.3, 14.2, 13.8. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₃₄N₃O₃ 472.2595; Found 472.2589.

methyl 2-(2-ethoxy-2-oxoethyl)-1,3-diphenyl-2-azabicyclo[2.1.1]hexane-4carboxylate 3y

The crude product was purified by column chromatography on silica gel (*n*-Hexane/acetone = 100:1). Colorless oil, 43.2 mg, 57% yield. ¹**H NMR** (400 MHz, CDCl₃, ppm): δ 7.55 (d, J = 7.6 Hz, 2H), 7.37 – 7.27 (m, 4H), 7.27 – 7.21 (m, 3H), 7.20 – 7.12 (m, 1H), 4.27 (s, 1H), 3.73 – 3.61 (m, 2H), 3.56 (d, J = 1.0 Hz, 3H), 3.29 (d, J = 14.9 Hz, 1H), 3.08 (d, J = 14.9 Hz, 1H), 2.63 – 2.51 (m, 1H), 2.39 – 2.32 (m, 2H), 1.83 (d, J = 7.4 Hz, 1H), 0.85 – 0.77 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 170.9, 140.7, 137.8, 128.6, 128.1, 128.0, 127.8, 127.3, 72.4, 71.7, 60.5, 54.7, 54.3, 51.6, 43.0, 42.4, 13.7. HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₆NO₄ 380.1856; Found 380.1862.

Unsuccessful examples:

4. Gram-scale reaction

To a 10 mL reaction vial equipped with a magnetic stir bar was added compounds 1 (4.0 mmol, 1.0 equiv), 2 (12.0 mmol, 3.0 equiv), BF₃·Et₂O (BF₃ 46.5%) (120 mol%), and the tube was evacuated and backfilled with argon three times. DMSO (40 mL) was added under argon atmosphere. The mixture was then stirred rapidly for 16 hours. Upon completion of the reaction, the aqueous phases were extracted with EtOAc (3×50 mL). The combined organic phases were washed with saturated brine (50 mL), then dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified by silica gel chromatography on silica gel (*n*-Hexane/acetone = 100:1) to afford the product **3a** (0.7 g, 40% yield) as a colorless oil.

5. Post-functionalizations

To a solution of **3a** (0.2 mmol, 88.6 mg) in MeOH (2 mL) at room temperature was added DBU (0.22 mmol, 33.5 mg) and the mixture was stirred at room temperature for 16 h. After removal of the solvents under reduced pressure, the product was purified

by silica gel column chromatography (EtOAc/Pentane = 1/5) to afford 4 (43.8 mg, 60%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.62 (d, *J* = 7.5 Hz, 2H), 7.46 – 7.28 (m, 7H), 7.26 (d, *J* = 7.0 Hz, 1H), 4.33 (s, 1H), 3.64 (s, 3H), 3.38 (d, *J* = 14.9 Hz, 1H), 3.29 (s, 3H), 3.17 (d, *J* = 15.0 Hz, 1H), 2.71 – 2.61 (m, 1H), 2.44 (t, *J* = 8.5 Hz, 2H), 1.93 (d, *J* = 7.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 171.3, 140.5, 137.7, 128.6, 128.1, 128.0, 127.9, 127.4, 127.3, 72.5, 71.6, 54.4, 54.3, 51.7, 51.4, 43.1, 42.5. HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₄NO₄ 336.1700; Found 336.1699.

To a solution of **3a** (0.2 mmol, 88.6 mg) in a mixed solvent of THF/H₂O (v/v = 1/1, 6 mL) at room temperature was added NaBH₄ (1 mmol, 37.8 mg) in one portion, and stirred for 3 h and then quenched by addition of 4 mL saturated NaHCO₃ solution. The mixture was extracted with EtOAc (3×10 mL). The combined organic layer was dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated under reduced pressure and the mixture was purified by silica gel column chromatography (EtOAc/Pentane = 1/4) to afford **5** (60.3 mg, 86%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.65 (d, *J* = 7.5 Hz, 2H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.36 (q, *J* = 7.7 Hz, 4H), 7.32 – 7.20 (m, 2H), 4.00 (s, 1H), 3.78 – 3.68 (m, 2H), 3.66 (d, *J* = 11.5 Hz, 1H), 3.58 (d, *J* = 11.6 Hz, 1H), 3.33 (d, *J* = 14.7 Hz, 1H), 3.11 (d, *J* = 14.7 Hz, 1H), 2.35 – 2.27 (m, 1H), 2.24 – 2.17 (m, 1H), 2.12 (d, *J* = 7.1 Hz, 1H), 1.69 (s, 1H), 1.53 (d, *J* = 7.0 Hz, 1H), 0.87 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 141.3, 138.9, 128.5, 128.4, 127.9, 127.8, 127.4, 126.9, 72.0, 71.7, 62.1, 60.4, 54.7, 53.8, 41.7, 39.1, 13.7. HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₆NO₃ 352.1907; Found 352.1912.

