Supplementary Information (SI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2025

Supporting Information

A General Protocol for Efficient Construction of Perfluoro-tert-butyl Alkynes with (Perfluoro-tert-butyl)propiolic Acid

Zhiqiang Wei, Guangxing Gu, Wei Zhang, Yanchuan Zhao*, and Jinbo Hu*

E-mail: jinbohu@sioc.ac.cn; zhaoyanchuan@sioc.ac.cn

[†] State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.

Table of Contents

1. General Information	S3
2. Synthesis of 1,1-Dibromo-2,2-bis(trifluoromethyl)ethylene (DBBF)	S4
3. Attempted Perfluoro-tert-butylation Reactions	S6
4. Synthesis of (Perfluoro-tert-butyl)propiolic Acid (PFtPA)	S7
5. Optimization of the Reaction Conditions	S9
6. (Perfluoro-tert-butyl)ethynylation of Halides and Triflates	
with (Perfluoro-tert-butyl)propiolic Acid (PFtPA)	S10
7. The X-ray crystal structure of Compound 94	S59
8. Preparation of Building Blocks and Probes Containing (Perfluoro-te	<i>rt</i> -butyl)-
ethynylated Arenes	S69
9. ¹ H, ¹⁹ F and ¹³ C NMR Spectra of Isolated Compounds	S74

1. General Information

Unless otherwise mentioned, all solvents and reagents were purchased from commercial sources and used without further purification. Benzonitrile, Dimethyl Sulfoxide (DMSO) and N,N-dimethyl formamide (DMF) were dried by passing through a solvent purification system. 1 H NMR spectra were recorded at 400 MHz. 19 F NMR spectra were recorded at 376 MHz. 13 C NMR spectra were recorded at 101 MHz. 1 H NMR chemical shifts were determined relative to internal (CH₃)₄Si (TMS) at δ 0.00 ppm or to the signal of the residual protonated solvent: CDCl₃ at δ 7.26 ppm. 19 F NMR chemical shifts were determined relative to internal or external CFCl₃ at δ 0.00 ppm. 13 C NMR chemical shifts were determined relative to the signal of the solvent: CDCl₃ at δ 77.16 ppm. Data for 1 H, 13 C, 19 F NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, qt = quartet of triplets, tq = triplet of quartets, br = broad). Mass spectra were obtained on a mass spectrometer. High-resolution mass data were recorded on a high-resolution mass spectrometer.

2. Synthesis of 1,1-Dibromo-2,2-bis(trifluoromethyl)ethylene (DBBF)

Typical Procedure

Under dry argon atmosphere, to a 2.0-L three necked flask (I) were added PPh₃ (1.0 mol, 262 g, 2.0 equiv) and 0.9 L dry benzeneacetonitrile. The mixture was stirred at −20 °C followed by addition of CBr₄ (166 g, 0.5 mol, 1.0 equiv) in five batches, and the reaction was stirred at −20 °C until the solids completely disappear. Next the reaction mixture was cooled to −98 °C. Then three necked flask (I) was vacuumed and sealed. Under dry argon atmosphere, to a 500-mL three necked flask (II) was added concentrated (98% aq.) H₂SO₄ (300 mL). Then the three necked flask (II) was evacuated for several seconds and connected with tube (I). Gaseous hexafluoroacetone was generated and passed through a gas-guide tube into tube (I) by adding hexafluoroacetone trihydrate (100 g, 0.6 mol, 1.2 equiv) cautiously to the tube (II) for

about an hour (Make sure that the three necked flask (I) is below –98 °C during this time). When the addition was complete, gaseous hexafluoroacetone was passed for further 10 min. Then three necked flask (II) was sealed, and warmed up by water bath to room temperature. After stirring for 1 hours at room temperature, the mixture was filtered through a pad of CELITE® and washed with PhCN (50 mL). The crude mixture was distilled and collected from the filtrate. The distillate was redistilled at 45 °C/50 torr, collecting the desired product **DBBF** as a colorless liquid (115 g, 71% yield).

1,1-Dibromo-2,2-Bis(trifluoromethyl)ethylene (**DBBF**): ¹⁹**F NMR** (376 MHz, CDCl3): δ – 59.15 (s, 6F). ¹³**C NMR** (101 MHz, CDCl₃): δ 126.7 (sept, J = 33.1 Hz), 120.5 (q, J = 279.5 Hz), 110.1 (p, J = 3.1 Hz).

3. Attempted Perfluoro-tert-butylation Reactions

$$F_{3}C \xrightarrow{CF_{3}} + CsF \xrightarrow{DMF, RT, 1 h} \xrightarrow{CuBr} F_{3}C \xrightarrow{CF_{3}} \xrightarrow{Ph = 1} F_{3}C \xrightarrow{F_{3}} \xrightarrow{Ph = 1} F_{3}C \xrightarrow{F_{3}} \xrightarrow{$$

Typical procedures

To four sealed tubes were added CsF (0.66 mmol, 100.3 mg, 6.6 equiv), DBBF (0.20 mmol, 64.4 mg, 2.0 equiv) and DMF (2 mL). The mixture was stirred at room temperature for 1 h, then CuBr, penylacetylene or 1-iodophenylacetylene were added respectively, and then mixtures were stirred under their respective conditions. After the reaction completed, no desired product was generated.

4. Synthesis of (Perfluoro-tert-butyl)propiolic Acid (PFtPA)

4.1 Synthesis of benzyl 5,5,5-trifluoro-4,4-bis(trifluoromethyl)

pent-2-ynoate (PBtBP)

Br COOBn +
$$F_3C$$
 CF_3 CsF, DMF $F_3C)_3C$ COOBn

BBP DBBF 100 mmol 150.0 mmol 33.9 g, 90%

Typical Procedures

To a 500-mL three-neck flask, CsF (500 mmol, 76.0 g, 5.0 equiv) was added in glove box, then anhydrous DMF (300 mL) and **DBBF** (150 mmol, 48.3 g, 1.5 equiv) were added. The solution was stirred at room temperature for 30 min. Then **BBP** (100 mmol, 23.9 g, 1.0 equiv) was added to this solution. The solution was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was quenched by saturated NH₄Cl solution, then the mixture was extracted with Et₂O for 3 times. The organic phase was combined and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel by using a 50 : 1 mixture of PE/EA as an eluent to provide **PFtBP** as colorless liquid (33.9 g, 90%).

Benzyl 5,5,5-trifluoro-4,4-bis(trifluoromethyl)pent-2-ynoate (PFtBP). ¹H NMR (400 MHz, CDCl₃): δ 7.42 – 7.40 (m, 5H), 5.27 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.66 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 148.8, 131.9, 127.1, 126.9, 126.8, 117.7 (q, J = 290.5 Hz), 78.9, 66.9, 65.0, 55.1 (m). HRMS (EI): Calcd for C₁₄H₇F₉O₂⁺ (M⁺) 378.0297, found 378.0298.

4.2. Synthesis of (Perfluoro-tert-butyl) propiolic acid (PFtPA)

$$(CF_3)_3C$$
 — COOBn + KOH — $(CF_3)_3C$ — COOH THF/H₂O RT, 10 min then, HCI (3 M) PFtPA, 17.5 g, 87%

Typical Procedures

To a 500 mL flask, KOH (140 mmol, 7.8 g, 2.0 equiv), THF (140 mL) and H₂O (70 mL) were added, then **PFtBP** (70 mmol, 26.5 g, 1.0 equiv) were added. The solution was stirred at room temperature for 10 min. The THF was removed under reduced pressure and adding water to make the pH of the solution is 14. Then the mixture was extracted with DCM (100 mL) for 5 times. The aqueous was added 3M HCl solution to make the pH of the solution is 1. Then the mixture was extracted with Et₂O for 3 times and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure to provide **PFtPA** as light yellow liquid (17.5 g, 87%).

(Perfluoro-*tert*-butyl)propiolic acid (PFtPA). ¹H NMR (400 MHz, CDCl₃): δ =7.95 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 66.61 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 153.4, 119.6 (q, J = 290.6 Hz), 80.4, 68.4, 57.0 (m). HRMS (EI): Calcd for C₇HF₉O₂⁺ (M⁺) 287.9827, found 287.9832.

5. Optimization of the Reaction Conditions

Typical procedures for optimization of the reaction conditions^[a]

Under dry N₂ atmosphere, to sealed tube were added **S1** (0.30 mmol, 84.0 mg, 1.0 equiv), Pd(PPh₃)₂Cl₂ (0.015 mmol, 10.5 mg, 0.05 equiv), CuI (0.015 mmol, 2.9 mg, 0.05 equiv), DIPEA (0.6 mmol, 77.4 mg, 0.2 equiv), dry DMF (3.00 mL) were added. then, **PFtPA** (0.36 mmol, 103.4 mg, 1.2 equiv) were added. The mixture was stirred at 100 °C for 12 h.

Cul/Pd(PPh₃)₂Cl₂

5%

60

12

>99

DIPEA

 $14^{[d]}$

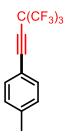
DMF

[[]a] Reaction conditions: **S1** (0.3 mmol, 1.0 equiv), PFtPA (0.36 mmol), solvent (3.0 mL). [b] Determined by ¹⁹F NMR spectroscopy. [c] 1-iodo-4-methoxybenzene was used.

[[]d] 1-iodo-4-(trifluoromethyl)benzene was used. DIPEA is diisopropylethylamine.

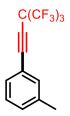
6. (Perfluoro-tert-butyl)ethynylation of Halides and Triflates with (Perfluoro-tert-butyl)propiolic Acid (PFtPA)

Typical procedures


Under dry N₂ atmosphere, to sealed tube were added S1 (0.30 mmol, 84.0 mg, 1.0 equiv), Pd(PPh₃)₂Cl₂ (0.015 mmol, 10.5 mg, 0.05 equiv), CuI (0.015 mmol, 2.9 mg, 0.05 equiv), DIPEA (0.6 mmol, 77.4 mg, 0.2 equiv), dry DMF (3.00 mL) were added. then, PFtPA (0.36 mmol, 103.4 mg, 1.2 equiv) were added. The mixture was stirred at 60 °C for 12 h. After the completion of the reaction, the mixture was quenched by saturated NH₄Cl solution, then the mixture was extracted with Et₂O for 3 times. The organic phase was combined and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel by using petroleum ether as an eluent to provide 1 as white solid (114.3 mg, 96%).

4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-1,1'-biphenyl (**1**). Mp 103 – 104 °C. The product (114.3 mg, 96% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.67 – 7.56 (m, 6H), 7.51 – 7.45 (m, 2H), 7.45 – 7.39 (m, 1H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.64 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 143.3, 139.8, 132.8, 128.9, 128.1,

127.2, 127.1, 120.3 (q, J = 289.7 Hz), 118.1, 90.8, 70.8, 57.7 (m). **HRMS** (DART): Calcd for $C_{18}H_9F_9^+$ (M⁺) 396.0555, found 396.0555.

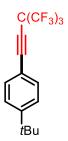

3-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-1,1'-biphenyl (**2**). The product (113.2 mg, 93% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.76 (t, J = 1.8 Hz, 1H), 7.67 (dt, J = 7.7, 1.6 Hz, 1H), 7.61 – 7.56 (m, 2H), 7.53 (dt, J = 7.7, 1.5 Hz, 1H), 7.51 – 7.42 (m, 3H), 7.43 – 7.36 (m, 1H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.61 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 141.9, 139.7, 131.1, 131.0, 129.3, 129.0, 128.9, 127.9, 127.1, 120.3 (q, J = 289.6 Hz), 119.9, 90.8, 70.3, 57.7 (m). **HRMS** (EI): Calcd for C₁₈H₉F₉⁺ (M⁺) 396.0555, found 396.0552.

2-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-1,1'-biphenyl (**3**). The product (104.7 mg, 88% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.66 (d, J = 7.7 Hz, 1H), 7.54 – 7.48 (m, 3H), 7.48 – 7.30 (m, 5H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.52 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 145.5, 139.2, 133.9, 130.6, 129.6, 128.9, 128.1, 127.8, 127.1, 120.2 (q, J = 289.5 Hz), 118.0, 90.6, 72.6, 57.6 (m). **HRMS** (EI): Calcd for C₁₈H₉F₉⁺ (M⁺) 396.0555, found 396.0556.

1-Methyl-4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene (4).

The product (91.7 mg, 91% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.42 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 2.37 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.74 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 140.9, 132.2, 129.2, 120.3 (q, J = 290.0 Hz), 116.3, 91.1, 69.6, 57.5 (m), 21.50. **HRMS** (DART): Calcd for C₁₃H₈F₉⁺ (M+H⁺) 335.0477, found 335.0477.

1-Methyl-3-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene (5).


The product (90.3 mg, 90% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.38 – 7.31 (m, 2H), 7.31 – 7.23 (m, 2H), 2.35 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.72 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 136.5, 130.9, 129.4, 127.5, 126.5, 118.4 (q, J = 290.5 Hz), 117.3, 89.2, 67.9, 55.5 (m), 19.1. **HRMS** (EI): Calcd for C₁₃H₇F₉⁺ (M⁺) 334.0399, found 334.0400.

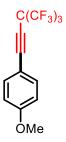
1-Methyl-2-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene (6).

The product (81.9 mg, 82% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.50 (d, J = 1.4 Hz, 1H), 7.38 – 7.31 (m, 1H), 7.27 – 7.22 (m, 1H), 7.22 – 7.14 (m, 1H), 2.43 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.71 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 141.7, 132.6, 130.4, 129.7, 125.7, 120.3 (q, J = 290.2 Hz), 119.2, 90.0, 73.9, 57.5 (m), 20.1. **HRMS** (EI): Calcd for C₁₃H₇F₉⁺ (M⁺) 334.0399 found 334.0401.

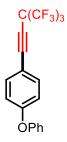
1,3,5-Trimethyl-2-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-

yl)benzene (7). The product (102.6 mg, 94% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 6.88 (s, 2H), 2.38 (s, 6H), 2.29 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.81 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 141.7, 140.3, 127.8, 120.4 (q, J = 289.6 Hz), 116.4, 89.4, 57.7 (m), 21.3, 20.2. **HRMS** (EI): Calcd for C₁₅H₁₁F₉⁺ (M⁺) 362.0712, found 362.0706.

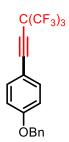
1-(tert-Butyl)-4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene


(8). The product (110.1 mg, 98% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. **¹H NMR** (400 MHz, CDCl₃): δ 7.48 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 1.32 (s, 9H). **¹⁹F NMR** (376 MHz, CDCl₃): δ – 67.77 (s, 9F). **¹³C NMR** (101 MHz, CDCl₃): δ 154.1, 132.1, 125.5, 120.3 (q, J = 290.1 Hz),

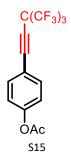
116.4, 91.1, 69.7, 57.5 (m), 34.9, 30.9. **HRMS** (EI): Calcd for $C_{16}H_{13}F_{9}^{+}$ (M⁺) 376.0868, found 376.0872.


Methyl(4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenyl)sulfane

(9). The product (103.8 mg, 94% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 66 - 67 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J= 8.5 Hz, 2H), 7.19 (d, J= 8.5 Hz, 2H), 2.48 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.69 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 142.7, 132.5, 125.4, 120.3 (q, J = 289.5 Hz), 115.2, 90.7, 70.2, 57.8 (m), 14.8. HRMS (FI): Calcd for C₁₃H₇F₉S⁺ (M⁺) 366.0119, found 366.0121.


Methyl(4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenyl)sulfane

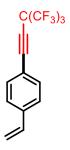
(10). The product (97.5 mg, 93% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 8.9 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 3.82 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.78 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 161.2, 134.0, 120.3 (q, J = 289.7 Hz), 114.1, 111.3, 91.1, 69.0, 57.4 (m), 55.3. HRMS (EI): Calcd for C₁₃H₇F₉O⁺ (M⁺) 350.0348, found 350.0343.


1-Phenoxy-4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene

(11). The product (116.5 mg, 94% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 8.2 Hz, 1H), 7.44 – 7.35 (m, 1H), 7.19 (td, J = 7.5, 1.0 Hz, 1H), 7.09 – 7.02 (m, 1H), 6.97 (d, J = 8.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.72 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 159.6, 155.8, 134.2, 130.0, 124.4, 120.3 (q, J = 289.4 Hz), 119.8, 118.1, 113.5, 90.6, 69.7, 57.6 (m). HRMS (DART): Calcd for C₁₈H₁₀F₉O⁺ (M+H⁺) 413.0582, found 413.0582.

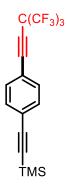
1-(Benzyloxy)-4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene

(12). The product (123.9 mg, 97% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 70 - 71 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, J = 9.0 Hz, 2H), 7.46 - 7.33 (m, 5H), 6.96 (d, J = 8.9 Hz, 2H), 5.09 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.78 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 160.3, 136.1, 134.0, 128.7, 128.2, 127.4, 120.3 (q, J = 289.8 Hz), 115.1, 111.6, 91.0, 70.1, 69.2, 57.5 (m). HRMS (EI): Calcd for C₁₉H₁₁F₉O⁺ (M⁺) 426.0661, found 426.0654.


4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenyl acetate (13). The product (102.9 mg, 91% yield) was purified with silica gel chromatography (PE/EA = 30/1, v/v) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.55 (d, J = 8.7 Hz, 2H), 7.12 (d, J = 8.7 Hz, 2H), 2.29 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.66 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 168.7, 152.2, 133.7, 122.0, 120.2 (q, J = 290.0 Hz), 116.9, 90.0, 70.4, 57.6 (m), 20.9. **HRMS** (EI): Calcd for C₁₄H₇F₉O₂⁺ (M⁺) 378.0297, found 378.0301.

tert-Butyldimethyl(4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-

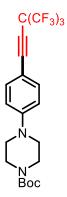
yl)phenoxy)silane (**14).** The product (114.8 mg, 85% yield) was purified with silica gel chromatography (petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.42 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 0.97 (s, 9H), 0.20 (s, 6H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.80 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 157.8, 134.0, 120.4, 120.2 (q, J = 290.1 Hz), 112.0, 91.1, 69.2, 57.5 (m), 25.5, 18.2, -4.4. **HRMS** (EI): Calcd for C₁₈H₁₉F₉OSi⁺ (M⁺) 450.1056, found 450.1059.


4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenol (**15).** The product (93.5 mg, 93% yield) was purified with silica gel chromatography (PE : EA = 9 : 1) as white solid. Mp: 67 – 70 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.43 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 5.45 (br, 1H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.78

(s, 9F). ¹³C **NMR** (101 MHz, CDCl₃): δ 157.4, 134.3, 120.3 (q, J = 289.6 Hz), 115.7, 111.6, 90.9, 69.1. 57.5 (m). **HRMS** (EI): Calcd for $C_{12}H_5F_9O^+$ (M⁺) 336.0191, found 336.0187.

1-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-4-vinylbenzene (16).

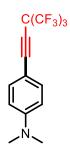
The product (91.0 mg, 88% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.49 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 6.70 (dd, J = 17.6, 10.9 Hz, 1H), 5.81 (d, J = 17.6 Hz, 1H), 5.36 (d, J = 10.9 Hz, 1H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.67 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 139.6, 135.8, 132.5, 126.2, 120.3 (q, J = 289.6 Hz), 118.4, 116.1, 90.8, 70.7, 57.5 (m). **HRMS** (EI): Calcd for C₁₄H₇F₉⁺ (M⁺) 346.0399, found 346.0402.

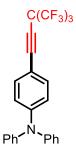

Trimethyl((4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-

yl)phenyl)ethynyl)silane (17). The product (103.1 mg, 83% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 93 – 94 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48 – 7.43 (m, 4H), 0.25 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.58 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 132.1, 131.9, 125.5, 120.2 (q, J = 289.3 Hz), 119.1, 103.7, 97.8, 90.3, 71.7, 57.7 (m), – 0.2. HRMS (EI): Calcd for

 $C_{17}H_{13}F_9Si^+$ (M⁺) 416.0637, found 416.0633.

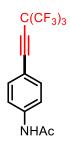
4-(4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenyl)morpholine


(18). The product (113.2 mg, 93% yield) was purified with silica gel chromatography (PE : EA = 9 : 1) as light yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, J = 8.9 Hz, 2H), 6.82 (d, J = 8.9 Hz, 2H), 3.84 (t, J = 8.0 Hz, 4H), 3.21 (t, J = 8.0 Hz, 4H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.84 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 152.2, 133.6, 120.3 (q, J = 289.7 Hz), 114.3, 109.2, 91.6, 68.8, 66.5, 57.6 (m), 47.9. HRMS (EI): Calcd for C₁₆H₁₂F₉NO⁺ (M⁺) 405.0770, found 405.0773.

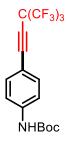

tert-Butyl 4-(4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenyl)-piperazine-1-carboxylate (19). The product (137.9 mg, 91% yield) was purified with silica gel chromatography (PE : EA = 9 : 1) as white solid. Mp: 117 – 119 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.40 (d, J = 9.2 Hz, 2H), 6.81 (d, J = 8.9 Hz, 2H), 3.56 (t, J = 5.2 Hz, 4H), 3.21 (t, J = 5.2 Hz, 4H), 1.47 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.84 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 154.6, 152.0, 133.6, 120.3 (q, J = 289.4 Hz), 114.9, 109.1, 91.6, 80.1, 57.7 (m), 68.8, 47.8, 42.7, 28.3. HRMS (EI): Calcd for

 $C_{21}H_{21}F_9N_2O_2^+$ (M⁺) 504.1454, found 504.1453.

4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)aniline (20). The product (89.8 mg, 89% yield) was purified with silica gel chromatography (PE : EA = 7 : 1) as light yellow solid. Mp: 62 - 63 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.32 (d, J = 8.6 Hz, 2H), 6.60 (d, J = 8.6 Hz, 2H), 3.93 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ - 67.89 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 148.4, 133.9, 120.4 (q, J = 289.7 Hz), 114.4, 108.3, 91.9, 68.2, 57.6 (m). HRMS (EI): Calcd for C₁₂H₆F₉N⁺ (M⁺) 353.0351, found 353.0355.



4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)aniline (21). The product (104.9 mg, 96% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 94 – 95 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, J = 9.0 Hz, 2H), 6.60 (d, J = 9.0 Hz, 2H), 2.99 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.93 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 151.3, 133.5, 120.4 (q, J = 289.6 Hz), 111.4, 105.5, 92.6, 68.2, 57.5 (m), 39.9 (d, J = 2.5 Hz). HRMS (EI): Calcd for C₁₄H₁₀F₉N⁺ (M⁺) 363.0664, found 363.0663.


N,*N*-Diphenyl-4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)aniline

(22). The product (142.5 mg, 97% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, J = 8.8 Hz, 2H), 7.35 – 7.28 (m, 4H), 7.18 – 7.09 (m, 6H), 6.99 (d, J = 8.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.79 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 149.8, 146.7, 133.4, 129.5, 125.5, 124.2, 120.4 (q, J = 289.8 Hz), 121.2, 111.3, 91.5, 69.3, 57.8 (m). HRMS (EI): Calcd for C₂₄H₁₄F₉N⁺ (M⁺) 487.0977, found 487.0981.

N-(4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenyl)acetamide

(23). The product (100.8 mg, 89% yield) was purified with silica gel chromatography (PE : EA = 3 : 1) as white solid. Mp: 156 – 157 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (s, 1H), 7.54 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.7 Hz, 2H), 2.17 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.71 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 168.7, 139.8, 133.3, 120.4 (q, J = 289.7 Hz), 119.3, 114.7, 90.5, 69.9, 57.5 (m), 24.6. HRMS (EI): Calcd for C₁₄H₈F₉NO⁺ (M⁺) 377.0457, found 377.0460.

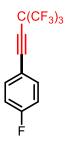
 $tert\hbox{-Butyl} \qquad (4\hbox{-}(4,4,4\hbox{-trifluoro-}3,3\hbox{-bis}(trifluoromethyl)but\hbox{-}1\hbox{-yn-}1\hbox{-yl}) phenyl)\hbox{-}$

carbamate (**24**). The product (122.9 mg, 94% yield) was purified with silica gel chromatography (PE : EA = 50 : 1) as white solid. Mp: 89 – 90 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.44 (d, J = 8.7 Hz, 2H), 7.37 (d, J = 8.7 Hz, 2H), 6.69 (s, 1H), 1.50 (s, 9H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.73 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 152.2, 140.5, 133.3, 120.3 (q, J = 289.3 Hz), 117.8, 113.3, 90.9, 81.2, 69.4, 57.1 (m), 28.2. **HRMS** (EI): Calcd for C₁₇H₁₄F₉NO₂⁺ (M⁺) 435.0875, found 435.0880.

(4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenyl)methanol (25).

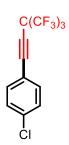
The product (97.9 mg, 93% yield) was purified with silica gel chromatography (PE: EA = 4: 1) as light yellow liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 4.68 (s, 2H), 2.27 (br, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.69 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 143.4, 132.5, 126.7, 120.2 (q, J = 289.5 Hz), 118.5, 90.6, 70.2, 64.4, 57.4 (m). HRMS (EI): Calcd for C₁₃H₇F₉O⁺ (M⁺) 350.0348, found 350.0342.

(4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenyl)methanol (26).


The product (116.7 mg, 96% yield) was purified with silica gel chromatography (PE: EA = 4: 1) as white solid. Mp: 180 – 181 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (s, 1H), 7.54 (d, J = 8.7 Hz, 2H), 7.46 (d, J = 8.7 Hz, 2H), 1.50 (tt, J = 7.8, 4.5 Hz, 1H),

1.16 – 1.03 (m, 2H), 0.97 – 0.81 (m, 2H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.71 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 172.2, 140.0, 133.3, 120.3 (q, J= 289.5 Hz), 119.1, 114.4, 90.7, 69.8, 57.4 (m), 15.8, 8.3. **HRMS** (EI): Calcd for C₁₆H₁₀F₉NO⁺ (M⁺) 403.0613, found 403.0307.

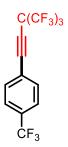
1-(4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenyl)piperidin-2-one (**27).** The product (118.0 mg, 94% yield) was purified with silica gel chromatography (PE : EA = 1 : 1) as light yellow solid. Mp: 133 – 134 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, J = 8.6 Hz, 2H), 7.29 (d, J = 8.6 Hz, 2H), 3.63 (t, J = 5.6 Hz, 2H), 2.55 (t, J = 6.3 Hz, 2H), 2.01 – 1.88 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.67 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 172.2, 140.0, 133.3, 120.3 (q, J = 289.5 Hz), 119.1, 114.4, 90.7, 69.8, 57.4 (m), 15.8, 8.3. HRMS (EI): Calcd for C₁₇H₁₂F₉NO⁺ (M⁺) 417.0770, found 417.0774.


1-(4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenyl)piperidin-2-one (**28).** The product (133.6 mg, 92% yield) was purified with silica gel chromatography (PE : EA = 40 : 1) as white solid. Mp: 92 – 93 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 0.8 Hz, 2H), 3.14 – 2.97 (m, 4H), 1.52 (dt, J = 14.8, 7.5 Hz, 4H), 0.85 (t, 7.5 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.42 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 142.1, 132.9, 127.1, 123.2, 120.1 (q, J

= 290.2 Hz), 89.1, 72.9, 57.5 (m), 49.9, 21.9, 11.1. **HRMS** (EI): Calcd for $C_{18}H_{18}F_{9}NO_{2}S^{+}$ (M⁺) 483.0909, found 483.0911.


1-Fluoro-4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene (29).

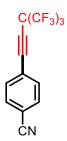
The product (90.3 mg, 89% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.64 – 7.41 (m, 2H), 7.14 – 6.90 (m, 2H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.66 (s, 9F), – 107.26 (td, J= 8.4, 4.2 Hz, 1F). ¹³**C NMR** (101 MHz, CDCl₃): δ 163.8 (d, J= 253.3 Hz), 134.5 (d, J= 8.7 Hz), 120.2 (q, J= 289.7 Hz), 116.0 (d, J= 22.6 Hz), 115.5 (d, J= 3.6 Hz), 89.8, 70.9, 57.5 (m). **HRMS** (FI): Calcd for C₁₆H₁₆F₃BrO₃SSi⁺ (M⁺) 451.9719, found 451.9726.


1-Chloro-4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene (30).

The product (102.1 mg, 96% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.46 (d, J = 8.7 Hz, 2H), 7.35 (d, J = 8.7 Hz, 2H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.60 (s, 9F), – 107.26 (td, J = 8.4, 4.2 Hz, 1F). ¹³**C NMR** (101 MHz, CDCl₃): δ 136.9, 133.6, 129.0, 120.2 (q, J = 289.6 Hz), 117.8, 89.7, 71.2, 57.50 (m). **HRMS** (EI): Calcd for C₁₂H₄F₉Cl⁺ (M⁺) 363.9852, found 353.9859.

1-Bromo-4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene (31).

The product (103.6 mg, 87% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 42 - 43 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 8.5 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.58 (s, 9F), – 107.26 (td, J = 8.4, 4.2 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃): δ 133.7, 131.9, 125.2, 120.1 (q, J = 289.8 Hz), 118.2, 89.7, 71.3, 57.50 (m). HRMS (EI): Calcd for C₁₂H₄F₉Br⁺ (M⁺) 397.9347, found 397.9353.



1-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-4-

(trifluoromethyl)benzene (32). The product (105.9 mg, 91% yield) was purified with silica gel chromatography (petroleum ether) as colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.66-7.62 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 63.75 (s, 3F), – 67.58 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 132.7, 132.3 (q, J = 33.1 Hz), 125.5 (q, J = 3.8 Hz), 122.5 (q, J = 273.5 Hz), 123.0, 120.1 (q, J = 289.7 Hz), 89.1, 72.4, 57.4 (m). HRMS (FI): Calcd for C₁₃H₄F₁₂⁺ (M⁺) 388.0116, found 388.0117.

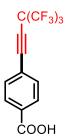
1-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-4-

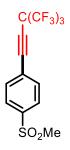
(trifluoromethoxy)benzene (33). The product (108.7 mg, 90% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J= 8.7 Hz, 2H), 7.22 (d, J= 8.7 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 58.36 (s, 3F), – 67.60 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 150.5 (q, J = 2.0 Hz), 134.1, 120.9, 120.1 (q, J = 259.9 Hz), 120.2 (q, J = 289.6 Hz), 118.0, 89.3, 71.1, 57.5 (m). HRMS (FI): Calcd for C₁₃H₄F₁₂O⁺ (M⁺) 404.0065, found 404.0062.

4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzonitrile (34). The product (95.6 mg, 92% yield) was purified with silica gel chromatography (PE : EA = 50 : 1) as white solid. Mp: 62 - 63 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 8.5 Hz, 2H), 7.64 (d, J = 8.7 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.37 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 131.0, 130.3, 122.0, 118.1 (q, J = 289.9 Hz), 115.7, 112.3, 86.7, 72.1, 57.7 (m). HRMS (FI): Calcd for C₁₃H₄F₉N⁺ (M⁺) 345.0195, found 345.0201.

4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzaldehyde (35). The product (99.5 mg, 95% yield) was purified with silica gel chromatography (PE : EA = 50 : 1) as light yellow solid. Mp: 37 – 38 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.04 (s, 1H), 7.89 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 8.3 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.42 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 191.0, 137.1, 133.0, 129.5, 125.1, 120.1 (q, J = 289.9 Hz), 89.5, 73.4, 57.5 (m). HRMS (EI): Calcd for C₁₃H₅F₉O⁺ (M⁺) 348.0191, found 348.0195.

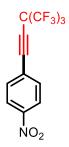
$1\hbox{-}(4\hbox{-}(4\hbox{-}4\hbox{-}4\hbox{-}4\hbox{-}Trifluoro\hbox{-}3\hbox{-}3\hbox{-}bis(trifluoromethyl)but-1-yn-1-yl)phenyl) ethan-1-one$


(36). The product (100.4 mg, 92% yield) was purified with silica gel chromatography (PE : EA = 50 : 1) as white solid. Mp: 68 - 69 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 2.60 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.48 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 196.9, 138.1, 132.6, 128.3, 123.8, 120.1 (q, J = 289.9 Hz), 89.7, 72.9, 57.6 (m), 26.6. HRMS (EI): Calcd for C₁₄H₇F₉O⁺ (M⁺) 362.0348, found 362.0341.

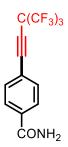

Methyl 4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzoate (37).

The product (110.7 mg, 98% yield) was purified with silica gel chromatography (PE : EA = 50 : 1) as white solid. Mp: 84 – 85 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J= 8.0 Hz, 2H), 7.60 (d, J= 8.0 Hz, 2H), 3.92 (d, J= 0.6 Hz, 3H). ¹⁹F NMR (376 MHz,

CDCl₃): δ – 67.48 (s, 9F). ¹³C **NMR** (101 MHz, CDCl₃): δ 166.0, 132.3, 131.7, 129.6, 123.7, 120.1 (q, J = 289.8 Hz), 89.7, 72.6, 57.7 (m), 52.42. **HRMS** (FI): Calcd for C₁₄H₇F₉O₂⁺ (M⁺) 378.0297, found 378.0299.



4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzoic acid (38). The product (101.8 mg, 93% yield) was purified with silica gel chromatography (PE : EA = 4 : 1) as light yellow solid. Mp: 178 – 179 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.12 (d, J = 7.6 Hz, 2H), 7.65 (d, J = 7.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.44 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 170.5, 132.5, 130.8, 130.2, 124.6, 120.1 (q, J = 290.2 Hz), 89.6, 73.1, 57.3 (m). HRMS (EI): Calcd for C₁₃H₅F₉O₂⁺ (M⁺) 364.0140, found 364.0143.



1-(Methylsulfonyl)-4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-

yl)benzene (**39**). The product (116.7 mg, 98% yield) was purified with silica gel chromatography (PE : EA = 4 : 1) as white solid. Mp: 137 – 138 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.96 (d, J = 8.5 Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H), 3.04 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.35 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 142.1, 133.2, 127.6, 124.84, 120.0 (q, J = 290.1 Hz), 88.6, 73.67, 57.6 (m), 44.3. **HRMS** (DART): Calcd for C₁₃H₈F₉O₂S⁺ (M+H⁺) 399.0096, found 399.0095.

1-Nitro-4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene (40). The product (102.7 mg, 94% yield) was purified with silica gel chromatography (PE : EA = 50 : 1) as light yellow solid. Mp: 62 - 63 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, J = 8.9 Hz, 2H), 7.72 (d, J = 8.9 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.30 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 148.6, 133.4, 125.7, 123.7, 120.0 (q, J = 289.9 Hz), 88.4, 74.6, 57.4 (m). HRMS (DART): Calcd for $C_{12}H_8F_9N_2O_2^+$ (M+NH₄⁺) 383.0437, found 383.0437.

4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzamide (41). The product (103.5 mg, 95% yield) was purified with silica gel chromatography (PE : EA = 1 : 1) as white solid. Mp: 161 – 163 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.13 (s, 1H), 7.94 (d, J = 8.2 Hz, 2H), 7.69 (d, J = 8.2 Hz, 2H), 7.56 (s, 1H). ¹⁹F NMR (376 MHz, DMSO- d_6): δ – 66.97 (s, 9F). ¹³C NMR (101 MHz, DMSO- d_6): δ 167.0, 137.0, 132.7, 128.5, 120.4, 120.3 (q, J = 289.7 Hz), 91.4, 70.4, 57.4 (m). HRMS (EI): Calcd for C₁₃H₆F₉NO⁺ (M⁺) 363.0300, found 363.0304.

yl)phenyl)-1,3,2-dioxaborolane (**42**). The product (118.9 mg, 89% yield) was purified with silica gel chromatography (PE : EA = 20 : 1) as white solid. Mp: 151 – 152 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.80 (d, J = 8.1 Hz, 2H), 7.52 (d, J = 7.8 Hz, 2H), 1.34 (s, 12H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.61 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 134.6, 131.4, 121.8, 120.2 (q, J = 289.9 Hz), 90.8, 84.2, 71.1, 57.5 (m), 24.8. **HRMS** (FI): Calcd for C₁₈H₁₆F₉¹⁰BO₂⁺ (M⁺) 445.1130, found 445.1137.

1,2,3-Trimethoxy-5-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-

yl)benzene (**43).** The product (112.0 mg, 91% yield) was purified with silica gel chromatography (PE : EA = 50 : 1) as white solid. Mp: 58 - 59 °C. ¹H NMR (400 MHz, CDCl₃): δ 6.72 (s, 2H), 3.86 (s, 6H), 3.85 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.62 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 153.2, 140.8, 120.2 (q, J = 289.8 Hz), 114.1, 109.6, 90.9, 69.2, 60.9, 57.4 (m), 56.2. HRMS (EI): Calcd for C₁₅H₁₁F₉O₃⁺ (M⁺) 410.0559, found 410.0556.

5-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzo[d][1,3]dioxole

(**44**). The product (105.0 mg, 96% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 60 - 61 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.07 (dd, J = 8.1, 1.6 Hz, 1H), 6.94 (d, J = 1.6 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 5.99 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.75 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ

149.7, 147.6, 127.7, 120.2 (q, J = 290.2 Hz), 112.4, 111.9, 108.6, 101.7, 90.9, 68.8, 57.4 (m). **HRMS** (EI): Calcd for $C_{13}H_5F_9O_2^+$ (M⁺) 364.0140, found 364.0146.

$5\hbox{-}(4,\!4,\!4\hbox{-Trifluoro-}3,\!3\hbox{-bis}(trifluoromethyl) but-1\hbox{-yn-}1\hbox{-yl})\hbox{-}2,\!3\hbox{-dihydrobenzofuran}$

(**45**). The product (100.5 mg, 92% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 63 - 64 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, J = 1.6 Hz, 1H), 7.32 (d, J = 8.3 Hz, 1H), 6.74 (d, J = 8.3 Hz, 1H), 4.60 (t, J = 8.8 Hz, 2H), 3.19 (t, J = 8.7 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.84 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 162.0, 133.3, 129.1, 127.8, 120.3 (q, J = 289.8 Hz), 111.0, 109.6, 91.6, 71.7, 68.4, 57.4 (m), 29.0. HRMS (EI): Calcd for C₁₄H₇F₉O⁺ (M⁺) 362.0348, found 362.0350.

1,3-Dimethyl-5-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene

(46). The product (96.3 mg, 92% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.16 (s 2H), 7.07 (s, 1H), 2.31 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.75 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 138.3, 132.3, 129.9, 120.4 (q, J = 289.5 Hz), 119.0, 91.3, 69.48, 57.5 (m), 20.8. HRMS (EI): Calcd for C₁₄H₉F₉⁺ (M⁺) 348.0557, found 348.0560.

1,3-Dimethoxy-5-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene (47). The product (105.8 mg, 93% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 6.65 (d, J = 2.4, 2H), 6.53 (t, J = 2.3, 1H), 3.79 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.62 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 160.7, 120.5, 120.3 (q, J = 289.9 Hz), 110.0, 103.8, 90.8, 69.6, 57.61 (m), 55.4. HRMS (EI): Calcd for C₁₄H₉F₉O₂⁺ (M⁺) 380.0453, found 380.0455.

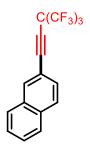
1,3-Dichloro-5-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene

(48). The product (108.5 mg, 93% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 71 – 72 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.44 (t, J = 1.9 Hz, 1H), 7.41 (d, J = 1.9 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.41 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 135.4, 131.0, 130.5, 122.0, 120.0 (q, J = 289.9 Hz), 87.8, 72.4, 57.4 (m). HRMS (EI): Calcd for C₁₂H₃F₉Cl₂⁺ (M⁺) 387.9463, found 387.9466.

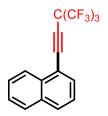

1-chloro-3-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene (49).

The product (96.3 mg, 92% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.52 (s, 1H), 7.48 – 7.40 (m, 2H), 7.31 (t, J = 7.9 Hz, 1H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.55 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 134.5, 132.2, 130.8, 130.5, 129.8, 121.0, 120.2 (q, J = 289.8 Hz), 89.2, 71.3, 57.3 (m). **HRMS** (FI): Calcd for C₁₂H₄F₉Cl⁺ (M⁺) 353.9852,

found 353.9856.


1-Chloro-2-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene (50).

The product (87.9 mg, 84% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ${}^{1}\mathbf{H}$ NMR (400 MHz, CDCl₃): δ 7.55 (dd, J = 7.7, 1.7 Hz, 1H), 7.43 (dd, J = 8.1, 1.3 Hz, 1H), 7.37 (tdd, J = 8.1, 1.7, 0.7 Hz, 1H), 7.26 (tt, J = 6.9, 1.3 Hz, 1H). ${}^{19}\mathbf{F}$ NMR (376 MHz, CDCl₃): δ – 67.42 (s, 9F). ${}^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃): δ 137.3, 133.9, 131.4, 129.5, 126.5, 120.2 (q, J = 290.8 Hz), 119.6, 87.5, 75.1, 57.6 (m). HRMS (FI): Calcd for $\mathbf{C}_{12}\mathbf{H}_{4}\mathbf{F}_{9}\mathbf{C}\mathbf{I}^{+}$ (M $^{+}$) 353.9852, found 353.9851.



3-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzaldehyde (51). The

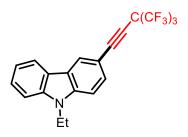
product (88 mg, 84% yield) was purified with silica gel chromatography (PE : EA = 50 : 1) as light yellow liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 10.01 (s, 1H), 8.04 (s, 0H), 7.98 – 7.92 (m, 1H), 7.81 – 7.74 (m, 1H), 7.57 (t, J = 7.7 Hz, 1H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.49 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 190.7, 137.6, 136.5, 133.4, 131.2, 129.4, 120.5, 120.2 (q, J = 290.2 Hz), 89.2, 71.7, 57.5 (m). **HRMS** (EI): Calcd for C₁₃H₅F₉O⁺ (M⁺) 348.0191, found 348.0196.

2-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)naphthalene (52). The product (110.2 mg, 99% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 92 – 93 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.09 (s, 1H), 7.84 – 7.80 (m, 3H). 7.61 – 7.37 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.60 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 133.7, 133.3, 132.5, 128.3, 128.0, 127.8, 127.82, 127.81, 127.0, 120.3 (q, J = 289.7 Hz), 116.5, 91.2, 70.3, 57.3 (m). HRMS (DART): Calcd for C₁₆H₇F₉⁺ (M⁺) 370.0399, found 370.0399.

1-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)naphthalene (**53).** The product (109.5 mg, 99% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 72 - 73 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.16 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.90 – 7.85 (m, 1H), 7.80 (dd, J = 7.2, 1.2 Hz, 1H), 7.63 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.56 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 7.45 (dd, J = 8.3, 7.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.49 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 133.3, 133.0, 132.2, 131.1, 128.5, 127.7, 126.9, 125.1, 124.9, 120.4 (q, J = 290.0 Hz), 116.9, 89.5, 74.8 57.8 (m). HRMS (FI): Calcd for C₁₆H₇F₉⁺ (M⁺) 370.0399, found 370.0405.

9,9-dimethyl-2-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-9H-

fluorene (**54**). The product (127.8 mg, 98% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 136 - 137 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.78 – 7.68 (m, 2H), 7.59 (s, 1H), 7.54 (dd, J = 7.8, 1.5 Hz, 1H), 7.50 – 7.43 (m, 1H), 7.43 – 7.32 (m, 2H), 1.51 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.63 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 154.1, 153.7, 141.6, 137.9, 131.7, 128.4, 127.2, 126.6, 122.7, 120.7, 120.4 (q, J = 290.1 Hz), 120.1, 117.6, 91.8, 70.0, 57.6 (m), 47.0, 26.8. **HRMS** (EI): Calcd for C₂₁H₁₃F₉⁺ (M⁺) 436.0868, found 436.0872


9-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenanthrene (55). The product (123.5 mg, 98% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 104 - 105 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.67 – 8.55 (m, 2H), 8.22 (dd, J = 6.1, 3.4 Hz, 1H), 8.08 (s, 1H), 7.83 (dd, J = 7.9, 1.6 Hz, 1H), 7.69 (dq, J = 6.6, 3.5, 2.9 Hz, 3H), 7.60 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.39 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 134.5, 131.0, 130.4, 130.3, 129.9, 128.9, 128.6, 127.6, 127.5, 127.2, 125.9, 122.9, 122.6, 120.5 (q, J = 289.7 Hz), 115.7, 89.7, 74.2, 57.7 (m). **HRMS** (DART): Calcd for $C_{20}H_{10}F_{9}^{+}$ (M+H⁺) 421.0633, found 421.0634.

