Supplementary Information (SI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2025

### **Supplementary Information**

### Enantioselective construction of cycloalkyl amines via nickelcatalysed alkene desymmetrization

Ludi Li, Bo Chen, Wenxu Cao, G. V. Surendra Babu, Weike Liao, Pengli Zhang\* and Guoqin Xia\*

### Table of content

| General Information                                              | 1   |
|------------------------------------------------------------------|-----|
| 1. Synthesis of substrates                                       | 2   |
| 2. Substrates data of 1a to 1af                                  | 3   |
| 3. Details of ligand screening and substrate scope investigation | 9   |
| 3.1 Details of ligand screening                                  | 9   |
| 3.2 Substrate scope investigation of 3a to 3af                   | 13  |
| 4. The extension of alicyclic substrates without methyl groups   | 32  |
| 4.1 Substrate synthesis and data of 4, 6, 8                      | 32  |
| 4.2 Substrate investigation and data of 5, 7, 9                  | 35  |
| 5. Mechanistic studies                                           | 40  |
| 5.1 Olefin migration experiment                                  | 40  |
| 5.1.1 Substrate synthesis and data of 10                         | 40  |
| 5.1.2 Control experiment                                         | 42  |
| 5.2 Radical inhibition experiment                                | 43  |
| 6. Compound synthesis of 13                                      | 43  |
| 7. X-ray of 3e                                                   | 46  |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra                   | 49  |
| HPLC Spectra                                                     | 104 |

#### **General Information**

Solvents and all other chemicals used in this article were obtained from Bidepharm, Aladdin, Energy Chemical, Sigma-Aldrich, Alfa-Aesar and used directly without further purification. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light (254 nm) and Vogel's permanganate. <sup>1</sup>H NMR spectra were recorded on BRUKER AVANCE NEO 500 (500MHz) or BRUKER AVANCE NEO Ascend 600 (600 MHz) spectrometers. Data for <sup>1</sup>H NMR spectra are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants, and integration. Chemical shifts are reported in parts per million (ppm) referenced to the appropriate solvent signals, for example 7.26 ppm for chloroform-d. Coupling constants, J, are reported in Hertz (Hz). <sup>13</sup>C NMR spectra were recorded on BRUKER AVANCE NEO 500 (126 MHz) or BRUKER AVANCE NEO Ascend 600 (151 MHz). Chemical shifts are reported in parts per million (ppm) referenced to the appropriate solvent signals, for example 77.00 ppm for chloroform-d. Optical rotations were measured on a Rudolph Research Analytical Autopol VI automatic polarimeter using a 50 mm path-length cell at 589 nm. The enantiomeric excess was determined on a Hitachi Primaide HPLC system using commercially available columns. High-resolution mass spectra (HRMS) were recorded using LC-MS (Thermo HPLC-orbitrap Elite).

#### 1. Synthesis of substrates

A magnetic stir bar was placed in a 100 mL pear-shaped flask, followed by three cycles of nitrogen purging. Under nitrogen atmosphere, 20 mL of anhydrous THF was introduced and the mixture was cooled to -78°C. Diisopropylamine (1.10 mL, 7.5 mmol) was then injected via syringe, followed by the addition of *n*-butyllithium hexane solution (3.0 mL, 7.5 mmol). After 15 minutes of reaction, methyl cyclopent-3-enecarboxylate (0.61 mL, 5.0 mmol) was introduced into the system and stirred for 45 minutes. The haloalkane R-X (10.0 mmol, 2.0 equiv) was subsequently added dropwise, after which the reaction mixture was warmed to room temperature and stirred overnight. The reaction was quenched with saturated aqueous ammonium chloride solution, and the layers were extracted with ethyl acetate. The combined organic phases were dried over anhydrous sodium sulfate, concentrated under reduced pressure, and purified by column chromatography (98:2 hexane/ethyl acetate) to afford intermediate **b**.

The intermediate **b** was dissolved in methanol, followed by the addition of 3.0 equivalents of potassium hydroxide (pre-dissolved in 15 mL of deionized water). The reaction mixture was heated to 60°C with continuous stirring overnight. After completion, the methanol was removed under reduced pressure. The residue was then dissolved in water, and the aqueous phase was washed with dichloromethane (2-3 times), with the organic layers being discarded. The aqueous phase was subsequently acidified with hydrochloric acid and extracted with dichloromethane. The combined

organic extracts were dried over anhydrous sodium sulfate and concentrated by rotary evaporation to yield the carboxylic acid intermediate  $\mathbf{c}$ .

The carboxylic acid intermediate **c** was dissolved in 20 mL of toluene, followed by the gradual addition of Diphenylphosphoryl azide (2.0 equivalents) and triethylamine (2.5 equivalents) at ambient temperature. The resulting mixture was stirred at room temperature for one hour before being heated to 100°C and maintained stirring overnight to provide intermediate **d**, this intermediate was used directly for next step.

10 mL of 6.0 M aqueous hydrochloric acid was directly added to the solution of the last step, and the mixture was stirred for 12 hours. The biphasic system was then separated to isolate the aqueous layer. This aqueous phase was subsequently basified by the addition of sodium hydroxide solution, followed by extraction with dichloromethane. The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and transferred to a 100 mL flask; this solution of intermediate e was used directly for next step.

Under an ice bath, triethylamine (2.0 equiv) was slowly added to the DCM solution of the amine  $\mathbf{e}$ , followed by the dropwise addition of 2-methoxybenzoyl chloride (1.5 equiv). The reaction mixture was allowed to warm to room temperature and stirred for 3 hours. Quenched the reaction by adding pure water, then extracted with DCM. The organic phases were combined and dried over anhydrous sodium sulfate. The solution was filtered and concentrated under vacuum. Purified the concentrated mixture by column chromatography (hexane: ethyl acetate = 91:9) to obtain the symmetric cyclopentenyl amine substrate  $\mathbf{f}$ .

#### 2. Substrates data of 1a to 1af

2-methoxy-N-(1-methylcyclopent-3-en-1-yl)benzamide (1a)

White solid, 474 mg, 41% yield. M.p.:  $60\text{-}64^{\circ}\text{C}$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (dd, J = 7.8, 1.7 Hz, 1H), 8.08 (s, 1H), 7.45 – 7.38 (m, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 8.3 Hz, 1H), 5.72 – 5.65 (m, 2H), 3.94 (s, 3H), 2.85 (d, J = 14.8 Hz, 2H), 2.51 (d, J = 14.7 Hz, 2H), 1.55 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.1, 157.2, 132.4, 131.8, 128.5, 122.2, 121.2, 111.2, 59.4, 55.8, 46.7, 27.3. ESI-HRMS: m/z [M+H]<sup>+</sup>calcd. For C<sub>14</sub>H<sub>17</sub>NO<sub>2</sub>: 232.1332, found: 232.1331.

#### N-(1-ethylcyclopent-3-en-1-yl)-2-methoxybenzamide (1v)

Colorless oil, 441 mg, 36% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (d, J = 7.8 Hz, 1H), 7.97 (s, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 5.73 – 5.62 (m, 2H), 3.95 (s, 3H), 2.78 (d, J = 15.7 Hz, 2H), 2.54 (d, J = 15.3 Hz, 2H), 1.97 (q, J = 7.3 Hz, 2H), 0.92 (t, J = 7.4 Hz, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$ 164.2, 157.3, 132.4, 131.9, 128.6, 122.5, 121.3, 111.3, 63.2, 56.0, 44.9, 31.3, 8.6. ESI-HRMS: m/z [M+H]<sup>+</sup>calcd. For C<sub>15</sub>H<sub>19</sub>NO<sub>2</sub>: 246.1489, found: 246.1488.

#### N-(1-butylcyclopent-3-en-1-yl)-2-methoxybenzamide (1w)

Colorless oil, 475 mg, 35% yield.  $^{1}$ H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (dd, J = 7.8, 1.8 Hz, 1H), 7.98 (s, 1H), 7.43 – 7.39 (m, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 5.70 – 5.67 (m, 2H), 3.94 (s, 3H), 2.79 (d, J = 15.0 Hz, 2H), 2.54 (d, J = 14.9 Hz, 2H), 1.94 (dd, J = 13.9, 5.2 Hz, 2H), 1.36 – 1.28 (m, 4H), 0.90 (t, J = 7.0 Hz, 3H).  $^{13}$ C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.1, 157.2, 132.3, 131.9, 128.6, 122.5, 121.3, 111.3, 62.7, 55.9, 45.2, 38.6, 26.7, 23.0, 14.1. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>17</sub>H<sub>23</sub>NO<sub>2</sub>: 274.1802, found: 274.1801.

#### N-(1-hexylcyclopent-3-en-1-yl)-2-methoxybenzamide (1x)

Colorless oil, 241 mg, 16% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (dd, J = 7.8, 1.8 Hz, 1H), 7.97 (s, 1H), 7.45 – 7.38 (m, 1H), 7.07 (t, J = 7.2 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 5.72 – 5.64 (m, 2H), 3.94 (s, 3H), 2.79 (d, J = 15.0 Hz, 2H), 2.54 (d, J = 15.0 Hz, 2H), 1.97 – 1.88 (m, 2H), 1.33 – 1.25 (m, 8H), 0.89–0.84 (m, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.1, 157.3, 132.4, 132.0, 128.6, 122.6, 121.4, 111.3, 62.8, 56.0, 45.3, 39.0, 31.9, 29.7, 24.5, 22.6, 14.1. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>19</sub>H<sub>27</sub>NO<sub>2</sub>: 302.2115, found: 302.2115.

#### N-(1-isobutylcyclopent-3-en-1-yl)-2-methoxybenzamide (1y)

Colorless oil, 476 mg, 35% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (dd, J = 7.8, 1.7 Hz, 1H), 7.97 (s, 1H), 7.45 – 7.36 (m, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 5.74 – 5.63 (m, 2H), 3.94 (s, 3H), 2.81 (d, J = 15.2 Hz, 2H), 2.57 (d, J = 15.3 Hz, 2H), 1.94 (d, J = 6.1 Hz, 2H), 1.82 – 1.71 (m, 1H), 0.95 (d, J = 6.7 Hz, 6H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.3, 157.2, 132.4, 132.0, 128.7, 122.6, 121.4, 111.4, 63.3, 55.9, 46.7, 46.3, 25.2, 24.3. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>17</sub>H<sub>23</sub>NO<sub>2</sub>: 274.1802, found: 274.1801.

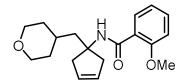
#### N-(1-isopentylcyclopent-3-en-1-yl)-2-methoxybenzamide (1z)

Colorless oil, 233 mg, 14% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (dd, J = 7.8, 1.8 Hz, 1H), 7.96 (s, 1H), 7.46 – 7.38 (m, 1H), 7.11 – 7.03 (m, 1H), 6.96 (d, J = 8.3 Hz, 1H), 5.73 – 5.63 (m, 2H), 3.95 (s, 3H), 2.80 (d, J = 14.9 Hz, 2H), 2.53 (d, J = 15.0 Hz,

2H), 1.95 - 1.89 (m, 2H), 1.58 - 1.49 (m, 1H), 1.25 - 1.19 (m, 2H), 0.89 (d, J = 6.6 Hz, 6H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.1, 157.3, 132.3, 132.0, 128.7, 122.6, 121.4, 111.4, 62.8, 56.0, 45.2, 36.8, 33.5, 28.4, 22.7. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>18</sub>H<sub>25</sub>NO<sub>2</sub>: 288.1958, found: 288.1958.

#### N-(1-benzylcyclopent-3-en-1-yl)-2-methoxybenzamide (1aa)

White powder, 245 mg, 16% yield. M.p.:  $100-102^{\circ}\text{C}$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.21 (dd, J = 7.8, 1.6 Hz, 1H), 7.77 (s, 1H), 7.46 – 7.38 (m, 1H), 7.24 – 7.15 (m, 5H), 7.09 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 5.72 (s, 2H), 3.73 (s, 3H), 3.28 (s, 2H), 2.77 (d, J = 15.2 Hz, 2H), 2.62 (d, J = 15.4 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.8, 157.3, 138.5, 132.4, 131.9, 130.5, 128.6, 127.8, 126.1, 122.6, 121.3, 111.5, 63.6, 55.9, 45.1, 42.2. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>20</sub>H<sub>21</sub>NO<sub>2</sub>: 308.1645, found: 308.1641.


#### 2-methoxy-N-(1-(3-phenylpropyl)cyclopent-3-en-1-yl)benzamide (1ab)

Colorless oil, 324 mg, 19% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (dd, J = 7.8, 1.8 Hz, 1H), 7.96 (s, 1H), 7.43 – 7.38 (m, 1H), 7.25 (t, J = 7.5 Hz, 2H), 7.17 (d, J = 7.8 Hz, 3H), 7.06 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.3 Hz, 1H), 5.69 – 5.64 (m, 2H), 3.88 (s, 3H), 2.76 (d, J = 15.1 Hz, 2H), 2.62 (t, J = 7.9 Hz, 2H), 2.55 (d, J = 15.1 Hz, 2H), 2.06 – 2.00 (m, 2H), 1.69 – 1.62 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.2, 157.2, 142.6, 132.4, 131.9, 128.6, 128.3, 128.2, 125.6, 122.4, 121.3, 111.3, 62.8, 55.9, 45.4, 38.4, 36.2, 26.8. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>22</sub>H<sub>25</sub>NO<sub>2</sub>: 336.1958, found: 336.1958.

#### N-(1-(cyclopentylmethyl)cyclopent-3-en-1-yl)-2-methoxybenzamide (1ac)

Colorless oil, 362 mg, 24% yield.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (dd, J = 7.8, 1.6 Hz, 1H), 7.97 (s, 1H), 7.45 – 7.38 (m, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 5.72 – 5.65 (m, 2H), 3.94 (s, 3H), 2.79 (d, J = 15.2 Hz, 2H), 2.58 (d, J = 15.2 Hz, 2H), 2.08 (d, J = 5.8 Hz, 2H), 1.87 – 1.78 (m, 3H), 1.63 – 1.54 (m, 2H), 1.50 – 1.41 (m, 2H), 1.20 – 1.11 (m, 2H).  $^{13}$ C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.3, 157.2, 132.3, 132.0, 128.7, 122.7, 121.4, 111.4, 63.4, 55.9, 45.9, 44.1, 37.2, 34.1, 24.9. ESI-HRMS: m/z [M+H] $^{+}$  calcd. For C<sub>19</sub>H<sub>25</sub>NO<sub>2</sub>: 300.1958, found: 300.1958.

### 2-methoxy-N-(1-((tetrahydro-2H-pyran-4-yl)methyl)cyclopent-3-en-1-yl)benzamide (1ad)



Colorless oil, 448 mg, 28% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (dd, J = 7.8, 1.8 Hz, 1H), 7.92 (s, 1H), 7.46 – 7.39 (m, 1H), 7.07 (t, J = 7.2 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 5.72 – 5.65 (m, 2H), 3.94 (s, 3H), 3.91 – 3.85 (m, 2H), 3.38 – 3.30 (m, 2H), 2.78 (d, J = 15.2 Hz, 2H), 2.58 (d, J = 15.3 Hz, 2H), 2.02 (d, J = 5.9 Hz, 2H), 1.74 – 1.65 (m, 1H), 1.65 – 1.60 (m, 2H), 1.44 – 1.35 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.1, 132.4, 131.9, 128.6, 122.5, 121.4, 111.4, 68.0, 63.0, 55.9, 46.5, 44.8, 34.3, 32.1. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>19</sub>H<sub>25</sub>NO<sub>3</sub>: 316.1907, found: 316.1907.

#### 2-methoxy-N-(1-(3-methoxypropyl)cyclopent-3-en-1-yl)benzamide (1ae)

Colorless oil, 273 mg, 19% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (d, J = 7.8 Hz, 1H), 8.00 (s, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 5.72 – 5.64 (m, 2H), 3.94 (s, 3H), 3.38 (t, J = 6.7 Hz, 2H), 3.31 (s, 3H), 2.78 (d, J

= 15.3 Hz, 2H), 2.57 (d, J = 15.3 Hz, 2H), 2.04 – 1.98 (m, 2H), 1.65 – 1.58 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.2, 157.3, 132.4, 131.9, 128.6, 122.3, 121.3, 111.3, 73.0, 62.6, 58.5, 55.9, 45.4, 34.9, 25.0. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>17</sub>H<sub>23</sub>NO<sub>3</sub>: 290.1751, found: 290.1750.

#### 2-methoxy-N-(1-(3,3,3-trifluoropropyl)cyclopent-3-en-1-yl)benzamide (1af)

White powder, 166 mg, 11% yield. M.p.:  $50\text{-}52^{\circ}\text{C}$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (dd, J = 7.8, 1.8 Hz, 1H), 7.95 (s, 1H), 7.47 – 7.40 (m, 1H), 7.10 – 7.04 (m, 1H), 6.96 (d, J = 8.2 Hz, 1H), 5.70 (s, 2H), 3.94 (s, 3H), 2.76 (d, J = 15.3 Hz, 2H), 2.59 (d, J = 15.3 Hz, 2H), 2.32 – 2.26 (m, 2H), 2.18 – 2.06 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.5, 157.2, 132.7, 131.9, 128.5 (q, J = 552.2 Hz), 128.5, 121.9, 121.4, 111.3, 61.9, 55.9, 45.5, 30.4 (q, J = 2.7 Hz), 29.8 (q, J = 28.8 Hz). ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>16</sub>H<sub>18</sub>F<sub>3</sub>NO<sub>2</sub>: 314.1362, found: 314.1368.

#### 3. Details of screening and substrate scope investigation

#### 3.1 Details of screening

Supplementary Table 1. Ligand screening

### Supplementary Table 2. Nickel catalyst screening

| entry | catalyst                   | yield | ee   | dr    |
|-------|----------------------------|-------|------|-------|
| 1     | Ni(OAc) <sub>2</sub>       | 76%   | -74% | >20:1 |
| 2     | NiCl <sub>2</sub> (DME)    | 65%   | 74%  | >20:1 |
| 3     | Ni(OTs) <sub>2</sub>       | 29%   | -75% | 13:1  |
| 4     | Ni(TFA) <sub>2</sub>       | 11%   | -81% | 7.5:1 |
| 5     | Ni(OBs) <sub>2</sub>       | 55%   | -76% | >20:1 |
| 6     | Ni(OAc) <sub>2</sub> (DME) | 25%   | -75% | 2.5:1 |
| 7     | Ni(OTf) <sub>2</sub>       | 26%   | -51% | 7:1   |

### Supplementary Table 3. Solvent screening

| entry | solvent            | yield | ee   | dr   |
|-------|--------------------|-------|------|------|
| 1     | THF                | 76%   | -74% | 27:1 |
| 2     | DCM                | trace | -    | -    |
| 3     | DMF                | none  | -    | -    |
| 4     | MeCN               | 5%    | 77%  | 1:1  |
| 5     | Toluene            | trace | -    | -    |
| 6     | DME                | 25%   | -69% | 3:1  |
| 7     | tert-Butyl acetate | 20%   | -73% | 3:1  |
| 8     | 1,4-dioxane        | 42%   | -84% | 8:1  |
| 9     | 2-Me-THF           | 30%   | -81% | 12:1 |
| 10    | DMA                | trace | -    | -    |

### Supplementary Table 4. Base screening

| entry | Base                             | yield | ee   |
|-------|----------------------------------|-------|------|
| 1     | $K_2CO_3$                        | 61%   | -90% |
| 2     | KF                               | 40%   | -92% |
| 3     | $K_3PO_4$                        | 49%   | -92% |
| 4     | CaF <sub>2</sub>                 | none  | -    |
| 5     | $Cs_2CO_3$                       | trace | -    |
| 6     | Li <sub>2</sub> CO <sub>3</sub>  | trace | -    |
| 7     | $Ca_3(PO_4)_2$                   | trace | -    |
| 8     | Na <sub>2</sub> HPO <sub>4</sub> | trace | -    |
| 9     | K <sub>2</sub> HPO <sub>4</sub>  | 38%   | -89% |
| 10    | NaH <sub>2</sub> PO <sub>4</sub> | none  | -    |
| 11    | $KH_2PO_4$                       | trace | -    |
| 12    | $Na_3PO_4$                       | trace | -    |
| 13    | $Na_2CO_3$                       | 58%   | -88% |
| 14    | КОН                              | none  | -    |

#### 3.2 Substrate scope investigation of 3a to 3af

The reaction was carried out in a 4-mL sealed tube under nitrogen atmosphere. A mixture of substrate 1 (0.1 mmol), compound 2 (0.25 mmol to 0.4 mmol), Nickel(II) 2-amino-5-methylbenzenesulfonate (0.01 mmol), ligand L8 (0.012 mmol), methyldimethoxysilane (0.4 mmol), and potassium carbonate (0.2 mmol) was dissolved in anhydrous 1,4-dioxane (1.0 mL). The resulting solution was stirred at 40°C for 24 hours. After completion, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by preparative thin-layer chromatography to afford the desired compound.

#### N-((1R,2S)-2-butyl-1-methylcyclopentyl)-2-methoxybenzamide (3a)

Colorless oil, 16 mg, 54% yield.  $^{1}$ H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (dd, J = 7.8, 1.8 Hz, 1H), 7.90 (s, 1H), 7.44 – 7.38 (m, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 3.95 (s, 3H), 2.70 – 2.64 (m, 1H), 2.04 – 1.97 (m, 1H), 1.68 – 1.63 (m, 2H), 1.63 – 1.57 (m, 3H), 1.55 (s, 3H), 1.46 – 1.30 (m, 5H), 1.19 – 1.12 (m, 1H), 0.94 (t, J = 7.0 Hz, 3H).  $^{13}$ C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.2, 132.2, 132.0, 123.0, 121.3, 111.3, 62.9, 55.9, 50.9, 37.7, 31.1, 30.1, 29.1, 23.4, 23.2, 20.9, 14.1. [ $\alpha$ ]<sub>20D</sub> = +20.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (91% ee) was determined by HPLC with a Daicel Chiralpak IC column (Hexane : i-PrOH = 95 : 5, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 35.413 min;  $t_R$  (major) = 37.373 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>18</sub>H<sub>27</sub>NO<sub>2</sub>: 290.2115, found: 290.2114.

#### N-((1R,2S)-2-hexyl-1-methylcyclopentyl)-2-methoxybenzamide (3b)

Colorless oil, 19 mg, 61% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (dd, J = 7.8, 1.5 Hz, 1H), 7.90 (s, 1H), 7.44 – 7.38 (m, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 3.95 (s, 3H), 2.70 – 2.64 (m, 1H), 2.03 – 1.96 (m, 1H), 1.67 – 1.57 (m, 5H), 1.54 (s, 3H), 1.48 – 1.42 (m, 1H), 1.40 – 1.35 (m, 2H), 1.34 – 1.29 (m, 6H), 1.18 – 1.12 (m, 1H), 0.90 (t, J = 6.6 Hz, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.2, 132.2, 132.0, 123.0, 121.3, 111.3, 62.9, 55.9, 50.9, 37.7, 31.8, 30.1, 29.8, 29.4, 28.8, 23.4, 22.6, 20.9, 14.1. [ $\alpha$ ]<sub>20D</sub> = +24.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (92% ee) was determined by HPLC with a Daicel Chiralpak IC column (Hexane : i-PrOH = 95 : 5, flow rate: 0.8 mL/min,  $\lambda$  max 250 nm):  $t_R$  (minor) = 32.313 min;  $t_R$  (major) = 34.783 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>20</sub>H<sub>31</sub>NO<sub>2</sub>: 318.2428, found: 318.2430.

#### N-((1R,2R)-2-isopentyl-1-methylcyclopentyl)-2-methoxybenzamide (3c)

Colorless oil, 19 mg, 63% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.20 (d, J = 7.8 Hz, 1H), 7.90 (s, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 3.96 (s, 3H), 2.72 – 2.66 (m, 1H), 2.04 – 1.97 (m, 1H), 1.69 – 1.63 (m, 2H), 1.62 – 1.57 (m, 3H), 1.55 (s, 4H), 1.40 – 1.30 (m, 2H), 1.25 – 1.20 (m, 1H), 1.18 – 1.10 (m, 1H), 0.93 (dd, J = 6.6, 2.3 Hz, 6H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.2, 132.2, 132.0, 123.0, 121.3, 111.2, 62.9, 55.9, 51.1, 38.1, 37.6, 30.1, 28.4, 27.0, 23.3, 22.9, 22.3, 20.9. [ $\alpha$ ]<sub>20D</sub> = +21.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (89% ee) was determined by HPLC with a Daicel Chiralpak IC column (Hexane : i-PrOH = 95 : 5, flow rate: 0.8 mL/min,  $\lambda$  max 250 nm):  $t_R$  (minor) = 30.950 min;  $t_R$  (major) = 34.520 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>19</sub>H<sub>29</sub>NO<sub>2</sub>: 304.2271, found: 304.2271.

### $N-((1R,2R)-2-(2-cyclopropylethyl)-1-methylcyclopentyl)-2-methoxybenzamide \\ (3d)$

Colorless oil, 18 mg, 58% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.20 (dd, J = 7.8, 1.8 Hz, 1H), 7.95 (s, 1H), 7.44 – 7.39 (m, 1H), 7.10 – 7.05 (m, 1H), 6.96 (d, J = 8.2 Hz, 1H), 3.97 (s, 3H), 2.71 – 2.65 (m, 1H), 2.02 – 1.94 (m, 1H), 1.81 – 1.76 (m, 1H), 1.67 – 1.59 (m, 4H), 1.56 (s, 3H), 1.39 – 1.28 (m, 4H), 0.75 – 0.68 (m, 1H), 0.49 – 0.41 (m, 2H), 0.10 – 0.05 (m, 1H), 0.05 – 0.01 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.2, 132.3, 132.0, 123.0, 121.3, 111.2, 62.9, 55.8, 50.7, 37.7, 34.0, 30.2, 29.5, 23.4, 21.0, 11.3, 4.6, 4.3. [ $\alpha$ ]<sub>20D</sub> = +9.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (95% ee) was determined by HPLC with a Daicel Chiralpak IBN-5 column (Hexane : i-PrOH = 95 : 5, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 11.603 min;  $t_R$  (major) = 10.717 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>19</sub>H<sub>27</sub>NO<sub>2</sub>: 302.2115, found: 302.2114.

#### 2-methoxy-N-((1R,2S)-1-methyl-2-(3-phenylpropyl)cyclopentyl)benzamide (3e)

White solid, 22 mg, 62% yield. M.p.:  $102-106^{\circ}$ C.  $^{1}$ H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (dd, J = 7.8, 1.8 Hz, 1H), 7.86 (s, 1H), 7.43 – 7.36 (m, 1H), 7.28 (t, J = 7.6 Hz, 2H), 7.22 – 7.15 (m, 3H), 7.06 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 3.74 (s, 3H), 2.80 – 2.73 (m, 1H), 2.69 – 2.57 (m, 2H), 2.05 – 1.97 (m, 1H), 1.85 – 1.76 (m, 1H), 1.70 – 1.56 (m, 6H), 1.55 (s, 3H), 1.40 – 1.31 (m, 1H), 1.22 – 1.14 (m, 1H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.2, 142.3, 132.2, 132.0, 128.4, 128.3, 125.7, 122.8, 121.3, 111.2, 62.9, 55.7, 50.9, 37.6, 36.2, 30.5, 30.0, 28.8, 23.4, 20.8.  $[\alpha]_{20D} = +11.0$  (c

1.0, CH<sub>3</sub>CN). The enantiomeric excess (92% ee) was determined by HPLC with a Daicel Chiralpak IC column (Hexane : i-PrOH = 95 : 5, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 41.950 min;  $t_R$  (major) = 44.690 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>23</sub>H<sub>29</sub>NO<sub>2</sub>: 352.2271, found: 325.2271.

### N-((1R,2R)-2-(3,4-dimethoxyphenethyl)-1-methylcyclopentyl)-2-methoxybenzamide (3f)

Colorless oil, 28 mg, 71% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (dd, J = 7.8, 1.7 Hz, 1H), 7.91 (s, 1H), 7.43 – 7.37 (m, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.3 Hz, 1H), 6.80 (d, J = 8.1 Hz, 1H), 6.77 – 6.72 (m, 2H), 3.87 (s, 3H), 3.86 (s, 3H), 3.85 (s, 3H), 2.77 – 2.71 (m, 1H), 2.66 – 2.54 (m, 2H), 2.10 – 2.04 (m, 1H), 2.02 – 1.95 (m, 1H), 1.73 – 1.59 (m, 4H), 1.55 (s, 3H), 1.50 – 1.41 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.1, 148.8, 147.2, 135.0, 132.3, 131.9, 122.8, 121.3, 120.0, 111.5, 111.2, 62.9, 55.9, 55.8, 55.8, 50.2, 37.8, 34.6, 31.8, 30.1, 23.6, 20.9. [ $\alpha$ ]<sub>20D</sub> = +30.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (91% ee) was determined by HPLC with a Daicel Chiralpak IBN-5 column (Hexane : EtOH = 95 : 5, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 41.137 min;  $t_R$  (major) = 27.157 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>24</sub>H<sub>31</sub>NO<sub>4</sub>: 398.2326, found: 398.2327.

# $N-((1R,2R)-2-(4-bromophenethyl)-1-methylcyclopentyl)-2-methoxybenzamide \\ (3g)$

Colorless oil, 32 mg, 77% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (d, J = 6.7 Hz, 1H), 7.87 (s, 1H), 7.44 – 7.37 (m, 3H), 7.11 – 7.03 (m, 3H), 6.93 (d, J = 8.3 Hz, 1H), 3.85 (s, 3H), 2.78 – 2.69 (m, 1H), 2.64 – 2.53 (m, 2H), 2.08 – 1.93 (m, 2H), 1.74 – 1.60

(m, 4H), 1.54 (s, 3H), 1.49 – 1.39 (m, 2H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.1, 141.3, 132.3, 131.9, 131.4, 130.0, 122.8, 121.4, 119.5, 111.2, 62.9, 55.8, 50.1, 37.9, 34.4, 31.5, 30.0, 23.6, 20.9. [ $\alpha$ ]<sub>20D</sub> = +34.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (95% ee) was determined by HPLC with a Daicel Chiralpak IJ column (Hexane : EtOH = 90 : 10, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 18.237 min;  $t_R$  (major) = 11.637 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>22</sub>H<sub>26</sub>BrNO<sub>2</sub>: 416.1220, found: 416.1221.

