Supporting Information

A General Rhodium-Catalyzed Regioselective C-H Functionalization:

Accessing Heteroarylated and Alkenylated Arenes

Tian Cao,^{*a,b,#*} Yan Wang,^{*a,b,#*} Shiping Zhan,^{*c,b*} Wenqian Ding,^{*b,d*} and Xiaowei Wu*,*a,b,c,d,e*

^aState Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China ^bZhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China

^cSchool of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China;
^dGuangzhou University of Chinese Medicine, Guangdong 510006, China
^eShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
Corresponding author's email: wuxiaowei@simm.ac.cn

General Information.2Preparation of Starting Materials.2General Procedure for the Synthesis of 3.3Characterization Data of Products 3.3Scale-up Synthesis.15Transformation Assays.16Characterization Data of 4a and 4b.16Mechanistic Experiments.17X-ray data of compound 3zd.21References.22Copies of ¹H, ¹³C NMR, and ¹⁹F NMR spectra.23

General Information

The chemical reagents were purchased from commercial sources and used directly without purification. Analytical thin-layer chromatography (TLC): HSGF 254 (0.15~0.2 mm thickness). Detection was conducted under UV light at 254 nm. Preparative thin layer chromatography was HSFG 254 (0.4~0.5 mm thickness). Yields refer to isolated compounds. ¹H, ¹³C, and ¹⁹F NMR spectra were collected on a Brucker 500 and 600 MHz instrument in chloroform-*d* or DMSO-*d*₆. Chemical shifts (δ) are expressed as parts per million (ppm). Proton coupling patterns were recorded as singlet (s), broad (br), doublet (d), triplet (t), quartet (q), and multiplet (m). HRMS (high-resolution mass spectrometry) were obtained by using a quadrupole mass analyzer with electrospray ionization (ESI) source. Crystal of compound **3zd** were grown by slow diffusion of MeOH/hexane (1/9, v/v, 10 mL) in a sample bottle at room temperature. X-ray diffractions of single crystal was carried out on a Bruker D8 VENTURE diffractometer using MoK α radiation ($\lambda = 0.71073$ Å).

Preparation of Starting Materials

General procedure A for the preparation of 1a-11^[1,2]

Step 1: SI-1 (500 mg, 1.0 eq) and anhydrous tetrahydrofuran (10.0 mL) were added to a reaction vessel at room temperature under nitrogen atmosphere. The reaction mixture was cooled in an ice bath. Isopropyl magnesium bromide (2.75 eq) was added at 0 °C and stirred for 15 minutes. Then 2-iodopyridine (1.4 eq) was added to the reaction mixture at 0 °C. Subsequently, the reaction mixture was stirred at room temperature for 4 h. The reaction was quenched with H₂O and saturated aqueous NH₄Cl, extracted with EA and H₂O, and purified by column chromatography to provide the corresponding product.

Step 2: SI-2 (1.0 eq) in ethanol (10 mL) was added to hydrazine monohydrate (3.0 eq) in a 100 mL flask. The reaction mixture was refluxed for 1 h. Then it was allowed to cool to room temperature, and the mixture solvent was removed under reduced pressure. The reaction mixture was diluted with EtOAc, and the residue was extracted with aqueous NH₄Cl. The organic layer was dried over Mg₂SO₄. After removal of the solvent, the crude product was dissolved in CH₂Cl₂ (20 mL), and then PhI(OAc)₂ (1.0 eq) was added at room temperature for 30 min. Subsequently, the reaction mixture was diluted with CH₂Cl₂, and the residue was extracted with aqueous NaHCO₃. The organic layer was dried over was dried over Na₂SO₄. After removal of the solvent, the residue was extracted with aqueous NaHCO₃. The organic layer was dried over was dried over Na₂SO₄. After removal of the solvent, the residue was extracted with aqueous NaHCO₃. The organic layer was dried over Na₂SO₄. After removal of the solvent, the residue was extracted with aqueous NaHCO₃. The organic layer was dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography to provide the corresponding product.

General procedure C for the preparation of 2^[3,4]

PhI(OAc)₂ (6.2 mmol) was added to 60.0 mL of a saturated sodium carbonate aqueous solution and stirred at room temperature for 30 mins. Subsequently, a saturated sodium carbonate aqueous solution containing 4-hydroxycoumarin compounds (6.2 mmol) was added to the mixture. The reaction was stirred for 2 hours at room temperature, then cooled using an ice bath. The resulting mixture was filtered, and the residue was washed with water. The white precipitate obtained was the desired product.

General Procedure for the Synthesis of 3

Representative Procedure for the Synthesis of 3a

In a 10 mL reaction tube, the mixture of **1a** (39.3 mg, 0.20 mmol, 1.0 eq), **2a** (87.4 mg, 0.24 mmol, 1.2 eq), $[Cp*RhCl_2]_2$ (6.2 mg, 0.01 mmol, 5 mol%), and $Zn(OAc)_2$ (36.7 mg, 0.2 mmol, 1.0 eq) was dissolved in HFIP (2.0 mL). Then the resulting mixture was stirred at room temperature. When the reaction was finished, the products are purified by preparative thin layer chromatography (DCM/MeOH = 20/1). The product **3a** was obtained as a pale-white solid (64 mg, 89% yield). Other products were prepared by a similar procedure.

Characterization Data of Products 3

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-2H-chromen-2-one (3a): column solvent: DCM/MeOH = 20:1, white solid (64 mg, 89% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.93 (d, *J* = 7.0 Hz, 1H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.76 (d, *J* = 9.0 Hz, 1H), 7.68 (d, *J* = 7.3 Hz, 1H), 7.58 – 7.40 (m, 4H), 7.31 – 7.21 (m, 3H), 7.07 (t, *J* = 6.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 161.8, 152.6, 137.5, 133.1, 131.8, 131.6, 130.4, 129.6, 127.8, 125.7, 125.6, 123.8, 123.4, 118.0,