1-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)pyrene (56). The product (127.8 mg, 96% yield) was purified with silica gel chromatography (Petroleum ether) as light yellow solid. Mp: 188 - 189 °C. ¹H NMR (400 MHz, CD₂Cl₂): δ 8.31 (dd, J= 9.1, 2.7 Hz, 1H), 8.26 – 8.21 (m, 2H), 8.20 – 8.11 (m, 3H), 8.11 – 7.99 (m, 3H). ¹⁹F NMR (376 MHz, CD₂Cl₂): δ – 67.28 (s, 9F). ¹³C NMR (101 MHz, CD₂Cl₂): δ 132.9, 132.8, 131.0, 130.6, 130.1, 129.5, 129.3, 126.9, 126.6, 126.3, 126.3, 124.3, 124.03, 124.00, 123.7, 120.5 (q, J= 289.8 Hz), 112.8, 90.7, 74.9, 57.9 (m). HRMS (FI): Calcd for C₂₂H₉F₉⁺ (M⁺) 444.0555, found 444.0560.

2-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)triphenylene (57). The product (135.4 mg, 96% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 172 – 173 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.50 (s, 1H), 8.49 – 8.45 (m, 2H), 8.40 – 8.33 (m, 2H), 8.28 (dd, J = 8.5, 4.0 Hz, 1H), 7.70 – 7.48 (m, 5H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.47 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 130.9, 130.2, 129.7, 129.6, 129.3, 128.5, 128.3, 127.9, 127.7, 127.6, 127.3, 127.2, 123.5, 123.25, 123.250, 123.15, 123.12, 120.4 (q, J = 289.9 Hz), 117.4, 91.4, 70.6, 57.6 (m). **HRMS** (EI): Calcd for C₂₄H₁₁F₉+ (M+) 470.0712, found 470.0711.

9-Phenyl-3-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-9*H*-carbazole

(58). The product (144.3 mg, 99% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 127 - 128 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.35 (d, J = 1.6 Hz, 1H), 8.21 – 8.09 (m, 1H), 7.63 (dd, J = 8.8, 6.8 Hz, 2H), 7.58 – 7.42 (m, 5H), 7.42 – 7.29 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.68 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 141.5, 136.9, 130.0, 129.9, 128.1, 127.1, 126.8, 125.2, 123.3, 122.5, 120.8, 120.6, 120.5 (q, J = 289.8 Hz), 110.2, 110.1, 109.9, 92.4, 68.7, 57.7 (m). HRMS (EI): Calcd for C₂₄H₁₂F₉N⁺ (M⁺) 485.0821, found 485.0820.

9-Ethyl-3-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-9H-carbazole

(59). The product (126.8 mg, 97% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 93 – 94 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.27 (d, J = 1.6 Hz, 1H), 8.08 (dd, J = 7.8, 1.0 Hz, 1H), 7.60 (dd, J = 8.5, 1.6 Hz, 1H), 7.52 (ddd, J = 8.3, 7.1, 1.2 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.35 – 7.26 (m, 2H), 4.32 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.73 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 140.5, 140.4, 129.6, 126.5, 125.1, 122.9, 122.2, 120.7, 120.6 (q, J = 289.9 Hz), 119.8, 109.0, 108.8, 108.5, 92.8, 68.47, 57.6 (m), 37.6, 13.6. HRMS (EI): Calcd for C₂₀H₁₂F₉N⁺ (M⁺) 437.0821, found 437.0824.

2-Methoxy-5-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)pyridine

(60). The product (93.6 mg, 89% yield) was purified with silica gel chromatography (PE : EA = 50 : 1) as light yellow solid. Mp: 58 - 59 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.34 (d, J = 2.4 Hz, 1H), 7.66 (dd, J = 8.7, 2.4 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 3.95 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.65 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 164.7, 151.5, 141.5, 120.2 (q, J = 289.8 Hz), 111.0, 109.2, 88.3, 71.9, 57.5 (m), 53.8. **HRMS** (EI): Calcd for C₁₂H₆F₉NO⁺ (M⁺) 351.0300, found 351.0297.

6-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)quinoline (**61).** The product (93.5 mg, 84% yield) was purified with silica gel chromatography (PE : EA = 5 : 1) as white solid. Mp: 99 – 100 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.94 (dd, J = 4.3, 1.7 Hz, 1H), 8.16 – 8.01 (m, 3H), 7.74 (dd, J = 8.7, 1.9 Hz, 1H), 7.43 (dd, J = 8.3, 4.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.50 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 152.0, 148.3, 135.9, 133.1, 131.5, 130.1, 127.6, 122.1, 120.2 (q, J = 290.0 Hz), 117.5, 90.3, 71.2, 57.4 (m). HRMS (EI): Calcd for C₁₅H₆F₉N⁺ (M⁺) 371.0351, found 371.0353.

8-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)quinoline (**62**). The product (90.2 mg, 81% yield) was purified with silica gel chromatography (PE : EA = 200 : 1) as white solid. Mp: 81 – 82 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.00 (dd, J = 4.2, 1.6 Hz, 1H), 8.15 (dd, J = 8.3, 1.8 Hz, 1H), 7.98 (dt, J = 7.2, 1.2 Hz, 1H), 7.89 (dd, J = 8.3, 1.2 Hz, 1H), 7.55 – 7.49 (m, 1H), 7.49 – 7.41 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.41 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 151.8, 148.5, 136.1, 135.3, 130.5, 128.1, 125.7, 122.0, 120.2 (q, J = 290.1 Hz), 120.0, 89.1, 75.3, 57.7 (m). HRMS (EI): Calcd for C₁₅H₆F₉N⁺ (M⁺) 371.0351, found 371.0348.

2-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzofuran (63). The product (100.5 mg, 93% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 46 - 47 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 1.2 Hz, 1H), 7.52 – 7.46 (m, 1H), 7.41 (ddd, J = 8.4, 7.2, 1.3 Hz, 1H), 7.33 – 7.26 (m, 1H), 7.20 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 66.77 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 155.3, 135.1, 127.0, 126.5, 123.8, 121.8, 120.0 (q, J = 290.1 Hz), 115.7, 111.6, 81.4, 76.3, 57.8 (m). HRMS (EI): Calcd for C₁₄H₅F₉O⁺ (M⁺) 360.0191, found 360.0188.

4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)dibenzo[b,d]furan (64).

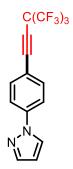
The product (122.0 mg, 99% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 108 - 109 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 8.6 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.68 – 7.56 (m, 2H), 7.49 (t, J = 7.9 Hz, 1H), 7.42 – 7.27 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.43 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 156.6, 156.2, 131.0, 127.9, 124.9, 123.3, 123.2, 123.0,

122.5, 120.7, 120.4 (q, J = 290.0 Hz), 112.11, 103.9, 85.9, 74.8, 57.7 (m). **HRMS** (EI): Calcd for $C_{18}H_7F_9O^+$ (M⁺) 410.0348, found 410.0351.

2-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzo[b]thiophene (65).

The product (107.8 mg, 95% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 94 – 95 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.85 – 7.74 (m, 2H), 7.66 (s, 1H), 7.51 – 7.37 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.35 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 140.9, 138.3, 132.7, 126.6, 125.1, 124.4, 122.1, 120.2 (q, J = 290.4 Hz), 118.6, 84.7, 75.3, 57.8 (m). HRMS (EI): Calcd for C₁₄H₅F₉S⁺ (M⁺) 375.9963, found 375.9958.

2-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzo[b]thiophene (66).


The product (121.0 mg, 95% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 114 – 115 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.14 (dd, J = 7.9, 1.1 Hz, 1H), 8.12 – 8.07 (m, 1H), 7.93 – 7.82 (m, 1H), 7.63 (dd, J = 7.5, 1.1 Hz, 1H), 7.57 – 7.38 (m, 3H). ¹9F NMR (376 MHz, CDCl₃): δ – 67.36 (s, 9F). ¹3C NMR (101 MHz, CDCl₃): δ 143.6, 139.2, 135.8, 135.0, 130.5, 127.4, 124.7, 124.2, 123.4, 122.8, 121.7, 120.3 (q, J = 290.2 Hz), 113.8, 88.6, 75.2, 57.9 (m). HRMS (EI): Calcd for C₁₈H₇F₉S⁺ (M⁺) 426.0119, found 426.0117.

6-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-1*H*-pyrrolo[3,2-

b]pyridine (67). The product (103.5 mg, 96% yield) was purified with silica gel chromatography (PE : EA = 3 : 1) as white solid. Mp: 161 – 162 °C. ¹**H NMR** (400 MHz, DMSO- d_6): δ 11.68 (s, 1H), 8.46 (d, J = 1.9 Hz, 1H), 8.04 (d, J = 2.0 Hz, 1H), 7.85 (t, J = 3.1 Hz, 1H), 6.64 (s, 1H). ¹⁹**F NMR** (376 MHz, DMSO- d_6): δ – 67.01 (s, 9F). ¹³**C NMR** (101 MHz, DMSO- d_6): δ 147.6, 145.5, 133.6, 127.2, 122.8, 120.3 (q, J = 289.7 Hz), 106.4, 102.9, 92.0, 69.9, 57.8 (m). **HRMS** (FI): Calcd for C₁₃H₅F₉N₂⁺ (M⁺) 360.0304, found 360.0303.

6-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)quinazolin-4(3H)-one

(68). The product (105.3 mg, 90% yield) was purified with silica gel chromatography (PE : EA = 4 : 1) as white solid. Mp: 256 - 257 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 12.51 (s, 1H), 8.24 (d, J = 2.0 Hz, 1H), 8.17 (s, 1H), 7.94 (dd, J = 8.5, 2.0 Hz, 1H), 7.68 (d, J = 8.5 Hz, 1H). ¹⁹F NMR (376 MHz, DMSO- d_6): δ – 66.84 (s, 9F). ¹³C NMR (101 MHz, DMSO- d_6): δ 160.1, 150.7, 148.0, 137.2, 131.2, 128.7, 123.4, 120.2 (q, J = 289.9 Hz), 115.8, 91.2, 69.9, 57.63 (m). HRMS (EI): Calcd for C₁₄H₅F₉N₂O⁺ (M⁺) 388.0253, found 388.0249.

1-(**4-**(**4,4,4-trifluoro-3,3-bis**(**trifluoromethyl**)**but-1-yn-1-yl**)**phenyl**)-**1***H*-**pyrazole** (**69**). The product (104.7 mg, 90% yield) was purified with silica gel chromatography (PE : EA = 50 : 1) as white solid. Mp: 131 – 132 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.94 (d, J = 2.6 Hz, 1H), 7.79 – 7.68 (m, 3H), 7.61 (d, J = 8.7 Hz, 2H), 6.49 (t, J = 2.2 Hz, 1H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.59 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 141.9, 141.3, 133.7, 126.7, 120.2 (q, J = 289.6 Hz), 118.6, 117.0, 108.5, 90.1, 70.8, 57.5 (m). **HRMS** (EI): Calcd for C₁₅H₇F₉N₂⁺ (M⁺) 386.0460, found 386.0461.

5-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-1*H***-indole** (**70).** The product (97.8 mg, 91% yield) was purified with silica gel chromatography (PE : EA = 5 : 1) as white solid. Mp: 81 – 88 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 8.28 (s, 1H), 7.89 (s, 1H), 7.35 (t, J = 1.1 Hz, 2H), 7.25 (dd, J = 3.2, 2.3 Hz, 1H), 6.61 – 6.52 (m, 1H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.82 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 136.4, 127.6, 126.1, 125.8, 125.6, 120.4 (q, J = 289.9 Hz), 111.3, 110.4, 103.1, 92.8, 67.9 57.6 (m). **HRMS** (EI): Calcd for C₁₄H₆F₉N⁺ (M⁺) 359.0351, found 359.0356.

1,3-dimethyl-5-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)pyrimidine-2,4(1H,3H)-dione (71). The product (109.0 mg, 95% yield) was

purified with silica gel chromatography (PE : EA = 4 : 1) as white solid. Mp: 121 – 122 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.62 (s, 1H), 3.46 (s, 3H), 3.35 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.49 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 160.7, 150.6, 148.1, 120.1 (q, J = 289.8 Hz), 95.7, 83.1, 74.4, 57.3 (m), 37.6, 28.3. HRMS (EI): Calcd for C₁₂H₇F₉N₂O₂⁺ (M⁺) 382.0358, found 382.0363.

1-yn-1-yl)benzyl)thiophene (72). The product (154.9 mg, 98% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 97 – 98 °C. ¹H

2-(4-Fluorophenyl)-5-(2-methyl-5-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-

with silica gel chromatography (Petroleum ether) as white solid. Mp: 97 – 98 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.33 (m, 4H), 7.20 (d, J = 7.8 Hz, 1H), 7.07 – 6.97 (m, 2H), 6.74 – 6.60 (m, 1H), 4.12 (s, 2H), 2.36 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.64 (s, 9F), – 115.37 (m, 1F). ¹³C NMR (101 MHz, CDCl₃): δ 162.2 (d, J = 247.0 Hz), 142.2, 141.9, 139.7, 138.7, 133.2, 131.1, 130.8, 130.7 (d, J = 3.3 Hz), 127.2 (d, J = 7.9 Hz), 126.1, 122.7, 120.3 (q, J = 289.9 Hz), 117.2, 115.7 (d, J = 21.8 Hz), 91.0, 69.9, 57.6 (m), 33.9, 19.6. **HRMS** (EI): Calcd for C₂₄H₁₄F₁₀S⁺ (M⁺) 524.0651, found 524.0649.

(4S,5R)-4-(Fluoromethyl)-2-phenyl-5-(4-(4,4,4-trifluoro-3,3-

bis(**trifluoromethyl**)**but-1-yn-1-yl**)**phenyl**)-**4,5-dihydrooxazole** (**73**). The product (143.7 mg, 96% yield) was purified with silica gel chromatography (PE : EA = 4 : 1) as colorless oil. ¹**H NMR** (400 MHz, CDCl₃): δ 8.04 (d, J = 7.0 Hz, 2H), 7.61 – 7.50 (m, 3H), 7.48 – 7.41 (m, 2H), 7.37 (d, J = 8.1 Hz, 2H), 5.58 (d, J = 6.8 Hz, 1H), 4.86 – 4.50 (m, 2H), 4.34 (dtd, J = 19.5, 6.3, 3.7 Hz, 1H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.60 (s, 9F), – 229.78 (td, J = 47.0, 19.6 Hz, 1F). ¹³**C NMR** (101 MHz, CDCl₃): δ

164.9, 142.8, 138.0, 132.9, 132.0, 128.5, 127.3, 126.8, 125.5, 119.8 (q, J = 289.7 Hz), 119.8, 90.3, 83.60 (d, J = 173.1 Hz), 74.95 (d, J = 20.9 Hz), 70.8, 57.4 (m). **HRMS** (FI): Calcd for $C_{22}H_{19}F_{10}NO^{+}$ (M⁺) 497.0832, found 497.0835.

(*E*)-3-(2-(Pyridin-2-yl)vinyl)-1-(tetrahydro-2H-pyran-2-yl)-6-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-1*H*-indazole (74). The product (162.0 mg, 99% yield) was purified with silica gel chromatography (PE : EA = 3 : 1) as light yellow solid. Mp: 97 – 98 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.60 (d, J = 4.1 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 16.3 Hz, 1H), 7.78 (s, 1H), 7.65 (td, J = 7.7, 1.8 Hz, 1H), 7.55 (d, J = 16.4 Hz, 1H), 7.44 (d, J = 7.9 Hz, 1H), 7.34 (dd, J = 8.4, 1.3 Hz, 1H), 7.14 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H), 5.73 (dd, J = 9.1, 2.8 Hz, 1H), 4.06 – 3.91 (m, 1H), 3.86 – 3.65 (m, 1H), 2.69 – 2.45 (m, 1H), 2.25 – 2.11 (m, 1H), 2.12 – 2.01 (m, 1H), 1.84 – 1.63 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.49 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 155.3, 149.7, 142.5, 139.9, 136.5, 130.8, 125.1, 123.9, 122.7, 122.35 121.9, 121.3, 120.3 (q, J = 289.7 Hz), 117.2, 115.1, 91.2, 85.5, 70.4, 67.3, 57.5 (m), 29.3, 24.9, 22.5. HRMS (EI): Calcd for C₂₅H₁₈F₉N₃O⁺ (M⁺) 547.1301, found 547.1398.

(*R*)-3-(4-(2-Chloro-5-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-

yl)benzyl)phenoxy)tetrahydrofuran (**75).** The product (151.8 mg, 95% yield) was purified with silica gel chromatography (PE : EA = 20 : 1) as white solid. Mp: 92 – 93 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.44 – 7.30 (m, 3H), 7.08 (d, J = 8.5 Hz, 2H), 6.80 (d, J = 8.6 Hz, 2H), 4.89 (ddt, J = 6.4, 4.7, 2.4 Hz, 1H), 4.02 (s, 2H), 4.01 – 3.93

(m, 3H), 3.88 (td, J = 8.1, 4.6 Hz, 1H), 2.63 – 1.96 (m, 2H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.56 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 156.1, 139.8, 136.9, 134.5, 131.5, 130.8, 130.0, 129.8, 120.2 (q, J = 290.0 Hz), 118.1, 115.5, 89.8, 77.3, 73.1, 71.0, 67.1, 57.49 (m), 38.1, 33.0. **HRMS** (EI): Calcd for C₂₃H₁₆F₉ClO₂⁺ (M⁺) 530.0690, found 530.0693.

6-Methoxy-3-(4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenyl)-

2*H***-chromen-2-one** (**76**). The product (146.5 mg, 99% yield) was purified with silica gel chromatography (PE : EA = 8 : 1) as light yellow solid. Mp: 232 – 233 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.80 (s, 1H), 7.74 (d, J = 8.5 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 9.1 Hz, 1H), 7.12 (dd, J = 9.0, 2.9 Hz, 1H), 6.97 (d, J = 2.9 Hz, 1H), 3.85 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.58 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 160.2, 156.2, 148.1, 140.4, 136.9, 132.4, 128.7, 127.3, 119.8, 119.7, 119.6 (q, J = 289.5 Hz), 117.6, 110.0, 90.4, 71.3, 57.4 (m), 55.8. **HRMS** (EI): Calcd for C₂₂H₁₁F₉O₃⁺ (M⁺) 494.0559, found 494.0557.

tert-Butyl 6-cyano-2-(2-(4-ethyl-3-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)

but-1-yn-1-yl)phenyl)propan-2-yl)-1*H***-indole-3-carboxylate** (77). The product (181.6 mg, 96% yield) was purified with silica gel chromatography (PE : EA = 4 : 1) as light yellow solid. Mp: 111 – 112 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 9.19 (s, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.76 (s, 1H), 7.54 – 7.35 (m, 2H), 7.22 – 7.10 (m, 2H), 2.73

(q, J = 7.6 Hz, 2H), 1.91 (s, 6H), 1.36 (s, 9H), 1.17 (t, J = 7.5 Hz, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃): $\delta - 67.57$ (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 163.5, 154.2, 146.1, 145.6, 132.5, 131.8, 129.9, 128.9, 128.4, 124.4, 122.3, 120.5, 120.3 (q, J = 289.8 Hz), 118.2, 116.0, 107.2, 104.3, 90.1, 80.9, 73.3, 57.7 (m), 41.5, 29.0, 28.0, 27.1, 14.8. **HRMS** (FI): Calcd for C₂₆H₁₉F₉N₂⁺ (M–Boc+H⁺) 530.1399, found 530.1401.

tert-Butyl (S)-3-(4-amino-3-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)

but-1-yn-1-yl)-1*H*-pyrazolo[3,4-*d*]pyrimidin-1-yl)piperidine-1-carboxylate (78).

The product (161.5 mg, 96% yield) was purified with silica gel chromatography (PE : EA = 3 : 1) as light yellow solid. Mp: 169 - 170 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.33 (s, 1H), 6.06 (br, 2H), 5.08 – 4.70 (m, 1H), 4.11 (d, J = 56.1 Hz, 2H), 3.36 (s, 1H), 2.88 (s, 1H), 2.25 – 2.05 (m, 3H), 1.94 – 1.84 (m, 1H), 1.70 – 1.59 (m, 1H), 1.41 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 66.96 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 157.2, 156.5, 154.5, 153.3, 122.5, 120.0 (q, J = 289.8 Hz), 102.7, 89.2, 83.4, 80.0, 69.9, 57.4 (m), 54.9, 49.3, 30.0, 28.3, 24.1. HRMS (FI): Calcd for C₂₁H₂₁F₉N₆O₂⁺ (M⁺) 560.1577, found 560.1571

N-(3-Chloro-4-((3-fluorophenoxy)methyl)phenyl)-6-(4,4,4-trifluoro-3,3-

bis(**trifloromethyl**)**but-1-yn-1-yl**)**quinazolin-4-amine** (**79**)**.** The product (151.8 mg, 99% yield) was purified with silica gel chromatography (PE : EA = 4 : 1) as yellow solid. Mp: 182 – 183 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.72 (s, 1H), 8.20 (s, 1H), 7.92 (s, 1H), 7.89 – 7.80 (m, 2H), 7.75 (d, J = 2.6 Hz, 1H), 7.45 (dd, J = 8.8, 2.7 Hz, 1H), 7.38 – 7.30 (m, 1H), 7.18 (dd, J = 12.2, 8.8 Hz, 2H), 6.99 (td, J = 8.4, 2.6 Hz, 1H), 6.91 (d, J = 8.9 Hz, 1H), 5.09 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.44 (s, 9F), – 113.03 (td, J = 9.2, 6.0 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃): δ 163.0 (d, J = 246.5 Hz), 157.2, 156.4, 151.58, 150.7, 138.9 (d, J = 7.3 Hz), 135.4, 131.4, 130.2 (d, J = 8.2 Hz), 129.5, 125.8, 125.22, 123.2, 122.4 (d, J = 2.9 Hz), 122.1, 120.2 (q, J = 289.7 Hz), 17.4, 115.1, 114.8, 114.6, 114.2, 114.1, 113.8, 89.6, 71.8, 70.4, 57.7 (m). HRMS (FI): Calcd for C₂₇H₁₄F₁₀ClN₃O⁺ (M⁺) 621.0660, found 621.0658.

((3aR,5R,5aS,8aS,8bR)-2,2,7,7-Tetramethyltetrahydro-5*H*-

 $bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl) methyl \\ 4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)$

but-1-yn-1-yl)benzoate (80). The product (180.0 mg, 99% yield) was purified with

silica gel chromatography (PE : EA = 9 : 1) as colorless oil. ¹**H NMR** (400 MHz, CDCl₃): δ 8.04 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 5.54 (d, J = 4.9 Hz, 1H), 4.63 (dd, J = 7.9, 2.5 Hz, 1H), 4.52 (dd, J = 11.6, 4.5 Hz, 1H), 4.43 (dd, J = 11.6, 7.7 Hz, 1H), 4.33 (dd, J = 5.0, 2.5 Hz, 1H), 4.29 (dd, J = 7.9, 1.9 Hz, 1H), 4.21 – 4.12 (m, 1H), 1.48 (s, 3H), 1.45 (s, 3H), 1.33 (s, 3H), 1.31 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.47 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 165.3, 132.3, 131.70 129.7, 123.7, 120.1 (q, J = 290.1 Hz), 109.7, 108.8, 96.3, 89.8, 72.6, 71.1, 70.7, 70.5, 66.1, 64.4, 57.4 (m), 25.94, 25.91, 24.8, 24.4. **HRMS** (DART): Calcd for C₂₅H₂₄F₉O₇⁺ (M+H⁺) 607.1373, found 607.1368.

((3aR,5R,5aS,8aS,8bR)-2,2,7,7-Tetramethyltetrahydro-5*H*-

 $bis([1,3]dioxolo)[4,5-b:4',5'-d] pyran-5-yl) methyl \\ 4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)$

but-1-yn-1-yl)benzenesulfonate (**81**). The product (191.0 mg, 99% yield) was purified with silica gel chromatography (PE : EA = 5 : 1) as colorless oil. ¹**H NMR** (400 MHz, CDCl₃): δ 7.93 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.5 Hz, 2H), 5.40 (d, J = 4.9 Hz, 1H), 4.56 (dd, J = 7.9, 2.5 Hz, 1H), 4.27 (dd, J = 4.9, 2.5 Hz, 1H), 4.22 (dd, J = 10.5, 5.5 Hz, 1H), 4.18 – 4.09 (m, 2H), 4.01 (td, J = 5.6, 2.9 Hz, 1H), 1.46 (s, 3H), 1.31 (s, 3H), 1.28 (s, 3H), 1.24 (s, 3H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.36 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 137.7, 132.9, 128.2, 124.7, 120.0 (q, J = 290.2 Hz), 109.6, 108.9, 96.0, 88.7, 73.6, 70.5, 70.3, 70.2, 69.0, 65.8, 57.5 (m), 25.8, 25.6, 24.7, 24.2. **HRMS** (FI): Calcd for C₂₄H₂₄F₉O₈S⁺ (M+H⁺) 643.1043, found 643.1038.

$$\begin{array}{c|c} & C(CF_3)_3 \\ \hline & \\ & \\ & \\ & \\ \end{array}$$

(S)-2-((tert-Butoxycarbonyl)amino)-3-(4-(4,4,4-trifluoro-3,3-

bis(**trifluoromethyl**)**but-1-yn-1-yl**)**phenyl**)**propanoic acid** (**82**). The product (142.5 mg, 94% yield) was purified with silica gel chromatography (PE : EA = 3 : 1) as colorless oil. ¹**H NMR** (400 MHz, DMSO- d_6): δ 7.52 (d, J = 7.9 Hz, 2H), 7.34 (d, J = 7.9 Hz, 2H), 7.12 (d, J = 8.5 Hz, 1H), 4.08 (td, J = 9.2, 8.2, 4.4 Hz, 1H), 3.05 (dd, J = 13.7, 4.5 Hz, 1H), 2.84 (dd, J = 13.7, 10.6 Hz, 1H), 1.27 (s, 9H). ¹⁹**F NMR** (376 MHz, DMSO- d_6): δ – 66.98 (s, 9F). ¹³**C NMR** (101 MHz, DMSO- d_6): δ 173.6, 155.8, 142.6, 132.5, 130.4, 120.3 (q, J = 289.7 Hz), 115.9, 92.3, 78.5, 68.8, 57.9 (m), 55.1, 36.8, 28.4. **HRMS** (FI): Calcd for C₂₀H₁₈F₉NO₄⁺ (M⁺) 507.1087, found 507.1083.

$$O = N$$
 $O = N$
 O

((2R,3S,5S)-3-Acetoxy-5-(2,4-dioxo-5-(4,4,4-trifluoro-3,3-

bis(trifluoromethyl)but-1-yn-1-yl)-3,4-dihydropyrimidin-1(2H)-

yl)tetrahydrofuran-2-yl)methyl acetate (83). The product (159.7 mg, 96% yield) was purified with silica gel chromatography (PE : EA = 1 : 1) as white solid. Mp: 160 – 161 °C. ¹H NMR (400 MHz, CD₃CN): δ 8.08 (s, 1H), 6.15 (dd, J = 7.9, 6.0 Hz, 1H), 5.47 – 5.01 (m, 1H), 4.32 – 4.26 (m, 3H), 2.48 (ddd, J = 14.6, 6.0, 2.4 Hz, 1H), 2.41 – 2.27 (m, 1H), 2.05 (s, 3H), 2.04 (s, 3H). ¹⁹F NMR (376 MHz, CD₃CN): δ – 67.85 (s, 9F). ¹³C NMR (101 MHz, CD₃CN): δ 170.4, 170.3, 160.6, 149.1, 146.4, 120.2 (q, J = 289.0 Hz), 95.5, 86.2, 84.7, 82.7, 74.0, 72.8, 63.5, 57.6 (m), 37.5, 20.1, 19.8. HRMS (FI): Calcd for C₁₉H₁₅F₉N₂O₇⁺ (M⁺) 554.0730, found 554.0734.

Trimethyl(4-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenyl)silane

(84). The product (97.1 mg, 82% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ${}^{1}H$ NMR (400 MHz, CDCl₃): δ 7.56 – 7.46 (m, 4H), 0.28 (s, 9H). ${}^{19}F$ NMR (376 MHz, CDCl₃): δ – 67.70 (s, 9F). ${}^{13}C$ NMR (101 MHz, CDCl₃): δ 144.2, 133.3, 131.3, 120.3 (q, J = 289.5 Hz), 119.5, 91.0, 70.5, 57.5 (m), – 1.5. HRMS (EI): Calcd for $C_{15}H_{13}F_{9}Si^{+}$ (M⁺) 392.0637, found 392.0643.

2-(3-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenyl)naphthalene

(85). The product (121.5 mg, 91% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 166 - 167 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (s, 1H), 7.95 - 7.83 (m, 3H), 7.77 - 7.69 (m, 3H), 7.65 (d, J = 8.4 Hz, 2H), 7.59 - 7.43 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃): $\delta - 67.62$ (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 133.2, 132.6, 131.5, 131.3, 129.6, 129.0, 128.7, 128.2, 127.5, 127.0, 126.10, 123.03, 123.01, 120.4 (q, J = 289.8 Hz), 117.1, 91.1, 70.7, 57.7 (m). HRMS (EI): Calcd for $C_{22}H_{11}F_{9}^{+}$ (M⁺) 446.0712, found 446.0714.

9-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)anthracene (86). The product (120.0 mg, 95% yield) was purified with silica gel chromatography (Petroleum ether) as yellow solid. Mp: 142 – 143 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.44 (s, 1H), 8.32 (d, J = 8.7 Hz, 2H), 7.96 (d, J = 8.5 Hz, 2H), 7.77 – 7.58 (m, 2H), 7.56 – 7.45 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.29 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 133.6, 130.7, 130.4, 128.8, 127.9, 125.9, 125.4, 120.5 (q, J = 289.8 Hz), 112.4, 88.6, 80.6, 58.1 (m). HRMS (EI): Calcd for C₂₀H₉F₉+ (M⁺) 420.0555, found 420.0551.

2-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)anthracene (87). The product (116.9 mg, 93% yield) was purified with silica gel chromatography (Petroleum ether) as light yellow solid. Mp: 224 – 225 °C. ¹H NMR (400 MHz, CD₂Cl₂): δ 8.46 (d, J = 3.9 Hz, 2H), 8.33 (s, 1H), 8.13 – 7.87 (m, 3H), 7.70 – 7.52 (m, 2H), 7.51 – 7.44 (m, 1H). ¹⁹F NMR (376 MHz, CD₂Cl₂): δ – 67.46 (s, 9F). ¹³C NMR (101 MHz, CD₂Cl₂): δ 134.4, 132.7, 132.2, 131.0, 130.3, 128.7, 128.4, 128.2, 127.0, 126.52, 126.51, 126.4, 126.1, 120.3 (q, J = 290.5 Hz), 116.0, 91.4, 70.7, 57.5 (m). HRMS (EI): Calcd for C₂₀H₉F₉⁺ (M⁺) 420.0555, found 420.0550.

3-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenanthrene (88). The product (122.0 mg, 97% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 105 - 106 °C. ¹H NMR (400 MHz, CDCl₃): δ

8.80 (s, 1H), 8.60 (d, J = 8.0 Hz, 1H), 7.87 (dd, J = 7.6, 1.8 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.76 (d, J = 8.8 Hz, 1H), 7.71 – 7.61 (m, 4H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.50 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 132.9, 132.2, 129.9, 129.5, 129.1, 129.0, 128.8, 128.7, 127.6, 127.3, 127.2, 126.2, 122.7, 120.4 (q, J = 289.8 Hz), 117.0, 91.5, 70.5, 57.6 (m). **HRMS** (EI): Calcd for C₂₀H₉F₉⁺ (M⁺) 420.0555, found 420.0561.

2-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)phenanthrene (89).

The product (121.6 mg, 96% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 143 – 144 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.70 – 8.58 (m, 2H), 8.07 (s, 1H), 7.94 – 7.86 (m, 1H), 7.75 (d, J = 8.9 Hz, 1H), 7.72 – 7.59 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.55 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 133.2, 132.6, 131.5, 131.3, 129.6, 129.0, 128.7, 128.2, 127.5, 127.0, 126.1, 123.02, 123.01, 120.4 (q, J = 289.8 Hz), 117.1, 91.1, 70.7 57.7 (m). HRMS (EI): Calcd for C₂₀H₉F₉⁺ (M⁺) 420.0555, found 420.0560.

5-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzofuran (**90).** The product (85.9 mg, 80% yield) was purified with silica gel chromatography (Petroleum ether) as light yellow solid. Mp: 47 - 48 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.82 (s, 1H), 7.67 (d, J = 2.1 Hz, 1H), 7.54 – 7.40 (m, 2H), 6.76 (d, J = 2.3 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.71 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 155.5, 146.4, 128.4, 127.7, 126.1, 120.3 (q, J = 290.2 Hz), 113.8, 111.8, 106.4, 91.4, 69.0, 57.3 (m). **HRMS** (EI): Calcd for C₁₄H₅F₉O⁺ (M⁺) 360.0191, found 360.0192.

6-(4,4,4-Tifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)isoquinoline (**91).** The product (90.0 mg, 81% yield) was purified with silica gel chromatography (PE : EA = 10 : 1) as white solid. Mp: 83 – 84 °C. ¹H NMR (400 MHz, CD₂Cl₂): δ 9.28 (s, 1H), 8.59 (d, J = 5.7 Hz, 1H), 8.10 (s, 1H), 8.00 (d, J = 8.5 Hz, 1H), 7.77 – 7.59 (m, 2H). ¹⁹F NMR (376 MHz, CD₂Cl₂): δ – 67.38 (s, 9F). ¹³C NMR (101 MHz, CD₂Cl₂): δ 152.4, 144.3, 134.8, 131.8, 129.1, 128.3, 128.1, 120.9, 120.2 (q, J = 290.0 Hz), 119.9, 90.3, 71.7, 57.5 (m). **HRMS** (EI): Calcd for C₁₅H₆F₉N⁺ (M⁺) 371.0351, found 371.0348.

1,4-Bis(**4,4,4-trifluoro-3,3-bis**(**trifluoromethyl**)**but-1-yn-1-yl**)**benzene** (**92**). The product (148.3 mg, 88% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 111 – 112 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.54 (s, 4H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.47 (s, 18F). ¹³C NMR (101 MHz, CDCl₃): δ 132.4, 121.4, 120.2 (q, J = 290.2 Hz), 89.4, 72.8, 57.5 (m). HRMS (EI): Calcd for C₁₈H₄F₁₈⁺ (M⁺) 562.0020, found 562.0021.

1,3,5-Tris(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzene (93).

The product (223.6 mg, 93% yield) was purified with silica gel chromatography (petroleum ether) as white solid. Mp: 214 – 215 °C. ¹H NMR (400 MHz, CD₂Cl₂): δ 7.82 (s, 3H). ¹⁹F NMR (376 MHz, CD₂Cl₂): δ – 67.21 (s, 27F). ¹³C NMR (101 MHz, THF- d_8): δ 138.0, 120.5, 120.2 (q, J = 289.9 Hz), 88.3, 71.7, 57.6 (m). HRMS (FI): Calcd for C₂₄H₃F₂₇⁺ (M⁺) 803.9798, found 803.9806.

9,10-Bis(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)anthracene (94).

The product (1.9 g, 96% yield) was purified with silica gel chromatography (Petroleum ether) as yellow solid. Mp: 245 – 246 °C. ¹H NMR (400 MHz, THF- d_8): δ 8.44 (dd, J = 6.6, 3.3 Hz, 4H), 7.82 (dd, J = 6.8, 3.3 Hz, 4H). ¹⁹F NMR (376 MHz, THF- d_8): δ – 67.51 (s, 18F). ¹³C NMR (101 MHz, THF- d_8): δ 132.6, 128.9, 125.7, 120.4 (q, J = 289.7 Hz), 115.9, 88.1, 82.4, 58.1 (m). HRMS (EI): Calcd for C₂₆H₈F₁₈⁺ (M⁺) 662.0333, found 662.0338.

(E)-(6,6,6-Trifluoro-5,5-bis(trifluoromethyl)hex-1-en-3-yn-1-yl)benzene (95).

The product (100.3 mg, 97% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.58 – 7.32 (m, 5H), 7.17 (d, J= 16.4 Hz, 1H), 6.15 (d, J= 16.4 Hz, 1H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.71 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 146.4, 134.9, 129.8, 128.9, 126.7, 120.3 (q, J = 289.8 Hz), 104.3, 90.1, 71.5, 57.6 (m). **HRMS** (EI): Calcd for C₁₄H₇F₉⁺ (M⁺) 346.0399, found 346.0394.

(6,6,6-Trifluoro-5,5-bis(trifluoromethyl)hex-1-en-3-yne-1,1,2-triyl)tribenzene

(96). The product (138.6 mg, 93% yield) was purified with silica gel chromatography (Petroleum ether) as white solid. Mp: 81 - 82 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.44 - 7.40 (m, 2H), 7.37 - 7.32 (m, 3H), 7.29 - 7.11 (m, 8H), 7.03 - 7.00 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ - 67.48 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 154.4, 141.6, 140.3, 137.5, 130.9, 129.9, 129.7, 128.6, 128.2, 128.1, 128.0, 127.6, 120.2 (q, J = 290.2 Hz), 118.3, 92.9, 72.7, 57.5 (m). HRMS (EI): Calcd for C₂₆H₁₅F₉⁺ (M⁺) 498.1025, found 498.1030.

(4-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-

yl)phenyl)(trifluoromethyl)sulfane (97). The product (103.6 mg, 82% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.66 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 43.62 (s, 3F), – 67.51 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 135.9, 133.1, 129.2 (q, J = 308.3 Hz), 127.4 (q, J = 2.4 Hz), 121.9, 120.1 (q, J = 289.7 Hz), 89.2, 72.6, 57.5 (m). **HRMS** (FI): Calcd for C₁₃H₄F₁₂S⁺ (M⁺) 419.9837, found 419.9839.

6-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-1,2,3,4-

tetrahydronaphthalene (**98**). The product (110.0 mg, 98% yield) was purified with silica gel chromatography (petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.34 (d, J = 7.4 Hz, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.08 (t, J = 7.6 Hz, 1H), 2.85 (t, J = 6.3 Hz, 2H), 2.76 (t, J = 6.2 Hz, 2H), 2.08 – 1.66 (m, 4H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.71 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 140.5, 138.0, 131.5, 130.30, 125.2, 120.4 (q, J = 289.5 Hz), 119.1, 90.1, 74.3, 57.5 (m), 29.6, 27.5, 22.8, 22.6. **HRMS** (EI): Calcd for C₁₆H₁₁F₉⁺ (M⁺) 374.0712, found 374.0714.

2,4-Dichloro-1-(4-chloro-2-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-

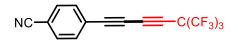
yl)phenoxy)benzene (**99).** The product (140.3 mg, 91% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹**H NMR** (400 MHz, CDCl₃): δ 7.55 (d, J = 2.4 Hz, 1H), 7.47 (d, J = 2.3 Hz, 1H), 7.38 – 7.32 (m, 1H), 7.25 – 7.17 (m, 1H), 6.84 (d, J = 8.8, 1H), 6.77 (d, J = 8.8, 1H). ¹⁹**F NMR** (376 MHz, CDCl₃): δ – 67.48 (s, 9F). ¹³**C NMR** (101 MHz, CDCl₃): δ 156.4, 150.5, 133.8, 132.1, 130.8, 130.0, 129.0, 128.0, 126.3, 120.4, 120.4 (q, J = 289.8 Hz), 118.9, 112.9, 84.9, 76.3, 57.5 (m). **HRMS** (EI): Calcd for C₁₈H₆F₉Cl₃O⁺ (M⁺) 513.9335, found 513.9340.

6-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-4H-chromen-4-one (100). The product (113.1 mg, 97% yield) was purified with silica gel chromatography

(PE : EA = 10 : 1) as white solid. Mp: 151 – 152 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.76 – 7.59 (m, 3H), 7.31 (d, J = 8.5 Hz, 1H), 6.47 (d, J = 9.6 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.50 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 159.5, 154.9, 142.1, 135.2, 132.1, 120.2 (q, J = 289.7 Hz), 119.0, 118.0, 117.5, 115.6, 89.0, 71.0, 57.4 (m). HRMS (EI): Calcd for C₁₅H₅F₉O₂⁺ (M⁺) 388.0140, found 388.0139.

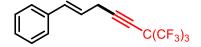
(8*R*,9*S*,13*S*,14*S*)-13-methyl-3-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (101). The product (128.9 mg, 87% yield) was purified with silica gel chromatography (PE : EA = 9 : 1) as white solid. Mp: 129 – 130 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.32 – 7.26 (m, 3H), 2.97 – 2.79 (m, 2H), 2.50 (dd, J = 18.8, 8.7 Hz, 1H), 2.42 – 2.36 (m, 1H), 2.29 (td, J = 10.7, 4.3 Hz, 1H), 2.22 – 1.90 (m, 4H), 1.75 – 1.36 (m, 6H), 0.90 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.75 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 220.4, 142.8, 137.1, 132.8, 129.6, 125.6, 120.3 (q, J = 289.7 Hz), 116.6, 91.1, 69.6, 57.3 (m), 50.4, 47.8, 44.5, 37.8, 35.7, 31.5, 28.9, 26.1, 25.5, 21.5, 13.7. HRMS (EI): Calcd for C₂₄H₂₁F₉O⁺ (M⁺) 496.1443, found 496.1442.

(S)-2,8-dimethyl-6-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)-2-((4S,8S)-4,8,12-trimethyltridecyl)chromane (102). The product (153.7 mg, 81% yield) was purified with silica gel chromatography (Petroleum ether) as colorless oil.


¹H NMR (400 MHz, CDCl₃): δ 7.14 (s, 1H), 7.12 (s, 1H), 2.72 (t, J = 6.8 Hz, 2H), 2.14 (s, 3H), 1.79 (ddq, J = 20.2, 13.5, 6.7 Hz, 2H), 1.59 – 1.02 (m, 24H), 0.98 – 0.74 (m, 12H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.91 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 154.4, 132.2, 131.5, 127.0, 120.8, 120.4 (q, J = 289.9 Hz), 109.2, 92.0, 77.1, 68.1, 57.6 (m), 40.0, 39.4, 37.45, 37.41, 37.38, 37.30, 32.8, 32.6, 30.9, 28.0, 24.8, 24.4, 24.1, 22.6, 22.5, 21.9, 20.9, 19.6, 19.5, 15.7. HRMS (EI): Calcd for C₃₃H₁₅F₉O⁺ (M⁺) 628.3321, found 628.3328.

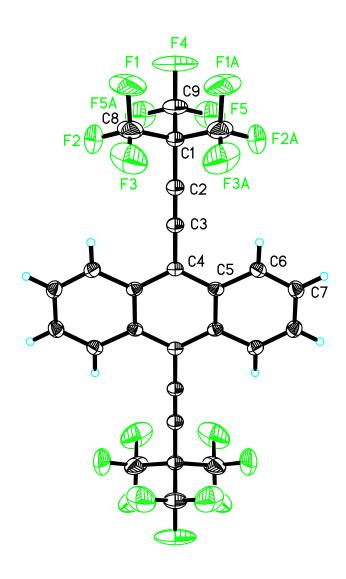
4,6-Dimethyl-2-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)pyrimidine (**103).** The product (76.3 mg, 73% yield) was purified with silica gel chromatography (PE : EA = 9 : 1) as white solid. Mp: 137 – 138 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.05 (s, 1H), 2.49 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 66.91 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 167.5, 149.9, 120.9, 120.1 (q, J = 289.9 Hz), 88.7, 66.0, 57.3 (m), 23.7. **HRMS** (EI): Calcd for C₁₂H₇F₉N₂⁺ (M⁺) 350.0460, found 350.0458.

$$N$$
 S
 $C(CF_3)_3$


2-(4,4,4-Trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)benzo[d]thiazole (104).

The product (68.9 mg, 61% yield) was purified with silica gel chromatography (PE: EA = 200: 1) as light yellow solid. Mp: 99 – 100 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.15 – 8.12 (m, 1H), 7.96 – 7.88 (m, 1H), 7.67 – 7.46 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 66.79 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 152.6, 144.5, 135.4, 127.5, 127.3, 124.4, 121.5, 119.9 (q, J = 290.4 Hz), 83.5, 75.8, 57.7 (m). HRMS (EI): Calcd for C₁₃H₄F₉NS⁺ (M⁺) 376.9915, found 376.9920.

4-(6,6,6-Trifluoro-5,5-bis(trifluoromethyl)hexa-1,3-diyn-1-yl)benzonitrile (105).