# 2-methoxy-N-((1R,2R)-1-methyl-2-(2-(thiophen-2-yl)ethyl)cyclopentyl) benzamide (3h)

Colorless oil, 24 mg, 69% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (dd, J = 7.8, 1.8 Hz, 1H), 7.91 (s, 1H), 7.44 – 7.38 (m, 1H), 7.12 (dd, J = 5.1, 1.1 Hz, 1H), 7.08 – 7.04 (m, 1H), 6.96 – 6.90 (m, 2H), 6.84 – 6.81 (m, 1H), 3.91 (s, 3H), 3.03 – 2.97 (m, 1H), 2.90 – 2.82 (m, 1H), 2.68–2.63 (m, 1H), 2.10 – 2.01 (m, 2H), 1.74 – 1.67 (m, 2H), 1.67 – 1.59 (m, 2H), 1.56 (s, 4H), 1.49 – 1.42 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.2, 145.2, 132.3, 132.0, 126.7, 124.1, 123.0, 122.8, 121.3, 111.2, 62.9, 55.9, 50.2, 37.7, 32.0, 29.9, 29.1, 23.5, 20.9. [ $\alpha$ ]<sub>20D</sub> = +29.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (94% ee) was determined by HPLC with a Daicel Chiralpak OD-H column (Hexane : i-PrOH = 97 : 3, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 29.690 min;  $t_R$  (major) = 24.167 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>20</sub>H<sub>25</sub>NO<sub>2</sub>S: 344.1679, found: 344.1680.

N-((1R,2R)-2-(3-fluoropropyl)-1-methylcyclopentyl)-2-methoxybenzamide (3i)

Colorless oil, 22 mg, 77% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (dd, J = 7.8, 1.8 Hz, 1H), 7.94 (s, 1H), 7.44 – 7.38 (m, 1H), 7.09 – 7.04 (m, 1H), 6.96 (d, J = 8.0 Hz, 1H), 4.61 – 4.40 (m, 2H), 3.96 (s, 3H), 2.67 – 2.60 (m, 1H), 2.05 – 1.97 (m, 1H), 1.93 – 1.82 (m, 1H), 1.78 – 1.61 (m, 6H), 1.56 (s, 3H), 1.46 – 1.38 (m, 1H), 1.38 – 1.30 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.2, 132.3, 131.9, 122.7, 121.3, 111.2, 84.2 (d, J = 164.7 Hz), 62.9, 55.9, 50.4, 37.8, 29.9, 29.7 (d, J = 19.9 Hz), 25.2 (d, J = 4.7 Hz), 23.5, 20.8. [ $\alpha$ ]<sub>20D</sub> = +13.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (91% ee) was determined by HPLC with a Daicel Chiralpak IBN-5 column (Hexane : EtOH = 97 : 3, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 14.197 min;  $t_R$  (major) = 13.017 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For  $C_{17}$ H<sub>24</sub>FNO<sub>2</sub>: 294.1864, found: 294.1865.

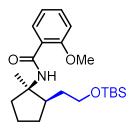
#### N-((1R,2R)-2-(4-chlorobutyl)-1-methylcyclopentyl)-2-methoxybenzamide (3j)

Colorless oil, 23 mg, 70% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (dd, J = 7.8, 1.6 Hz, 1H), 7.87 (s, 1H), 7.47 – 7.38 (m, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 3.96 (s, 3H), 3.57 (t, J = 6.6 Hz, 2H), 2.65 – 2.58 (m, 1H), 2.06 – 1.97 (m, 1H), 1.90 – 1.79 (m, 2H), 1.71 – 1.59 (m, 6H), 1.56 (s, 3H), 1.49 – 1.37 (m, 2H), 1.23 – 1.14 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.2, 132.3, 132.0, 122.9, 121.4, 111.3, 62.9, 55.9, 50.6, 44.9, 37.8, 32.9, 29.9, 28.6, 26.0, 23.5, 20.8. [ $\alpha$ ]<sub>20D</sub> = +61.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (92% ee) was determined by HPLC with a Daicel Chiralpak OD-H column (Hexane : i-PrOH = 97 : 3, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 20.480 min;  $t_R$  (major) = 18.047 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>18</sub>H<sub>26</sub>ClNO<sub>2</sub>: 324.1725, found: 324.1725.

## $\begin{tabular}{ll} 2-methoxy-N-((1R,2R)-1-methyl-2-(3,3,3-trifluoropropyl) cyclopentyl) benzamide \\ (3k) \end{tabular}$

Colorless oil, 26 mg, 80% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (dd, J = 7.8, 1.5 Hz, 1H), 7.89 (s, 1H), 7.47 – 7.40 (m, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 8.3 Hz, 1H), 3.95 (s, 3H), 2.64 – 2.57 (m, 1H), 2.25 – 2.07 (m, 2H), 2.02 – 1.90 (m, 2H), 1.73 – 1.63 (m, 4H), 1.57 (s, 3H), 1.46 – 1.38 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.5, 157.2, 132.5, 132.0, 127.1 (q, J = 277.2 Hz), 122.6, 121.4, 111.3, 62.8, 55.8, 49.5, 37.8, 33.1 (q, J = 29.0 Hz), 22.0 (q, J = 2.5 Hz), 20.7, 29.6, 23.7. [ $\alpha$ ]<sub>20D</sub> = +15.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (93% ee) was determined by HPLC with a Daicel Chiralpak IBN-5 column (Hexane : i-PrOH = 93 : 7, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 10.670 min;  $t_R$  (major) = 12.887 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For  $C_{17}H_{22}F_3NO_2$ : 330.1675, found: 330.1674.

### tert-butyl (4-((1S,2R)-2-(2-methoxybenzamido)-2-methylcyclopentyl)butyl) carbamate (3l)


Colorless oil, 20 mg, 50.5% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (dd, J = 7.8, 1.6 Hz, 1H), 7.87 (s, 1H), 7.45 – 7.38 (m, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 4.59 (s, 1H), 3.96 (s, 3H), 3.19 – 3.09 (m, 2H), 2.66 – 2.57 (m, 1H), 2.04 – 1.95 (m, 1H), 1.70 – 1.56 (m, 6H), 1.54 (s, 3H), 1.52 – 1.46 (m, 2H), 1.44 (s, 9H), 1.40 – 1.32 (m, 2H), 1.21 – 1.14 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.2, 156.0, 132.3, 132.0, 122.9, 121.3, 111.3, 79.0, 62.9, 56.0, 50.7, 40.5, 37.8, 30.6, 30.0, 29.1, 28.4, 26.1, 23.5, 20.8. [ $\alpha$ ]<sub>20D</sub> = +13.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (90% ee) was determined by HPLC with a Daicel Chiralpak OJ-H column (Hexane : EtOH =

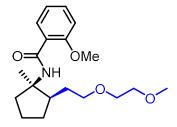
97 : 3, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 47.747 min;  $t_R$  (major) = 37.183 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For  $C_{23}H_{36}N_2O_4$ : 405.2748, found [M-Boc+H]<sup>+</sup>: 305.2222.



# 2-methoxy-N-((1R,2S)-1-methyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)cyclopentyl)benzamide (3m)

Colorless oil, 21 mg, 57% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 – 8.15 (m, 1H), 7.87 (s, 1H), 7.44 – 7.38 (m, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 3.97 (s, 3H), 2.71 – 2.64 (m, 1H), 2.03 – 1.96 (m, 1H), 1.92 – 1.85 (m, 1H), 1.66 – 1.57 (m, 3H), 1.53 (s, 3H), 1.39 – 1.33 (m, 1H), 1.26 (d, J = 4.6 Hz, 12H), 1.07 (dd, J = 15.0, 3.7 Hz, 1H), 0.64 (dd, J = 14.9, 11.5 Hz, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.6, 157.3, 132.2, 131.9, 123.1, 121.2, 111.3, 83.2, 63.1, 56.0, 46.6, 37.0, 31.7, 24.9, 24.7, 23.0, 20.7. [ $\alpha$ ]<sub>20D</sub> = +16.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (89% ee) was determined by HPLC with a Daicel Chiralpak IBN-5 column (Hexane : EtOH = 95 : 5, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 9.423 min;  $t_R$  (major) = 8.597 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>21</sub>H<sub>32</sub>BNO<sub>4</sub>: 374.2497, found: 374.2500.




# N-((1R,2R)-2-(2-((tert-butyldimethylsilyl)oxy)ethyl)-1-methylcyclopentyl)-2-methoxybenzamide (3n)

Colorless oil, 23 mg, 58% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (dd, J = 7.8, 1.5 Hz, 1H), 7.89 (s, 1H), 7.45 – 7.38 (m, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 3.96 (s, 3H), 3.78 – 3.71 (m, 1H), 3.69 – 3.63 (m, 1H), 2.70 – 2.62 (m, 1H), 2.03 – 1.89 (m, 2H), 1.74 – 1.60 (m, 4H), 1.55 (s, 3H), 1.46 – 1.36 (m, 2H), 0.91 (s, 9H), 0.07 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.5, 157.2, 132.3, 132.0, 122.9, 121.3,

111.3, 63.1, 62.5, 55.9, 47.4, 37.5, 32.9, 30.2, 25.9, 23.4, 21.1, 18.3, -5.3, -5.4.  $[\alpha]_{20D}$  = +15.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (96% ee) was determined by HPLC with a Daicel Chiralpak IC column (Hexane : i-PrOH = 93 : 3, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 39.267 min;  $t_R$  (major) = 43.353 min. ESI-HRMS: m/z  $[M+H]^+$  calcd. For  $C_{22}H_{37}NO_3Si$ : 392.2616, found: 392.2617.

# $N-((1R,2R)-2-(2-(benzyloxy)ethyl)-1-methylcyclopentyl)-2-methoxybenzamide \\ (3o)$

Colorless oil, 21 mg, 56% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (d, J = 7.8 Hz, 1H), 7.89 (s, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.35 (s, 2H), 7.34 (s, 2H), 7.31 – 7.26 (m, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 8.3 Hz, 1H), 4.57 – 4.48 (m, 2H), 3.93 (s, 3H), 3.63 – 3.51 (m, 2H), 2.61 (t, J = 8.3 Hz, 1H), 2.07 – 1.94 (m, 2H), 1.83 – 1.71 (m, 2H), 1.67 (d, J = 7.6 Hz, 1H), 1.65 – 1.61 (m, 1H), 1.56 (s, 3H), 1.50 – 1.40 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.5, 157.2, 138.4, 132.3, 131.9, 128.3, 127.6, 127.5, 122.9, 121.3, 111.3, 72.9, 69.6, 63.0, 56.0, 47.5, 37.7, 30.1, 29.6, 23.5, 20.9. [ $\alpha$ ]<sub>20D</sub> = +18.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (95% ee) was determined by HPLC with a Daicel Chiralpak OJ-H column (Hexane : EtOH = 90 : 10, flow rate: 0.8 mL/min,  $\lambda$  max 250 nm):  $t_R$  (minor) = 17.137 min;  $t_R$  (major) = 13.413 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>23</sub>H<sub>29</sub>NO<sub>3</sub>: 368.2220, found: 368.2220.



### 2-methoxy-N-((1R,2R)-2-(2-(2-methoxyethoxy)ethyl)-1-methylcyclopentyl) benzamide (3p)

Colorless oil, 23 mg, 70% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (dd, J = 7.8, 1.8 Hz, 1H), 7.88 (s, 1H), 7.45 – 7.36 (m, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz,

1H), 3.96 (s, 3H), 3.65 – 3.58 (m, 3H), 3.57 – 3.53 (m, 3H), 3.39 (s, 3H), 2.65 – 2.57 (m, 1H), 2.05 – 1.96 (m, 2H), 1.77 – 1.60 (m, 4H), 1.56 (s, 3H), 1.49 – 1.40 (m, 2H).  $^{13}$ C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.5, 157.2, 132.3, 131.9, 122.8, 121.3, 111.2, 71.9, 70.7, 70.0, 63.0, 59.0, 56.0, 47.3, 37.6, 30.0, 29.4, 23.5, 20.9. [ $\alpha$ ]<sub>20D</sub> = +14.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (92% ee) was determined by HPLC with a Daicel Chiralpak IBN-5 column (Hexane : EtOH = 95 : 5, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 17.437 min;  $t_R$  (major) = 14.757 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>19</sub>H<sub>29</sub>NO<sub>4</sub>: 336.2169, found: 336.2168.

#### methyl 4-((1R,2R)-2-(2-methoxybenzamido)-2-methylcyclopentyl)butanoate (3q)

Colorless oil, 25 mg, 75% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (dd, J = 7.8, 1.5 Hz, 1H), 7.87 (s, 1H), 7.45 – 7.38 (m, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 3.96 (s, 3H), 3.67 (s, 3H), 2.66 – 2.59 (m, 1H), 2.45 – 2.31 (m, 2H), 2.07 – 1.98 (m, 1H), 1.87 – 1.80 (m, 1H), 1.69 – 1.58 (m, 6H), 1.55 (s, 3H), 1.45 – 1.37 (m, 1H), 1.25 – 1.17 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  173.9, 164.4, 157.2, 132.3, 132.0, 122.8, 121.3, 111.3, 62.9, 55.9, 51.5, 50.6, 37.7, 34.3, 29.8, 28.9, 24.2, 23.4, 20.8. [ $\alpha$ ]<sub>20D</sub> = +22.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (92% ee) was determined by HPLC with a Daicel Chiralpak IBN-5 column (Hexane : EtOH = 98 : 2, flow rate: 0.8 mL/min,  $\lambda$  250 nm):  $t_R$  (minor) = 27.090 min;  $t_R$  (major) = 23.740 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>19</sub>H<sub>27</sub>NO<sub>4</sub>: 334.2013, found: 334.2011.

#### N-((1R,2R)-2-(3-cyanopropyl)-1-methylcyclopentyl)-2-methoxybenzamide (3r)

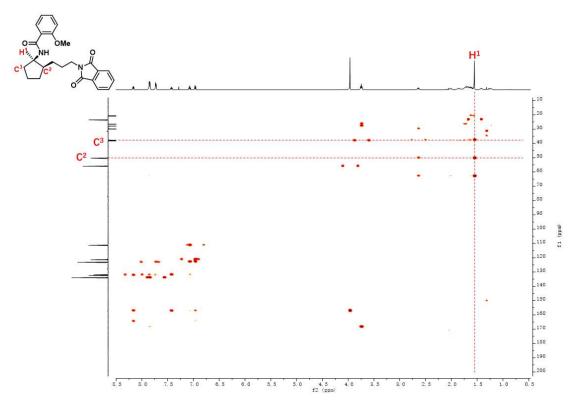
Colorless oil, 21 mg, 70% yield, dr = 5.3:1. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (dd, 1H), 7.91 (s, 1H), 7.46 – 7.40 (m, 1H), 7.11 – 7.04 (m, 1H), 6.97 (d, J = 8.2, 3.7 Hz,

1H), 4.00 (s, 2.56H), 3.97 (s, 0.48H), 2.60 – 2.52 (m, 1H), 2.51 – 2.43 (m, 1H), 2.41 – 2.34 (m, 2H), 2.05 – 1.93 (m, 1H), 1.85 – 1.75 (m, 2H), 1.71 – 1.64 (m, 4H), 1.57 (s, 3H), 1.51 – 1.43 (m, 1H), 1.39 – 1.31 (m, 1H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.5, 157.2, 132.4, 131.9, 122.6, 121.3, 119.6, 111.3, 62.9, 56.1, 50.0, 37.8, 29.8, 28.7, 24.7, 23.7, 20.7, 17.6. [ $\alpha$ ]<sub>20D</sub> = +54.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (88% ee) was determined by HPLC with a Daicel Chiralpak AD-H column (Hexane : EtOH = 98 : 2, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 55.507 min;  $t_R$  (major) = 69.927 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>18</sub>H<sub>24</sub>N<sub>2</sub>O<sub>2</sub>: 301.1911, found: 301.1910.

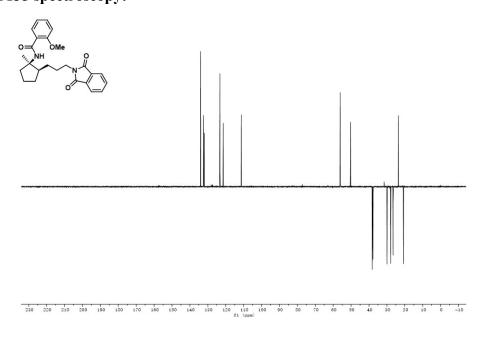
# tert-butyl 3-(((1R,2R)-2-(2-methoxybenzamido)-2-methylcyclopentyl)methyl) azetidine-1-carboxylate (3s)

Colorless oil, 26 mg, 65% yield.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (dd, J = 7.8, 1.7 Hz, 1H), 7.83 (s, 1H), 7.46 – 7.40 (m, 1H), 7.08 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 8.3 Hz, 1H), 4.09 – 3.97 (m, 3H), 3.96 (s, 3H), 3.60 – 3.54 (m, 2H), 2.64 – 2.54 (m, 2H), 1.95 – 1.87 (m, 2H), 1.71 – 1.58 (m, 4H), 1.56 (s, 3H), 1.48 – 1.46 (m, 1H), 1.44 (s, 9H).  $^{13}$ C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.5, 157.1, 156.4, 132.4, 132.0, 122.8, 121.5, 111.3, 79.3, 62.9, 56.0, 48.9, 37.7, 34.3, 28.4, 28.2, 23.8, 20.9. [ $\alpha$ ]<sub>20D</sub> = +32.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (94% ee) was determined by HPLC with a Daicel Chiralpak IH column (Hexane : i-PrOH = 93 : 7, flow rate: 0.8 mL/min,  $\lambda$  max 250 nm):  $t_R$  (minor) = 17.157 min;  $t_R$  (major) = 15.220 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>23</sub>H<sub>34</sub>N<sub>2</sub>O<sub>4</sub>: 403.2591, found [M-Boc+H]<sup>+</sup>: 303.2067.

### 2-methoxy-N-((1R,2R)-1-methyl-2-((1-tosylpiperidin-4-yl)methyl)cyclopentyl) benzamide (3t)


Colorless oil, 26 mg, 54% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (dd, J = 7.8, 1.5 Hz, 1H), 7.81 (s, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.45 – 7.40 (m, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.07 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 3.92 (s, 3H), 3.79 (d, J = 11.0 Hz, 2H), 2.64 – 2.55 (m, 1H), 2.43 (s, 3H), 2.29 – 2.19 (m, 2H), 1.93 – 1.84 (m, 1H), 1.82 (d, J = 8.7 Hz, 1H), 1.73 (d, J = 13.2 Hz, 1H), 1.67 – 1.61 (m, 2H), 1.61 – 1.53 (m, 2H), 1.50 (s, 3H), 1.45 – 1.38 (m, 1H), 1.38 – 1.27 (m, 3H), 1.25 – 1.19 (m, 1H), 1.18 – 1.09 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.1, 143.4, 133.1, 132.4, 132.0, 129.5, 127.7, 122.8, 121.4, 111.3, 63.0, 55.9, 47.5, 46.4, 46.4, 37.6, 36.0, 34.1, 32.9, 31.0, 30.4, 23.4, 21.5, 20.9. [ $\alpha$ ]<sub>20D</sub> = +2.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (92% ee) was determined by HPLC with a Daicel Chiralpak AD-H column (Hexane : EtOH = 80 : 20, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 13.920 min;  $t_R$  (major) = 31.653 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>27</sub>H<sub>36</sub>N<sub>2</sub>O<sub>4</sub>S: 485.2469, found: 485.2470.

### N-((1R,2R)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)-1-methylcyclopentyl)-2-methoxybenzamide (3u)


Colorless oil, 29 mg, 70% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (dd, J = 7.8, 1.8 Hz, 1H), 7.84 (dd, J = 5.4, 3.0 Hz, 3H), 7.72 (dd, J = 5.4, 3.0 Hz, 2H), 7.48 – 7.38 (m, 1H), 7.06 (t, J = 7.3 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 3.95 (s, 3H), 3.73 (t, J = 7.1 Hz, 2H), 2.69 – 2.58 (m, 1H), 2.04 – 1.96 (m, 1H), 1.90–1.82 (m, 1H), 1.74 – 1.59 (m, 6H), 1.54 (s, 3H), 1.45 – 1.36 (m, 1H), 1.26 – 1.20 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.4, 164.5, 157.2, 133.9, 132.3, 132.1, 131.9, 123.2, 122.8, 121.3, 111.3, 62.9, 56.0, 50.3, 38.1, 37.7, 29.9, 27.8, 26.5, 23.5, 20.7. [ $\alpha$ ]<sub>20D</sub> = +27.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (91% ee) was determined by HPLC with a Daicel Chiralpak IC column (Hexane: i-PrOH = 75: 25, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor)

= 45.800 min;  $t_R$  (major) = 53.747 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For  $C_{25}H_{28}N_2O_4$ : 421.2122, found: 421.2120.The HMBC and DEPT spectra below indicated that the coupling site was in  $C^2$ . The single crystal diffraction pattern of a subsequent product was further verified.

### **HMBC** spectroscopy:



#### **DEPT135 spectroscopy:**



# $N-((1R,2R)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)-1-ethylcyclopentyl)-2-\\methoxybenzamide (3v)$

Colorless oil, 24 mg, 55% yield.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (dd, J = 7.8, 1.8 Hz, 1H), 7.84 – 7.80 (m, 2H), 7.77 (s, 1H), 7.73 – 7.68 (m, 2H), 7.44 – 7.39 (m, 1H), 7.08 – 7.02 (m, 1H), 6.96 (d, J = 8.1 Hz, 1H), 3.96 (s, 3H), 3.73 – 3.65 (m, 2H), 2.34 – 2.24 (m, 2H), 1.99 – 1.92 (m, 1H), 1.88 – 1.76 (m, 3H), 1.72 – 1.65 (m, 4H), 1.62 – 1.53 (m, 1H), 1.51 – 1.42 (m, 1H), 1.25 – 1.18 (m, 1H), 0.89 (t, J = 7.5 Hz, 3H).  $^{13}$ C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  168.4, 164.4, 157.2, 133.9, 132.2, 132.1, 132.0, 123.1, 122.9, 121.3, 111.3, 66.4, 56.0, 47.6, 38.2, 35.5, 30.2, 29.1, 27.8, 27.2, 21.2, 9.0. [ $\alpha$ ]<sub>20D</sub> = +12.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (83% ee) was determined by HPLC with a Daicel Chiralpak IC column (Hexane : EtOH = 93 : 7, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 80.403 min;  $t_R$  (major) = 85.293 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>26</sub>H<sub>30</sub>N<sub>2</sub>O<sub>4</sub>: 435.2278, found: 435.2278.

# N-((1R,2R)-1-butyl-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)cyclopentyl)-2-methoxybenzamide (3w)

Colorless oil, 22 mg, 47% yield.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (dd, J = 7.6, 1.7 Hz, 1H), 7.86 – 7.80 (m, 2H), 7.78 (s, 1H), 7.73 – 7.68 (m, 2H), 7.42 (t, J = 7.8 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 3.96 (s, 3H), 3.75 – 3.65 (m, J = 6.6 Hz, 2H), 2.43 – 2.33 (m, 1H), 2.24 – 2.15 (m, 1H), 1.99 – 1.91 (m, 1H), 1.88 – 1.80 (m, 2H), 1.79 – 1.76 (m, 1H), 1.73 – 1.63 (m, 4H), 1.62 – 1.52 (m, 1H), 1.50 – 1.40 (m, 1H), 1.31 – 1.19 (m, 5H), 0.86 (t, J = 6.5 Hz, 3H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.3, 157.1, 133.9, 132.2, 132.1, 132.0, 123.1, 123.0, 121.3, 111.3, 66.0, 56.0, 48.0,

38.2, 36.5, 35.9, 30.2, 27.8, 27.1, 26.9, 23.2, 21.3, 14.1. [ $\alpha$ ]<sub>20D</sub> = +11.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (81% ee) was determined by HPLC with a Daicel Chiralpak AD-H column (Hexane : EtOH = 93 : 7, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 20.340 min;  $t_R$  (major) = 22.673 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>28</sub>H<sub>34</sub>N<sub>2</sub>O<sub>4</sub>: 463.2591, found: 463.2592.

# N-((1R,2R)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)-1-hexylcyclopentyl)-2-methoxybenzamide (3x)

Colorless oil, 22 mg, 45% yield.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 – 8.09 (m, 1H), 7.84 – 7.80 (m, 2H), 7.77 (s, 1H), 7.72 – 7.68 (m, 2H), 7.41 (t, J = 7.6 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 3.96 (s, 3H), 3.74 – 3.66 (m, 2H), 2.42 – 2.34 (m, 1H), 2.22 – 2.14 (m, 1H), 1.99 – 1.91 (m, 1H), 1.85 – 1.76 (m, 3H), 1.73 – 1.63 (m, 4H), 1.61 – 1.52 (m, 1H), 1.50 – 1.40 (m, 1H), 1.30 – 1.21 (m, 9H), 0.85 (t, J = 6.6 Hz, 3H).  $^{13}$ C NMR (201 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.3, 157.1, 133.9, 132.2, 132.1, 132.0, 123.1, 123.0, 121.3, 111.3, 66.0, 56.0, 48.0, 38.2, 36.8, 35.9, 31.8, 30.2, 29.8, 27.8, 27.1, 24.6, 22.6, 21.3, 14.0. [ $\alpha$ ]<sub>20D</sub> = +9.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (82% ee) was determined by HPLC with a Daicel Chiralpak IBN-5 column (Hexane : i-PrOH = 85 : 15, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 15.370 min;  $t_R$  (major) = 12.580 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For  $C_{30}H_{38}N_2O_4$ : 491.2904, found: 491.2908.

N-((1S,2R)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)-1-isobutylcyclopentyl)-2-methoxybenzamide (3y)

Colorless oil, 19 mg, 42% yield.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (dd, J = 7.8, 1.6 Hz, 1H), 7.85 – 7.80 (m, 2H), 7.77 (s, 1H), 7.72 – 7.68 (m, 2H), 7.45 – 7.38 (m, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 3.96 (s, 3H), 3.75 – 3.64 (m, 2H), 2.44 – 2.36 (m, 1H), 2.16 (dd, J = 14.3, 5.2 Hz, 1H), 1.98 – 1.89 (m, 1H), 1.86 – 1.77 (m, 3H), 1.75 – 1.67 (m, 4H), 1.64 – 1.57 (m, 1H), 1.54 (dd, J = 14.3, 6.4 Hz, 1H), 1.48 – 1.39 (m, 1H), 1.24 – 1.16 (m, 1H), 0.91 (dd, J = 6.6, 2.5 Hz, 6H).  $^{13}$ C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  168.4, 164.3, 157.1, 133.9, 132.2, 132.1, 132.0, 123.1, 123.1, 121.3, 111.3, 66.3, 56.0, 48.7, 45.0, 38.2, 36.4, 29.7, 27.8, 27.2, 24.8, 24.8, 24.5, 21.2. [ $\alpha$ ]<sub>20D</sub> = +44.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (90% ee) was determined by HPLC with a Daicel Chiralpak IC column (Hexane : i-PrOH = 90 : 10, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 84.023 min;  $t_R$  (major) = 77.037 min. ESI-HRMS: m/z [M+H] $^+$  calcd. For  $C_{28}$ H<sub>34</sub>N<sub>2</sub>O<sub>4</sub>: 463.2591, found: 463.2592.

# N-((1S,2R)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)-1-isopentylcyclopentyl)-2-methoxybenzamide (3z)

Colorless oil, 31 mg, 64% yield.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (dd, J = 7.8, 1.8 Hz, 1H), 7.84 – 7.79 (m, 2H), 7.76 (s, 1H), 7.73 – 7.67 (m, 2H), 7.45 – 7.38 (m, 1H), 7.08 – 7.02 (m, 1H), 6.96 (d, J = 8.1 Hz, 1H), 3.96 (s, 3H), 3.75 – 3.65 (m, 2H), 2.41 – 2.33 (m, 1H), 2.20 (td, J = 13.3, 12.8, 4.6 Hz, 1H), 1.99–1.91 (m, 1H), 1.87 – 1.79 (m, 2H), 1.75 – 1.60 (m, 5H), 1.60 – 1.53 (m, 1H), 1.52 – 1.41 (m, 2H), 1.24 – 1.09 (m, 3H), 0.85 (dd, J = 8.6, 6.6 Hz, 6H).  $^{13}$ C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.2, 157.1, 133.9, 132.2, 132.1, 132.0, 123.1, 123.0, 121.3, 111.3, 66.0, 56.0, 47.9, 38.2, 35.8, 34.5, 33.6, 30.2, 28.5, 27.8, 27.1, 22.7, 22.6, 21.3. [ $\alpha$ ]<sub>20D</sub> = +10.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (80% ee) was determined by HPLC with a Daicel Chiralpak IC column (Hexane : i-PrOH = 90 : 10, flow rate: 0.8 mL/min,  $\lambda$  max 250 nm):  $t_R$  (minor) = 78.327 min;  $t_R$  (major) = 68.937 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For  $C_{29}H_{36}N_2O_4$ : 477.2748, found: 477.2751.

# N-(1-benzyl-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)cyclopentyl)-2-methoxybenzamide (3aa)

Colorless oil, 14 mg, 25% yield.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (d, J = 7.7 Hz, 1H), 7.85 – 7.82 (m, 2H), 7.81 (s, 1H), 7.75 – 7.70 (m, 2H), 7.45 (t, J = 7.7 Hz, 1H), 7.13 – 7.07 (m, 5H), 6.99 – 6.93 (m, 2H), 3.88 (s, 3H), 3.62 (t, J = 7.1 Hz, 2H), 3.34 – 3.24 (m, 2H), 2.47 – 2.39 (m, 1H), 2.03 – 1.94 (m, 1H), 1.85 – 1.73 (m, 3H), 1.70 – 1.65 (m, 1H), 1.63 – 1.49 (m, 2H), 1.43 – 1.31 (m, 2H), 1.09 – 0.99 (m, 1H).  $^{13}$ C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.8, 157.3, 138.5, 133.9, 132.4, 132.1, 132.0, 130.4, 127.7, 125.9, 123.1, 122.9, 121.3, 111.4, 66.1, 56.0, 46.9, 41.1, 38.2, 36.2, 30.2, 27.8, 27.3, 21.0. [ $\alpha$ ]<sub>20D</sub> = +6.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (84% ee) was determined by HPLC with a Daicel Chiralpak IBN-5 column (Hexane : i-PrOH = 95 : 5, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 67.290 min;  $t_R$  (major) = 60.657 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>31</sub>H<sub>32</sub>N<sub>2</sub>O<sub>4</sub>: 497.2435, found: 497.2431.

