Supporting Information for

Rhodium-catalyzed one-pot tandem reductive amination/asymmetric transfer hydrogenation of quinoxaline-2-carbaldehydes and anilines for the efficient synthesis of chiral vicinal diamines

Ji Yang^a, Zhenni He^a, Zhen Yao^b, Wei Huang^a, Siwen Meng^a, Lijin Xu^{a*} and Qing-Hua Fan^{c*} ^a School of Chemistry, and Life Resources, Renmin University of China, Beijing 100872, China; Email: <u>20050062@ruc.edu.cn</u> ^b School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China

^c Institute of Chemistry, Chinese Academy of Sciences, Academy of Sciences, Beijing 100190, China Email: <u>fanqh@iccas.ac.cn</u>

Contents:

1. General information	S2
2. Optimization of reaction conditions	S2
3. The general procedure	S6
4. Synthetic applications	S7
4.1 Scale-up reactions	S7
4.2 Synthesis of chiral Pd-diamine complex 8 and its application	S8
4.3 Synthesis of hindered N-heterocyclic carbene ligand 12	S10
5. Mechanistic Studies	S11
5.1 Control experiments	S11
5.2 Mass spectrometry of intermediates	S12
5.3 ATH of 2-methylquinoxaline	S12
6. Analytic data of products	S14
7. References	S31
8. ¹ H and ¹³ C{ ¹ H} NMR spectra of the products	S32
9. Copy of HPLC spectra of the racemic and chiral products	S76
9.X-Ray Crystal Data for Compounds 3h and 3i	S119

1. General information

Unless otherwise noted, all experiments were carried out under nitrogen atmosphere and all commercially available chemicals including organic solvents were used as received from Aldrich, Acros or Strem without further purification. ¹H NMR and ¹³C{¹H} NMR spectra were recorded on a Bruker Model Advance DMX 400 Spectrometer (¹H 400 MHz and ¹³C{¹H} 101 MHz, respectively), Bruker Model Advance DMX 500 Spectrometer (¹H 500 MHz and ¹³C{¹H} 126 MHz, respectively) or Bruker Model Advance DMX 600 Spectrometer (¹H 600 MHz and ¹³C{¹H} 151 MHz, respectively). Chemical shifts (δ) are given in ppm and are referenced to residual solvent peaks. Melting points were measured on X-4 melting point apparatus and are uncorrected. High resolution mass spectra (HRMS) were performed on a VG Autospec-3000 spectrometer. Column chromatography was performed with silica gel (200-300 mesh). All the quinoxaline-2-carbaldehyde substrates were prepared according to the literature methods.¹

2. Optimization of reaction conditions

Table S1. Screening of catalysts for the RA/ATH of 1a and 2a.^a

Entry	Catalyst	$3a/4a/5a (\%)^b$	ee of 3a (%) ^{<i>c</i>}
1	(<i>R</i> , <i>R</i>)-C1	91:9:	54
2	(<i>R</i> , <i>R</i>)- C2	76:24:	39
3	(<i>R</i> , <i>R</i>)-C3	93:7:	90
4	(<i>R</i> , <i>R</i>)- C 4	90:10:	46
5	(<i>R</i> , <i>R</i>)- C5	89:11:	89
6	(<i>R</i> , <i>R</i>)- C6	90:10:	72
7	(<i>R</i> , <i>R</i>)- C7	90:10:	59
8	(<i>R</i> , <i>R</i>)- C8	82:18:	88
9	(<i>R</i> , <i>R</i>)- C9	80:20:	87
10	(<i>R</i> , <i>R</i>)-C10	84:16:	89
11	(<i>R</i> , <i>R</i>)-C11	81:19:	88
12	(<i>R</i> , <i>R</i>)-C12	92:8:	77
13	(<i>R</i> , <i>R</i>)-C13	94:6:	79
14	(<i>R</i> , <i>R</i>)-C14	87:13:	67
15	(<i>R</i> , <i>R</i>)-C15	44:56:	23
16	(<i>R</i> , <i>R</i>)-C16	42:58:	25
17	(<i>R</i> , <i>R</i>)-C17	45:55:	22
18	(<i>R</i> , <i>R</i>)-C18	95:5:	66
19	(<i>R</i> , <i>R</i>)-C19	77:23:	64
20	(<i>R</i> , <i>R</i>)- C20	98: :	78
21	(<i>R</i> , <i>R</i>)- C21	74:26:	65
22	(<i>R</i> , <i>R</i>)- C22	82:18:	78
23	(<i>R</i> , <i>R</i>)- C23	22:78:	48
24	(<i>R</i> , <i>R</i>)- C24	25:75:	33
25	(<i>R</i> , <i>R</i>)- C25	34:66:	62
26	(<i>R</i> , <i>R</i>)- C26	:58:	
27	(<i>R</i> , <i>R</i>)- C27	:58:	

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), catalyst (1.0 mol %), HCO₂H/Et₃N (5:2) (2.4 mmol), THF (1.0 mL), r. t., N₂, 16 h. ^{*b*}Determined by ¹H NMR analysis of crude product. ^{*c*}Determined by HPLC analysis with a chiral AD-H column.

N N 1a + PhNH2	HO (<i>R</i> , <i>R</i>)- C3 (1 mol%) HCO ₂ H/NEt ₃ (5/2) solvent, r.t., 16 h	,,_NHPh + NNNHPh + NH	IPh +
2a ²	3a	4a	5a
Entry	Solvent	3a/4a/5a (%) ^b	ee of 3a (%) ^{<i>c</i>}
1	iPrOH	70:30:	64
2	HFIP		
3	EtOAc	64:36:	54
4	DME	26:74:	88
5	THF	93:7:	90
6	1,4-dioxane	82:30:	85
7	MTBE	88:12:	83
8	dibutyl ether	80:20:	84
9	MeOH	61:39:	73
10	toluene	95:7:	57
11	CHCl ₃	96:4:	66
12	CH ₂ Cl ₂	94:6:	62

Table S2. Screening of solvents for the RA/ATH of 1a and 2a.^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), (*R*,*R*)-**C3** (1.0 mol %), HCO₂H/Et₃N (5/2) (2.4 mmol), solvent (1.0 mL), r.t., N₂, 16 h. ^{*b*}Determined by ¹H NMR analysis of crude product. ^{*c*}Determined by HPLC analysis with a chiral AD-H column. HFIP: hexafluoroisopropanol; DME: dimethoxyethane; MTBE: methyl *tert*-butyl ether.

N N N N N N N N 2	H_{2} CHO (R, I) H_{2} HCO H_{2} THF, a	R)-C3 (1 mol%) DOH/NEt ₃ (5/2) Additive, r.t., 16 h 3a	NHPh + NHF	oh + NNNNPh 5a
Entry	T (°C)	Additive (mol%)	$3a/4a/5a (\%)^b$	ee of 3a (%) ^{<i>c</i>}
1	r.t.	AgOTf(2)	95:5:	90
2	r.t.	$AgSbF_{6}(2)$	94:6:	90
3	r.t.	Ag ₃ PO ₄ (2)	92:8:	92

Table S3. Screening of additives for the RA/ATH of 1a and 2a.^a

4	r.t.	$Ag_2SO_4(2)$	90:10:	85
5	r.t.	KI (2)	92:8:	78
6	r.t.	Ag ₃ PO ₄ (2)	96:4:	99
7	50	Ag ₃ PO ₄ (2)	99::	72
8	r.t.	$Ag_{3}PO_{4}(1)$	93:7:	91
9^d	r.t.	Ag ₃ PO ₄ (2)	77:13:	91

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), (*R*,*R*)-**C3** (1.0 mol %), HCO₂H/Et₃N (5/2) (2.4 mmol), THF (1.0 mL), r.t., N₂, 16 h. ^{*b*}Determined by ¹H NMR analysis of crude product. ^{*c*}Determined by HPLC analysis with a chiral AD-H column. ^{*d*}(*R*,*R*)-**C3** (0.5 mol%) was used.

N N CHO 1a + PhNH ₂ 2a	(R,R)-C3 (1 mol%) [H], THF, Ag ₃ PO ₄ r.t., 16 h 3a	N N 4a	NPh 5a
Entry	[H]	$3a/4a/5a (\%)^b$	ee of 3a (%) ^c
1	HCO ₂ H/NEt ₃ (1/1)	79:21:	89
2	HCO ₂ H/NEt ₃ (2/1)	82:18:	91
3	HCO ₂ H/NEt ₃ (5/2)	95:5:	99
4	HCO ₂ H/NEt ₃ (3/1)	85:15:	87
5	HCO ₂ H	66:34:	44
6^d	HCO ₂ H/NEt ₃ (5/2)	94:6: 	96

Table S4. Screening of hydrogen donors for the RA/ATH of 1a and 2a.^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), THF (1.0 mL), (*R*,*R*)-**C3** (1.0 mol %), Ag₃PO₄ (2.0 mol %), HCO₂H/Et₃N (5/2) (2.4 mmol), r.t., N₂, 16 h. ^{*b*}Determined by ¹H NMR analysis of crude product. ^{*c*}Determined by HPLC analysis with a chiral AD-H column. ^{*d*}HCO₂H/Et₃N (5/2) (2.0 mmol) was used.

