An Efficient Method for the Synthesis of π -Expanded Phosphonium Salts

Krzysztof Górski,^a Łukasz W. Ciszewski,^a Antoni Wrzosek,^b Adam Szewczyk,^{*b} Andrzej Sobolewski^{*c} and Daniel T. Gryko^{*a}

Table of context

1.	Experimental	1
2.	Synthetic procedures and compounds characterization data	2
3.	NMR spectra	23
4.	UV-Vis spectra	104
5.	Electrochemistry	135
6.	Computational studies	
7.	Bioimaging	
8.	X-ray analysis	
9.	References	

1. Experimental

All chemicals were bought from Sigma Aldrich, TCI, Ambeed and AlfaAesar, and were used as received unless otherwise noted. All solvents used for the reaction were pure for analysis grade and were taken without further purification. 2-Bromo-4-*n*-butylaniline;¹ 1b, c and (2-bromophenyl)diphenylphosphine oxide;² 2-(2bromophenyl)-N-methylindole, 1f and $1g_{;3}^{:3}$ 10,10,15,15-tetraethyl-5-oxatruxene;⁴ 1p;⁵ 1q;⁶ 1r;⁷ 4,4,5,5tetramethyl-2-(pyren-2-yl)-1,3,2-dioxaborolane;⁸ 9-(8-bromonaftalen-1-yl)phenanthrene;⁹ and $1x^{10}$ were synthesized according to literature procedures. All reactions requiring heating were carried out using an oil bath. All reported NMR spectra were recorded on a 400, 500 or 600 MHz spectrometer. Chemical shifts (δ ppm) for ¹H and ${}^{13}C$ { ${}^{1}H$ } NMR were determined vs solvent residual signal as the internal reference; J values are given in Hz. Due to C-F and C-P couplings, not all signals are visible in ¹³C spectra. When C-P multiplets could be assigned, appropriate multiplicity was provided. UV-Vis absorption spectra were recorded in toluene, dichloromethane, tetrahydrofuran and acetonitrile in 1 cm quartz cuvettes at room temperature using dilute solutions (C \approx 10⁻⁵ M) to avoid additional bands from aggregates and fluorescence reabsorption in emission spectra. Emission spectra were obtained upon excitation at 300 nm (for 2i,t,r,x) or 350 nm (for rest salts). To determine the fluorescence quantum yield in solution, quinine sulphate solution in 0.5M H_2SO_4 ($\Phi=0.51$) was used as a standard. Solid state spectra as well as quantum yield were determined using an integrating sphere. Chromatography was performed on silica (Kieselgel 60, 200-400 mesh). Mass spectra were obtained with an EI ion source and the EBE double-focusing geometry mass analyzer or spectrometer equipped with an electrospray ion source with q-TOF type mass analyzer. 2. Synthetic procedures and compounds characterization data

PP1: 4-n-Butylaniline (8 mmol) and 3-formylbenzo[b]furan (8 mmol) were dissolved in 6 mL of acetic acid, followed by heating up to 50 °C. After 1 h, butan-2,3-dione (4 mmol) and iron(III) perchlorate hydrate (0.024 mmol) were added. After 24 h, the reaction mixture was cooled to room temperature and filtrated. Afforded solid was washed with 2x10 mL of methanol and 2x10 mL of acetonitrile to obtain 318 mg (13.2 %) as a white solid.

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.54 (d, J = 7.8 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.3 Hz, 4H), 7.30 (t, J = 7.7 Hz, 2H), 7.27 (s, 2H), 7.23 (d, J = 8.4 Hz, 4H), 7.18 (t, J = 7.5 Hz, 2H), 6.55 (s, 2H), 2.68 – 2.63 (m, 4H), 1.67 – 1.60 (m, 4H), 1.42 – 1.35 (m, 4H), 0.96 (t, J = 7.3 Hz, 6H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 155.0, 141.7, 141.3, 137.4, 131.3, 129.2, 126.6, 125.7, 125.1, 124.1, 122.7, 120.9, 114.7, 111.2, 94.2, 35.1, 33.6, 22.3, 13.7..