# N-((1S,2R)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)-1-(3-phenylpropyl)cyclopentyl) -2-methoxybenzamide (3ab)

Colorless oil, 24 mg, 51% yield.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (d, J = 7.8 Hz, 1H), 7.85 – 7.79 (m, 2H), 7.77 (s, 1H), 7.73 – 7.68 (m, 2H), 7.41 (t, J = 7.8 Hz, 1H), 7.23 (t, J = 7.5 Hz, 2H), 7.18 – 7.11 (m, 3H), 7.05 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 8.3 Hz, 1H), 3.92 (s, 3H), 3.71 – 3.63 (m, 2H), 2.68 – 2.61 (m, 1H), 2.60 – 2.52 (m, 1H), 2.39 – 2.29 (m, 2H), 1.97 – 1.89 (m, 1H), 1.86 – 1.78 (m, 2H), 1.74 – 1.51 (m, 8H), 1.48 – 1.38 (m, 1H), 1.24 – 1.16 (m, 1H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.3, 157.1, 142.7, 133.9, 132.2, 132.1, 132.0, 128.4, 128.2, 125.6, 123.1, 122.9, 121.3, 111.3,

65.9, 56.0, 47.9, 38.2, 36.3, 36.2, 35.9, 30.0, 27.7, 27.1, 26.8, 21.1.  $[\alpha]_{20D}$  = +9.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (78% ee) was determined by HPLC with a Daicel Chiralpak IBN-5 column (Hexane : EtOH = 96 : 4, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 44.473 min;  $t_R$  (major) = 55.670 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>33</sub>H<sub>36</sub>N<sub>2</sub>O<sub>4</sub>: 525.2748, found: 525.2755.

# N-((1S,2R)-1-(cyclopentylmethyl)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl) cyclopentyl)-2-methoxybenzamide (3ac)

Colorless oil, 22 mg, 53% yield. H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (dd, J = 7.8, 1.7 Hz, 1H), 7.86 – 7.80 (m, 2H), 7.79 (s, 1H), 7.73 – 7.68 (m, 2H), 7.45 – 7.38 (m, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.2 Hz, 1H), 3.97 (s, 3H), 3.76 – 3.66 (m, J = 7.0, 6.1 Hz, 2H), 2.46 – 2.38 (m, 1H), 2.32 (dd, J = 14.0, 4.8 Hz, 1H), 1.98 – 1.90 (m, 1H), 1.85 – 1.68 (m, 10H), 1.63 – 1.51 (m, 3H), 1.45 – 1.36 (m, 3H), 1.24 – 1.18 (m, 1H), 1.17 – 1.05 (m, 2H).  $^{13}$ C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  168.4, 164.3, 157.1, 133.9, 132.2, 132.1, 132.0, 123.1, 123.1, 121.3, 111.3, 66.3, 56.0, 48.3, 42.3, 38.2, 36.8, 36.4, 34.4, 34.3, 29.9, 27.8, 27.2, 25.1, 24.8, 21.2. [ $\alpha$ ]<sub>20D</sub>=+17.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (88% ee) was determined by HPLC with a Daicel Chiralpak IC column (Hexane: EtOH = 93 : 7, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm): t<sub>R</sub> (minor) = 57.697 min; t<sub>R</sub> (major) = 54.460 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>30</sub>H<sub>36</sub>N<sub>2</sub>O<sub>4</sub>: 489.2748, found: 489.2751.

N-((1S,2R)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)cyclopentyl)-2-methoxybenzamide (3ad)

Colorless oil, 24 mg, 48% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (dd, J = 7.8, 1.6 Hz, 1H), 7.82 (dd, J = 5.4, 3.1 Hz, 2H), 7.77 – 7.69 (m, 3H), 7.46 – 7.39 (m, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 8.3 Hz, 1H), 3.97 (s, 3H), 3.87 – 3.81 (m, 2H), 3.74 – 3.67 (m, 2H), 3.31 (t, J = 11.6 Hz, 2H), 2.45 – 2.37 (m, 1H), 2.26 (dd, J = 14.3, 4.3 Hz, 1H), 1.99 – 1.90 (m, 1H), 1.81 (t, J = 10.1 Hz, 3H), 1.76 – 1.68 (m, 3H), 1.63 (d, J = 12.5 Hz, 4H), 1.58 – 1.53 (m, 1H), 1.47 – 1.33 (m, 3H), 1.19 (dd, J = 13.7, 8.3 Hz, 1H). <sup>13</sup>C NMR (201 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.4, 157.0, 133.9, 132.3, 132.0, 132.0, 123.1, 122.9, 121.4, 111.3, 68.1, 67.9, 66.1, 56.0, 49.0, 43.2, 38.1, 36.6, 34.8, 34.6, 31.7, 29.3, 27.7, 27.1, 21.0. [ $\alpha$ ]<sub>20D</sub> = +16.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (85% ee) was determined by HPLC with a Daicel Chiralpak IBN-5 column (Hexane : i-PrOH = 95 : 5, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm): t<sub>R</sub> (minor) = 122.860 min; t<sub>R</sub> (major) = 138.047 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>30</sub>H<sub>36</sub>N<sub>2</sub>O<sub>5</sub>: 505.2697, found: 505.2699.

N-((1S,2R)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)-1-(3-methoxypropyl) cyclopentyl)-2-methoxybenzamide (3ae)

Colorless oil, 26 mg, 54% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, J = 7.7 Hz, 1H), 7.86 – 7.80 (m, 2H), 7.79 (s, 1H), 7.74 – 7.66 (m, 2H), 7.42 (t, J = 7.7 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 3.96 (s, 3H), 3.74 – 3.64 (m, 2H), 3.40 – 3.32 (m, 2H), 3.29 (s, 3H), 2.38 – 2.31 (m, 1H), 2.29–2.20 (m, 1H), 2.00 – 1.92 (m, 1H), 1.87 – 1.66 (m, 7H), 1.64 – 1.55 (m, 3H), 1.50 – 1.40 (m, 1H), 1.25 – 1.18 (m, 1H). <sup>13</sup>C NMR (201 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.4, 157.1, 133.8, 132.3, 132.1, 131.9, 123.1, 122.8, 121.3, 111.2, 73.2, 65.8, 58.5, 56.0, 48.3, 38.2, 36.2, 33.2, 30.0, 27.7, 27.2, 25.1, 21.1. [ $\alpha$ ]<sub>20D</sub> = +9.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (74% ee) was determined by HPLC with a Daicel Chiralpak IA column (Hexane : EtOH = 85 : 15, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm): t<sub>R</sub> (minor) = 32.413 min; t<sub>R</sub> (major) = 28.100 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>28</sub>H<sub>34</sub>N<sub>2</sub>O<sub>5</sub>: 479.2541, found: 479.2544.

### N-(2-(3-(1,3-dioxoisoindolin-2-yl)propyl)-1-(3,3,3-trifluoropropyl)cyclopentyl)-2-methoxybenzamide (3af)

Colorless oil, 26 mg, 52% yield.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 – 8.06 (m, 1H), 7.84 – 7.79 (m, 2H), 7.74 (s, 1H), 7.72 – 7.68 (m, 2H), 7.47 – 7.41 (m, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.97 (d, J = 8.3 Hz, 1H), 3.97 (s, 3H), 3.70 (t, J = 7.1 Hz, 2H), 2.57 – 2.49 (m, 1H), 2.40 – 2.33 (m, 1H), 2.28 – 2.10 (m, 2H), 2.02 – 1.96 (m, 1H), 1.90 – 1.80 (m, 3H), 1.73 – 1.62 (m, 5H), 1.51 – 1.41 (m, 1H), 1.25 – 1.18 (m, 1H).  $^{13}$ C NMR (201 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.7, 157.1, 133.9, 132.6, 132.0, 132.0, 127.4 (q, J = 276.1 Hz), 123.2, 122.4, 121.4, 111.3, 65.0, 56.0, 48.9, 37.9, 36.2, 30.0 (q, J = 28.8 Hz), 29.5, 29.3, 27.5, 26.9, 20.7. [ $\alpha$ ]<sub>20D</sub> = +3.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (53% ee) was determined by HPLC with a Daicel Chiralpak AS-H column (Hexane : EtOH = 93 : 7, flow rate: 0.8 mL/min,  $\lambda$  max 250 nm):  $t_R$  (minor) = 15.910 min;  $t_R$  (major) = 14.330 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For  $C_{27}H_{29}F_3N_2O_4$ : 503.2152, found: 503.2159.

#### 4. The extension of alicyclic substrates without methyl groups

#### 4.1 Substrate synthesis and data of 4, 6, 8

The o-Anisoyl chloride (2.0 mmol, 0.30 mL, 1.0 equiv) was added to the DCM solution of 1-amino-3-cyclopentene hydrochloride (3.0 mmol, 0.36 g, 1.5 equiv) by using a 1.0 mL syringe and stirred at room temperature for overnight. Quenched by saturated water and stratified by DCM extraction. The resulting organic phase was dried

with anhydrous Na<sub>2</sub>SO<sub>4</sub>, then vacuum concentrated and purified by column chromatography (Hexane: EA= 91:9) to obtain the desire compound 4.

#### N-(cyclopent-3-en-1-yl)-2-methoxybenzamide (4)

White powder, 434 mg, 100% yield. M.p.:  $56-58^{\circ}$ C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.23 - 8.17 (m, 1H), 8.02 (s, 1H), 7.45 - 7.39 (m, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 5.80 - 5.73 (m, 2H), 4.81 - 4.72 (m, 1H), 3.92 (s, 3H), 2.86 (dd, J = 15.3, 7.8 Hz, 2H), 2.30 (dd, J = 15.1, 4.0 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.7, 157.3, 132.5, 132.1, 128.9, 121.7, 121.2, 111.3, 55.8, 49.0, 40.3. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>13</sub>H<sub>15</sub>NO<sub>2</sub>: 218.1176, found: 218.1170.

COOH DPPA 2.0 equiv 
$$\frac{\text{TEA 2.5 equiv}}{\text{toluene, r.t.} \rightarrow 100^{\circ}\text{C}}$$
  $\frac{6.0 \text{M HCI}}{12 \text{h}}$   $\frac{\text{NH}_2}{1.5 \text{ equiv}}$   $\frac{\text{CI}}{1.5 \text{ equiv}}$   $\frac{\text{Et}_3 \text{N}}{\text{DCM, 4 h}}$   $\frac{\text{OMe}}{\text{OMe}}$ 

Used a syringe to inject the naphthenic acid (5.0 mmol, 0.58 mL, 1.0 equiv) and toluene (20 mL) into an eggplant-shaped flask with a magnetic stirrer. Added DPPA (10.0 mmol, 2.15 mL, 2.0 equiv) and TEA (12.5 mmol, 1.73 ml, 2.5 equiv) by syringes and stirred 30 mins at room temperature then raised to 100 ℃ overnight.

Brought the mixture to room temperature, added 6.0 M HCl aqueous solution (10 mL) and stirred for 12 hours. The mixture of toluene and HCl aqueous solution was extracted and stratified to obtain aqueous phase. Added the aqueous NaOH solution until the Ph is greater than 7, and then extracted with DCM, the combined organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>.

Added o-Anisoyl chloride (7.5 mmol, 1.13 mL, 1.5 equiv) dropwise into a solution of the amine and TEA (10.0 mmol, 1.39 mL, 2.0 equiv) in DCM at 0°C. The resulting reaction mixture was allowed to warm to room temperature and stirred for 4 hours.

Added pure water and separated the biphasic system. The aqueous phase was extracted with DCM and the organic phases were combined and dried over anhydrous  $Na_2SO_4$ , filtered and concentrated under reduced pressure. Purified the residue by column chromatography on silica gel (Hexane: EA = 91:9) to afford the desired compound **6**.

#### N-(cyclohex-3-en-1-yl)-2-methoxybenzamide (6)

Colorless oil, 697 mg, 60% yield.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.20 (dd, J = 7.8, 1.6 Hz, 1H), 8.05 – 7.94 (m, 1H), 7.46 – 7.39 (m, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 5.79 – 5.72 (m, 1H), 5.70 – 5.64 (m, 1H), 4.41 – 4.34 (m, 1H), 3.93 (s, 3H), 2.48 (d, J = 17.3 Hz, 1H), 2.25 – 2.11 (m, 2H), 2.05 – 1.99 (m, 1H), 1.97 – 1.90 (m, 1H), 1.79 – 1.70 (m, 1H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.4, 157.3, 132.5, 132.1, 127.0, 124.6, 121.9, 121.2, 111.3, 55.9, 44.2, 31.6, 27.6, 23.1. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>14</sub>H<sub>17</sub>NO<sub>2</sub>: 232.1332, found: 232.1327.

The synthesis of N-(cyclohept-4-en-1-yl)-2-methoxybenzamide is the same as that of N-(cyclohex-3-en-1-yl)-2-methoxybenzamide.

#### N-(cyclohept-4-en-1-yl)-2-methoxybenzamide (8)

White powder, 492 mg, 56% yield. M.p.:  $109-111^{\circ}$ C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.20 (dd, J = 7.8, 1.8 Hz, 1H), 7.94 (d, J = 6.0 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 5.86 – 5.79 (m, 2H), 4.35 – 4.28 (m, 1H), 3.95 (s, 3H), 2.26 – 2.12 (m, 4H), 2.05 – 1.99 (m, 2H), 1.57 – 1.48 (m, 2H). <sup>13</sup>C NMR (126)

MHz, CDCl<sub>3</sub>) δ 163.8, 157.4, 132.5, 132.2, 131.9, 121.9, 121.3, 111.3, 55.9, 51.6, 33.1, 24.5. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>15</sub>H<sub>19</sub>NO<sub>2</sub>: 246.1489, found: 246.1483.

#### 4.2 Substrate investigation and data of 5, 7, 9

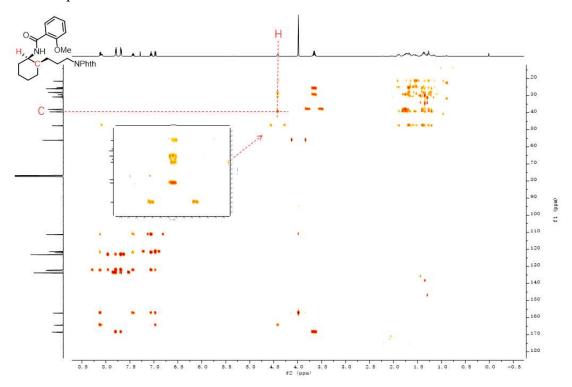
In a nitrogen-filled environment, substrate 4 (0.1 mmol), compound 2 (0.25 mmol), Ni(OAc)<sub>2</sub> (0.01 mmol), ligand **L9** (0.012 mmol), methyldimethoxysilane (0.3 mmol), and potassium carbonate (0.2 mmol) were combined in a 4-mL sealed reaction vessel. The reagents were dissolved in anhydrous THF (1.0 mL) and the resulting mixture was stirred at room temperature for 24 hours. Following the reaction, the solution was concentrated under reduced pressure, and the crude product was isolated through preparative thin-layer chromatography to yield compound 5.

N-((1R,2R)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)cyclopentyl)-2-

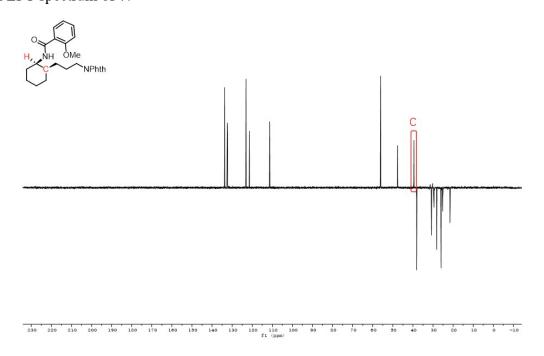
#### methoxybenzamide (5)

Colorless oil, 13 mg, 31% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (d, J = 7.7 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.79 – 7.74 (m, 2H), 7.71 – 7.65 (m, 2H), 7.42 (t, J = 7.7 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.94 (d, J = 8.3 Hz, 1H), 4.57 – 4.51 (m, 1H), 3.95 (s, 3H), 3.70 – 3.61 (m, 2H), 2.08 – 2.01 (m, 1H), 2.01 – 1.95 (m, 1H), 1.94 – 1.87 (m, 1H), 1.78 – 1.70 (m, 3H), 1.69 – 1.66 (m, 1H), 1.53 – 1.46 (m, 1H), 1.37 – 1.28 (m, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 164.6, 157.3, 133.8, 132.4, 132.2, 132.1, 123.1, 121.9, 121.3, 111.3, 56.0, 52.8, 42.7, 38.1, 32.7, 29.7, 27.4, 27.2, 21.7. [ $\alpha$ ]<sub>20D</sub> = +3.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (94% ee) was determined by HPLC with

a Daicel Chiralpak IBN-5 column (Hexane : EtOH = 85 : 15, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 19.660 min;  $t_R$  (major) = 16.707 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For  $C_{24}H_{26}N_2O_4$ : 407.1965, found: 407.1960.


To a 4-mL sealed tube were added substrate 6 (0.1 mmol), 2 (0.25 mmol), Nickel(II) 2-Amino-5-Methylbenzenesulfonate (0.01 mmol), L1 (0.012 mmol), methyldimethoxysilane (0.4 mmol) and Potassium carbonate (0.2 mmol), the mixture was dissolved with anhydrous 1,4-dioxane (1.0 mL) under nitrogen. After stirring for 24 h at 40 °C, the solution was concentrated under reduced pressure and the residue was purified by preparative thin-layer chromatography to give the product 7.

## N-((1R,2R)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)cyclohexyl)-2-methoxybenzamide (7)

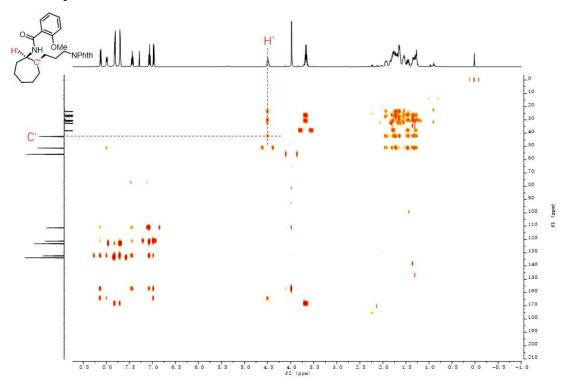

Colorless oil, 19 mg, 46% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (dd, J = 7.8, 1.8 Hz, 1H), 8.07 (d, J = 8.7 Hz, 1H), 7.81 – 7.74 (m, 2H), 7.71 – 7.65 (m, 2H), 7.45 – 7.38 (m, 1H), 7.07 – 7.01 (m, 1H), 6.95 (d, J = 8.3 Hz, 1H), 4.44 – 4.37 (m, 1H), 3.97 (s, 3H), 3.70 – 3.59 (m, J = 7.2 Hz, 2H), 1.92 – 1.87 (m, 1H), 1.81 – 1.64 (m, 5H), 1.61 – 1.48 (m, 2H), 1.42 – 1.33 (m, 3H), 1.25 – 1.20 (m, 1H), 1.19 – 1.10 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  168.4, 164.4, 157.3, 133.7, 132.4, 132.2, 132.1, 123.0, 122.0, 121.3, 111.3, 56.1, 47.5, 39.5, 38.0, 30.7, 29.5, 28.1, 25.9, 25.1, 21.5. [ $\alpha$ ]<sub>20D</sub> = +25.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (72% ee) was determined by HPLC with a Daicel Chiralpak IC column (Hexane : EtOH = 85 : 15, flow rate: 0.8 mL/min,  $\lambda$ max

250 nm):  $t_R$  (minor) = 53.060 min;  $t_R$  (major) = 60.313 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For  $C_{25}H_{28}N_2O_4$ : 421.2122, found: 421.2113.

### HMBC spectrum of 7:



### DEPT spectrum of 7:




To a 4-mL sealed tube were added substrate **8** (0.1 mmol), **2** (0.25 mmol), Nickel(II) 2-AMino-5-Methylbenzenesulfonate (0.01 mmol), **L10** (0.012 mmol), methyldimethoxysilane (0.4 mmol) and Potassium carbonate (0.2 mmol), the mixture was dissolved with anhydrous 1,4-dioxane (1.0 mL) under nitrogen. After stirring for 24 h at 40 °C, the solution was concentrated under reduced pressure and the residue was purified by preparative thin-layer chromatography to give the product **9**.

# N-((1R,2R)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)cycloheptyl)-2-methoxybenzamide (9)

Colorless oil, 11 mg, 25% yield. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (d, J = 7.7 Hz, 1H), 7.97 (d, J = 8.6 Hz, 1H), 7.85 – 7.77 (m, 2H), 7.72 – 7.65 (m, 2H), 7.42 (t, J = 7.7 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 4.48 (t, J = 7.2 Hz, 1H), 3.97 (s, 3H), 3.70 – 3.60 (m, 2H), 1.95 – 1.88 (m, 1H), 1.82 – 1.66 (m, 7H), 1.65 – 1.59 (m, 3H), 1.56 – 1.49 (m, 2H), 1.48 – 1.40 (m, 1H), 1.32 – 1.29 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  168.4, 164.5, 157.3, 133.7, 132.4, 132.3, 132.2, 123.1, 121.9, 121.3, 111.2, 56.0, 51.1, 42.5, 38.1, 32.7, 30.9, 30.2, 27.4, 26.7, 26.3, 23.7. [ $\alpha$ ]<sub>20D</sub> = +18.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (58% ee) was determined by HPLC with a Daicel Chiralpak AD-H column (Hexane : EtOH = 85 : 15, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 55.887 min;  $t_R$  (major) = 30.480 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>26</sub>H<sub>30</sub>N<sub>2</sub>O<sub>4</sub>: 435.2278, found: 435.2271.

### HMBC spectrum of 9:



### DEPT spectrum of 9:



#### 5. Mechanistic studies

#### 5.1 Olefin migration experiment

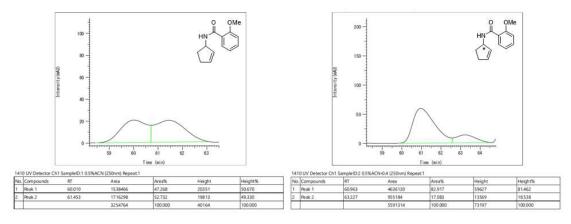
#### 5.1.1 Substrate synthesis and data of 10

A flask fitted with a magnetic stir bar was purged with nitrogen three times. The reaction was conducted under an ice bath, with THF introduced via syringe as the solvent. Subsequently, 2-Cyclopenten-1-one (0.42 mL, 5 mmol) was added, followed by the dropwise addition of lithium aluminum hydride (4.0 mL, 10 mmol, 2 equiv). The reaction mixture was then allowed to gradually warm to room temperature and stirred overnight. The reaction was quenched by carefully adding a saturated aqueous ammonium chloride solution, followed by extraction with diethyl ether. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure at 30 °C.

A round-bottom flask fitted with a magnetic stir bar was charged with dichloromethane. Cyclopent-2-en-1-ol was dissolved in the solvent via syringe addition, followed by the gradual introduction of azidotrimethylsilane (1.31 mL, 10 equiv). The reaction mixture was initiated by adding boron trifluoride diethyl etherate (61.7 μL, 10 mol%) as catalyst. The solution was maintained under continuous stirring at ambient temperature for 12 hours. Upon completion, the reaction was carefully quenched with water added dropwise. The organic phase was subsequently extracted with dichloromethane, dried over anhydrous sodium sulfate, and concentrated under reduced pressure at 30°C to yield the desired azide intermediate.

Under an inert nitrogen atmosphere, the azide intermediate was dissolved in a 10:1 mixture of THF and water (10 mL THF, 1 mL H<sub>2</sub>O). Two equivalents of triphenylphosphine were then introduced, and the reaction mixture was maintained at

40°C for 12 hours. Upon cooling to ambient temperature, 5 mL of 6 M hydrochloric acid was added, followed by continuous stirring for 6 hours. The mixture was subsequently extracted with ethyl acetate, with careful retention of the aqueous layer. The aqueous phase was basified using sodium hydroxide solution and then extracted with dichloromethane to isolate 2-Cyclopenten-1-amine. The final product was dried over anhydrous sodium sulfate, filtered under reduced pressure into a pre-prepared pear-shaped flask containing a magnetic stir bar, and stored for subsequent experimental procedures.


To the prepared solution, 2-methoxybenzoic acid (1.15 g, 1.5 equiv) was introduced, followed by sequential addition of TCFH (2.10 g, 1.5 equiv) and N-methylimidazole (1.20 mL, 3.0 equiv). The reaction mixture was maintained at ambient temperature for 5 hours. The mixture was washed with water and extracted with DCM, The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Purification by column chromatography employing a PE:EA (90:10) solvent system to provide the product **10**.

#### N-(cyclopent-2-en-1-yl)-2-methoxybenzamide (10)

Colorless oil, 195 mg, 18% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.20 (dd, J = 7.8, 1.8 Hz, 1H), 7.81 (s, 1H), 7.47 – 7.39 (m, 1H), 7.10 – 7.03 (m, 1H), 6.95 (d, J = 8.3 Hz, 1H), 6.01 – 5.96 (m, 1H), 5.84 – 5.77 (m, 1H), 5.25 – 5.16 (m, 1H), 3.93 (s, 3H), 2.53 – 2.42 (m, 2H), 2.40 – 2.32 (m, 1H), 1.72 – 1.62 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.6, 157.4, 134.3, 132.5, 132.2, 131.5, 121.7, 121.2, 111.3, 55.8, 55.7, 31.6, 31.2. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>13</sub>H<sub>15</sub>NO<sub>2</sub>: 218.1176, found: 218.1170.

#### **5.1.2** Control experiment

To a 4-mL sealed tube were added olefin substrate (0.1 mmol), Iodinated compound (0.25 mmol), Ni(OAc)<sub>2</sub> (0.01 mmol), **L9** (0.012 mmol), methyldimethoxysilane (0.3 mmol) and Potassium carbonate (0.2 mmol), the mixture was dissolved with anhydrous THF (1.0 mL) under nitrogen. After stirring for 24 h at room temperature, the solution was concentrated under reduced pressure and the residue was purified by preparative thin-layer chromatography to give the product.



Analysis of the unreacted raw material mixture revealed the presence of olefinmigrated alkenyl amines, with this portion of alkenyl amines exhibiting an ee of approximately 66%. This finding demonstrates that the desymmetrization process of symmetrical alkenyl amines involves the step of olefin migration.

#### 5.2 Radical inhibition experiment

To a 4-mL sealed tube were added substrate **1a** (0.1 mmol), alkyl iodide (0.25 mmol), Nickel(II) 2-AMino-5-Methylbenzenesulfonate (0.01 mmol), **L8** (0.012 mmol), Tempo (0.2 mmol), methyldimethoxysilane (0.4 mmol) and Potassium carbonate (0.2 mmol). The mixture was dissolved with anhydrous 1,4-dioxane (1.0 mL) under nitrogen. After stirring for 24 h at 40 °C, the reaction mixture was monitored by TLC, and it was found that only the starting material was remained, no product was detected.

#### 6. Compound synthesis of 13

$$\begin{array}{c} Ni~(10~mol\%)\\ L8~(12~mol\%)\\ \hline\\ N_2, 40~C, 1, 4-dioxane, 24~h\\ \hline\\ NaH~(10.0~equiv)\\ DMF, 60~C, overnight\\ \hline\\ 98\%~vield\\ 98\%~vield\\ \hline\\ 91\%~vield\\ \hline$$

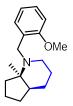
To a 25-mL sealed tube were added substrate **1a** (1 mmol), 1-Chloro-3-iodopropane (2.5 mmol), Nickel(II) 2-AMino-5-Methylbenzenesulfonate (0.1 mmol), **L8** (0. 12 mmol), methyldimethoxysilane (4 mmol) and Potassium carbonate (2 mmol), the mixture was dissolved with anhydrous 1,4-dioxane (10.0 mL) under nitrogen. After stirring for 24 h at 40 °C, the solution was concentrated under reduced pressure and the residue was purified by preparative thin-layer chromatography to give the product **11** with a yield of 87% and an ee value of 95%.

Added NaH (348.0 mg, 8.7 mmol) to a solution of 11 (270.0 mg, 0.87 mmol) in DMF, heated to 60°C, and maintained overnight. Quenched the reaction slowly with saturated aqueous ammonium chloride solution in an ice bath. Extracted the mixture using ethyl acetate (EA) and pure water. Dried the obtained organic phase with anhydrous Na<sub>2</sub>SO<sub>4</sub>, and isolated the product using thin-layer chromatography to yield product C' with a yield of 98% and an ee value of 95%.

Under nitrogen protection, dissolved 12 (231.0 mg, 0.85 mmol) in THF and added it to an eggplant-shaped flask equipped with a stir bar. Cooled the temperature to 0°C, then added LiAlH<sub>4</sub> (3.4mL, 8.5 mmol, 10 equiv) via a syringe. Allow the temperature to return to room temperature and stirred overnight. Quenched the reaction slowly with saturated aqueous ammonium chloride solution in an ice bath. Extracted the mixture using ethyl acetate (EA) and pure water. Dried the obtained organic phase with anhydrous Na<sub>2</sub>SO<sub>4</sub>, and isolated the product using thin-layer chromatography to yield product 12' with a yield of 55%.

Dissolved 12' in MeOH and added 10mol% Pd/C into the eggplant-shaped flask, replaced H<sub>2</sub> more than 3 times, then stirred overnight. The TLC monitoring indicated the completion of the reaction. The Pd/C was removed by filtration through diatomaceous earth. The resulting solution was acidified and extracted with DCM and aqueous HCl solution, followed by the removal of DCM. The solution was then basified with aqueous NaOH and extracted with DCM. The organic phase obtained was dried over anhydrous sodium sulfate and concentrated under vacuum at 30°C to yield the product 13.

#### N-((1R,2R)-2-(3-chloropropyl)-1-methylcyclopentyl)-2-methoxybenzamide (11)


Colorless oil, 270 mg, 87% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (d, J = 7.8 Hz, 1H), 7.93 (s, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 3.98 (s, 3H), 3.69 – 3.63 (m, 1H), 3.60 – 3.53 (m, 1H), 2.68 – 2.61 (m, 1H), 2.03

-1.96 (m, 1H), 1.94 - 1.88 (m, 1H), 1.87 - 1.72 (m, 3H), 1.70 - 1.62 (m, 3H), 1.56 (s, 3H), 1.47 - 1.36 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.4, 157.2, 132.3, 132.0, 122.7, 121.3, 111.2, 62.9, 56.0, 50.2, 45.5, 37.7, 31.8, 29.9, 26.8, 23.5, 20.8. [α]<sub>20D</sub> = +11.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (95% ee) was determined by HPLC with a Daicel Chiralpak OD-H column (Hexane : i-PrOH = 97 : 3, flow rate: 0.8 mL/min,  $\lambda$  max 250 nm):  $t_R$  (minor) = 23.267 min;  $t_R$  (major) = 20.773 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>17</sub>H<sub>24</sub>ClNO<sub>2</sub>: 310.1568, found: 310.1570.



