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COMPUTATIONAL DETAILS 

1. Correction of Translational Entropy in Solution 

We evaluated the electronic energy ( ) with zero-point energy correction in solE

solution. For each species, the  is defined through equation (S1): solE

                                                                          (S1) 0
sol

vpot
sol gasE E E 

the  is the potential energy including non-electrostatic energy in solution and pot
solE

 delegates the zero-point vibrational energy in the gas phase. In a bimolecular 0v
gasE

process, such as the interaction between Co(II) complex and NFSI, the entropy change 

which can decreases considerably must be taken into consideration. In such case, Gibbs 

energy ( ) need be computed as follows: o
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where  is 0 in solution,  is the thermal correction by translational, vibrational, V thermE

and rotational movements, and , , and  are rotational, vibrational, and r
oS v

oS t
oS

translational entropies, respectively. In general, the Sackur-Tetrode equation is used to 

evaluate translational entropy . In solution, however, the usual Sackur-Tetrode t
oS

equation cannot be directly applied to the evaluation of , because the translation t
oS

movement is suppressed very much in solution.S1 In this context, the translational 

entropy was corrected with the method developed by Whitesides et al., where the 

rotational entropy was evaluated in a normal manner. Thermal correction and entropy 

contributions of vibration movements to the Gibbs energy were evaluated with the 

frequencies calculated at 298.15 K and 1 atm. 
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2. Activation barrier of single electron transfer step 

According to the Marcus equation, the reorganization energy  is normally 

decomposed into internal energy (i) and external energy (o). The internal 

reorganization energy i can be estimated according to the equation (S3):
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where QR and QP are the equilibrium geometries of the reactants and products, 

respectively. In addition, the external reorganization energy o may be calculated from 

equation (S4−S6):
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where a1 is the radii of the oxidant, a2 is the radii of the reductant, R = a1 + a2, 𝜀op is 

the optical dielectric constant (op = 2.25),  is the static dielectric constant for the 

tetrahydrofuran solvent ( = 7.425), and Gr is the free energy change of the reaction.

Table S1 Relative energies of selected species involving different spin states calculated 

with using various functionals and basis sets. 
Functionals 4N1 2N1 6N4 4N4 2N4 2N7 4N7 6N7 U-2N9a U-4N9a 2N10a 4N10a

aM06 0.0 10.1 0.0 1.4 10.5 0.0 4.1 15.1 0.0 3.5 0.0 3.5

bM06 0.0 4.8 0.0 7.7 8.4 0.0 13.6 27.9 0.0 2.8 0.0 3.2

cSol-M06 0.0 11.6 0.0 4.8 10.3 0.0 2.3 13.5 0.0 0.8 0.0 2.8

dM062X 0.0 17.0 0.0 39.0 45.4 0.0 11.2 13.7 0.0 0.5 0.0 4.7

eB3-D3 0.0 1.4 0.0 1.0 4.2 0.0 16.7 27.5 0.0 2.4 0.0 6.9

fTPSSH 0.0 -12.8 0.0 1.3 -18.8 0.0 23.6 37.4 0.0 18.5 0.0 23.6

a at the SMD(THF)/(U)M06/[6-311++G(d,p)/SDD(Co)]//(U)M06/[6-31G(d)/LanL2DZ(Co)] level

b at the SMD(THF)/(U)M06/[def2-TZVPP]//(U)M06/[def2-SVP] level

c at the SMD(THF)/(U)M06/[6-311++G(d,p)/SDD(Co)]//SMD(THF)/(U)M06/[6-31G(d)/ LanL2DZ(Co)] level

d at the SMD(THF)/(U)M062X/[6-311++G(d,p)/SDD(Co)]//(U)M062X/[6-31G(d)/LanL2DZ(Co)] level

e at the SMD(THF)/(U)B3-D3/[6-311++G(d,p)/SDD(Co)]//(U)B3-D3/[6-31G(d)/LanL2DZ(Co)] level

f at the SMD(THF)/(U)TPSSH/[def2TZVP]//(U)M06/[6-31G(d)/LanL2DZ(Co)] level
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Fig. S1 Gibbs energy profiles (ΔG°298.15) of benzenesulfonimide radical dissociation 

from U-4N3 followed by transmetalation and HAT.

Ph

EtOOC H

NPhO2S
PhO2S

N N

O OCo

60.5
4TS4f

Ph

COOEt
H

NPhO2S

PhO2S

N N
O O
Co

4TS4f

4N11f

Ph

EtOOC H

NPhO2S

PhO2S

N N

O O
Co

4N10f

80.3
U-4N9a

83.8

71.6

44.9
2TS4f

2TS4f

2N10f

2N11f

95.8

93.0

58.6

Ph COOEt
H

N
PhO2S SO2Ph

N N
O O
CoIII

U-4N9aU-2N9a
2.72Co: 1.60

C(): 0.770.76

4N10f2N10f
2.69Co: 0.93

2.69Co: 0.95

4N11f2N11f
2.52Co: 1.01

55.8
SET

Fig. S2 Gibbs energy profiles (ΔG°298.15) of carbon cation electrophilic attack pathway.
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Fig. S3 Thermodynamic and kinetic evaluation for the oxidation of CoIII-alkyl by CoIII-

N(SO2Ph)2 to arrive at the CoIV-alkyl intermediate.
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Fig. S5 Gibbs energy profiles (ΔG°298.15) of cobalt catalytic cycle.
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Fig. S7 Comparison of optimized geometries of L1*CoIIIF and L1*CoIIIH compounds 

with different electron spin states.
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Fig. S8 Comparison of optimized geometries of L1*CoIVF and L1*CoIVH compounds 

with different electron spin states.
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Fig. S9 Selected d orbitals of cobalt compounds in various valence states (4N1, U-4N3, 
6N4, U-2N9a, 2N10a). 
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From the NBO analysis: 

(i) The cobalt compound 4N1 has five α electrons and two β electrons, indicating it is a 

divalent cobalt compound in a quadruple state.

(ii) The cobalt compound U-4N3 has five α electrons and one β electron, along with a β 

fluorine atom radical, also suggesting it is a divalent cobalt compound in a quadruple 

state.

(iii) The d orbital of 6N4 contains five α electrons, indicating that 6N4 is a tetravalent 

cobalt compound in a sextet state.

(iv) The cobalt compound U-2N9a has four α electrons and two β electrons, along with 

a β benzylic carbon radical, classifying it as a divalent cobalt compound in a quadruple 

state.

(v) The d orbital of 2N10a has three α electrons and two β electrons, indicating that 
2N10a is a tetravalent cobalt compound in a doublet state.

Optimized structures of enantio-determining transition states
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G°‡ = 2.0 kcal/molU-4TS4eS U-4TS4eR
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Fig. S10 Comparison of optimized geometries of enantio-determining transition states 
U-4TS4eS and U-4TS4eR.
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