H N CHO 6a + PhNH ₂ 2a	catalyst (1 mol%) Ag ₃ PO ₄ (2 mol%) HCOOH/Et ₃ N (5/2) solvent, r.t., 16 h	H N N H 7a	H N N N N N N N N N N N N N N N N N N N	H N N NPh 7aa'
Entry	Catalyst	Solvent	7a/7aa/7aa' $(\%)^b$	ee of 7a (%) ^c
1	(<i>R</i> , <i>R</i>)-C3	THF	88:12:	74

Table S5. Screening of the reaction condition for RA/ATH of 6a and 2a.^a

2	(<i>R</i> , <i>R</i>)- C8	THF	80:20:	74
3	(<i>R</i> , <i>R</i>)-C12	THF	78:22:	46
4	(<i>R</i> , <i>R</i>)-C16	THF	75:25:	22
5	(<i>R</i> , <i>R</i>)-C18	THF	70:30:	36
6	(<i>R</i> , <i>R</i>)- C23	THF	36:52:12	18
7	(<i>R</i> , <i>R</i>)-C3	IPA	79:21:	68
8	(<i>R</i> , <i>R</i>)-C3	DCE	89:11:	59
9	(<i>R</i> , <i>R</i>)-C3	1,4-dioxane	85:15:	72
10	(<i>R</i> , <i>R</i>)-C3	toluene	90:10:	42
11	(<i>R</i> , <i>R</i>)-C3	CHCl ₃	89:11:	37
12^d	(<i>R</i> , <i>R</i>)-C3	THF	82:18:	74
13 ^e	(<i>R</i> , <i>R</i>)-C3	THF	92:8:	69
14 ^f	(<i>R</i> , <i>R</i>)-C3	THF	94:6:	62
15 ^g	(<i>R</i> , <i>R</i>)-C3	THF	81:19:	70
16 ^{<i>h</i>}	(<i>R</i> , <i>R</i>)-C3	THF	80:20:	70
17^{i}	(<i>R</i> , <i>R</i>)- C3	THF	87:13:	72

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.2 mmol), catalyst (1.0 mol %), HCO₂H/Et₃N (5/2) (2.4 mmol), Ag₃PO₄ (2.0 mol %), Solvent (1.0 mL), r. t., N₂, 16 h. ^{*b*}Determined by ¹H NMR analysis of crude product. ^{*c*}Determined by HPLC analysis with a chiral OJ-H column. ^{*d*}Reaction temperature 0 °C. ^{*e*}Reaction temperature 40 °C. ^{*f*}Reaction temperature 50 °C. ^{*g*}No Ag₃PO₄ was used. ^{*h*}HCO₂H/Et₃N (1/1) (2.4 mmol) was used. ^{*i*}HCO₂H/Et₃N (3/1) (2.4 mmol) was used.

3. The general procedure

An oven-dried screw-capped pressure tube (25 mL) equipped with a magnetic stirrer bar was charged with quinoxaline-2-carbaldehyde 1 (0.2 mmol), amine 2 (0.2 mmol), Ag₃PO₄ (1.67 mg, 0.004 mmol), (R,R)-C3 (1.40 mg, 0.002 mmol),

 HCO_2H/Et_3N (5/2) (207.6 mg, 2.4 mmol, 0.2 mL) and THF (1.0 mL) under N₂ atmosphere in a glove box. Then the tube was capped and removed from the glovebox. The reaction mixture was stirred vigorously at room temperature for 16 h. The solvent was then removed under reduced pressure, and the residue was basified with the saturated aqueous NaHCO₃ (2.0 mL) and extracted with CH₂Cl₂ (3 × 3.0 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography using a mixture of hexane and ethyl acetate to provide product **3**.

4. Synthetic applications

4.1 Scale-up reactions

To an oven-dried screw-capped pressure tube (100 mL) equipped with a magnetic stir bar were sequentially added quinoxaline-2-carbaldehyde (**1a**) (1.27 g, 8.0 mmol), aniline (**2a**) (0.75 g, 8.0 mmol), (*R*,*R*)-**C3** (55.44 mg, 0.08 mmol), Ag₃PO₄ (67.0 mg, 0.16 mmol) and HCO₂H/Et₃N (8.06 mL, 96 mmol) and THF (40 mL) in a nitrogen atmosphere glovebox. Then the tube was capped and removed from the glovebox. The reaction mixture was allowed to stir vigorously at room temperature for 24 h. The solvent was then removed under reduced pressure, and the residue was basified with the saturated aqueous NaHCO₃ (100.0 mL) and extracted with CH₂Cl₂ (3 × 50.0 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography using a mixture of hexane and ethyl acetate (5:1) to provide product **3a** (89%, 1.70 g, 99% ee).

To an oven-dried screw-capped pressure tube (100.0 mL) equipped with a magnetic stir bar were sequentially added quinoxaline-2-carbaldehyde (1a) (1.27 g, 8.0 mmol), 2,4,6-trimethylaniline (2aa) (1.08 g, 8.0 mmol), (*R*,*R*)-C3 (55.44 mg, 0.08 mmol), Ag₃PO₄ (67.0 mg, 0.16 mmol) and HCO₂H/Et₃N (5/2) (8.06 mL, 96 mmol) and THF (40.0 mL) in a nitrogen atmosphere glovebox. Then the tube was capped and removed from the glovebox. The reaction mixture was allowed to stir vigorously at room temperature for 24 h. The solvent was removed under reduced pressure, and the residue was basified with the saturated aqueous NaHCO₃ (100.0 mL) and extracted with CH₂Cl₂ (3 × 50.0 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography using a mixture of hexane and ethyl acetate (20:1) to provide product **3aa** (87%, 1.96 g, 97% ee).

To a round bottom flask was added (*R*)-2,4,6-trimethyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (**3aa**) (140.7 mg, 0.5 mmol), PdCl₂ (106.4 mg, 0.6 mmol) and dry THF (3.0 mL). Then, the reaction mixture was stirred vigorously at 55 °C for 24 h. After cooling to room temperature, the resulting mixture was concentrated under vacuum to give an orange-yellow residue, which was recrystallized from CH₂Cl₂/hexane to afford the pure product **8** (201.8 mg, 88%).

8: Orange-yellow solid, 201.8 mg, isolated yield 88%; ¹H NMR (400 MHz, DMSO-*d*₆)
δ 8.45 (d, *J* = 8.1 Hz, 1H), 8.11 (d, *J* = 4.2 Hz, 1H), 7.24 (dd, *J* = 11.1, 5.1 Hz, 1H),
7.04 - 6.98 (m, 1H), 6.73 - 6.66 (m, 3H), 6.57 (dd, *J* = 8.1, 1.4 Hz, 1H), 6.03 (d, *J* =

3.3 Hz, 1H), 4.22 (d, J = 12.3 Hz, 1H), 3.18 – 3.05 (m, 2H), 2.76 (dt, J = 12.6, 4.4 Hz, 1H), 2.55 (s, 3H), 2.29 (s, 3H), 2.09 (s, 3H); ¹³C NMR (101 MHz, DMSO- d_6) δ 140.57, 140.27, 135.46, 131.40, 131.31, 131.15, 129.37, 129.35, 127.33, 123.66, 117.16, 115.69, 55.93, 55.75, 38.26, 20.63, 19.89, 18.83; HRMS (ESI) calcd. for C₂₁H₂₂N₃ [M+Na]⁺: 480.0196, found: 480.0201.

To an oven-dried Schlenk flask containing a magnetic stir bar was added 1-bromo-2-methoxynaphthalene (**9**) (59.3 mg, 0.25 mmol), 1-naphthylboronic acid (**10**) (51.6 mg, 0.30 mmol), **8** (1.1 mg, 0.0025 mmol), K_3PO_4 (106.1 mg, 0.50 mmol) and *t*-AmylOH (1.0 mL) under a nitrogen atmosphere. The reaction mixture was stirred vigorously at 25 °C until the aryl bromide was consumed as indicated by TLC. After filtration and being concentrated, the resulting residue was purified by silical gel column chromatography using hexane/ethyl acetate as eluent to give the pure product **11** (62.0mg, 81%, 85% ee).

(*R*)-2-Methoxy-1,1'-binaphthalene $(11)^2$

White solid, 62.0 mg, isolated yield 81%; $[\alpha]_D^{20} = -22.6$ (c = 1.0, CHCl₃); Enantiomeric excess; 85%; HPLC (OD-H, elute: hexane/isopropanol = 99/1, flowing rate = 0.4 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} = 19.097 min (minor), t_{R2} = 20.510

min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.81 (m, 3H), 7.77 (dt, J = 8.3, 1.0 Hz, 1H), 7.52 (dd, J = 8.3, 7.0 Hz, 1H), 7.38 – 7.31 (m, 3H), 7.26 – 7.04 (m, 5H), 3.65 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.75, 134.68, 134.40, 133.83, 133.08, 129.60, 129.15, 128.57, 128.36, 127.93, 127.87, 126.51, 126.31, 125.99, 125.82, 125.71, 125.64, 123.70, 123.35, 113.96, 56.89; HRMS (ESI) calcd. for C₂₁H₁₆NaO [M+Na]⁺: 307.1093, found: 307.1099.

4.3 Synthesis of hindered N-heterocyclic carbene ligand 12

To a solution of **3aa** (281.40 mg, 1.0 mmol) dissolved in CH₂Cl₂ (20.0 mL) was sequentially added BzCl (122 μ L, 1.05 mmol) and Et₃N (0.26 mL, 2.0 mmol) at 0 °C. After stirring at room temperature for 1 h, the reaction mixture was poured into water (20.0 mL) and extracted with CH₂Cl₂ (3 × 20.0 mL). The combined extracts were washed with brine, dried with anhydrous magnesium sulfate, and evaporated in vacuo. The crude residue was dissolved in toluene (16.0 mL), and HC(OEt)₃ (0.85 mL, 5 mmol), NH₄BF₄ (0.42 g, 4 mmol) and 2 drops of HCO₂H were added. The reaction mixture was heated at 90 °C for 24 h. After cooling to room temperature, the resulting solution was concentrated under vacuum, and the residue was purified by silica gel column chromatography (eluent: CH₂Cl₂/MeOH = 50:1, v/v) to give the white solid **12** (0.31 g, 64%).

(*S*)-5-Benzoyl-2-mesityl-3,3a,4,5-tetrahydroimidazo[1,5-a]quinoxalin-2iumtetrafluoroborate (12)

White solid, m.p. 285-287 °C; $[\alpha]_D^{20} = -24.8 \ (c = 1.0, \text{CHCl}_3);$ ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.26 – 7.17 (m, 3H), 7.08 (t, J = 7.6 Hz, 2H), 7.00 – 6.90 (m, 2H), 6.79 (d, J= 2.0 Hz, 1H), 6.71 – 6.56 (m, 3H), 4.35 – 4.13 (m, 2H), 3.57

 $(dp, J = 11.2, 3.8, 3.2 Hz, 1H), 3.39 (dd, J = 13.8, 3.0 Hz, 1H), 2.83 (dd, J = 12.3, 9.6 Hz, 1H), 2.19 (s, 3H), 2.14 (s, 3H), 2.02 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) <math>\delta$ 172.49, 160.11, 138.48, 138.13, 136.57, 135.27, 135.22, 134.31, 130.50, 130.33, 130.16, 128.21, 127.72, 126.28, 122.82, 117.76, 117.41, 115.61, 54.04, 51.80, 40.34, 20.96, 18.73, 18.62; HRMS (ESI) calcd. for C₂₆H₂₆N₃O⁺ [M-BF₄]⁺: 396.2070, found: 396.2074.