# (2-methoxyphenyl)((4aR,7aR)-7a-methyloctahydro-1H-cyclopenta[b]pyridin-1-yl)methanone (12)

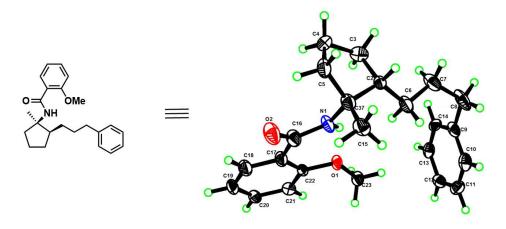
White solid, 231 mg, 98% yield, M.p.: 85-88°C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.31 – 7.25 (m, 1H), 7.25 – 7.10 (m, 1H), 6.97 – 6.90 (m, 1H), 6.86 (t, J = 8.5 Hz, 1H), 3.79 (d, J = 3.7 Hz, 3H), 3.19 (s, 1H), 3.12 – 2.92 (m, 1H), 2.54 – 2.31 (m, 2H), 1.93 – 1.70 (m, 4H), 1.65 – 1.60 (m, 1H), 1.56 – 1.48 (m, 2H), 1.46 – 1.38 (m, 5H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.6, 168.7, 155.5, 154.7, 129.5, 129.3, 128.4, 128.2, 126.4, 120.6, 120.4, 110.8, 110.3, 65.8, 65.8, 55.4, 55.0, 45.1, 45.0, 43.0, 42.1, 37.0, 36.6, 28.5, 28.4, 24.2, 24.2, 21.7, 21.5, 21.4, 21.2. [ $\alpha$ ]<sub>20D</sub> = -43.0 (c 1.0, CH<sub>3</sub>CN). The enantiomeric excess (95% ee) was determined by HPLC with a Daicel Chiralpak IBN-5 column (Hexane : EtOH = 97 : 3, flow rate: 0.8 mL/min,  $\lambda$ max 250 nm):  $t_R$  (minor) = 16.297 min;  $t_R$  (major) = 15.020 min. ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>17</sub>H<sub>23</sub>NO<sub>2</sub>: 274.1802, found: 274.1801.



(4aR,7aR)-1-(2-methoxybenzyl)-7a-methyloctahydro-1H-cyclopenta[b]pyridine (12')

White solid, 144 mg, 55% yield, M.p.: 70.5-72.5°C. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (d, J = 7.4 Hz, 1H), 7.20 – 7.14 (m, 1H), 6.94 (t, J = 7.4 Hz, 1H), 6.82 (d, J = 8.1 Hz, 1H), 3.81 (s, 3H), 3.69 (d, J = 16.1 Hz, 1H), 3.31 (d, J = 16.1 Hz, 1H), 2.47 – 2.41 (m, 1H), 2.38 – 2.31 (m, 1H), 2.02 – 1.92 (m, 2H), 1.89 – 1.81 (m, 1H), 1.77 – 1.68 (m, 2H), 1.68 – 1.61 (m, 2H), 1.56 – 1.48 (m, 2H), 1.37 – 1.31 (m, 1H), 1.30 – 1.24 (m, 1H), 1.13 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  157.5, 129.9, 128.6, 126.8, 120.4, 109.7, 63.4, 55.1, 48.5, 47.3, 46.0, 37.4, 28.1, 23.9, 21.9, 21.4, 16.7. [ $\alpha$ ]<sub>20D</sub> = +44.0 (c 1.0, CH<sub>3</sub>CN). ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>17</sub>H<sub>25</sub>NO: 260.2009, found: 260.2002.




#### (4aR,7aR)-7a-methyloctahydro-1H-cyclopenta[b]pyridine (13)

Colorless oil, 70 mg, 91% yield.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.84 – 2.75 (m, 2H), 1.79 – 1.61 (m, 6H), 1.60 – 1.53 (m, 2H), 1.48 – 1.38 (m, 3H), 1.36 – 1.29 (m, 1H), 1.18 (s, 3H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  59.3, 43.0, 41.4, 38.3, 28.4, 25.1, 24.7, 22.9, 20.5. [ $\alpha$ ]<sub>20D</sub> = -2.0 (c 1.0, CH<sub>3</sub>CN). ESI-HRMS: m/z [M+H]<sup>+</sup> calcd. For C<sub>9</sub>H<sub>17</sub>N: 140.1434, found: 140.1437.

#### 7. X-ray of 3e

#### Crystallographic data

A suitable crystal was obtained using hexane/ethyl acetate as the recrystallization solvent and tested on a Bruker APEX-II CCD diffractometer. The crystal was kept at 103.00 K during data collection. Using Olex2, the structure was solved with the SHELXT structure solution program using Intrinsic Phasing to solve the phase problem for single-crystal reflection data expanded to the space group and refined with the SHELXL refinement package using Least Squares minimization for validating and archiving crystal structures.



CCDC-2435261

#### Table 1 Crystal data and structure refinement for mo 20241656 0m.

Identification code mo\_20241656\_0m

Empirical formula C<sub>23</sub>H<sub>29</sub>NO<sub>2</sub>

Formula weight 351.47

Temperature/K 103.00

Crystal system monoclinic

Space group P2<sub>1</sub>

a/Å 15.6870(6)

b/Å 12.7263(4)

c/Å 20.3517(7)

 $\alpha$ / $^{\circ}$  90

 $\beta/^{\circ}$  104.0370(10)

γ/° 90

Volume/Å<sup>3</sup> 3941.6(2)

Z 8

 $\rho_{calc}g/cm^3$  1.185

 $\mu / mm^{-1}$  0.075

F(000) 1520.0

Crystal size/mm<sup>3</sup>  $0.15 \times 0.08 \times 0.06$ 

Radiation MoK  $\alpha$  ( $\lambda = 0.71073$ )

2 <sup>⊕</sup> range for data collection/° 3.808 to 52.81

Index ranges  $-16 \leqslant h \leqslant 19, -15 \leqslant k \leqslant 15, -23 \leqslant 1 \leqslant 25$ 

Reflections collected 38137

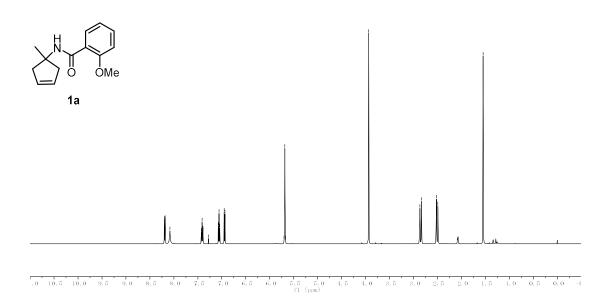
Independent reflections 15119 [ $R_{int} = 0.0764$ ,  $R_{sigma} = 0.0925$ ]

Data/restraints/parameters 15119/2/973

Goodness-of-fit on F<sup>2</sup> 1.025

Final R indexes [I>=2  $\sigma$  (I)]  $R_1 = 0.0689$ ,  $wR_2 = 0.1485$ 

Final R indexes [all data]  $R_1 = 0.1026$ ,  $wR_2 = 0.1722$ 

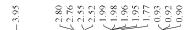

Largest diff. peak/hole / e Å<sup>-3</sup> 0.76/-0.29

Flack parameter 0.0(9)

### <sup>1</sup>H and <sup>13</sup>C NMR Spectra

### <sup>1</sup>H NMR spectrum (500 MHz, in CDCl<sub>3</sub>):

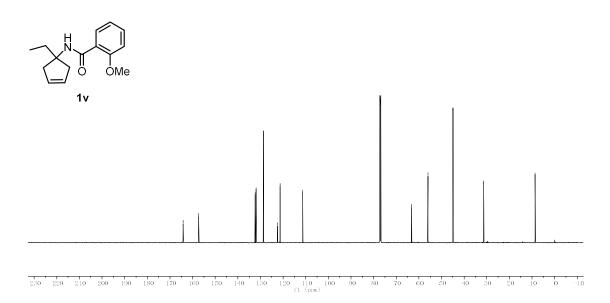


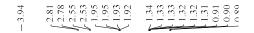

# <sup>13</sup>C NMR spectrum (151 MHz, in CDCl<sub>3</sub>): \$\frac{\cup 0.7 \cup 0.

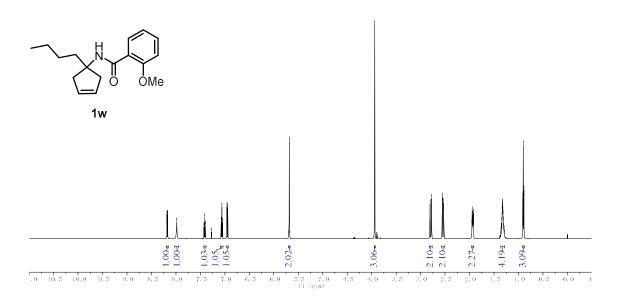
| 164.13 | 157.20 | 132.37 | 131.82 | 121.20 | 121.20 | 121.20 | 121.20 | 121.20 | 121.20 | 121.20 | 121.20 | 122.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 123.24 | 1



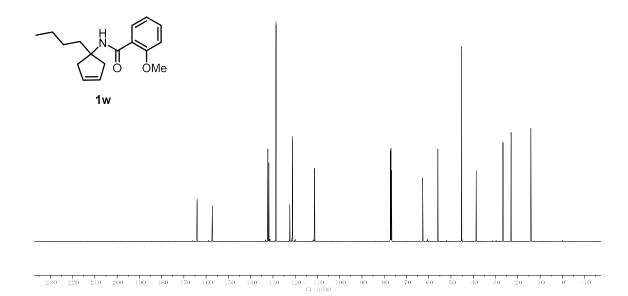


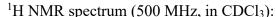




### $^{13}$ C NMR spectrum (151 MHz, in CDCl<sub>3</sub>):

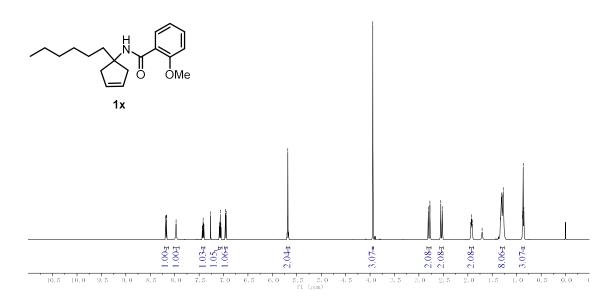
$$\begin{array}{c}
-164.20 \\
-157.29 \\
-132.38 \\
131.93 \\
121.34 \\
-111.33 \\
-63.19 \\
-63.19 \\
-63.19 \\
-44.91 \\
-31.34
\end{array}$$

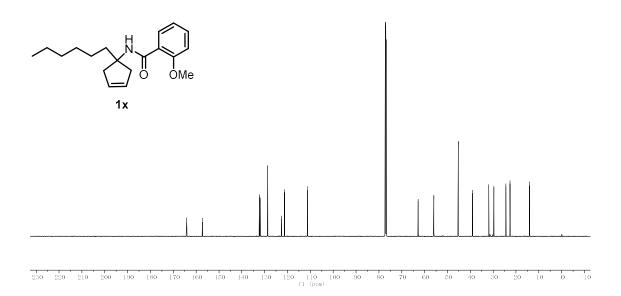


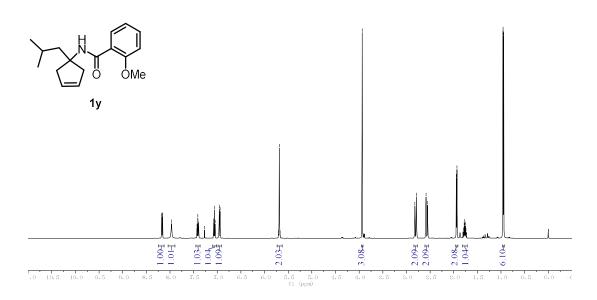






### $^{13}$ C NMR spectrum (151 MHz, in CDCl<sub>3</sub>):

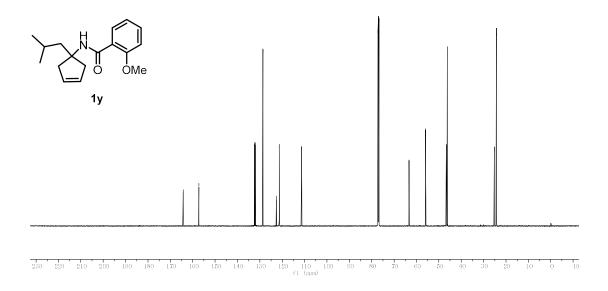


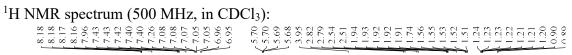


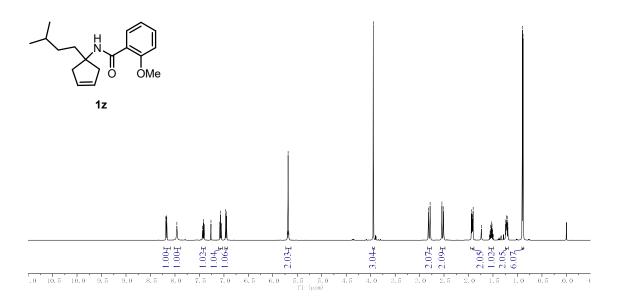





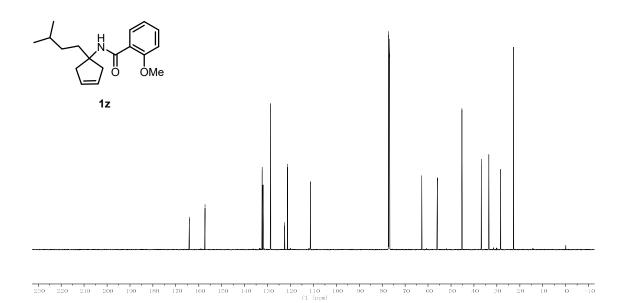




2.82 2.79 2.56 2.56 2.56 2.56 1.81 1.81 1.71 1.77 1.73 1.73 1.73 1.73 1.73

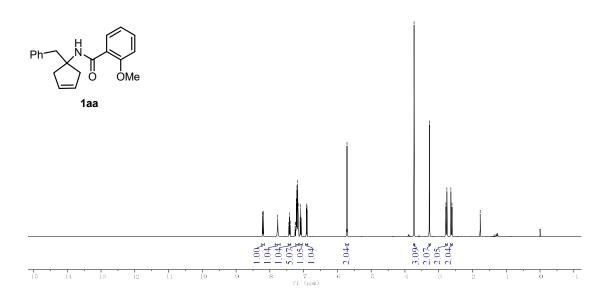



### <sup>13</sup>C NMR spectrum (151 MHz, in CDCl<sub>3</sub>):


 $\begin{array}{c}
-164.29 \\
-157.24 \\
-131.36
\end{array}$   $\begin{array}{c}
132.35 \\
121.35
\end{array}$   $\begin{array}{c}
122.63 \\
-111.36
\end{array}$   $\begin{array}{c}
77.22 \\
76.80
\end{array}$   $\begin{array}{c}
55.94 \\
76.27
\end{array}$ 



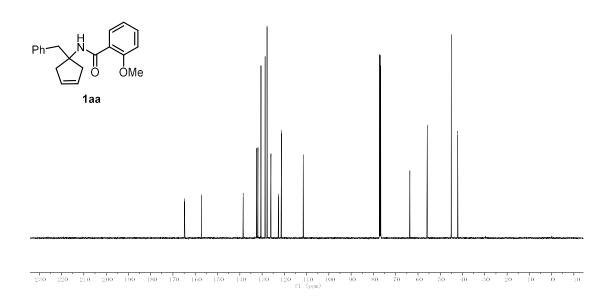


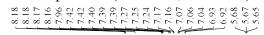


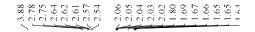

13C NMR spectrum (151 MHz, in CDCl<sub>3</sub>): ~45.23 ~36.82 ~33.53 ~28.38 ~22.73

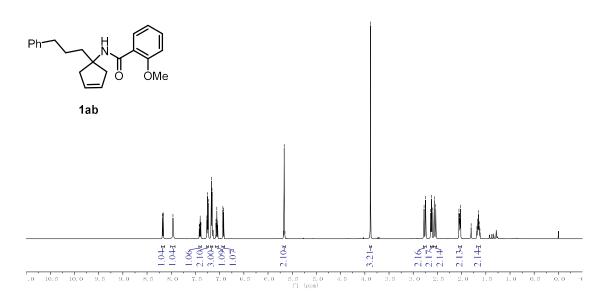






23.73 2.79 2.76 2.64 7.2.64 -1.77

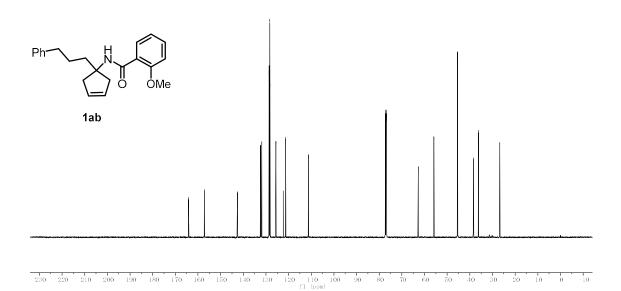


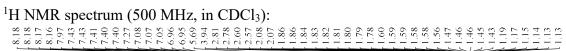


### $^{13}\text{C}$ NMR spectrum (126 MHz, in CDCl<sub>3</sub>):

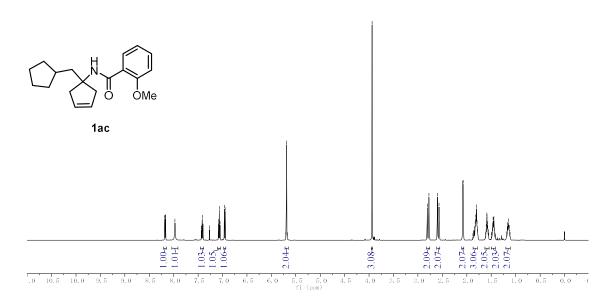



 $\begin{cases}
77.25 \\
76.75
\end{cases}$   $-63.64 \\
-55.86$  -45.08  $\sim 42.20$ 

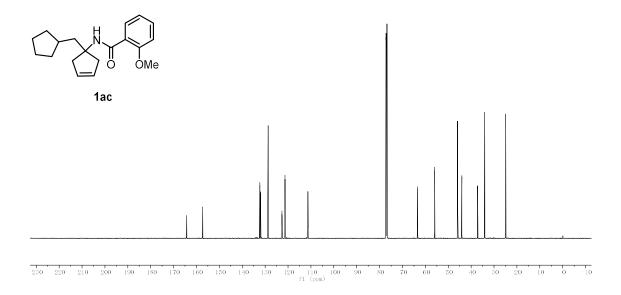




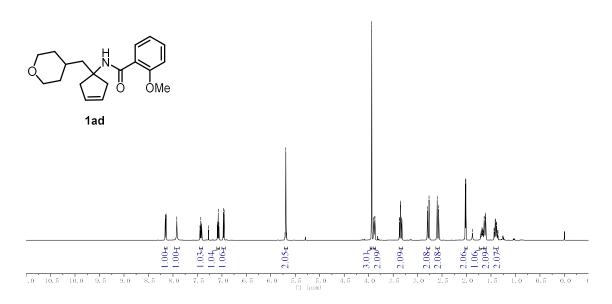




13C NMR spectrum (126 MHz, in CDCl<sub>3</sub>):


13c NMR spectrum (126 MHz, in CDCl<sub>3</sub> 

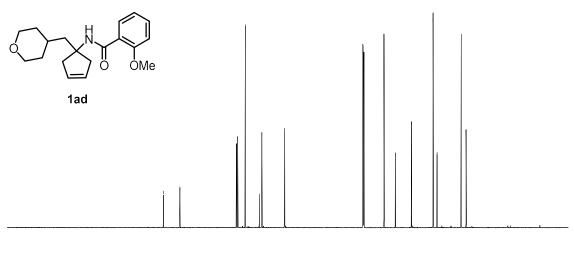


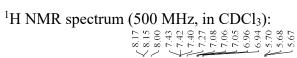


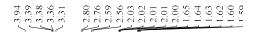


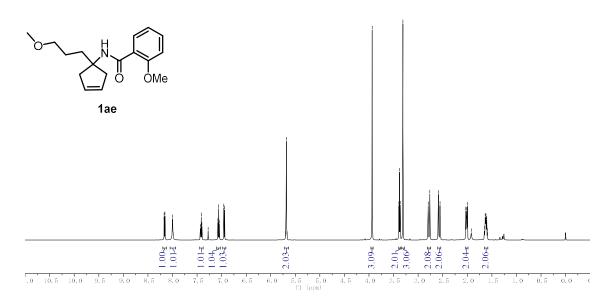

-63.40 -55.93

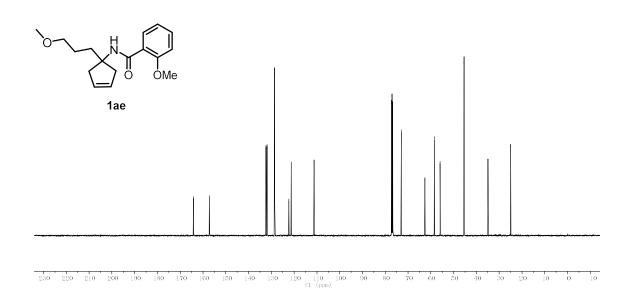


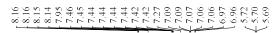


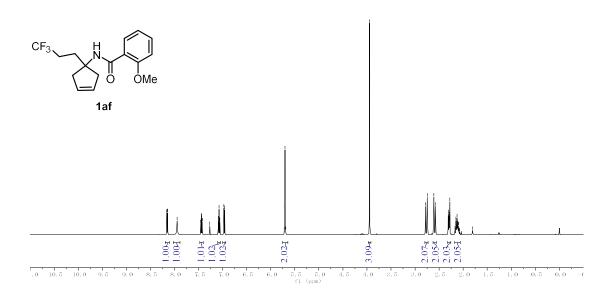


13C NMR spectrum (151 MHz, in CDCl<sub>3</sub>):


| Section | Fig. | Fig.


77.21 77.00 77.00 76.79 (67.99 (63.03 55.93 746.54 34.28

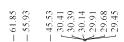


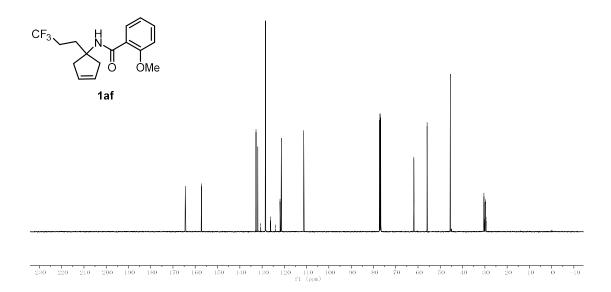


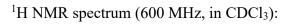



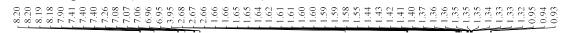


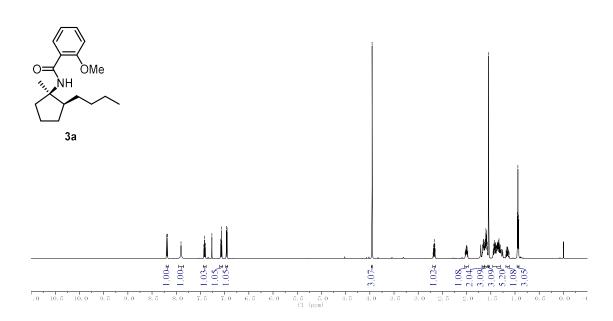


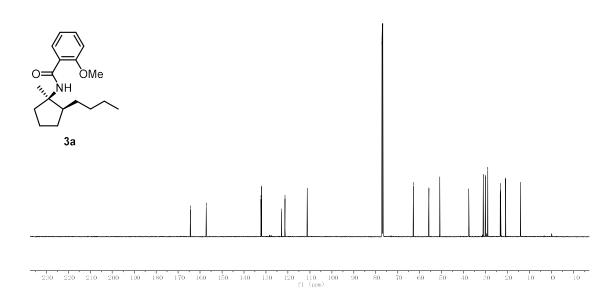


- 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 - 3 94 -

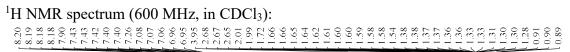


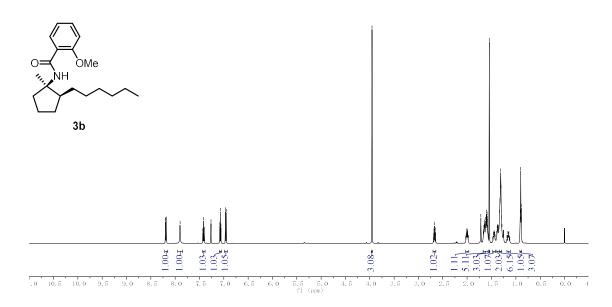


### $^{13}$ C NMR spectrum (126 MHz, in CDCl<sub>3</sub>):

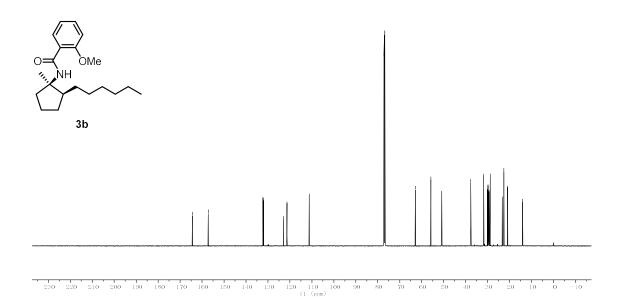


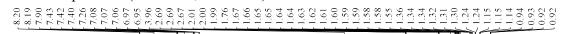


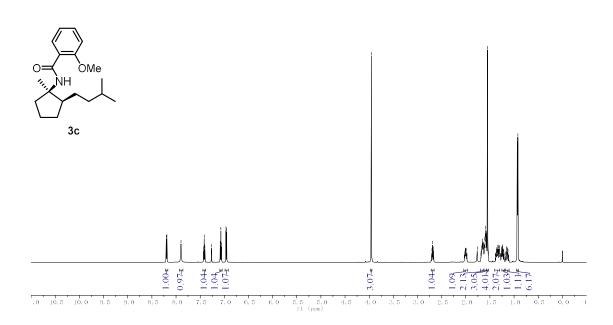



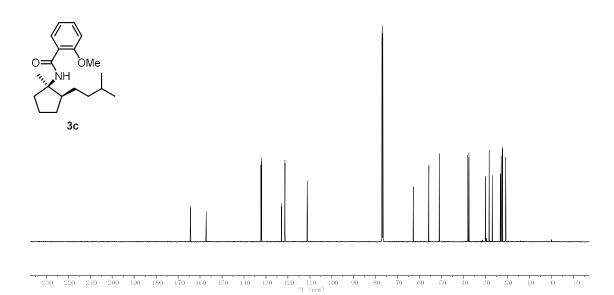





### $^{13}$ C NMR spectrum (151 MHz, in CDCl<sub>3</sub>):

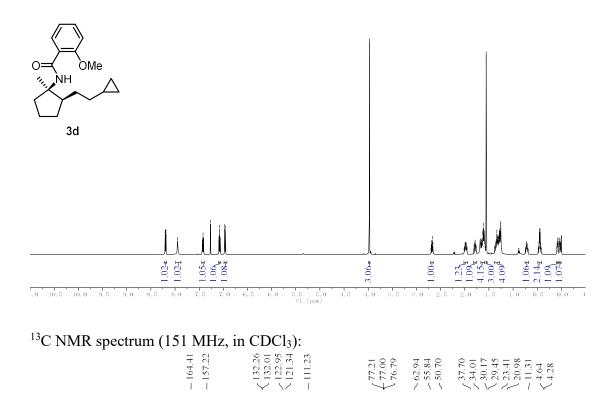


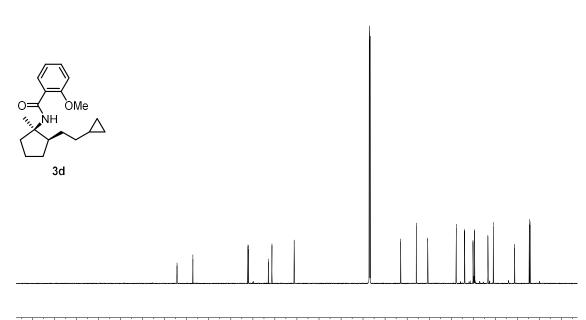


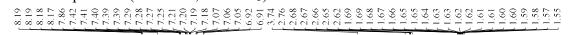


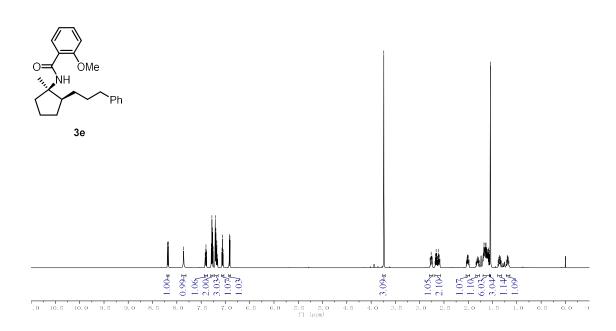


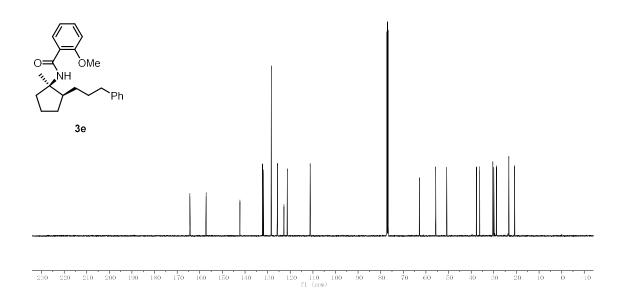


# 13C NMR spectrum (151 MHz, in CDCl<sub>3</sub>):

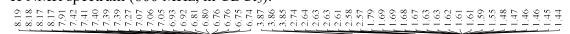


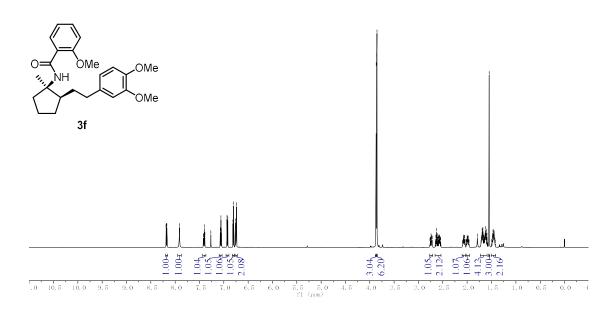


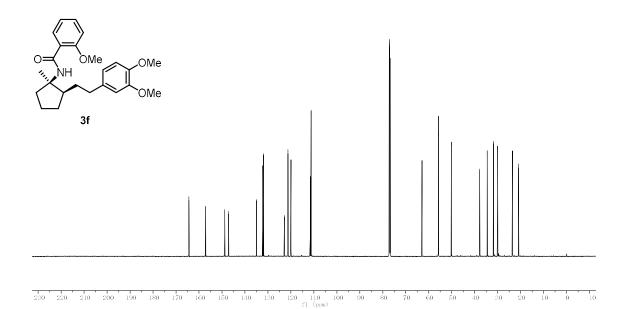


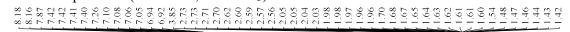



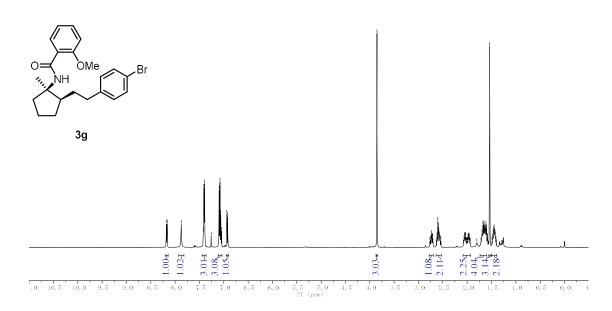


### $^{1}H$ NMR spectrum (600 MHz, in CDCl<sub>3</sub>):



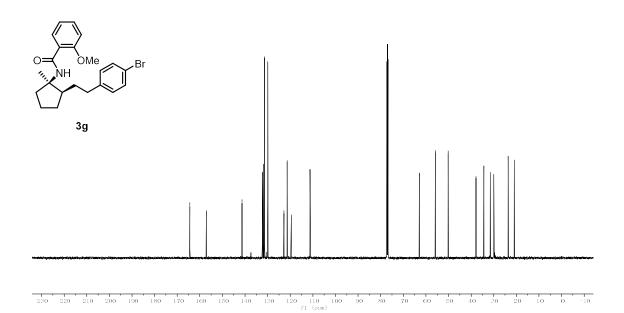


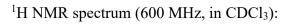


62.90
55.72
50.85

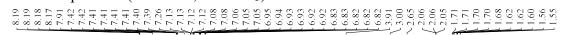


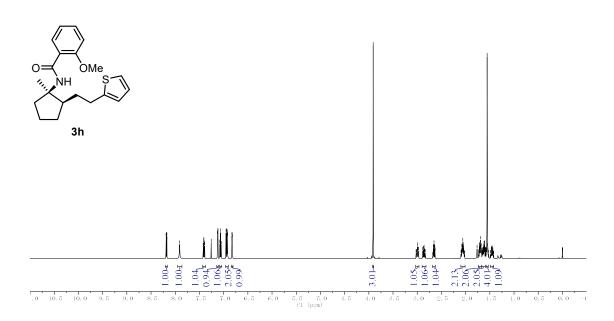





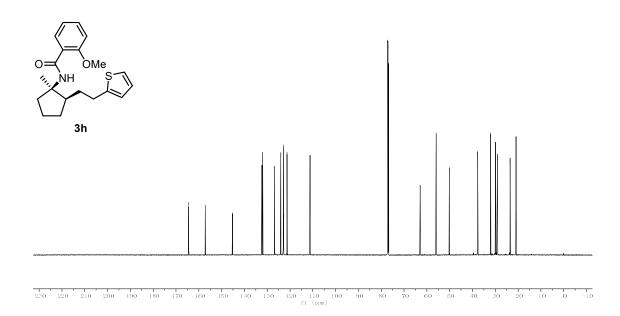


77.21 77.00 76.79 55.86 55.86 55.86 55.78 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75.19 75