115.9, 115.7. **HRMS (ESI-MS)** m/z: $[M+H]^+$ calculated for $C_{21}H_{13}N_3O_3$ 356.1030; Found: 356.1029.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-5-methylphenyl)-4-hydroxy-2H-chromen-2-one (3b): column solvent: DCM/MeOH = 30/1, white solid (71mg, yield 96%). ¹H NMR (600 MHz, DMSO*d*₆) δ 8.93 (d, *J* = 7.0 Hz, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.76 (d, *J* = 8.9 Hz, 1H), 7.63 – 7.51 (m, 2H), 7.35 (d, *J* = 7.9 Hz, 1H), 7.28 (d, *J* = 8.4 Hz, 4H), 7.16 – 7.00 (m, 1H), 2.40 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 161.6, 161.0,152.4, 137.3, 137.2, 133.3, 131.8, 131.6, 130.4, 129.5, 128.9, 128.9, 125.7, 125.6, 123.6, 117.9, 116.8, 116.0, 115.7, 105.9, 20.8. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₂H₁₆N₃O₃ 370.1186; found: 370.1187.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-5-methoxyphenyl)-4-hydroxy-2H-chromen-2-one (3c): column solvent: DCM/MeOH = 30/1, yellow solid (73mg, yield 95%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.90 (d, *J* = 6.9 Hz, 1H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.72 (d, *J* = 9.0 Hz, 1H), 7.58 (s, 1H), 7.54 (s, 1H), 7.26 (d, *J* = 8.1 Hz, 3H), 7.13 – 7.00 (m, 3H), 3.83 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.5, 158.9, 152.5, 137.3, 133.6, 131.7, 130.8, 130.4, 125.5, 125.4, 124.3, 123.8, 123.5, 118.2, 117.9, 117.2, 115.9, 115.6, 113.7, 105.3, 55.3. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₂H₁₆N₃O₄ 386.1135; found: 386.1137.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-5-fluorophenyl)-4-hydroxy-2H-chromen-2-one (3d): column solvent: DCM/MeOH = 20:1, yellow solid (58 mg, 78% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.91 (d, *J* = 7.0 Hz, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.68 (t, *J* = 6.9 Hz, 2H), 7.54 – 7.44 (m, 1H), 7.34 – 7.24 (m, 2H), 7.24 – 7.14 (m, 3H), 7.05 (t, *J* = 6.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 162.4, 161.6, 160.8, 152.9, 136.1, 131.5, 131.4, 131.4, 128.6, 125.6, 125.4, 124.1, 123.0, 119.70 (d, *J* = 19.9 Hz), 118.0, 115.72 (d, *J* = 35.8 Hz), 114.15 (d, *J* = 21.0 Hz), 102.89. ¹⁹F

NMR (471 MHz, DMSO-*d*₆) δ -115.55. **HRMS (ESI-MS)** m/z: [M+H]⁺ calculated for C₂₁H₁₂FN₃O₃ 374.0935; Found: 374.0935.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-5-chlorophenyl)-4-hydroxy-2H-chromen-2-one (3e): column solvent: DCM/MeOH = 20:1, yellow solid (60 mg, 77% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.91 (d, J = 6.9 Hz, 1H), 7.82 – 7.77 (m, 1H), 7.67 – 7.59 (m, 2H), 7.48 – 7.39 (m, 3H), 7.19 – 7.07 (m, 3H), 7.04 – 6.98 (m, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 161.9, 153.0, 137.1, 132.9, 131.8, 131.3, 131.1, 131.0, 130.3, 128.3, 128.0, 126.6, 125.5, 125.3, 124.3, 122.7, 118.0, 115.7, 115.6. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₁H₁₂ClN₃O₃ 390.0640; Found: 390.0640.

3-(2-([1,2,3] triazolo[1,5-a]pyridin-3-yl)-5-bromophenyl)-4-hydroxy-2H-chromen-2-one (3f): column solvent: DCM/MeOH = 30/1, yellow solid (86 mg, yield 99%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.96 (d, *J* = 7.0 Hz, 1H), 7.85 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.77 (d, *J* = 9.0 Hz, 1H), 7.71 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.69 – 7.63 (m, 2H), 7.57 (s, 1H), 7.37 – 7.25 (m, 3H), 7.11 (t, *J* = 6.8 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.8, 161.4, 152.5, 136.2, 135.4, 134.3, 132.0, 131.4, 131.1, 130.9, 130.5, 126.2, 125.7, 123.8, 123.6, 120.8, 117.7, 116.9, 116.0, 115.8, 104.4. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₁H₁₃BrN₃O₃ 434.0135; found: 434.0141.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-5-(tert-butyl)phenyl)-4-hydroxy-2H-chromen-2-one (**3g**): column solvent: DCM/MeOH = 30/1, yellow solid (78 mg, yield 95%). ¹H NMR (**500 MHz**, **DMSO-***d*₆) δ 8.93 (d, *J* = 7.0 Hz, 1H), 8.05 (d, *J* = 7.6 Hz, 1H), 7.86 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.78 (d, *J* = 9.0 Hz, 1H), 7.62 (d, *J* = 8.1 Hz, 1H), 7.56 – 7.53 (m, 2H), 7.45 (d, *J* = 2.1 Hz, 1H), 7.31 – 7.24 (m, 3H), 7.08 (t, *J* = 6.8 Hz, 1H), 1.36 (s, 9H). ¹³C NMR (**126 MHz, DMSO-***d*₆) δ 161.68, 152.5, 150.0, 137.4, 131.6, 130.4, 129.6, 129.2, 129.0, 125.6, 125.0, 124.8, 123.7, 123.5, 118.0, 115.9, 115.7, 34.4, 31.1. **HRMS (ESI-MS)** m/z: $[M+H]^+$ calculated for C₂₅H₂₂N₃O₃ 412.1656, found: 412.1658.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-4-(trifluoromethyl)phenyl)-4-hydroxy-2H-chromen-2-one (3h): column solvent: DCM/MeOH = 30/1, yellow solid (77 mg, yield 91%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.00 (d, *J* = 7.0 Hz, 1H), 7.95 (d, *J* = 8.2 Hz, 1H), 7.93 – 7.82 (m, 4H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.39 (dd, *J* = 9.0, 6.6 Hz, 1H), 7.32 (d, *J* = 8.6 Hz, 2H), 7.15 (t, *J* = 6.9 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.47, 152.51, 135.86, 132.73, 132.19, 130.75, 130.27, 129.79, 129.76, 128.33, 128.07, 126.75, 125.88, 125.36, 124.96, 123.78, 123.73, 123.20, 117.62, 116.60, 116.14, 116.03, 104.77. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -60.88. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₂H₁₃F₃N₃O₃ 424.0903; found: 424.0907.