HRMS (APCI) m/z: $[M^++H^+]$ Calcd for C₄₂H₃₉N₂O₂ 603.3012; Found: 603.3016.

PP2: 4-n-Butylaniline (8 mmol) and 3-formylbenzo[b]thiophene (8 mmol) were dissolved in 6 mL of acetic acid, followed by heating up to 50 °C. After 1 h, butan-2,3-dione (4 mmol) and iron(III) perchlorate hydrate (0.024 mmol) were added. After 24 h, the reaction mixture was cooled to room temperature and filtrated. Afforded solid was washed with 2x10 mL of methanol and 2x10 mL of acetonitrile to obtain 1.05g (41.4 %) as a pale yellow solid.

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.90 - 7.87 (m, 4H), 7.37 - 7.30 (m, 4H), 7.22 (d, J = 8.4 Hz, 4H), 7.13 (d, J = 8.4 Hz, 4H), 7.08 (s, 2H), 6.56 (s, 2H), 2.64 - 2.56 (m, 4H), 1.62 - 1.55 (m, 4H), 1.39 - 1.30 (m, 4H), 0.93 (t, J = 7.4 Hz, 6H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 140.6, 139.8, 138.2, 137.5, 130.6, 129.4, 129.2, 128.9, 124.6, 124.3, 124.2, 123.5, 122.5, 95.3, 35.0, 33.5, 22.3, 13.7.

HRMS (APCI) m/z: [*M*+*H*⁺] Calcd for C₄₂H₃₉N₂S₂ 632.2555; Found: 635.2549.

PP3: 4-n-Butylaniline (20 mmol) and 2-bromobenzaldehyde (20 mmol) were dissolved in 10 mL of acetic acid and 5 mL of toluene, followed by heating up to 50 °C. After 1 h, butan-2,3-dione (10 mmol) and iron(III) perchlorate hydrate (0.06 mmol) were added. After 24 h, the reaction mixture was cooled to room temperature and filtrated. Afforded solid was washed with 2x10 mL of methanol and 2x10 mL of acetonitrile to obtain 3.56g (52.3 %) as a white solid.

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.59 (d, J = 8.0 Hz, 2H), 7.35 (dd, J = 7.6, 1.5 Hz, 2H), 7.30 – 7.25 (m, 2H), 7.17 (td, J = 7.9, 1.6 Hz, 2H), 7.15 – 7.11 (m, 8H), 6.43 (s, 2H), 2.63 – 2.58 (m, 4H), 1.64 – 1.56 (m, 4H), 1.41 – 1.34 (m, 4H), 0.95 (t, J = 7.4 Hz, 6H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 140.1, 137.4, 135.1, 133.5, 133.1, 132.9, 129.7, 128.9, 128.8, 127.0, 124.5, 123.9, 96.0, 35.0, 33.5, 22.4, 13.7.

HRMS (APCI) m/z: [*M*+*H*⁺] Calcd for C₃₈H₃₇N₂Br₂ 679.1323; Found: 679.1328.

PP4: 4-n-Butylaniline (30 mmol), 2-bromobenzaldehyde (15 mmol) and 2-nitrobenzaldehyde (15 mmol) were dissolved in 15 mL of acetic acid, followed by heating up to 50 °C. After 1 h, butan-2,3-dione (15 mmol) and iron(III) perchlorate hydrate (0.09 mmol) were added. After 24 h, the reaction mixture was cooled to room temperature and filtrated. Crude mixture was dissolved in dichloromethane, adsorbed on celite, and purified via column chromatography using silica gel as stationary phase and hexane $\rightarrow 10\%$ dichloromethane in hexane as eluent to obtain 1.39 g (14.3 %) of orange solid.