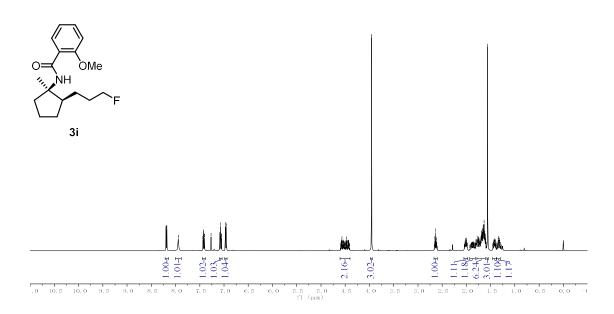



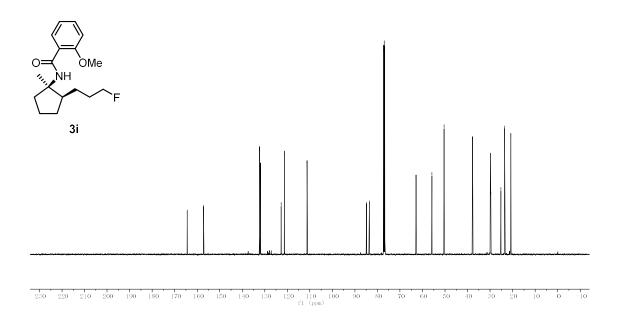



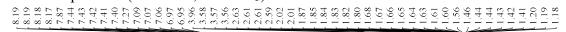

 \( \langle 62.92 \)
 \( 55.84 \)
 \( 50.14 \)  $\begin{array}{c} 37.86\\ 34.40\\ \hline \\ 31.54\\ \hline \\ 29.99\\ \hline \\ 23.58\\ \hline \\ 20.89 \end{array}$ 

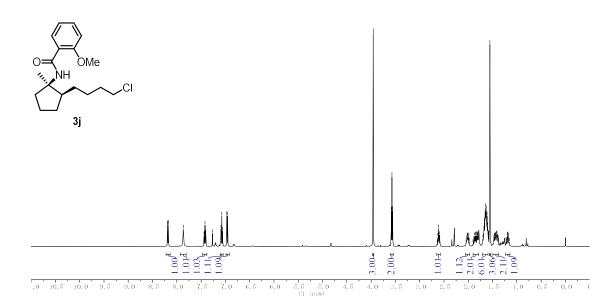




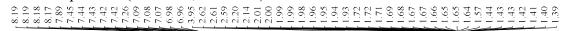


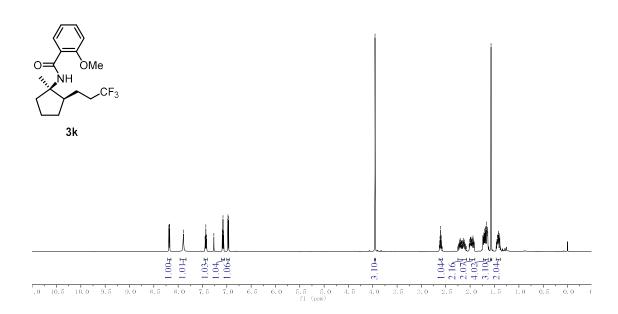




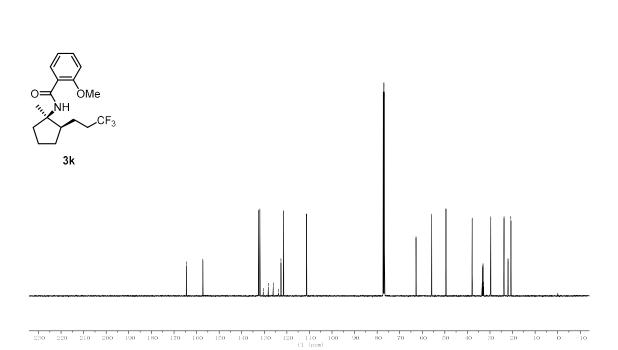




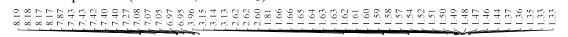


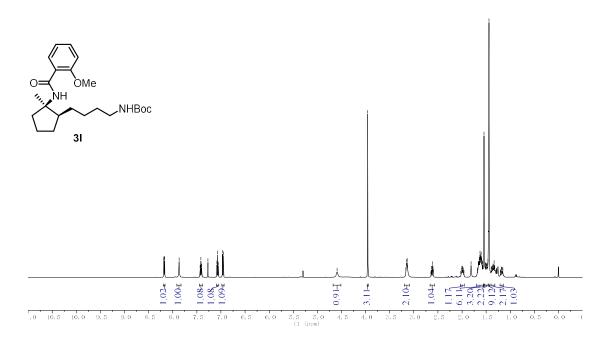


13C NMR spectrum (126 MHz, in CDCl<sub>3</sub>):

9 51 52 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 98 121 7 77.25 77.00 76.75 62.90 62.90 55.94 44.87 37.78 32.86 29.90 28.63 22.603 20.77

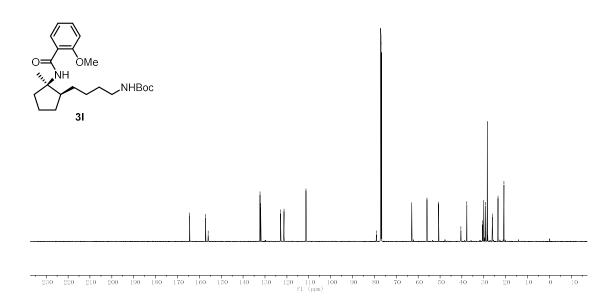


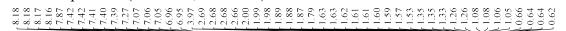


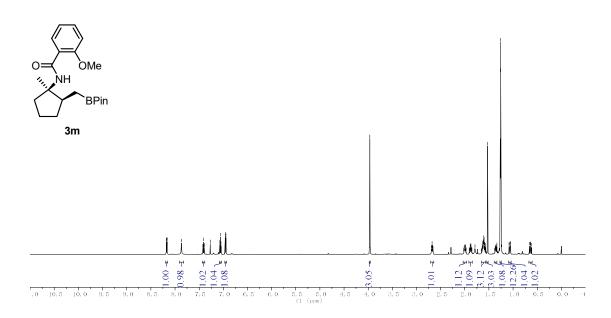




# 

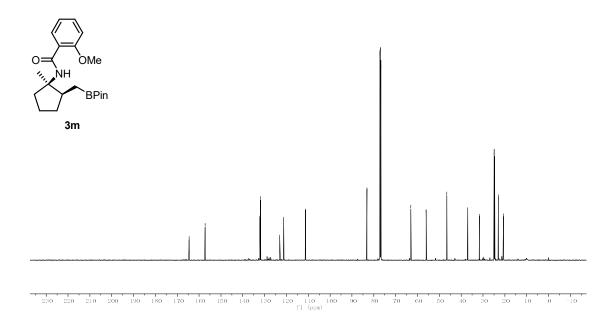


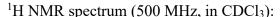


62.75
62.75
62.75
62.75
62.75
62.75
62.75
62.75
62.75
62.75
62.75

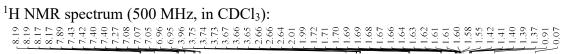


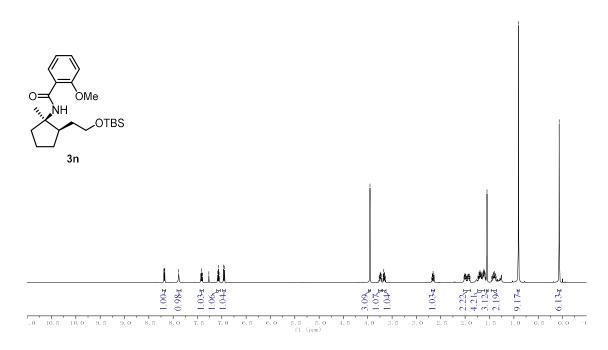


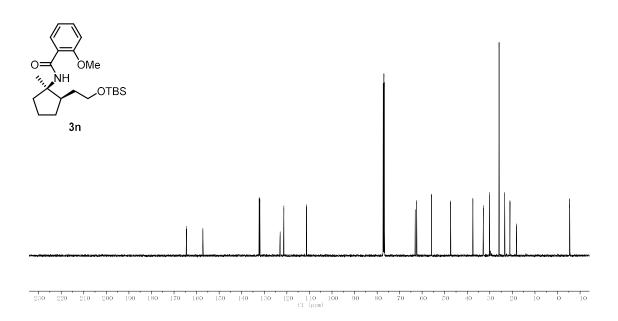

# $^{13}$ C NMR spectrum (151 MHz, in CDCl<sub>3</sub>):

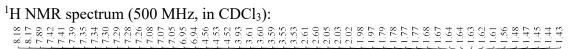


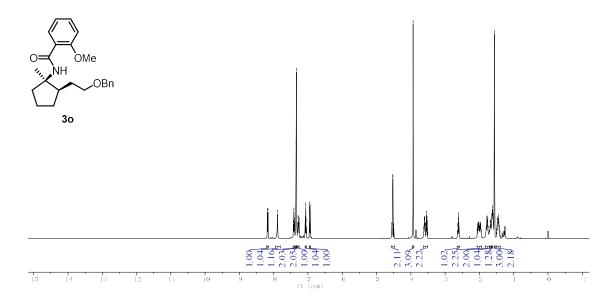



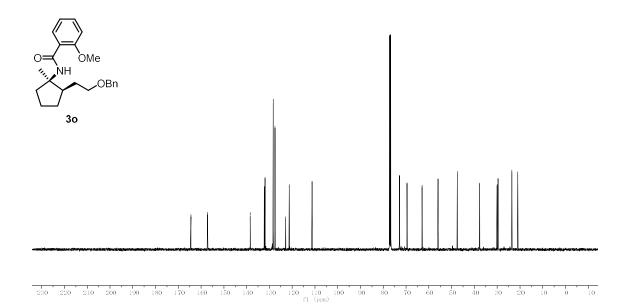


# $^{13}$ C NMR spectrum (151 MHz, in CDCl<sub>3</sub>):

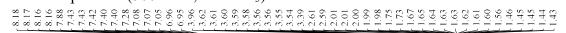

| 64.5 | 157.25 | 132.18<br>131.89<br>123.08<br>121.24<br>111.26 | 83.16<br>77.21<br>77.00<br>76.79 | 63.05<br>56.03<br>46.60<br>37.02<br>31.66<br>24.88<br>224.67 |
|------|--------|------------------------------------------------|----------------------------------|--------------------------------------------------------------|
|      | 1      | W 1 1                                          |                                  | 11                                                           |

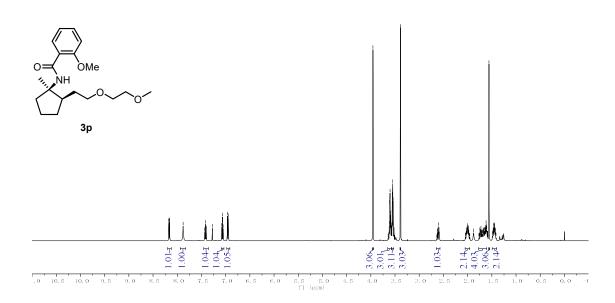


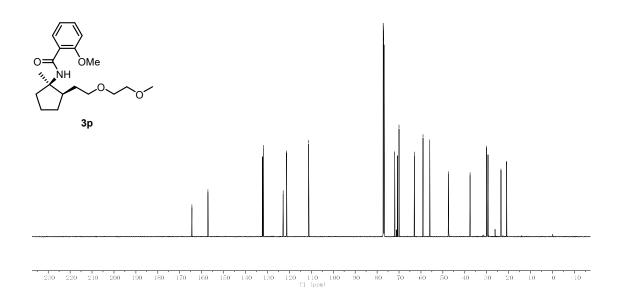


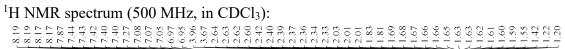



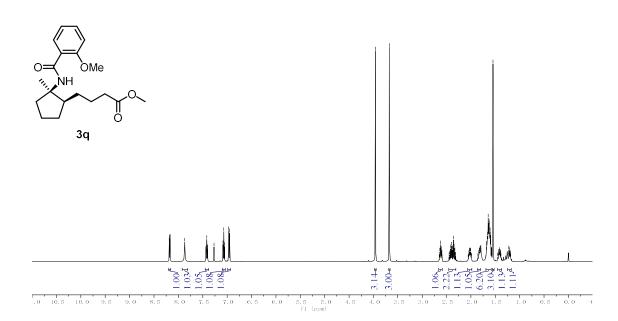



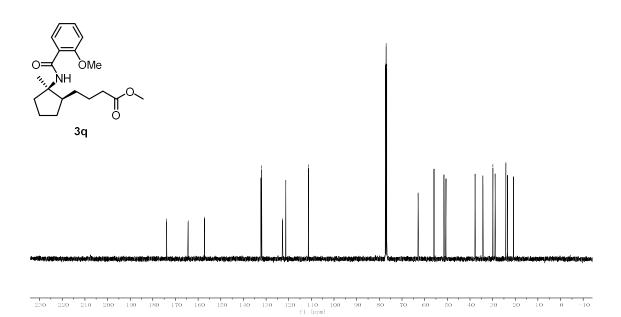




77.25 77.00 76.75 76.75 72.91 69.57 55.96 747.51 30.05 29.57 7.29.57 7.29.53

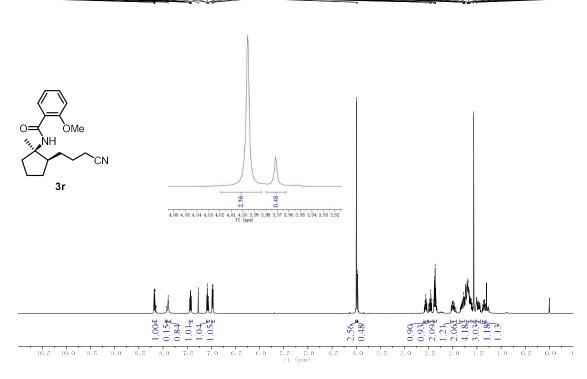


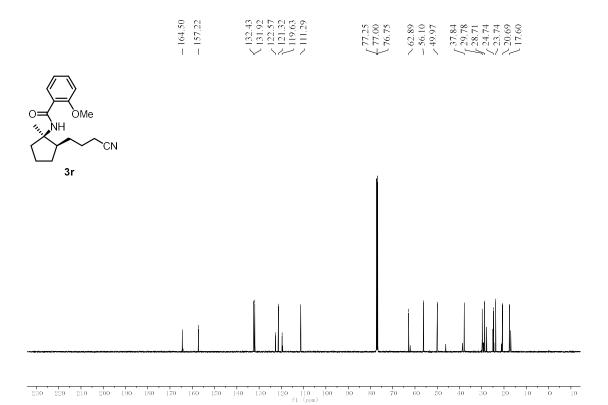


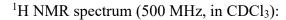


77.21 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00 77.00



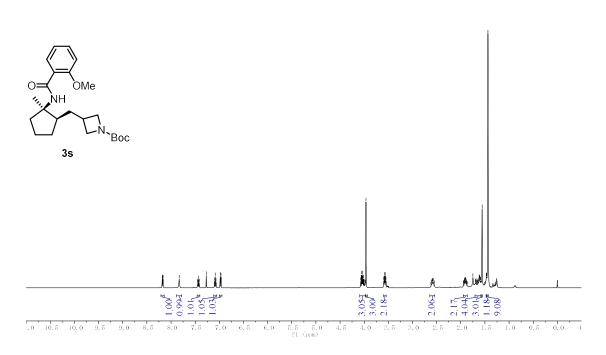




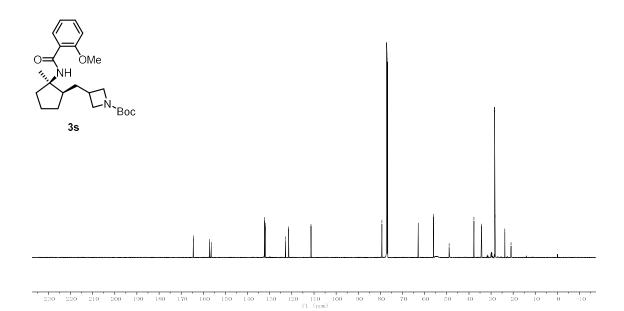


13C NMR spectrum (126 MHz, in CDCl<sub>3</sub>): 77.25 77.00 76.75 76.75 76.75 76.79 77.25 76.79 77.25 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76.79 76

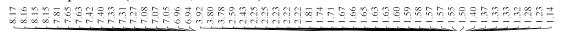


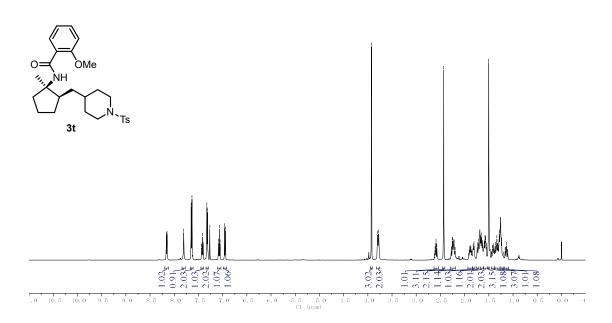


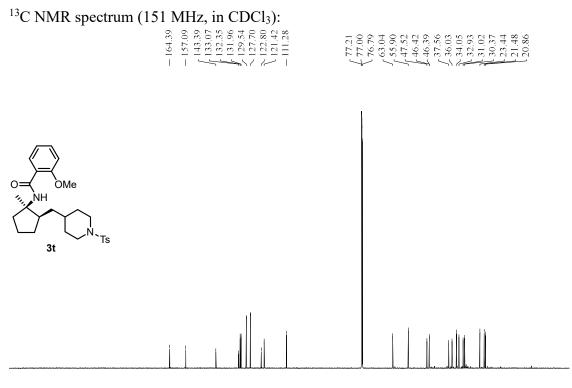




# <sup>13</sup>C NMR spectrum (126 MHz, in CDCl<sub>3</sub>):

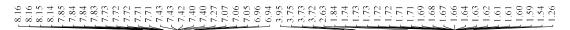


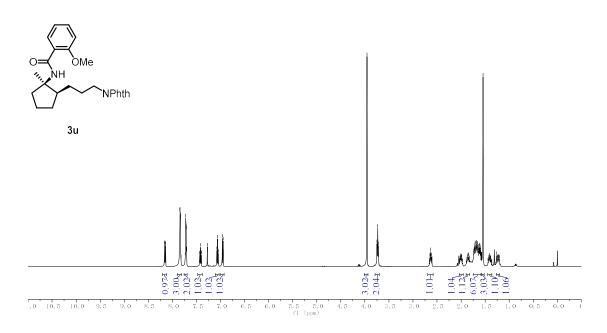



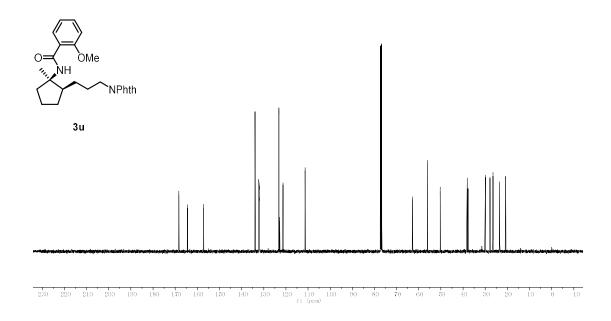

\ 62.88 -56.03 \ 748.91 37.72 34.29 28.37 28.19 23.76 23.76

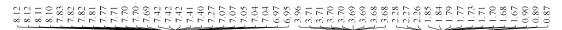


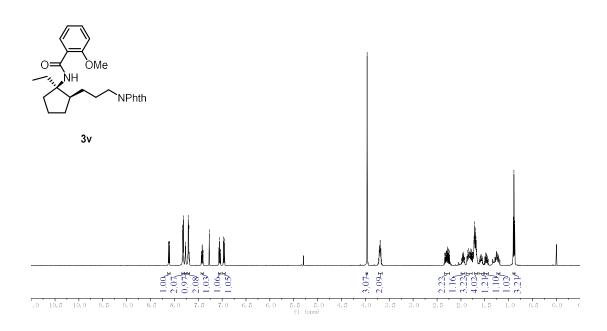





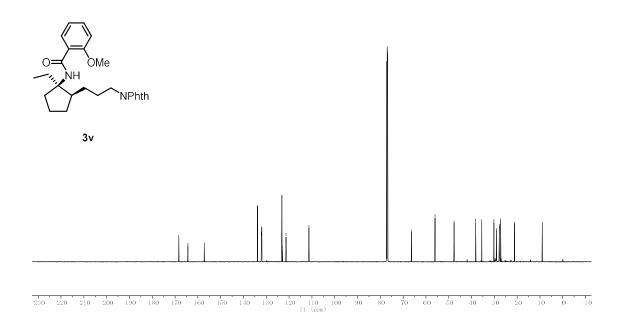




230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40

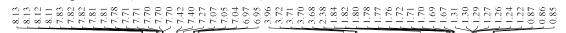


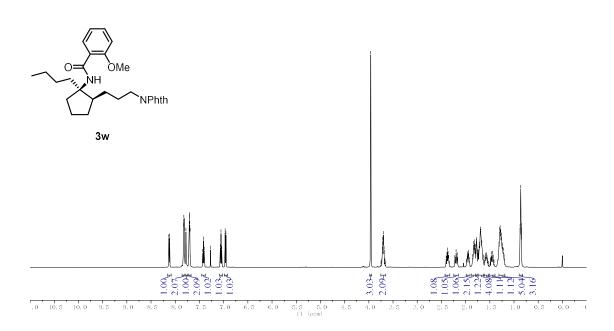




# $^{13}\text{C}$ NMR spectrum (126 MHz, in CDCl<sub>3</sub>):


7.168.36 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.205 13.2



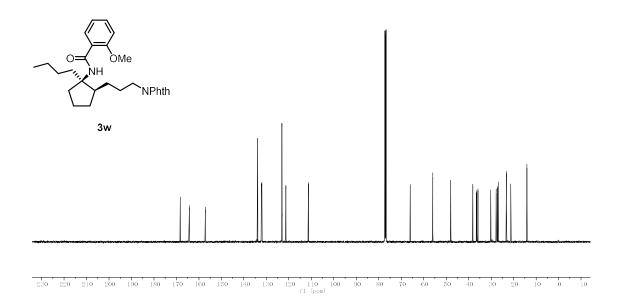


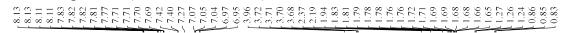



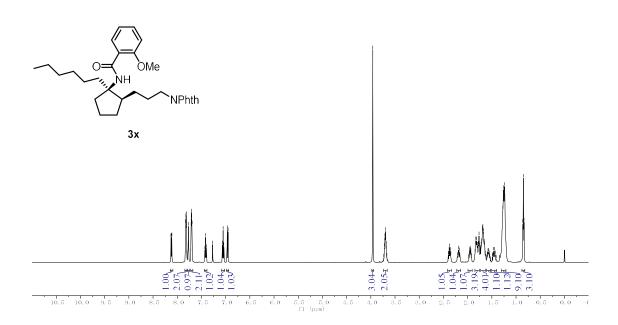




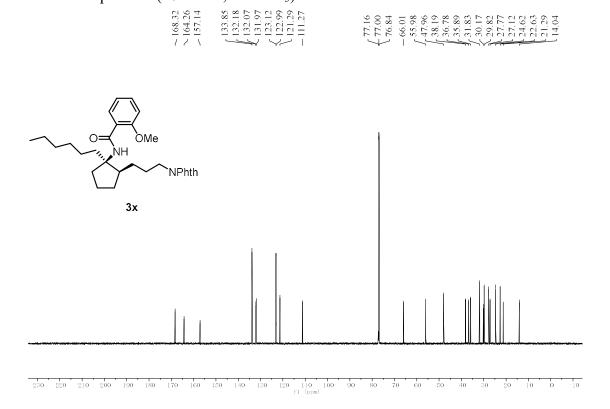

# $^{1}H$ NMR spectrum (500 MHz, in CDCl<sub>3</sub>):



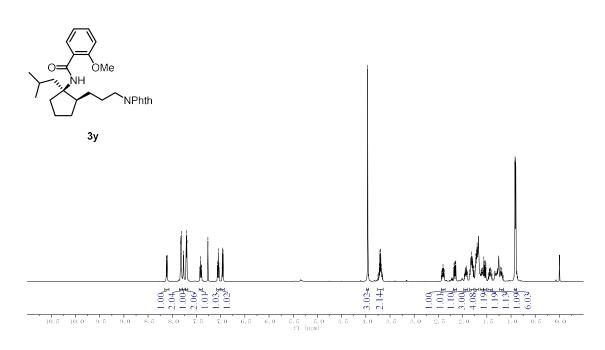





13C NMR spectrum (126 MHz, in CDCl<sub>3</sub>):

\$\frac{\partial p}{2} \frac{\partial p}{2} \frac{\pa

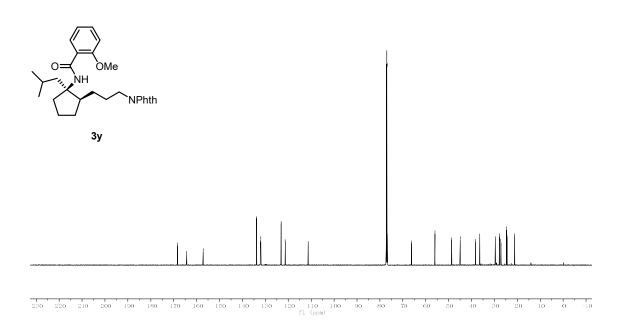

77.25 76.75 -65.99 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 55.97 5

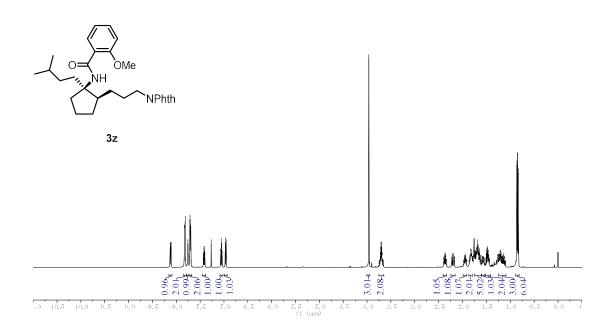




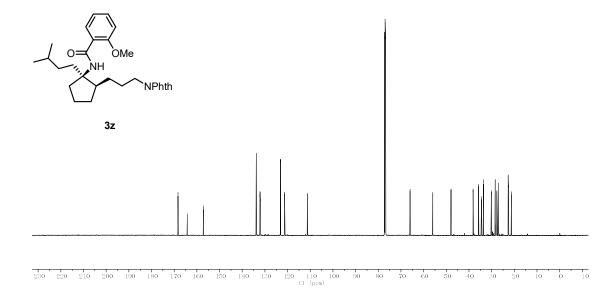

# $^{13}\text{C}$ NMR spectrum (201 MHz, in CDCl<sub>3</sub>):

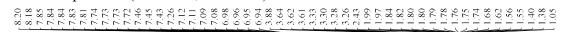


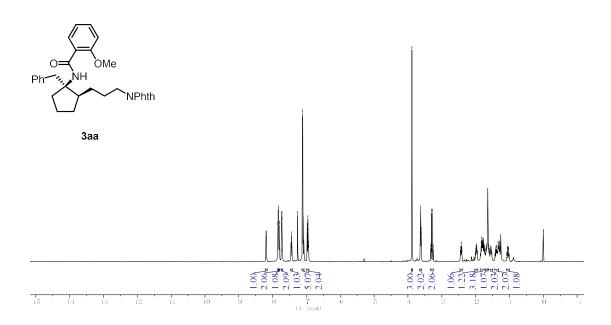






# <sup>13</sup>C NMR spectrum (151 MHz, in CDCl<sub>3</sub>):

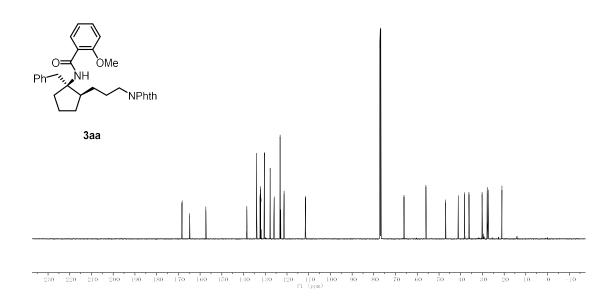


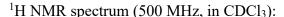



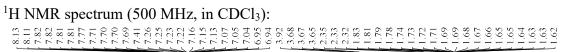



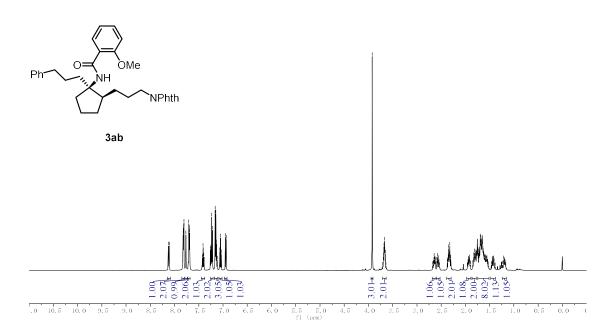

# $^{13}$ C NMR spectrum (151 MHz, in CDCl<sub>3</sub>):

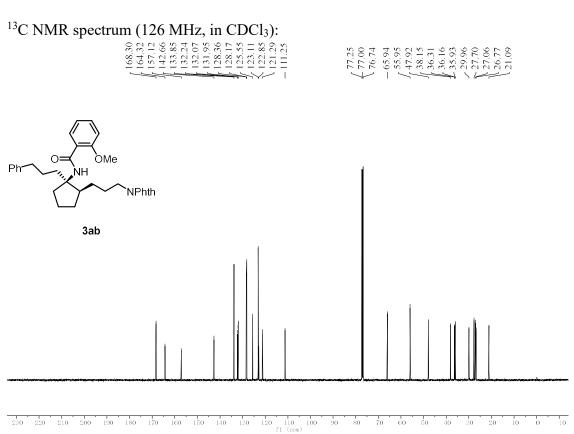
77.21 76.79 - 66.01 - 55.97 - 47.93 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.19 38.