Under N₂ atmosphere, at 0 °C, **5** (70 mg, 0.2 mmol, 1 equiv.), triphenylphosphine (78 mg, 0.3 mmol, 1.5 equiv.) and carbon tetrabromide (73 mg, 0.22 mmol, 1.1 equiv.) were dissolved in DCM (2 mL). The mixture was slowly warmed up to room

temperature and stirred 12 hours. After removal of the solvents under reduced pressure, the product was purified by silica gel column chromatography (EtOAc/Pentane = 1/10) to afford **6** (63 mg, 76%) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃, ppm): δ 7.74 (d, J = 7.6 Hz, 2H), 7.44 (d, J = 6.8 Hz, 2H), 7.41 – 7.34 (m, 4H), 7.34 – 7.26 (m, 2H), 4.03 (s, 1H), 3.83 – 3.65 (m, 2H), 3.47 – 3.36 (m, 2H), 3.32 (d, J = 14.9 Hz, 1H), 3.13 (d, J = 14.9 Hz, 1H), 2.38 (dd, J = 10.1, 7.3 Hz, 1H), 2.30 (dd, J = 10.1, 6.9 Hz, 1H), 2.12 (d, J = 7.2 Hz, 1H), 1.54 (d, J = 6.9 Hz, 1H), 0.88 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.1, 140.5, 138.3, 128.6, 128.3, 128.0, 127.4, 127.2, 71.5, 71.0, 60.4, 54.6, 52.3, 44.1, 41.2, 34.0, 13.8. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₅BrNO₂ 414.1063; Found 414.1060.

A solution of 5 (70 mg, 0.2 mmol, 1 equiv.) in CHCl₃ (2 mL) was ice-cooled under a nitrogen atmosphere, Dess-Martin periodinane (102mg, 1.2 equiv.) was added thereto, and the mixture was stirred at room temperature for 12 hours. Completion of the reaction was monitored by TLC. A mixed solution of saturated aqueous solution of sodium thiosulfate : NaHCO₃ : water (1:1:1 v:v, 10 mL) was added to quench the reaction, and the resultant mixture was extracted with DCM (3 x 10 mL). The combined organic layers were dried with Na₂SO₄ and concentrated under reduced, the mixture was purified by silica gel column chromatography (EtOAc/Pentane = 1/10) to afford 7 (57 mg, yield 81%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃, ppm): δ 9.75 (s, 1H), 7.66 - 7.60 (m, 2H), 7.46 - 7.42 (m, 2H), 7.42 - 7.32 (m, 5H), 7.28 - 7.23 (m, 1H), 4.40 (s, 1H), 3.84 - 3.71 (m, 2H), 3.38 (d, J = 14.9 Hz, 1H), 3.16 (d, J = 15.0 Hz, 1H), 2.57 (dd, J = 10.0, 7.1 Hz, 1H), 2.49 (dd, J = 10.0, 7.0 Hz, 1H), 2.41 (d, J = 7.0 Hz, 1H), 1.89 (dd, J = 7.0, 1.1 Hz, 1H), 0.91 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) § 200.1, 170.9, 140.4, 137.6, 128.7, 128.3, 128.2, 127.5, 127.3, 72.3, 71.4, 60.6, 60.3, 54.5, 42.3, 40.7, 13.8. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₄NO₃ 350.1751; Found 350.1748.

To a stirred solution of 5 (70 mg, 0.2 mmol, 1 equiv.) in DCM (2 mL) at -78 °C

was added dropwise DAST ((34 mg, 0.21 mmol, 1.06 equiv.)). The solution was slowly warmed to room temperature and left overnight. The mixture was washed with a solution K₂CO₃ (63 mg, 0.46 mmol, 2.29 equiv.) in 1 ml of water, water (1 mL), brine (1 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure, the mixture was purified by silica gel column chromatography (EtOAc/Pentane = 1/10) to afford **8** (22.9 mg, yield 33%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): δ δ 7.63 (d, J = 7.6 Hz, 2H), 7.45 (d, J = 6.9 Hz, 2H), 7.37 (td, J = 7.4, 5.1 Hz, 4H), 7.35 – 7.20 (m, 2H), 4.39 (td, J = 47.2, 10.0 Hz, 2H), 4.06 (s, 1H), 3.74 (qq, J = 7.1, 3.6 Hz, 2H), 3.34 (d, J = 14.8 Hz, 1H), 3.13 (d, J = 14.8 Hz, 1H), 2.40 (dd, J = 10.2, 7.4 Hz, 1H), 2.22 (dd, J = 9.2, 7.2 Hz, 2H), 1.56 (d, J = 7.1 Hz, 1H), 0.88 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 140.6, 138.5, 128.6, 128.4, 128.0, 127.9, 127.4, 127.1, 82.4 (d, J = 165.3 Hz), 72.4, 71.2 (d, J = 2.9 Hz), 60.4, 54.7, 51.8 (d, J = 20.9 Hz), 41.5 (d, J = 7.8 Hz), 39.5 (d, J = 2.2 Hz), 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ - 226.15 (t, J = 47.3 Hz). HRMS (APCI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₅FNO₂ 354.1864; Found 354.1858.