¹H NMR: (600 MHz, CD₂Cl₂): δ 7.74 (dd, J = 8.2, 0.9 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.54 (td, J = 7.6, 1.2 Hz, 1H), 7.48 (dd, J = 7.7, 1.3 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.33 (dd, J = 7.6, 1.6 Hz, 1H), 7.26 (td, J = 7.5, 1.2 Hz, 1H),

7.16 (td, J = 7.8, 1.7 Hz, 1H), 7.12 (d, J = 3.6 Hz, 6H), 7.09 (d, J = 8.5 Hz, 2H), 6.39 (s, 1H), 6.38 (s, 1H), 2.59 (q, J = 7.8 Hz, 4H), 1.62 – 1.56 (m, 4H), 1.39 – 1.33 (m, 4H), 0.95 – 0.92 (m, 6H).

¹³C {¹H} NMR: (151 MHz, CD₂Cl₂): δ 148.9, 140.8, 140.3, 137.2, 136.4, 134.9, 134.4, 133.1, 133.0, 132.8, 132.3, 131.0, 130.0, 129.9, 129.1, 129.0, 128.8, 128.3, 127.8, 127.0, 124.4, 124.2, 124.1, 124.0, 95.7, 95.3, 35.0, 33.5, 33.5, 22.3, 22.2, 13.7.

HRMS (APCI) m/z: [*M*+*H*⁻⁺] Calcd for C₃₈H₃₇N₃O₂Br 646.2069; Found: 646.2072.

PP5: 2-Bromo-4-n-butylaniline (20 mmol) and benzaldehyde (20 mmol) were dissolved in 10 mL of acetic acid and 5 mL of toluene, followed by heating up to 50 °C. After 1 h, butan-2,3-dione (10 mmol) and iron(III) perchlorate hydrate (0.06 mmol) were added. After 24 h, to reaction mixture 25 mL of methanol was added and the solution was separated from gummy oil which was dissolved in dichloromethane and dried over MgSO₄. The crude mixture was adsorbed on silica gel, and purified via column chromatography using silica gel as stationary phase and hexane \rightarrow 5% dichloromethane in hexane \rightarrow 10% dichloromethane in hexane as eluent. Afforded solid was suspended in pentane and filtrated to obtain 1.14 g (16.8 %) as a white solid. (mixture of atropoisomers)

 $\overset{'}{\mathsf{nBu}} \overset{'}{\mathsf{H}} \operatorname{NMR:} (500 \text{ MHz}, \text{ } \operatorname{CD}_2\text{Cl}_2): \delta 7.60 - 7.56 \text{ (m, 2H)}, \\ 7.25 - 7.15 \text{ (m, 10H)}, 7.14 - 7.08 \text{ (m, 3H)}, 7.05 \text{ (d, } J = 8.0 \text{ Hz}, 1\text{H)}, \\ 6.29 - 6.27 \text{ (m, 2H)}, 2.68 - 2.65 \text{ (m, 4H)}, 1.69 - 1.61 \text{ (m, 4H)}, 1.43 - 1.36 \text{ (m, 4H)}, 0.97 \text{ (t, J} = 7.4 \text{ Hz}, 6\text{H)}.$

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 144.5, 144.4, 137.3, 137.1, 137.0, 133.6, 133.5, 133.4, 133.3, 132.4, 132.1, 129.94, 129.86, 128.3, 128.2, 128.1, 128.1, 127.3, 127.2, 125.9, 121.5, 121.4, 94.6, 94.1, 34.8, 33.2, 22.2, 13.6.

HRMS (APCI) m/z: $[M+H^+]$ Calcd for C₃₈H₃₇N₂Br₂ 679.1323; Found: 679.1324.