5. Mechanistic Studies

5.1 Control experiments

An oven-dried screw-capped pressure tube (25.0 mL) equipped with a magnetic stirrer bar was charged with **4a** (47.1 mg, 0.2 mmol), Ag₃PO₄ (1.7 mg, 0.004 mmol), (*R*,*R*)-**C3** (1.4 mg, 0.002 mmol), HCO₂H/Et₃N (5/2) (207.6 mg, 2.4 mmol, 0.2 mL) and THF (1.0 mL) under N₂ atmosphere in a glove box. The reaction mixture was stirred vigorously at room temperature for 16 h. The solvent was then removed under reduced pressure, and the residue was basified with the saturated aqueous NaHCO₃ (2.0 mL) and extracted with CH₂Cl₂ (3×3.0 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography using a mixture of hexane and ethyl acetate (3/1) to provide product **3a** (44.0 mg, 92%, 99% ee).

An oven-dried screw-capped pressure tube (25.0 mL) equipped with a magnetic stirrer bar was charged with **5a** (46.7 mg, 0.2 mmol), Ag₃PO₄ (1.7 mg, 0.004 mmol), (*R*,*R*)-**C3** (1.4 mg, 0.002 mmol), HCO₂H/Et₃N (5/2) (207.6 mg, 2.4 mmol, 0.2 mL) and THF (1.0 mL) under N₂ atmosphere in a glove box. The reaction mixture was stirred vigorously at room temperature for 16 h. The solvent was then removed under reduced pressure, and the residue was basified with the saturated aqueous NaHCO₃ (2.0 mL) and extracted with CH₂Cl₂ (3 × 3.0 mL). The combined organic phases were dried over

anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography using a mixture of hexane and ethyl acetate (3/1) to provide product **3a** (44.0 mg, 92%, 99% ee).

5.2 HRMS study

An oven-dried screw-capped pressure tube (25.0 mL) equipped with a magnetic stirrer bar was charged with 2-methylquinoxaline (13) (28.8 mg, 0.2 mmol), Ag₃PO₄ (1.7 mg, 0.004 mmol), (R,R)-C3 (1.4 mg, 0.002 mmol), HCO₂H/Et₃N (5/2) (207.6 mg, 2.4 mmol, 0.2 mL) and THF (1.0 mL) under N₂ atmosphere in a glove box. The reaction mixture was stirred vigorously at room temperature for 16 h. The solvent was then removed under reduced pressure, and the residue was basified with the saturated aqueous NaHCO₃ (2.0 mL) and extracted with CH₂Cl₂ (3 × 3.0 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and

concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography using a mixture of hexane and ethyl acetate (3/1) to provide product **14** (26.7 mg, 90% ee).

(S)-2-methyl-1,2,3,4-tetrahydroquinoxaline (14)³

Pale yellow oil, 26.7 mg, isolated yield 90%; $[\alpha]_D^{20} = -30.4$ (c = 1.0, CHCl₃); enantiomeric excess: 90%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} = 10.322 min (minor), t_{R2} = 12.092 min (major); ¹H NMR (400 MHz, CDCl₃) δ 6.60 (dd, J = 5.8, 3.4 Hz, 2H), 6.51 (dt, J = 5.8, 3.6 Hz, 2H), 3.71 – 3.43 (m, 3H), 3.32 (dd, J = 10.7, 2.9 Hz, 1H), 3.04 (dd, J = 10.7, 8.2 Hz, 1H), 1.19 (d, J = 6.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 133.67, 133.29, 118.80, 114.58, 114.53, 48.36, 45.82, 20.01 (one carbon was not detected due to overlap of resonances); HRMS (ESI) calcd. for C₉H₁₃N₂ [M+H]⁺: 149.1073, found: 149.1075.

5.4 Verification of 3,4-dihydroquinoxalin-2(1H)-one configuration

To a 25 mL round-bottom flask in an ice-water bath was sequentially add **7a** (0.2 mmol, 50.7 mg), dry THF (10.0 mL) and LiAlH₄ (0.5 mmol, 19.0 mg). The reaction mixture was then vigorously stirred and heated at 90°C for 16 hours. After cooling to room temperature, the excess LiAlH₄ was quenched with sat. aq. NH₄Cl. The resulting hydroxide precipitate was filtered, and the filtrate was dried over anhydrous sodium sulfate and concentrated under vacuum. The crude residue was purified by silica gel column chromatography using a mixture of hexane and ethyl acetate (3/1) to provide product **3a** (82%, 39.2 mg, 67% ee). The structure of the product was determined to be (*S*) configuration through HPLC analysis.

peak	Ret. Time	Area%	Area
1	43.088	16.58	6885339
2	47.793	83.42	34630701

6. Analytic data of products

(S)-N-((1,2,3,4-Tetrahydroquinoxalin-2-yl)methyl)aniline (3a)

Pale yellow oil, 43.5 mg, isolated yield 91%; $[\alpha]_D^{20} = -85.6$ (*c* = 1.0, CHCl₃); enantiomeric excess: 99%; HPLC (AD-H elute: hexane/isopropanol = 90/10, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} = 49.357 min (minor),

 t_{R2} = 53.587 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.15 (m, 2H), 6.74 (td, J = 7.3, 1.1 Hz, 1H), 6.69 – 6.58 (m, 4H), 6.54 (qt, J = 5.3, 2.7 Hz, 2H), 4.04 – 3.56 (m, 4H), 3.42 (dd, J = 10.9, 3.1 Hz, 1H), 3.35 – 3.21 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 148.25, 133.40, 132.93, 129.49, 119.17, 118.95, 117.93, 114.93, 114.68, 113.09,

49.69, 47.60, 44.16; HRMS (ESI) calcd. for C₁₅H₁₈N₃ [M+H]⁺: 240.1495, found: 240.1499.

(S)-4-Methyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3b)

Pale yellow oil, 48.6 mg, isolated yield 96%; $[\alpha]_D^{20} = -$ 84.8 (*c* = 1.0, CHCl₃); enantiomeric excess: 98%; HPLC (OD-H elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =

41.170 min (minor), $t_{R2} = 57.908$ min (major); ¹H NMR (400 MHz, CDCl₃) δ 6.97 – 6.87 (m, 2H), 6.56 – 6.48 (m, 4H), 6.44 (ddt, J = 6.6, 2.8, 1.6 Hz, 2H), 3.98 – 3.42 (m, 4H), 3.32 (dd, J = 10.8, 3.1 Hz, 1H), 3.24 – 3.08 (m, 3H), 2.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.96, 133.41, 132.98, 129.97, 127.18, 119.13, 118.90, 114.88, 114.65, 113.25, 49.72, 47.96, 44.22, 20.50; HRMS (ESI) calcd. for C₂₂H₂₄N₃ [M+H]⁺: 254.1652, found: 254.1656.

(S)-4-Ethyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3c)

Pale yellow oil, 50.8 mg, isolated yield 95%; $[\alpha]_D{}^{20} = -$ 89.8 (c = 1.0, CHCl₃); enantiomeric excess; 93%; HPLC (OD-H, elute: hexane/isopropanol = 70/30, flowing rate = 1.0 mL/min, 25 °C, UV detection at $\lambda =$

254 nm), $t_{R1} = 20.244$ min (minor), $t_{R2} = 28.931$ min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.08 – 7.04 (m, 2H), 6.64 (dt, J = 6.5, 2.5 Hz, 4H), 6.55 (dtd, J = 6.6, 3.2, 1.5 Hz, 2H), 3.91 – 3.43 (m, 4H), 3.41 (dd, J = 10.8, 3.1 Hz, 1H), 3.32 – 3.19 (m, 3H), 2.58 (q, J = 7.6 Hz, 2H), 1.23 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.14, 133.82, 133.39, 132.97, 128.76, 119.09, 118.86, 114.86, 114.63, 113.22, 49.67, 47.89, 44.19, 28.01, 16.09; HRMS (ESI) calcd. for C₁₇H₂₂N₃ [M+H]⁺: 268.1808, found: 268.1810.

(S)-4-Isopropyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3d)

Pale yellow oil, 49.5 mg, isolated yield 88%. $[\alpha]_D{}^{20} = -$ 84.1 (c = 1.0, CHCl₃); enantiomeric excess: 93%; HPLC (AD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} = 13.1 min (minor), t_{R2} = 15.1 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.04 (m, 2H), 6.67 – 6.58 (m, 4H), 6.57 – 6.50 (m, 2H), 4.03 – 3.57 (m, 4H), 3.42 (dd, J = 10.8, 3.1 Hz, 1H), 3.35 – 3.18 (m, 3H), 2.84 (p, J = 6.9 Hz, 1H), 1.24 (d, J = 6.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 146.22, 138.53, 133.41, 132.98, 127.33, 119.11, 118.88, 114.87, 114.63, 113.14, 49.67, 47.88, 44.22, 33.28, 24.37; HRMS (ESI) calcd. for C₁₈H₂₄N₃ [M+H]⁺: 282.1965, found: 282.1966

(S)-4-(*tert*-Butyl)-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3e)

Pale yellow oil, 56.1 mg, isolated yield 95%, 95% ee. $[\alpha]_D^{20} = -88.3$ (c = 1.0, CHCl₃); enantiomeric excess: 95%; HPLC (OJ-H, elute: hexane/isopropanol = 60/40, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda =$

254 nm), t_{R1} =85.043 min (major), t_{R2} = 135.878 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 2H), 6.65 – 6.59 (m, 4H), 6.55 – 6.50 (m, 2H), 3.72 – 3.66 (m, 1H), 3.42 (dd, *J* = 10.8, 3.1 Hz, 1H), 3.33 – 3.19 (m, 3H), 1.29 (s, 9H) (three active hydrogens were not detected); ¹³C NMR (101 MHz, CDCl₃) δ 145.83, 140.82, 133.41, 132.98, 126.27, 119.16, 118.93, 114.91, 114.68, 112.86, 49.69, 47.85, 44.24, 34.01, 31.66; HRMS (ESI) calcd. for C₁₉H₂₆N₃⁺ [M+H]⁺: 296.2121, found: 296.2123.