To a mixture of **5** (70 mg, 0.2 mmol, 1 equiv.), 3,4-dimethoxyphenol (34 mg, 0.22 mmol, 1.1 equiv.), and triphenylphosphine (57 mg, 0.22 mmol, 1.1 equiv.) in dry DCM (1.5 mL) was added dropwise diisopropylazodicarboxylate (73 mg, 0.22 mmol, 1.1 equiv.) at room temperature. The mixture was heated at reflux for 24 hours. The solvent was removed by rotary evaporation and the product was purified by silica gel column chromatography (EtOAc/Pentane = 1/5) to afford **10** (28.0 mg, yield 30%) as a colorless oil. **¹H NMR** (400 MHz, CDCl₃, ppm): δ 7.69 – 7.60 (m, 2H), 7.47 (d, *J* = 7.0 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 2H), 7.31 (q, *J* = 7.2 Hz, 3H), 7.28 – 7.20 (m, 1H), 6.76 (d, *J* = 8.7 Hz, 1H), 6.54 (d, *J* = 2.7 Hz, 1H), 6.34 (dd, *J* = 8.7, 2.8 Hz, 1H), 4.17 (s, 1H), 3.92 – 3.79 (m, 8H), 3.80 – 3.70 (m, 2H), 3.37 (d, *J* = 14.7 Hz, 1H), 3.17 (d, *J* = 14.7 Hz, 1H), 2.46 (dd, *J* = 10.1, 7.3 Hz, 1H), 2.29 (dd, *J* = 10.1, 7.0 Hz, 1H), 2.22 (d, *J* = 7.3 Hz, 1H), 1.61 (d, *J* = 7.1 Hz, 1H), 0.89 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 171.4, 153.7, 145.0, 143.8, 141.0, 138.8, 128.5, 128.4, 127.9, 127.8, 127.4, 126.9, 111.9, 103.8, 100.9, 72.4, 71.5, 67.3, 60.4, 56.6, 56.0, 54.8, 51.6, 42.3, 40.1, 13.8. **HRMS** (APCI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₃₄NO₅488.2431; Found 488.2426.

6. Mechanistic studies

A) Control experiment: reaction without 2a

To a 10 mL reaction vial equipped with a magnetic stir bar was added compound 1a (0.1 mmol, 1.0 equiv), $BF_3 \cdot OEt_2$ (BF_3 46.5%) (120 mol%), and the tube was evacuated and backfilled with argon three times. DMSO (1 mL) were added under argon atmosphere. The mixture was then stirred rapidly for 16 hours. Upon completion of the reaction, the aqueous phases were extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with saturated brine (20 mL), then dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford **11** (5.4 mg, 20% yield) a yellow oil.

B) Detection of the byproduct 12 of the reaction

To a 10 mL reaction vial equipped with a magnetic stir bar was added compound **1a** (4 mmol, 1.0 equiv.), **2a** (12.0 mmol, 3.0 equiv.), BF₃·OEt₂ (BF₃ 46.5%) (120 mol%), and the tube was evacuated and backfilled with argon three times. DMSO (4 mL) were added under argon atmosphere. The mixture was then stirred rapidly for 16 hours. Upon completion of the reaction, the aqueous phases were extracted with EtOAc ($3 \times 50 \text{ mL}$). The combined organic phases were washed with saturated brine (50 mL), then dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to afford **12** (177.2 mg, 10% yield, 3.1:1 d.r.) as a yellow oil. ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.35 (d, *J* = 7.1 Hz, 2H), 7.32 - 7.27 (m, 3H), 7.27 - 7.20 (m, 3H), 7.20 - 7.09 (m, 2H), 6.70 (d, *J* = 18.2 Hz, 1H), 5.93 (s, 1H), 4.80 (s, 0.21H), 4.68 (s, 70H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.43 - 3.08 (m, 4H), 2.44 - 2.19 (m, 6H), 1.19 (q, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.2 and 172.9, 172.5 and 172.2, 151.7 and 151.5, 148.5 and 147.0, 144.8 and 144.7, 139.2 and 139.1, 133.7 and133.6, 128.4, 128.36 and 128.3, 128.2 and 128.1, 128.0,

127.9 and 127.8, 127.8 and 127.7, 125.2 and 125.1, 110.4, 65.2 and 64.8, 60.8 and 60.7, 59.4 and 58.7, 49.1 and 48.8, 36.5 and 35.6, 14.5 and 14.4, 14.3 and 14.2, 14.1 and 14.0. **HRMS** (APCI-TOF) m/z: $[M + H]^+$ Calcd for $C_{27}H_{29}N_2O_5$ 444.2282; Found 444.2282.