Synthetic procedures for phosphine oxides 1a-x:

1a: 1-(2-bromo-4-(*tert*-butyl)phenyl)-1*H*-pyrrole was synthesized according to Gross general procedure¹¹ from 1.20 g (5.26 mmol) of 2-bromo-4-(*tert*-butyl)aniline and 0.71 ml (5.52 mmol, 1.05 equiv.) of 2,5-dimethoxytetrahydrofuran to give 1.39 g (5.00 mmol, 95%) of crude pyrrole, which was used in the next step without further purification. To a solution of the latter (1.361 g, 4.89 mmol) in anhydrous THF (4 ml), stirred at -78 °C, 2.76 ml of 1.95

M solution of *n*-BuLi (5.38 mmol, 1.1 equiv.) was added dropwise. The mixture was stirred for 30 minutes after which 1.00 ml (5.28 mmol, 1.1 equiv.) of diphenylphospinic chloride was added dropwise. The mixture was allowed to reach room temperature and was left to stir overnight, Then the mixture was quenched with water, the layers were separated and the aqueous phases was extracted with DCM three times. Combined organic phases were dried over Na_2SO_4 , filtrated and evaporated in vacuo. Crude mixture was purified by column chromatography on silica gel using 2:1 AcOEt/hexane mixutre as eluent to give 239 mg (0.59 mmol, 12%) of (5-(*tert*-butyl)-2-(1*H*-pyrrol-1-yl)phenyl)diphenylphosphine oxide (**1a**) as a white solid.

¹H NMR: (500 MHz, CDCl₃): δ 7.67 – 7.60 (m, 4H), 7.58 (ddd, J = 8.2, 2.3, 1.1 Hz, 1H), 7.46 – 7.31 (m, 7H), 7.27 (dd, J = 8.3, 4.9 Hz, 1H), 6.81 (t, J = 2.2 Hz, 2H), 5.86 (t, J = 2.1 Hz, 2H), 1.18 (s, 9H).

¹³C {¹H} NMR: (126 MHz, CDCl₃): δ 149.7 (d, J = 10.7 Hz), 142.2 (d, J = 4.4 Hz), 132.5 (d, J = 4.1 Hz), 132.1 (d, J = 91.7 Hz), 131.4 (d, J = 2.8 Hz), 131.2 (d, J = 9.6 Hz), 130.0 (d, J = 2.4 Hz), 128.1 (d, J = 12.2 Hz), 128.0 (d, J = 99.7 Hz), 127.7 (d, J = 7.8 Hz), 123.3, 109.2, 34.7, 31.0.

³¹P NMR (202 MHz, CDCl₃): δ 27.1.

HRMS (APCI) m/z: [*M*+*H*⁺] Calcd for C₂₆H₂₇NOP⁺ 400.1825; Found: 400.1829.

GP-1: General procedure for synthesis of phosphine oxides 1d-e, s-v:

A solution of (2-bromophenyl)diphenylphosphine oxide (1 equiv.), boronic acid or boronic pinacol ester (1 equiv.), triphenylphospine (12 mol%), anhydrous tripotassium phosphate (2 equiv.) and bis(dibenzylideneacetone)palladium(0) (3 mol%) in anhydrous 1,4-dioxane (0.4 M), was stirred at 105 °C for 16 hours in a Schlenk vessel under argon atmosphere. The mixture was cooled down to room tempearature, diluted with water and extracted with DCM (x3). Combined organic layers were dried over Na₂SO₄, filtrated and evaporated in vacuo to give crude product which was purified by column chromatography.

1d: Synthesised according to GP-1 from 712 mg (2.00 mmol) of (2bromophenyl)diphenylphosphine oxide and 355 mg (2.00 mmol) of benzo[b]thiophen-2-ylboronic acid. Crude product was purified by column chromatography on silica gel using 50-60% AcOEt/hexane mixture as eluent, giving 429 mg (1.05 mmol, 52%) of 1d as a white solid.

7.20 (m, 1H).

¹³C {¹H} NMR: (101 MHz, CD₂Cl₂): δ 141.7 (d, J = 4.5 Hz), 141.0, 140.3, 139.9 (d, J = 7.5 Hz), 135.1 (d, J = 11.9 Hz), 133.6 (d, J = 104.8 Hz), 133.5 (d, J = 101.5 Hz), 133.3 (d, J = 9.1 Hz), 132.4 (d, J = 2.5 Hz), 132.0 (d, J = 9.3 Hz), 131.7 (d, J = 2.8 Hz), 128.7 (d, J = 12.1 Hz), 128.3, 128.2, 127.9, 124.7 (d, J = 8.8 Hz), 124.5, 122.0.