(S)-4-Benzyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3f)

Pale yellow oil, 56.6 mg, isolated yield 86%; $[\alpha]_D^{20} =$ -92.7 (*c* = 1.0, CHCl₃); enantiomeric excess: 94%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda =$

254 nm), $t_{R1} = 38.308$ min (minor), $t_{R2} = 62.957$ min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 2H), 7.22 (dt, J = 7.9, 1.5 Hz, 3H), 7.08 – 7.02 (m, 2H), 6.66 – 6.59 (m, 4H), 6.57 – 6.51 (m, 2H), 4.07 – 3.59 (m, 6H), 3.40 (dd, J = 10.8, 3.1 Hz, 1H), 3.32 – 3.18 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.48, 142.06, 133.38, 132.92, 130.53, 129.92, 128.88, 128.47, 125.94, 119.10, 118.89, 114.87, 114.63, 113.23, 49.62, 47.75, 44.13, 41.11; HRMS (ESI) calcd. for C₂₂H₂₄N₃ [M+H]⁺: 330.1965, found:

330.1967.

(S)-N-((1,2,3,4-Tetrahydroquinoxalin-2-yl)methyl)-[1,1'-biphenyl]-4-amine (3g)

Pale yellow oil, 53.0 mg, isolated yield 84%; $[\alpha]_D{}^{20} = -$ 91.2 (c = 1.0, CHCl₃); enantiomeric excess: 93%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate = 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =

21.7 min (major), $t_{R2} = 34.8$ min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.58 (m, 2H), 7.51 – 7.43 (m, 4H), 7.34 – 7.30 (m, 1H), 6.76 – 6.73 (m, 2H), 6.69 – 6.65 (m, 2H), 6.58 – 6.55 (m, 2H), 4.04 – 3.54 (m, 4H), 3.43 – 3.21 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 147.62, 141.16, 133.35, 132.84, 130.68, 128.78, 128.08, 126.37, 126.26, 119.13, 118.91, 114.89, 114.66, 113.28, 49.59, 47.48, 44.00; HRMS (ESI) calcd. for $C_{21}H_{22}N_3$ [M+H]⁺: 316.1808, found: 316.1806.

(S)-4-Methoxy-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3h)

White solid, m.p. 46.7-48.9 °C, 50.1 mg, isolated yield 93%; $[\alpha]_D^{20} = -84.8$ (c = 1.0, CHCl₃); enantiomeric excess: 96%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate = 1.0 mL/min, 25 °C, UV

detection at $\lambda = 254$ nm), t_{R1} = 52.990min (minor), t_{R2} = 75.188 min (major); ¹H NMR (400 MHz, CDCl₃) δ 6.82 – 6.78 (m, 2H), 6.65 – 6.58 (m, 4H), 6.53 (dt, *J* = 6.9, 2.6 Hz, 2H), 3.98 - 3.53 (m, 7H), 3.41 (dd, *J* = 10.8, 3.1 Hz, 1H), 3.29 – 3.16 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.52, 142.44, 133.42, 132.99, 119.13, 118.91, 115.11, 114.88, 114.66, 114.44, 55.96, 49.83, 48.61, 44.28; HRMS (ESI) calcd. for C₁₆H₂₀N₃O[M+H]⁺: 270.1601, found: 270.1597.

(*S*)-N-((1,2,3,4-Tetrahydroquinoxalin-2-yl)methyl)-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)aniline (3i)

Yellow solid, m.p. 56.4-58.6 °C, 64.1 mg, isolated yield 88%; $[\alpha]_D{}^{20} = -84.8$ (*c* = 1.0, CHCl₃); enantiomeric excess: >99%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate = 1.0 mL/min, 25 °C, UV detection at λ = 254 nm), t_{R1} = 32.793min (minor major), t_{R2} =47.341 min (major); ¹H NMR (600 MHz, CDCl₃) δ 7.67 – 7.65 (m, 2H), 6.63 – 6.61 (m, 4H), 6.54 – 6.52 (m, 2H), 4.21 – 3.55 (m, 4H), 3.43 – 3.21 (m, 4H), 1.34 (s, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 150.74, 136.54, 133.30, 132.78, 119.15, 118.91, 114.90, 114.65, 112.04, 83.37, 49.51, 46.96, 43.88, 24.95; HRMS (ESI) calcd. for C₂₁H₂₉BN₃O₂ [M+H]⁺: 365.2275, found: 365.2280.

(S)-4-Fluoro-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3j)

Pale yellow oil, 47.8 mg, isolated yield 93%, 93% ee. $[\alpha]_D^{20} = -79.7 (c = 1.0, CHCl_3);$ enantiomeric excess: 93%; HPLC (AD-H, elute: hexane/isopropanol = 80/20, flowing rate = 1.0 mL/min, 25 °C, UV detection at λ =

254 nm), $t_{R1} = 18.978$ min (minor), $t_{R2} = 22.378$ min (major); ¹H NMR (600 MHz, CDCl₃) δ 6.92 – 6.88 (m, 2H), 6.64 – 6.57 (m, 4H), 6.55 – 6.53 (m, 2H), 4.17-3.52 (m, 4H), 3.41 (dd, J = 10.8, 3.1 Hz, 1H), 3.28 – 3.25 (m, 2H), 3.20 (dd, J = 12.8, 7.3 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 156.11 (d, J = 235.4 Hz), 144.61, 133.39, 132,85, 119.19, 119.01, 115.95, 115.80, 114.83 (d, J = 36.6 Hz), 113.94 (d, J = 7.5 Hz), 49.71, 48.27, 44.12; HRMS (ESI) calcd. for C₁₅H₁₇FN₃ [M+H]⁺: 258.1401, found: 258.1401.

(S)-4-Chloro-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3k)

Pale yellow oil, 49.7 mg, isolated yield 91%; $[\alpha]_D^{20} = -$ 82.7 (*c* = 1.0, CHCl₃); enantiomeric excess: 95%; HPLC (OD-H, elute: hexane/isopropanol = 90/10, flowing rate = 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =

82.808 min (minor), $t_{R2} = 115.401$ min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.15 – 7.11 (m, 2H), 6.65 – 6.60 (m, 2H), 6.59 – 6.52 (m, 4H), 4.20 – 3.68 (m, 4H), 3.40 (dd, J = 10.9, 3.1 Hz, 1H), 3.30 – 3.18 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.83, 133.34, 132.75, 129.26, 122.41, 119.23, 119.05, 114.97, 114.73, 114.13, 49.61, 47.67, 43.98; HRMS (ESI) calcd. for C₁₅H₁₇ClN₃[M+H]⁺: 274.1106, found: 274.1104, 276.1074.

(S)-4-Bromo-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (31)

Pale yellow oil, 57.9 mg, isolated yield 91%; $[\alpha]_D^{20} = -$ 78.7 (*c* = 1.0, CHCl₃); enantiomeric excess: 98%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate = 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =

22.4 min (minor), $t_{R2} = 31.4$ min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.27 (s, 1H), 7.25 (d, J = 2.2 Hz, 1H), 6.65 – 6.59 (m, 2H), 6.56 – 6.49 (m, 4H), 4.23 – 3.52 (m, 4H), 3.40 (dd, J = 10.9, 3.1 Hz, 1H), 3.32 – 3.18 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.26, 133.33, 132.73, 132.14, 119.27, 119.08, 115.00, 114.75, 114.64, 109.44, 49.60, 47.58, 43.97; HRMS (ESI) calcd. for C₁₅H₁₇BrN₃[M+H]⁺: 318.0600, found: 318.0603, 320.0583.

(S)-N-((1,2,3,4-Tetrahydroquinoxalin-2-yl)methyl)-4-(trifluoromethyl)aniline (3m)

Pale yellow oil,50.4 mg, isolated yield 82%; $[\alpha]_D^{20} = -$ 72.6 (c = 1.0, CHCl₃); enantiomeric excess: 99%; HPLC (OD-H, elute: hexane/isopropanol = 90/10, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda =$

254 nm), $t_{R1} = 72.338$ min (minor), $t_{R2} = 109.730$ min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.6 Hz, 2H), 6.64 (dt, J = 7.7, 2.6 Hz, 4H), 6.57 – 6.53 (m, 2H), 4.35 (s, 1H), 3.98 – 3.46 (m, 3H), 3.42 – 3.24 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 150.73, 133.30, 132.62, 126.78 (q, J = 3.8 Hz), 125.04 (q, J = 270.2 Hz), 119.27, 119.20 (q, J = 32.6 Hz), 119.09, 115.00, 114.75, 112.11, 49.47, 47.01, 43.76; HRMS (ESI) calcd. for C₁₆H₁₇F₃N₃ [M+H]⁺: 308.1369, found: 308.1368.

Methyl (S)-4-(((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)amino)benzoate (3n)

Pale yellow oil,48.1 mg, isolated yield 81%; $[\alpha]_D^{20} =$ -75,4 (*c* = 1.0, CHCl₃); enantiomeric excess: >99%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda =$

254 nm), $t_{R1} = 63.089$ min (minor), $t_{R2} = 90.132$ min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.82 (m, 2H), 6.67 – 6.49 (m, 6H), 4.45 (s, 1H), 3.86 (s, 6H), 3.47 –

3.21 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 167.36, 152.01, 133.25, 132.60, 131.72, 119.32, 119.10, 118.86, 115.02, 114.77, 111.77, 51.71, 49.49, 46.90, 43.75; HRMS (ESI) calcd. for C₁₇H₂₀N₃O₂ [M+H]⁺: 298.1550, found: 298.1553.

(S)-4-(((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)amino)benzonitrile (30)

Pale yellow oil, 48.6 mg, isolated yield 92%; $[\alpha]_D{}^{20} = -$ 75.6 (*c* = 1.0, CHCl₃); enantiomeric excess: 99%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =

59.066 min (minor), $t_{R2} = 84.434$ min (major); ¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.36 (m, 2H), 6.63 (dt, J = 7.7, 3.8 Hz, 2H), 6.61 – 6.57 (m, 2H), 6.55 (dq, J = 6.2, 3.7 Hz, 2H), 4.68 (d, J = 6.1 Hz, 1H), 3.83 (d, J = 159.5 Hz, 3H), 3.41 – 3.24 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 151.47, 133.85, 133.18, 132.45, 120.53, 119.36, 119.14, 115.04, 114.80, 112.48, 99.04, 49.38, 46.73, 43.58; HRMS (ESI) calcd. for C₁₆H₁₇N₄ [M+H]⁺: 265.1448, found: 265.1451.