C) TEMPO radical trapping experiment

To a 10 mL reaction vial equipped with a magnetic stir bar was added compounds **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 3.0 equiv.), 2,2,6,6-tetramethylpiperidine-1oxyl (TEMPO) (0.5 mmol, 2.5 equiv.), BF₃·OEt₂ (BF₃ 46.5%) (120 mol%), and the tube was evacuated and backfilled with argon three times. DMSO (2 mL) was added under argon atmosphere. The mixture was then stirred rapidly for 16 hours. Upon completion of the reaction, the aqueous phases were extracted with EtOAc (3×10 mL). The combined organic phases were washed with saturated brine (20 mL), then dried over Na₂SO₄, concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel chromatography on silica gel (*n*-Hexane/acetone = 100:1) to afford **3a** (30.1 mg, 34% yield) a colorless oil.

7. X-ray crystallographic data

The structure of **3s** were determined by the X-ray diffraction analysis of single crystal, which recrystallized from a mixed solution of CH_2Cl_2 and *n*-hexane. CCDC 2427959, contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

ORTEP of **3s** (CCDC: 2427959) Thermal probability ellipsoids shown at the 40% probability level.

Identification code	3s
CCDC Deposit number	2427337
Empirical formula	C ₂₈ H ₃₁ N ₃ O ₃
Formula weight	457.56
Temperature/K	257.00
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	10.1640(5)
b/Å	12.2391(6)
c/Å	20.0638(9)
α/°	90
β/°	95.683(2)
γ/°	90
Volume/Å ³	2483.6(2)
Z	4
$\rho_{calc}g/cm^3$	1.224
μ/mm ⁻¹	0.639
F(000)	976.0
Crystal size/mm ³	0.3 imes 0.2 imes 0.1
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/°	10.188 to 137.344
Index ranges	$-12 \le h \le 12, -14 \le k \le 14, -23 \le l \le 24$
Reflections collected	36134
Independent reflections	4496 [$R_{int} = 0.0340, R_{sigma} = 0.0183$]
Data/restraints/parameters	4496/0/311
Goodness-of-fit on F ²	1.050
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0380, wR_2 = 0.0974$
Final R indexes [all data]	$R_1 = 0.0400, wR_2 = 0.0990$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.14

Table S6. Crystal data and structure refinement for 3s.

8. References

- C. Zhang; J. Yang, W. Zhou, Q. Tan, Z. Yang, L. He, M. Zhang, Enantioselective Mannich Reaction of Glycine Iminoesters with N-Phosphinoyl Imines: A Bifunctional Approach, Org. Lett. 2019, 21, 8620.
- 2. Y. Liang, F. Paulus, C. G. Daniliuc, F. Glorius. Catalytic Formal $[2\pi+2\sigma]$ Cycloaddition of Aldehydes with Bicyclobutanes: Expedient Access to Polysubstituted 2-Oxabicyclo[2.1.1]hexanes, *Angew. Chem. Int. Ed.* 2023, **62**, e202305043.

9. Copies of NMR spectra of the products

¹³C NMR (101 MHz, CDCl₃) of **3c**

¹⁹FNMR (376 MHz, CDCl₃) of 3d

¹³C NMR (101 MHz, CDCl₃) of **3g**

¹⁹F NMR (376 MHz, CDCl₃) of **3**g

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃) of **3i**

¹⁹F NMR (376 MHz, CDCl₃) of **3i**

-113.81 -113.83 -113.84 -113.85 -113.86 -113.86

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 f1 (ppm)

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl₃) of **3l**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 f1 (ppm)

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl₃) of $3\mathrm{m}$

¹H NMR (400 MHz, CDCl₃) of **30**

14.16 14.10 13.60

¹³C NMR (101 MHz, CDCl₃) of **3p**

¹H NMR (400 MHz, CDCl₃) of 3r

^{19}F NMR (376 MHz, CDCl₃) of 3u

-114.08 -114.09 -114.10 -114.11

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20 f1 (ppm)

S63

20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 f1 (ppm)

S67