³¹P NMR (162 MHz, CD₂Cl₂): δ 27.5.

HRMS (ESI) m/z: $[M+H^+]$ Calcd for C₂₆H₂₀OPS⁺ 411.0967; Found: 411.0969.

1e: Synthesised according to **GP-1** from 712 mg (2.00 mmol) of (2-bromophenyl)diphenylphosphine oxide and 355 mg (2.00 mmol) of benzofuran-2-ylboronic acid. Crude product was purified by column chromatography on silica gel using 60% AcOEt/hexane mixture as eluent, giving 481 mg (1.22 mmol, 61%) of **1e** as an off-white solid.

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.89 (dd, J = 7.8, 4.0 Hz, 1H), 7.65 (td, J = 12.1, 10.6, 5.1 Hz, 5H), 7.51 – 7.27 (m, 10H), 7.25 – 7.07 (m, 3H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 155.2, 154.1 (d, *J* = 4.6 Hz), 135.7, 135.6, 135.4 (d, *J* = 11.2 Hz), 133.9 (d, *J* = 105.6 Hz), 132.5 (d, *J* = 2.5 Hz), 132.1 (d, *J* = 9.5 Hz), 132.1 (d, *J* = 99.4 Hz), 131.9 (d, *J* = 2.8 Hz), 131.1 (d, *J* = 9.3 Hz), 129.3, 128.7 (d, *J* = 12.1 Hz), 124.9, 123.2, 121.9, 111.4, 108.9.

³¹P NMR (202 MHz, CD₂Cl₂): δ 29.2.

HRMS (ESI) m/z: [*M*+*H*⁺] Calcd for C₂₆H₂₀O₂P⁺ 395.1195; Found: 395.1200.

1h: (2-(1H-indol-4-yl)phenyl)diphenylphosphine oxide was synthesised according to**GP-1**from 712 mg (2.00 mmol) of (2-bromophenyl)diphenylphosphine oxide and 486 mg (2.00 mmol) of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole. 393 mg (1.00 mmol) of crude (2-(1H-indol-4-yl)phenyl)diphenylphosphine oxide was dissolved in anhydrous THF (5 ml), chilled to 0 °C, then 80 mg (2.00 mmol) of 60% (wt.) NaH suspension in mineral oil was added in one portion and the mixture

was stirred for 1 hour, next $125 \ \mu l$ (2.00 mmol) of MeI was added to the reaction mixture. The solution was warmed to room temperature and stirred for additional 2 hours, then it was quenched with water, diluted with DCM and the layers were separated. Aqueous layer was extracted with DCM (3 times), combined organic phases were dried over Na₂SO₄ and concentrated *in vacuo*. Crude product was purified by column chromatography on silica gel using 3:2:1 AcOEt/hexane/DCM mixture as eluent, giving 350 mg (0.86 mmol, 43% over two steps) of **1h** as an offwhite solid.

¹H NMR: (500 MHz, CD_2Cl_2): δ 7.70 – 7.48 (m, 5H), 7.47 – 7.18 (m, 6H), 7.13 – 6.86 (m, 7H), 6.05 (d, J = 3.1 Hz, 1H), 3.67 (s, 3H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): 146.5 (d, J = 8.8 Hz), 136.8, 134.9 (d, J = 12.0 Hz), 133.2 (d, J = 4.0 Hz), 133.0 (d, J = 102.6 Hz), 132.6 (d, J = 9.7 Hz), 131.8 (d, J = 2.6 Hz), 129.0, 128.3, 127.1 (d, J = 12.3 Hz), 122.7, 121.0, 109.3, 100.9, 33.2.

³¹P NMR (202 MHz, CD₂Cl₂): δ 26.4.

HRMS (ESI) m/z: [*M*+*H*⁺] Calcd for C₂₇H₂₃NOP⁺ 408.1512; Found: 408.1516.