(S)-2-Methyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3p)

Pale yellow oil, 42.0 mg, isolated yield 83%; $[\alpha]_D^{20} = -78.4$ (*c* = 1.0, CHCl₃); enantiomeric excess: 95%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate = 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =50.565

min (minor), $t_{R2} = 67.338$ min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.21 (td, J = 7.7, 1.6 Hz, 1H), 7.15 (dd, J = 7.3, 1.6 Hz, 1H), 6.80 – 6.67 (m, 4H), 6.62 – 6.55 (m, 2H), 4.04 – 3.62 (m, 4H), 3.48 – 3.28 (m, 4H), 2.22 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.05, 133.35, 132.90, 130.30, 127.23, 122.24, 119.02, 118.82, 117.36, 114.84, 114.58, 109.84, 49.35, 47.43, 44.09, 17.62; HRMS (ESI) calcd. for C₁₆H₂₀N₃ [M+H]⁺: 254.1652, found: 254.1648.

(S)-2-Isopropyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3q)

Pale yellow oil, 45.0 mg, isolated yield 80%; $[\alpha]_D^{20} = -76.5$ (c = 1.0, CHCl₃); enantiomeric excess: 96%; HPLC (AD-H, elute: hexane/isopropanol = 80/20, flowing rate = 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} = 10.562 min (major), t_{R2} = 11.991 min (minor); ¹H NMR (600 MHz, CDCl₃) δ 7.15 (dd, J = 7.7, 1.6 Hz, 1H), 7.10 (td, J = 7.7, 1.6 Hz, 1H), 6.75 (td, J = 7.4, 1.2 Hz, 1H), 6.66 (dd, J = 8.1, 1.2 Hz, 1H), 6.62 – 6.57 (m, 2H), 6.51 – 6.48 (m, 2H), 4.05 (d, J = 5.8 Hz, 1H), 3.84 (s, 1H), 3.70 (qd, J = 6.3, 3.1 Hz, 1H), 3.60 (s, 1H), 3.38 – 3.22 (m, 4H), 2.84 (p, J = 6.8 Hz, 1H), 1.24 (dd, J = 6.8, 1.1 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 144.78, 133.36, 132.91, 132.53, 126.82, 125.16, 119.05, 118.89, 117.75, 114.93, 114.63, 110.59, 49.36, 47.67, 44.16, 27.33, 22.40; HRMS (ESI) calcd. for C₁₈H₂₄N₃ [M+H]⁺: 282.1965, found: 282.1962.

(S)-2-Fluoro-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3r)

Pale yellow oil, 43.2 mg, isolated yield 84%; $[\alpha]_D^{20} = -86.3$ (*c* = 1.0, CHCl₃); enantiomeric excess: 93%; HPLC (AD-H, elute: hexane/isopropanol = 80/20, flowing rate = 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =13.058

min (major), $t_{R2} = 18.106$ min (minor); ¹H NMR (600 MHz, CDCl₃) δ 7.05 – 7.01 (m, 2H), 6.78 (td, J = 8.3, 1.5 Hz, 1H), 6.71 – 6.64 (m, 3H), 6.57 – 6.55 (m, 2H), 4.26 – 4.20 (m, 1H), 3.96 (s, 1H), 3.71 – 3.68 (m, 2H), 3.42 (dd, J = 10.9, 3.1 Hz, 1H), 3.34 (dt, J = 13.1, 5.4 Hz, 1H), 3.30 – 3.25 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 151.68 (d, J = 238.3 Hz), 136.63 (d, J = 11.5 Hz), 133.31, 132.74, 124.72 (d, J = 3.7 Hz), 119.13, 118.88, 117.09 (d, J = 7.0 Hz), 114.90, 114.64 (d, J = 18.4 Hz), 114.63, 112.28 (d, J = 3.0 Hz), 49.62, 47.10, 43.89; HRMS (ESI) calcd. for C₁₅H₁₇FN₃ [M+H]⁺: 258.1401, found: 258.1406.

(S)-2-Methyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3s)

Pale yellow oil, 44.1 mg, isolated yield 87%; $[\alpha]_D^{20} = -55.2$ (c = 1.0, CHCl₃); enantiomeric excess: 95%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate: 0.7 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =

51.6 min (minor), $t_{R2} = 67.9$ min (major); ¹H NMR (600 MHz, CDCl₃) δ 7.14 (td, J = 7.3, 1.3 Hz, 1H), 6.69 – 6.66 (m, 2H), 6.63 (d, J = 7.4 Hz, 1H), 6.57 (dt, J = 7.0, 2.5 Hz, 2H), 6.52 (d, J = 7.3 Hz, 2H), 3.96-3.92 (m, 2H), 3.71-3.67 (m, 2H), 3.41 (dd, J = 10.9,

3.1 Hz, 1H), 3.32-3.22 (m, 3H), 2.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 148.21, 139.20, 133.34, 132.90, 129.27, 119.03, 118.81, 118.72, 114.83, 114.59, 113.76, 110.16, 49.55, 47.46, 44.07, 21.70; HRMS (ESI) calcd. for C₁₆H₂₀N₃ [M+H]⁺: 254.1652, found: 254.1651.

(S)-3,5-Dimethyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3t)

Pale yellow oil, 50.8 mg, isolated yield 95%; $[\alpha]_D^{20} = -$ 81.7 (*c* = 1.0, CHCl₃); enantiomeric excess: 94%; HPLC (AD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =

16.685 min (minor), $t_{R2} = 18.233$ min (major) ¹H NMR (600 MHz, CDCl₃) δ 6.66 – 6.62 (m, 2H), 6.55 (ddt, J = 6.5, 5.7, 2.9 Hz, 2H), 6.44 (s, 1H), 6.32 (d, J = 1.6 Hz, 2H), 4.06 – 3.54 (m, 4H), 3.42 (dd, J = 10.8, 3.1 Hz, 1H), 3.33 – 3.21 (m, 3H), 2.28 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 148.29, 139.14, 133.38, 132.95, 119.87, 119.09, 118.86, 114.88, 114.62, 110.99, 49.63, 47.55, 44.17, 21.60; HRMS (ESI) calcd. for C₁₇H₂₂N₃ [M+H]⁺: 268.1808, found: 268.1805.

(S)-3,5-Dimethoxy-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3u)

Pale yellow oil, 47.9 mg, isolated yield 80%; $[\alpha]_D{}^{20} =$ -85.8 (c = 1.0, CHCl₃); enantiomeric excess: 96%; HPLC (AD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda =$

254 nm), $t_{R1} = 16.7 \text{ min} (\text{minor})$, $t_{R2} = 18.2 \text{ min} (\text{major})$; ¹H NMR (600 MHz, CDCl₃) $\delta 6.64 - 6.61 (\text{m}, 2\text{H})$, 6.53 (dt, J = 7.0, 2.5 Hz, 2H), 5.92 (t, J = 2.2 Hz, 1H), 5.85 (d, J = 2.1 Hz, 2H), 4.09 - 3.65 (m, 3H), 3.76 (s, 6H), 3.67 (tdd, J = 6.6, 5.2, 3.1 Hz, 1H), 3.38 (dd, J = 10.9, 3.1 Hz, 1H), 3.29 - 3.18 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 161.88, 150.18, 133.35, 132.87, 119.09, 118.86, 114.86, 114.63, 91.88, 90.04, 55.27, 49.53, 47.47, 43.95; HRMS (ESI) calcd. for C₁₇H₂₂N₃O₂ [M+H]⁺: 300.1707, found: 300.1705.

(S)-3,5-Dimethoxy-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3v)

Pale yellow oil, 69.0 mg, isolated yield 92%; $[\alpha]_D^{20} = -$ 85.8 (c = 1.0, CHCl₃); enantiomeric excess: 99%; HPLC (OJ-H, elute: hexane/isopropanol = 60/40, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda =$

254 nm), $t_{R1} = 12.938$ min (major), $t_{R2} = 18.399$ min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.17 (s, 1H), 6.97 (d, J = 1.6 Hz, 2H), 6.66 (dd, J = 5.8, 3.4 Hz, 2H), 6.59 – 6.53 (m, 2H), 4.55 (t, J = 5.8 Hz, 1H), 3.94 – 3.54 (m, 3H), 3.44 – 3.26 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 148.96, 133.24, 132.61 (q, J = 32.7 Hz), 132.44, 123.66 (q, J = 272.7 Hz), 119.49, 119.30, 115.19, 114.91, 112.15 (d, J = 4.4 Hz), 110.60(m), 49.45, 47.22, 43.62; HRMS (ESI) calcd. for C₁₇H₁₆F₆N₃ [M+H]⁺: 376.1243, found: 376.1245. **(S)-3,5-Dimethoxy-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3w)**

Pale yellow oil, 44.4 mg, isolated yield 83%; $[\alpha]_D^{20} = -$ 80.7 (*c* = 1.0, CHCl₃); enantiomeric excess: 95%; HPLC (AD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =

11.775 min (major), $t_{R2} = 12.872$ min (minor); ¹H NMR (400 MHz, CDCl₃) δ 6.99 – 6.95 (m, 2H), 6.66 – 6.61 (m, 3H), 6.57 – 6.54 (m, 2H), 4.05 – 3.52 (m, 4H), 3.45 (dd, J = 10.9, 3.1 Hz, 1H), 3.39 – 3.26 (m, 3H), 2.28 (s, 3H), 2.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.78, 133.40, 132.99, 131.24, 127.48, 126.63, 122.46, 119.08, 118.86, 114.88, 114.63, 110.17, 49.49, 47.79, 44.23, 20.42, 17.61; HRMS (ESI) calcd. for $C_{17}H_{22}N_3$ [M+H]⁺: 268.1808, found: 268.1812.

(S)-2,6-Dimethyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3x)

Pale yellow oil, 48.6 mg, isolated yield 91%; $[\alpha]_D^{20} = -75.8$ (*c* = 1.0, CHCl₃); enantiomeric excess: 99%; HPLC (AD-H, elute: hexane/isopropanol = 90/10, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} = 19.768 min (minor),

 $t_{R2} = 21.784 \text{ min (major)};^{1}\text{H NMR (400 MHz, CDCl_3)} \delta 6.91 (d, J = 7.5 Hz, 2H), 6.76 (t, J = 7.5 Hz, 1H), 6.56 - 6.49 (m, 2H), 6.48 - 6.39 (m, 2H), 3.78 - 3.48 (m, 4H), 3.29 (dd, J = 10.8, 3.1 Hz, 1H), 3.14 (dd, J = 10.8, 6.8 Hz, 1H), 3.05 - 2.92 (m, 2H), 2.21 (s, J = 10.8, 10.8) (m, 2H) (m, 2H)$

6H); ¹³C NMR (101 MHz, CDCl₃) δ 145.68, 133.46, 133.02, 129.78, 129.07, 122.41, 119.05, 118.88, 114.94, 114.61, 51.55, 51.14, 44.39, 18.63; HRMS (ESI) calcd. for C₁₇H₂₂N₃ [M+H]⁺: 268.1808, found: 268.1805.