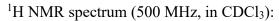


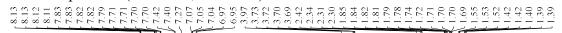



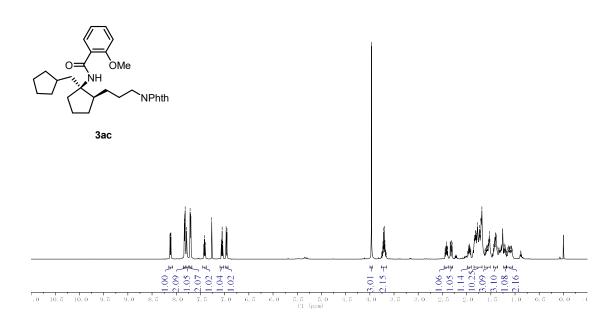



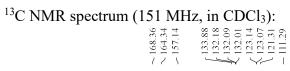


# $^{13}$ C NMR spectrum (151 MHz, in CDCl<sub>3</sub>):

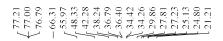


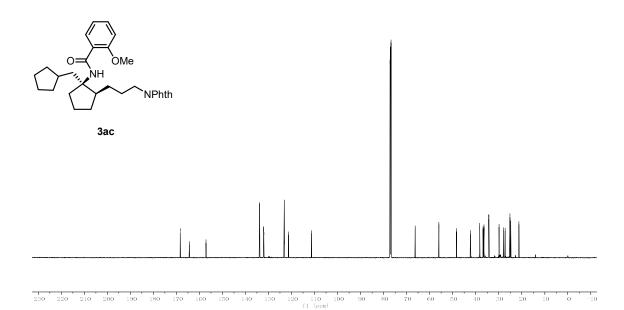



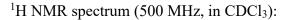



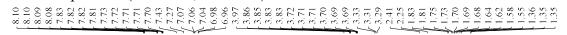



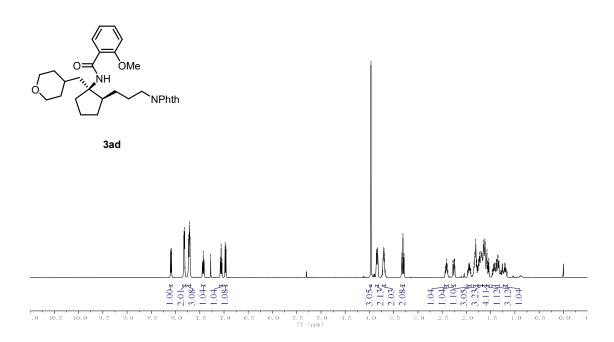



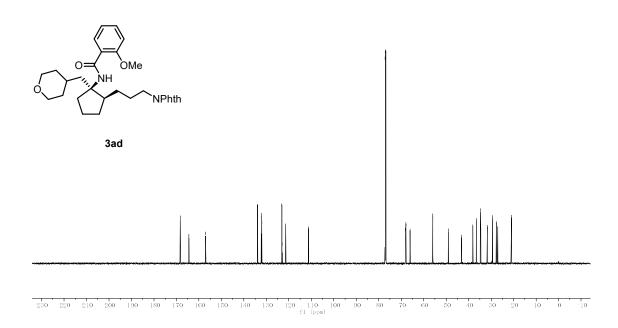



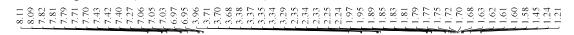



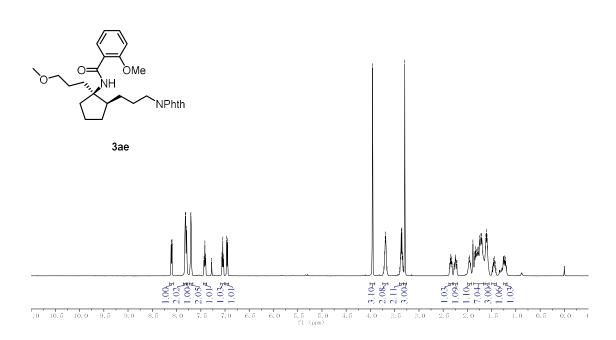



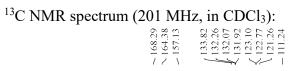



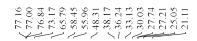


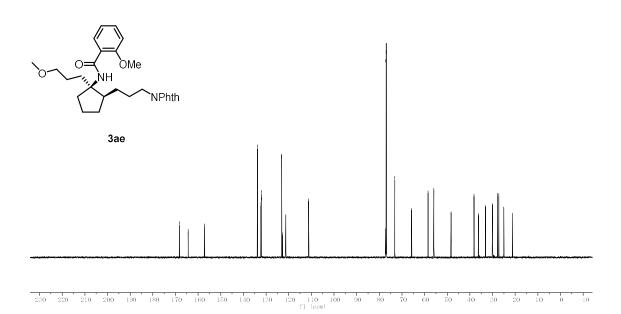



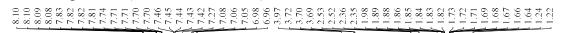



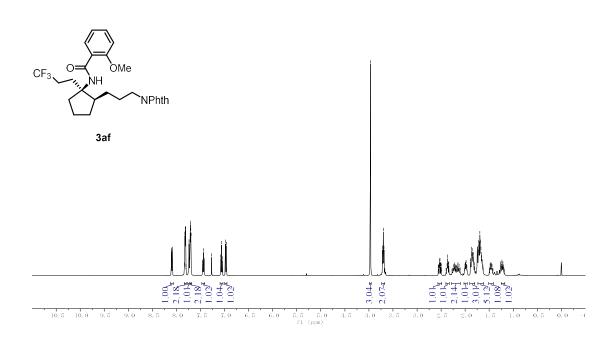



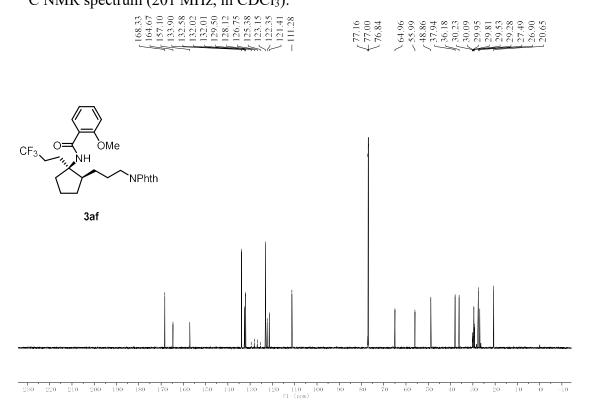



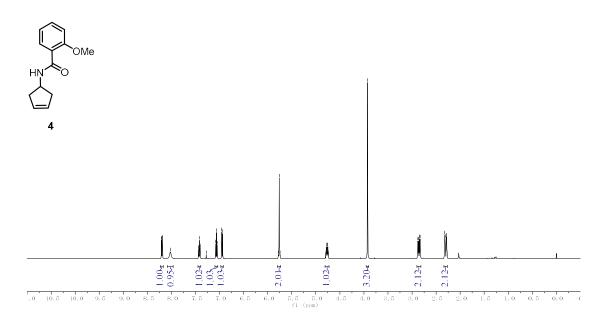





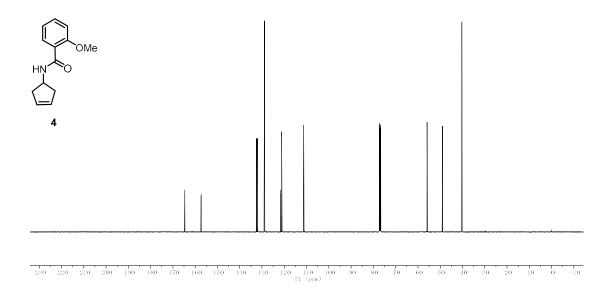



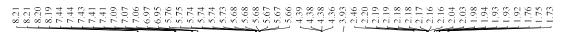


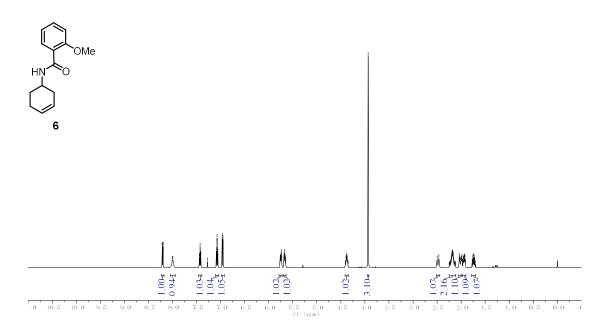






# <sup>13</sup>C NMR spectrum (201 MHz, in CDCl<sub>3</sub>):

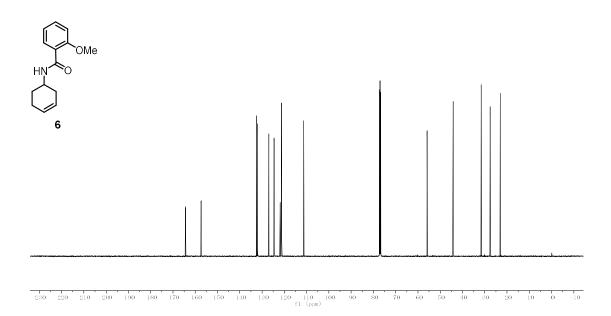




### 8.20 8.20 8.20 8.20 8.20 8.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20 9.20

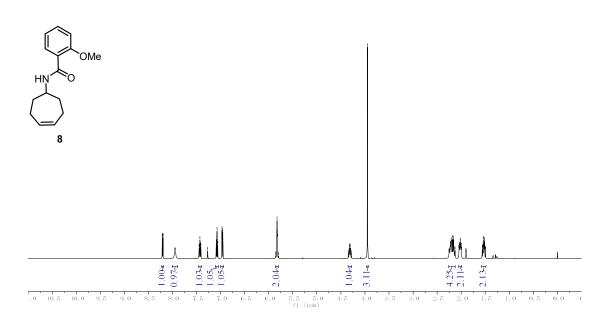



# $^{13}$ C NMR spectrum (126 MHz, in CDCl<sub>3</sub>):

- 164.68 - 157.33 - 157.33 - 128.92 - 128.92 - 128.92 - 111.25 - 111.25 - 111.25 - 111.25 - 148.97 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 76.75 - 7

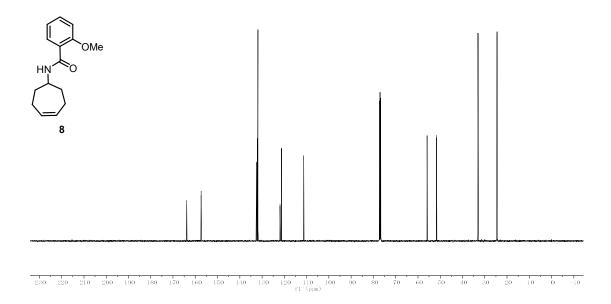


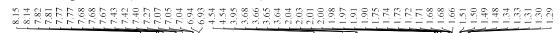


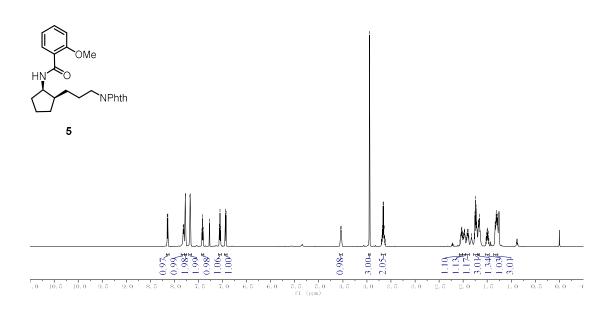




# $^{13}$ C NMR spectrum (126 MHz, in CDCl<sub>3</sub>):

 $\begin{array}{c} -164.42 \\ -157.34 \\ 132.45 \\ 126.95 \\ 121.28 \\ 121.24 \\ 121.24 \\ -111.29 \\ -111.29 \\ -55.86 \\ -55.86 \\ -27.59 \\ -23.06 \\ -23.30 \\ \end{array}$ 

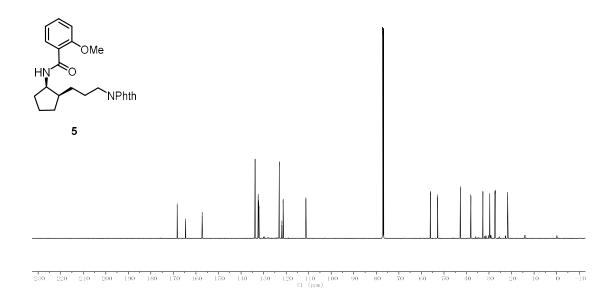


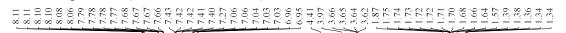


88.88 88.20 88.20 88.20 87.77 87.79 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87.70 87

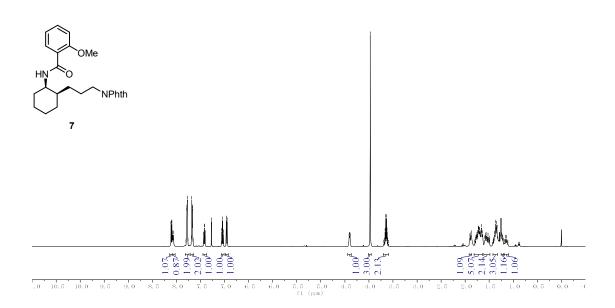



# $^{13}$ C NMR spectrum (126 MHz, in CDCl<sub>3</sub>):

 $\begin{array}{c}
-163.80 \\
-157.35 \\
132.45 \\
132.45 \\
131.87 \\
121.29 \\
-111.30 \\
-111.30 \\
-55.90 \\
-55.90 \\
-55.90 \\
-55.46 \\
-24.46
\end{array}$ 

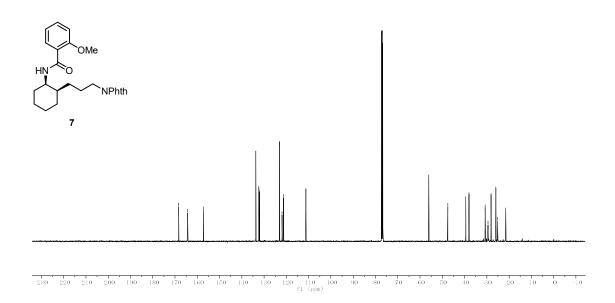


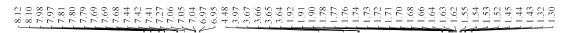



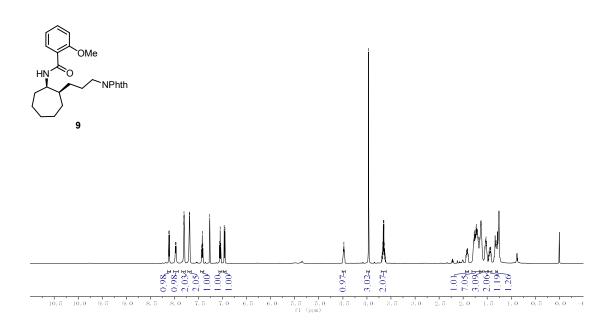




# $^{13}\text{C}$ NMR spectrum (151 MHz, in CDCl<sub>3</sub>):

108.34 164.58 164.58 132.30 132.30 132.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30 121.30

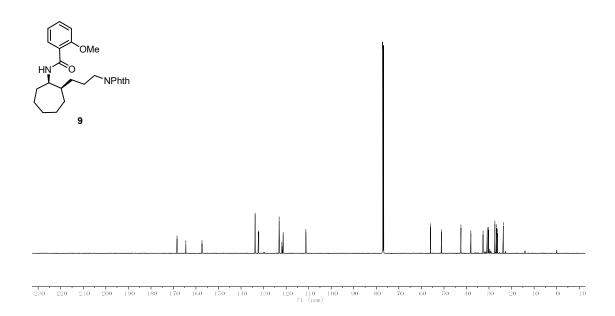


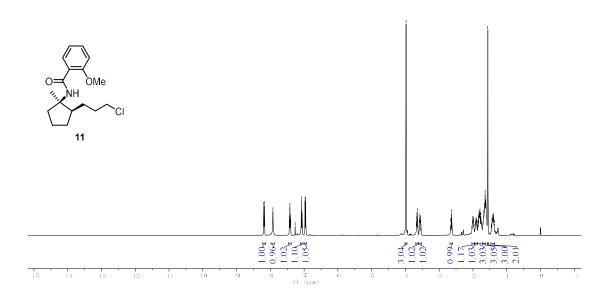




# $^{13}\text{C}$ NMR spectrum (126 MHz, in CDCl<sub>3</sub>):

13.23 13.23 13.23 13.23 13.23 13.23 13.23 13.23 13.23 13.23 13.23 12.10 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23 12

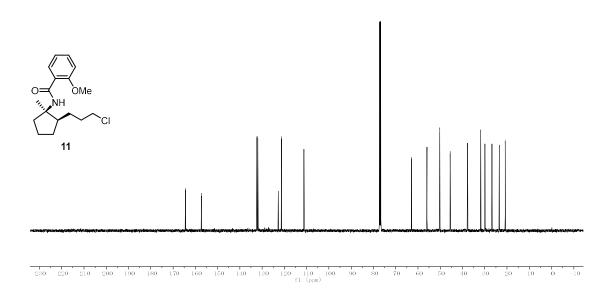


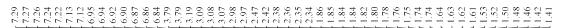


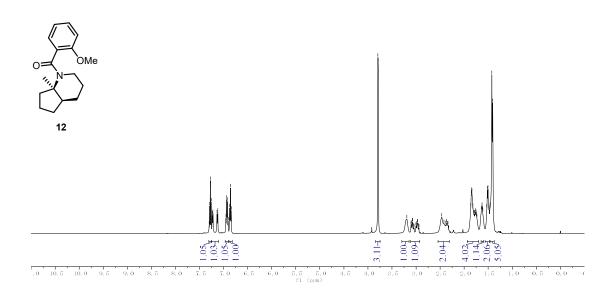




# $^{13}$ C NMR spectrum (151 MHz, in CDCl<sub>3</sub>):



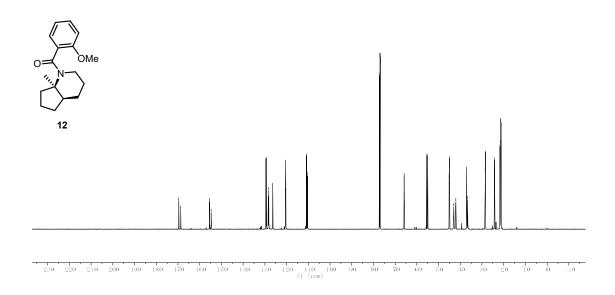


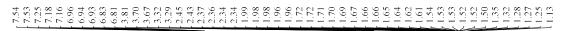



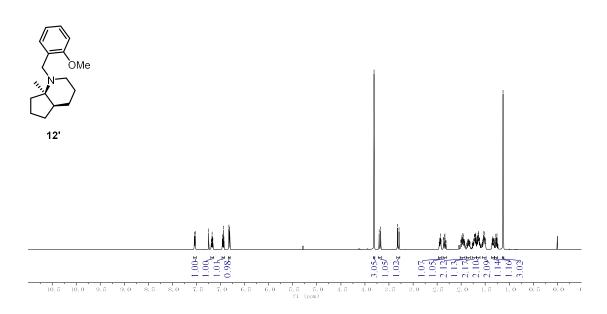




# $^{13}$ C NMR spectrum (126 MHz, in CDCl<sub>3</sub>):

| 132.34 | 131.95 | 121.30 | 121.30 | 131.34 | 131.34 | 131.34 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 131.81 | 1

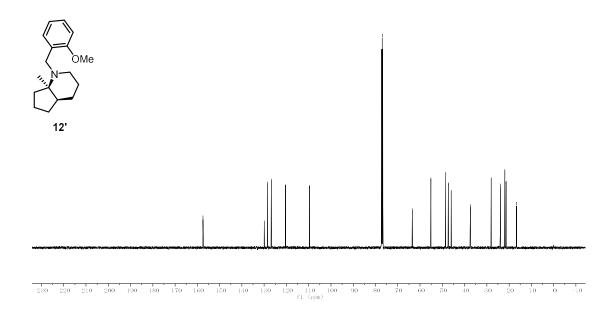


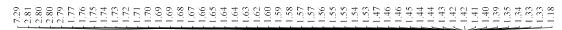

# $^{13}$ C NMR spectrum (151 MHz, in CDCl<sub>3</sub>):

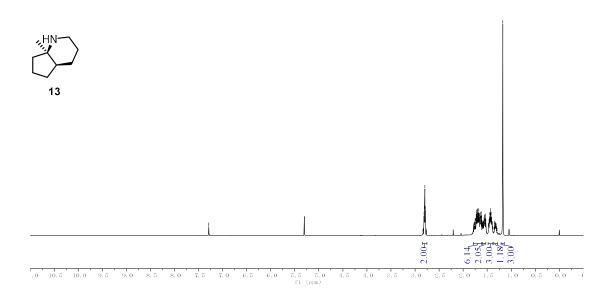




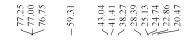


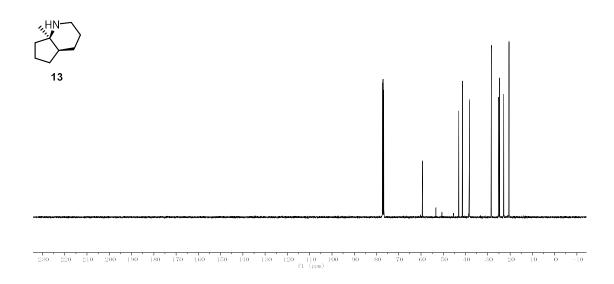


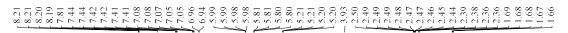


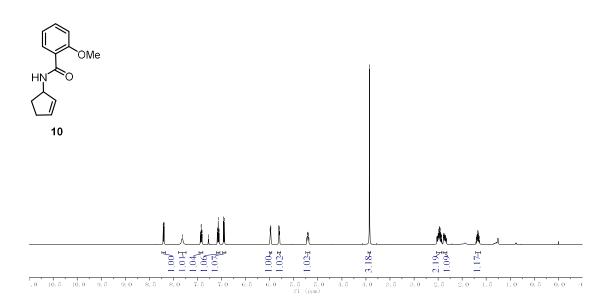


# $^{13}$ C NMR spectrum (126 MHz, in CDCl<sub>3</sub>):

- 157.46 - 129.92 / 126.79 / 126.38 - 109.67 - 109.67 - 63.44 / 77.26 / 77.26 / 77.20 / 76.75 / 78.32 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47 / 48.47

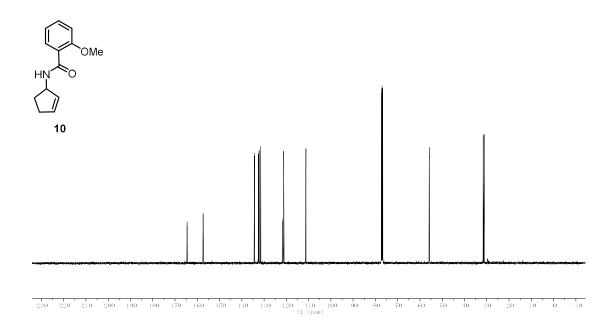


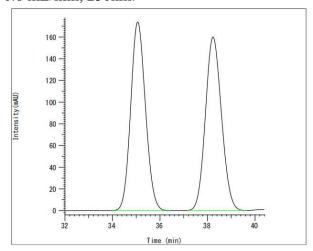

 $^{13}\text{C}$  NMR spectrum (126 MHz, in CDCl<sub>3</sub>):







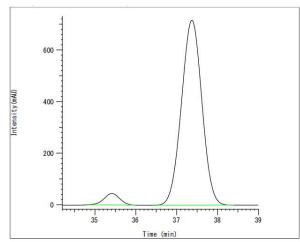




# $^{13}$ C NMR spectrum (126 MHz, in CDCl<sub>3</sub>):



# **HPLC Spectra**

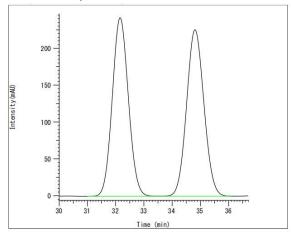
3a


HPLC for analysis of the racemates: 1410 UV Detector, IC column, i-PrOH: hexane = 5:95, 0.8 mL/min, 250nm.



1410 UV Detector Ch1 SampleID:3 LLD-C-29-5 (230nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height | Height% |
|-----|-----------|--------|----------|---------|--------|---------|
| 1   | Peak 1    | 35.060 | 7527353  | 49.996  | 174036 | 52.110  |
| 2   | Peak 2    | 38.230 | 7528411  | 50.004  | 159944 | 47.890  |
|     |           |        | 15055764 | 100.000 | 333980 | 100.000 |


HPLC for analysis of the enantioenriched material: 1410 UV Detector, IC column, i-PrOH: hexane  $= 5:95,\,0.8$  mL/min, 250nm.

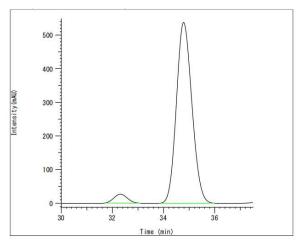


1410 UV Detector Ch1 SampleID:1 LLD-C-29-6 (230nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height | Height% |  |
|-----|-----------|--------|----------|---------|--------|---------|--|
| 1   | Peak 1    | 35.413 | 1200099  | 4.577   | 44530  | 5.848   |  |
| 2   | Peak 2    | 37.373 | 25021838 | 95.423  | 716924 | 94.152  |  |
|     |           |        | 26221937 | 100.000 | 761453 | 100.000 |  |

HPLC for analysis of the racemates: 1410 UV Detector, IC column, i-PrOH: hexane = 5:95, 0.8 mL/min, 250nm.

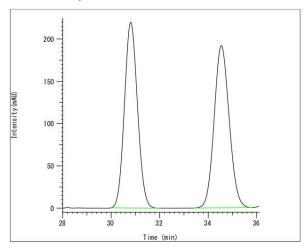



 1410 UV Detector Ch1 SampleID:1 LLD-C-27-3 (230nm) Repeat:1

 No. Compounds
 RT
 Area
 Area%
 Height
 Height

 1 Peak 1
 32 157
 9611777
 49.882
 242177
 51.753

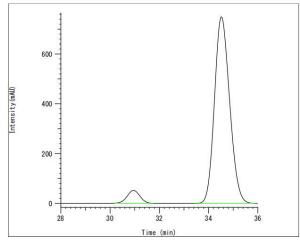
1 Peak 1 32.157 9611777 49.882 242177 51.753
2 Peak 2 34.810 9657170 50.118 225772 48.247
19268947 100.000 467949 100.000


HPLC for analysis of the enantioenriched material: 1410 UV Detector, IC column, i-PrOH: hexane =  $5:95,\,0.8$  mL/min, 250nm.