4-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-3-(4-hydroxy-2-oxo-2H-chromen-3-yl)benzonitrile (3i): column solvent: DCM/MeOH = 30/1, yellow solid (51 mg, yield 67%). ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.95 (d, *J* = 6.9 Hz, 1H), 7.86 (s, 1H), 7.80 (t, *J* = 8.5 Hz, 3H), 7.64 (d, *J* = 8.9 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.16 (d, *J* = 7.0 Hz, 2H), 7.10 (d, *J* = 8.2 Hz, 1H), 7.04 (t, *J* = 6.9 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 161.9, 153.2, 137.4, 137. 5, 136.9, 136.5, 130.9, 130.5, 130.2, 129.7, 129.5, 125.6, 124.5, 122.5, 119.2, 118.0, 116.2, 115.7, 115.6, 109.7. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₂H₁₃N₄O₃ 381.0982; found: 381.0982.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-3-methoxyphenyl)-4-hydroxy-2H-chromen-2-one (3j): column solvent: DCM/MeOH = 30/1, white solid (45 mg, yield 58%). ¹H NMR (500 MHz, DMSO d_6) δ 8.88 (d, J = 7.0 Hz, 1H), 7.79 (dd, J = 7.9, 1.6 Hz, 1H), 7.68 – 7.60 (m, 1H), 7.48 (s, 2H), 7.31 (dd, J = 8.9, 6.6 Hz, 1H), 7.24 – 7.07 (m, 4H), 7.00 (d, J = 7.6 Hz, 1H), 3.74 (s, 3H). ¹³C NMR (151 **MHz, DMSO-***d*₆) δ 161.5, 157.5, 152.5, 133.6, 131.8, 131.4, 129.6, 125.3, 125.0, 124.7, 123.9, 123.2, 120.3, 119.3, 115.8, 110.5, 104.6, 55.6. **HRMS (ESI-MS)** m/z: [M+H]⁺ calculated for C₂₂H₁₆N₃O₄ 386.1135; found: 386.1135.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-3-fluorophenyl)-4-hydroxy-2H-chromen-2-one (3k): column solvent: DCM/MeOH = 30/1, yellow solid (64 mg, yield 86%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.96 (d, *J* = 6.9 Hz, 1H), 7.82 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.74 – 7.67 (m, 1H), 7.61 – 7.52 (m, 2H), 7.44 – 7.35 (m, 2H), 7.32 (dd, *J* = 7.7, 1.1 Hz, 1H), 7.26 (dd, *J* = 8.1, 3.4 Hz, 2H), 7.17 – 7.11 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.9, 161.3, 160.0 (d, *J* = 244.9 Hz), 152.4, 135.5, 131.9, 131.6, 130.8, 129.9 (d, *J* = 9.3 Hz), 128.8, 126.0, 125.6, 123.7 (d, *J* = 22.1 Hz), 119.7, 119.6, 118.2 (d, *J* = 4.4 Hz), 116.9, 115.9 (d, *J* = 24.7 Hz), 115.1, 114.9, 104.1. ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -114.40. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₁H₁₃FN₃O₃ 374.0935; found: 374,0937.

4-hydroxy-3-(2-(quinolin-2-yl)phenyl)-2H-chromen-2-one (3l): column solvent: DCM/MeOH = 30/1, yellow solid (68 mg, yield 93%). ¹**H NMR (500 MHz, DMSO-***d*₆) δ 8.27 (d, J = 8.6 Hz, 1H), 7.87 (m, 4H), 7.70 (t, J = 7.7 Hz, 1H), 7.62 (d, J = 8.6 Hz, 1H), 7.54 (t, J = 8.1 Hz, 4H), 7.42 (d, J = 6.5 Hz, 1H), 7.26 (d, J = 8.2 Hz, 2H). ¹³**C NMR (126 MHz, DMSO-***d*₆) δ 162.11, 158.73, 152.67, 146.52, 140.51, 136.54, 132.96, 132.26, 131.78, 129.99, 128.84, 128.11, 127.87, 126.57, 123.93, 123.58, 121.40, 117.72, 116.02. **HRMS (ESI-MS)** m/z: [M+H]⁺ calculated for C₂₄H₁₆NO₃ 366.1130; found: 366.1129.

4-hydroxy-3-(2-(pyridin-2-yl)phenyl)-2H-chromen-2-one (3m): column solvent: DCM/MeOH = 20:1, yellow solid (60 mg, 95% yield). **1H NMR (500 MHz, Chloroform-d)** δ 8.26 – 8.17 (m, 1H), 7.94 – 7.89 (m, 1H), 7.89 – 7.81 (m, 1H), 7.53 – 7.44 (m, 2H), 7.38 – 7.32 (m, 2H), 7.31 – 7.26 (m, 1H), 7.23 – 7.17 (m, 2H), 7.00 – 6.90 (m, 2H). ¹³C NMR (151 MHz, Chloroform-d) δ 172.8, 164.0,

159.1, 153.5, 147.5, 140.7, 139.4, 134.5, 133.6, 131.2, 130.8, 129.0, 126.9, 124.7, 124.5, 123.3, 123.1, 120.8, 116.1, 103.9. **HRMS (ESI-MS)** m/z: $[M+H]^+$ calculated for C₂₀H₁₃NO₃ 316.0968; Found: 316.0964.

4-hydroxy-3-(2-(pyrimidin-2-yl)phenyl)-2H-chromen-2-one (3n): column solvent: DCM/MeOH = 20:1, yellow solid (46 mg, 72% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.68 (d, *J* = 4.9 Hz, 2H), 7.99 (d, *J* = 7.4 Hz, 1H), 7.87 (d, *J* = 7.9 Hz, 1H), 7.61 – 7.38 (m, 4H), 7.33 – 7.19 (m, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 166.1, 161.9, 156.8, 152.5, 138.9, 132.8, 131.1, 130.0, 129.0, 127.1, 123.8, 123.2, 118.9, 115.8. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₁₉H₁₂N₂O₃ 317.0921; Found: 317.0919.

3-(2-(1H-pyrazol-1-yl)phenyl)-4-hydroxy-2H-chromen-2-one (30): column solvent: DCM/MeOH = 20:1, yellow solid (61 mg, 95% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.93 (d, J = 2.4 Hz, 1H), 7.86 – 7.80 (m, 1H), 7.53 – 7.42 (m, 3H), 7.42 – 7.34 (m, 2H), 7.32 – 7.26 (m, 1H), 7.20 – 7.11 (m, 2H), 6.26 (t, J = 2.2 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 162.5, 153.3, 140.3, 139.5, 134.3, 130.8, 130.6, 127.4, 127.2, 125.1, 124.5, 122.3, 115.6, 106.0. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₁₈H₁₂N₂O₃ 305.0921; Found: 305.0918.

4-hydroxy-3-(1-(pyridin-2-yl)-1H-indol-2-yl)-2H-chromen-2-one (**3p**): column solvent: DCM/MeOH = 30/1, yellow solid (66 mg, yield 93%). ¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.50 (d, *J* = 4.8 Hz, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.79 (t, *J* = 7.8 Hz, 1H), 7.67 (d, *J* = 6.2 Hz, 1H), 7.58 (d, *J* = 6.3 Hz, 1H), 7.50 (s, 1H), 7.37 (s, 1H), 7.29 – 7.17 (m, 3H), 7.15 – 7.07 (m, 2H), 6.58 (s, 1H). ¹³**C NMR (151 MHz, DMSO-***d***₆)** δ 162.0, 153.3, 151.5, 148.3, 138.2, 136.3, 131.3, 128.4, 124.5, 122.8, 121.4, 121.3, 120.2, 119.7, 119.3, 115.8, 111.4, 106.6. **HRMS (ESI-MS)** m/z: [M+H]⁺ calculated for C₂₂H₁₅N₂O₃ 355.1077; found: 355.1070.