The product (57.3 mg, 52% yield) was purified with silica gel chromatography (PE : EA = 50 : 1) as white solid. Mp: 163 - 164 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.71 – 7.59 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 66.92 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 133.4, 132.2, 124.5, 119.90 (q, J = 290.5 Hz), 117.7, 113.9, 78.6, 75.0, 74.5, 64.7 (m), 57.78 (m). **HRMS** (EI): Calcd for C₁₅H₄F₉N⁺ (M⁺) 369.0195, found 369.0201.

(E)-(7,7,7-Trifluoro-6,6-bis(trifluoromethyl)hept-1-en-4-yn-1-yl)benzene (106).

The product (98.3 mg, 91% yield) was purified with silica gel chromatography (Petroleum ether) as colorless liquid. ¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, J = 7.1 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.29 – 7.23 (m, 1H), 6.65 (d, J = 15.4 Hz, 1H), 6.53 (dd, J = 15.4, 10.4 Hz, 1H), 6.42 (dd, J = 10.3, 6.4 Hz, 1H), 5.58 (d, J = 6.4 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃): δ – 67.04 (s, 9F). ¹³C NMR (101 MHz, CDCl₃): δ 211.6, 136.2, 134.7, 128.7, 128.3, 126.6, 121.2 (q, J = 289.0 Hz), 120.3, 100.0, 79.8 (m), 59.4 (m). **HRMS** (EI): Calcd for C₁₅H₉F₉⁺ (M⁺) 360.0555, found 360.0552.

7. The X-ray crystal structure of Compound 94 (CCDC 2294310):

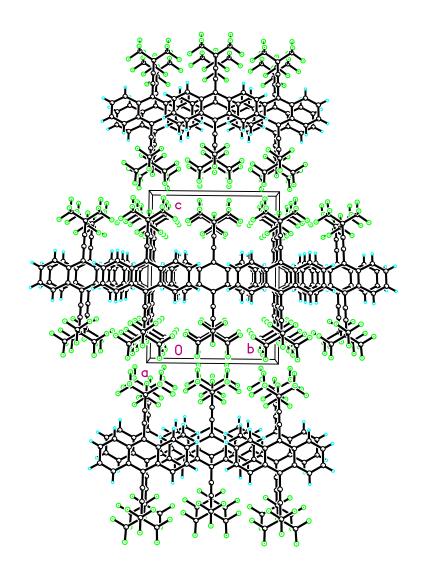


Table 2. Crystal data and structure refinement for mo_d8v22346_0m.

-	
Identification code	mo_d8v22346_0m
Empirical formula	C26 H8 F18
Formula weight	662.32
Temperature	213(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C 2/m
Unit cell dimensions	a = 7.1131(12) Å

Unit cell dimensions $a = 7.1131(12) \, \text{Å}$ $\alpha = 90^{\circ}$.

b = 11.4536(19) Å $\beta = 94.826(5)^{\circ}.$

c = 15.101(3) Å $\gamma = 90^{\circ}$.

Volume 1225.9(4) Å³

S60

Z 2

Density (calculated) 1.794 Mg/m³
Absorption coefficient 0.201 mm⁻¹

F(000) 652

Crystal size $0.180 \times 0.120 \times 0.070 \text{ mm}^3$

Theta range for data collection 2.707 to 25.000°.

Index ranges -8<=h<=8, -12<=k<=13, -17<=l<=17

Reflections collected 4637

Independent reflections 1099 [R(int) = 0.0551]

Completeness to theta = 25.242° 93.7 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7456 and 0.4379

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 1099 / 0 / 110

Goodness-of-fit on F² 1.109

Final R indices [I>2sigma(I)] R1 = 0.0813, wR2 = 0.2202 R indices (all data) R1 = 0.0958, wR2 = 0.2328

Extinction coefficient 0.018(6)

Largest diff. peak and hole 0.418 and -0.308 e.Å-3

Table 3. Atomic coordinates ($x\ 10^4$) and equivalent—isotropic displacement parameters ($\mathring{A}^2x\ 10^3$) for mo_d8v22346_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
F(1)	3154(8)	3845(4)	484(3)	184(3)
F(2)	2840(7)	2952(3)	1695(3)	134(2)
F(3)	534(6)	3882(5)	1066(3)	142(2)
F(4)	6023(6)	5000	1238(3)	146(3)
F(5)	5723(5)	5908(4)	2430(2)	120(2)
C(1)	2976(7)	5000	1760(3)	45(1)
C(2)	2085(7)	5000	2604(3)	46(1)
C(3)	1396(6)	5000	3293(3)	39(1)
C(4)	643(6)	5000	4147(3)	34(1)
C(5)	312(4)	6074(3)	4561(2)	35(1)
C(6)	586(4)	7168(3)	4142(2)	40(1)
C(7)	293(4)	8185(3)	4562(2)	45(1)
C(8)	2382(9)	3893(6)	1234(4)	90(2)
C(9)	5164(9)	5000	1957(4)	69(2)

Table 4. Bond lengths [Å] and angles [°] for mo_d8v22346_0m.

F(1)-C(8)	1.300(5)
F(2)-C(8)	1.309(8)
F(3)-C(8)	1.318(7)
F(4)-C(9)	1.289(6)
F(5)-C(9)	1.305(5)
C(1)-C(2)	1.471(6)
C(1)-C(8)#1	1.537(6)
C(1)-C(8)	1.537(6)
C(1)-C(9)	1.560(8)
C(2)-C(3)	1.187(6)
C(3)-C(4)	1.437(6)
C(4)-C(5)	1.409(4)
C(4)-C(5)#1	1.409(4)
C(5)-C(6)	1.425(5)
C(5)-C(5)#2	1.432(6)
C(6)-C(7)	1.351(5)
C(6)-H(6)	0.9400
C(7)-C(7)#2	1.421(6)
C(7)-H(7)	0.9400
C(9)-F(5)#1	1.305(5)
C(2)-C(1)-C(8)#1	109.2(3)
C(2)-C(1)-C(8)	109.2(3)
C(8)#1-C(1)-C(8)	111.2(6)
C(2)-C(1)-C(9)	109.3(4)
C(8)#1-C(1)-C(9)	109.0(3)
C(8)-C(1)-C(9)	109.0(3)
C(3)-C(2)-C(1)	178.9(5)
C(2)-C(3)-C(4)	177.5(5)
C(5)-C(4)-C(5)#1	121.7(4)
C(5)-C(4)-C(3)	119.14(19)
C(5)#1-C(4)-C(3)	119.14(19)
C(4)-C(5)-C(6)	122.4(3)
C(4)-C(5)-C(5)#2	119.14(19)
C(6)-C(5)-C(5)#2	118.44(18)
C(7)-C(6)-C(5)	121.1(3)

C(7)-C(6)-H(6)	119.4
C(5)-C(6)-H(6)	119.4
C(6)-C(7)-C(7)#2	120.42(19)
C(6)-C(7)-H(7)	119.8
C(7)#2-C(7)-H(7)	119.8
F(1)-C(8)-F(2)	108.9(6)
F(1)-C(8)-F(3)	108.6(5)
F(2)-C(8)-F(3)	107.1(5)
F(1)-C(8)-C(1)	111.5(4)
F(2)-C(8)-C(1)	111.0(5)
F(3)-C(8)-C(1)	109.5(5)
F(4)-C(9)-F(5)#1	108.4(4)
F(4)-C(9)-F(5)	108.4(4)
F(5)#1-C(9)-F(5)	105.7(6)
F(4)-C(9)-C(1)	112.1(5)
F(5)#1-C(9)-C(1)	110.9(4)
F(5)-C(9)-C(1)	110.9(4)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1,z #2 -x,y,-z+1

Table 5. Anisotropic displacement parameters (Å $^2x~10^3$) for mo_d8v22346_0m. The anisotropic displacement factor exponent takes the form: -2 π^2 [h $^2~a^{*2}U^{11}+...+2~h~k~a^*~b^*~U^{12}$]

U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
270(6)	199(5)	102(3)	-99(3)	124(3)	-138(4)
190(4)	51(2)	170(4)	-23(2)	72(3)	-13(2)
123(3)	190(5)	110(3)	-32(3)	-3(2)	-85(3)
75(3)	306(9)	61(2)	0	37(2)	0
100(2)	143(3)	114(3)	-35(2)	2(2)	-50(2)
53(3)	47(3)	36(2)	0	15(2)	0
53(3)	46(3)	40(3)	0	12(2)	0
40(2)	45(3)	34(2)	0	6(2)	0
32(2)	40(3)	32(2)	0	5(2)	0
27(2)	40(2)	36(2)	2(1)	3(1)	-1(1)
37(2)	43(2)	40(2)	6(1)	5(1)	-1(1)
45(2)	40(2)	49(2)	7(1)	3(1)	0(2)
112(4)	98(5)	66(3)	-32(3)	48(3)	-42(4)
70(4)	94(5)	46(3)	0	25(3)	0
	270(6) 190(4) 123(3) 75(3) 100(2) 53(3) 40(2) 32(2) 27(2) 37(2) 45(2) 112(4)	270(6) 199(5) 190(4) 51(2) 123(3) 190(5) 75(3) 306(9) 100(2) 143(3) 53(3) 47(3) 53(3) 46(3) 40(2) 45(3) 32(2) 40(3) 27(2) 40(2) 37(2) 43(2) 45(2) 40(2) 112(4) 98(5)	270(6) 199(5) 102(3) 190(4) 51(2) 170(4) 123(3) 190(5) 110(3) 75(3) 306(9) 61(2) 100(2) 143(3) 114(3) 53(3) 47(3) 36(2) 53(3) 46(3) 40(3) 40(2) 45(3) 34(2) 32(2) 40(3) 32(2) 27(2) 40(2) 36(2) 37(2) 43(2) 40(2) 45(2) 40(2) 49(2) 112(4) 98(5) 66(3)	270(6) 199(5) 102(3) -99(3) 190(4) 51(2) 170(4) -23(2) 123(3) 190(5) 110(3) -32(3) 75(3) 306(9) 61(2) 0 100(2) 143(3) 114(3) -35(2) 53(3) 47(3) 36(2) 0 53(3) 46(3) 40(3) 0 40(2) 45(3) 34(2) 0 32(2) 40(3) 32(2) 0 27(2) 40(2) 36(2) 2(1) 37(2) 43(2) 40(2) 6(1) 45(2) 40(2) 49(2) 7(1) 112(4) 98(5) 66(3) -32(3)	270(6) 199(5) 102(3) -99(3) 124(3) 190(4) 51(2) 170(4) -23(2) 72(3) 123(3) 190(5) 110(3) -32(3) -3(2) 75(3) 306(9) 61(2) 0 37(2) 100(2) 143(3) 114(3) -35(2) 2(2) 53(3) 47(3) 36(2) 0 15(2) 53(3) 46(3) 40(3) 0 12(2) 40(2) 45(3) 34(2) 0 6(2) 32(2) 40(3) 32(2) 0 5(2) 27(2) 40(2) 36(2) 2(1) 3(1) 37(2) 43(2) 40(2) 6(1) 5(1) 45(2) 40(2) 49(2) 7(1) 3(1) 112(4) 98(5) 66(3) -32(3) 48(3)

Table 6. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å 2 x 10^3) for mo_d8v22346_0m.

	х	у	Z	U(eq)
H(6)	977	7182	3562	48
H(7)	477	8898	4272	54

Table 7. Torsion angles [°] for mo_d8v22346_0m.

C(5)#1-C(4)-C(5)-C(6)	-178.1(2)
C(3)-C(4)-C(5)-C(6)	4.0(5)
C(5)#1-C(4)-C(5)-C(5)#2	2.3(6)
C(3)-C(4)-C(5)-C(5)#2	-175.6(4)
C(4)-C(5)-C(6)-C(7)	-178.7(3)
C(5)#2-C(5)-C(6)-C(7)	0.9(5)
C(5)-C(6)-C(7)-C(7)#2	0.2(6)
C(2)-C(1)-C(8)-F(1)	-179.2(5)
C(8)#1-C(1)-C(8)-F(1)	60.3(8)
C(9)-C(1)-C(8)-F(1)	-59.9(7)
C(2)-C(1)-C(8)-F(2)	-57.6(6)
C(8)#1-C(1)-C(8)-F(2)	-178.1(3)
C(9)-C(1)-C(8)-F(2)	61.8(5)
C(2)-C(1)-C(8)-F(3)	60.5(6)
C(8)#1-C(1)-C(8)-F(3)	-60.0(6)
C(9)-C(1)-C(8)-F(3)	179.9(4)
C(2)-C(1)-C(9)-F(4)	180.000(1)
C(8)#1-C(1)-C(9)-F(4)	-60.8(3)
C(8)-C(1)-C(9)-F(4)	60.8(3)
C(2)-C(1)-C(9)-F(5)#1	58.6(4)
C(8)#1-C(1)-C(9)-F(5)#1	177.9(4)
C(8)-C(1)-C(9)-F(5)#1	-60.6(5)
C(2)-C(1)-C(9)-F(5)	-58.6(4)
C(8)#1-C(1)-C(9)-F(5)	60.6(5)
C(8)-C(1)-C(9)-F(5)	-177.9(4)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1,z #2 -x,y,-z+1

Table 8. Hydrogen bonds for mo_d8v22346_0m [Å and $^{\circ}$].

D.H. A	4(D II)	1(II A)	1(D A)	
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

8. Preparation of Building Blocks and Probes Containing (Perfluoro-*tert*-butyl)ethynylated Arenes

8.1 Procedure for the preparation of S107

S107, 81%

A solution of 6-Bromopicolinic acid (300 mg, 1.49 mmol, 1 equiv.) in CH₂Cl₂ (5 mL) was added to a solution of (R)-1-Phenethylamine (305 mg, 1.78 mmol, 1.2 equiv.), 4-dimethylaminopyridine (9 mg, 0.74 mmol, 5 mol%) and 1-[3-(dimethylamino)pro-pyl]-3-ethylcarbodiimide hydrochloride (EDCI·HCl) (339 mg, 1.78 mmol, 1.2 equiv.) in CH₂Cl₂ (30 mL). The reaction mixture was stirred at room temperature overnight before water was added to quench the reaction. The organic layer was separated and washed with brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was purified by silica gel column chromatography (PE : EA = 9 : 1) to give 106 as colorless oil (429 mg, 81 %).

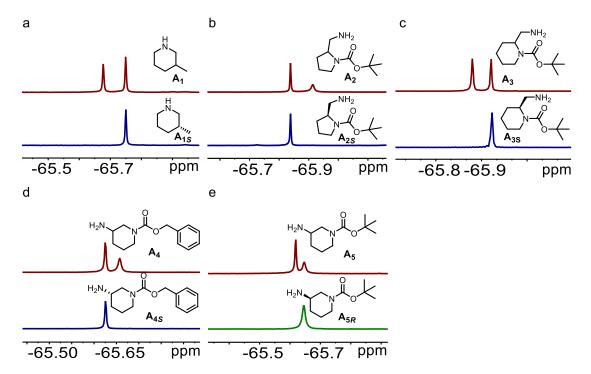
¹H NMR (400 MHz, CDCl3): δ 8.22 – 8.13 (t, 2H), 8.06 (d, J = 8.6 Hz, 1H), 7.89 – 7.83 (d, J = 8.0, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.68 (t, J = 7.8 Hz, 1H), 7.61 (d, J = 7.1 Hz, 1H), 7.57 – 7.46 (m, 4H), 6.26 – 6.04 (m, 1H), 1.78 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl3): δ 161.7, 150.9, 140.5, 139.6, 138.1, 133.9, 131.1, 130.7, 128.8, 128.4, 126.5, 125.8, 125.3, 123.3, 122.7, 121.4, 44.9, 21.1. HRMS (ESI): Calcd for C₁₈H₁₆BrN₂O⁺ (M+H⁺) 335.0441, found 335.0441.

8.2 Procedure for the preparation of 107

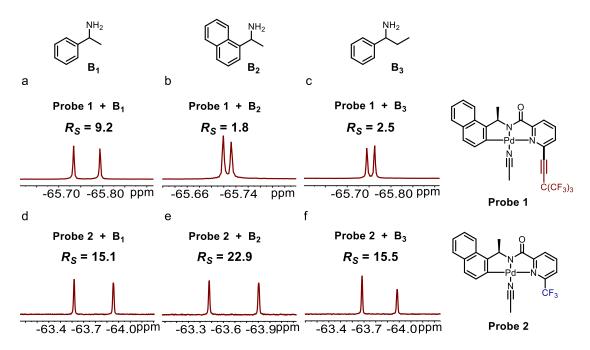
Under dry N₂ atmosphere, to sealed tube were added S105 (2.0 mmol, 710.0 mg, 1.0 equiv), Pd(PPh₃)₂Cl₂ (0.1 mmol, 70.2 mg, 0.05 equiv), CuI (0.1 mmol, 19.0 mg, 0.05 equiv), DIPEA (4.0 mmol, 504.0 mg, 0.2 equiv), dry DMF (20.0 mL) were added. then, PFtPA (2.4 mmol, 691.2 mg, 1.2 equiv) were added. The mixture was stirred at 100 °C for 12 h. After the completion of the reaction, the mixture was quenched by saturated NH₄Cl solution, then the mixture was extracted with Et₂O for 3 times. The organic phase was combined and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel by using petroleum ether as an eluent to provide 107 as light yellow solid (981.6 mg, 95%).

(*S*)-*N*-(1-(naphthalen-1-yl)ethyl)-6-(4,4,4-trifluoro-3,3-bis(trifluoromethyl)but-1-yn-1-yl)picolinamide (105) The product (981.6 mg, 95% yield) was purified with silica gel chromatography (PE : EA = 7 : 1) as light yellow solid. Mp: 56 - 57 °C. ¹H NMR (400 MHz, CDCl3): δ 8.33 – 8.28 (m, 1H), 8.20 (t, J = 7.4 Hz, 2H), 7.87 (td, J = 6.6, 5.6, 3.4 Hz, 2H), 7.81 (d, J = 8.2 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.61 – 7.45 (m, 3H), 6.22 – 6.08 (m, 1H), 1.80 (d, J = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl3): δ – 67.11 (s, 9F). ¹³C NMR (101 MHz, CDCl3): δ 162.0, 150.6, 138.4, 138.2, 137.9, 133.9, 131.1, 130.8, 128.8, 128.4, 126.5, 125.8, 125.3, 123.6, 123.3, 122.7, 120.0 (q, J = 290.2 Hz), 88.7, 70.3, 57.4 (m), 45.0, 21.2. HRMS (EI): Calcd for C₂₄H₁₅F₉N₂O⁺ (M⁺) 518.1035, found 518.1042.

8.3. Procedure for the preparation of Probe 1


107 (100 mg, 0.192mmol, 1.0 equiv) was added to a solution of Pd(OAc)₂ (48 mg, 0.212 mmol, 1.10 equiv) in acetonitrile (15 mL). The resulting mixture was stirred at 80 °C for 12 h, and filtered through a 0.22 μm syringe filter. The filtrate was concentrated to give the crude product which was transferred to a filter funnel and washed extensively with water and hexane. The yellow powder was then dried under vacuum to give the probe **1** (CH₃CN) as yellow solid (116 mg, 90%).

Mp: 220 – 230 °C. ¹H NMR (400 MHz, CDCl3): δ 8.33 – 8.21 (m, 1H), 7.96 (t, J = 7.8 Hz, 1H), 7.85 (d, J = 8.3 Hz, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.71 – 7.67 (m, 1H), 7.54 – 7.30 (m, 3H), 7.18 (d, J = 8.5 Hz, 1H)., 5.86 (q, J = 6.2 Hz, 1H), 2.40 (s, 3H), 1.69 (d, J = 6.3 Hz, 3H). ¹9F NMR (376 MHz, CDCl3): δ – 66.22. (s, 9F) ¹3C NMR (101 MHz, CDCl3): δ 166.4, 159.2, 155.9, 140.7, 139.0, 138.8, 133.0, 132.0, 130.8, 128.8, 128.4, 126.0, 125.4, 125.1, 124.5, 124.1, 120.0 (q, J = 290.4 Hz), 119.4, 116.4, 88.7, 75.1. 62.1, 57.8 (m), 23.0. HRMS (EI): Calcd for C₂₆H₁₇F₉N₃OPd⁺ (M+H⁺) 664.0258, found 664.0266.


8.4. Differentiation of chiral amines using Probe 1 and Probe 2

Certain amounts of analytes were dissolved in CDCl₃ to obtain solutions of analytes with the required concentrations (10 mM). A stock solution of **probe 1** (2.5 mM, 5.0 mg in 3.0 mL of CDCl₃): was also prepared. Then, 300 μ L of the probe solution (containing 0.5 mg of probe) and 100 μ L of the analyte solution (containing 0.1–0.3 mg of analyte) were mixed. The resulting mixture containing a concentration of 1.9 (mM) for the probe and 2.5 mM for the analyte. Than it was transferred into an NMR tube for ¹⁹F NMR measurements.

A stock solution of **probe 2** (3.3 mM, 5.0 mg in 3.0 mL of CDCl3): was also prepared. Then, 300 μ L of the probe solution (containing 0.5 mg of probe) and 100 μ L of the analyte solution (containing 0.1–0.3 mg of analyte) were mixed. The resulting mixture containing a concentration of 2.5 (mM) for the probe and 2.5 mM for the analyte. Than it was transferred into an NMR tube for ¹⁹F NMR measurements. ¹⁹F NMR spectra were recorded on a Bruker Avance-II 400 NMR spectrometer (376 MHz for ¹⁹F nucleus) with a BBO probe at 298 K, using a default relaxation delay (D1) of 1 s and a scan number of 16.

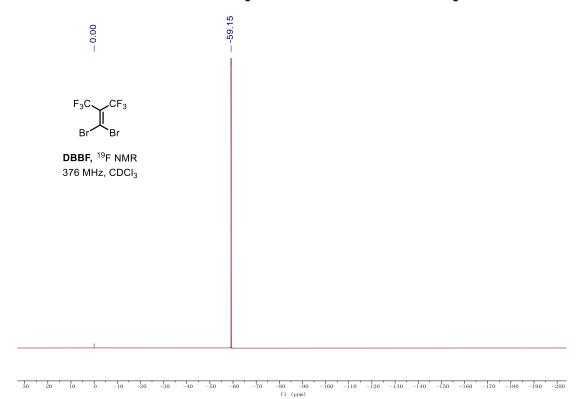
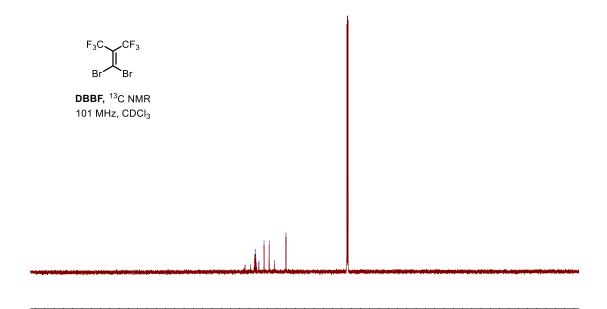
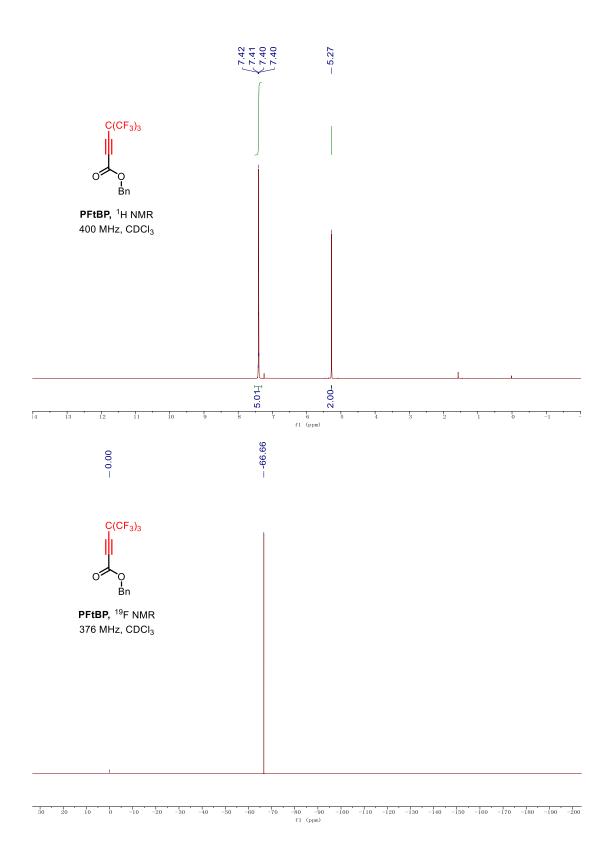
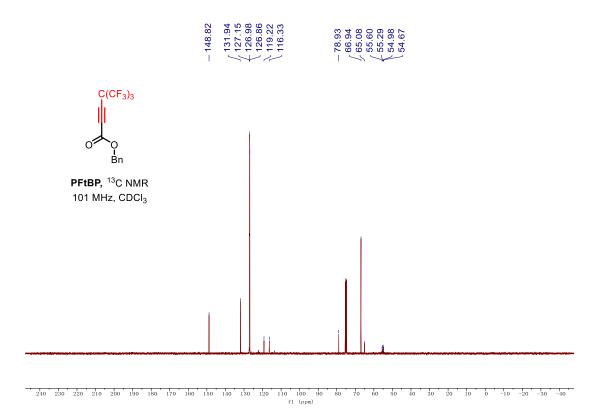
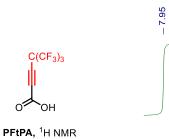


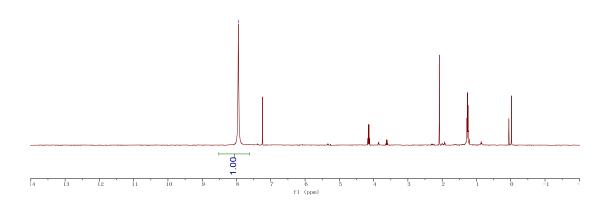
Figure 1. Detection of racemic and enantioenriched Acyclic Secondary Amine using **probe 1.** (a-e) ¹⁹F NMR spectra of mixtures of **probe 1** (0.5 mg), various racemic analytes and enantiopure (0.1-0.2 mg) in CDCl₃; The red chromatogram represents the racemic analyte, the blue chromatogram represents the analyte in the *S* configuration, and the green chromatogram represents the analyte in the *R* configuration. The spectra were recorded on a Bruker Avance-400 NMR spectrometer.

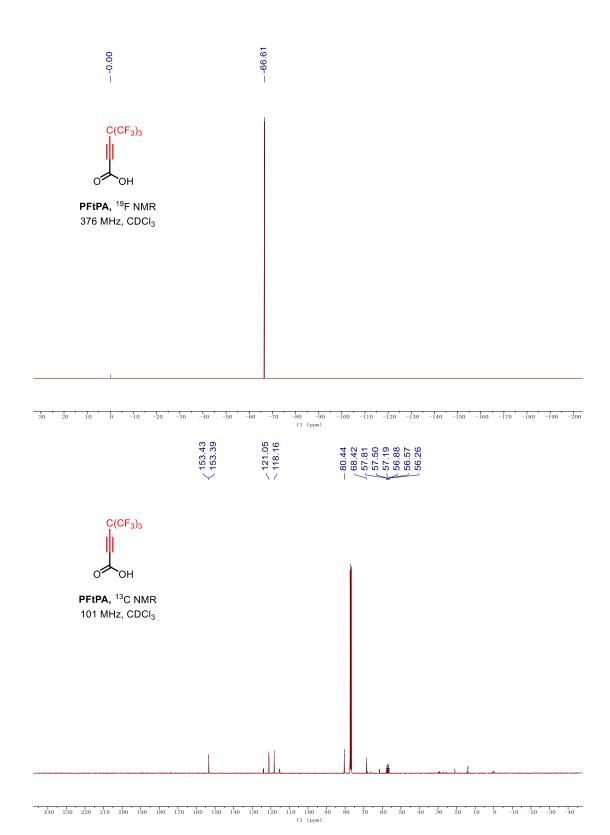


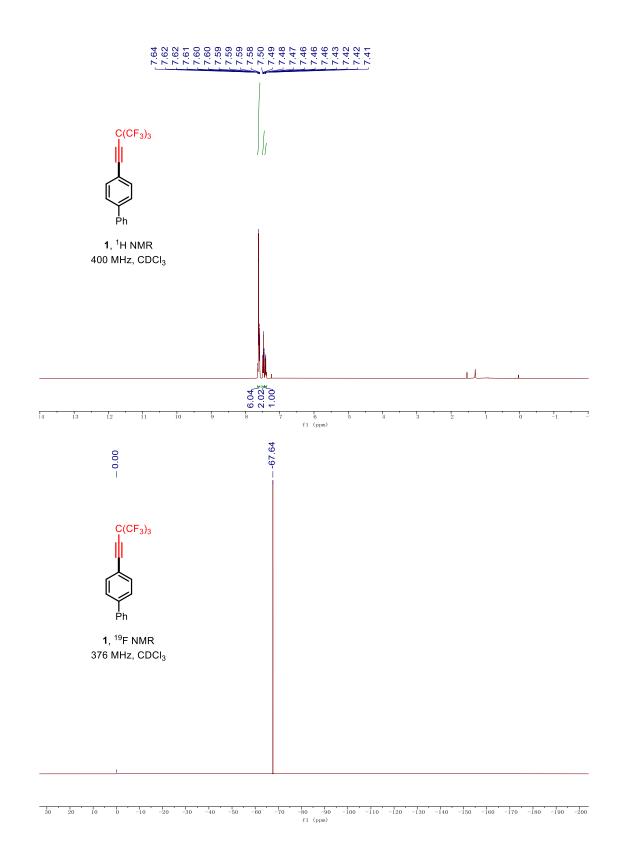

Figure 2. Comparison between the resolving ability of **probe 1** and **probe 2**. (a, b, c) ¹⁹F NMR spectra of mixtures of **probe 1** (0.5 mg, ca. 1.9 mM) and racemic analytes (0.2–0.3mg, ca. 2.5 mM) in CDCl₃. (d, e, f) ¹⁹F NMR spectra of mixtures of **probe 1** (0.5 mg ca. 2.5 mM) and racemic analytes (0.2–0.3 mg, ca. 2.5 mM) in CDCl₃. The spectra were recorded on a Bruker Avance-400 NMR spectrometer.

