Electronic Supplementary Information

Cobalt-Catalyzed Enantioselective Radical Hydroamination of Alkenes with N-Fluorobenzenesulfonimides: Theoretical Insight

of Enantio-Determining S_N 2-like Reductive Elimination

Yu-Jie Liang^{a, b}, Bo Zhu^b, Ya-Bin Jiang^a, and Wei Guan^b*

^a Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, People's Republic of China

^b Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

Table of Contents

COMPUTATIONAL DETAILS	S1
REFERENCES	S9

COMPUTATIONAL DETAILS

1. Correction of Translational Entropy in Solution

We evaluated the electronic energy (E_{sol}) with zero-point energy correction in solution. For each species, the E_{sol} is defined through equation (S1):

$$E_{\rm sol} = E_{\rm sol}^{\rm pot} + E_{\rm gas}^{\rm v_0} \tag{S1}$$

the E_{sol}^{pot} is the potential energy including non-electrostatic energy in solution and $E_{gas}^{v_0}$ delegates the zero-point vibrational energy in the gas phase. In a bimolecular process, such as the interaction between Co(II) complex and NFSI, the entropy change which can decreases considerably must be taken into consideration. In such case, Gibbs energy (G_{sol}^o) need be computed as follows:

$$G_{sol}^{o} = H_{0} - T(S_{r}^{o} + S_{v}^{o} + S_{t}^{o})$$

= $E^{T} + P\Delta V - T(S_{r}^{o} + S_{v}^{o} + S_{t}^{o})$
= $E_{sol} + E_{therm} - T(S_{r}^{o} + S_{v}^{o} + S_{t}^{o})$ (S2)

where ΔV is 0 in solution, E_{therm} is the thermal correction by translational, vibrational, and rotational movements, and S_r^o , S_v^o , and S_t^o are rotational, vibrational, and translational entropies, respectively. In general, the Sackur-Tetrode equation is used to evaluate translational entropy S_t^o . In solution, however, the usual Sackur-Tetrode equation cannot be directly applied to the evaluation of S_t^o , because the translational entropy was corrected with the method developed by Whitesides et al., where the rotational entropy was evaluated in a normal manner. Thermal correction and entropy contributions of vibration movements to the Gibbs energy were evaluated with the frequencies calculated at 298.15 K and 1 atm.

2. Activation barrier of single electron transfer step

According to the Marcus equation, the reorganization energy λ is normally decomposed into internal energy (λ_i) and external energy (λ_o). The internal reorganization energy λ_i can be estimated according to the equation (S3):

$$\lambda_{i} = [E^{D}(Q_{R}) + E^{A}(Q_{R})] - [E^{D}(Q_{P}) + E^{A}(Q_{P})]$$
(S3)

where Q_R and Q_P are the equilibrium geometries of the reactants and products, respectively. In addition, the external reorganization energy λ_o may be calculated from equation (S4–S6):

$$\lambda_o = (332 \text{ kcal/mol})(\frac{1}{2a_1} + \frac{1}{2a_2} - \frac{1}{R})(\frac{1}{\varepsilon_{op}} - \frac{1}{\varepsilon})$$
(S4)

$$\lambda = \lambda_o + \lambda_i \tag{S5}$$

$$\Delta G^{\circ_{\neq}} = \frac{(\Delta G_{\rm r} + \lambda)^2}{4\lambda} \tag{S6}$$

where a_1 is the radii of the oxidant, a_2 is the radii of the reductant, $R = a_1 + a_2$, $\varepsilon \varepsilon_{op}$ is the optical dielectric constant ($\varepsilon_{op} = 2.25$), ε is the static dielectric constant for the tetrahydrofuran solvent ($\varepsilon = 7.425$), and ΔG_r is the free energy change of the reaction.

Table S1 Relative energies of selected species involving different spin states calculated

 with using various functionals and basis sets.

Functionals	⁴ N1	² N1	⁶ N4	⁴ N4	² N4	² N7	⁴ N7	⁶ N7	^{U-2} N9a	^{U-4} N9a	² N10a	⁴ N10a
^a M06	0.0	10.1	0.0	1.4	10.5	0.0	4.1	15.1	0.0	3.5	0.0	3.5
^b M06	0.0	4.8	0.0	7.7	8.4	0.0	13.6	27.9	0.0	2.8	0.0	3.2
^c Sol-M06	0.0	11.6	0.0	4.8	10.3	0.0	2.3	13.5	0.0	0.8	0.0	2.8
^d M062X	0.0	17.0	0.0	39.0	45.4	0.0	11.2	13.7	0.0	0.5	0.0	4.7
^e B3-D3	0.0	1.4	0.0	1.0	4.2	0.0	16.7	27.5	0.0	2.4	0.0	6.9
TPSSH	0.0	-12.8	0.0	1.3	-18.8	0.0	23.6	37.4	0.0	18.5	0.0	23.6

 a at the SMD(THF)/(U)M06/[6-311++G(d,p)/SDD(Co)]//(U)M06/[6-31G(d)/LanL2DZ(Co)] level a

 b at the SMD(THF)/(U)M06/[def2-TZVPP]//(U)M06/[def2-SVP] level

 c at the SMD(THF)/(U)M06/[6-311++G(d,p)/SDD(Co)]//SMD(THF)/(U)M06/[6-31G(d)/ LanL2DZ(Co)] level