4-hydroxy-3-(1-(pyrimidin-2-yl)-1H-indol-2-yl)-2H-chromen-2-one (3q): column solvent: DCM/MeOH = 30/1, yellow solid (36 mg, yield 51%). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.62 (d, *J* = 4.8 Hz, 2H), 8.20 (dd, *J* = 8.3, 1.1 Hz, 1H), 7.78 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.58 (m, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.26 (s, 3H), 7.24 – 7.16 (m, 1H), 7.09 (t, *J* = 4.8 Hz, 1H), 6.77 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 161.5, 161.1, 158.1, 157.2, 153.2, 137.4, 132.5, 128.4, 127.8, 124.7, 124.3, 124.1, 122.4, 120.6, 117.6, 116.6, 115.6, 114.9, 111.0, 101.1. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₁H₁₄N₃O₃ 356.1030; found: 356.1024.

3-(2-(benzo[d]oxazol-2-yl)phenyl)-4-hydroxy-2H-chromen-2-one (**3r**): column solvent: DCM/MeOH = 30/1, white solid (47 mg, yield 66%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.23 – 8.16 (m, 1H), 8.02 – 7.93 (m, 1H), 7.66 – 7.60 (m, 3H), 7.60 – 7.51 (m, 3H), 7.45 – 7.25 (m, 4H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 162.8, 161.9, 152.6, 149.8, 141.4, 133.3, 131.8, 130.9, 129.5, 127.8, 127.4, 125.1, 124.4, 123.9, 123.5, 119.7, 116.1, 110.5. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₂H₁₄NO₄ 356.0923; found: 356.0923.

4-hydroxy-3-(2-(oxazol-2-yl)phenyl)-2H-chromen-2-one (3s): column solvent: DCM/MeOH = 30/1, yellow solid (37 mg, yield 60%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.61 (d, *J* = 8.3 Hz, 1H), 8.29 (d, *J* = 8.0 Hz, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.90 – 7.71 (m, 3H), 7.61 – 7.47 (m, 2H), 5.05 (t, *J* = 6.1 Hz, 1H), 4.47 (t, *J* = 6.1 Hz, 2H), 3.76 (q, *J* = 6.1 Hz, 2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 174.8, 160.8, 155.8, 151.8, 134.0, 133.8, 132.9, 127.4, 126.8, 125.8, 125.4, 125.2, 122.3, 122.2, 117.7, 97.4, 58.2, 44.3. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₂H₁₄NO₄ 308.0923; found: 308.0915.

2-(2-(4-hydroxy-2-oxo-2H-chromen-3-yl)phenyl)-2,3-dihydrophthalazine-1,4-dione (3t): column solvent: DCM/MeOH = 30/1, yellow solid (25 mg, yield 31%); ¹H NMR (600 MHz, DMSO-d₆) δ 11.50 (br, 2H), 8.09 (d, J = 7.9 Hz, 1H), 7.91 (d, J = 7.9 Hz, 1H), 7.89 – 7.81 (m, 2H), 7.80 – 7.74 (m, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.56 – 7.48 (m, 2H), 7.50 – 7.42 (m, 2H), 7.27 – 7.22 (m, 2H). ¹³C NMR (151 MHz, DMSO-d₆) δ 161.0, 157.0, 152.4, 150.2, 141.4, 133.4, 132.8, 132.2, 132.0, 130.0, 129.7, 128.9, 128.5, 128.2, 128.1, 127.6, 126.7, 124.2, 123.7, 123.6, 116.6, 116.0, 103.6. HRMS (ESI-MS) m/z: [M+H]⁺ Calcd for C₂₃H₁₅N₂O₅: 399.0976; Found: 399.0965.

1-(2-(4-hydroxy-2-oxo-2H-chromen-3-yl)phenyl)-1,2-dihydropyridazine-3,6-dione (3u): column solvent: DCM/MeOH = 30/1, yellow solid (18 mg, yield 26%); ¹H NMR (600 MHz, DMSO-d₆) δ 11.26 (br, 1H), 11.10 (s, 1H), 7.93 – 7.87 (m, 1H), 7.64 – 7.58 (m, 1H), 7.52 – 7.43 (m, 3H), 7.43 – 7.39 (m, 1H), 7.36 – 7.30 (m, 2H), 6.99 (d, *J* = 9.7 Hz, 1H), 6.79 (d, *J* = 9.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO-d₆) δ 160.8, 160.5, 157.5, 152.4, 152.3, 141.3, 133.1, 132.6, 132.2, 129.3, 128.4, 127.8, 127.5, 125.5, 123.8, 123.7, 116.3, 116.1, 103.7. HRMS (ESI-MS) m/z: [M+H]⁺ Calcd for C₁₉H₁₃N₂O₅: 349.0819; Found: 349.0811.

(E)-3-(5-bromo-2-(1-(methoxyimino)ethyl)phenyl)-4-hydroxy-2H-chromen-2-one (3v): column solvent: DCM/MeOH=20:1, pale yellow (72 mg, yield 94%); ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 7.9 Hz, 1H), 7.62 – 7.47 (m, 3H), 7.38 (d, J = 8.3 Hz, 1H), 7.34 – 7.26 (m, 2H), 3.58 (s, 3H), 1.94 (s, 3H). ¹³C NMR (151 MHz, DMSO-d₆) δ 161.82, 152.78, 137.35, 135.14, 131.60, 130.04, 129.78, 124.08, 123.29, 121.03, 115.98, 61.07, 14.56. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₁₈H₁₆BrNO₄ 388.0184, found: 388.0179.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-7-fluoro-4-hydroxy-2H-chromen-2-one (3w): column solvent: DCM/MeOH = 30/1, yellow solid (44 mg, yield 59%). ¹H NMR (500 MHz, **Chloroform-***d***)** δ 8.60 (s, 1H), 7.76 (d, *J* = 8.9 Hz, 1H), 7.47 – 7.27 (m, 3H), 7.12 (d, *J* = 58.1 Hz, 4H), 6.91 (d, *J* = 9.7 Hz, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 163.64 (d, *J* = 248.4 Hz), 161.6, 153.7 (d, *J* = 13.3 Hz), 137.4, 133.0, 132.1, 131.8, 131.1, 130.4, 129.5, 127.9, 127.8, 125.9 (d, *J* = 10.5 Hz), 125.8, 125.6, 117.9, 115.7, 114.4, 111.2 (d, J = 22.4 Hz), 103.3 (d, J = 25.3 Hz). ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ -74.58. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₁H₁₃FN₃O₃ 374.0935; found: 374.0936.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-6-bromo-4-hydroxy-2H-chromen-2-one (3x): column solvent: DCM/MeOH = 30/1, white solid (62 mg, yield 71%). ¹H NMR (500 MHz, **Chloroform-***d***)** δ 8.94 (d, *J* = 7.0 Hz, 1H), 7.94 (d, *J* = 2.4 Hz, 1H), 7.78 (d, *J* = 8.9 Hz, 1H), 7.73 – 7.65 (m, 2H), 7.58 – 7.40 (m, 3H), 7.31 (dd, *J* = 9.0, 6.6 Hz, 1H), 7.26 (d, *J* = 8.7 Hz, 1H), 7.10 (t, *J* = 6.8 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 161.3, 151.5, 137.3, 134.2, 132.9, 131.6, 130.5, 129.5, 128.1, 127.9, 125.9, 125.6, 118.4, 117.9, 115.8, 115.4. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₁H₁₃BrN₃O₃ 434.0134; found: 434.0139.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-6-chloro-4-hydroxy-2H-chromen-2-one (3y): column solvent: DCM/MeOH = 30/1, yellow solid (70 mg, yield 90%). ¹H NMR (500 MHz, **Chloroform-***d***)** δ 8.60 (d, *J* = 7.0 Hz,1 H), 7.75 (d, *J* = 8.9 Hz, 1H), 7.63 (s, 1H), 7.50 – 7.37 (m, 2H), 7.34 – 7.24 (m, 2H), 7.22 – 7.04 (m, 4H). ¹³C NMR (126 MHz, DMSO-*d*₆**)** δ 161.4, 151.2, 137.4, 133.0, 132.5, 131.7, 131.1, 130.4, 129.5, 127.8, 127.4, 125.7, 125.5, 123.5, 123.1, 121.2, 119.6, 118.0, 117.9, 115.7. HRMS (ESI-MS) m/z: [M+H]⁺ m/z calculated for C₂₁H₁₃ClN₃O₃ 390.0639; found: 390.0641.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-8-methyl-2H-chromen-2-one (3z): column solvent: DCM/MeOH = 30/1, yellow solid (70 mg, yield 95%). ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.95 (d, *J* = 7.0 Hz, 1H), 7.81 (d, *J* = 8.9 Hz, 1H), 7.72 – 7.64 (m, 2H), 7.60 – 7.47 (m, 2H), 7.48 – 7.39 (m, 2H), 7.32 (dd, *J* = 9.0, 6.5 Hz, 1H), 7.18 (t, *J* = 7.7 Hz, 1H), 7.10 (t, *J* = 6.8 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 161.5, 150.7, 137.3, 132.9, 132.8, 131.9, 131.7, 130.4, 129.5, 128.1, 127.9, 125.8, 125.6, 124.7, 123.0, 121.3, 117.9, 116.5, 115.7, 105.4, 15.1. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₂H₁₆N₃O₃ 370.1186; found: 370.1187