1i: Synthesised according to slightly modified literature procedure:¹² A round-bottom flask equipped with a stirring bar was charged with 2-(2bromophenyl)-1-methyl-1H-indole (572 mg, 2.00 mmol), 4,4,4',4',5,5,5',5'octamethyl-2,2'-bi(1,3,2-dioxaborolane) (533 mg, 2.10 mmol, 1.05 equiv.), potassium acetate 2.40 (236)mg, mmol, 1.2 equiv.) and bis(triphenylphosphine)palladium(II) dichloride (28 mg, 40 µmol, 2 mol%). To aid the stirring 3 ml of EtOH was added and the reaction vessel was transferred to a preheated oil bath (110 °C). During the reaction ethanol was allowed to evaporate. After full conversion of 2-(2-bromophenyl)-1-methyl-1H-indole

was observed by TLC (1 hour), potassium *tert*-butoxide (561 mg, 5.00 mmol, 2.5 equiv.), (2bromophenyl)diphenylphosphine oxide (712 mg, 2.00 mmol, 1 equiv.) and ethanol (4 ml) was added and the mixture was refluxed for 16 hours. Then the reaction was cooled down, quenched with water, diluted with DCM and the aqueous layer was extracted with DCM (x3). Combined organic phases were dried over Na_2SO_4 and concentrated *in vacuo*. Crude product was purified by column chromatography on silica gel using 50% AcOEt/hexane mixture as eluent. Oily residue was then recrystallized from MeOH giving 675 mg (1.40 mmol, 70%) of **1i** as a white solid.

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.63 – 7.52 (m, 3H), 7.51 – 7.29 (m, 9H), 7.28 – 7.10 (m, 8H), 7.06 – 7.00 (m, 1H), 7.00 – 6.91 (m, 1H), 6.20 (s, 1H), 3.59 (s, 3H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 147.2 (d, J = 7.0 Hz), 142.0 (d, J = 3.4 Hz), 140.5, 138.0, 135.2 (d, J = 102.4 Hz), 134.6 (d, J = 104.2 Hz), 134.4, 134.3, 133.4 (d, J = 9.9 Hz), 132.4 (d, J = 4.1 Hz), 132.3 (d, J = 4.3 Hz), 132.1 (d, J = 2.8 Hz), 132.0 (d, J = 2.7 Hz), 131.4, 131.3, 131.3 (d, J = 2.5 Hz), 131.0 (d, J = 101.2 Hz), 129.0 (d, J = 12.0 Hz), 128.8 (d, J = 12.0 Hz), 128.4, 127.6, 127.4, 126.8 (d, J = 12.7 Hz), 121.5, 120.6, 119.8, 110.1, 104.2, 31.6.

³¹P NMR (202 MHz, CD₂Cl₂): δ 28.7.

HRMS (ESI) m/z: [*M*+*Na*⁺] Calcd for C₃₃H₂₆NOPNa⁺ 506.1644; Found: 506.1651.

1j: PP2 (1 mmol) solution in 2 mL tetrahydrofurane was cooled to -78 °C under Ar atmosphere, followed by the addition of nbutyllithium solution in hexene (3 mmol, 2.5 M). Then obtained mixture was brought to room temperature - the mixture became dark – and once again cooled to -78 °C. After 1h at -78 °C, Ph₂POCl (3 mmol) was added and the solution was brought slowly to room temperature. Then 8 mL water, 8 mL dichloromethane were added, the organic layer was separated, the aqueous layer was extracted with dichloromethane, the combined extracts were dried over Na₂SO₄. The crude mixture was adsorbed on silica gel, and purified via column chromatography using silica gel as stationary phase and dichloromethane → 10% ethyl acetate in dichloromethane →20% ethyl acetate in dichloromethane as eluent.