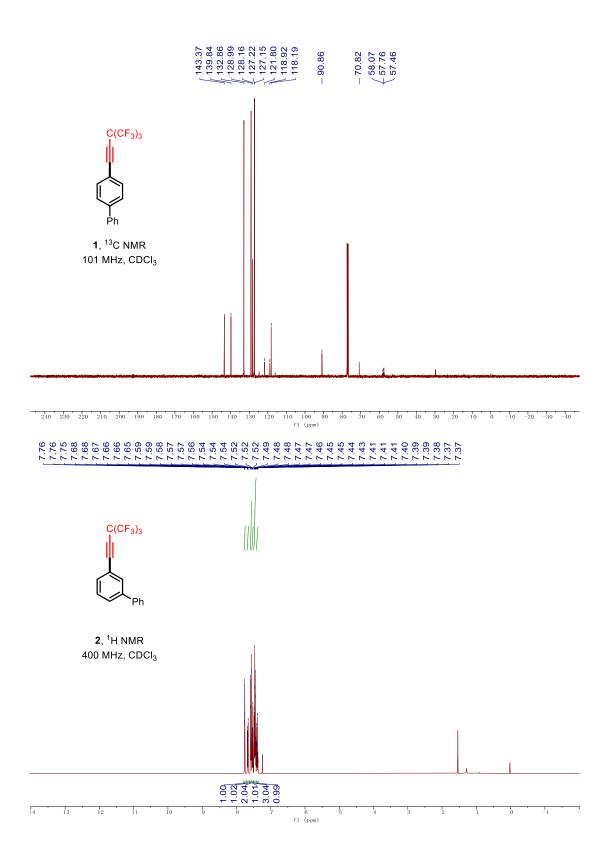

9. ¹H, ¹⁹F and ¹³C NMR Spectra of Isolated Compounds

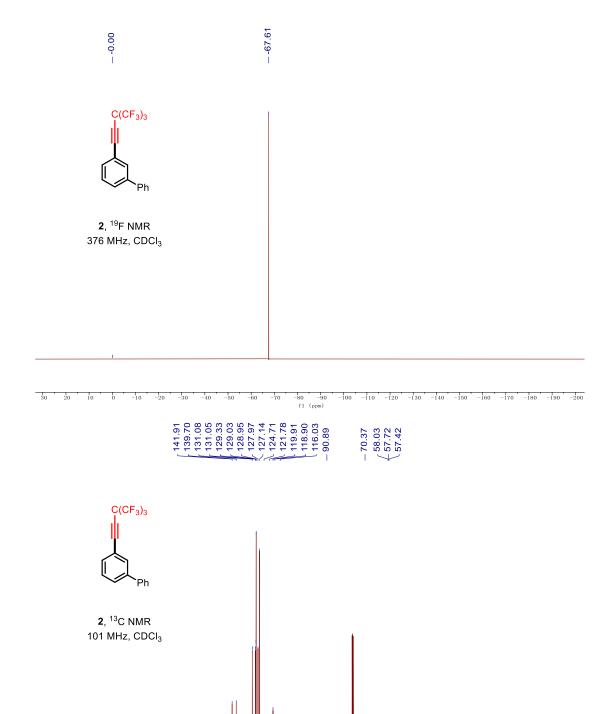


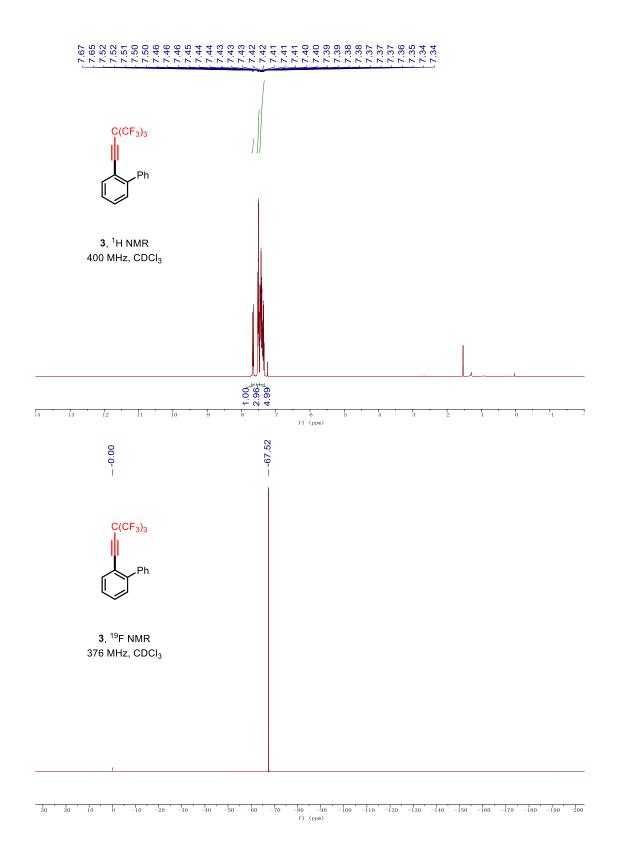


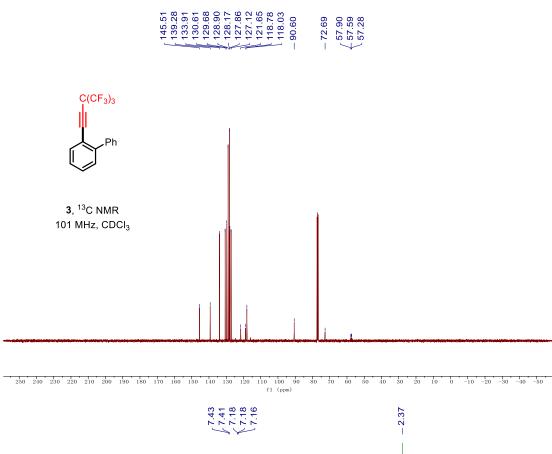


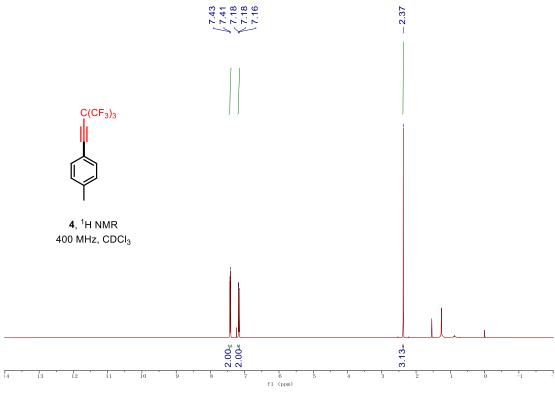


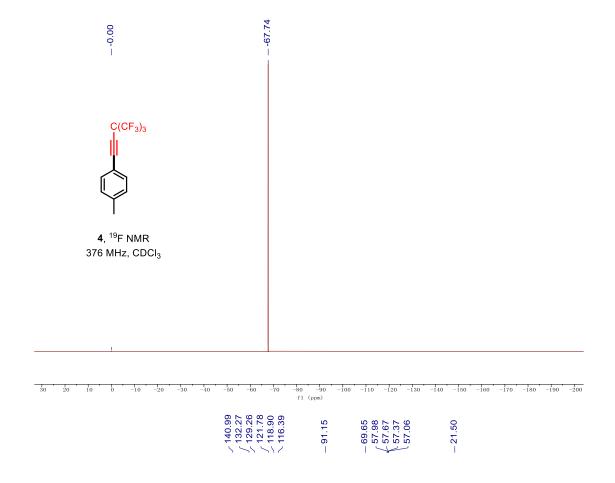


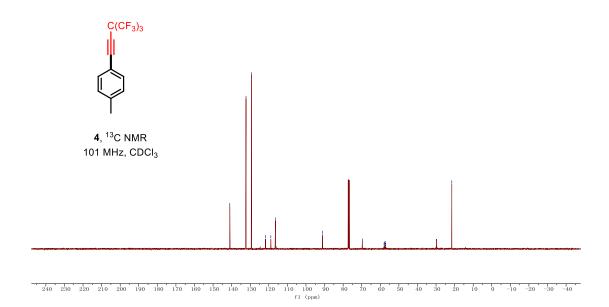

400 MHz, CDCl₃

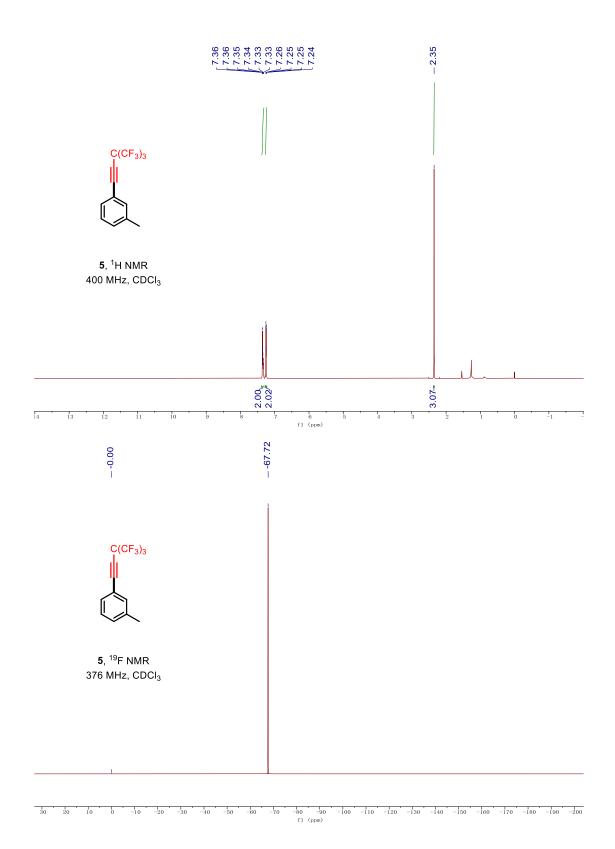


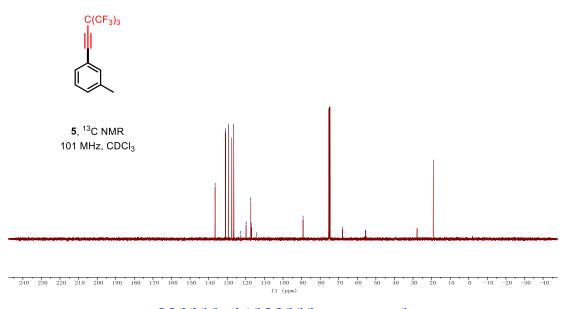


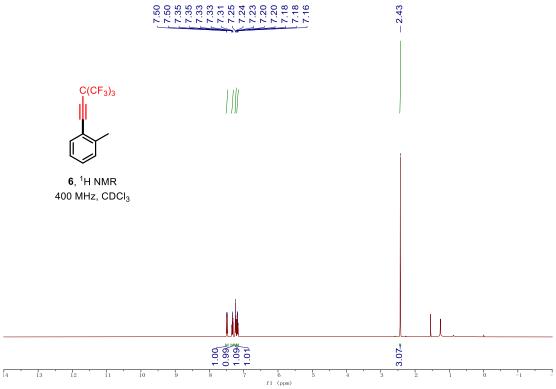


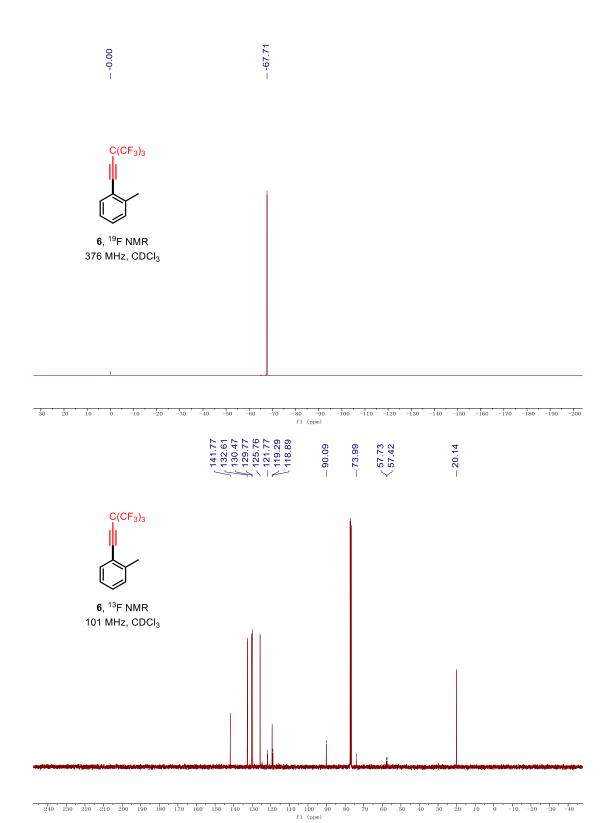


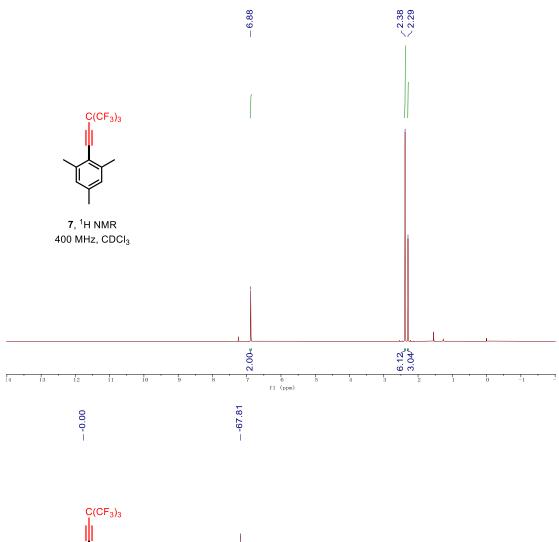

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

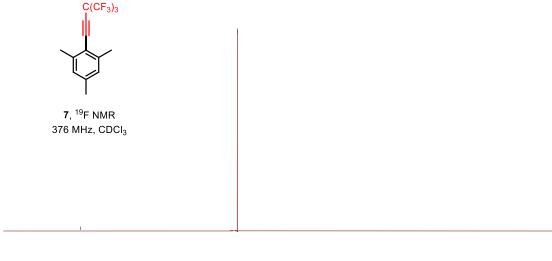


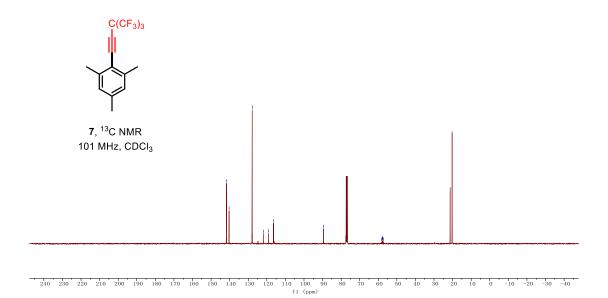


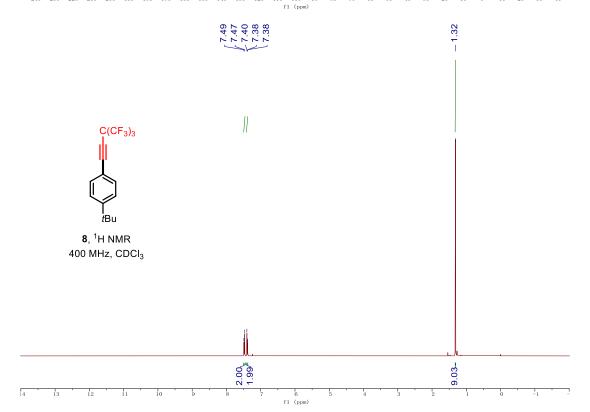


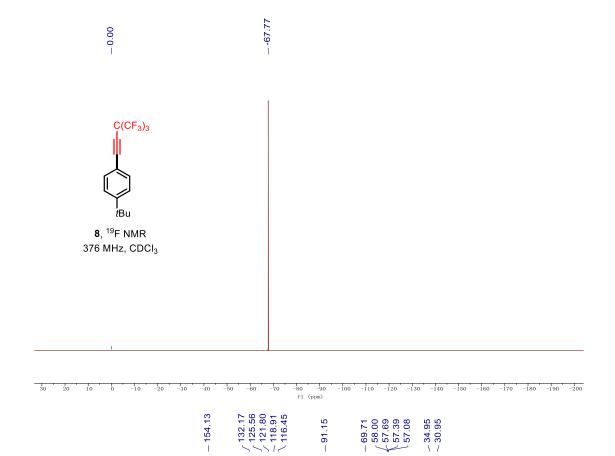


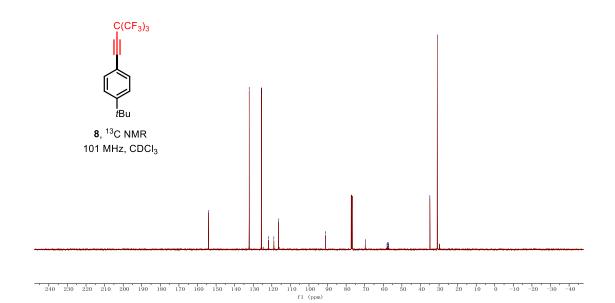


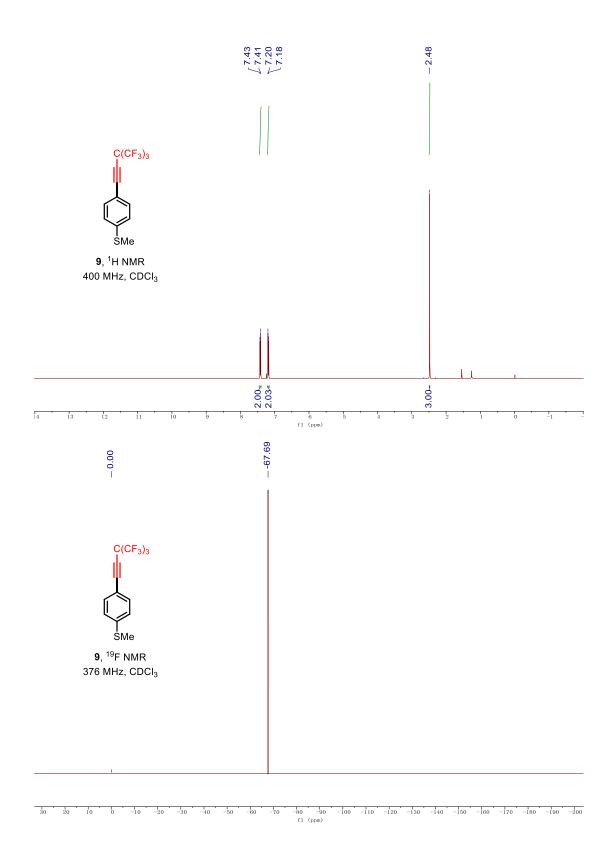


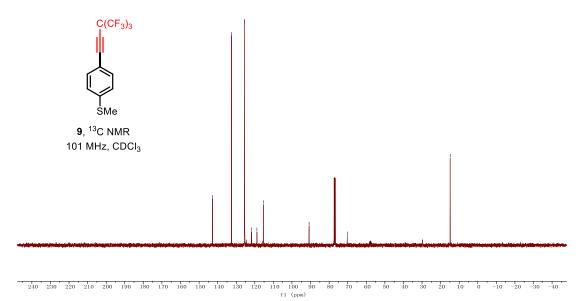


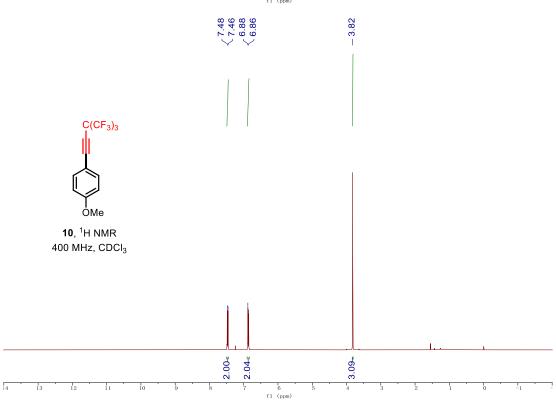


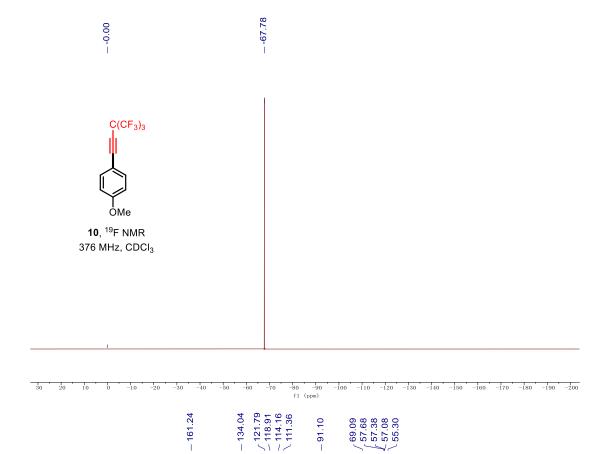


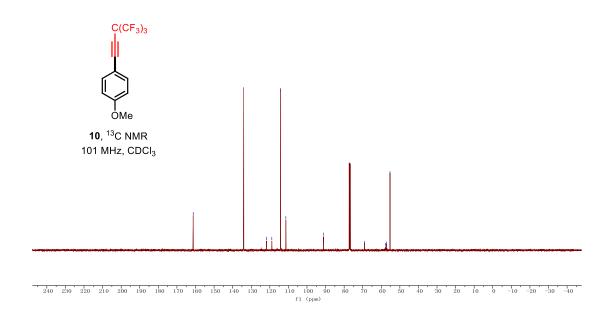

-100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

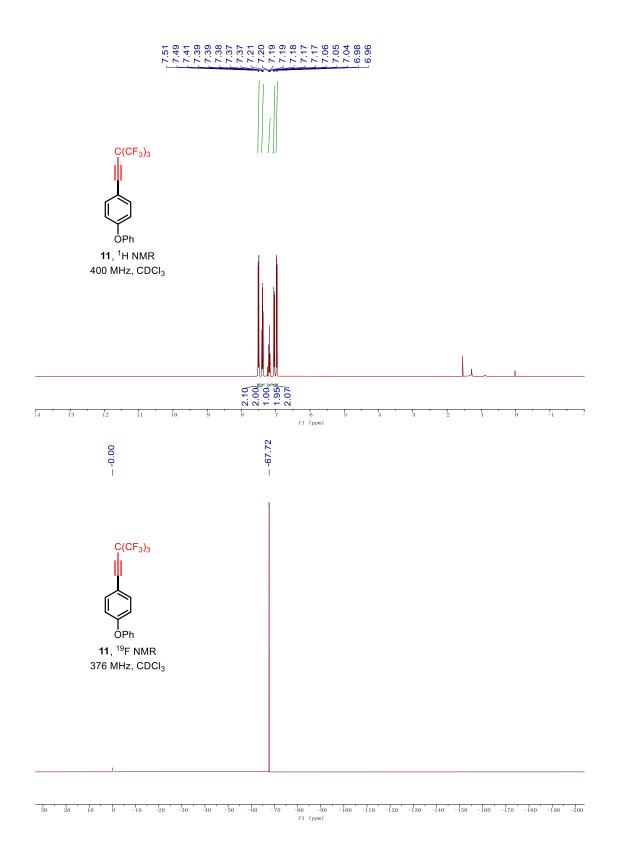


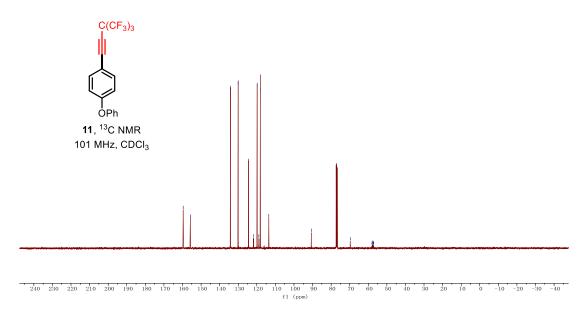


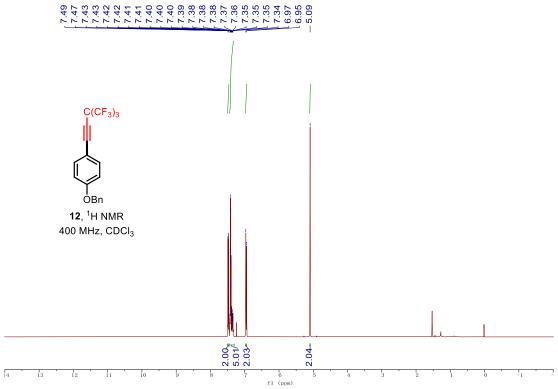


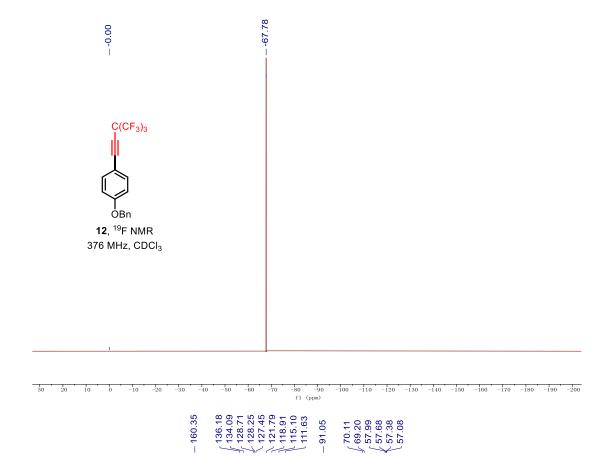


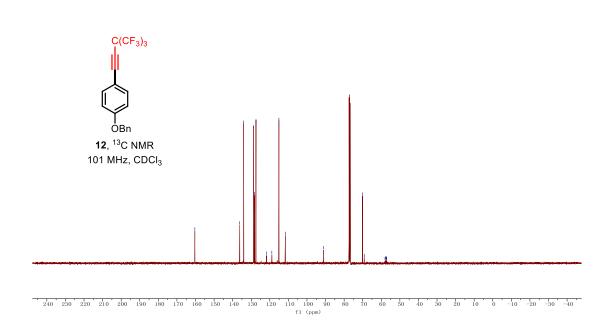


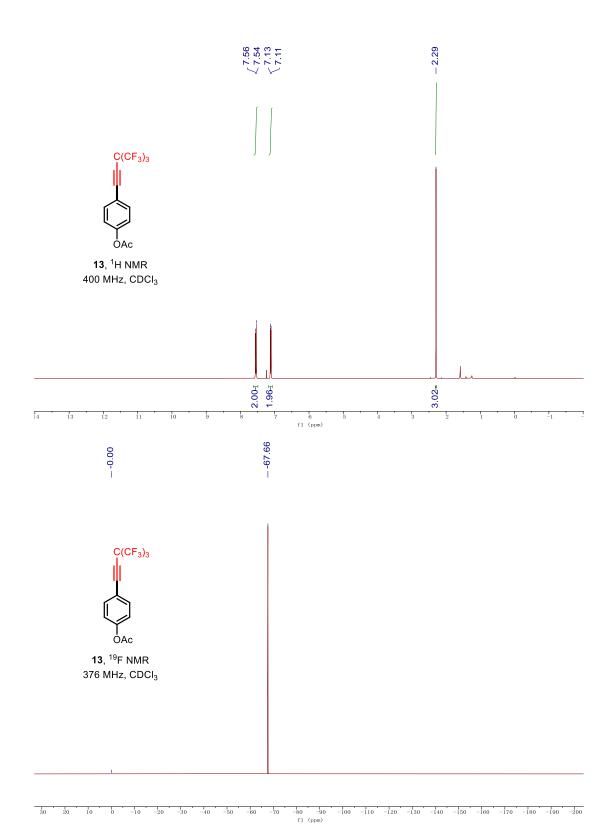


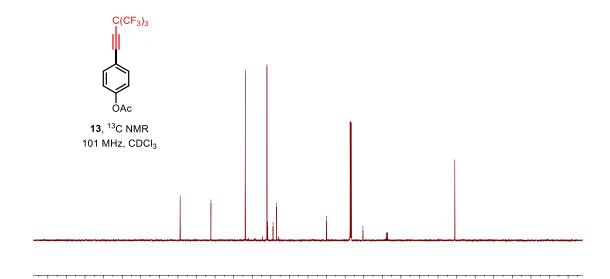


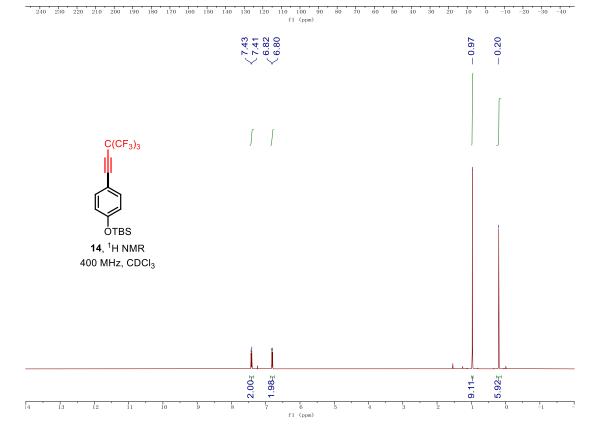


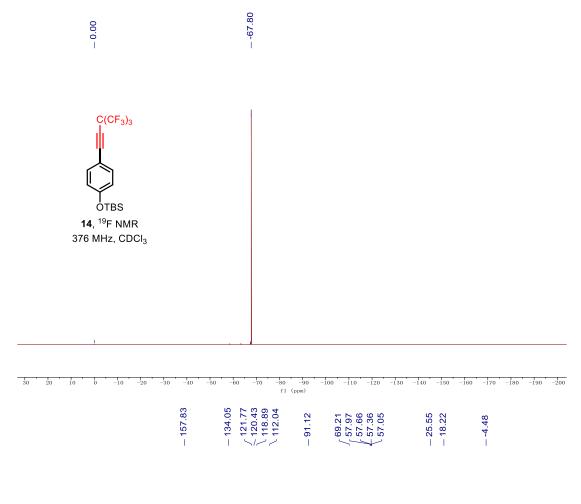


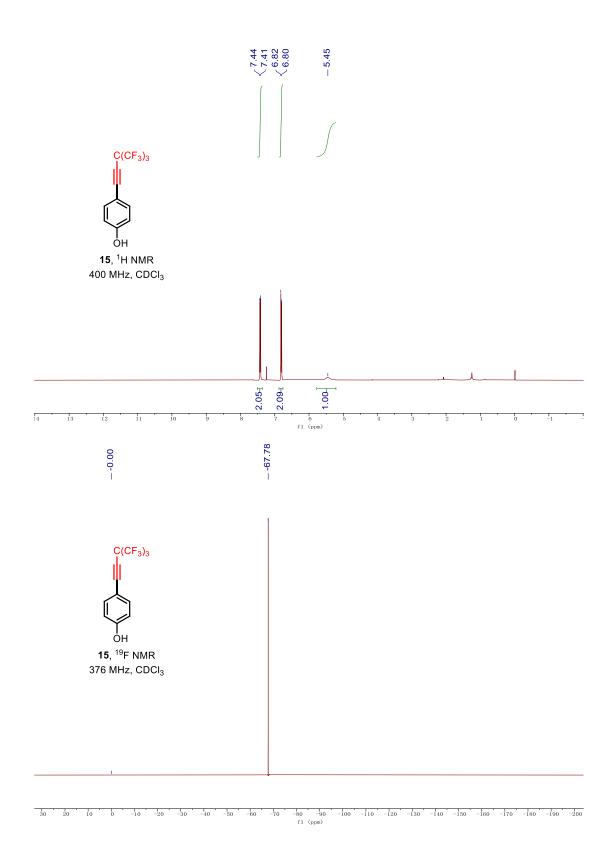




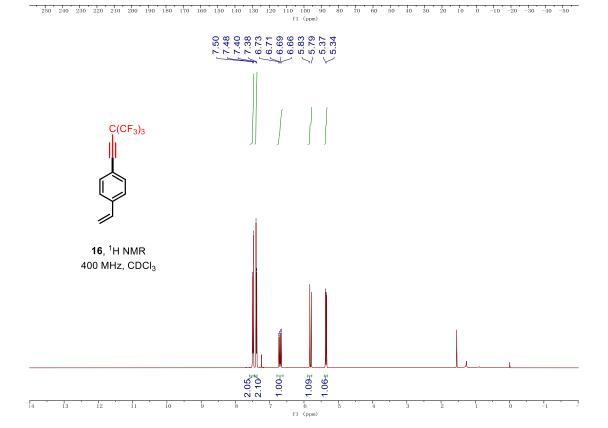


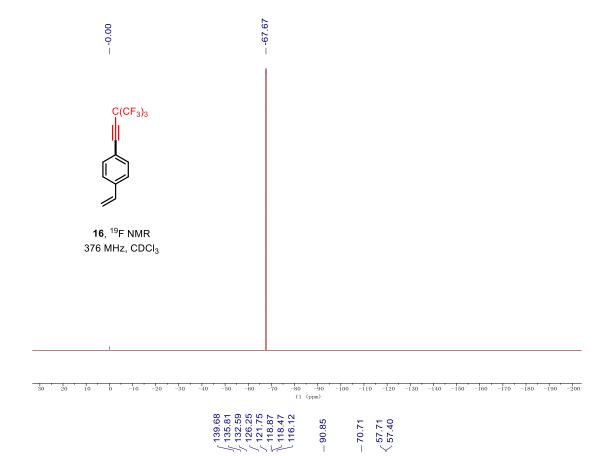


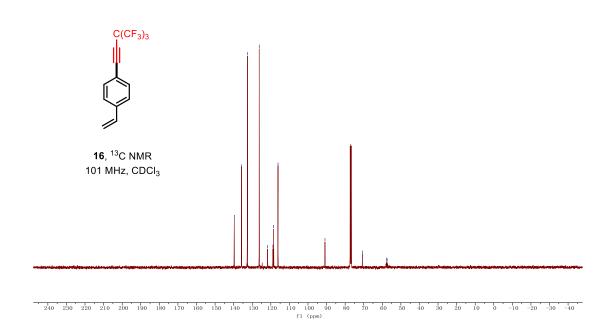

70.11 69.20 57.99 57.88 57.88

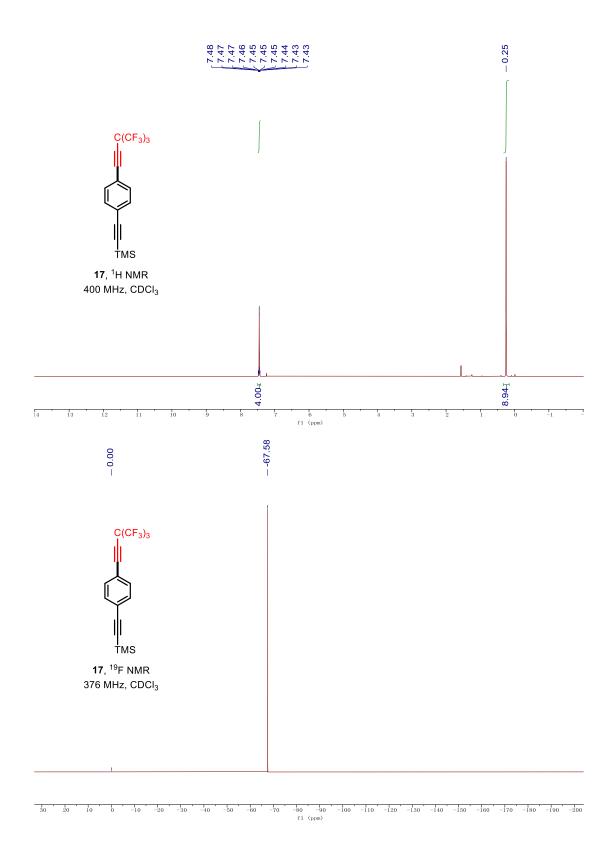


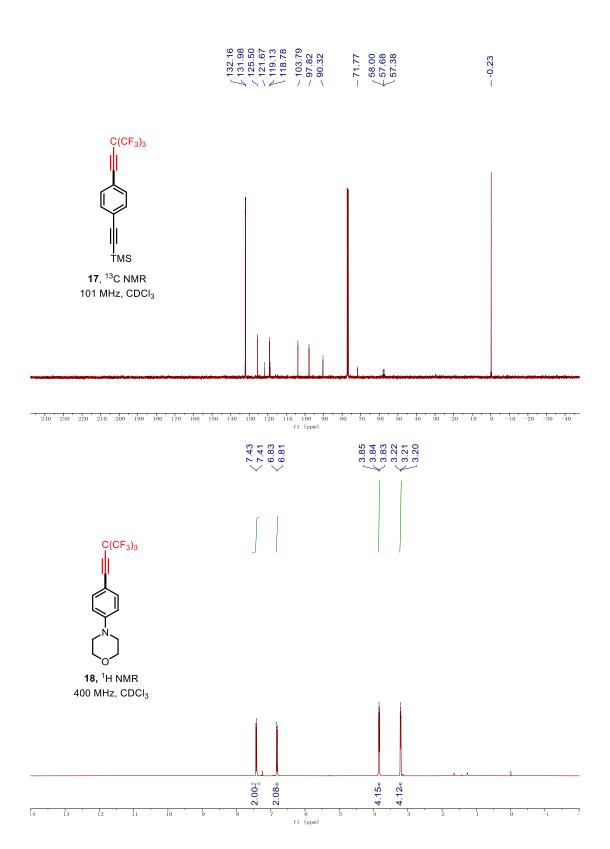


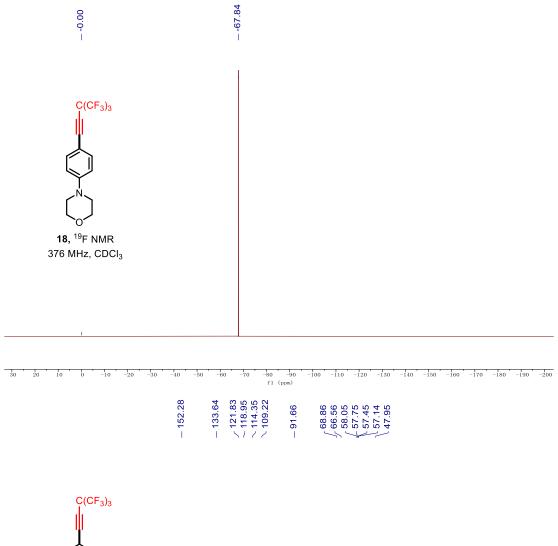


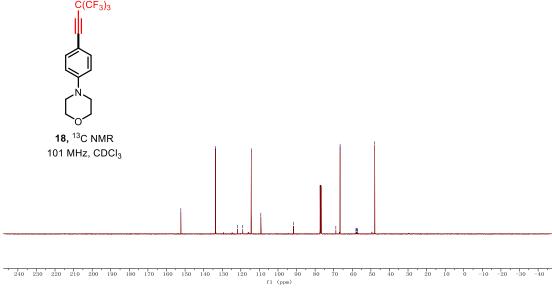


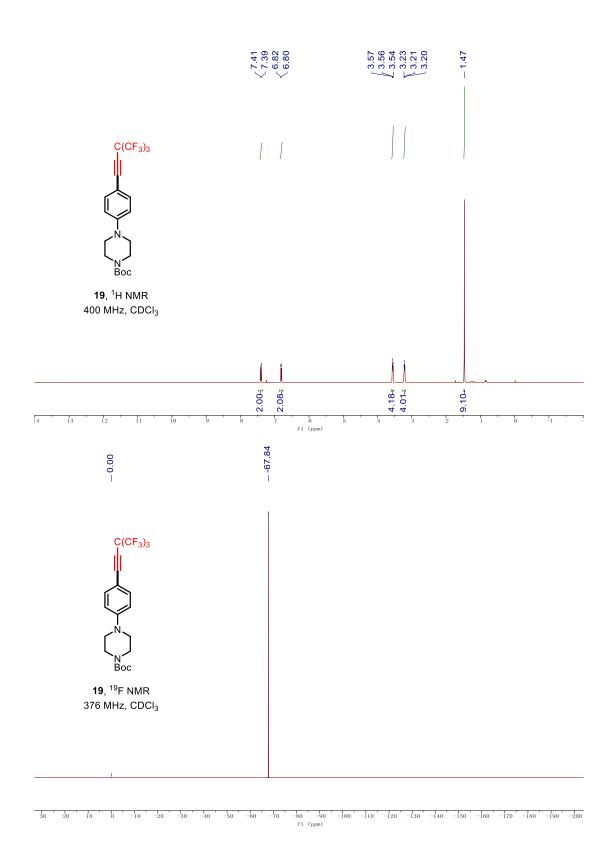


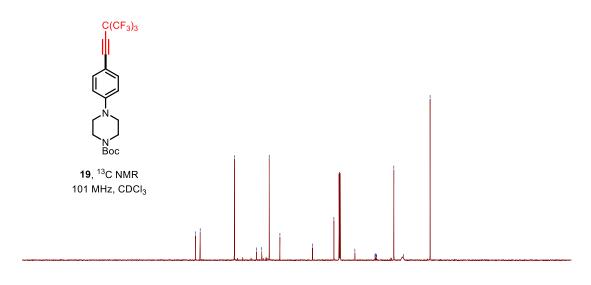


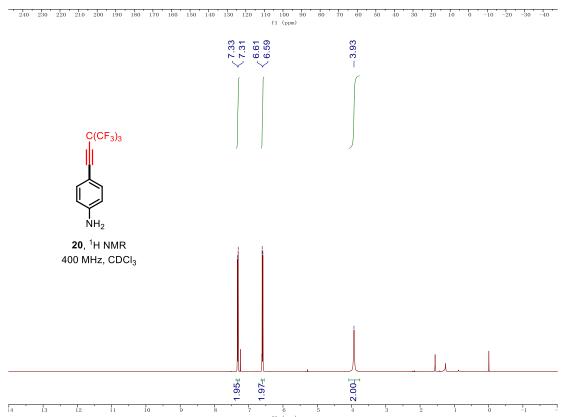


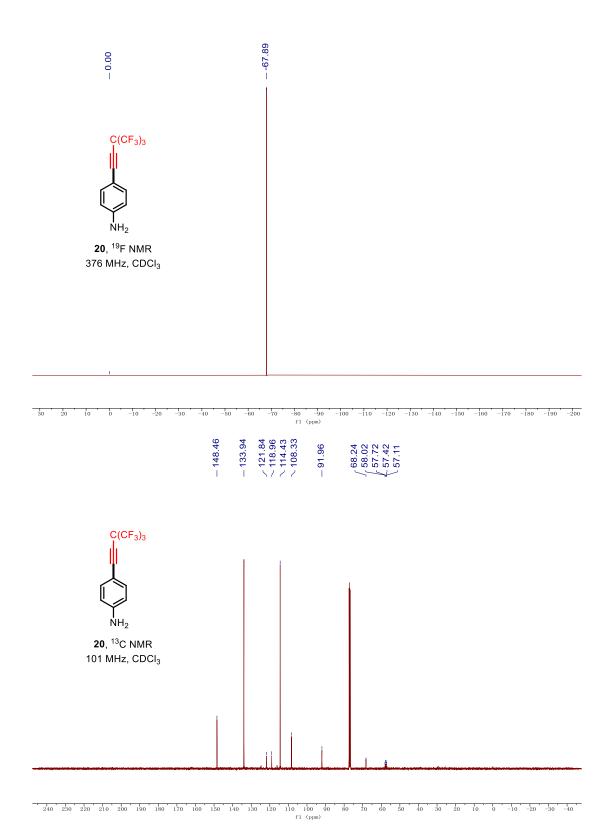


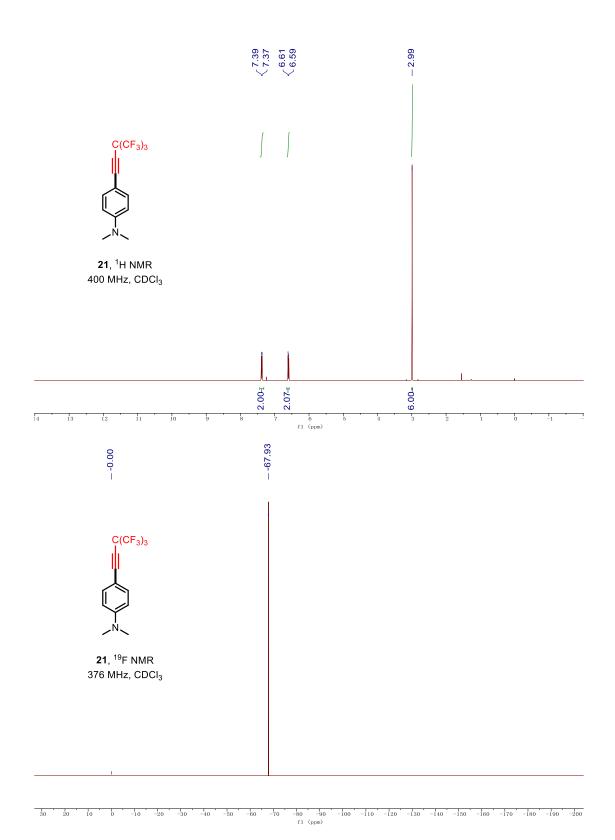


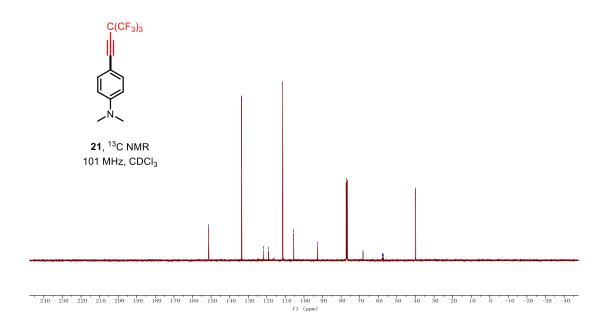


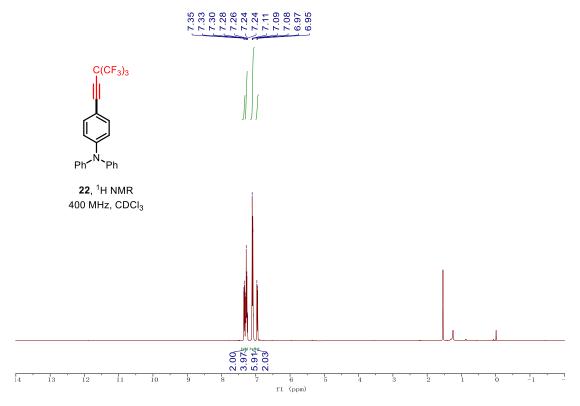


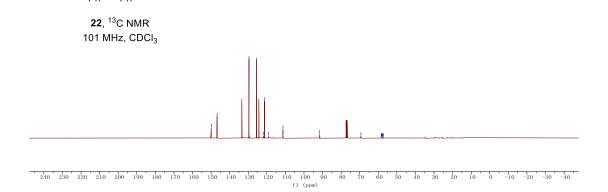


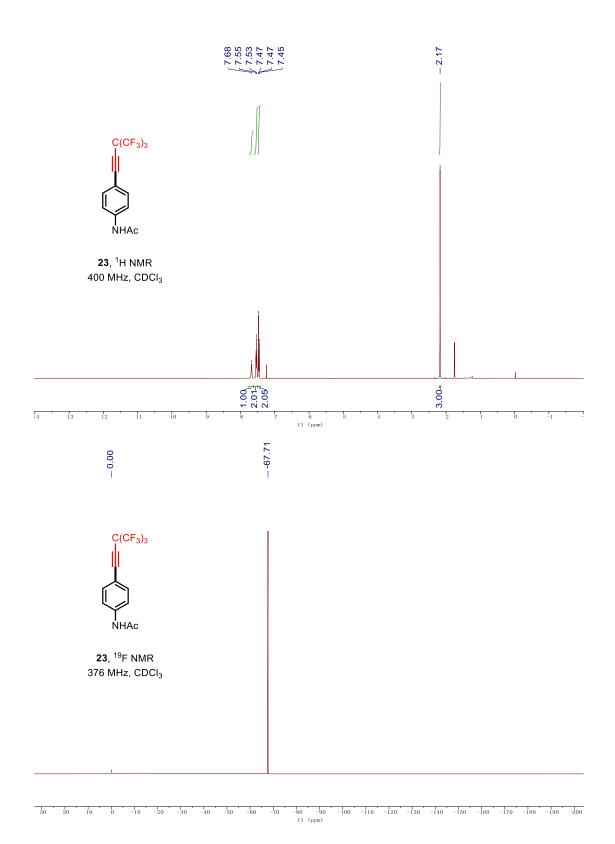


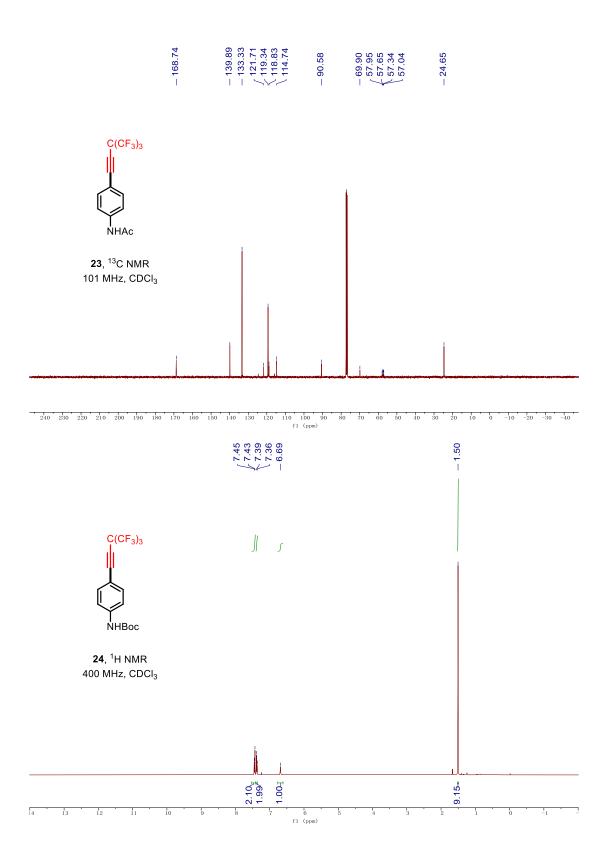


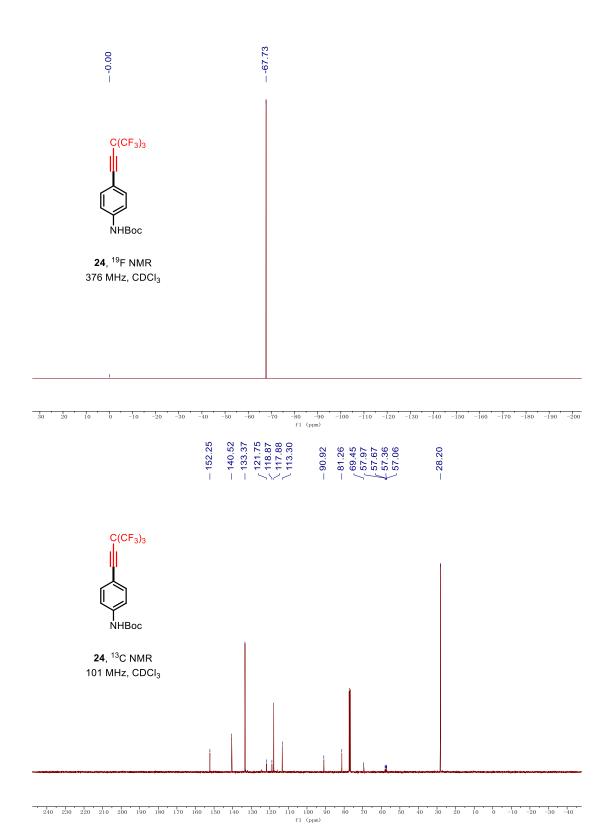


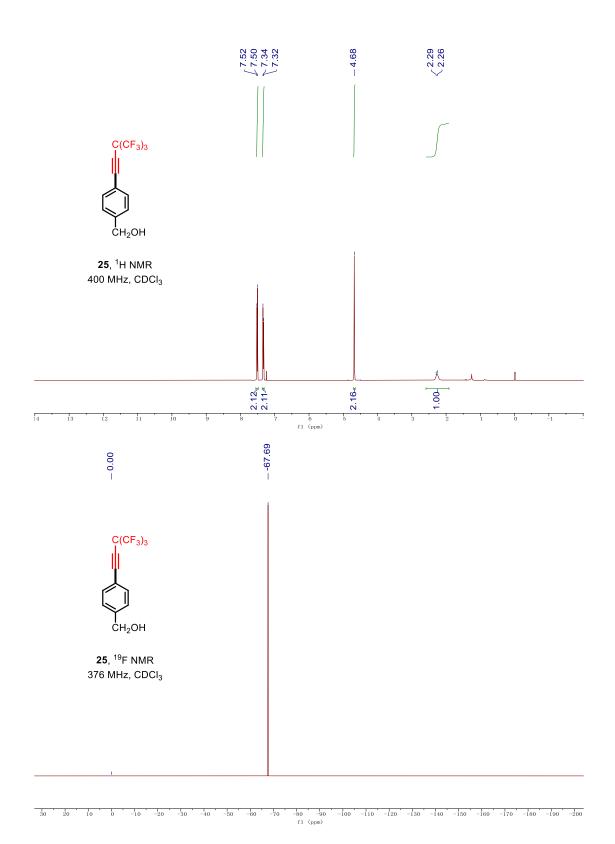

f1 (ppm)