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-7-methoxy-2H-chromen-2-one (**3za**): column solvent: DCM/MeOH = 30/1, yellow solid (76 mg, yield 98%). ¹**H NMR (600 MHz, DMSO-***d*₆**)** δ 8.95 (d, *J* = 7.0 Hz, 1H), 7.74 (dd, *J* = 8.9, 4.4 Hz, 2H), 7.67 (d, *J* = 9.0 Hz, 1H), 7.60 – 7.42 (m, 4H), 7.36 – 7.25 (m, 1H), 7.09 (t, *J* = 6.8 Hz, 1H), 6.95 – 6.76 (m, 2H), 3.82 (s, 3H). ¹³**C NMR (151 MHz, DMSO-***d*₆**)** δ 162.2, 161.8, 154.1, 137.3, 133.0, 132.1, 131.8, 130.4, 129.6, 127.9, 127.8, 125.7, 125.6, 124.7, 117.8, 115.6, 111.5, 109.8, 103.3, 100.2, 55.8. **HRMS (ESI-MS)** m/z: [M+H]⁺ calculated for C₂₂H₁₆N₃O₄ 386.1135; found: 386.1135.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-6-methyl-2H-chromen-2-one (3zb): column solvent: DCM/MeOH = 30/1, yellow solid (70 mg, yield 95%). ¹H NMR (600 MHz, **DMSO-***d*₆) δ 8.95 (d, *J* = 7.0 Hz, 1H), 7.77 (d, *J* = 8.9 Hz, 1H), 7.68 (d, *J* = 7.5 Hz, 1H), 7.63 (s, 1H), 7.57 – 7.47 (m, 2H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.34 – 7.28 (m, 1H), 7.17 (d, *J* = 8.4 Hz, 1H), 7.09 (t, *J* = 6.8 Hz, 1H), 2.33 (s, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 161.8, 150.6, 137.3, 132.9, 132.7, 132.6, 132.0, 131.8, 130.4, 129.6, 128.0, 127.9, 125.8, 125.6, 123.3, 117.8, 116.5, 115.7, 115.7, 105.6, 20.4. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₂H₁₆N₃O₃ 370.1186; found: 370.1188.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-6-fluoro-4-hydroxy-2H-chromen-2-one (3zc): column solvent: DCM/MeOH = 20:1, yellow solid (70 mg, 94% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.95 (d, *J* = 6.9 Hz, 1H), 7.78 (d, *J* = 9.0 Hz, 1H), 7.72 – 7.67 (m, 1H), 7.61 – 7.40 (m, 5H), 7.36 – 7.28 (m, 2H), 7.10 (t, *J* = 6.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 161.5, 158.5, 156.9, 148.7, 137.3, 132.8, 131.9, 131.6, 130.4, 129.4, 128.0, 127.7, 125.8, 125.6, 118.92 (d, *J* = 24.6 Hz), 118.02 (d, *J* = 8.2 Hz), 117.9, 115.7, 109.19 (d, *J* = 25.6 Hz), 105.9. ¹⁹F NMR (565 MHz, DMSO-*d*₆) δ -118.45. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₁H₁₂FN₃O₃ 374.0935; Found: 374.0936.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-6-methoxy-2H-chromen-2-one (**3zd):** column solvent: DCM/MeOH = 20:1, yellow solid (70 mg, 91% yield). ¹**H NMR (500 MHz, DMSO-***d***₆)** δ 8.94 (d, *J* = 7.0 Hz, 1H), 7.81 – 7.63 (m, 2H), 7.55 – 7.40 (m, 3H), 7.36 – 7.24 (m, 2H), 7.20 (d, *J* = 9.0 Hz, 1H), 7.15 – 7.04 (m, 2H), 3.76 (s, 3H). ¹³**C NMR (151 MHz, DMSO-***d*₆**)** δ 161.9, 155.0, 146.8, 137.5, 132.9, 132.6, 131.7, 130.4, 129.5, 127.7, 125.6, 125.5, 119.2, 117.9, 117.1, 115.6, 105.8, 105.3, 55.6. **HRMS (ESI-MS)** m/z: [M+H]⁺ calculated for C₂₂H₁₅N₃O₄ 386.1135; Found: 386.1134.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-1-methylquinolin-2(1H)-one (3ze): column solvent: DCM/MeOH = 20:1, grey solid (60 mg, 81% yield). ¹**H NMR (500 MHz, DMSO***d*₆) δ 8.90 (s, 1H), 8.08 (s, 1H), 7.86 (d, *J* = 8.1 Hz, 1H), 7.77 – 7.62 (m, 2H), 7.61 – 7.31 (m, 5H), 7.29 – 7.11 (m, 2H), 7.08 – 6.94 (m, 1H), 3.47 (s, 3H). ¹³**C NMR (151 MHz, DMSO-***d*₆) δ 161.9, 156.3, 138.9, 137.5, 133.3, 132.8, 131.8, 130.7, 130.4, 129.7, 127.8, 127.7, 125.5, 123.4, 121.1, 117.8, 116.1, 115.5, 114.2, 112.2, 29.0. **HRMS (ESI-MS)** m/z: [M+H]⁺ calculated for C₂₂H₁₆N₄O₂ 369.1346; Found: 369.1345.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-2H-thiochromen-2-one (3zf): column solvent: DCM/MeOH = 20:1, yellow solid (63 mg, 85% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.92 (d, *J* = 7.0 Hz, 1H), 8.31 (s, 1H), 8.10 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 9.0 Hz, 1H), 7.67 (d, *J* = 7.3 Hz, 1H), 7.57 – 7.43 (m, 4H), 7.44 – 7.32 (m, 2H), 7.27 (t, *J* = 7.9 Hz, 1H), 7.07 (t, *J* = 6.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 137.3, 135.2, 132.9, 132.0, 130.4, 130.2, 129.7, 128.1, 128.0, 126.7, 126.0, 125.6, 125.5, 125.1, 118.0, 117.4, 115.6. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₁H₁₃N₃O₂S 372.0801; Found: 372.0798.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-6-methyl-2H-pyran-2-one (3zg): column solvent: DCM/MeOH = 20:1, yellow solid (60 mg, 94% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.99 (s, 1H), 7.75 – 7.54 (m, 2H), 7.48 – 7.23 (m, 5H), 7.17 – 7.01 (m, 1H), 5.81 (s, 1H), 2.07 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 163.5, 160.7, 137.8, 132.6, 131.5, 130.2, 129.6, 127.5, 127.2, 125.5, 125.4, 117.7, 115.6, 101.7, 100.7, 19.2. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₁₈H₁₃N₃O₃ 320.1030; Found: 320.1028.