 $^{\textit{d}}$ at the SMD(THF)/(U)M062X/[6-311++G(d,p)/SDD(Co)]//(U)M062X/[6-31G(d)/LanL2DZ(Co)] level

^e at the SMD(THF)/(U)B3-D3/[6-311++G(d,p)/SDD(Co)]//(U)B3-D3/[6-31G(d)/LanL2DZ(Co)] level

^f at the SMD(THF)/(U)TPSSH/[def2TZVP]//(U)M06/[6-31G(d)/LanL2DZ(Co)] level

Fig. S1 Gibbs energy profiles ($\Delta G^{\circ}_{298.15}$) of benzenesulfonimide radical dissociation from ^{U-4}N3 followed by transmetalation and HAT.

Fig. S2 Gibbs energy profiles ($\Delta G^{\circ}_{298.15}$) of carbon cation electrophilic attack pathway.

Fig. S3 Thermodynamic and kinetic evaluation for the oxidation of Co^{III} -alkyl by Co^{III} -N(SO₂Ph)₂ to arrive at the Co^{IV}-alkyl intermediate.

Fig. S4 Kinetic energy barrier calculations for steps involving SET.

Fig. S5 Gibbs energy profiles ($\Delta G^{\circ}_{298.15}$) of cobalt catalytic cycle.

Fig. S6 Gibbs energy profiles ($\Delta G^{\circ}_{298.15}$) of benzylic radical attacking the N(SO₂Ph)₂ pathway with one ligand's oxygen atom changed to the axial position.

Fig. S7 Comparison of optimized geometries of L1*Co^{III}F and L1*Co^{III}H compounds with different electron spin states.

Fig. S8 Comparison of optimized geometries of L1*Co^{IV}F and L1*Co^{IV}H compounds with different electron spin states.

Fig. S9 Selected d orbitals of cobalt compounds in various valence states (⁴N1, ^{U-4}N3, ⁶N4, ^{U-2}N9a, ²N10a).

From the NBO analysis:

(i) The cobalt compound ⁴N1 has five α electrons and two β electrons, indicating it is a divalent cobalt compound in a quadruple state.

(ii) The cobalt compound ^{U-4}N3 has five α electrons and one β electron, along with a β fluorine atom radical, also suggesting it is a divalent cobalt compound in a quadruple state.

(iii) The d orbital of ${}^{6}N4$ contains five α electrons, indicating that ${}^{6}N4$ is a tetravalent cobalt compound in a sextet state.

(iv) The cobalt compound ^{U-2}N9a has four α electrons and two β electrons, along with a β benzylic carbon radical, classifying it as a divalent cobalt compound in a quadruple state.

(v) The d orbital of ²N10a has three α electrons and two β electrons, indicating that ²N10a is a tetravalent cobalt compound in a doublet state.

Optimized structures of enantio-determining transition states $H \subset N \odot S C_O$ $U^{4}TS4e^S$ $\Delta \Delta G^{\circ \ddagger} = 2.0 \text{ kcal/mol}$

Fig. S10 Comparison of optimized geometries of enantio-determining transition states ^{U-4}TS4e^S and ^{U-4}TS4e^R.

REFERENCES

S1. (a) Sakaki, S.; Ohnishi, Y. Y.; Sato, H., Theoretical and Computational Studies of Organometallic Reactions: Successful or Not? *Chem. Rec.* 2010, *10*, 29–45; (b) Ishikawa, A., Nakao, Y., Sato, H.; Sakaki, S., Oxygen Atom Transfer Reactions of Iridium and Osmium Complexes: Theoretical Study of Characteristic Features and Significantly Large Differences between These Two Complexes. *Inorg. Chem.* 2009, *48*, 8154–8163; (c) Ishikawa, A., Nakao, Y., Sato, H.; Sakaki, S., Pd(II)-Promoted Direct Cross-Coupling Reaction of Arenes via Highly Regioselective Aromatic C–H Activation: A Theoretical Study. *Dalton Trans.* 2010, *39*, 3279–3289.