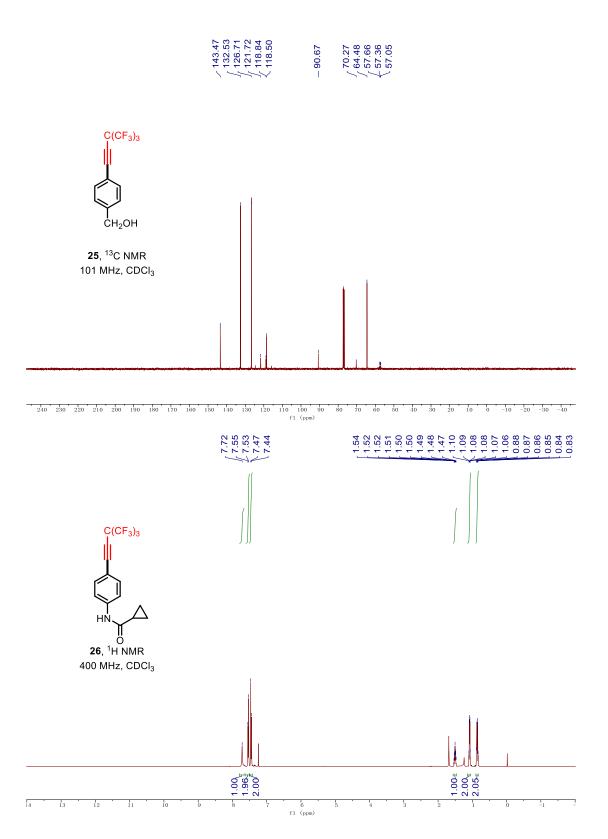


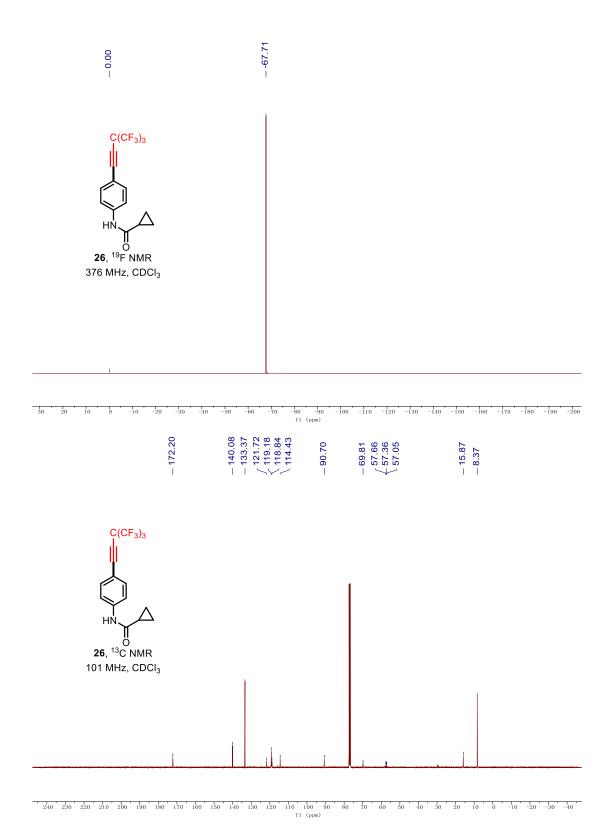


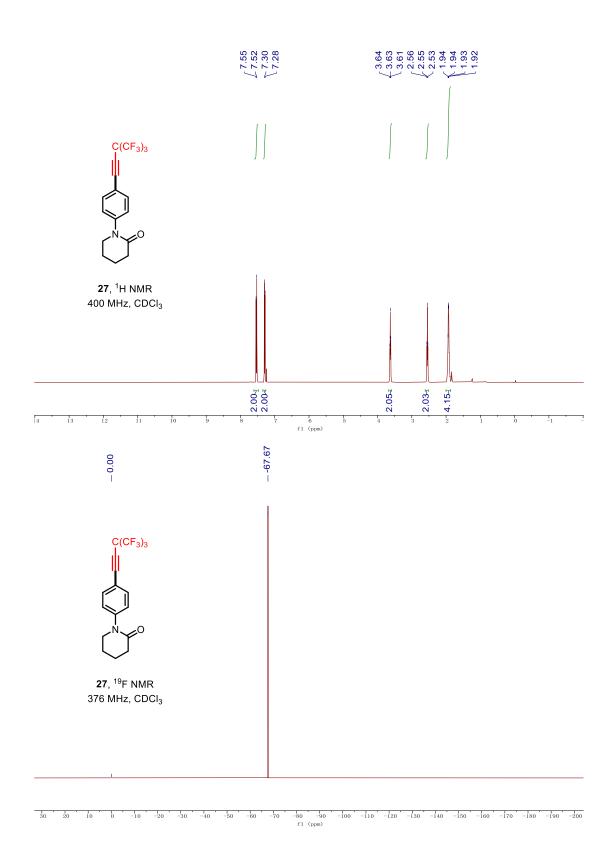


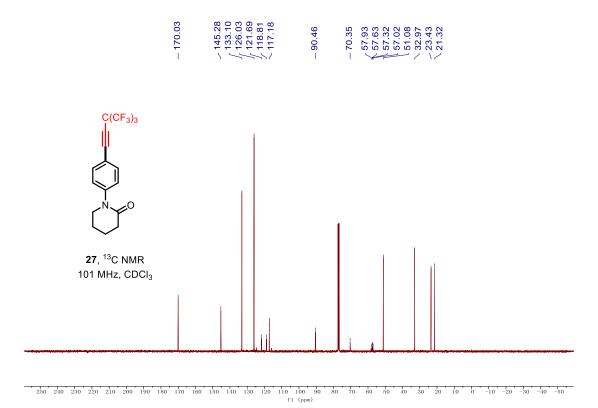


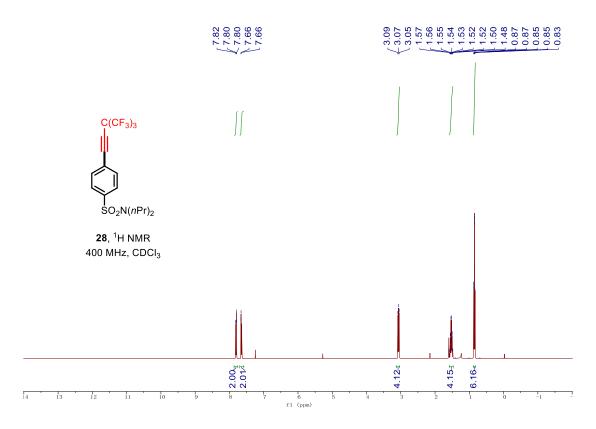


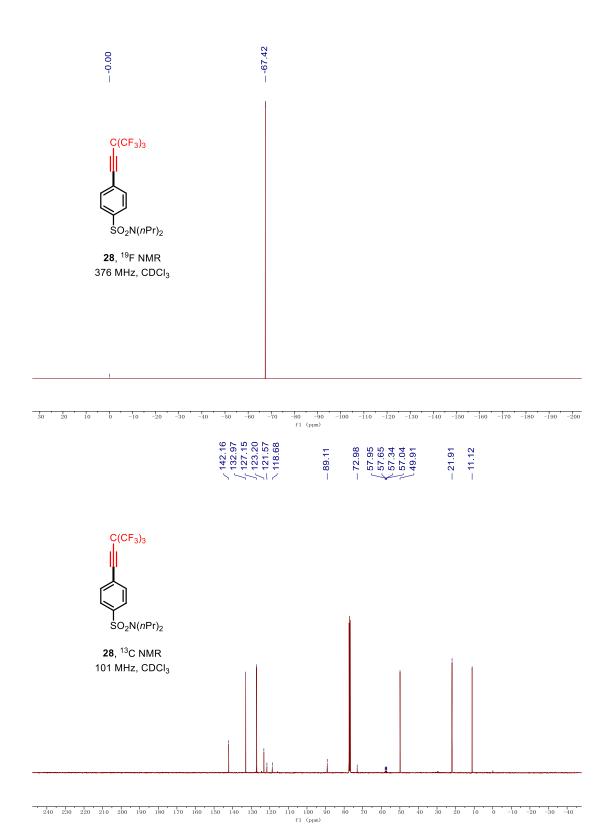


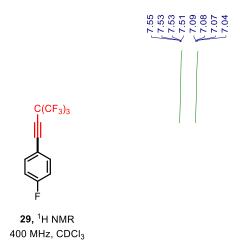


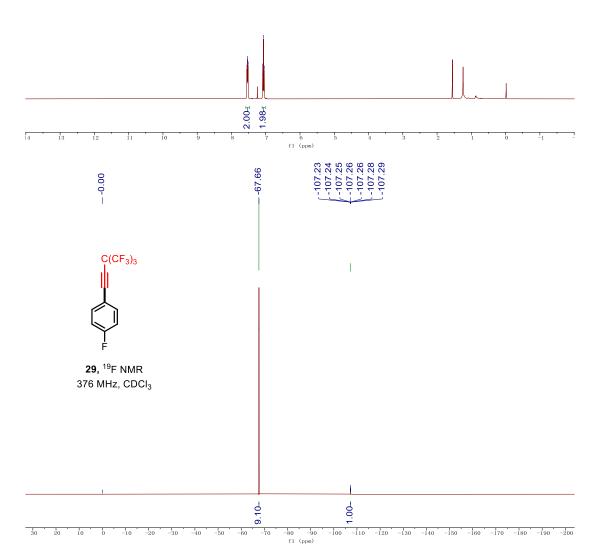


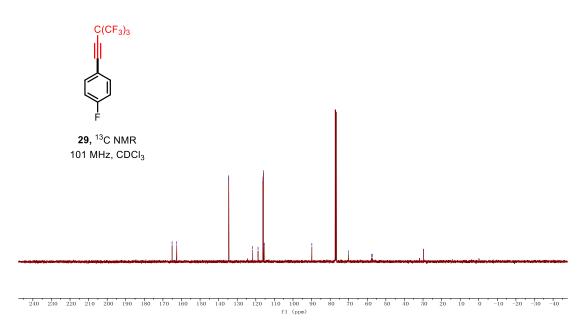


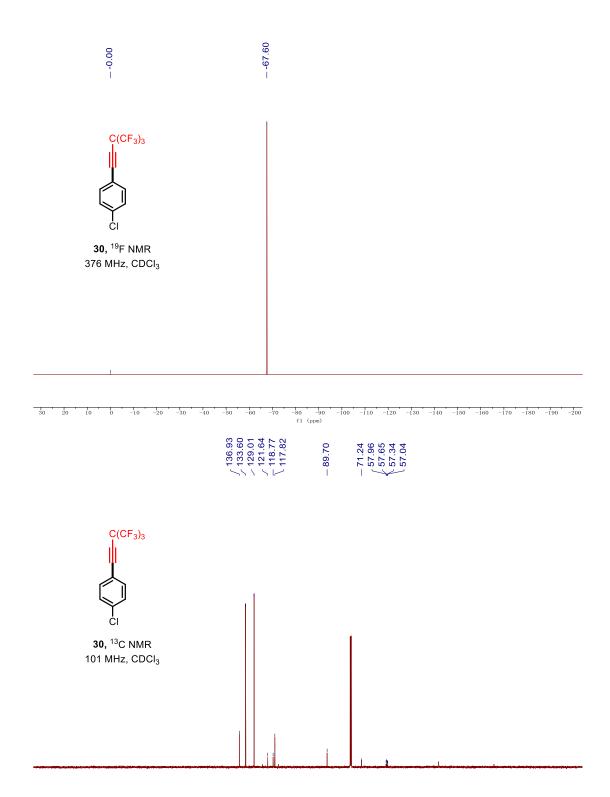


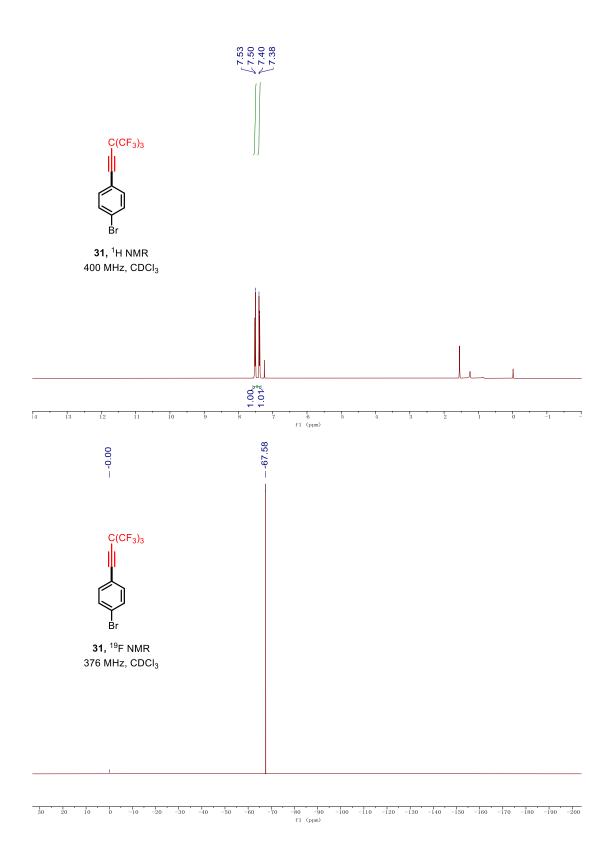


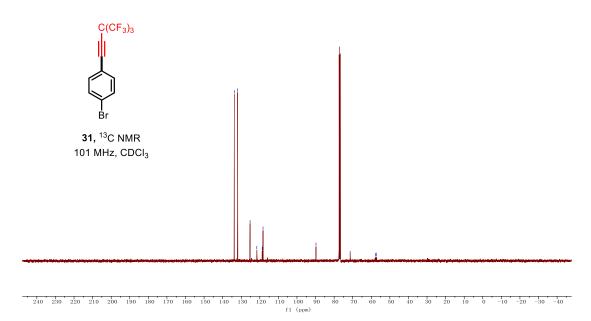


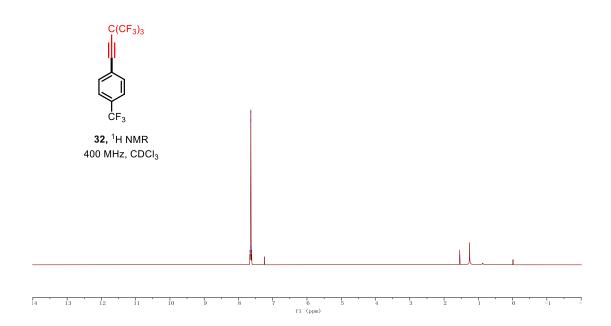


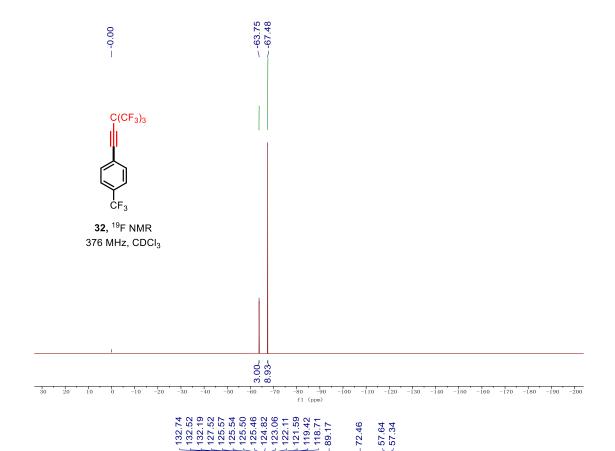


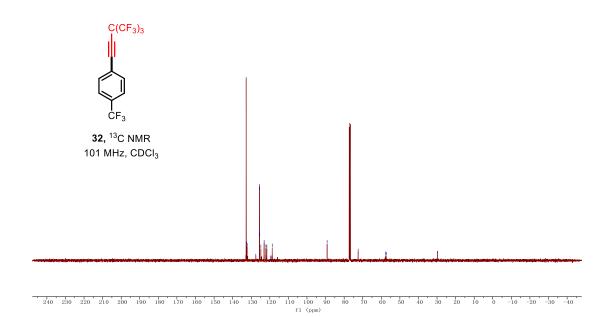


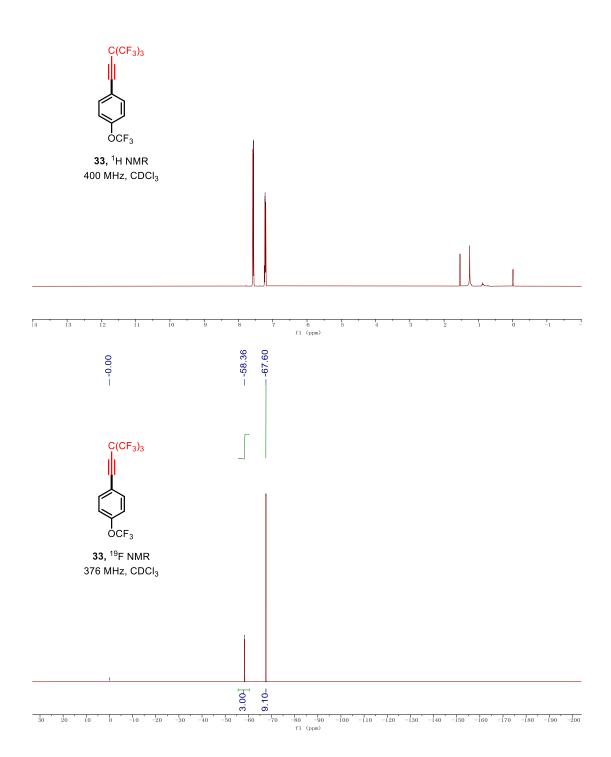


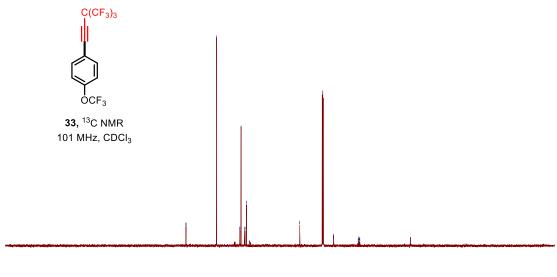


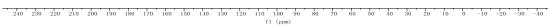

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

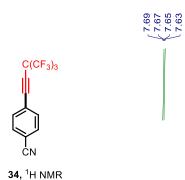


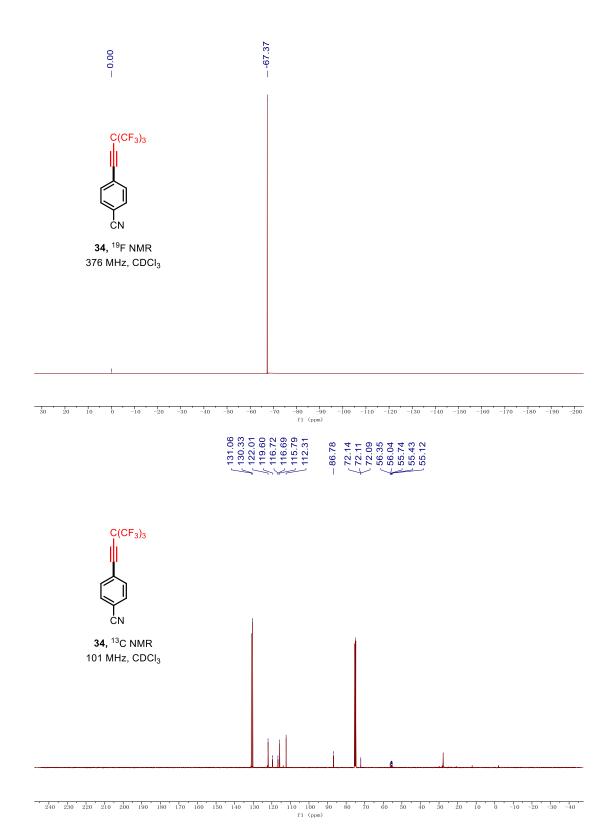


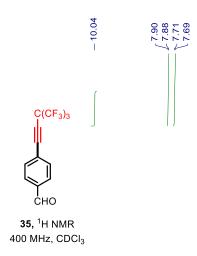


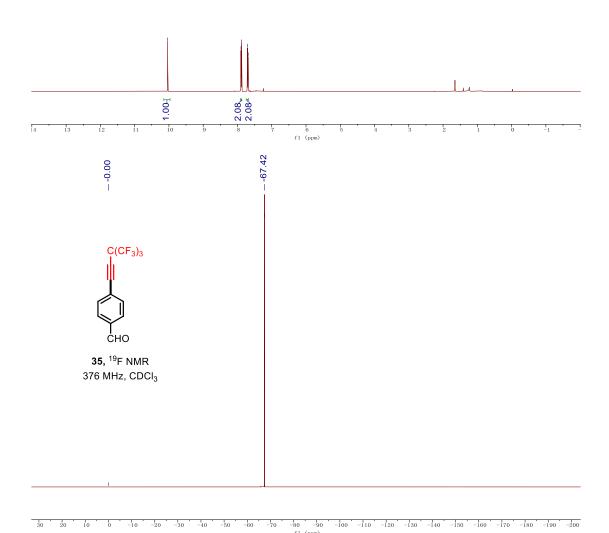


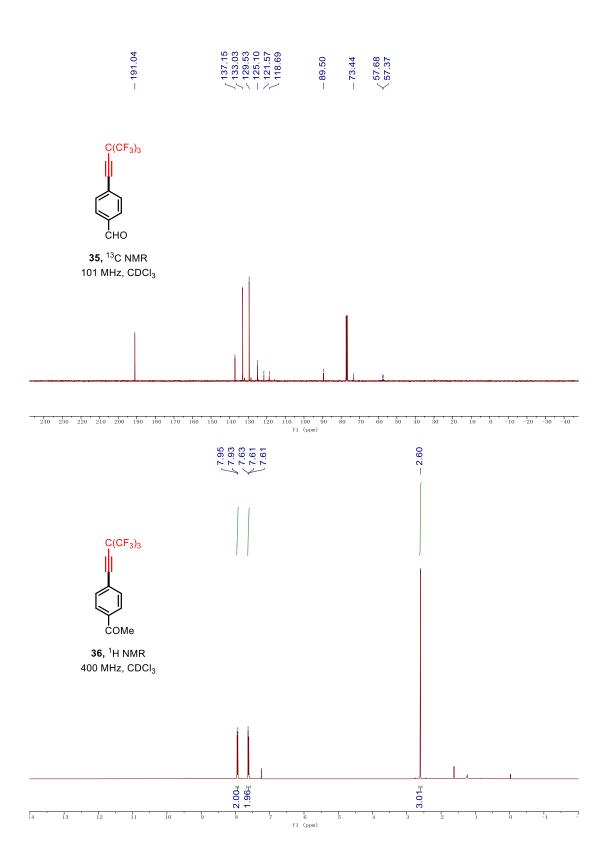


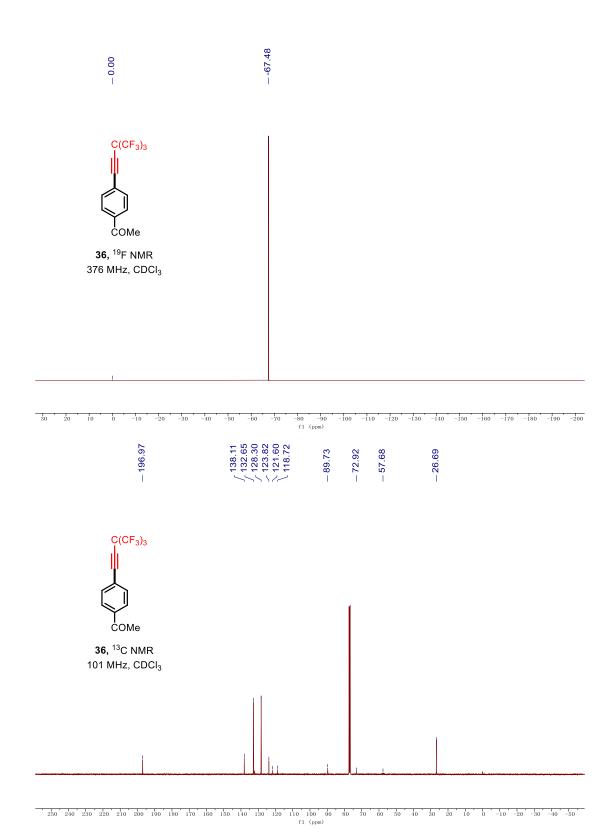


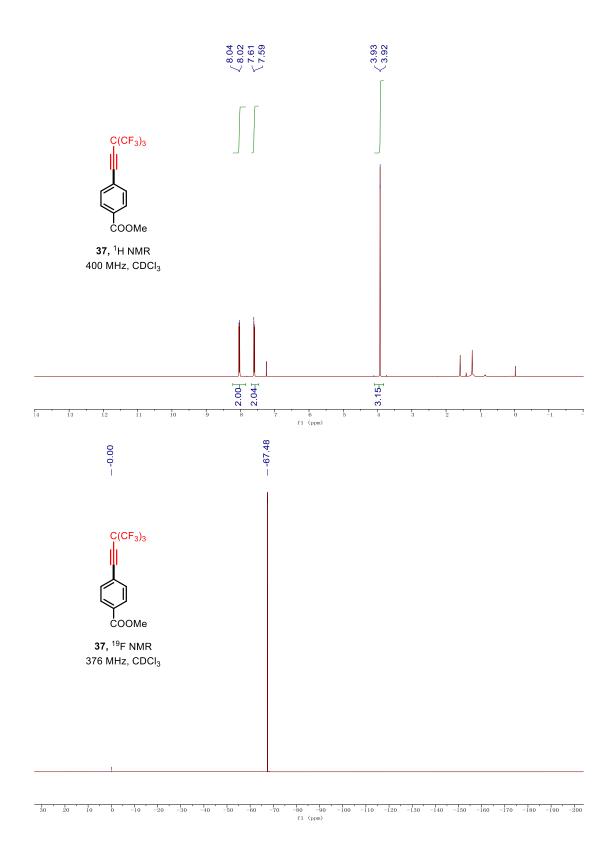


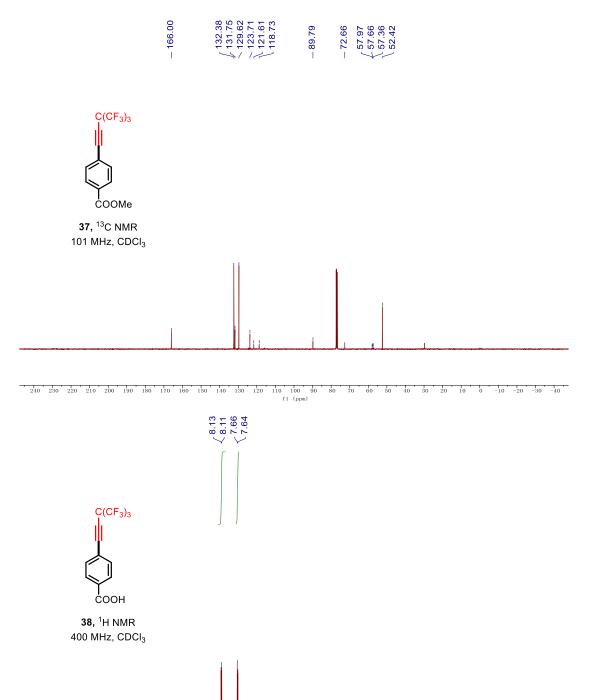


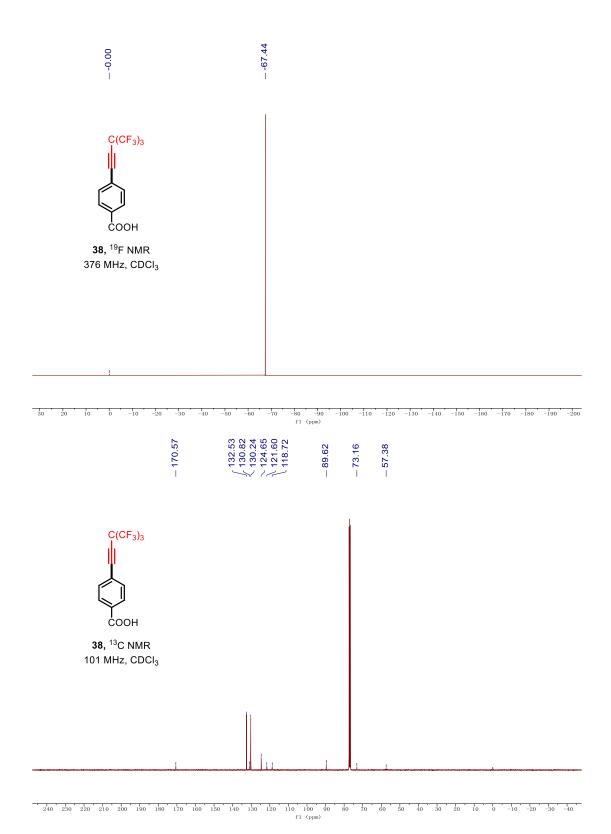


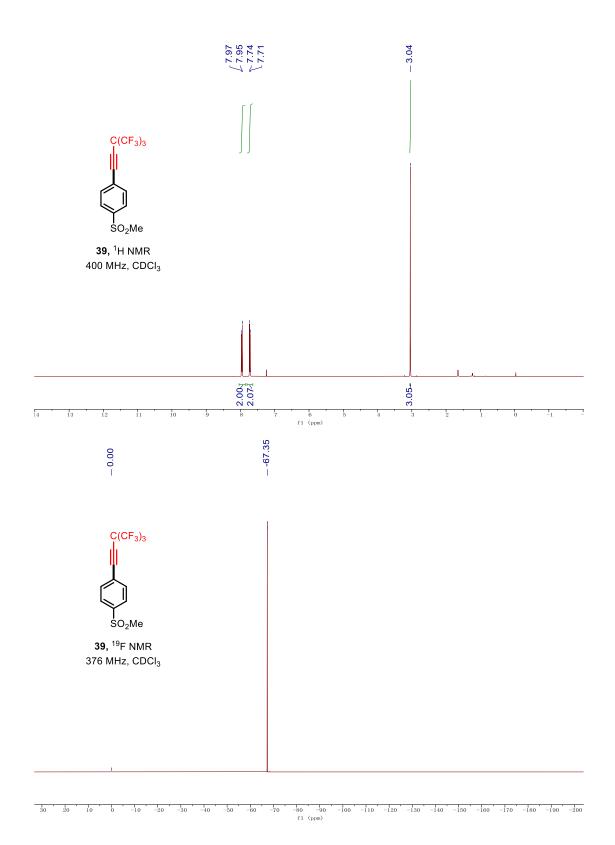


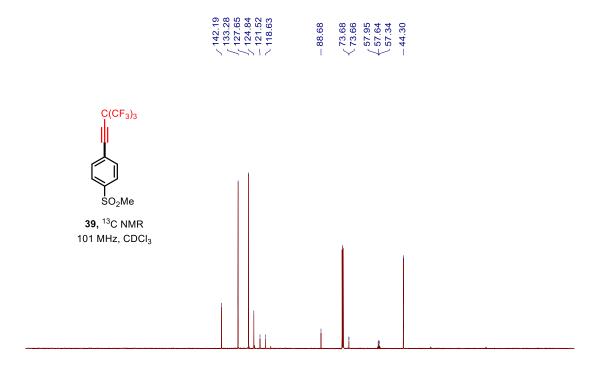

400 MHz, $CDCI_3$

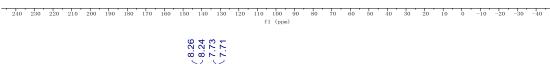


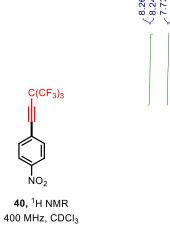


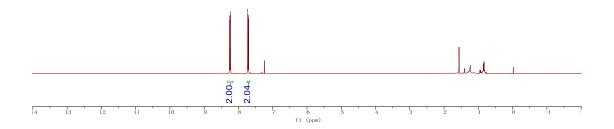


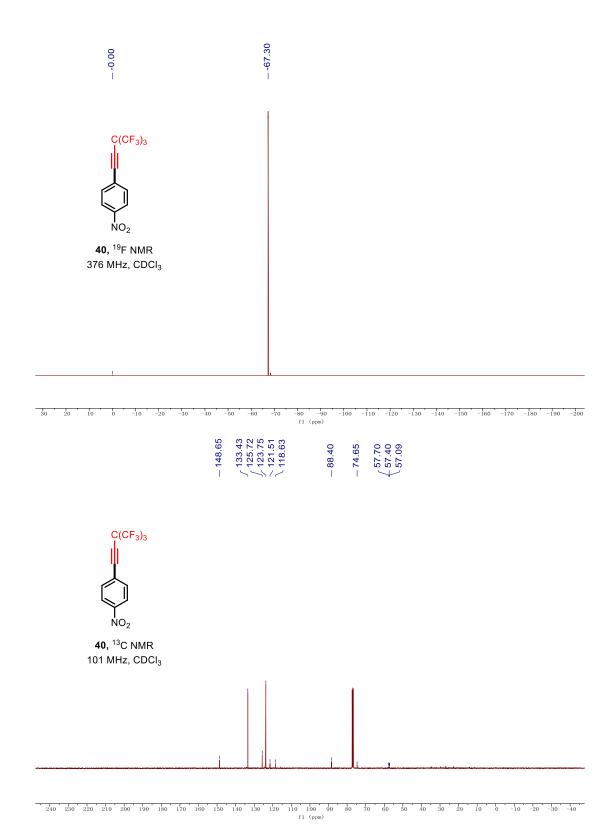

6 f1 (ppm)