5-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-6-hydroxy-2-phenylpyrimidin-4(3H)-one (3zh): column solvent: DCM/MeOH = 20:1, white solid (10 mg, 13% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.94 (d, *J* = 7.0 Hz, 1H), 8.01 (d, *J* = 7.7 Hz, 2H), 7.71 – 7.59 (m, 2H), 7.56 – 7.51 (m, 1H), 7.50 – 7.41 (m, 5H), 7.21 (t, *J* = 7.8 Hz, 1H), 7.05 (t, *J* = 6.8 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 138.2, 132.6, 131.5, 130.2, 129.6, 128.5, 127.4, 127.3, 126.9, 125.0, 125.1, 117.8, 115.4. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₂H₁₅N₅O₂ 382.1299; Found: 382.1296.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-2H-pyrido[1,2-a]pyrimidin-2-one (**3zi):** column solvent: DCM/MeOH = 20:1, yellow solid (18 mg, 25% yield). ¹**H** NMR (**500 MHz**, **DMSO-***d*₆) δ 8.90 (d, *J* = 7.0 Hz, 1H), 8.81 (d, *J* = 6.9 Hz, 1H), 8.00 (t, *J* = 7.8 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.52 – 7.47 (m, 1H), 7.46 – 7.39 (m, 2H), 7.31 (d, *J* = 8.7 Hz, 1H), 7.23 (t, *J* = 6.9 Hz, 1H), 7.18 – 7.11 (m, 1H), 7.01 (t, *J* = 6.8 Hz, 1H). ¹³**C** NMR (**151 MHz, DMSO-***d*₆) δ 172.1, 161.5, 154.6, 146.7, 140.8, 138.3, 134.0, 133.2, 131.8, 130.1, 129.6, 128.8, 127.3, 126.7, 125.4, 125.0, 117.7, 115.3, 115.3, 95.9. **HRMS (ESI-MS)** m/z: [M+H]⁺ calculated for C₂₀H₁₃N₅O₂ 356.1142; Found: 356.1140.

2'-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-6-hydroxy-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one (3zj): column solvent: DCM/MeOH = 30/1, yellow solid (50 mg, yield 82%). ¹H NMR (600 MHz, DMSO-*d*₆) δ 10.41 (s, 1H), 9.00 (d, *J* = 7.0 Hz, 1H), 7.57 – 7.53 (m, 1H), 7.50 (d, *J* = 8.9 Hz, 1H), 7.41 – 7.36 (m, 2H), 7.36 – 7.31 (m, 1H), 7.19 – 7.15 (m, 1H), 7.15 – 7.11 (m, 1H), 2.48 – 1.93 (m, 4H), 1.84 – 1.73 (m, 1H), 1.62 – 1.51 (m, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 196.1, 172.1, 138.1, 134.0, 132.5, 131.4, 130.1, 129.6, 127.4, 126.7, 125.6, 125.3, 117.9, 116.5, 115.5, 36.6, 29.3, 20.2. HRMS (ESI-MS) *m/z*: [M+H]⁺ calculated for C₁₈H₁₆N₃O₂ 306.1243, found: 306.1237.

2'-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-6-hydroxy-4,4-dimethyl-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one (3zk): column solvent: DCM/MeOH = 20:1, grey solid (58 mg, 87% yield). ¹H NMR **(500 MHz, DMSO-***d***₆)** δ 9.00 (d, *J* = 7.0 Hz, 1H), 7.59 (d, *J* = 8.9 Hz, 1H), 7.53 – 7.46 (m, 1H), 7.42 – 7.35 (m, 2H), 7.34 – 7.29 (m, 1H), 7.18 – 7.08 (m, 2H), 2.20 (d, *J* = 16.5 Hz, 2H), 1.95 (d, *J* = 16.5 Hz, 2H), 0.96 (s, 3H), 0.74 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆**)** δ 138.0, 134.4, 132.5, 131.5, 130.4, 129.5, 127.4, 126.7, 125.4, 125.3, 118.0, 115.5, 115.3, 31.2, 28.2, 27.6. HRMS (ESI-MS) m/z: [M+H]⁺ calculated for C₂₀H₁₉N₃O₂ 334.1550; Found: 334.1548.

Scale-up Synthesis

In a 100 mL reaction tube, the mixture of **1a** (392.5 mg, 2.00 mmol, 1.0 eq), **2a** (873.9 mg, 2.40 mmol, 1.2 eq), $[Cp*RhCl_2]_2$ (12.5 mg, 0.01 mmol, 2 mol%) and $Zn(OAc)_2$ (367 mg, 2.00 mmol, 1.0 eq) was dissolved in HFIP (10.0 mL). Then the resulting mixture was stirred at room temperature for 12.0 h. When the reaction was finished, the product was purified by preparative thin layer chromatography (DCM/MeOH = 20/1). **3a**, a pale-white solid (639 mg, 85% yield).

In a 100 mL reaction tube, the mixture of 1m (310.4 mg, 2.00 mmol, 1.0 eq), 2a (873.9 mg, 2.40 mmol, 1.2 eq), [Cp*RhCl₂]₂ (12.4 mg, 0.01 mmol, 1 mol%) and Zn(OAc)₂ (366.9 mg, 2.00 mmol, 1.0 eq) was dissolved in HFIP (10.0 mL). Then the resulting mixture was stirred at room temperature

for 12.0 h. When the reaction was finished, the product was purified by preparative thin layer chromatography (DCM/MeOH = 20/1). The product **3m** was obtained as a pale-yellow solid (500 mg, 79% yield).