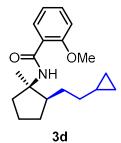
1410 UV Detector Ch1 SampleID:1 LLD-C-27-4 (230nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height | Height% |
|-----|-----------|--------|----------|---------|--------|---------|
| 1   | Peak 1    | 32.313 | 965911   | 4.086   | 26374  | 4.672   |
| 2   | Peak 2    | 34.783 | 22675117 | 95.914  | 538074 | 95.328  |
|     |           |        | 23641028 | 100.000 | 564447 | 100.000 |

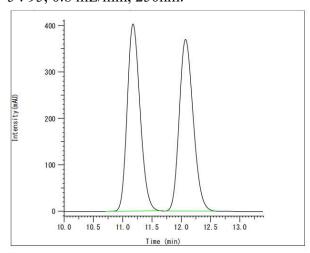

HPLC for analysis of the racemates: 1410 UV Detector, IC column, i-PrOH : hexane =  $5:95,\,0.8$  mL/min, 250nm.



1410 UV Detector Ch1 SampleID:2 LLD-C-29-3 (230nm) Repeat:1


| No. | Compounds | RT     | Area     | Area%   | Height | Height% |
|-----|-----------|--------|----------|---------|--------|---------|
| 1   | Peak 1    | 30.807 | 8200852  | 49.840  | 219429 | 53.374  |
| 2   | Peak 2    | 34.540 | 8253572  | 50.160  | 191685 | 46.626  |
|     |           |        | 16454424 | 100.000 | 411113 | 100.000 |

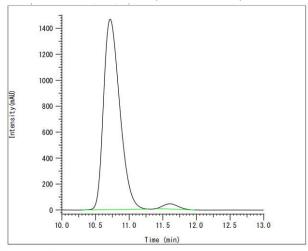
HPLC for analysis of the enantioenriched material: 1410 UV Detector, IC column, i-PrOH: hexane = 5:95, 0.8 mL/min, 250nm.




1410 UV Detector Ch1 SampleID:1 LLD-C-29-4 (230nm) Repeat:1

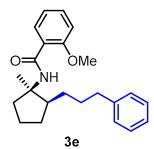
| No. | Compounds | RT     | Area     | Area%   | Height | Height% |
|-----|-----------|--------|----------|---------|--------|---------|
| 1   | Peak 1    | 30.950 | 1853146  | 5.473   | 51630  | 6.446   |
| 2   | Peak 2    | 34.520 | 32003731 | 94.527  | 749389 | 93.554  |
|     |           |        | 33856876 | 100.000 | 801019 | 100.000 |



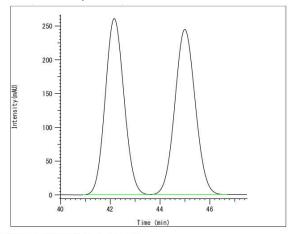

HPLC for analysis of the racemates: 1410 UV Detector, IBN-5 column, i-PrOH: hexane = 5:95, 0.8 mL/min, 250 nm.



1410 UV Detector Ch1 SampleID:1 LLD-C-33-1 (230nm) Repeat:1

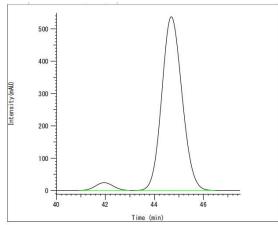

| No. | Compounds | RT     | Area     | Area%   | Height | Height% |  |
|-----|-----------|--------|----------|---------|--------|---------|--|
| 1   | Peak 1    | 11.177 | 6158035  | 50.041  | 403071 | 52.157  |  |
| 2   | Peak 2    | 12.073 | 6147952  | 49.959  | 369739 | 47.843  |  |
|     |           |        | 12305987 | 100.000 | 772810 | 100.000 |  |

HPLC for analysis of the enantioenriched material: 1410 UV Detector, IBN-5 column, i-PrOH: hexane = 5:95, 0.8 mL/min, 250nm.



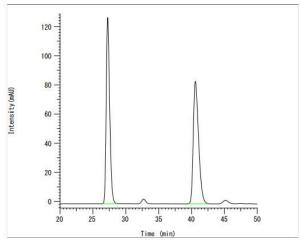

1410 UV Detector Ch1 SampleID:1 LLD-C-33-2 (230nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height  | Height% |
|-----|-----------|--------|----------|---------|---------|---------|
| 1   | Peak 1    | 10.717 | 24599108 | 97.553  | 1467680 | 97.330  |
| 2   | Peak 2    | 11.603 | 617168   | 2.447   | 40261   | 2.670   |
|     |           |        | 25216276 | 100.000 | 1507940 | 100.000 |




HPLC for analysis of the racemates: 1410 UV Detector, IC column, i-PrOH : hexane = 5:95, 0.8 mL/min, 250 nm.

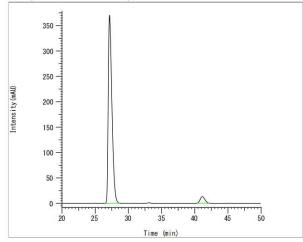



1410 UV Detector Ch1 SampleID:1 LLD-C-22-5 (230nm) Repeat:1 Height% No. Compounds Area% Height 13727637 42.160 49.597 260818 51.639 Peak 1 44.993 13950757 50.403 244258 48.361 27678394 100.000 505075 100.000

HPLC for analysis of the enantioenriched material: 1410 UV Detector, IC column, i-PrOH: hexane =  $5:95,\,0.8$  mL/min, 250nm.

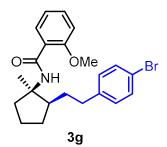


1410 UV Detector Ch1 SampleID:1 LLD-C-22-6 (230nm) Repeat:1 No. Compounds Area% Height Height% Peak 1 41.950 1226415 3.807 24052 4.285 30984776 96.193 537272 95.715 32211190 100.000

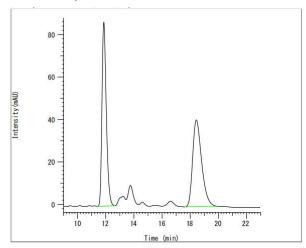

HPLC for analysis of the racemates: 1410 UV Detector, IBN-5 column, EtOH: hexane = 5:95, 0.8 mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-C-23-1 (250nm) Repeat:1


| No | . Compounds | RT     | Area    | Area%   | Height | Height% |
|----|-------------|--------|---------|---------|--------|---------|
| 1  | Peak 1      | 27.243 | 4674742 | 49.860  | 127734 | 60.322  |
| 2  | Peak 2      | 40.587 | 4700914 | 50.140  | 84019  | 39.678  |
|    |             |        | 9375657 | 100.000 | 211753 | 100.000 |

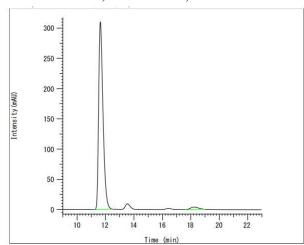
HPLC for analysis of the enantioenriched material: 1410 UV Detector, IBN-5 column, EtOH: hexane =  $5:95,\,0.8$  mL/min, 250nm.




1410 UV Detector Ch1 SampleID:2 LLD-C-23-2 (250nm) Repeat:1

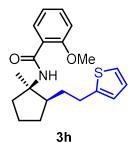
| No. | Compounds | RT     | Area     | Area%   | Height | Height% |  |
|-----|-----------|--------|----------|---------|--------|---------|--|
| 1   | Peak 1    | 27.157 | 14205891 | 95.687  | 370568 | 96.639  |  |
| 2   | Peak 2    | 41.137 | 640334   | 4.313   | 12887  | 3.361   |  |
|     |           |        | 14846225 | 100.000 | 383455 | 100.000 |  |



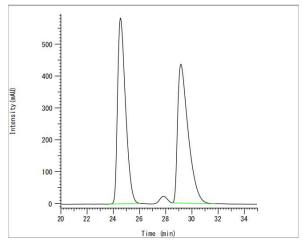

HPLC for analysis of the racemates: 1410 UV Detector, IJ column, EtOH : hexane =  $10:90,\,0.8$  mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-C-33-7 (250nm) Repeat:1


| No | . Compounds | RT     | Area    | Area%   | Height | Height% |  |
|----|-------------|--------|---------|---------|--------|---------|--|
| 1  | Peak 1      | 11.860 | 1848077 | 50.373  | 86703  | 67.922  |  |
| 2  | Peak 2      | 18.437 | 1820736 | 49.627  | 40948  | 32.078  |  |
|    |             |        | 3668813 | 100.000 | 127651 | 100.000 |  |

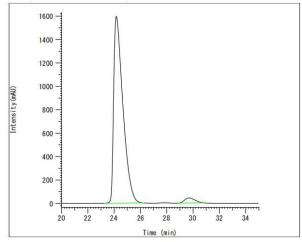
HPLC for analysis of the enantioenriched material: 1410 UV Detector, IJ column, EtOH: hexane = 10: 90, 0.8 mL/min, 250nm.




1410 UV Detector Ch1 SampleID:1 LLD-C-33-8 (250nm) Repeat:1

| No | . Compounds | RT     | Area    | Area%   | Height | Height% |
|----|-------------|--------|---------|---------|--------|---------|
| 1  | Peak 1      | 11.637 | 6585139 | 97.596  | 310405 | 98.675  |
| 2  | Peak 2      | 18.237 | 162226  | 2.404   | 4167   | 1.325   |
|    |             |        | 6747365 | 100.000 | 314572 | 100.000 |

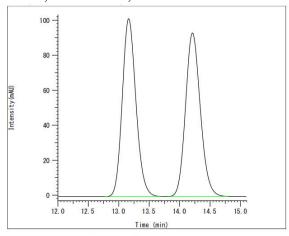



HPLC for analysis of the racemates: 1410 UV Detector, OD-H column, i-PrOH: hexane = 3:97, 0.8 mL/min, 250 nm.



1410 UV Detector Ch1 SampleID:2 LLD-C-23-5 (230nm) Repeat:1

| No. | Compounds | RT     | Area      | Area%   | Height  | Height% |
|-----|-----------|--------|-----------|---------|---------|---------|
| 1   | Peak 1    | 24.547 | 24649100  | 50.202  | 582955  | 57.235  |
| 2   | Peak 2    | 29.157 | 2445 1211 | 49.798  | 435577  | 42.765  |
|     |           |        | 49100311  | 100.000 | 1018532 | 100.000 |


HPLC for analysis of the enantioenriched material: 1410 UV Detector, OD-H column, i-PrOH: hexane = 3:97, 0.8 mL/min, 250nm.



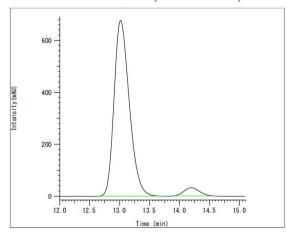
1410 UV Detector Ch1 SampleID:2 LLD-C-23-6 (230nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height  | Height% |
|-----|-----------|--------|----------|---------|---------|---------|
| 1   | Peak 1    | 24.167 | 77821859 | 96.976  | 1596926 | 97.339  |
| 2   | Peak 2    | 29.690 | 2426840  | 3.024   | 43656   | 2.661   |
|     | 7.        |        | 80248700 | 100.000 | 1640582 | 100.000 |

HPLC for analysis of the racemates: 1410 UV Detector, IBN-5 column, EtOH: hexane = 3:97, 0.8 mL/min, 250 nm.

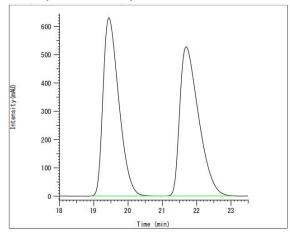


 1410 UV Detector Ch1 SampleID:1 LLD-C-29-1 (250nm) Repeat:1


 No.
 Compounds
 RT
 Area
 Area%
 Height
 Height%

 1
 Peak 1
 13.163
 1591870
 50.137
 101709
 52.105

 2
 Peak 2
 14.210
 1583145
 49.863
 93492
 47.895


 3175015
 100.000
 195201
 100.000

HPLC for analysis of the enantioenriched material: 1410 UV Detector, IBN-5 column, EtOH: hexane = 3:97, 0.8 mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-C-29-2 (250nm) Repeat:1 No. Compounds Area% Height Height% Peak 1 13.017 11965874 95.441 676577 95.528 571612 14.197 4.559 31670 4.472 Peak 2 12537486 100.000 708247 100.000

HPLC for analysis of the racemates: 1410 UV Detector, OD-H column, i-PrOH: hexane = 3:97, 0.8 mL/min, 250nm.

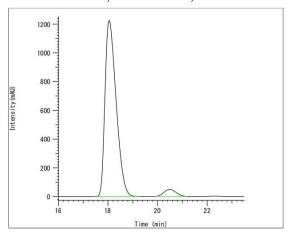


 1410 UV Detector Ch1 SampleID:1 LLD-C-22-3 (230nm) Repeat:1

 No.
 Compounds
 RT
 Area
 Area%
 Height
 Height%

 1
 Peak 1
 19.440
 20170569
 50.055
 630781
 54.453

 2
 Peak 2
 21.693
 20125950
 49.945
 527616
 45.547

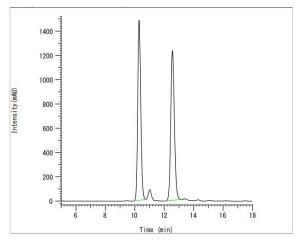

100.000

40296519

HPLC for analysis of the enantioenriched material: 1410 UV Detector, OD-H column, i-PrOH: hexane = 3:97, 0.8 mL/min, 250nm.

1158397

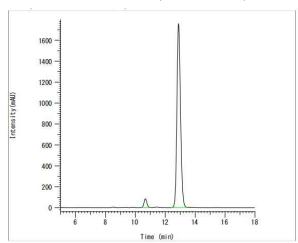
100.000




1410 UV Detector Ch1 SampleID:1 LLD-C-22-4 (230nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height  | Height% |  |
|-----|-----------|--------|----------|---------|---------|---------|--|
| 1   | Peak 1    | 18.047 | 38151178 | 95.764  | 1224110 | 96.097  |  |
| 2   | Peak 2    | 20.480 | 1687715  | 4.236   | 49720   | 3.903   |  |
|     |           |        | 39838893 | 100.000 | 1273830 | 100.000 |  |

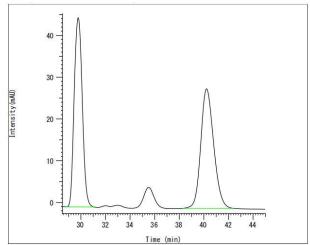
3k


HPLC for analysis of the racemates: 1410 UV Detector, IBN-5 column, i-PrOH: hexane = 7:93, 0.8 mL/min, 250nm.



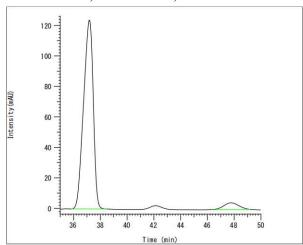
| 1410 UV Detector Ch1 SampleID:1 LLD-C-22-7 (230nm) Rep |
|--------------------------------------------------------|
|--------------------------------------------------------|

| No. | Compounds | RT     | Area     | Area%   | Height  | Height% |
|-----|-----------|--------|----------|---------|---------|---------|
| 1   | Peak 1    | 10.293 | 21176712 | 49.945  | 1485268 | 54.617  |
| 2   | Peak 2    | 12.557 | 21223022 | 50.055  | 1234155 | 45.383  |
|     |           |        | 42399734 | 100.000 | 2719422 | 100.000 |


HPLC for analysis of the enantioenriched material: 1410 UV Detector, IBN-5 column, i-PrOH: hexane = 7:93, 0.8 mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-C-22-8 (230nm) Repeat:1

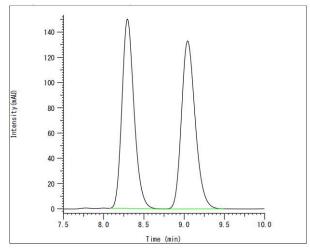

| No. | Compounds | RT     | Area     | Area%   | Height  | Height% |
|-----|-----------|--------|----------|---------|---------|---------|
| 1   | Peak 1    | 10.670 | 1142594  | 3.735   | 84908   | 4.607   |
| 2   | Peak 2    | 12.887 | 29446550 | 96.265  | 1758282 | 95.393  |
|     |           |        | 30589144 | 100.000 | 1843190 | 100.000 |

HPLC for analysis of the racemates: 1410 UV Detector, OJ-H column, EtOH : hexane = 3:97, 0.8 mL/min, 250 nm.




1410 UV Detector Ch1 SampleID:1 LLD-C-33-13 (250nm) Repeat:1 No. Compounds Area% Height Height% 29.787 2076145 49.791 45295 61.244 Peak 1 40.220 2093613 50.209 28663 38.756 Peak 2 4169758 100.000 73958 100.000

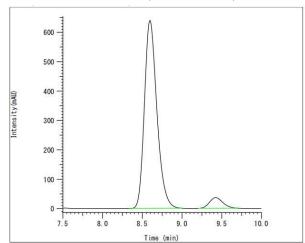
HPLC for analysis of the enantioenriched material: 1410 UV Detector, OJ-H column, EtOH: hexane =  $3:97,\,0.8$  mL/min, 250nm.




1410 UV Detector Ch1 SampleID:1 LLD-C-33-14 (250nm) Repeat:1

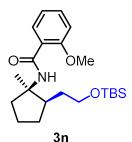
| No. | Compounds | RT     | Area    | Area%   | Height | Height% |
|-----|-----------|--------|---------|---------|--------|---------|
| 1   | Peak 1    | 37.183 | 6231344 | 94.745  | 123917 | 96.563  |
| 2   | Peak 2    | 47.747 | 345635  | 5.255   | 4411   | 3.437   |
|     | ic .      |        | 6576978 | 100.000 | 128328 | 100.000 |



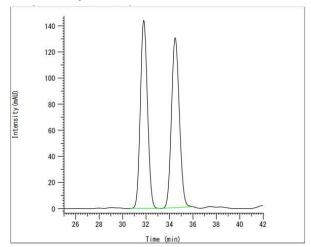

HPLC for analysis of the racemates: 1410 UV Detector, IBN-5 column, EtOH: hexane = 5:95, 0.8 mL/min, 250nm.



1410 UV Detector Ch1 SampleID:2 LLD-C-29-7 (250nm) Repeat:1

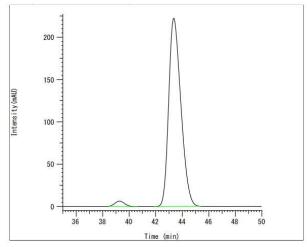

| No. | Compounds | RT    | Area    | Area%   | Height | Height% |
|-----|-----------|-------|---------|---------|--------|---------|
| 1   | Peak 1    | 8.297 | 1574630 | 49.837  | 150063 | 52.996  |
| 2   | Peak 2    | 9.043 | 1584935 | 50.163  | 133095 | 47.004  |
|     |           |       | 3159565 | 100.000 | 283157 | 100.000 |

HPLC for analysis of the enantioenriched material: 1410 UV Detector, IBN-5 column, EtOH: hexane = 5:95, 0.8 mL/min, 250nm.




1410 UV Detector Ch1 SampleID:1 LLD-C-29-8 (250nm) Repeat:1

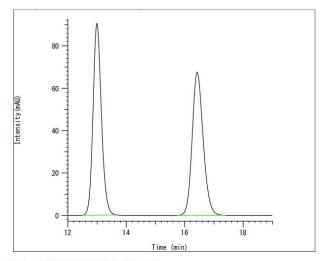
| No. | Compounds | RT    | Area    | Area%   | Height | Height% |
|-----|-----------|-------|---------|---------|--------|---------|
| 1   | Peak 1    | 8.597 | 6981036 | 94.264  | 639641 | 94.623  |
| 2   | Peak 2    | 9,423 | 424809  | 5.736   | 36351  | 5.377   |
|     |           |       | 7405846 | 100.000 | 675992 | 100.000 |




HPLC for analysis of the racemates: 1410 UV Detector, IC column, i-PrOH: hexane = 3:93, 0.8 mL/min, 250nm.



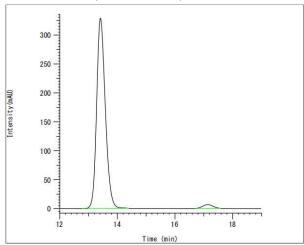
1410 UV Detector Ch1 SampleID:1 LLD-C-33-5 (230nm) Repeat:1 Area% Height Height% No. Compounds 31.800 6112574 49.985 144226 52.556 Peak 1 Peak 2 34.487 6116139 50.015 130197 47.444 12228712 100.000 274422 100.000


HPLC for analysis of the enantioenriched material: 1410 UV Detector, IC column, i-PrOH: hexane = 3:93, 0.8 mL/min, 250nm.



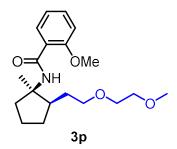
1410 UV Detector Ch1 SampleID:1 LLD-C-33-6 (230nm) Repeat:1 No. Compounds Area% Height% Height Area 324549 39.267 2237 2.782 Peak 1 6363 Peak 2 43.353 14184222 97.763 222375 97.218 100.000 100.000




HPLC for analysis of the racemates: 1410~UV Detector, OJ-H column, EtOH: hexane =  $10:90,\,0.8~\text{mL/min},\,250\text{nm}$ .



1410 UV Detector Ch1 SampleID:2 LLD-C-33-15 (250nm) Repeat:1

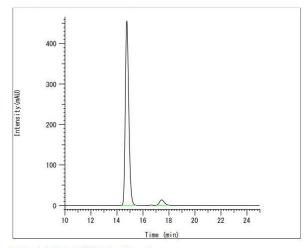

| No. | Compounds | RT     | Area    | Area%   | Height | Height% |
|-----|-----------|--------|---------|---------|--------|---------|
| 1   | Peak 1    | 12.993 | 1810284 | 50.470  | 90488  | 57.237  |
| 2   | Peak 2    | 16.423 | 1776581 | 49.530  | 67604  | 42.763  |
|     |           |        | 3586865 | 100.000 | 158092 | 100.000 |

HPLC for analysis of the enantioenriched material: 1410 UV Detector, OJ-H column, EtOH: hexane = 10: 90, 0.8 mL/min, 250 nm.



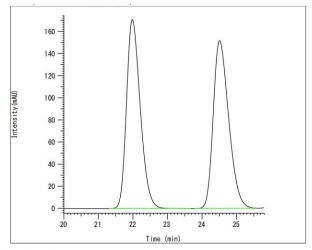
1410 UV Detector Ch1 SampleID:1 LLD-C-33-16 (250nm) Repeat:1

| No. | Compounds | RT     | Area    | Area%   | Height | Height% |
|-----|-----------|--------|---------|---------|--------|---------|
| 1   | Peak 1    | 13.413 | 6877183 | 97.637  | 329011 | 98.023  |
| 2   | Peak 2    | 17.137 | 166441  | 2.363   | 6635   | 1.977   |
|     |           | 3      | 7043624 | 100.000 | 335646 | 100.000 |



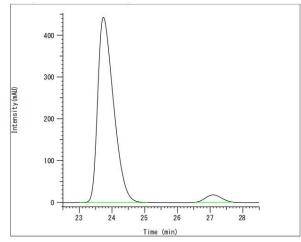

HPLC for analysis of the racemates: 1410 UV Detector, IBN-5 column, EtOH: hexane = 5:95,0.8 mL/min, 250nm.




| No | . Compounds | RT     | Area           | Area%   | Height | Height% |  |
|----|-------------|--------|----------------|---------|--------|---------|--|
| 1  | Peak 1      | 15.253 | 1983190        | 49.952  | 104946 | 58.890  |  |
| 2  | Peak 2      | 18.257 | 18.257 1987001 | 50.048  | 73262  | 41.110  |  |
|    |             |        | 3970191        | 100.000 | 178208 | 100.000 |  |

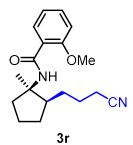
HPLC for analysis of the enantioenriched material: 1410 UV Detector, IBN-5 column, EtOH: hexane = 5:95, 0.8 mL/min, 250nm.



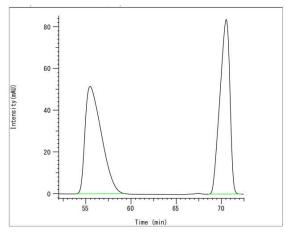

| No | . Compounds | RT     | Area    | Area%   | Height | Height% |  |
|----|-------------|--------|---------|---------|--------|---------|--|
| 1  | Peak 1      | 14.757 | 8493310 | 96.072  | 456116 | 97.149  |  |
| 2  | Peak 2      | 17.437 | 347278  | 3.928   | 13384  | 2.851   |  |
|    |             |        | 8840588 | 100.000 | 469499 | 100.000 |  |

HPLC for analysis of the racemates: 1410 UV Detector, IBN-5 column, EtOH: hexane = 2:98, 0.8 mL/min, 250 nm.




1410 UV Detector Ch1 SampleID:1 LLD-C-24-3 (250nm) Repeat:1 No. Compounds Area% Height Height% 21.983 4726307 50.066 170875 52.974 4713847 151688 24.510 49.934 47.026 9440154 100.000 322563 100.000

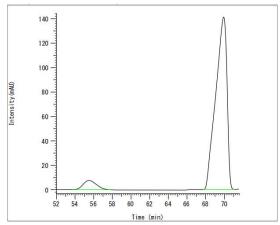
HPLC for analysis of the enantioenriched material: 1410 UV Detector, IBN-5 column, EtOH: hexane = 2:98, 0.8 mL/min, 250nm.




1410 UV Detector Ch1 SampleID:1 LLD-C-24-4 (250nm) Repeat:1

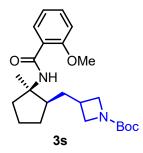
| No. | Compounds | RT     | Area     | Area%   | Height | Height% |
|-----|-----------|--------|----------|---------|--------|---------|
| 1   | Peak 1    | 23.740 | 14876964 | 96.129  | 443107 | 96.149  |
| 2   | Peak 2    | 27.090 | 599149   | 3.871   | 17748  | 3.851   |
|     |           |        | 15476113 | 100.000 | 460855 | 100.000 |



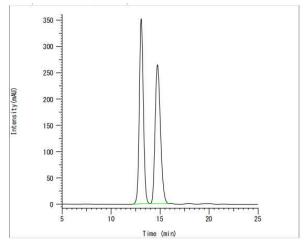

HPLC for analysis of the racemates: 1410 UV Detector, AD-H column, EtOH: hexane = 2:98, 0.8 mL/min, 250 nm.



1410 UV Detector Ch1 SampleID:1 LLD-C-22-1 (250nm) Repeat:1


| No. Compounds | RT     | Area     | Area%   | Height | Height% |
|---------------|--------|----------|---------|--------|---------|
| 1 Peak 1      | 55.470 | 6467108  | 50.239  | 51455  | 38.096  |
| 2 Peak 2      | 70.537 | 6405493  | 49.761  | 83611  | 61.904  |
|               | 1      | 12872601 | 100.000 | 135065 | 100.000 |

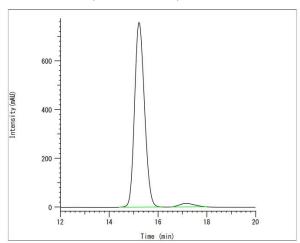
HPLC for analysis of the enantioenriched material: 1410 UV Detector, AD-H column, EtOH: hexane =  $2:98,\,0.8$  mL/min, 250nm.




1410 UV Detector Ch1 SampleID:2 LLD-C-22-2 (250nm) Repeat:1

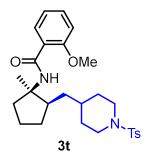
| No | . Compounds | RT     | Area     | Area%   | Height | Height% |  |
|----|-------------|--------|----------|---------|--------|---------|--|
| 1  | Peak 1      | 55.507 | 753134   | 5.996   | 7571   | 5.093   |  |
| 2  | Peak 2      | 69.927 | 11807590 | 94.004  | 141096 | 94.907  |  |
| L  |             |        | 12560724 | 100.000 | 148667 | 100.000 |  |



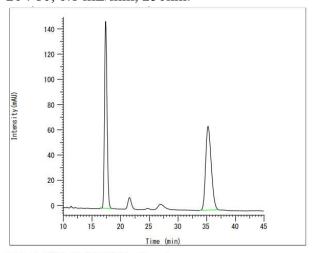

HPLC for analysis of the racemates: 1410~UV Detector, IH column, i-PrOH: hexane =  $7:93,\,0.8~\text{mL/min},\,250\text{nm}$ .



1410 UV Detector Ch1 SampleID:1 LLD-C-24-7 (230nm) Repeat:1

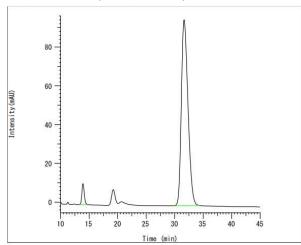

| No. | Compounds | RT         | Area     | Area%   | Height | Height% |  |
|-----|-----------|------------|----------|---------|--------|---------|--|
| 1   | Peak 1    | 13.070     | 10069842 | 50.077  | 352299 | 57.147  |  |
| 2   | Peak 2    | k 2 14.730 | 10038798 | 49.923  | 264175 | 42.853  |  |
|     |           |            | 20108640 | 100.000 | 616475 | 100.000 |  |

HPLC for analysis of the enantioenriched material: 1410 UV Detector, IH column, i-PrOH: hexane = 7:93, 0.8 mL/min, 250nm.




1410 UV Detector Ch1 SampleID:1 LLD-C-Boc (230nm) Repeat:1

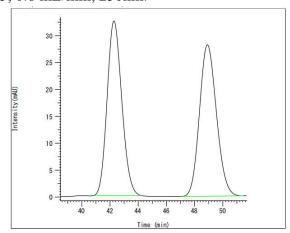
| No. | Compounds | RT     | Area     | Area%   | Height | Height% |
|-----|-----------|--------|----------|---------|--------|---------|
| 1   | Peak 1    | 15.220 | 21381460 | 97.144  | 757934 | 98.139  |
| 2   | Peak 2    | 17.157 | 628551   | 2.856   | 14372  | 1.861   |
|     |           |        | 22010011 | 100.000 | 772306 | 100.000 |




HPLC for analysis of the racemates: 1410 UV Detector, AD-H column, EtOH : hexane =  $20:80,\,0.8$  mL/min, 250nm.