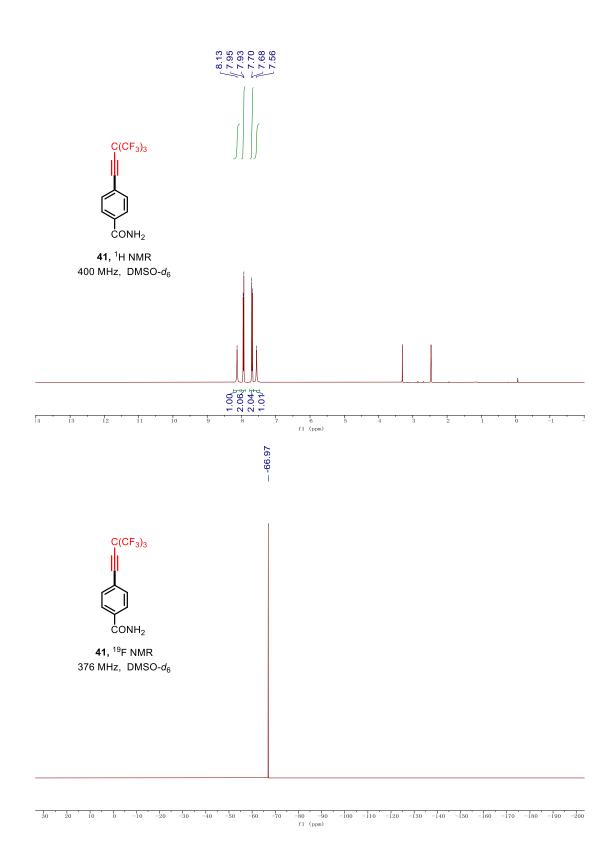

2.00H

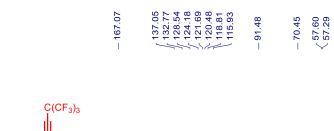

10

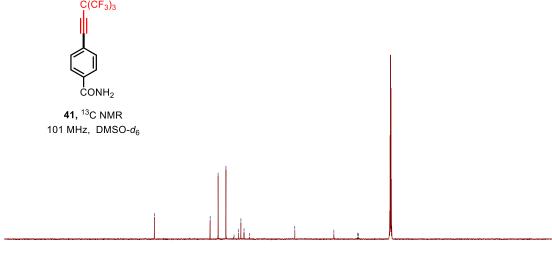

13

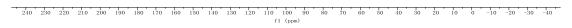


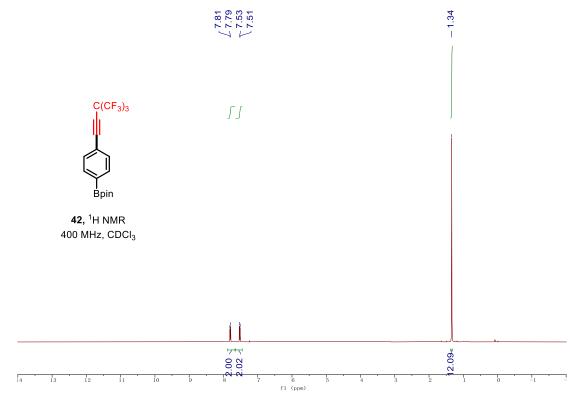


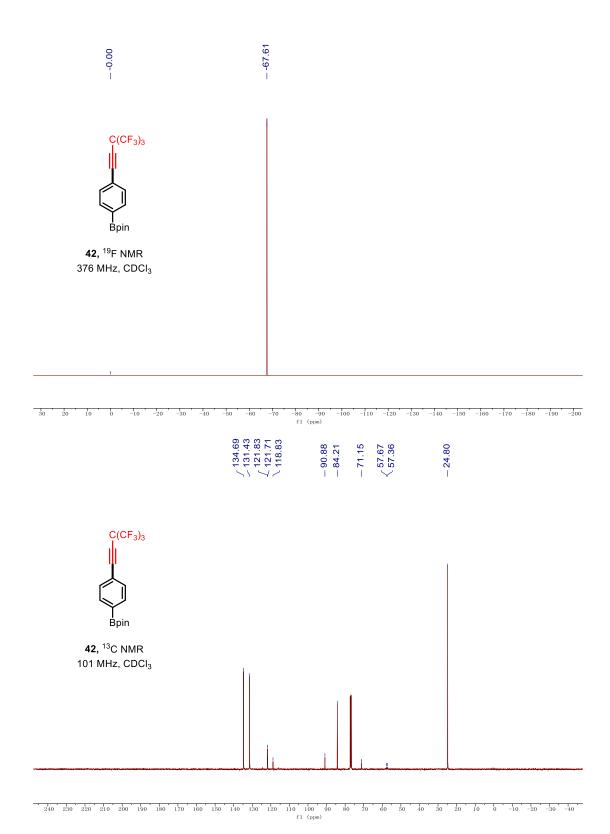


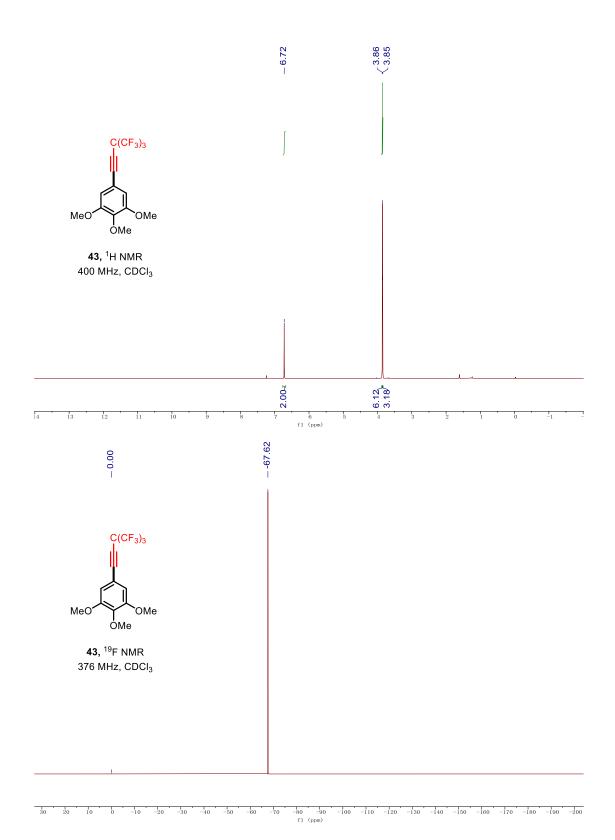


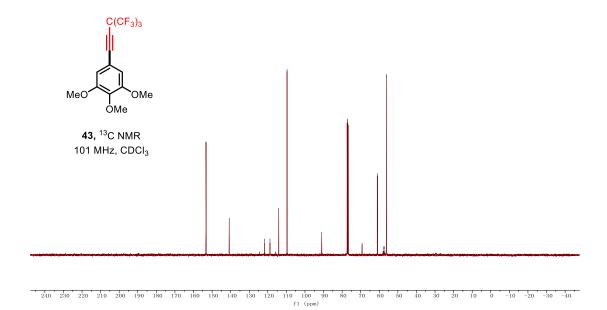


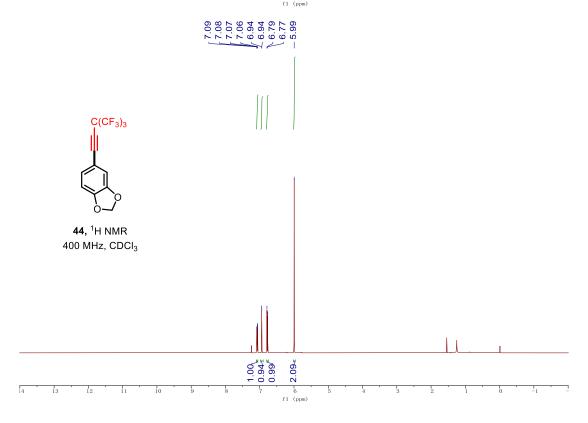


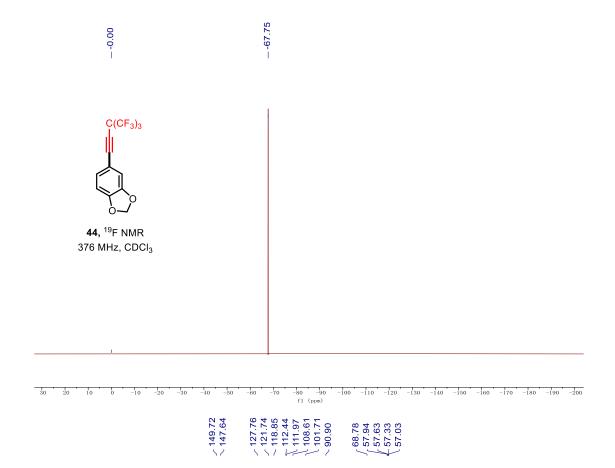


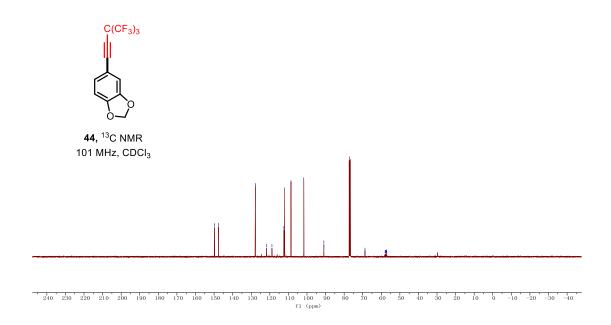


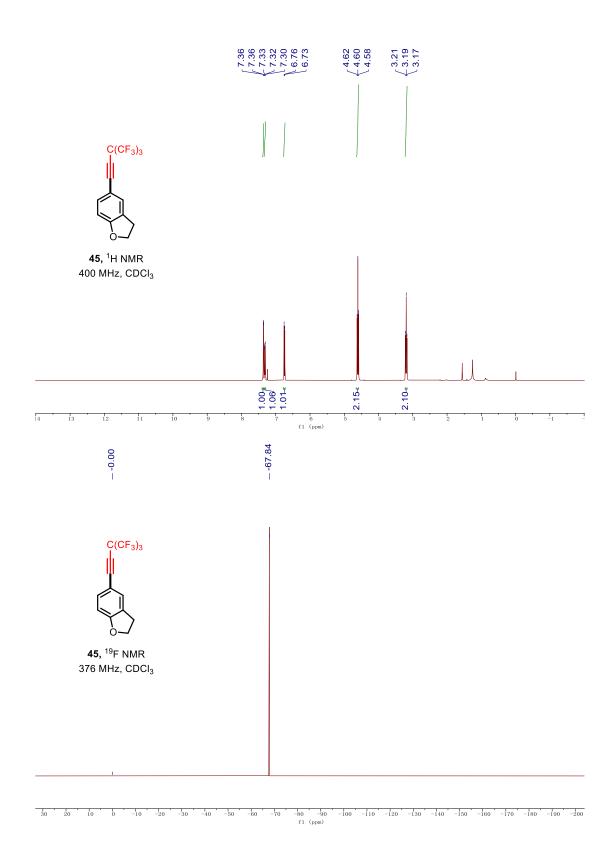


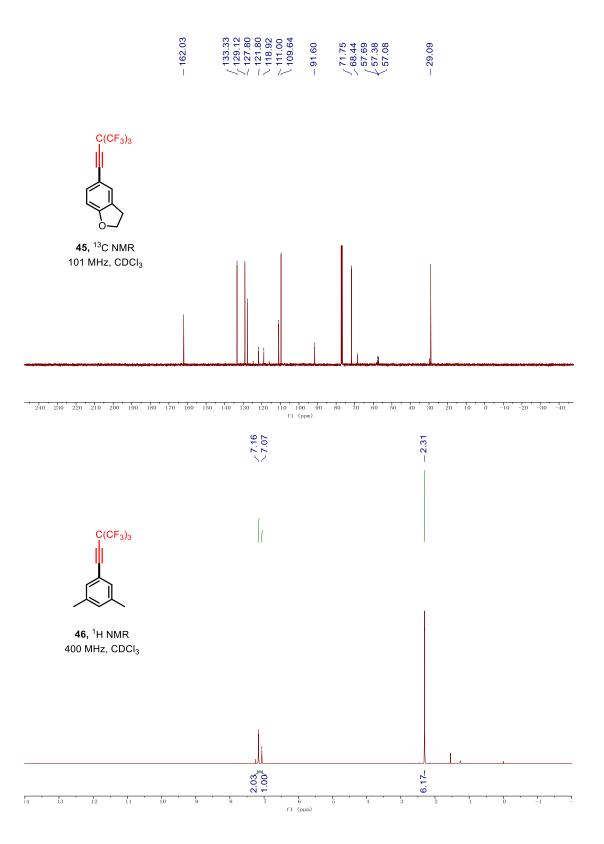


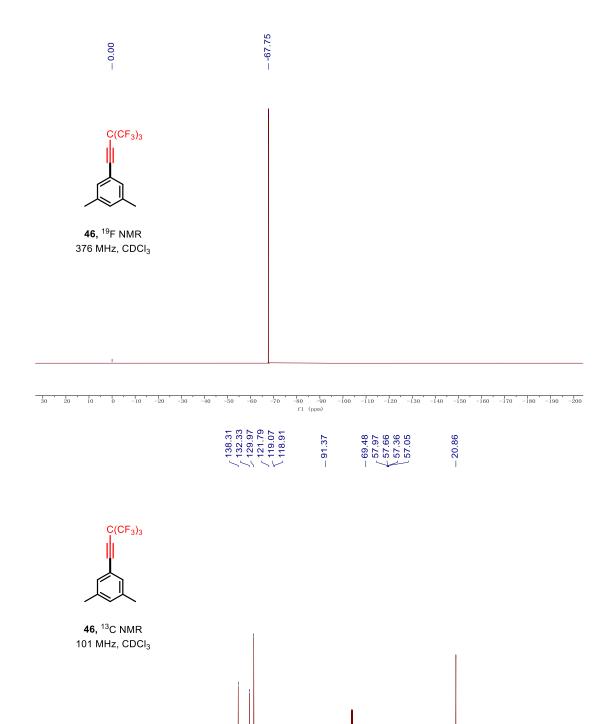


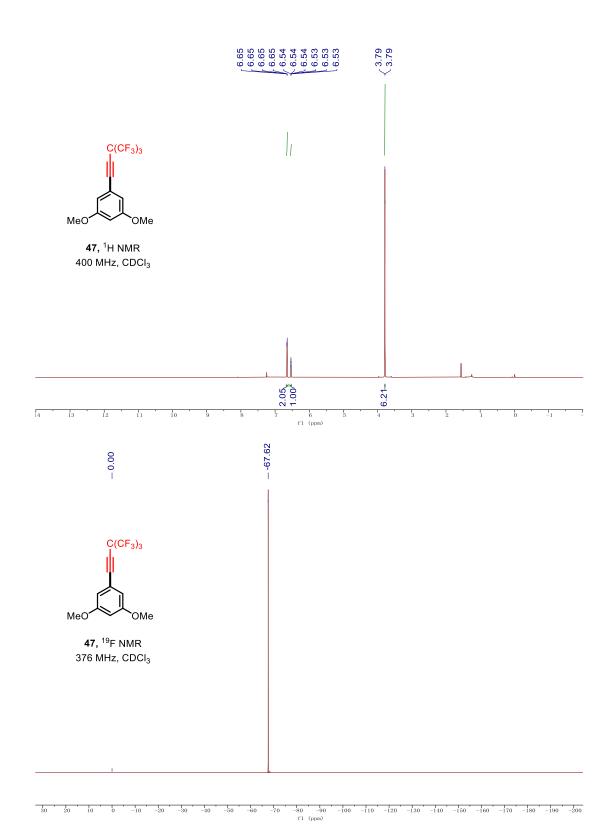


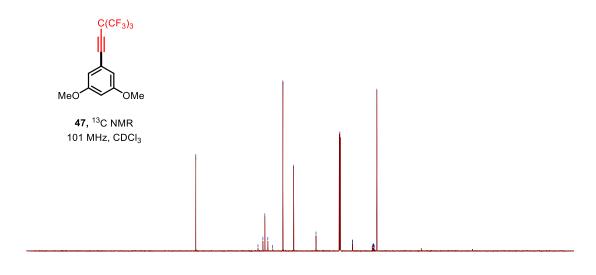


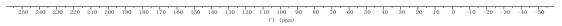


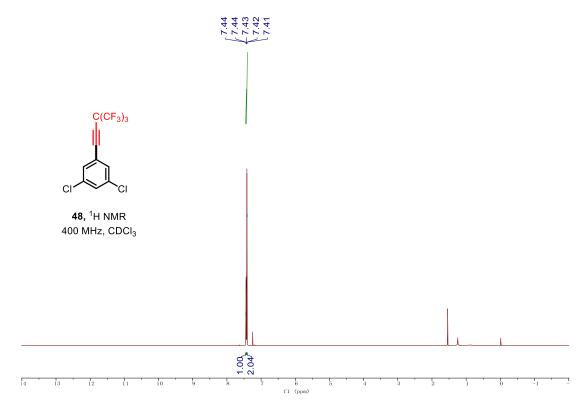


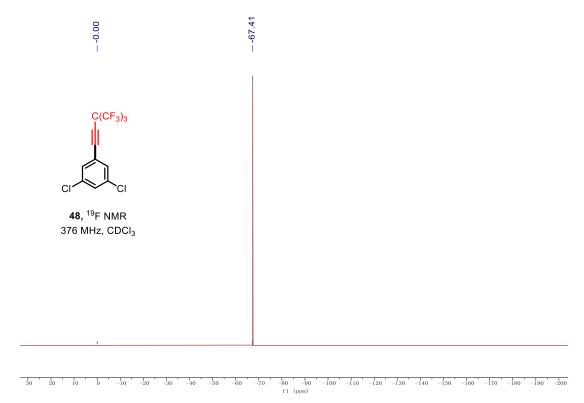


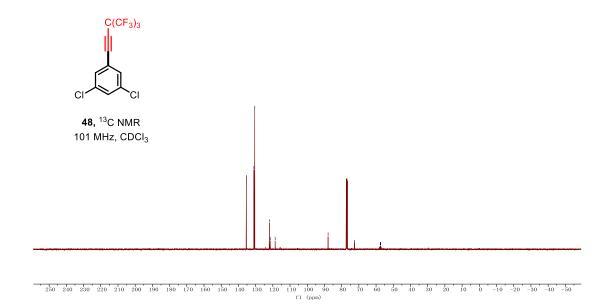


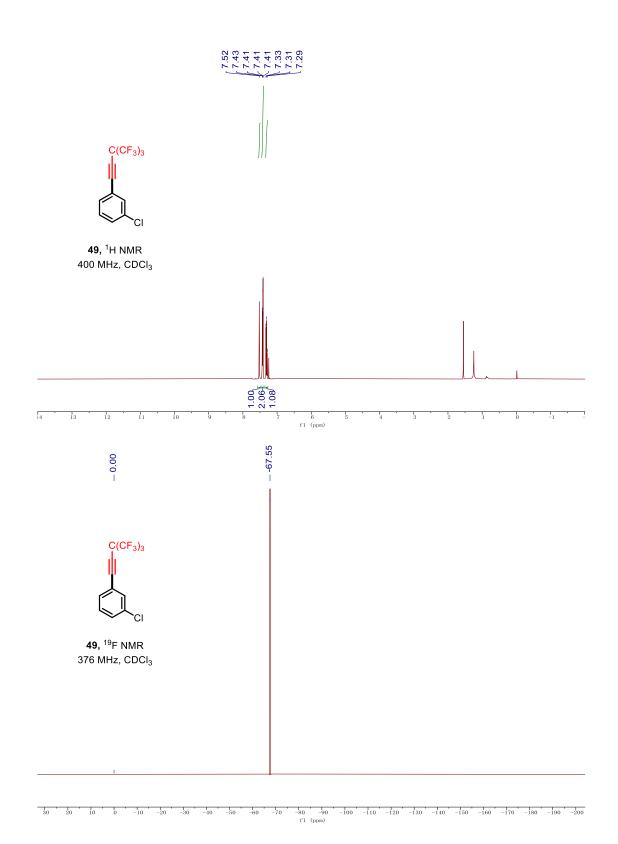


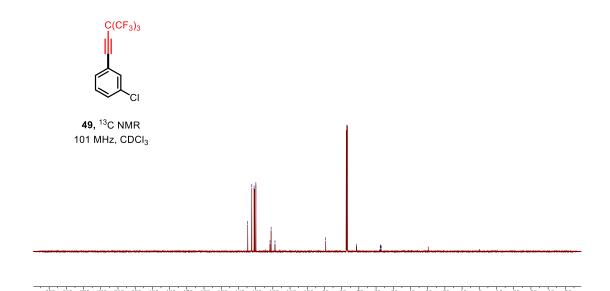


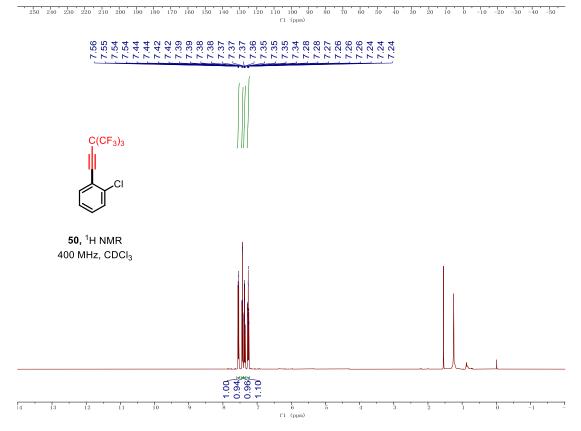

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80

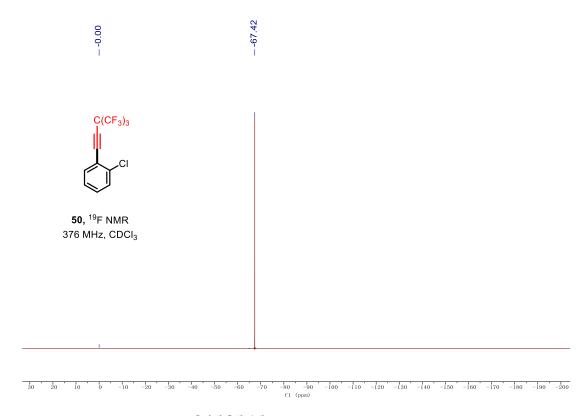


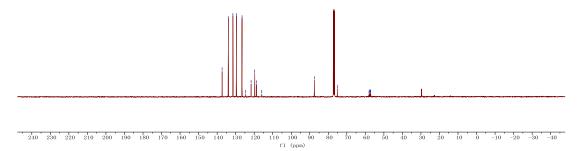


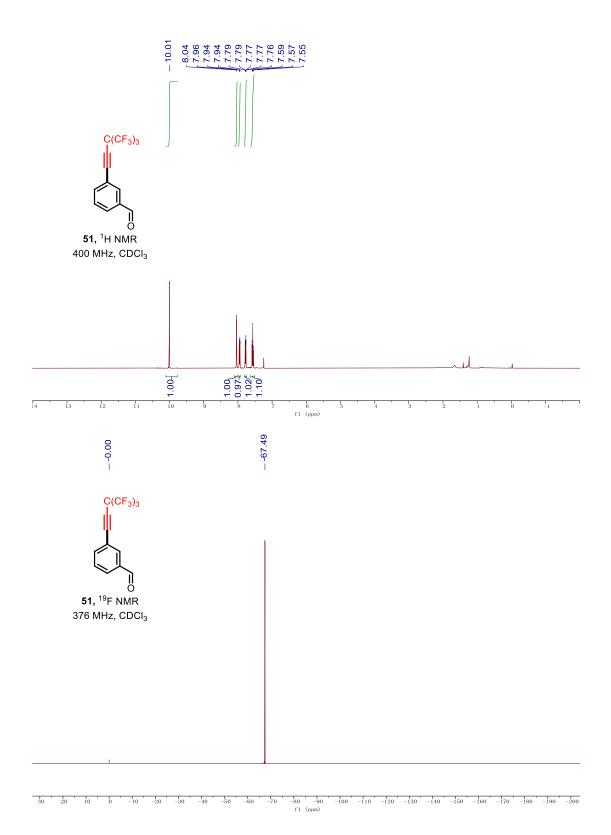


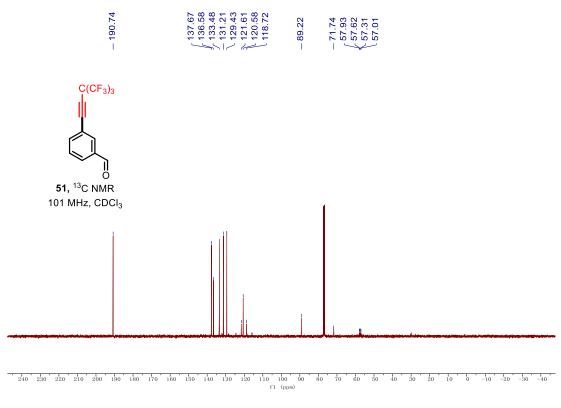


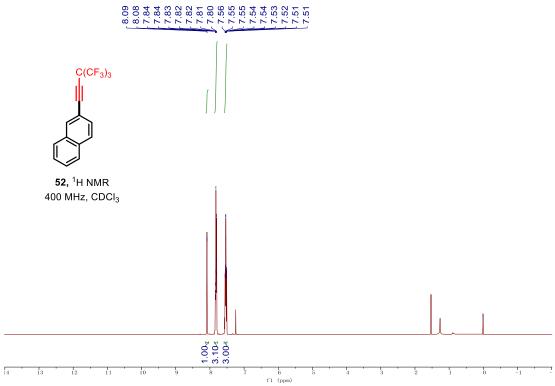


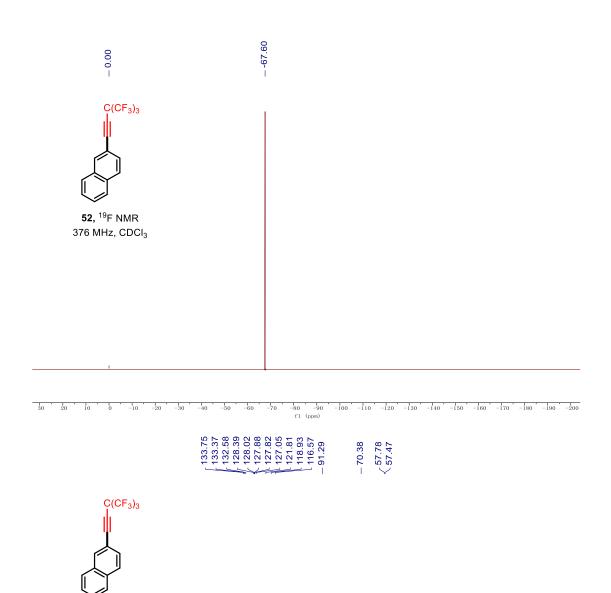


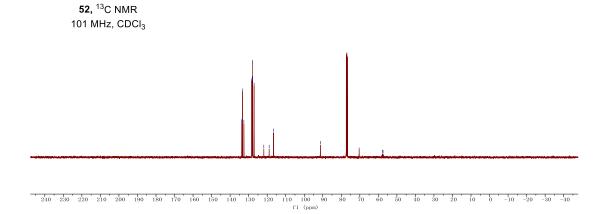


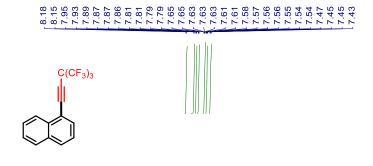


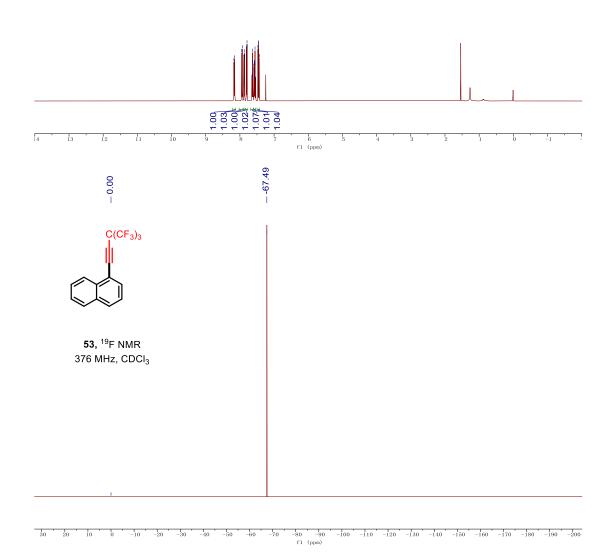


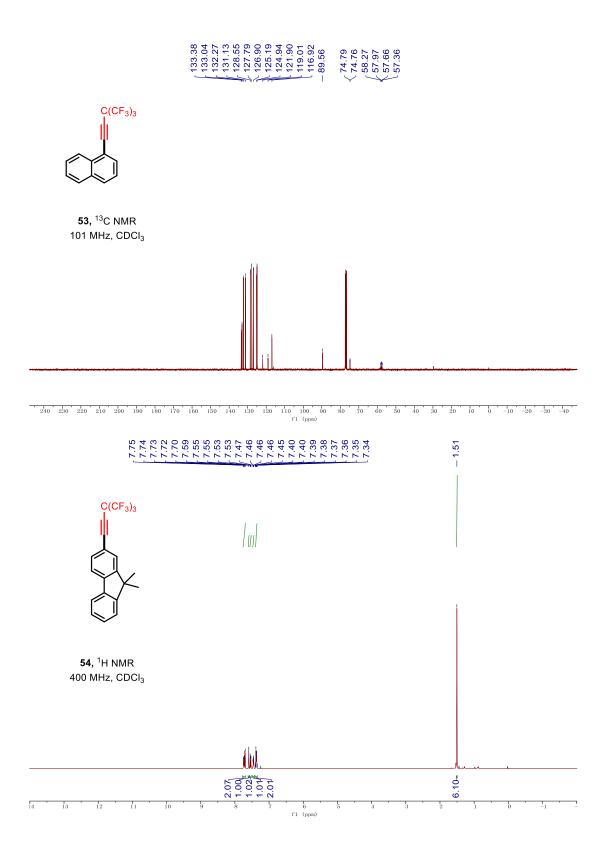

50, ¹³C NMR 101 MHz, CDCl₃

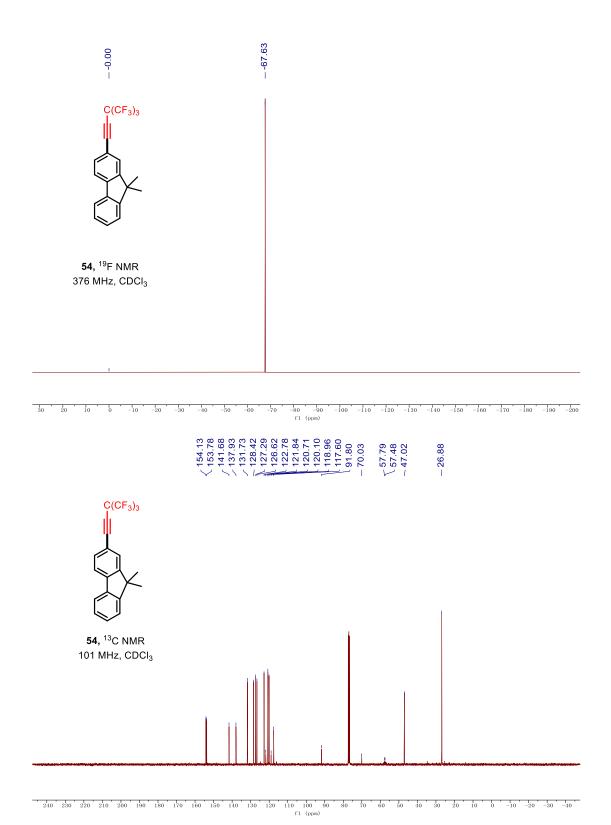


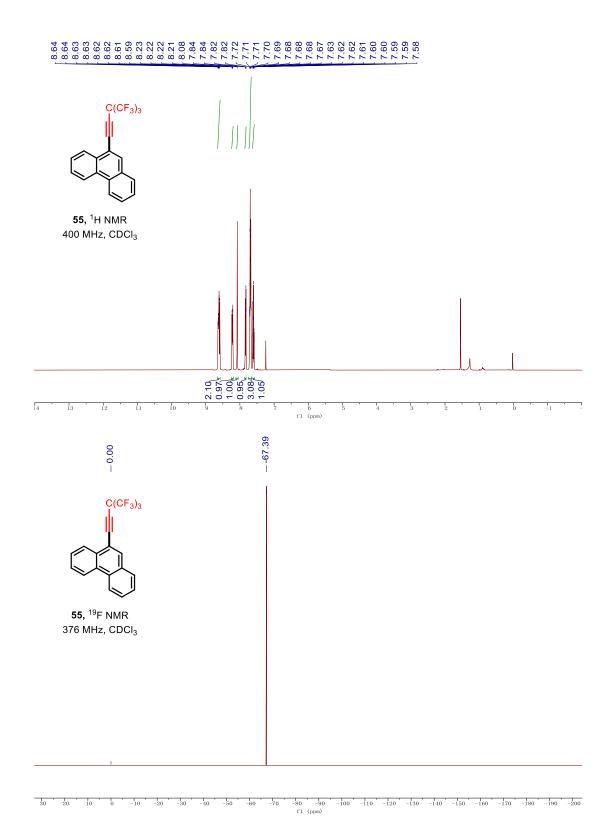

S152



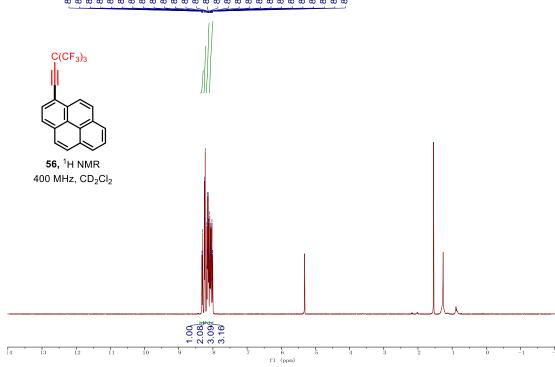


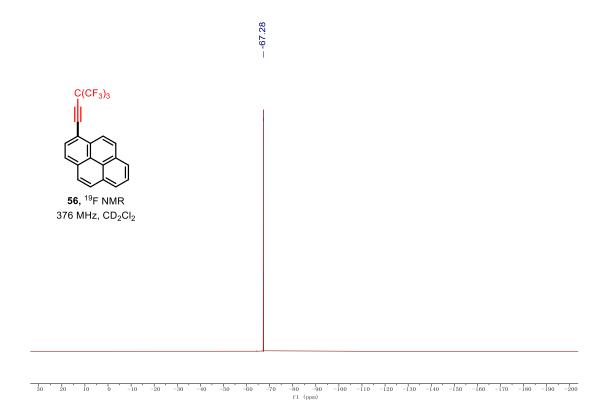


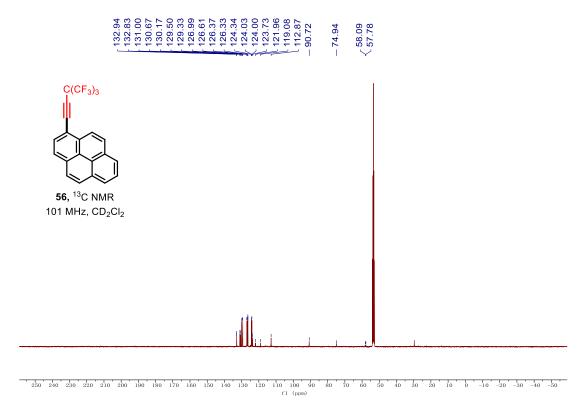


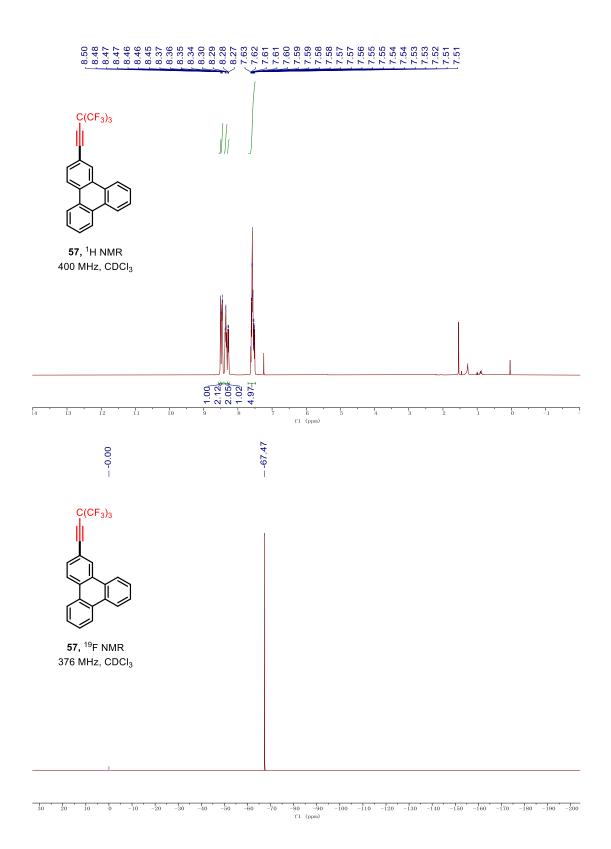


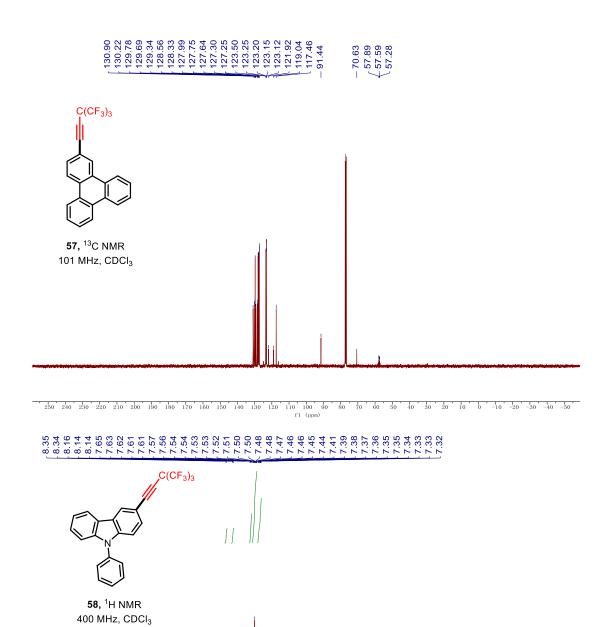
53, 1 H NMR 400 MHz, CDCl $_{3}$

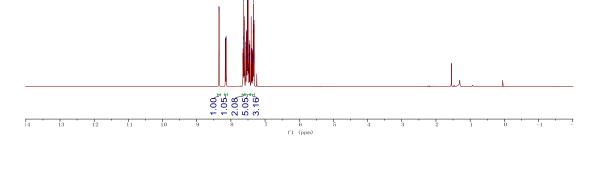


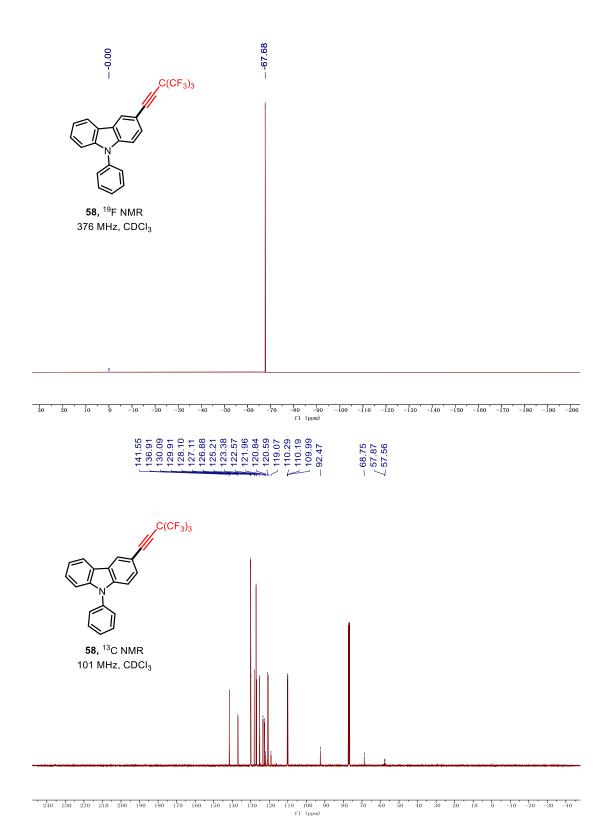


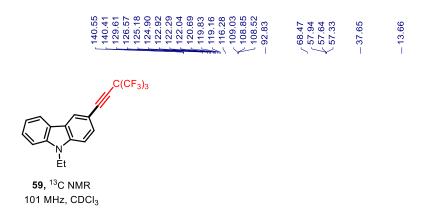


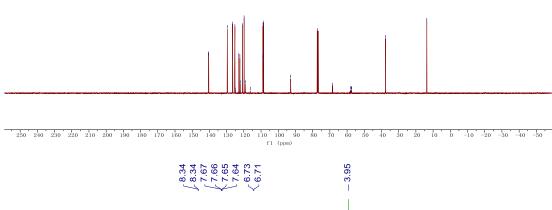


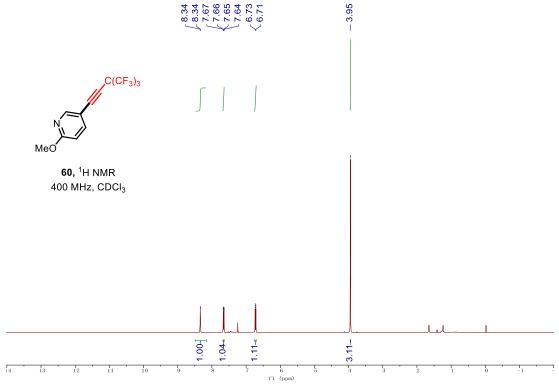


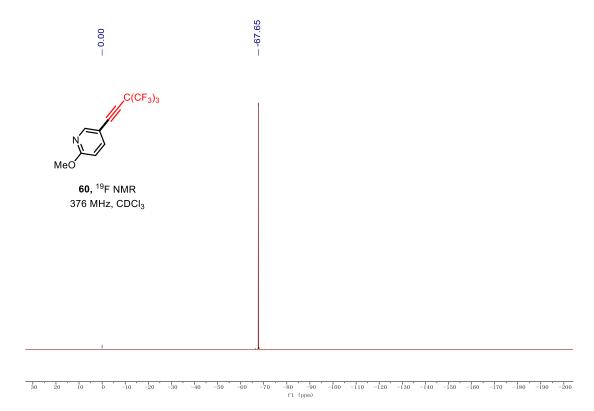


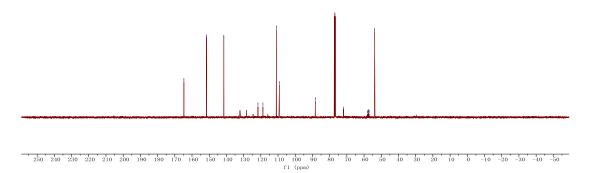


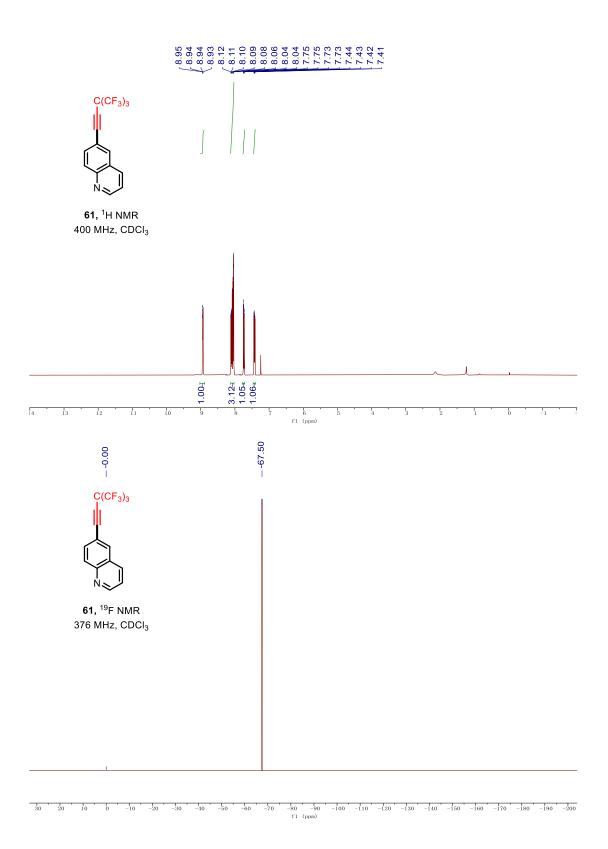


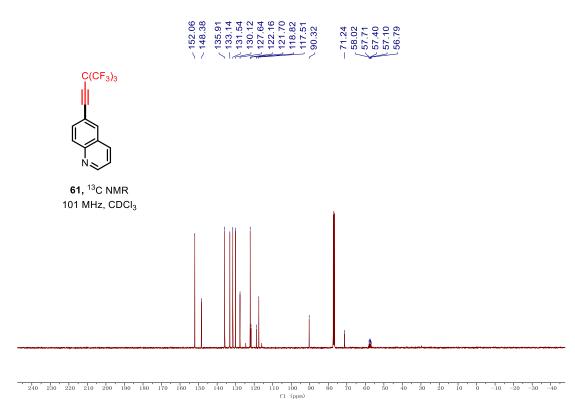


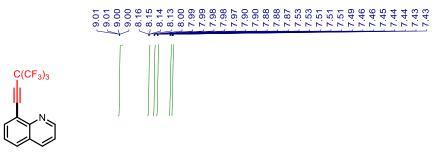




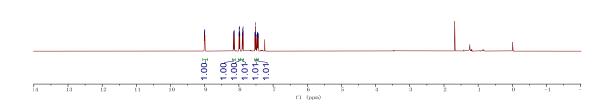


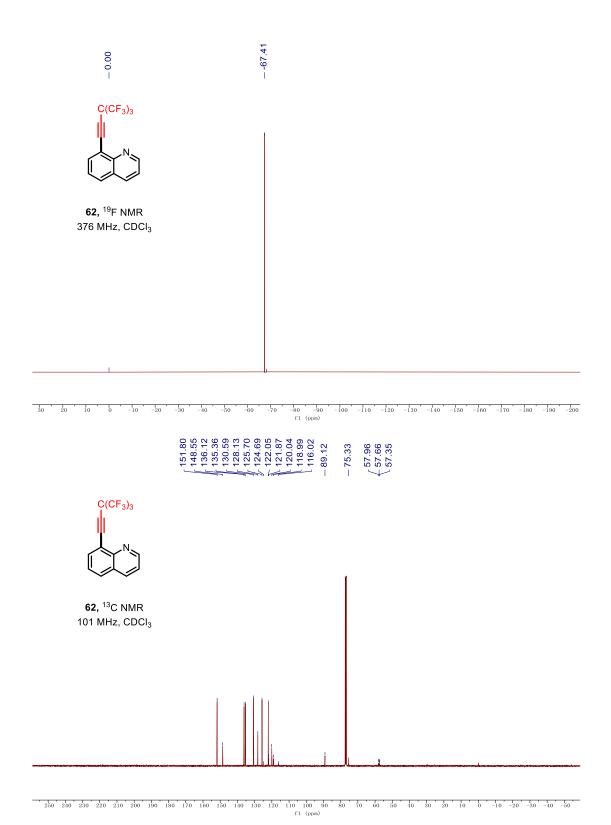


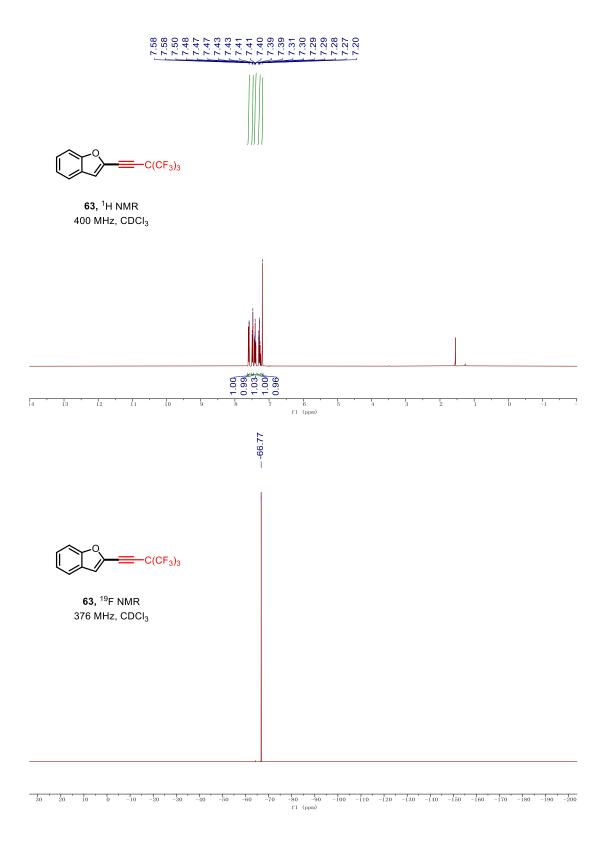

- 164.70 - 151.55 - 141.51 - 118.78 - 118.78 - 119.23 - 71.94 - 71.94 - 57.99 57.88 57.38 57.38 57.38 57.38 57.38

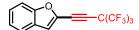


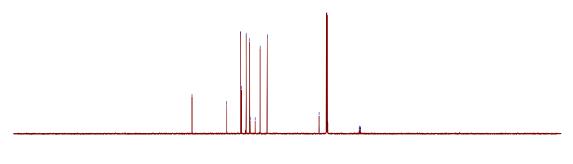
60, ¹³C NMR 101 MHz, CDCl₃

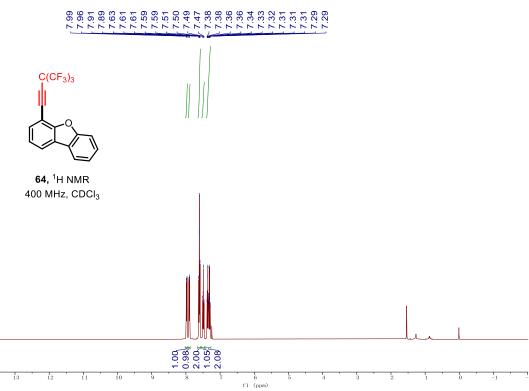


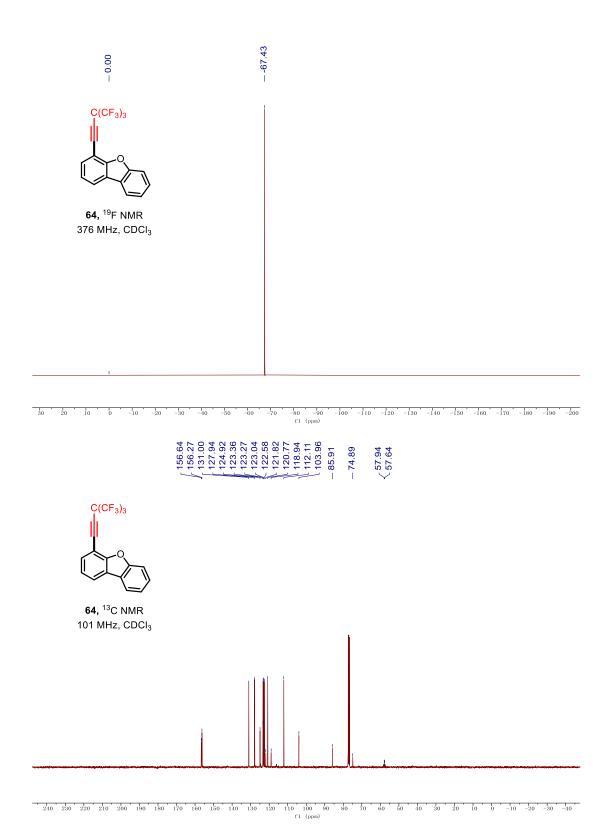


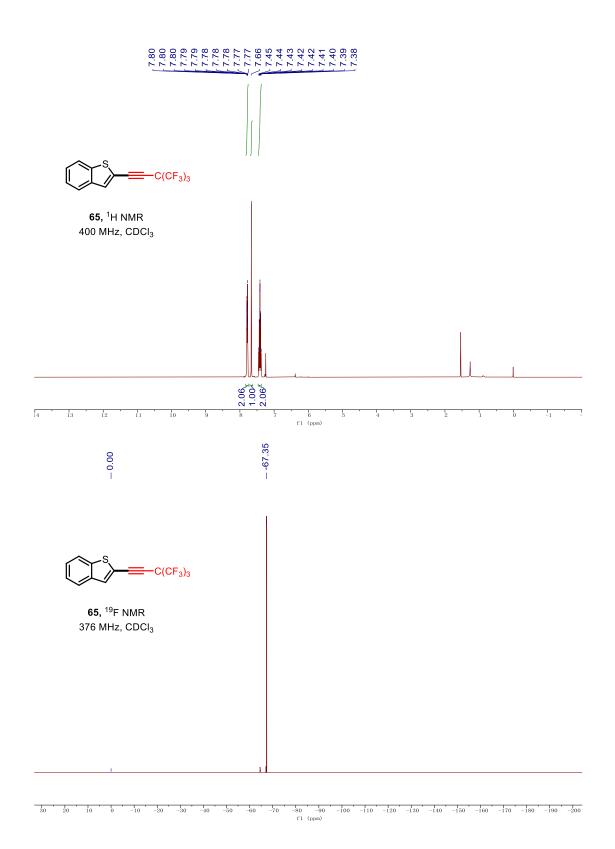


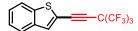

62, ¹H NMR 400 MHz, CDCl₃

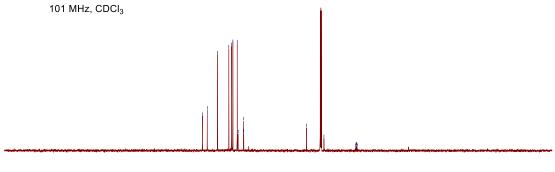


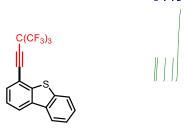


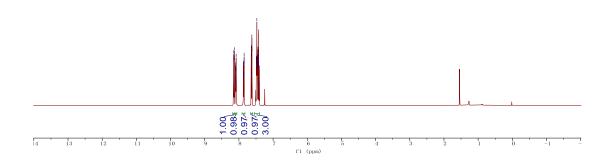


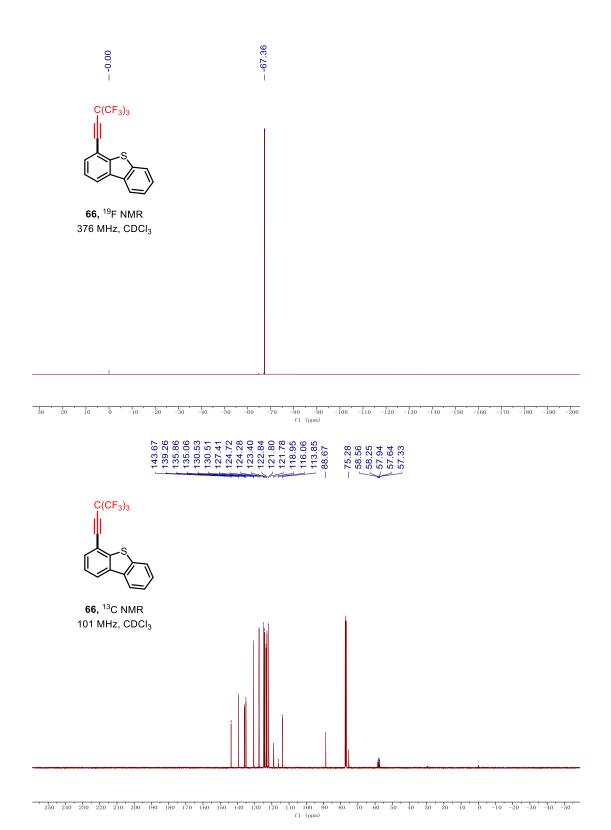

63, ¹³C NMR 101 MHz, CDCl₃

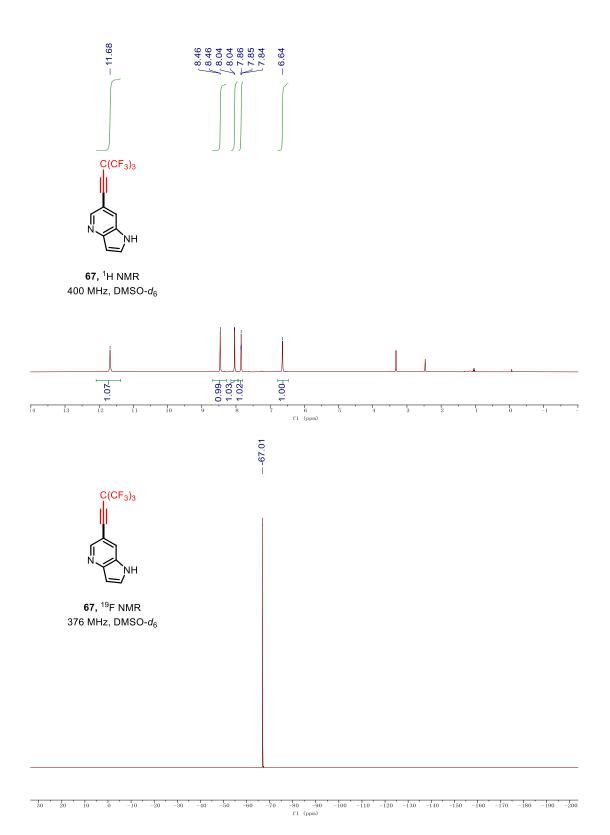

250 240 230 220 210 200 190 180 170 160 180 140 130 120 110 100 90 80 70 60 80 40 30 20 10 0 -10 -20 -30 -40 -50 ft (ppm)