Transformation assays

In a 25 mL reaction tube, compound **3a** (35.5 mg, 0.1 mmol, 1.0 eq) iodocyclopentane (23.5 mg, 0.15 mol, 1.5 eq), and K_2CO_3 (13.8 mg, 0.10 mol, 1.0 eq) were dissolved in CH₃CN (4 mL). Then the resulting mixture was stirred and refluxed at 60 °C for 12.0 h. When the reaction was finished, the product was separated by thin layer chromatography plates (DCM/MeOH = 20/1), the product **4a** was obtained as a white solid (26 mg, 62% yield).

In a 25 mL reaction tube, compound **3a** (35.5 mg, 0.1 mmol, 1.0 eq.) 1,2-diphenylethyne (21.4 mg, 0.12 mol, 1.2 eq), and NaOAc (8.2 mg, 0.10 mol, 1.0 eq) were dissolved in TFE (4 mL). Then the resulting mixture was stirred and refluxed at 60 °C for 12.0 h. When the reaction was finished, the product was separated by thin layer chromatography plates (DCM/MeOH = 20/1), the product **4b** was obtained as a white solid (30 mg, 57% yield).

Characterization Data of 4a and 4b.

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-(cyclopentyloxy)-2H-chromen-2-one (4a): yellow solid (61 mg, yield 89%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.98 (d, *J* = 7.0 Hz, 1H), 7.90 (d, *J* = 8.9 Hz, 1H), 7.80 - 7.74 (m, 1H), 7.66 - 7.51 (m, 5H), 7.47 - 7.39 (m, 1H), 7.38 (d, *J* = 8.2 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.20 - 7.13 (m, 1H), 4.59 - 4.53 (m, 1H), 1.67 - 1.43 (m, 4H),

1.43 – 1.31 (m, 3H), 1.33 – 1.26 (m, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 161.7, 160.2, 151.9, 136.7, 132.5, 132.0, 131.8, 131.0, 130.5, 129.0, 128.9, 127.8, 126.5, 125.8, 124.3, 123.7, 117.9, 117.6, 116.0, 116.0, 112.9, 84.6, 32.7, 32.4, 22.9, 22.8. HRMS (ESI-MS) m/z: [M+H]⁺ Calcd for C₂₆H₂₁N₃O₃ 424.1656; Found: 424.1652.

(E)-3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-3-(1,2-diphenylvinyl)phenyl)-4-hydroxy-2Hchromen-2-one (4b): yellow solid (30 mg, 57% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.63 (d, J = 7.0 Hz, 1H), 7.86 – 7.66 (m, 1H), 7.65 – 7.53 (m, 2H), 7.52 – 7.35 (m, 3H), 7.35 – 7.13 (m, 3H), 7.13 – 6.96 (m, 4H), 6.94 – 6.62 (m, 6H), 6.46 (d, 2H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 161.5, 152.2, 145.8, 142.4, 139.3, 136.8, 131.6, 131.2, 130.3, 130.0, 128.7, 128.3, 127.8, 127.3, 126.7, 126.4, 124.8, 123.5, 118.1, 115.8, 114.9. HRMS (ESI-MS) m/z: [M+H]⁺ Calcd for C₃₅H₂₃N₃O₃ 534.1812; Found: 534.1808.

Mechanistic Experiments

Deuterium Incorporation Experiment A

A mixture of **1a** (19.6 mg, 0.1 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol, 5 mol%), and $Zn(OAc)_2$ (18.3 mg, 0.1 mmol, 1.0 equiv) was placed in a 5 mL reaction tube. To this, a solvent mixture of HFIP and CD₃OD (0.5 mL each) was added. Then the resulting mixture was stirred at room temperature for overnight. When the reaction was finished, the product was separated by thin layer chromatography plates (DCM/MeOH = 20/1), the product **1a**- D_n was used for ¹H-NMR analysis. Found no obvious H/D exchange occurred at the phenyl group of **1a**- D_n (< 5% D).

Deuterium Incorporation Experiment B

To a mixture of **1a** (19.6 mg, 0.1 mmol, 1.0 equiv.), **2a** (0.15 mmol, 1.5 equiv.), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol, 5 mol%), and Zn(OAc)₂ (18.3 mg, 0.1 mmol, 1.0 equiv.) in a 5 mL reaction tube, a solvent mixture of HFIP/CD₃OD (0.5 mL/0.5 mL) was added. Then the resulting mixture was stirred at room temperature for overnight. When the reaction was finished, the product was separated by thin layer chromatography plates (DCM/MeOH = 20/1). The reaction of **1a** (19.6 mg, 0.1 mmol, 1.0 eq) with **2a** (54.6 mg, 0.15 mmol, 1.5 eq.) provided the product **3a-D**. Found no obvious H/D exchange occurred on the **3a-D** (< 5% D).

Determination of the KIE

Two parallel reactions for KIE value measurement

Following general procedure for the synthesis of **3a**. **1a** (0.1 mmol) or **1a-d**₅ (0.1 mmol), **2a** (0.15 mmol), ZnOAc (0.1 mmol), [Cp*RhCl₂]₂ (5 mol%), HFIP (1 mL) were submitted to the typical reaction condition. These reactions were stopped at 0.5 h, 1 h, 2 h, and 4 h and the resulting mixture was separately extracted with diethyl ether. The yields of product were shown below. After plotting the product yield (%) vs time (min), the k_H/k_D ratio of 1.62 was obtained.

Time (h)	0.5	1	2	4
3a (%)	19	28	40	56
3a-d ₄ (%)	8	14	22	31

- 11.27 ₆ 8.96

8,955 8,

600 MHz, DMSO- d_6

X-ray data of compound 3zd (Deposition Data: CCDC 2412343)

Crystal structure of compound **3zd**, showing an ellipsoid contour probability level of 50%.

Identification code	3zd
Identification code	mo_20241834_0m
Empirical formula	$C_{22}H_{15}N_{3}O_{4}$
Formula weight	385.37
Temperature/K	170
Crystal system	monoclinic
Space group	C2/c
a/Å	17.7123(9)
b/Å	13.5331(5)
c/Å	15.9381(7)
α/°	90
β/°	106.648(2)
$\gamma/^{\circ}$	90
Volume/Å ³	3660.3(3)
Z	8
pcalcg/cm ³	1.399
µ/mm ⁻¹	0.099
F(000)	1600.0
Crystal size/mm ³	$0.15\times0.08\times0.05$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.85 to 52.766
Index ranges	$\text{-}22 \le h \le 17, \text{-}16 \le k \le 16, \text{-}17 \le l \le 19$

Table S1. Crystal data and structure refinement for compound 3zd.