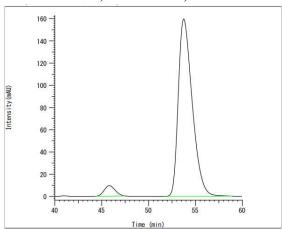
| No | . Compounds | RT     | Area    | Area%   | Height | Height% |  |
|----|-------------|--------|---------|---------|--------|---------|--|
| 1  | Peak 1      | 17.380 | 4542944 | 50.099  | 148290 | 69.033  |  |
| 2  | Peak 2      | 35.237 | 4525072 | 49.901  | 66522  | 30.967  |  |
|    |             |        | 9068016 | 100.000 | 214811 | 100.000 |  |


HPLC for analysis of the enantioenriched material: 1410 UV Detector, AD-H column, EtOH: hexane = 20: 80, 0.8 mL/min, 250 nm.



| No | . Compounds | RT     | Area    | Area%   | Height | Height% |
|----|-------------|--------|---------|---------|--------|---------|
| 1  | Peak 1      | 13.920 | 316488  | 3.929   | 10803  | 10.131  |
| 2  | Peak 2      | 31.653 | 7737914 | 96.071  | 95833  | 89.869  |
|    |             |        | 8054402 | 100.000 | 106637 | 100.000 |

3u

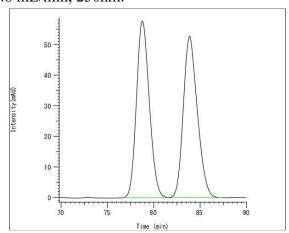

HPLC for analysis of the racemates: 1410 UV Detector, IC column, i-PrOH : hexane =  $25:75,\,0.8$  mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-B-61-3 (250nm) Repeat:1

| No. | Compounds | RT     | Area    | Area%   | Height | Height% |  |
|-----|-----------|--------|---------|---------|--------|---------|--|
| 1   | Peak 1    | 42.277 | 2345442 | 49.872  | 32465  | 53.551  |  |
| 2   | Peak 2    | 48.903 | 2357444 | 50.128  | 28159  | 46.449  |  |
|     |           |        | 4702887 | 100.000 | 60624  | 100.000 |  |

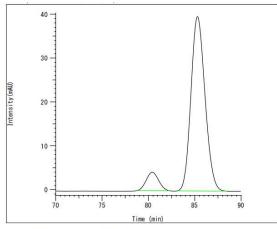
HPLC for analysis of the enantioenriched material: 1410 UV Detector, IC column, i-PrOH: hexane =  $25:75,\,0.8$  mL/min, 250nm.




1410 UV Detector Ch1 SampleID:1 LLD-C-18-7 (250nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height | Height% |
|-----|-----------|--------|----------|---------|--------|---------|
| 1   | Peak 1    | 45.800 | 773659   | 4.479   | 9494   | 5.611   |
| 2   | Peak 2    | 53.747 | 16499805 | 95.521  | 159694 | 94.389  |
| 1   |           |        | 17273463 | 100.000 | 169188 | 100.000 |

3v

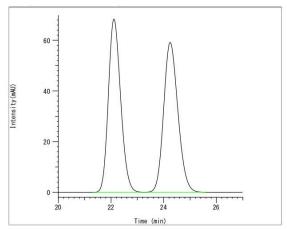

HPLC for analysis of the racemates: 1410 UV Detector, IC column, EtOH : hexane =  $7:93,\,0.8$  mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-B-144-1-IC-7%EtOH (250nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height | Height% |
|-----|-----------|--------|----------|---------|--------|---------|
| 1   | Peak 1    | 78.773 | 5564727  | 50.062  | 57718  | 52,224  |
| 2   | Peak 2    | 83.863 | 5550869  | 49.938  | 52802  | 47.776  |
|     |           | 0      | 11115596 | 100.000 | 110519 | 100.000 |

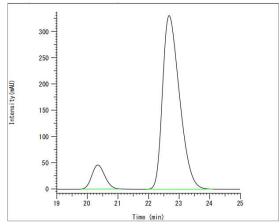
HPLC for analysis of the enantioenriched material: 1410 UV Detector, IC column, EtOH: hexane = 7:93, 0.8 mL/min, 250nm.




1410 UV Detector Ch1 SampleID:3 LLD-C-4-5 (250nm) Repeat:1

| No. | Compounds | RT     | Area    | Area%   | Height | Height% |
|-----|-----------|--------|---------|---------|--------|---------|
| 1   | Peak 1    | 80.403 | 390243  | 8.516   | 4199   | 9.556   |
| 2   | Peak 2    | 85.293 | 4192041 | 91.484  | 39744  | 90.444  |
|     |           |        | 4582284 | 100.000 | 43943  | 100.000 |

3w

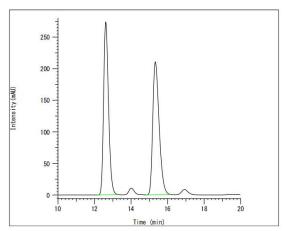

HPLC for analysis of the racemates: 1410 UV Detector, AD-H column, EtOH : hexane =  $7:93,\,0.8$  mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-C-20-5 (250nm) Repeat:1

| No | Compounds | RT     | Area    | Area%   | Height | Height% |
|----|-----------|--------|---------|---------|--------|---------|
| 1  | Peak 1    | 22.110 | 2222905 | 49.922  | 68373  | 53.620  |
| 2  | Peak 2    | 24.243 | 2229895 | 50.078  | 59141  | 46.380  |
|    |           |        | 4452801 | 100.000 | 127514 | 100.000 |

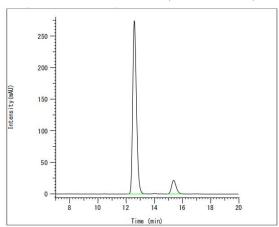
HPLC for analysis of the enantioenriched material: 1410 UV Detector, AD-H column, EtOH: hexane =  $7:93,\,0.8$  mL/min, 250nm.




1410 UV Detector Ch1 SampleID:1 LLD-C-20-6 (250nm) Repeat:1

| No | o. Compounds | RT     | Area     | Area%   | Height | Height% |
|----|--------------|--------|----------|---------|--------|---------|
| 1  | Peak 1       | 20.340 | 1344799  | 9.548   | 45779  | 12.163  |
| 2  | Peak 2       | 22.673 | 12739369 | 90.452  | 330602 | 87.837  |
| Е  |              |        | 14084168 | 100.000 | 376381 | 100.000 |

3x

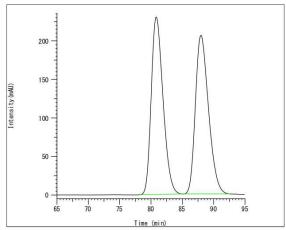

HPLC for analysis of the racemates: 1410 UV Detector, IBN-5 column, i-PrOH : hexane =  $15:85,\,0.8$  mL/min, 250nm.



1410 UV Detector Ch1 SampleID:3 LLD-C-14-5 (250nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height | Height% |
|-----|-----------|--------|----------|---------|--------|---------|
| 1   | Peak 1    | 12.613 | 5115756  | 50.008  | 273863 | 56.527  |
| 2   | Peak 2    | 15.330 | 5114193  | 49.992  | 210620 | 43.473  |
|     |           |        | 10229949 | 100,000 | 484483 | 100,000 |

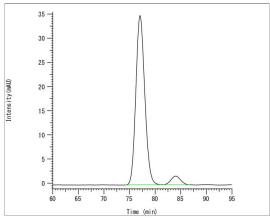
HPLC for analysis of the enantioenriched material: 1410 UV Detector, IBN-5 column, i-PrOH: hexane = 15: 85, 0.8 mL/min, 250nm.




1410 UV Detector Ch1 SampleID:1 LLD-C-14-6 (250nm) Repeat:1

| No. | Compounds | RT     | Area    | Area%   | Height | Height% |
|-----|-----------|--------|---------|---------|--------|---------|
| 1   | Peak 1    | 12.580 | 5073065 | 91.132  | 274236 | 92.685  |
| 2   | Peak 2    | 15.370 | 493686  | 8.868   | 21643  | 7.315   |
|     |           |        | 5566751 | 100.000 | 295879 | 100.000 |

3у

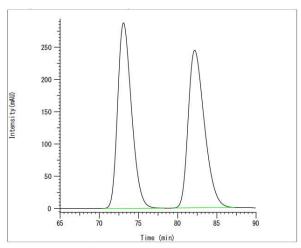

HPLC for analysis of the racemates: 1410 UV Detector, IC column, i-PrOH : hexane =  $10:90,\,0.8$  mL/min, 250nm.



1410 UV Detector Ch1 SampleID:2 LLD-B-144-2 (230nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height | Height% |  |
|-----|-----------|--------|----------|---------|--------|---------|--|
| 1   | Peak 1    | 80.837 | 30127467 | 50.165  | 230231 | 52.796  |  |
| 2   | Peak 2    | 87.967 | 29929519 | 49.835  | 205844 | 47.204  |  |
|     |           |        | 60056986 | 100.000 | 436075 | 100.000 |  |

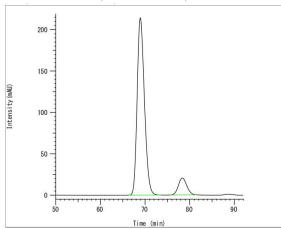
HPLC for analysis of the enantioenriched material: 1410 UV Detector, IC column, i-PrOH: hexane =  $10:90,\,0.8$  mL/min, 250nm.




410 UV Detector Ch1 SampleID:3 LLD-C-4-6 (230nm) Repeat:1

| No | . Compounds | RI      | Area    | Area%   | Height | Height% |  |
|----|-------------|---------|---------|---------|--------|---------|--|
| -  | D. eled     | 77.037  | 4246545 | 94.795  | 35037  | 95.137  |  |
| 1  | Peak 1      | 1000000 |         |         |        |         |  |
| 2  | Peak 2      | 84.023  | 233180  | 5.205   | 1791   | 4.863   |  |
|    |             |         | 4479725 | 100.000 | 36828  | 100.000 |  |

3z

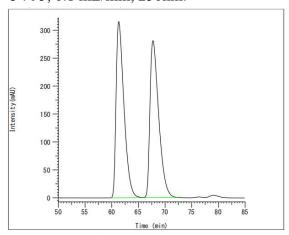

HPLC for analysis of the racemates: 1410 UV Detector, IC column, i-PrOH : hexane =  $10:90,\,0.8$  mL/min, 250nm.



1410 UV Detector Ch1 SampleID:3 LLD-B-144-3 (230nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height | Height% |  |
|-----|-----------|--------|----------|---------|--------|---------|--|
| 1   | Peak 1    | 73.087 | 35385335 | 50.107  | 287647 | 54.059  |  |
| 2   | Peak 2    | 82.170 | 35233951 | 49.893  | 244453 | 45.941  |  |
|     |           |        | 70619286 | 100.000 | 532100 | 100.000 |  |

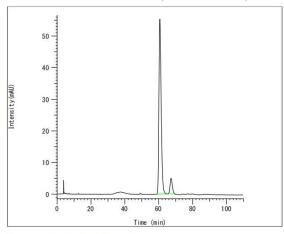
HPLC for analysis of the enantioenriched material: 1410 UV Detector, IC column, i-PrOH: hexane =  $10:90,\,0.8$  mL/min, 250nm.




1410 UV Detector Ch1 SampleID:4 LLD-C-4-7 (230nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height | Height% |
|-----|-----------|--------|----------|---------|--------|---------|
| 1   | Peak 1    | 68.937 | 24226899 | 90.032  | 214217 | 91.266  |
| 2   | Peak 2    | 78.327 | 2682256  | 9.968   | 20501  | 8.734   |
|     |           |        | 26909154 | 100.000 | 234718 | 100.000 |

3aa

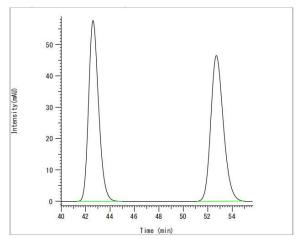

HPLC for analysis of the racemates: 1410 UV Detector, IBN-5 column, i-PrOH : hexane =  $5:95,\,0.8$  mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-C-14-3 (230nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height | Height% |  |
|-----|-----------|--------|----------|---------|--------|---------|--|
| 1   | Peak 1    | 61.313 | 32414450 | 50.250  | 315416 | 52.894  |  |
| 2   | Peak 2    | 67.727 | 32092340 | 49.750  | 280902 | 47.106  |  |
|     |           |        | 64506790 | 100.000 | 596318 | 100.000 |  |

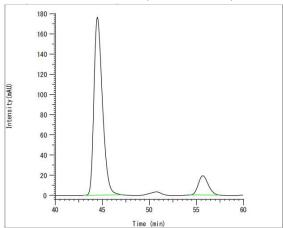
HPLC for analysis of the enantioenriched material: 1410 UV Detector, IBN-5 column, i-PrOH: hexane = 5:95, 0.8 mL/min, 250nm.




1410 UV Detector Ch1 SampleID:2 LLD-C-14-4 (230nm) Repeat:1

| No. | Compounds | RT     | Area    | Area%   | Height | Height% |
|-----|-----------|--------|---------|---------|--------|---------|
| 1   | Peak 1    | 60.657 | 5111855 | 91.787  | 55385  | 91.905  |
| 2   | Peak 2    | 67.290 | 457432  | 8.213   | 4878   | 8.095   |
|     |           |        | 5569286 | 100.000 | 60263  | 100.000 |

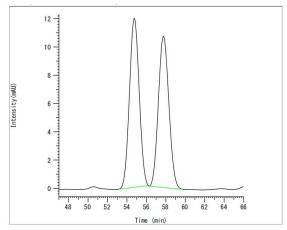
3ab


HPLC for analysis of the racemates: 1410 UV Detector, IBN-5 column, EtOH: hexane = 4:96, 0.8 mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-C-11-7 (250nm) Repeat:1

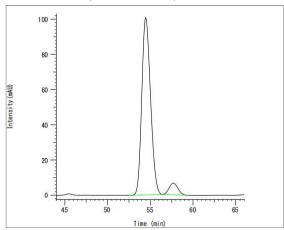
| No. | Compounds | RT     | Area    | Area%   | Height | Height% |  |
|-----|-----------|--------|---------|---------|--------|---------|--|
| 1   | Peak 1    | 42.607 | 3288442 | 49.681  | 57724  | 55.378  |  |
| 2   | Peak 2    | 52.703 | 3330703 | 50.319  | 46511  | 44.622  |  |
|     |           |        | 6619145 | 100.000 | 104235 | 100.000 |  |


HPLC for analysis of the enantioenriched material: 1410 UV Detector, IBN-5 column, EtOH: hexane = 4:96, 0.8 mL/min, 250nm.



| No. | Compounds | RT     | Area     | Area%   | Height | Height% |
|-----|-----------|--------|----------|---------|--------|---------|
| 1   | Peak 1    | 44.473 | 11094172 | 88.755  | 176459 | 90.204  |
| 2   | Peak 2    | 55.670 | 1405659  | 11.245  | 19164  | 9.796   |
|     |           |        | 12499831 | 100,000 | 195623 | 100.000 |

3ac

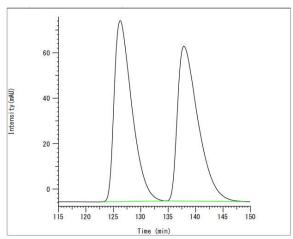

HPLC for analysis of the racemates: 1410 UV Detector, IC column, EtOH: hexane = 7:93, 0.8 mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-C-4-9 (250nm) Repeat:1

| No. | Compounds | RT     | Area    | Area%   | Height | Height% |  |
|-----|-----------|--------|---------|---------|--------|---------|--|
| 1   | Peak 1    | 54.760 | 835123  | 50.884  | 11960  | 52.736  |  |
| 2   | Peak 2    | 57.757 | 806106  | 49.116  | 10719  | 47.264  |  |
|     |           |        | 1641229 | 100.000 | 22679  | 100.000 |  |

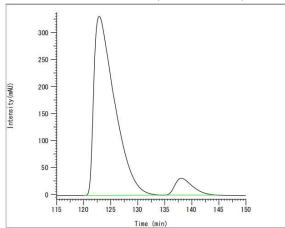
HPLC for analysis of the enantioenriched material: 1410 UV Detector, IC column, EtOH: hexane = 7:93, 0.8 mL/min, 250nm.




410 UV Detector Ch1 SampleID:3 LLD-C-4-8 (250nm) Repeat:1

| No. Compounds | RT     | Area    | Area%   | Height | Height% |
|---------------|--------|---------|---------|--------|---------|
| Peak 1        | 54.460 | 7192820 | 93.819  | 100671 | 93.857  |
| Peak 2        | 57.697 | 473908  | 6.181   | 6590   | 6.143   |
| 8             |        | 7666728 | 100.000 | 107261 | 100,000 |

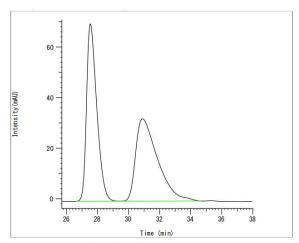
3ad


HPLC for analysis of the racemates: 1410 UV Detector, IBN-5 column, i-PrOH: hexane = 5 : 95, 0.8 mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-C-14-1 (230nm) Repeat:1

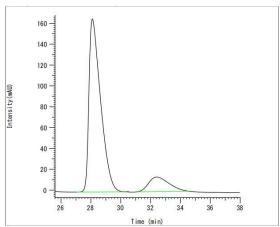
| No. | Compounds | RT      | Area     | Area%   | Height | Height% |
|-----|-----------|---------|----------|---------|--------|---------|
| 1   | Peak 1    | 126.260 | 17884750 | 50.095  | 79666  | 53.873  |
| 2   | Peak 2    | 137.873 | 17817110 | 49.905  | 68211  | 46.127  |
|     |           |         | 35701859 | 100.000 | 147877 | 100.000 |


HPLC for analysis of the enantioenriched material: 1410 UV Detector, IBN-5 column, i-PrOH: hexane = 5:95, 0.8 mL/min, 250nm.



| No. Compounds | RT      | Area     | Area%   | Height | Height% |
|---------------|---------|----------|---------|--------|---------|
| 1 Peak 1      | 122.860 | 88691057 | 92.574  | 331517 | 91.403  |
| 2 Peak 2      | 138.047 | 7114196  | 7.426   | 31181  | 8.597   |
|               |         | 05805252 | 100,000 | 363608 | 100,000 |

3ae

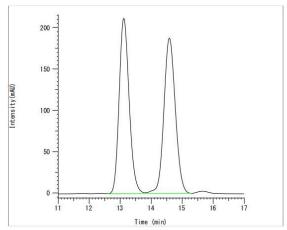

HPLC for analysis of the racemates: 1410 UV Detector, IA column, EtOH : hexane =  $15:85,\,0.8$  mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-C-11-3 (250nm) Repeat:1

| No. | Compounds | RT     | Area    | Area%   | Height | Height% |  |
|-----|-----------|--------|---------|---------|--------|---------|--|
| 1   | Peak 1    | 27.537 | 3211706 | 50.125  | 70110  | 68.279  |  |
| 2   | Peak 2    | 30.900 | 3195687 | 49.875  | 32572  | 31.721  |  |
|     |           |        | 6407394 | 100.000 | 102683 | 100.000 |  |

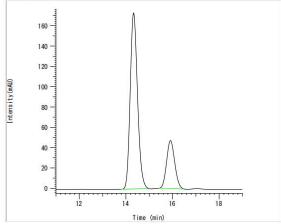
HPLC for analysis of the enantioenriched material: 1410 UV Detector, IA column, EtOH: hexane = 15: 85, 0.8 mL/min, 250nm.




1410 UV Detector Ch1 SampleID:1 LLD-C-11-4 (250nm) Repeat:1

| No. | Compounds | RT     | Area     | Area%   | Height | Height% |
|-----|-----------|--------|----------|---------|--------|---------|
| 1   | Peak 1    | 28.100 | 8988422  | 87.108  | 165987 | 92.220  |
| 2   | Peak 2    | 32.413 | 1330309  | 12.892  | 14003  | 7.780   |
|     |           |        | 10318731 | 100.000 | 179990 | 100,000 |

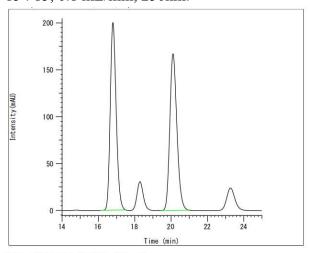
3af


HPLC for analysis of the racemates: 1410 UV Detector, AS-H column, EtOH : hexane =  $7:93,\,0.8$  mL/min, 250nm.



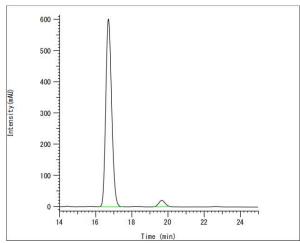
1410 UV Detector Ch1 SampleID:1 LLD-C-11-5 (250nm) Repeat:1

| No. | Compounds | RT     | Area    | Area%   | Height | Height% |
|-----|-----------|--------|---------|---------|--------|---------|
| 1   | Peak 1    | 13.113 | 4762391 | 49.660  | 212049 | 53.024  |
| 2   | Peak 2    | 14.587 | 4827631 | 50.340  | 187862 | 46.976  |
|     |           |        | 9590022 | 100.000 | 399911 | 100.000 |


HPLC for analysis of the enantioenriched material: 1410 UV Detector, AS-H column, EtOH: hexane =  $7:93,\,0.8$  mL/min, 250nm.



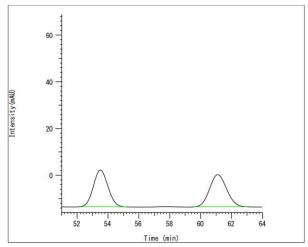
1410 UV Detector Ch1 SampleID:1 LLD-C-11-6 (250nm) Repeat:1


| No. | Compounds | RT       | Area                 | Area%   | Height | Height% |
|-----|-----------|----------|----------------------|---------|--------|---------|
| 1   | Peak 1    | 14.330   | 3775027              | 76.742  | 173312 | 78.572  |
| 2   | Peak 2    | 2 15.910 | ak 2 15.910 11.44107 | 23.258  | 47264  | 21.428  |
|     |           |          | 4919134              | 100.000 | 220576 | 100.000 |

HPLC for analysis of the racemates: 1410 UV Detector, IBN-5 column, EtOH : hexane =  $15:85,\,0.8$  mL/min, 250nm.



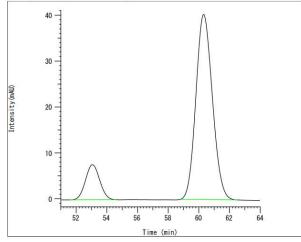
1410 UV Detector Ch1 SampleID:1 LLD-C-41-1 (250nm) Repeat:1 No. Compounds Area% Height Height% 16.800 4524567 49.911 200273 54.507 Peak 1 20.107 Peak 2 4540640 50.089 167153 45.493 9065206 100.000 367426 100.000


HPLC for analysis of the enantioenriched material: 1410 UV Detector, IBN-5 column, EtOH: hexane = 15: 85, 0.8 mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-C-41-2 (250nm) Repeat:1

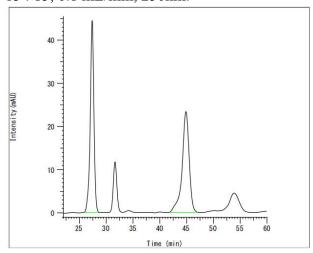
| No. | Compounds | RT     | Area     | Area%   | Height | Height% |
|-----|-----------|--------|----------|---------|--------|---------|
| 1   | Peak 1    | 16.707 | 13640492 | 96.582  | 602228 | 96.812  |
| 2   | Peak 2    | 19.660 | 482793   | 3.418   | 19832  | 3.188   |
|     |           |        | 14123285 | 100.000 | 622060 | 100.000 |


HPLC for analysis of the racemates: 1410~UV Detector, IC column, EtOH: hexane =  $15:85,\,0.8~\text{mL/min},\,250\text{nm}$ .



1410 UV Detector Ch1 SampleID:1 LLD-C-41-4 (250nm) Repeat:1

| No. | Compounds | RT     | Area    | Area%   | Height | Height% |
|-----|-----------|--------|---------|---------|--------|---------|
| 1   | Peak 1    | 53.507 | 1035113 | 49.470  | 15761  | 53.359  |
| 2   | Peak 2    | 61.103 | 1057300 | 50.530  | 13777  | 46.641  |
|     |           |        | 2092412 | 100.000 | 29537  | 100.000 |


HPLC for analysis of the enantioenriched material: 1410 UV Detector, IC column, EtOH: hexane = 15: 85, 0.8 mL/min, 250nm.



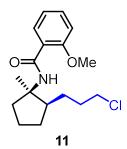
1410 UV Detector Ch1 SampleID:5 LLD-C-60-5 (250nm) Repeat:1

| No. | Compounds | RT     | Area    | Area%   | Height | Height% |
|-----|-----------|--------|---------|---------|--------|---------|
| 1   | Peak 1    | 53.060 | 495037  | 14.076  | 7659   | 15.951  |
| 2   | Peak 2    | 60.313 | 3021925 | 85.924  | 40356  | 84.049  |
|     |           |        | 3516961 | 100.000 | 48015  | 100.000 |

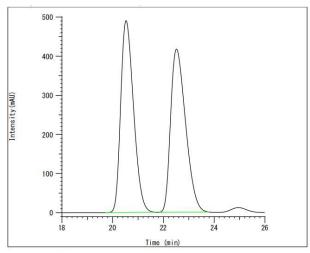

HPLC for analysis of the racemates: 1410 UV Detector, OD-H column, EtOH : hexane = 15:85,0.8 mL/min, 250nm.



1410 UV Detector Ch2 SampleID:1 LLD-C-47-1 (250nm) Repeat:1


| No. | Compounds | RT     | Area    | Area%   | Height | Height% |  |
|-----|-----------|--------|---------|---------|--------|---------|--|
| 1   | Peak 1    | 27.370 | 2124169 | 49.880  | 44452  | 65.569  |  |
| 2   | Peak 2    | 44.873 | 2134396 | 50.120  | 23342  | 34.431  |  |
|     |           |        | 4258565 | 100.000 | 67794  | 100.000 |  |

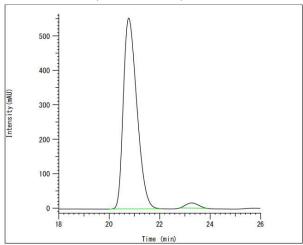
HPLC for analysis of the enantioenriched material: 1410 UV Detector, OD-H column, EtOH: hexane = 15: 85, 0.8 mL/min, 250nm.




1410 UV Detector Ch2 SampleID:6 LLD-C-57-6 (250nm) Repeat:1

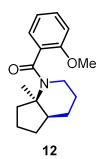
| No. Co | ompounds | RT     | Area    | Area%   | Height | Height% |
|--------|----------|--------|---------|---------|--------|---------|
| 1 Pe   | eak 1    | 30.480 | 3228995 | 79.133  | 76211  | 87.403  |
| 2 Pe   | eak 2    | 55.887 | 851470  | 20.867  | 10984  | 12.597  |
|        |          |        | 4080465 | 100.000 | 87195  | 100.000 |



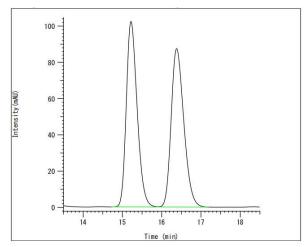

HPLC for analysis of the racemates: 1410 UV Detector, OD-H column, i-PrOH : hexane =  $3:97,\,0.8$  mL/min, 250nm.



1410 UV Detector Ch1 Samplel D:1 LLD-C-Cl-XIAO (230nm) Repeat:1


| No | . Compounds | RT     | Area     | Area%   | Height | Height% |
|----|-------------|--------|----------|---------|--------|---------|
| 1  | Peak 1      | 20.527 | 17239612 | 50.186  | 490507 | 54.043  |
| 2  | Peak 2      | 22.513 | 17111871 | 49.814  | 417112 | 45.957  |
|    |             |        | 34351483 | 100.000 | 907618 | 100.000 |

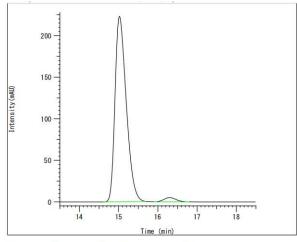
HPLC for analysis of the enantioenriched material: 1410 UV Detector, OD-H column, i-PrOH: hexane = 3:97, 0.8 mL/min, 250nm.




1410 UV Detector Ch1 SampleID:1 Cl (230nm) Repeat:1

| No. Compounds | RT     | Area     | Area%   | Height | Height% |
|---------------|--------|----------|---------|--------|---------|
| 1 Peak 1      | 20.773 | 20647580 | 97.514  | 553938 | 97.351  |
| 2 Peak 2      | 23.267 | 526435   | 2.486   | 15076  | 2.649   |
|               |        | 21174015 | 100.000 | 569014 | 100.000 |




HPLC for analysis of the racemates: 1410 UV Detector, IBN-5 column, EtOH : hexane =  $3:97,\,0.8$  mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-5&6-XX-IBN5-3%EtOH (250nm) Repeat:1

| No. Compounds | RT     | Area    | Area%   | Height | Height% |
|---------------|--------|---------|---------|--------|---------|
| 1 Peak 1      | 15.217 | 1963136 | 50.046  | 102303 | 53.934  |
| 2 Peak 2      | 16.380 | 1959511 | 49.954  | 87378  | 46.066  |
|               |        | 3922647 | 100.000 | 189682 | 100.000 |

HPLC for analysis of the enantioenriched material: 1410 UV Detector, IBN-5 column, EtOH: hexane = 3:97, 0.8 mL/min, 250nm.



1410 UV Detector Ch1 SampleID:1 LLD-5&6-SX-IBN5-3%EtOH (250nm) Repeat:1

| No. | Compounds | RT     | Area    | Area%   | Height | Height% |
|-----|-----------|--------|---------|---------|--------|---------|
| 1   | Peak 1    | 15.020 | 4442154 | 97.576  | 222881 | 97.755  |
| 2   | Peak 2    | 16.297 | 110354  | 2.424   | 5120   | 2.245   |
|     |           |        | 4552508 | 100.000 | 228001 | 100.000 |