(R)-2,6-Dimethoxy-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3y)

Pale yellow oil, 55.6 mg, isolated yield 93%; $[\alpha]_D{}^{20} = -78.9$ (*c* = 1.0, CHCl₃); enantiomeric excess: 92%; HPLC (AD-H, elute: hexane/isopropanol = 90/10, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} = 19.768

min (minor), $t_{R2} = 21.784$ min (major); ¹H NMR (400 MHz, CDCl₃) δ 6.85 (t, J = 8.3 Hz, 1H), 6.64 – 6.54 (m, 4H), 6.52-6.49 (m, 2H), 4.40 - 4.91 (m, 2H), 3.87 (s, 6H), 3.71 (s, br, 1H), 3.48 – 3.34 (m, 3H), 3.28 – 3.12 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 151.32, 133.47, 133.44, 126.17, 120.64, 118.89, 118.47, 114.60, 114.49, 104.77, 55.97, 50.09, 50.00, 44.29; HRMS (ESI) calcd. for C₁₇H₂₂N₃O₂ [M+H]+: 300.1707, found: 300.1710.

(S)-2,6-Diisopropyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3z)

Pale yellow oil, 51.1 mg, isolated yield 79%; $[\alpha]_D{}^{20} = -86.9$ (*c* = 1.0, CHCl₃); enantiomeric excess: 91%; HPLC (AD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} = 5.64 min (major),

 t_{R2} = 4.63 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.12 (m, 3H), 6.70 – 6.60 (m, 3H), 6.56 – 6.54 (m, 1H), 3.72 – 3.66 (m, 1H), 3.48 (dd, *J* = 10.8, 3.1 Hz, 1H), 3.35 – 3.26 (m, 3H), 3.08 – 2.96 (m, 2H), 1.29 (d, *J* = 6.9 Hz, 6H), 1.24 (d, *J* = 6.9 Hz, 6H) (three active hydrogens were not detected due to overlap); ¹³C NMR (101 MHz, CDCl₃) δ 142.89, 142.79, 133.49, 133.00, 124.32, 123.72, 119.08, 118.95, 115.05, 114.66, 54.90, 51.06, 44.56, 27.73, 24.43, 24.20; HRMS (ESI) calcd. for C₂₁H₃₀N₃ [M+H]⁺: 324.2434, found: 324.2434.

(S)-2,4,6-Trimethyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3aa)

Pale yellow oil, 50.6 mg, isolated yield 90%; $[\alpha]_D^{20} = -$ 83.2 (*c* = 1.0, CHCl₃); enantiomeric excess: 97%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =

25.481 min (major), $t_{R2} = 27.658$ min (minor); ¹H NMR (600 MHz, CDCl₃) δ 6.91 (s, 2H), 6.70 – 6.66 (m, 2H), 6.61 – 6.60 (m, 1H), 6.58 – 6.55 (m, 1H), 4.17 (s, br, 1H), 3.66 – 3.61 (m, 1H), 3.43 (dd, J = 10.8, 3.1 Hz, 1H), 3.28 (dd, J = 10.8, 6.9 Hz, 1H), 3.12 – 3.03 (m, 2H), 2.34 (s, 6H), 2.31 (s, 3H), (two active hydrogens were not detected); ¹³C NMR (151 MHz, CDCl₃) δ 143.01, 133.44, 133.05, 131.82, 130.08, 129.60, 118.93, 118.76, 114.83, 114.53, 51.80, 51.05, 44.43, 20.63, 18.38; HRMS (ESI) calcd. for C₁₈H₂₄N₃ [M+H]⁺: 282.1965, found: 282.1969.

(S)-3,4,5-Trimethoxy-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3ab)

Pale yellow oil, 62.5 mg, isolated yield 95%; $[\alpha]_D^{20} =$ -84.6 (*c* = 1.0, CHCl₃); enantiomeric excess: >99%; HPLC (OD-H, elute: hexane/isopropanol = 60/40, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda =$

254 nm), t_{R1} =27.638 min (minor), t_{R2} = 43.175 min (major); ¹H NMR (400 MHz, CDCl₃) δ 6.64 – 6.58 (m, 2H), 6.57 – 6.49 (m, 2H), 5.89 (s, 2H), 4.01- 3.74(m, 12H), 3.70 – 3.64 (m, 1H), 3.41 (dd, J = 10.8, 3.1 Hz, 1H), 3.32 – 3.18 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.09, 145.15, 133.34, 132.84, 130.40, 119.17, 118.93, 114.91, 114.66, 90.67, 61.19, 56.06, 49.99, 48.05, 44.02; HRMS (ESI) calcd. for C₁₈H₂₄N₃O₃ [M+H]⁺: 330.1812, found: 330.1816.

(S)-2,4,6-Triisopropyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3ac)

Pale yellow oil, 51.1 mg, isolated yield 79%; $[\alpha]_D^{20} = -$ 82.1 (c = 1.0, CHCl₃); enantiomeric excess: 82%; HPLC (AD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda =$

254 nm), $t_{R1} = 5.996 \text{ min (major)}$, $t_{R2} = 8.270 \text{ min (minor)}$; ¹H NMR (400 MHz, CDCl₃) δ 6.96 (s, 2H), 6.64 – 6.58 (m, 3H), 6.54 – 6.52 (m, 1H), 4.04 – 3.04 (m, 9H), 3.02 (dd, J = 11.9, 4.4 Hz, 1H), 2.95 – 2.85 (m, 2H), 1.26 (dd, J = 6.9, 2.8 Hz, 12H), 1.21 (d, J = 6.9 Hz, 6H).; ¹³C NMR (101 MHz, CDCl₃) δ 144.44, 142.78, 140.40, 133.55, 133.14, 121.62, 119.08, 118.91, 114.99, 114.65, 55.04, 51.13, 44.71, 34.10, 27.83, 24.54, 24.30, 24.28, 24.25; HRMS (ESI) calcd. for C₂₄H₃₆N₃ [M+H]⁺: 366.2904, found: 366.2908.

(S)-N-((1,2,3,4-Tetrahydroquinoxalin-2-yl)methyl)naphthalen-2-amine (3ad)

Pale yellow oil, 53.2 mg, isolated yield 92%, $[\alpha]_D^{20} = -$ 90.4 (c = 1.0, CHCl₃); enantiomeric excess: 92%; HPLC (hexane : isopropanol = 70 : 30, flowing rate = 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =19.899 min (major), t_{R2} = 22.135 min (minor); ¹H NMR (600 MHz,

CDCl₃) δ 7.73 (d, *J* = 8.1 Hz, 1H), 7.67 (dd, *J* = 12.8, 8.5 Hz, 2H), 7.43 (ddd, *J* = 8.1, 6.7, 1.3 Hz, 1H), 7.29 – 7.26 (m, 1H), 6.92 – 6.87 (m, 2H), 6.70 – 6.67 (m, 2H), 6.58 – 6.55 (m, 2H), 4.27 – 3.56 (m, 4H), 3.41 – 3.26 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 145.85, 135.17, 133.33, 132.85, 129.10, 127.73, 127.66, 126.53, 126.00, 122.24, 119.11, 118.90, 118.06, 114.91, 114.66, 104.62, 49.46, 47.42, 44.02; HRMS (ESI) calcd. for C₁₉H₂₀N₃ [M+H]⁺: 290.1652, found: 290.1658

(S)-N-((1,2,3,4-Tetrahydroquinoxalin-2-yl)methyl)naphthalen-1-amine (3ae)

Pale yellow oil, 53.8 mg, isolated yield 93%; $[\alpha]_D{}^{20} = -93.7$ (*c* = 1.0, CHCl₃); enantiomeric excess: 90%; HPLC (AD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} = 13.478 min (minor),

t_{R2} = 17.233 min (major); ¹H NMR (600 MHz, CDCl₃) δ 7.69 – 7.64 (m, 2H), 7.34 – 7.30 (m, 2H), 7.22 (tdt, J = 7.4, 3.5, 1.7 Hz, 1H), 7.14 (dt, J = 7.3, 2.7 Hz, 1H), 6.51 (tdd, J = 7.5, 4.7, 2.8 Hz, 3H), 6.39 (dd, J = 5.9, 3.4 Hz, 2H), 4.58 (t, J = 5.6 Hz, 1H), 3.75 (s, 1H), 3.63 (qq, J = 6.2, 3.1 Hz, 1H), 3.48 (s, 1H), 3.25 – 3.15 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 143.35, 134.38, 133.33, 132.95, 128.76, 126.62, 125.92, 124.91, 123.60, 120.02, 119.10, 118.90, 117.78, 114.96, 114.65, 104.57, 49.18, 47.62, 44.18; HRMS (ESI) calcd. for C₁₉H₂₀N₃ [M+H]⁺: 290.1652, found: 290.1654.

(S)-1,1-Diphenyl-N-((1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)methanamine (3af)

Pale yellow oil, 54.0 mg, isolated yield 82%; $[\alpha]_D^{20} = -$ 93.7 (c = 1.0, CHCl₃); enantiomeric excess: 90%; HPLC (AD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =

35.366 min (minor), $t_{R2} = 46.663$ min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.40 (m, 4H), 7.33 (td, J = 7.6, 3.1 Hz, 4H), 7.27 – 7.24 (m, 2H), 6.66 – 6.50 (m, 4H), 4.87 (s, 1H), 3.53 – 3.32 (m, 5H), 3.13 (dd, J = 10.7, 7.2 Hz, 1H), 2.77 (dd, J = 11.8, 4.5 Hz, 1H), 2.65 (dd, J = 11.8, 8.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.93, 143.50, 133.40, 133.28, 128.69, 128.65, 127.37, 127.32, 127.25, 119.05, 118.65, 114.71, 114.63, 67.49, 51.23, 50.33, 44.79; HRMS (ESI) calcd. for C₂₂H₂₄N₃ [M+H]⁺: 330.1965, found: 330.1968.