Reflections collected	11560
Independent reflections	3692 [Rint = 0.0752, Rsigma = 0.0797]
Data/restraints/parameters	3692/0/264
Goodness-of-fit on F ²	1.027
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0542, wR_2 = 0.1151$
Final R indexes [all data]	$R_1 = 0.0953, wR_2 = 0.1382$

References

- [1] Demkiw K, Araki H, Elliott E L, et al. A Nitrogen-Assisted One-Pot Heteroaryl Ketone Synthesis from Carboxylic Acids and Heteroaryl Halides. *J. Org. Chem.* **2016**, 81, 3447-3456.
- [2] Lv G, Zhang Q, Zhang C, et al. The Pyridotriazole Works as a Traceless Directing Group: A C H Activation/Annulation Cascade Reaction with Iodonium Ylides. *Org. Lett.* 2023, 25, 4022-4027.
- [3] Ren J, Pi C, Cui X, Wu Y. Transition Metal-Controlled Divergent Annulations of Azomethine Imines with Iodonium Ylides via C-Centered [1,2]-Rearrangement. Org. Lett. 2023, 25, 2582-2587.
- [4] Jiang Y, Li P, Zhao J, Liu B, Li X. Iodonium Ylides as Carbene Precursors in Rh(III)-Catalyzed C-H Activation. Org. Lett. 2020, 22, 7475-7479.

Copies of ¹H, ¹³C NMR and ¹⁹F NMR spectra

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-2H-chromen-2-one (3a)

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-5-methylphenyl)-4-hydroxy-2H-chromen-2-one (3b)

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-5-methoxyphenyl)-4-hydroxy-2H-chromen-2-one (3c)

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-5-fluorophenyl)-4-hydroxy-2H-chromen-2-one (3d)

3d, 471 MHz, DMSO-*d*₆

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-5-chlorophenyl)-4-hydroxy-2H-chromen-2-one (3e)

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-5-bromophenyl)-4-hydroxy-2H-chromen-2-one (3f)

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-5-(tert-butyl)phenyl)-4-hydroxy-2H-chromen-2-one (3g)

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-4-(trifluoromethyl)phenyl)-4-hydroxy-2H-chromen-2-one (3h)

pdata/1

3h, 471 MHz, DMSO-*d*₆

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240

4-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-3-(4-hydroxy-2-oxo-2H-chromen-3-yl)benzonitrile (3i)

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-3-methoxyphenyl)-4-hydroxy-2H-chromen-2-one (3j)

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-3-fluorophenyl)-4-hydroxy-2H-chromen-2-one (3k)

pdata/1

3k, 471 MHz, DMSO-*d*₆

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240

4-hydroxy-3-(2-(quinolin-2-yl)phenyl)-2H-chromen-2-one (3l)

4-hydroxy-3-(2-(pyridin-2-yl)phenyl)-2H-chromen-2-one (3m)

3m, 500 MHz, DMSO-d₆

90

4-hydroxy-3-(2-(pyrimidin-2-yl)phenyl)-2H-chromen-2-one (3n)

3n, 500 MHz, DMSO-*d*₆

8.682 8.673 7.999 7.9984 7.861 7.861 7.861 7.861 7.555 7.552 7.552 7.572 7.572 7.572 7.572 7.572 7.471 7.572 7.488 7.419 7.2418 7.2718 7.278 7.2788 7.2588 7.2588 7.25587 7.25587 7.25587 7.2558777 7.2558775 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

3-(2-(1H-pyrazol-1-yl)phenyl)-4-hydroxy-2H-chromen-2-one (30)

30, 500 MHz, DMSO-*d*₆

4-hydroxy-3-(1-(pyridin-2-yl)-1H-indol-2-yl)-2H-chromen-2-one (3p)

3q, 600 MHz, CDCl₃

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

3-(2-(benzo[d]oxazol-2-yl)phenyl)-4-(l3-oxidanyl)-2H-chromen-2-one (3r)

4-hydroxy-3-(2-(oxazol-2-yl)phenyl)-2H-chromen-2-one (3s)

2-(2-(4-hydroxy-2-oxo-2*H*-chromen-3-yl)phenyl)-2,3-dihydrophthalazine-1,4-dione (3t)

1-(2-(4-hydroxy-2-oxo-2*H*-chromen-3-yl)phenyl)-1,2-dihydropyridazine-3,6-dione (3u)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

(Z)-3-(5-bromo-2-(1-(methoxyimino)ethyl)phenyl)-4-hydroxy-2*H*-chromen-2-one (3v)

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-7-fluoro-4-hydroxy-2H-chromen-2-one (3w)

pdata/1

--74.58

QН O [≿]on <u>й</u>–и

3w, 471 MHz, DMSO-*d*₆

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-6-bromo-4-hydroxy-2H-chromen-2-one (3x)

pdata/1

3y, 500 MHz, CDCl₃

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-8-methyl-2H-chromen-2-one (3z)

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-7-methoxy-2H-chromen-2-one (3za)

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-6-methyl-2H-chromen-2-one (3zb)

S54

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-6-fluoro-4-hydroxy-2H-chromen-2-one (3zc)

3zc, 500 MHz, DMSO-d₆

fl (ppm) ò

---118.448

3zc, 565 MHz, DMSO- d_6

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -22 fl (ppm)

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-6-methoxy-2H-chromen-2-one (3zd)

160 150 140 130 120 110 100 f1 (ppm) 220 210 -10

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-1-methylquinolin-2(1H)-one (3ze) - 3.467 ŌН Ň-3ze, 500 MHz, DMSO- d_6 я/М ж 0.74 5.30 5.30 1.00 3.14₌ 0.86H 15 14 -1 13 12 11 10 0 7 f1 (ppm) 20 520 DMSO d6 161.942 156.337 137.586 137.586 137.586 137.586 137.586 132.880 131.829 130.753 130.753 130.753 130.753 125.495 127.765 123.414 127.765 117.875 117.875 117.875 117.875 117.875 117.875 117.875 117.875 117.857 117.875 117.857 117.85 -- 29.086 ŌН Ν ٥N Ϊ Ň-Ń 3ze, 500 MHz, DMSO-d₆

170 160 150 140 130 120 110 100 f1 (ppm) 230 220 210 200 190 180 70 60 50 40 30 20 10 0 -10 90 80

3zf, 500 MHz, DMSO-d₆

170 160 150 140 130 120 110 100 f1 (ppm) -10

5-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-6-hydroxy-2-phenylpyrimidin-4(3H)-one (3zh)

170 160 150 140 130 120 110 100 f1 (ppm) -10 220 210

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-hydroxy-2H-pyrido[1,2-a]pyrimidin-2-one (3zi)

10.41 10

3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)phenyl)-4-(cyclopentyloxy)-2H-chromen-2-one (4a)

(E)-3-(2-([1,2,3]triazolo[1,5-a]pyridin-3-yl)-3-(1,2-diphenylvinyl)phenyl)-4-hydroxy-2Hchromen-2-one (4b)