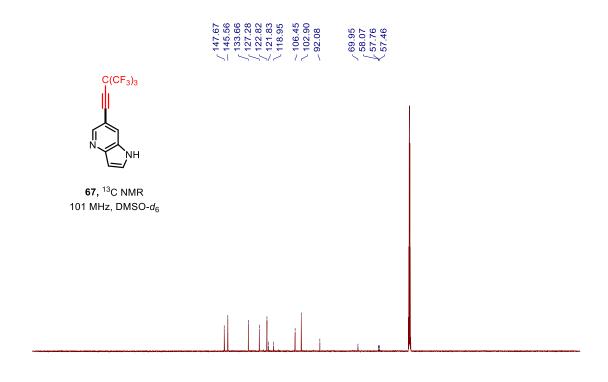


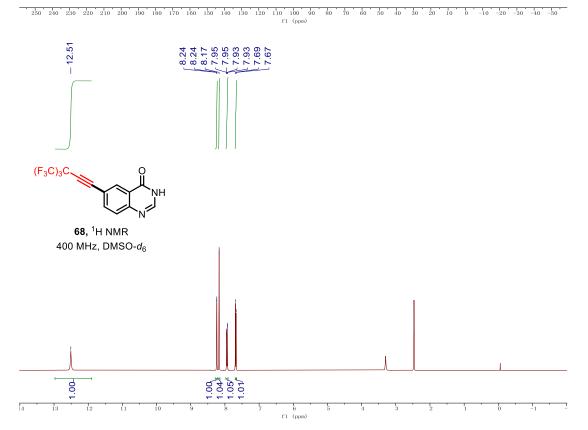


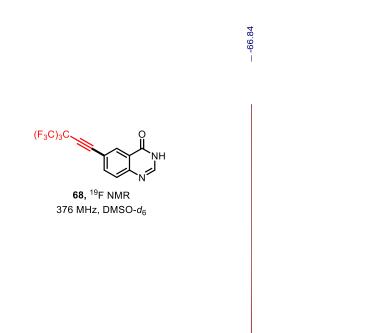


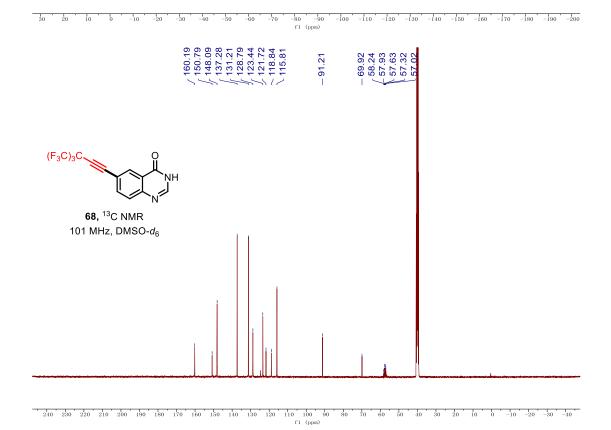


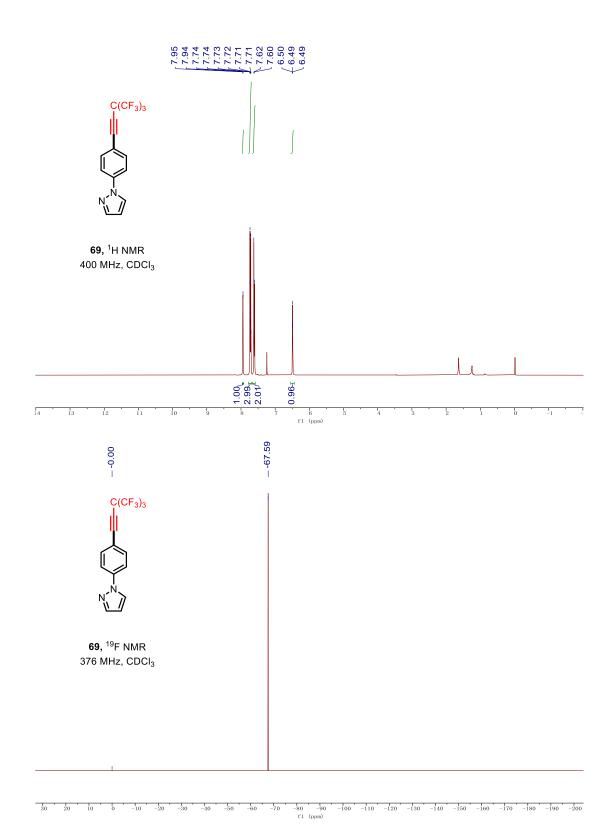

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

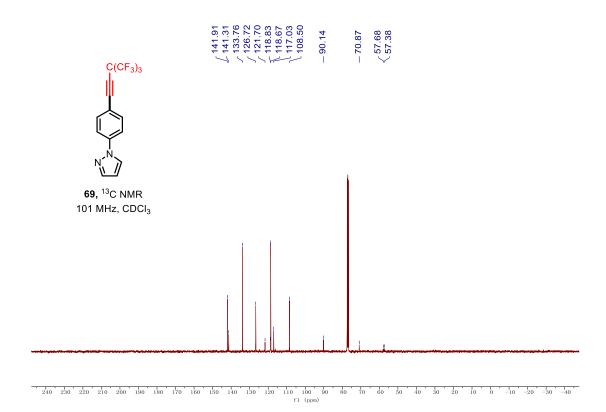


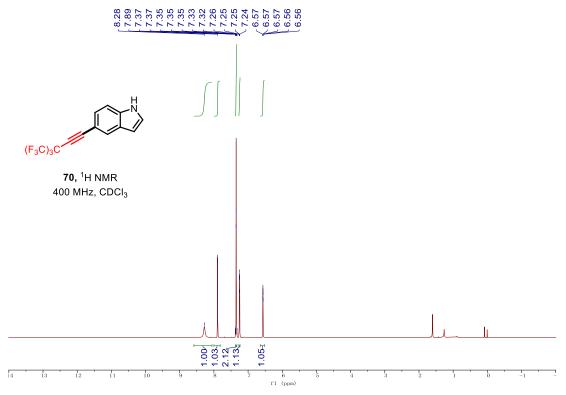

66, ¹H NMR 400 MHz, CDCl₃

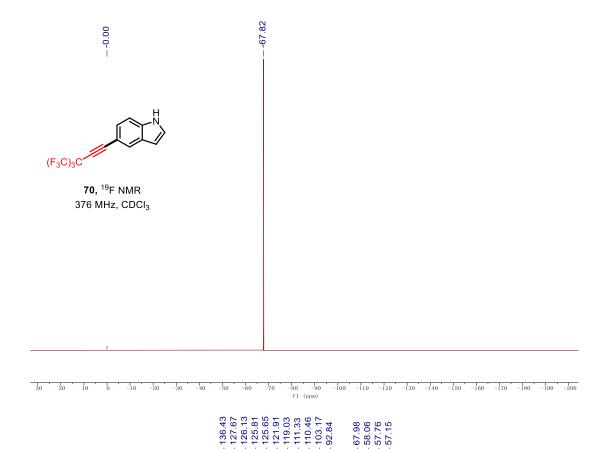


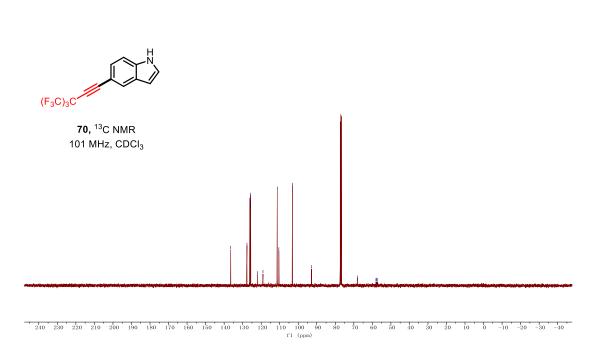


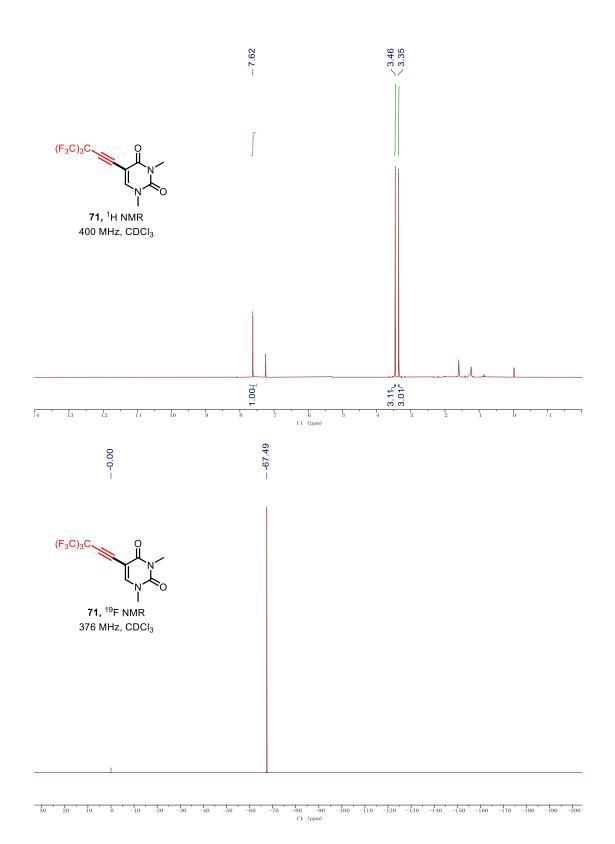


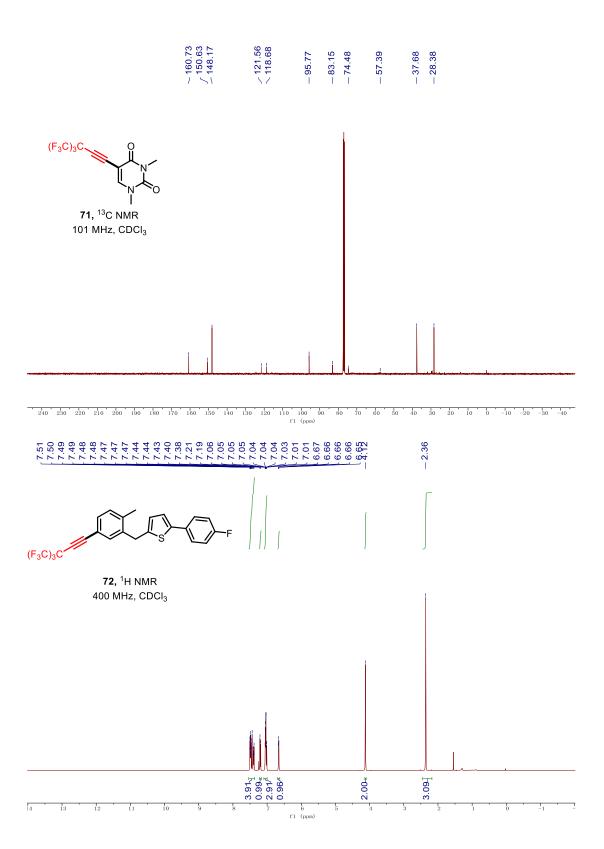


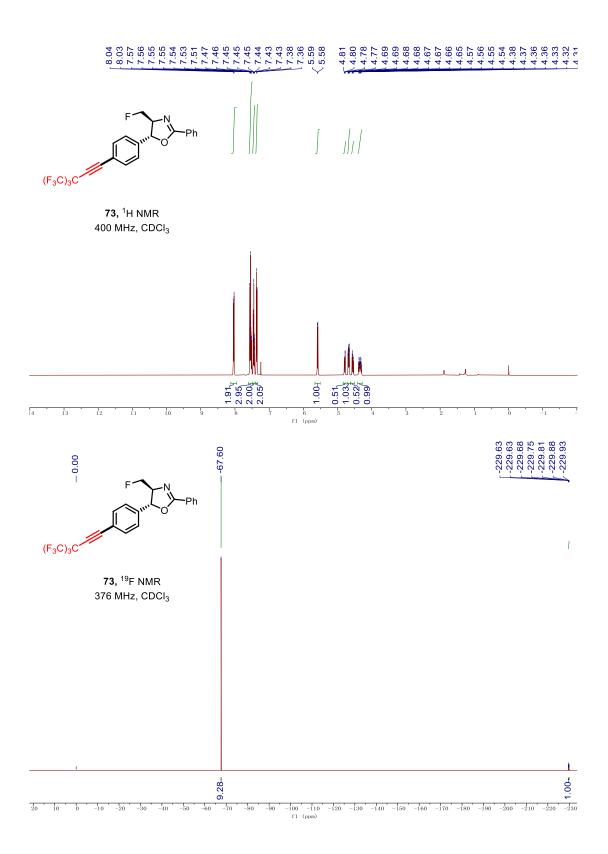




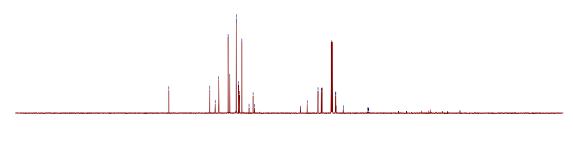


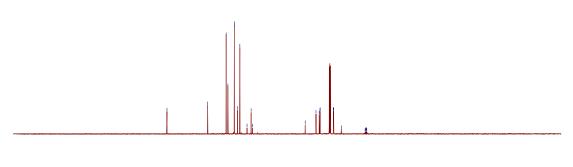




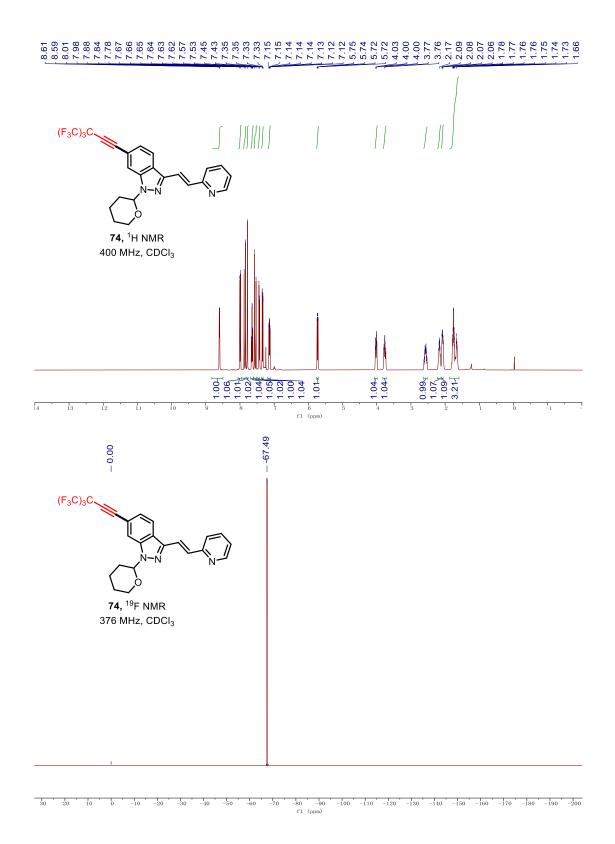


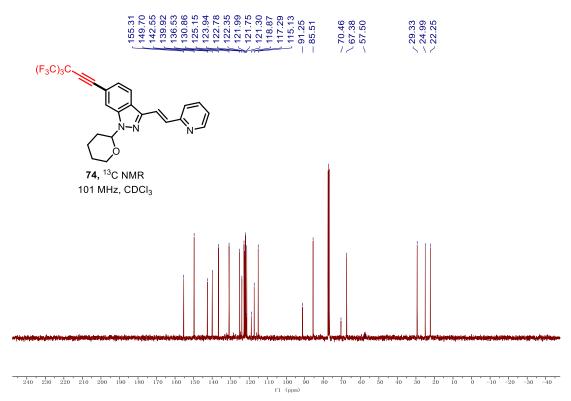
.67.98 -58.06 -57.76 -57.15

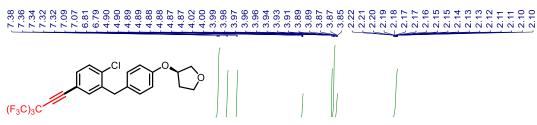


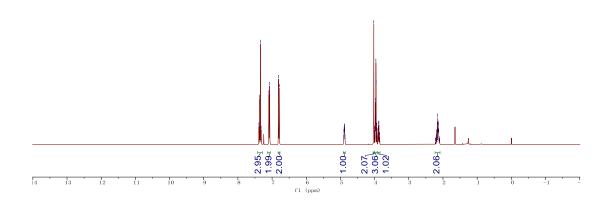


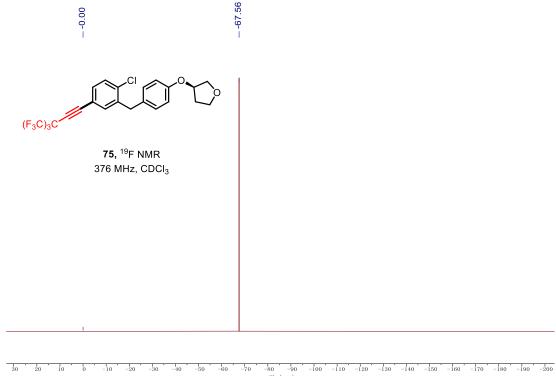
73, ¹³C NMR 101 MHz, CDCl₃

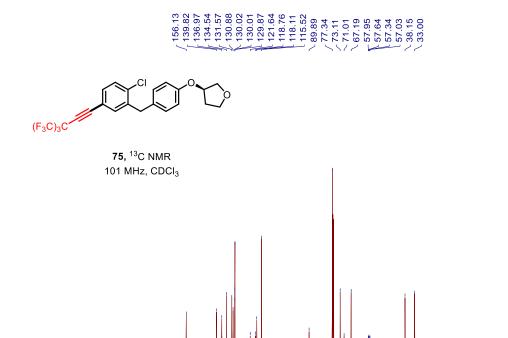



240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

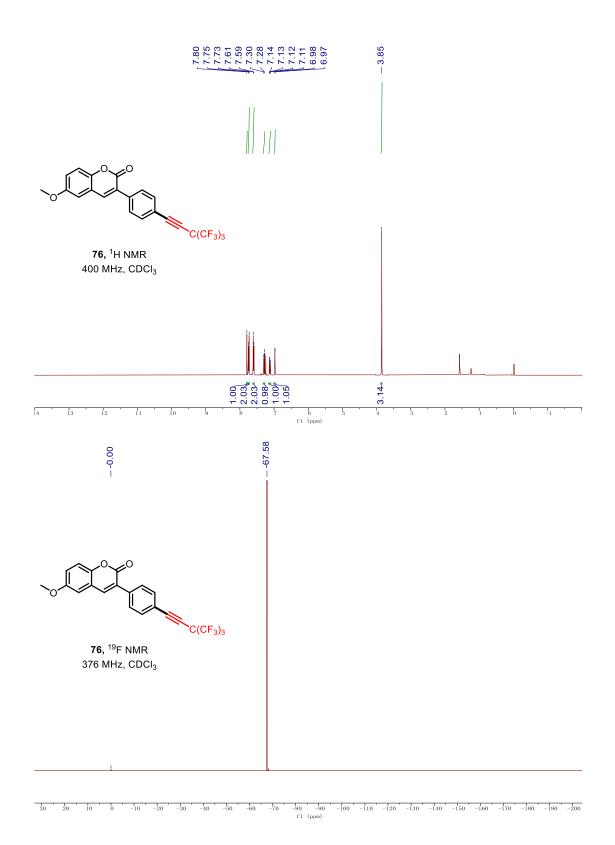

73, ¹³C NMR 101 MHz, CDCl₃

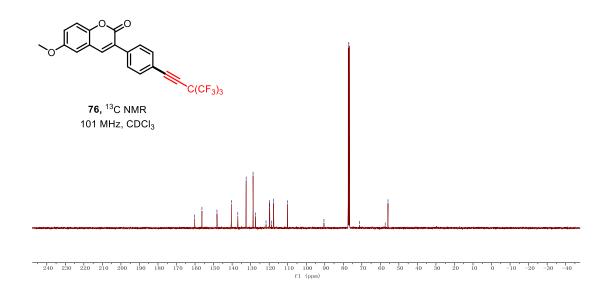

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

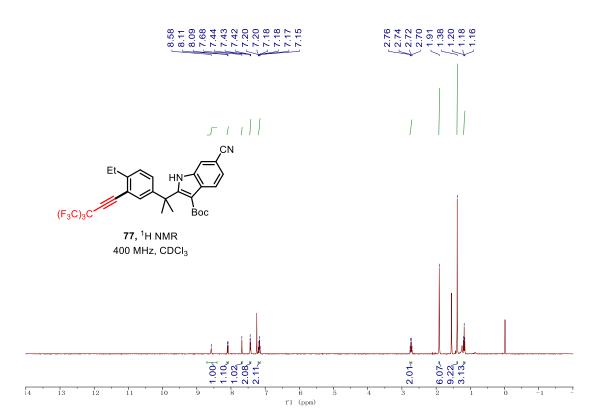


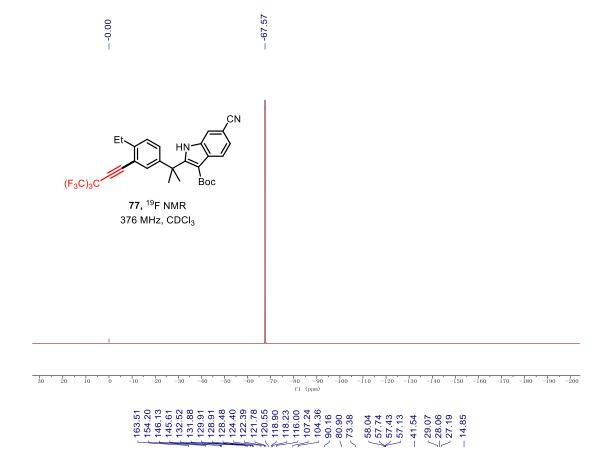


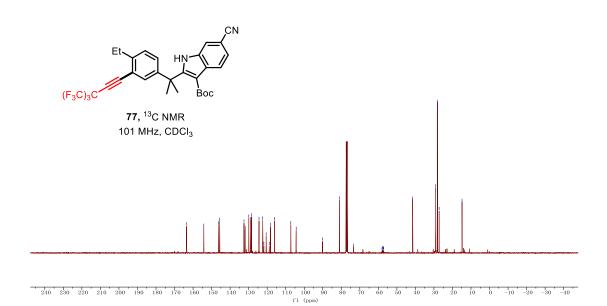
75, ¹H NMR 400 MHz, CDCl₃

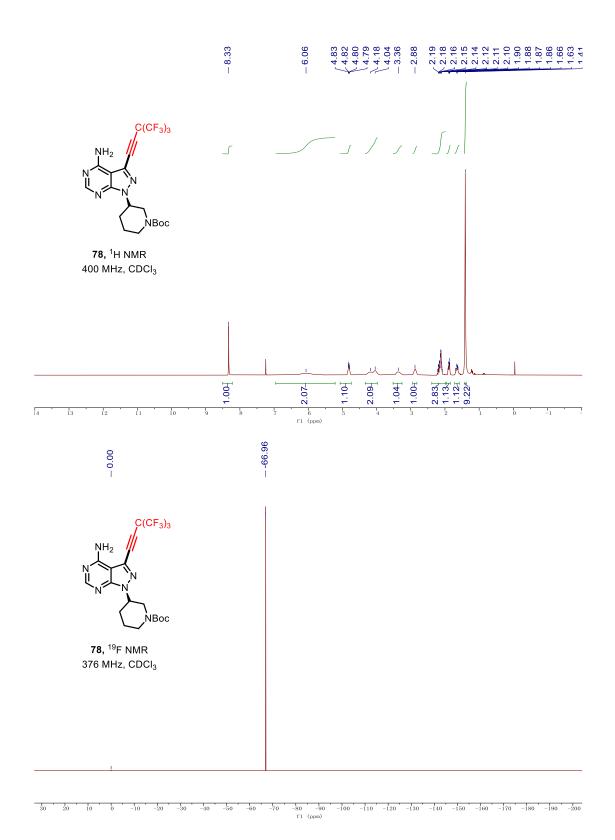


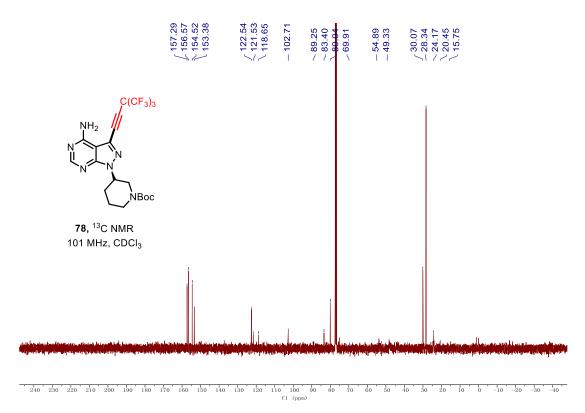


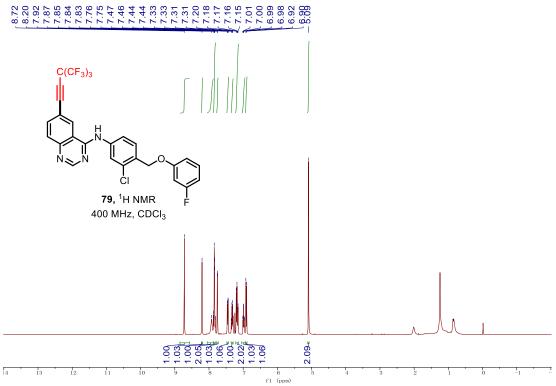


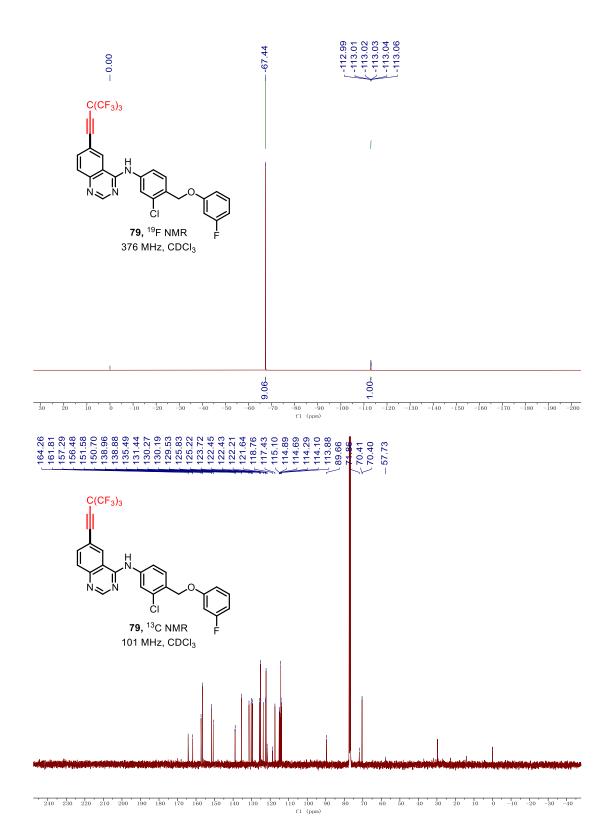

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

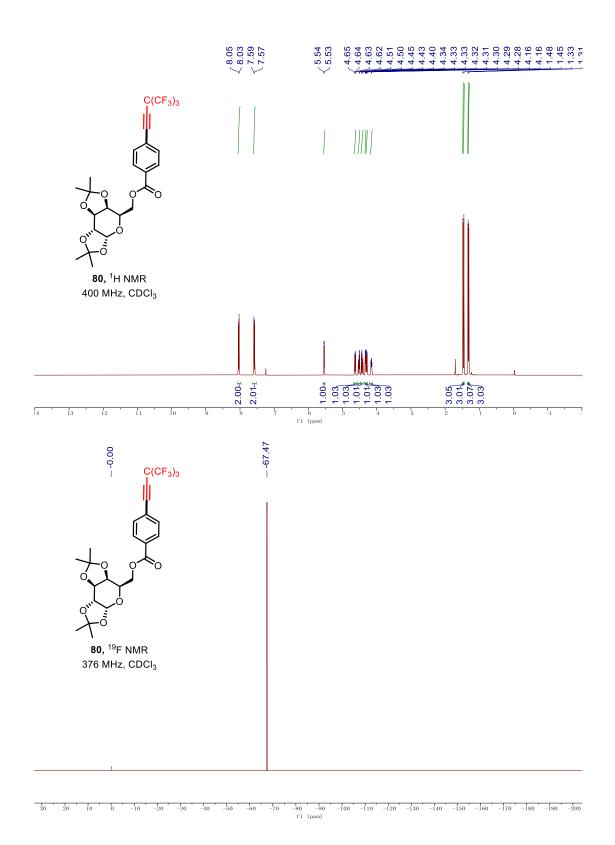


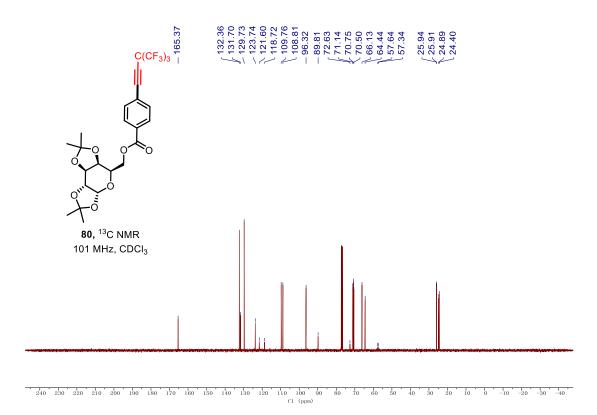


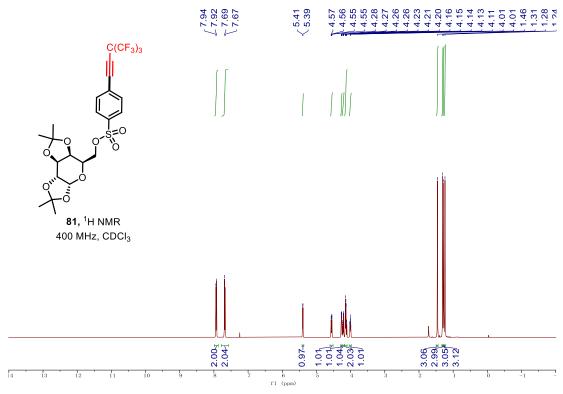


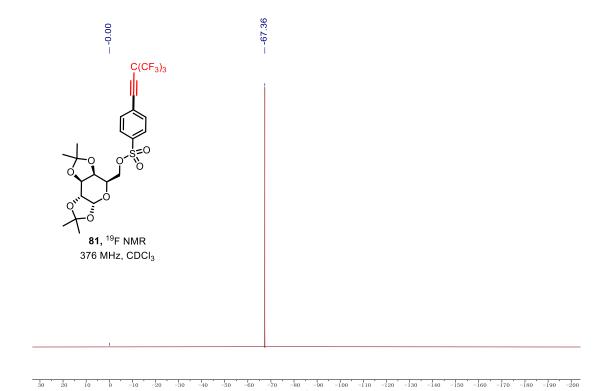


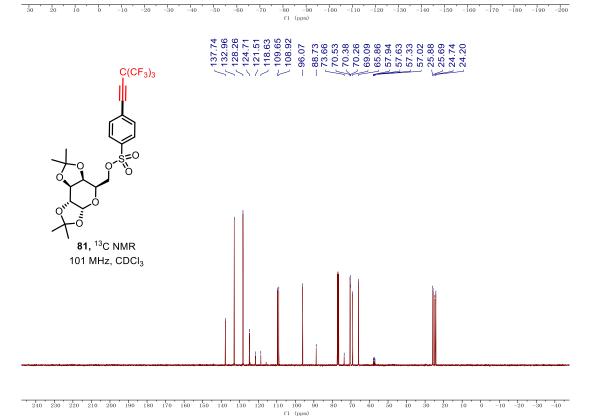


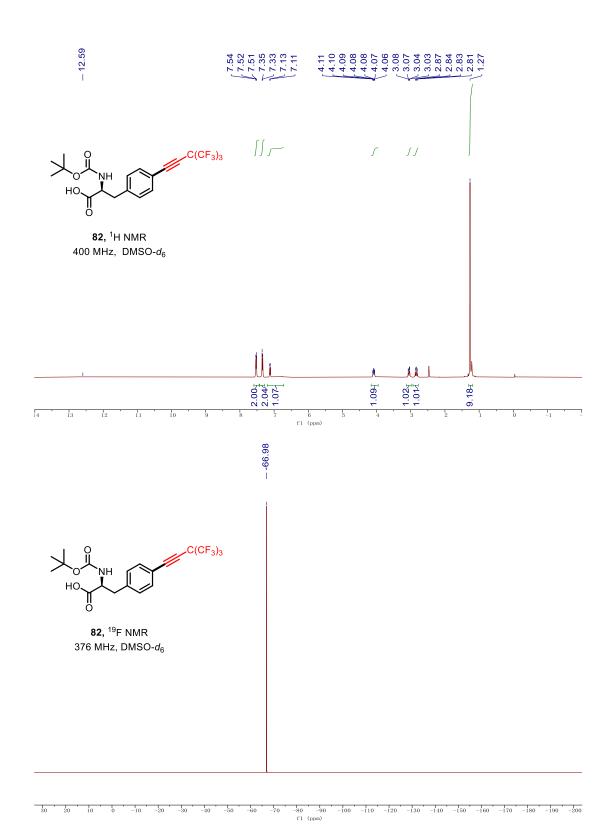


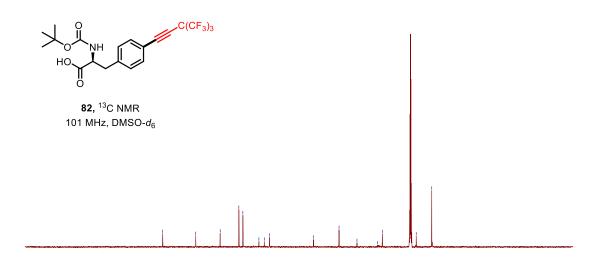


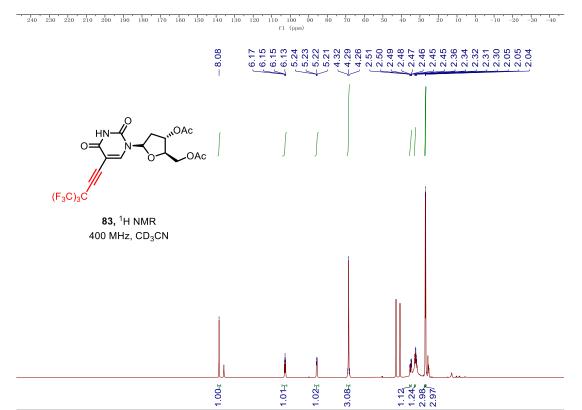


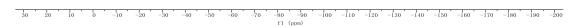




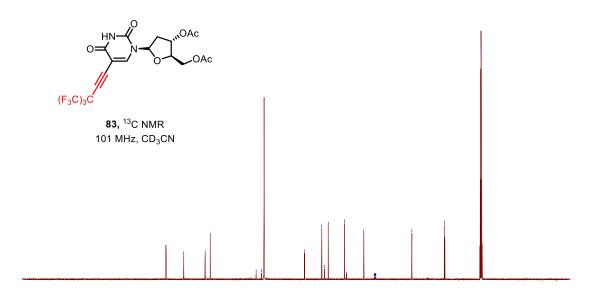


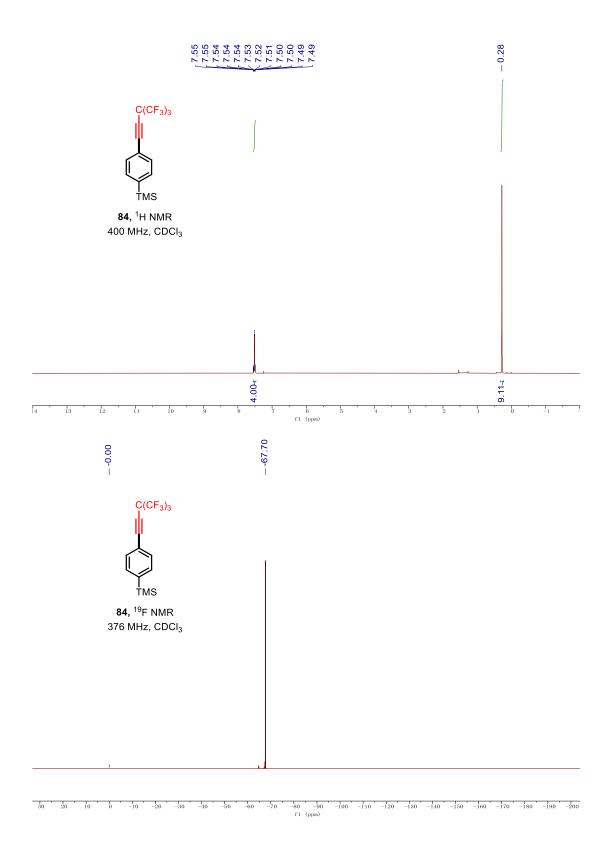


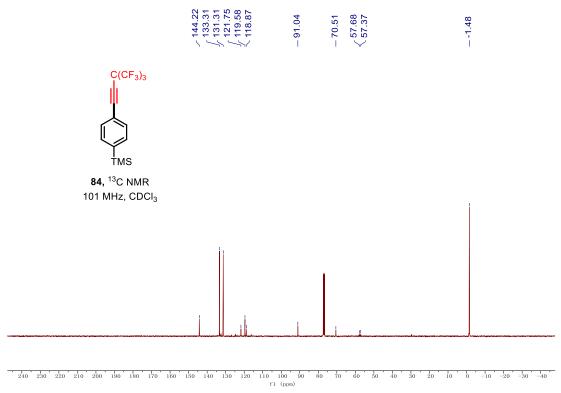


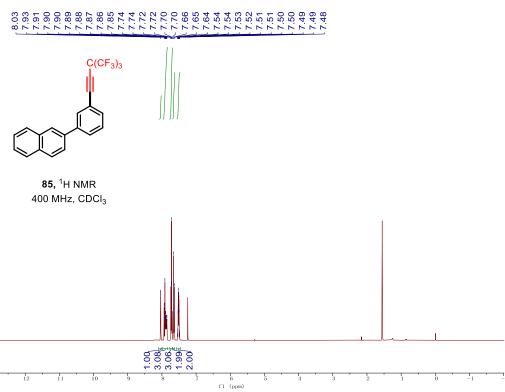


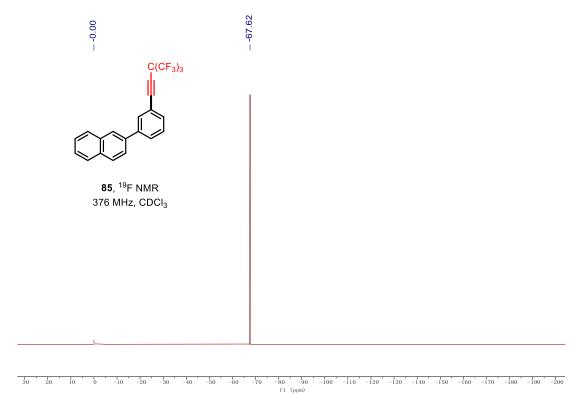
1.02±

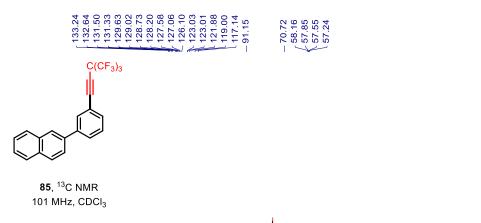

6 f1 (ppm)