(S)-N-((6,7-Dimethyl-1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3ba)

Pale yellow oil, 49.2 mg, isolated yield 92%; $[\alpha]_D^{20} = -$ 87.3 (*c* = 1.0, CHCl₃); enantiomeric excess: 92%; HPLC (AD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =

22.263 min (major), $t_{R2} = 24.300$ min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.20 (m, 2H), 6.77 (tt, J = 7.3, 1.1 Hz, 1H), 6.71 – 6.65 (m, 2H), 6.38 (d, J = 1.8 Hz, 2H), 3.76 – 3.41 (m, 4H), 3.39 (dd, J = 10.9, 3.0 Hz, 1H), 3.33 – 3.21 (m, 3H), 2.15 (t, J = 1.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 148.26, 131.12, 130.65, 129.41, 126.94, 126.67, 117.75, 116.72, 116.49, 113.01, 49.85, 47.40, 44.43, 18.99, 18.98; HRMS (ESI) calcd. for C₁₇H₂₂N₃ [M+H]⁺: 268.1808, found: 268.1810.

(S)-N-((6,7-Difluoro-1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3ca)

Pale yellow oil, 47.9 mg, isolated yield 87%; $[\alpha]_D^{20} = -$ 78.5 (*c* = 1.0, CHCl₃); enantiomeric excess: 95%; HPLC (AD-H, elute: hexane/isopropanol = 80/10, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =

16.498 min (minor), $t_{R2} = 18.8$ min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.17 (m, 2H), 6.76 (tt, *J* = 7.3, 1.1 Hz, 1H), 6.68 – 6.65 (m, 2H), 6.31 (ddd, *J* = 11.5, 7.7, 1.7

Hz, 2H), 3.78 (s, br, 3H), 3.62 (dddd, J = 7.9, 6.5, 5.0, 3.1 Hz, 1H), 3.36 (dd, J = 11.0, 3.1 Hz, 1H), 3.29 (dd, J = 13.1, 5.0 Hz, 1H), 3.23 – 3.17 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 146.92, 143.26 (dd, J = 10.3, 5.4 Hz), 141.02 (dd, J = 11.6, 4.4 Hz), 128.38, 127.95 (dd, J = 7.8, 2.4 Hz), 127.50 (dd, J = 7.9, 2.5 Hz), 116.96, 111.94, 102.13 (d, J = 20.0 Hz), 101.87 (d, J = 20.6 Hz), 48.29, 46.19, 42.76; HRMS (ESI) calcd. for C₁₅H₁₆F₂N₃ [M+H]⁺: 276.1307, found: 276.1304.

(S)-N-((6,7-Dichloro-1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3da)

Pale yellow oil, 55.9 mg, isolated yield 91%; $[\alpha]_D^{20} = -$ 79.7 (c = 1.0, CHCl₃); enantiomeric excess: 94%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} =

31.657 min (major), $t_{R2} = 37.644$ min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.19 (m, 2H), 6.77 (tt, J = 7.3, 1.1 Hz, 1H), 6.66 (dt, J = 7.7, 1.1 Hz, 2H), 6.52 (d, J = 1.8 Hz, 2H), 4.04 (s, br, 1H), 3.89 (s, br, 1H), 3.71 (s, br, 1H), 3.63 – 3.57 (m, 1H), 3.36 (dd, J = 11.0, 3.1 Hz, 1H), 3.28 (dd, J = 13.2, 5.0 Hz, 1H), 3.18 (dt, J = 11.2, 5.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 147.95, 133.04, 132.55, 129.52, 120.60, 120.45, 118.12, 115.10, 114.80, 113.05, 49.16, 47.28, 43.48; HRMS (ESI) calcd. for C₁₅H₁₆Cl₂N₃ [M+H]⁺: 308.0716, found: 308.0718, 312.0660.

(S)-N-((6,7-Dibromo-1,2,3,4-tetrahydroquinoxalin-2-yl)methyl)aniline (3ea)

Pale yellow oil, 67.1 mg, isolated yield 85%; $[\alpha]_D^{20} = -$ 76.2 (c = 1.0, CHCl₃); enantiomeric excess: 87%; HPLC (AD-H, elute: hexane/isopropanol = 80/20, flowing rate:

1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} = 21.664 min (minor), t_{R2} = 23.526 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.18 (m, 2H), 6.77 (ddt, J = 8.4, 7.3, 1.1 Hz, 1H), 6.70 – 6.64 (m, 4H), 4.07 – 3.68 (m, 3H), 3.63 – 3.56 (m, 1H), 3.35 (dd, J = 11.0, 3.2 Hz, 1H), 3.28 (dd, J = 13.2, 5.0 Hz, 1H), 3.23 – 3.13 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 147.93, 133.84, 133.35, 129.53, 118.16, 118.09, 117.78, 113.07, 111.72, 111.56, 49.13, 47.30, 43.41; HRMS (ESI) calcd. for C₁₅H₁₆Br₂N₃ [M+H]⁺:

395.9705, found: 395.9708, 399.9662.

(S)-3-((Phenylamino)methyl)-3,4-dihydroquinoxalin-2(1H)-one (7a)

Pale yellow oil, 41.5 mg, isolated yield 82%; $[\alpha]_D{}^{20} = -67.3$ (*c* = 1.0, CHCl₃); enantiomeric excess: 74%; HPLC (OJ-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} = 29.4 min (major),

 $t_{R2} = 37.4 \text{ min (minor)}; {}^{1}\text{H NMR (400 MHz, CDCl_3)} \delta 8.28 (s, 1H), 7.22 - 7.16 (m, 2H), 6.91 (td,$ *J*= 7.5, 1.6 Hz, 1H), 6.80 - 6.67 (m, 6H), 4.23 (s, 1H), 4.21-4.17 (m, 1H), 4.11 (s, 1H), 3.68 (dd,*J*= 13.6, 4.4 Hz, 1H), 3.51 (dd,*J* $= 13.5, 8.2 Hz, 1H); {}^{13}\text{C NMR (101 MHz, CDCl_3)} \delta 167.59, 147.57, 132.84, 129.58, 125.18, 124.28, 119.85, 118.46, 115.53, 114.62, 113.35, 55.43, 45.78; HRMS (ESI) calcd. for C₁₅H₁₆N₃O [M+H]⁺: 254.1288, found: 254.1290.$

(S)-3-(((4-Isopropylphenyl)amino)methyl)-3,4-dihydroquinoxalin-2(1H)-one (7b)

Pale yellow oil, 47.2 mg, isolated yield 80%; $[\alpha]_D{}^{20} = -$ 67.3 (c = 1.0, CHCl₃); enantiomeric excess: 72%; HPLC (OJ-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda =$ 254 nm), t_{R1} = 23.872 min (major), t_{R2} = 37.258 min

(minor); ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 7.11 – 7.03 (m, 2H), 6.90 (ddd, *J* = 7.8, 5.2, 3.7 Hz, 1H), 6.76 (dd, *J* = 4.2, 1.0 Hz, 2H), 6.71 – 6.61 (m, 3H), 4.33 (s, 1H), 4.23 – 4.15 (m, 1H), 3.67 (dd, *J* = 13.5, 4.3 Hz, 1H), 3.49 (dd, *J* = 13.5, 8.3 Hz, 1H), 2.83 (hept, *J* = 6.8 Hz, 1H), 1.22 (d, *J* = 7.0 Hz, 6H) (one active hydrogen was not detected); ¹³C NMR (101 MHz, CDCl₃) δ 168.25, 145.54, 139.04, 132.86, 127.40, 125.23, 124.21, 119.71, 115.74, 114.51, 113.46, 55.34, 46.04, 33.28, 24.34; HRMS (ESI) calcd. for C₁₈H₂₂N₃O [M+H]⁺: 296.1757, found: 296.175

(S)-3-(((4-Methoxyphenyl)amino)methyl)-3,4-dihydroquinoxalin-2(1H)-one (7c)

Pale yellow oil, 48.3 mg, isolated yield 85%; $[\alpha]_D^{20} = -$ 70.2 (c = 1.0, CHCl₃); enantiomeric excess: 69%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda =$

254 nm), $t_{R1} = 17.802 \text{ min} (\text{minor})$, $t_{R2} = 22.677 \text{ min} (\text{major})$; ¹H NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 6.90 (ddd, J = 7.7, 6.3, 2.6 Hz, 1H), 6.82 – 6.73 (m, 4H), 6.70 – 6.63 (m, 3H), 4.30 (s, 1H), 4.17 (ddd, J = 8.2, 4.3, 1.7 Hz, 1H), 3.85 (s, 1H), 3.75 (s, 3H), 3.62 (dd, J = 13.3, 4.4 Hz, 1H), 3.45 (dd, J = 13.3, 8.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 168.07, 152.81, 141.67, 132.87, 125.22, 124.20, 119.71, 115.66, 115.12, 114.81, 114.50, 55.91, 55.43, 46.81; HRMS (ESI) calcd. for C₁₆H₁₈N₃O₂ [M+H]⁺: 284.1394, found: 284.1395.

(S)-3-((Mesitylamino)methyl)-3,4-dihydroquinoxalin-2(1H)-one (7d)

Colorless oil, 45.5 mg, isolated yield 77%, 46% ee. $[\alpha]_D^{20}$ = -55.4 (*c* = 1.0, CHCl₃); enantiomeric excess: 46%; HPLC (OJ-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at λ = 254 nm), t_{R1}

= 11.748 min (minor), t_{R2} = 13.783 min (major); ¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 6.91 (ddd, *J* = 7.8, 6.4, 2.5 Hz, 1H), 6.83 (s, 2H), 6.79 – 6.73 (m, 2H), 6.71 – 6.66 (m, 1H), 4.34 (s, 1H), 4.12 (ddd, *J* = 6.8, 4.5, 1.9 Hz, 1H), 3.53 – 3.05 (m, 3H), 2.28 (s, 6H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.28, 142.45, 133.06, 132.28, 130.49, 129.71, 125.33, 124.15, 119.73, 115.67, 114.55, 56.94, 49.83, 20.69, 18.40; HRMS (ESI) calcd. for C₁₈H₂₂N₃O [M+H]⁺: 296.1757, found: 296.1753

(S)-6,7-Difluoro-3-((phenylamino)methyl)-3,4-dihydroquinoxalin-2(1H)-one (7e)

Yellow solid, 48.6 mg, isolated yield 84%; $[\alpha]_D^{20} = -65.2$ (*c* = 1.0, CHCl₃); enantiomeric excess: 70%; HPLC (OD-H, elute: hexane/isopropanol = 80/20, flowing rate: 1.0 mL/min, 25 °C, UV detection at $\lambda = 254$ nm), t_{R1} = 15.111

min (major), $t_{R2} = 17.573$ min (minor); ¹H NMR (400 MHz, DMSO- d_6) δ 10.41 (s, 1H),

7.11 – 7.05 (m, 2H), 6.70 (td, J = 8.1, 3.6 Hz, 2H), 6.64 – 6.59 (m, 2H), 6.56 (tt, J = 7.3, 1.1 Hz, 1H), 6.28 (d, J = 2.0 Hz, 1H), 5.61 (t, J = 6.1 Hz, 1H), 3.96 (ddd, J = 7.4, 4.1, 1.9 Hz, 1H), 3.35 (s, 1H), 3.24 (dt, J = 13.6, 7.1 Hz, 1H); ¹³C NMR (101 MHz, DMSO- d_6) δ 166.69, 148.81, 145.23 (dd, J = 224.1, 12.7 Hz), 141.95 (dd, J = 220.4, 12.1 Hz), 130.97 (d, J = 6.8 Hz), 129.38, 122.27 (d, J = 6.3 Hz), 116.67, 112.79, 103.84 (d, J = 21.9 Hz), 102.35 (d, J = 21.9 Hz), 54.86, 45.27; HRMS (ESI) calcd. for C₁₅H₁₄F₂N₃O [M+H]⁺: 290.1099, found: 290.1095.