Then, the obtained residue was suspended in methanol and filtered to give 600 mg (58.0%) of a light yellow solid. (obtained as a mixture of atropoisomers)

¹H NMR: (600 MHz, CD₂Cl₂): δ 7.86 – 7.84 (m, 3H), 7.81 – 7.74 (m, 5H), 7.70 – 7.63 (m, 1H), 7.63 – 7.60 (m, 2H), 7.58 – 7.42 (m, 9H), 7.41 – 7.26 (m, 6H), 7.21 – 7.14 (m, 2H), 6.96 – 6.84 (m, 4H), 6.78 – 6.71 (m, 4H), 5.61 – 5.56 (m, 2H), 2.50 – 2.45 (m, 4H), 1.56 – 1.45 (m, 4H), 1.32 – 1.21 (m, 4H), 0.93 – 0.86 (m, 6H).

¹³C {¹H} NMR: (151 MHz, CD₂Cl₂): δ 141.4, 140.9, 139.8, 139.6, 137.2, 134.2, 133.4, 133.4, 132.6, 132.1, 132.0, 131.9, 131.8, 131.7, 131.6, 131.6, 129.5, 128.52, 128.49, 128.41, 128.39, 128.3, 126.4, 126.0, 124.7, 122.9, 122.8, 122.0, 121.9, 98.4, 34.8, 33.3, 22.1, 13.6.

³¹P NMR (243 MHz, CD₂Cl₂): δ 19.5.

HRMS (APCI) m/z: [*M*⁺] Calcd for C₆₇H₅₄N₂O₃S₃P₂F₃⁺ 1034.3258; Found: 1034.3242.

1k: PP1 (0.5 mmol) solution in 2 mL tetrahydrofurane was cooled to -78 °C under Ar atmosphere, followed by the addition of nbutyllithium solution in hexene (1.5 mmol, 2.5 M). Then obtained mixture was brought to room temperature - the mixture became dark – and once again cooled to -78 °C. After 1h at -78 °C, Ph₂POCl (1.5 mmol) was added and the solution was brought slowly to room temperature. Then 8 mL water, 8 mL dichloromethane were added, the organic layer was separated, the aqueous layer was extracted with dichloromethane, the combined extracts were dried over Na₂SO₄. The crude mixture was adsorbed on silica gel, and purified via column chromatography using silica gel as stationary phase and dichloromethane \rightarrow 10% ethyl acetate in dichloromethane \rightarrow 20% ethyl acetate in dichloromethane as eluent.

Then, the obtained residue was suspended in methanol and filtered to give 211 mg (42.1%) of a light yellow solid.

 $^{1}\mathrm{H}$ NMR: (600 MHz, CD_2Cl_2): δ 7.67 (dd, J = 12.7. 7.6 Hz, 8H), 7.50 (t, J = 7.1 Hz, 4H), 7.48 – 7.44 (m, 2H), 7.42 – 7.36 (m, 8H), 7.36 – 7.33 (m, 4H), 7.16 (td, J = 7.4, 0.9 Hz, 2H), 7.07 (d, J = 8.4 Hz, 4H), 6.98 (d, J = 8.4 Hz, 4H), 6.16 (s, 2H), 2.54 - 2.49 (m, 4H), 1.56 - 1.51 (m, 4H), 1.34 -1.27 (m, 4H), 0.91 (t, J = 7.4 Hz, 6H).

¹³C {¹H} NMR: (151 MHz, CD₂Cl₂): δ 156.3, 156.3, 140.1, 137.2, 131.92, 131.58, 131.51, 130.66, 128.76, 128.45, 128.40, 128.34, 128.3, 126.7, 123.6, 123.5, 122.7, 122.1, 111.7, 98.2, 34.9, 33.4, 22.2, 13.7.

³¹P NMR (243 MHz, CD₂Cl₂): δ 16.0.

HRMS (APCI) m/z: $[M^+H^+]$ Calcd for C₆₆H₅₇N₂O₄P₂⁺ 1003.3794; Found: 1003.3786.