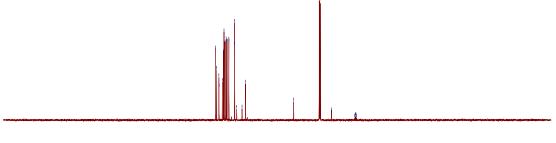

83, ¹⁹F NMR 376 MHz, CD₃CN

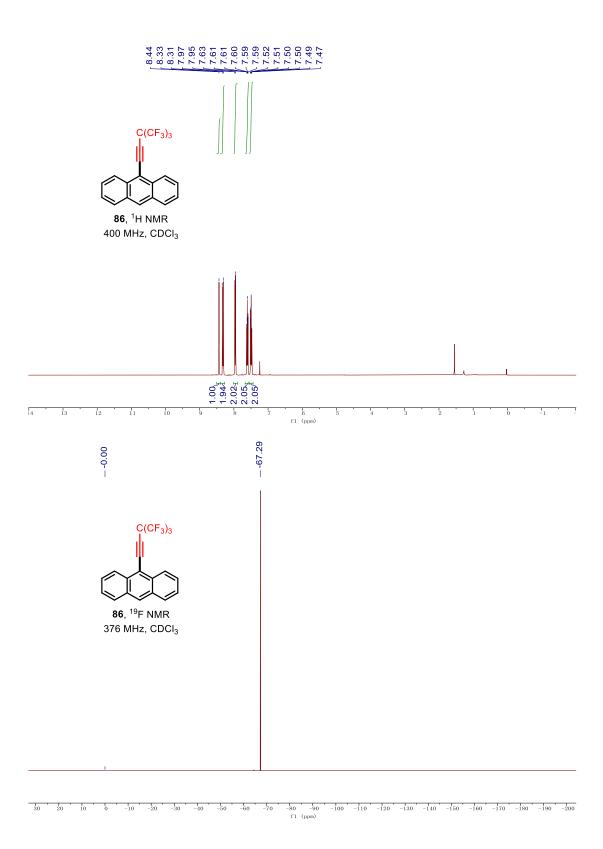


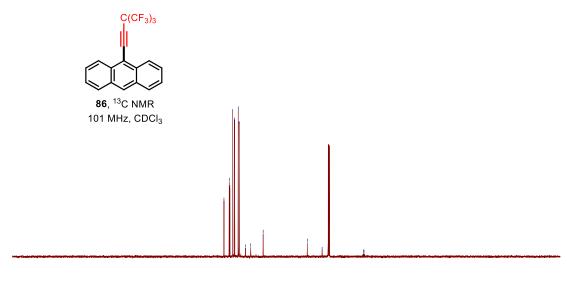


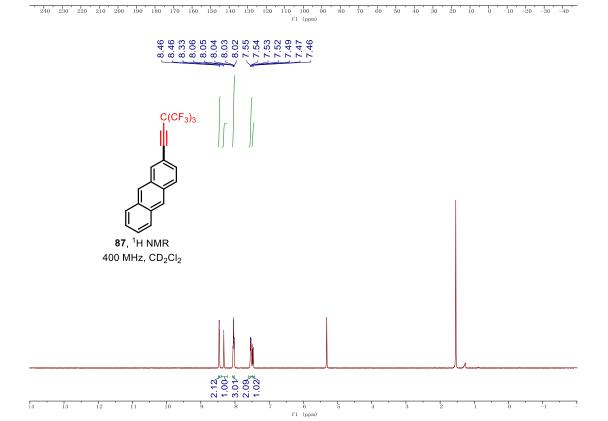


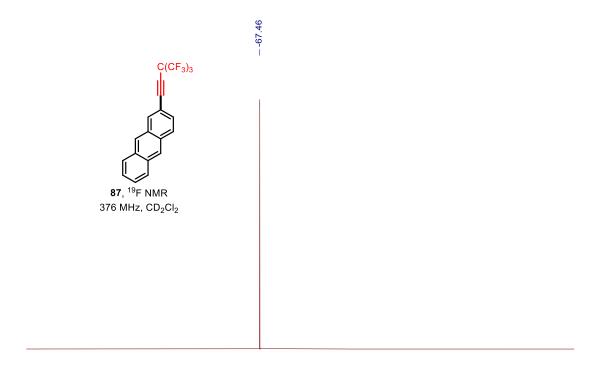

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

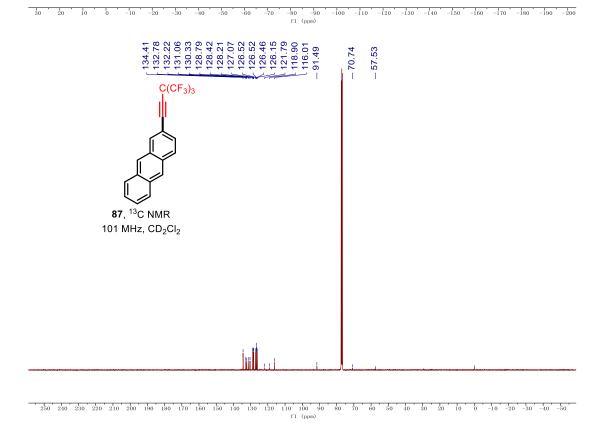


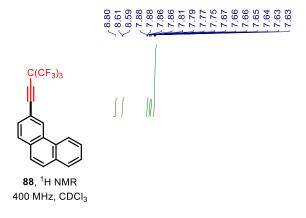


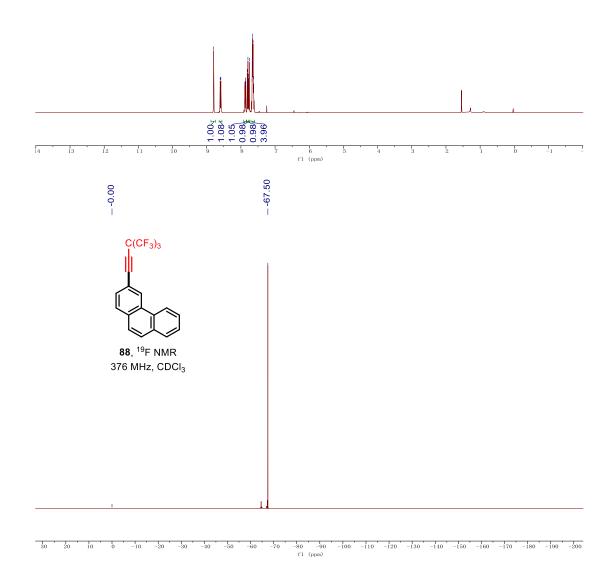


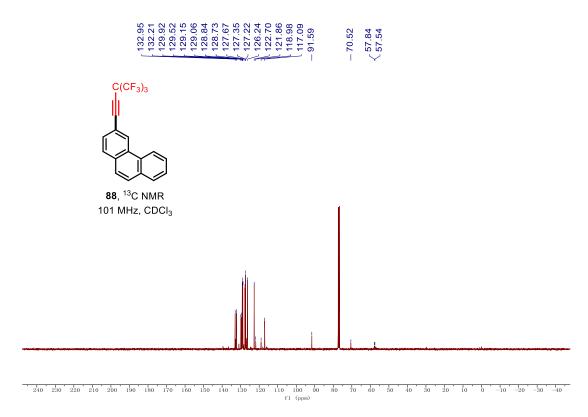


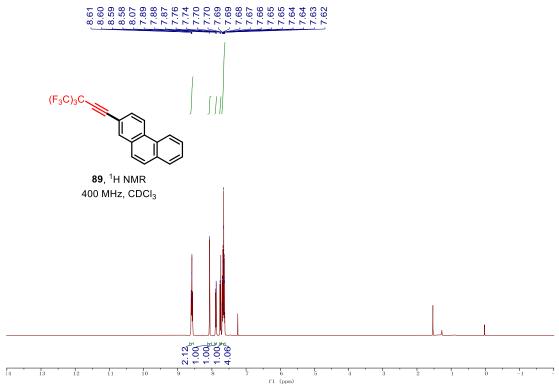


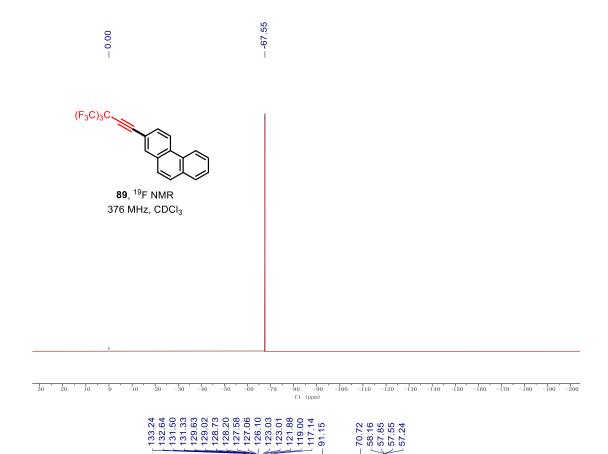


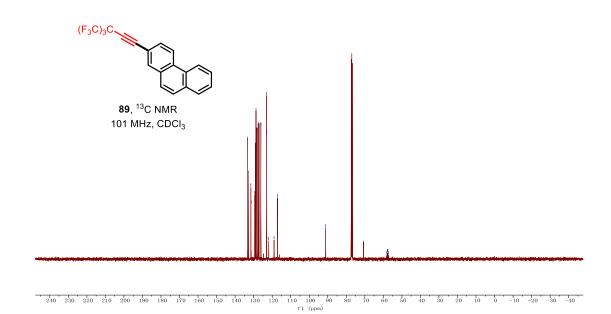


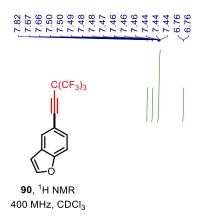


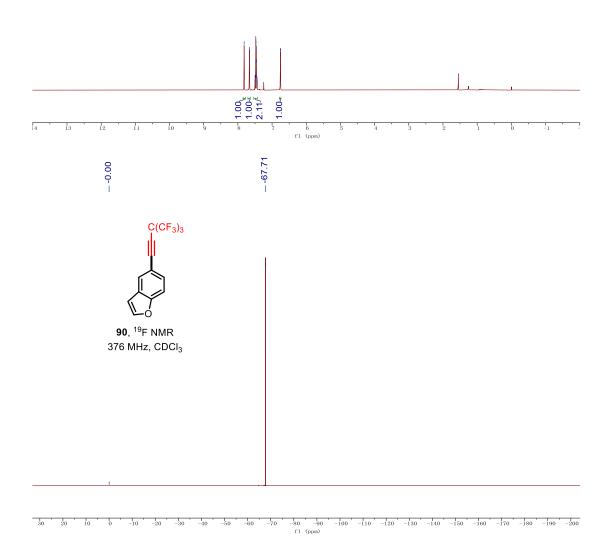


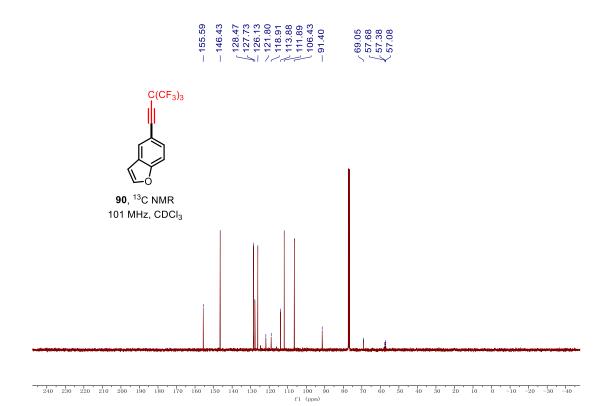


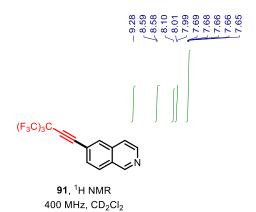


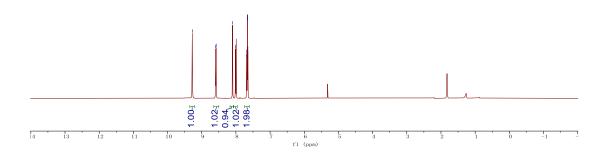




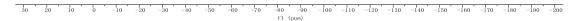


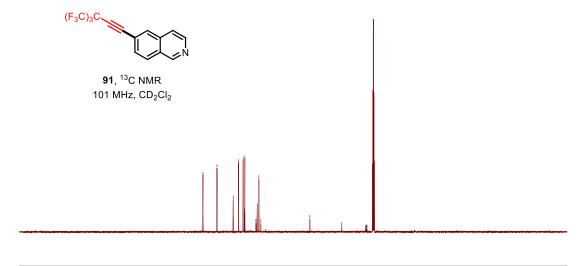


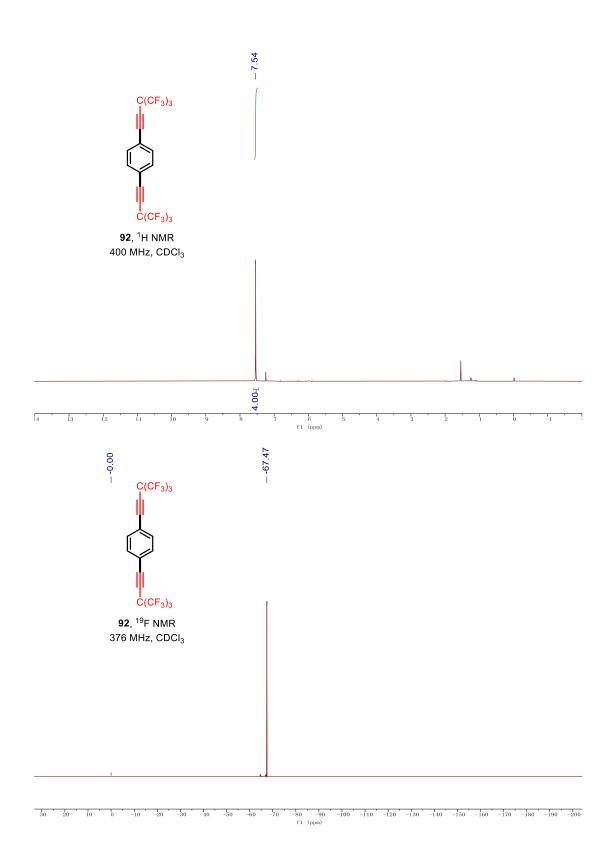


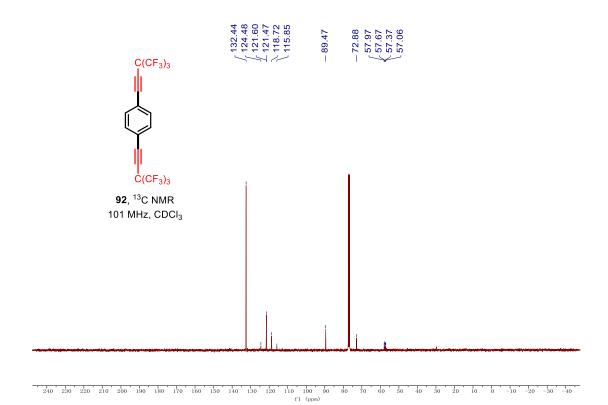


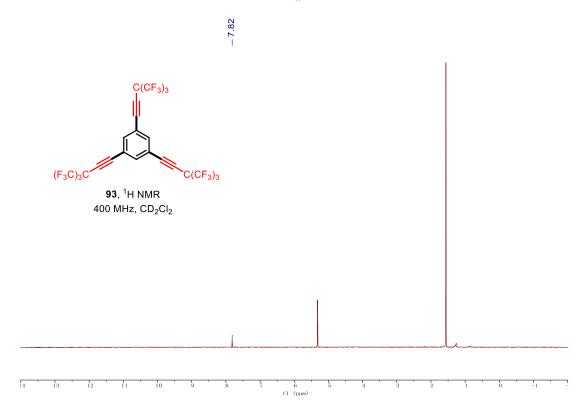


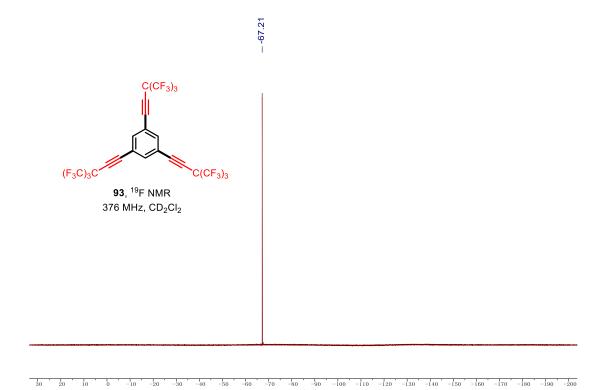


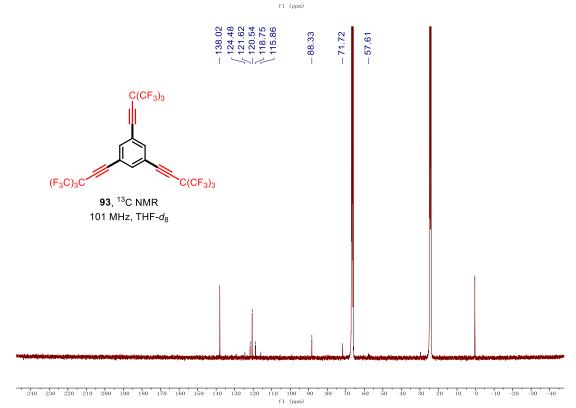


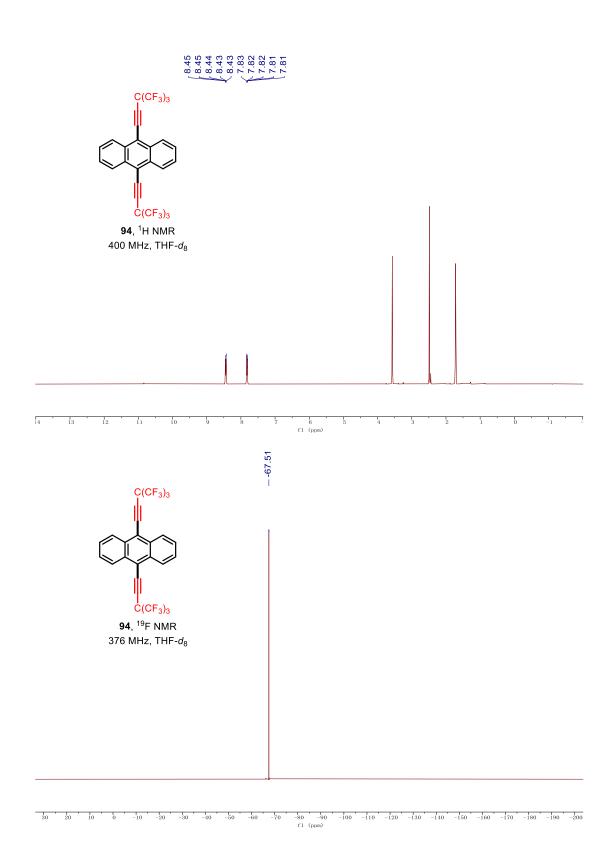


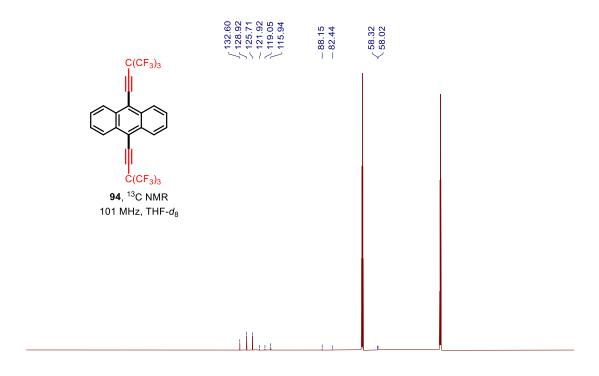


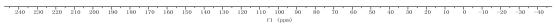


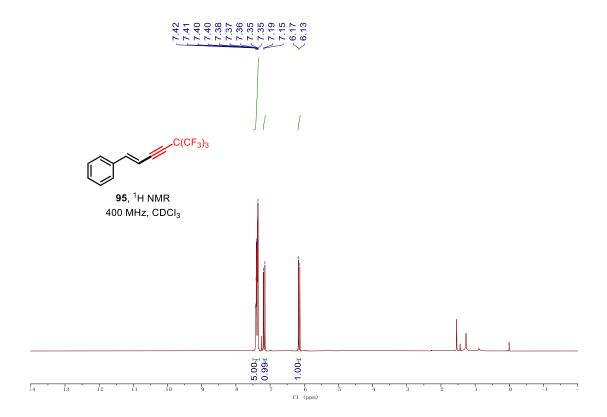


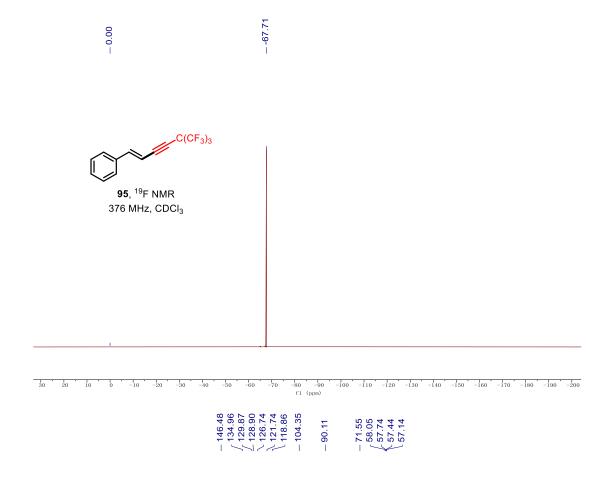

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 f1 (ppm)

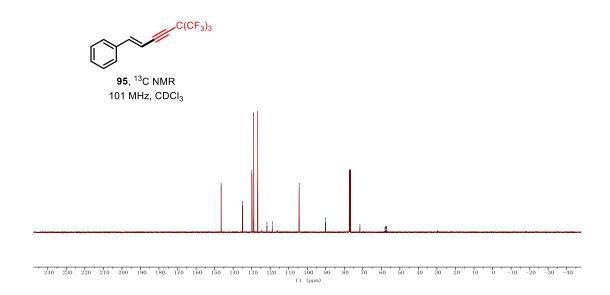


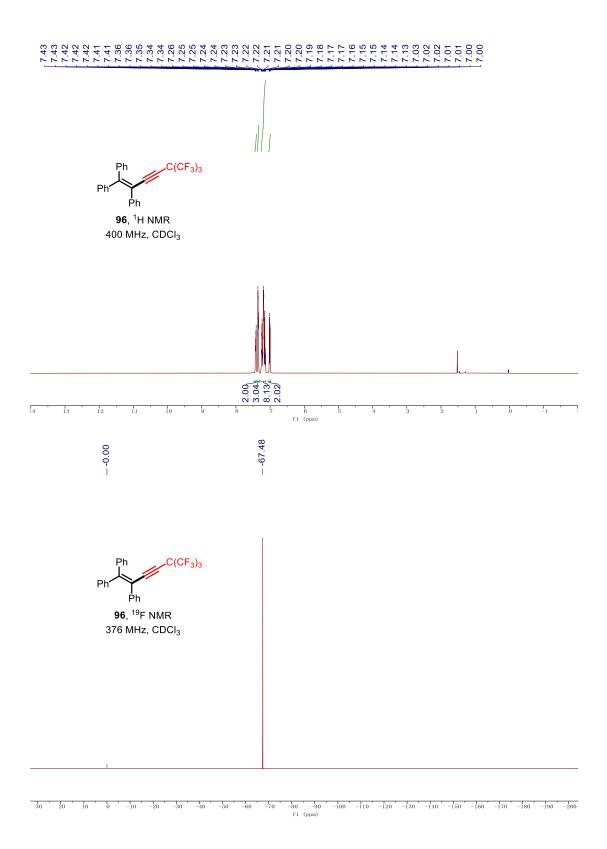




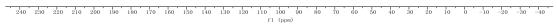


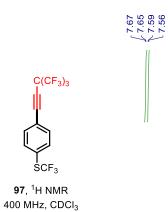


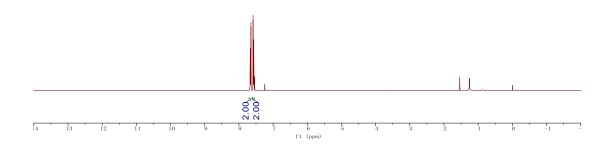


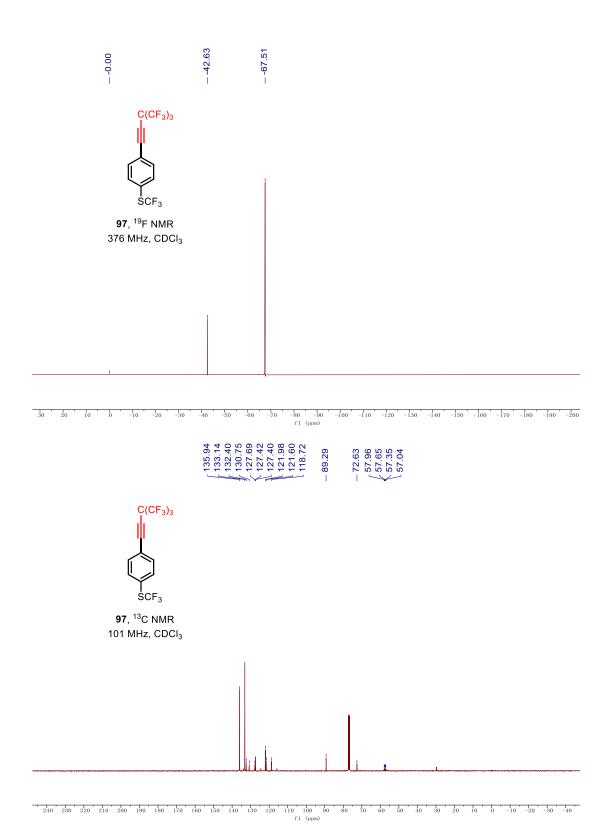


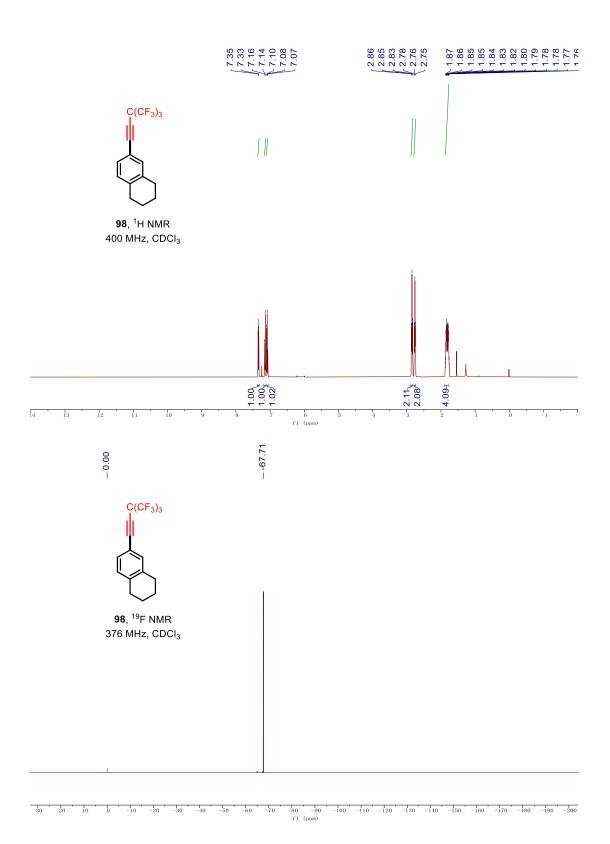


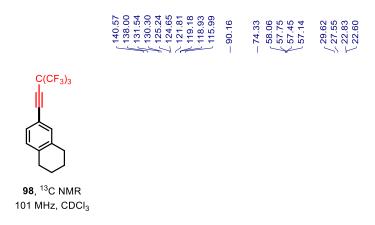


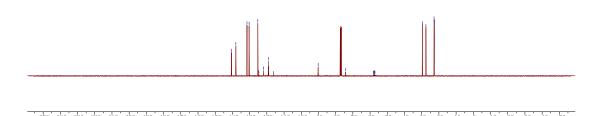


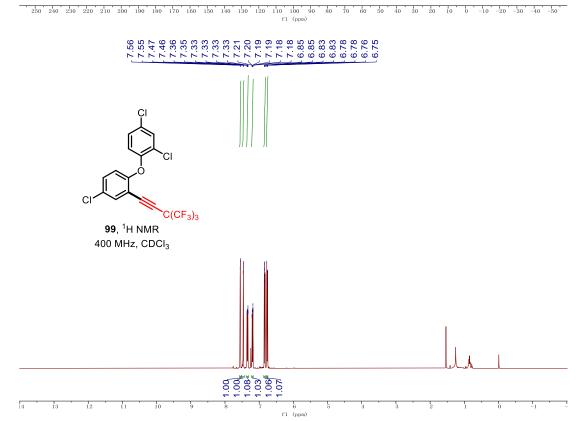


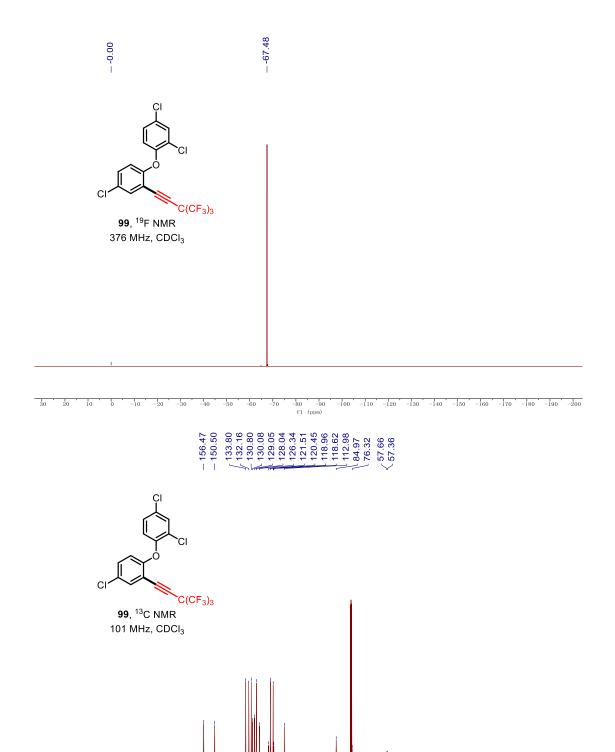


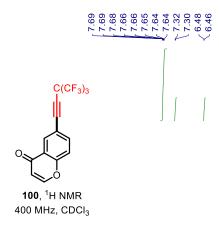


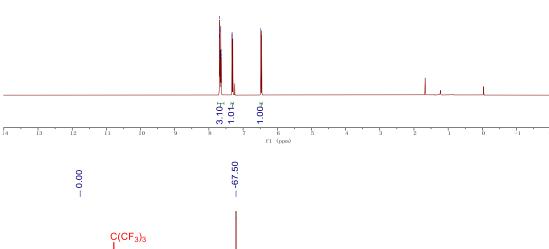


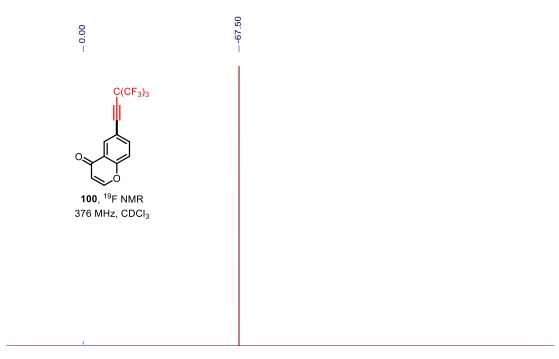


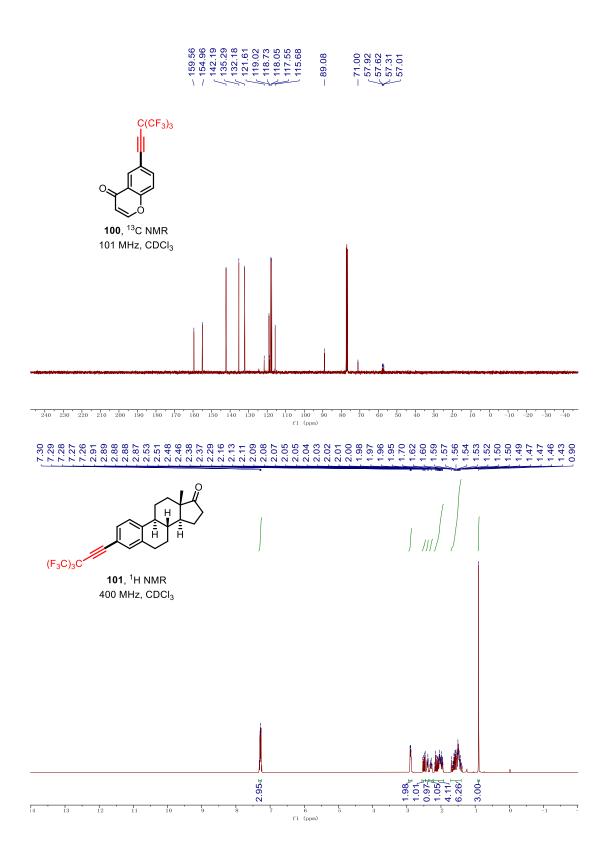


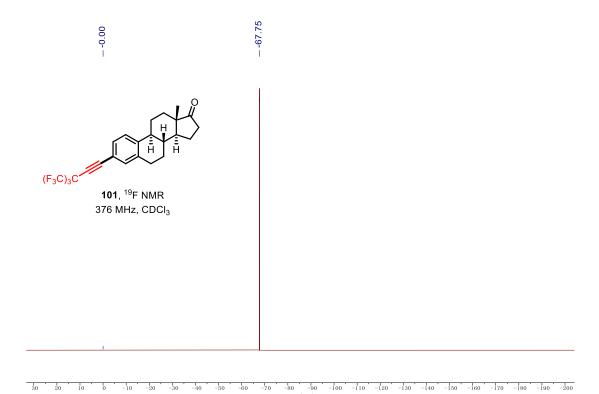


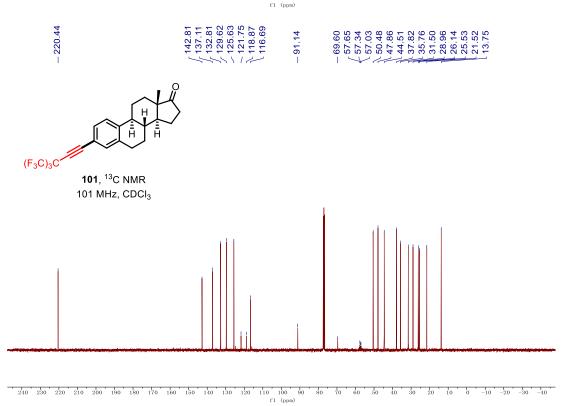


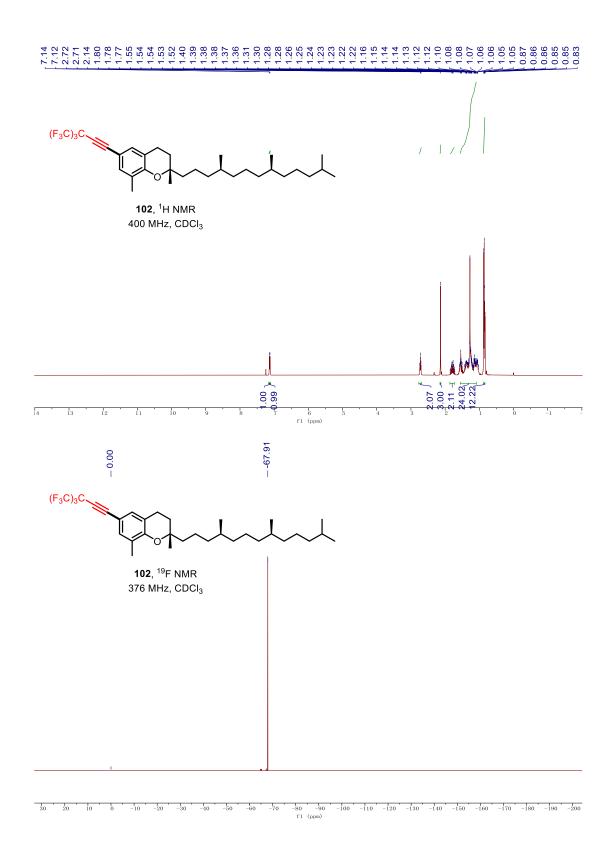




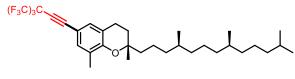

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)

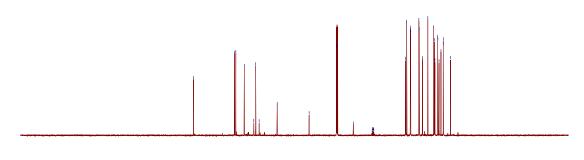


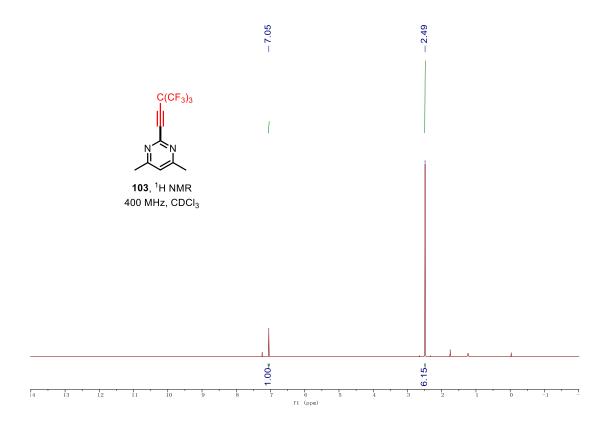


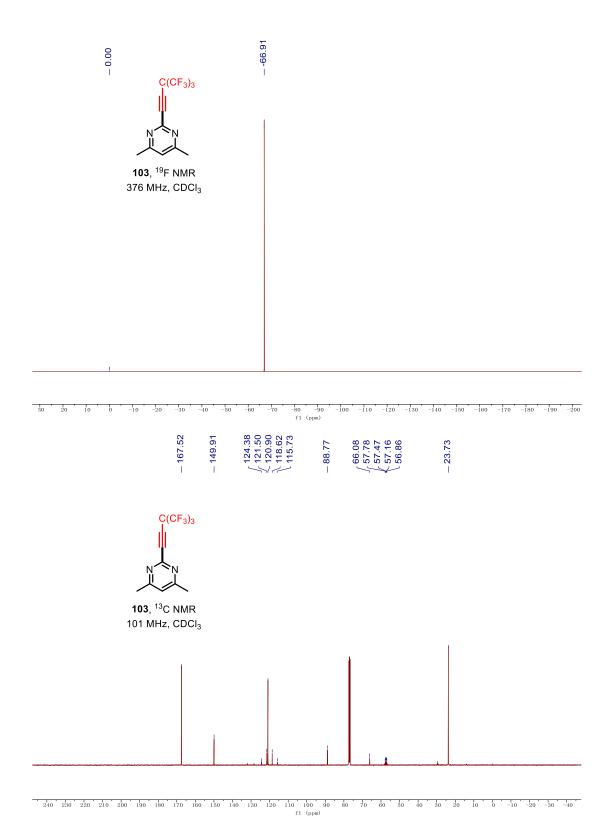


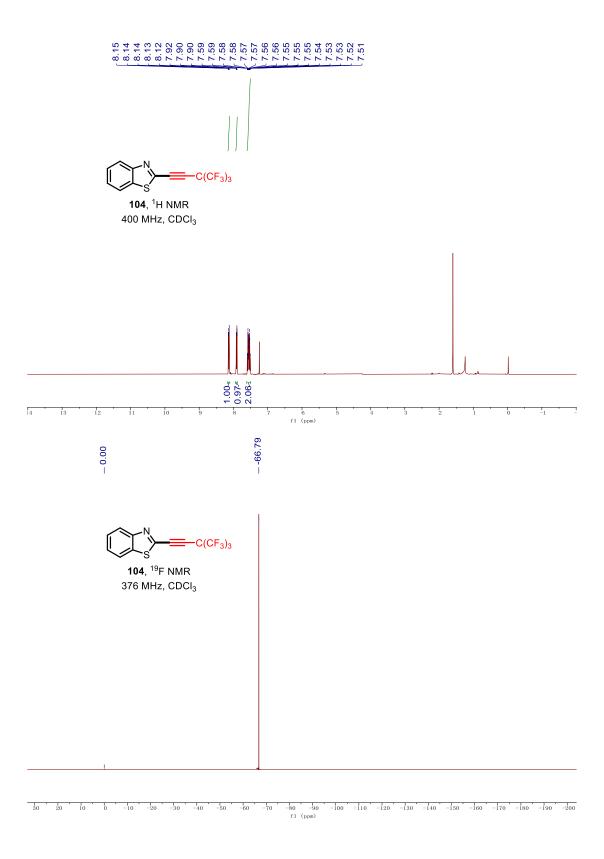
30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)



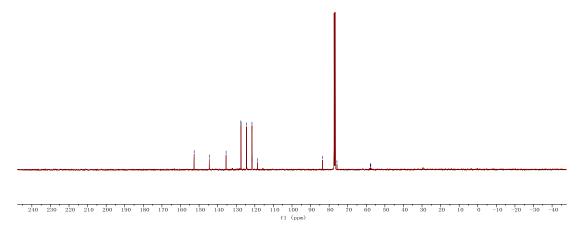


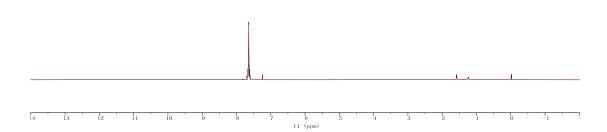


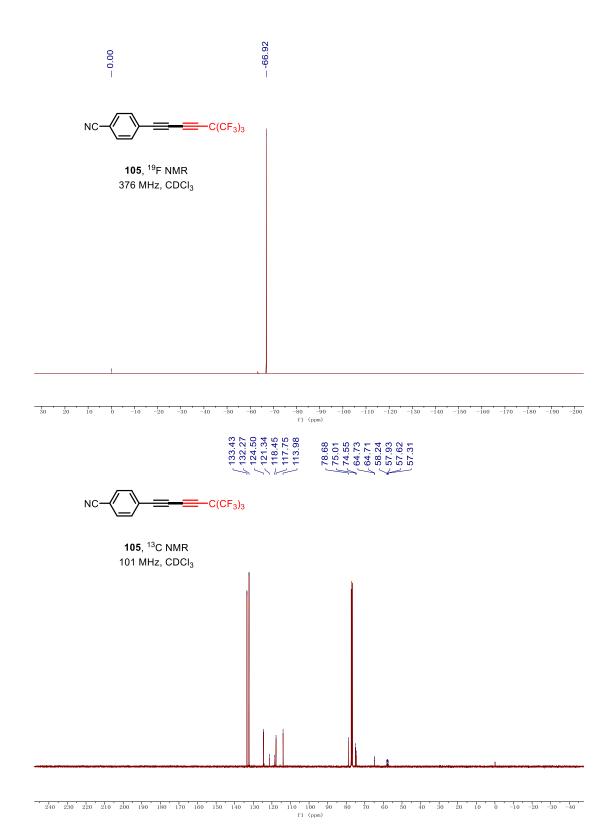


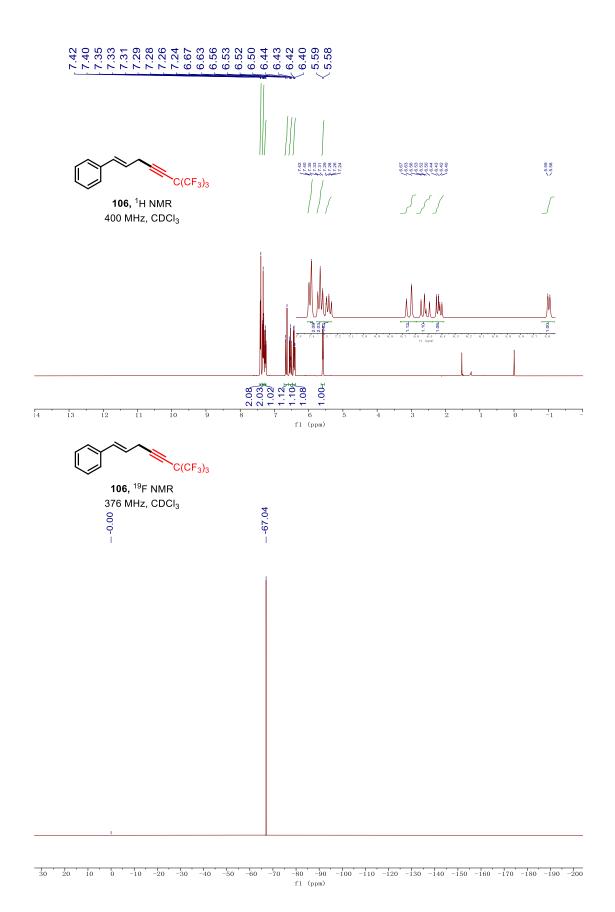

102, ¹³C NMR 101 MHz, CDCl₃

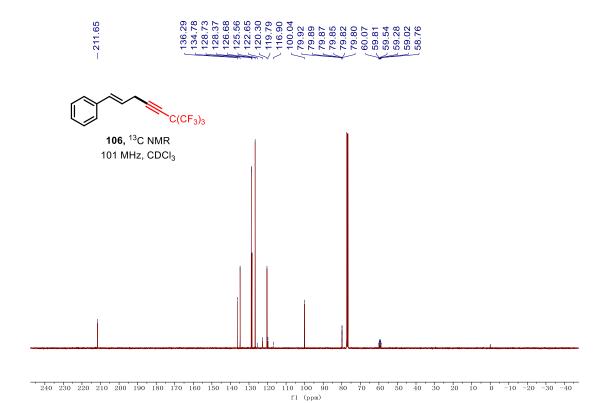
240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

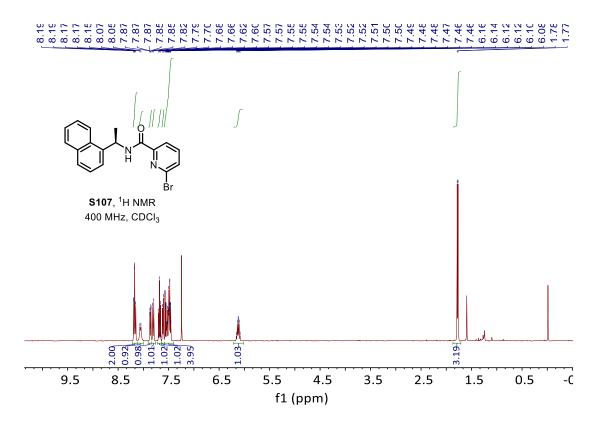


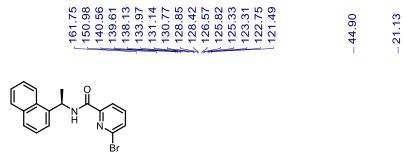

104, ¹³C NMR 101 MHz, CDCl₃

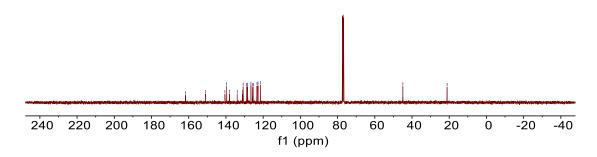


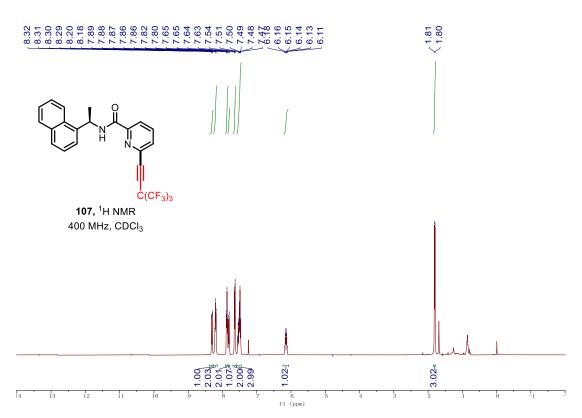

7.70 7.67 7.67 7.65 7.65 7.63 7.63 7.63 7.63 7.63 7.63

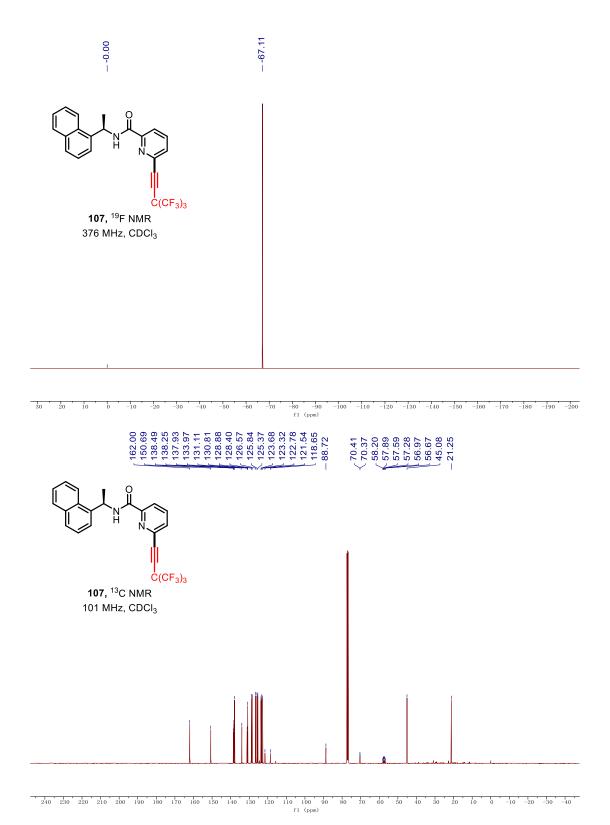

$$NC$$
 $C(CF_3)_3$

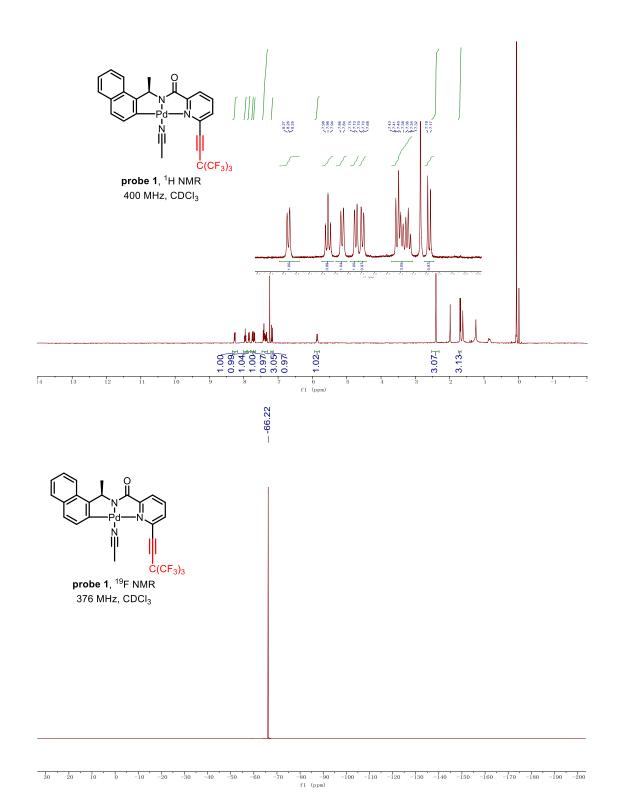

105, ¹H NMR 400 MHz, CDCl₃

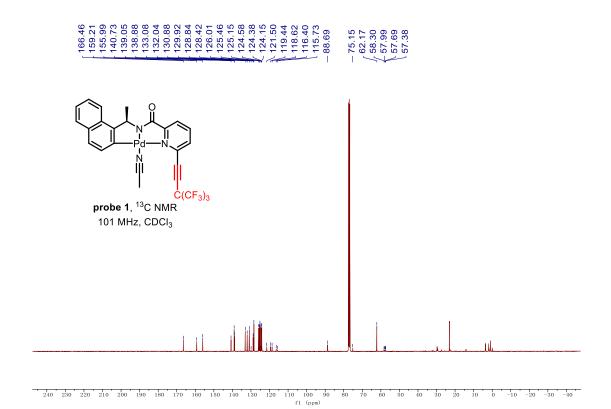











\$107, ¹³C NMR 101 MHz, CDCl₃