7. References

- Y. Chen, Y. -M. He, S. Zhang, T. Miao, and Q. -H. Fan, *Angew. Chem. Int. Ed.* 2019, 58, 3809 – 3813.
- 2. M. Koichi, M. Takashi, H. Manabu, Chem. Commun. 2004, 2082-2083.
- N. Arai, Y. Saruwatari, K. Isobe, Takeshi Ohkuma, *Adv. Synth. Catal.* 2013, 355, 2769–2774.

8. ¹H and ¹³C{¹H} NMR spectra of the products

 1H and $^{13}C\{^1H\}$ NMR spectra of compound $\bm{3a}$ in CDCl_3

¹H and ¹³C{¹H} NMR spectra of compound **3c** in CDCl₃

¹H and ¹³C{¹H} NMR spectra of compound **3d** in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound 3e in CDCl_3
1H and $^{13}C\{^1H\}$ NMR spectra of compound 3f in CDCl_3

¹H and ¹³C {¹H} NMR spectra of compound **3g** in CDCl₃

¹H and ¹³C{¹H} NMR spectra of compound 3g in CDCl₃

H N N H N N N

1H and $^{13}C\{^1H\}$ NMR spectra of compound 3i in CDCl_3

¹H and ¹³C{¹H} NMR spectra of compound **3j** in CDCl₃

¹H and ¹³C{¹H} NMR spectra of compound **3k** in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound $\boldsymbol{3m}$ in CDCl_3

 1H and $^{13}C\{^1H\}$ NMR spectra of compound **3n** in CDCl₃

¹H and ¹³C {¹H} NMR spectra of compound **3o** in CDCl₃

¹H and ¹³C{¹H} NMR spectra of compound **3p** in CDCl₃

¹H and ¹³C{¹H} NMR spectra of compound **3q** in CDCl₃

¹H and ¹³C{¹H} NMR spectra of compound **3r** in CDCl₃

¹H and ¹³C{¹H} NMR spectra of compound **3s** in CDCl₃

¹H and ¹³C{¹H} NMR spectra of compound **3t** in CDCl₃

¹H and ¹³C $\{^{1}H\}$ NMR spectra of compound **3u** in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound 3v in CDCl_3

¹H and ¹³C {¹H} NMR spectra of compound 3w in CDCl₃

¹H and ¹³C{¹H} NMR spectra of compound 3x in CDCl₃

¹H and ¹³C{¹H} NMR spectra of compound 3y in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound 3aa in CDCl_3

 1H and $^{13}C\{^1H\}$ NMR spectra of compound $\boldsymbol{3ab}$ in CDCl_3

1H and $^{13}C\{^1H\}$ NMR spectra of compound $\boldsymbol{3ac}$ in $CDCl_3$

- 404 - 404 - 404 - 405 - 400 - 405

¹H and ¹³C {¹H} NMR spectra of compound **3ad** in CDCl₃

¹H and ¹³C{¹H} NMR spectra of compound **3af** in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound 3ba in CDCl_3

¹H and ¹³C{¹H} NMR spectra of compound **3ca** in CDCl₃

1H and $^{13}C\{^1H\}$ NMR spectra of compound **3ea** in CDCl_3

6 79 6 6.77 6 6.67 6 6 7.24 7.23 7.23 7.23 7.23 7.23 7.23 7.20 7.20 7.20 7.20 7.20

¹H and ¹³C{¹H} NMR spectra of compound 7a in CDCl₃

¹H and ¹³C{¹H} NMR spectra of compound **7b** in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound 7c in CDCl_3

 $\begin{array}{c} 6689\\ 66992\\ 66992\\ 66992\\ 66976\\ 66977$

¹H and ¹³C {¹H} NMR spectra of compound **11** in CDCl₃

 1H and $^{13}C\{^1H\}$ NMR spectra of compound 14 in CDCl_3

9. Copy of HPLC spectra of the racemic and chiral products

peak	Ret. Time	Area%	Area
1	41. 170	1.09	1212964
2	57. 908	98.91	110249267

1	21.685	50.10	78916480
2	30.547	49.90	78603936

peak	Ret. Time	Area%	Area
1	50.046	50.71	22221195
2	71.992	49.29	21596002

1	23.939	50.13	26763835
2	33.463	49.87	26628296

1	58.082	50.08	8045229
2	88.428	49.92	8020582

peak	Ret. Time	Area%	Area
1	12.720	50.21	19354056
2	17.773	49.79	19191038

peak	Ret. Time	Area%	Area	
1	12.938	99.32	65617075	
2	18.399	0.68	450055	

peak	Ret. Time	Area%	Area
1	19.685	49.68	11823673
2	21.738	50.32	11975219

99.27

21.784

6471942

4.15

1	28.207	49.02	28363296	
2	40.732	50.98	29499005	

peak	Ret. Time	Area%	Area
1	5. 996	91. 19	3858241
2	8. 270	8. 81	372824

	\sim							
		— —						
20	24	28	32	36	40	44	48	52

peak	Ret. Time	Area%	Area	
1	31.657	2.99	1937312	
2	37.644	97.01	62741581	

Ret. lime	Area%	Area
21.664	6.42	2335235
23.526	93.58	34048016
	21.664 23.526	Ret. 11me Area% 21.664 6.42 23.526 93.58

			ni cu
1	19.015	49.86	52380122
2	20. 481	50.14	52663792

9.X-Ray Crystal Data for Compounds 3h and 3i

Single crystal of **3h** was obtained by slow diffusion of ether into a chloroform solution at room temperature.

Single crystal diffraction data for **3h** was collected at 253 K. All single crystal diffraction data were collected using an I μ S micro-focus sealed X-ray tube with Mo K α radiation ($\lambda = 0.71073$ Å) on a Bruker D8 venture Kappa Duo diffractometer equipped with a PHOTON 100 detector. Low-temperature holding was achieved by a Cryostream Cooler (Oxford Cryosystems). All the data were collected 0.5 degree per step and using the ω scan mode. Frames were integrated using the Bruker SAINT software. Semiempirical absorption correction was applied with the SADABS program.

Table 1 Crystal data and structure refinement for TX15347_auto.

•	—
Identification code	TX15347_auto
Empirical formula	C ₁₆ H ₁₉ N ₃ O
Formula weight	269.34
Temperature/K	169.99(10)
Crystal system	monoclinic
Space group	I2
a/Å	11.61718(18)
b/Å	5.70808(9)
c/Å	21.0321(3)
$\alpha/^{\circ}$	90
β/°	101.6542(15)
γ/°	90
Volume/Å ³	1365.92(4)
Ζ	4
$ ho_{calc}g/cm^3$	1.310
µ/mm ⁻¹	0.666
F(000)	576.0
Crystal size/mm ³	$0.27 \times 0.25 \times 0.03$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	8.082 to 154.532
Index ranges	$-14 \le h \le 14, -6 \le k \le 6, -24 \le l \le 25$
Reflections collected	8987
Independent reflections	$2662 \ [R_{int} = 0.0209, R_{sigma} = 0.0191]$

Data/restraints/parameters	2662/1/183
Goodness-of-fit on F ²	1.067
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0338, wR_2 = 0.0936$
Final R indexes [all data]	$R_1 = 0.0344, wR_2 = 0.0944$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.33
Flack parameter	-0.12(9)

Single crystal of **3i** was obtained by slow diffusion of ether into a chloroform solution at room temperature.

Single crystal diffraction data for **3i** was collected at 253 K. All single crystal diffraction data were collected using an I μ S micro-focus sealed X-ray tube with Mo K α radiation ($\lambda = 0.71073$ Å) on a Bruker D8 venture Kappa Duo diffractometer equipped with a PHOTON 100 detector. Low-temperature holding was achieved by a Cryostream Cooler (Oxford Cryosystems). All the data were collected 0.5 degree per step and using the ω scan mode. Frames were integrated using the Bruker SAINT software. Semiempirical absorption correction was applied with the SADABS program.

3i (CCDC 2431788)

Table 1 Crystal data and structure refinement for fx1252.

Identification code	fx1252
Empirical formula	$C_{21}H_{28}BN_3O_2$
Formula weight	365.27
Temperature/K	170.00(10)
Crystal system	orthorhombic
Space group	P212121
a/Å	10.3685(2)
b/Å	13.5410(4)
c/Å	14.1637(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1988.58(8)
Ζ	4
$\rho_{calc}g/cm^3$	1.220
µ/mm ⁻¹	0.618
F(000)	784.0
Crystal size/mm ³	$0.6 \times 0.3 \times 0.2$
Radiation	Cu Ka (λ = 1.54184)

20 range for data collection/°	9.036 to 151.94
Index ranges	$-8 \le h \le 12, -16 \le k \le 17, -17 \le l \le 17$
Reflections collected	12470
Independent reflections	$4002 \ [R_{int} = 0.0338, R_{sigma} = 0.0306]$
Data/restraints/parameters	4002/0/249
Goodness-of-fit on F ²	1.065
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0387, wR_2 = 0.1055$
Final R indexes [all data]	$R_1 = 0.0417, wR_2 = 0.1084$
Largest diff. peak/hole / e Å-3	0.22/-0.21
Flack parameter	-0.09(11)