11: The s-buthyllithium solution in cyclohexane (12.5 mmol, 1.4 M) were mixed with 5 mL of dry tetrahydrfurane and cooled under Ar atmosphere to -75 °C followed by the addition of **PP3** (2.5 mmol) solution in 5 mL of tetrahydrofuran (made at reflux) - the cloudy mixture thickens and turns yellow. After 1 hour, Ph₂PCl (12.5 mmol) was added and the obtained solution was brought to room temperature. Then it was poured onto 100 mL of water and 100 mL of dichloromethane and 10 mL of saturated Na₂CO₃(aq) were added, the organic layer was separated and evaporated. Then it was dissolved in 10 mL of tetrahydrofurane and 1 mL of 30% H₂O₂ was added. After 20 min, 50 mL of dichloromethane and 50 mL of water were added, the organic layer was adsorbed on silica gel, and purified via column chromatography using silica gel as stationary phase and dichloromethane \rightarrow 10% ethyl acetate

in dichloromethane $\rightarrow 20\%$ ethyl acetate in dichloromethane. The resulting solid was suspended in diethyl ether and filtered to give 1.30g (56.3%) of the product as a white solid. (mixture of atropoisomers)

¹H NMR: (500 MHz, CD_2Cl_2): δ 7.72 – 7.63 (m, 8H), 7.60 – 7.38 (m, 16H), 7.33 – 7.26 (m, 6H), 7.02 – 7.00 (m, J = 7.7, 4.2 Hz, 2H), 6.95 (d, J = 8.0 Hz, 4H), 6.74 (d, J = 7.8 Hz, 2H), 2.59 – 2.54 (m, 4H), 1.60 – 1.56 (m, 4H), 1.41 – 1.34 (m, 4H), 0.96 (t, J = 7.4 Hz, 6H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 139.6, 136.9, 134.1, 134.0, 131.9, 131.8, 131.4, 129.4, 128.5, 128.4, 128.3, 124.2, 110.0, 97.8, 35.0, 33.5, 22.4, 13.7.

³¹P NMR (243 MHz, CD₂Cl₂): δ 28.4, 26.9.

HRMS (APCI) m/z: [*M*+*H*⁺] Calcd for C₆₂H₅₇N₂O₂P₂⁺ 923.3895; Found: 923.3887.

1m: STEP 1: PP4 (2.75 mmol) was mixed with 14.5 mL triethyl phosphite, deaerated and heated to 160°C under an argon atmosphere. After 24 h, the excess triethyl phosphite was evaporated and the resulting oil was dissolved in hexane and quickly purified by chromatography using silica gel as a stationary phase and hexane $\rightarrow 20\%$ dichloromethane in hexane as eluent. After evaporation, the obtained oil was dissolved in 5.5ml of dimethylformamide, cooled to 0 °C and deaerated, then KOH (5.5 mmol) was added. After 10 minutes to the orange solution CH₃I (5.5 mmol) was added. After 24 hours, 20 mL of water was added and extracted with diethyl ether 3x20 mL. The combined extracts were dried over MgSO4 and evaporated. Due to the instability of the tripyrrole derivative, the raw product was used for the next step. STEP 2: Solution of s-butyllithium (6.1 mmol, 1.4 M in cyclohexane) [II] in 5ml of tetrahydrofuran was cooled under Ar atmosphere to -75 °C and solution of tripyrrole] in 5ml of tetrahydrofuran (prepared at boiling) was slowly added - the cloudy

mixture thickens and turns yellow. After 1 h Ph₂PCl (6.1 mmol) was added and the obtained mixture was brought to room temperature. Then it was poured onto 100 mL of water and 100 mL of dichloromethane and 10 mL of saturated Na₂CO₃(aq) were added, the organic layer was separated and evaporated. Then it was dissolved in 10 mL of tetrahydrofuran and 0.5 mL of 30% H₂O₂ was added. After 20 min, 50 mL of dichloromethane and 50 mL of water were added, the organic layer was separated and evaporated. The obtained residue was suspended in diethyl ether and washed with hexane to obtain 1,00g (48.5%, after two steps) as a white solid.

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.75 – 7.64 (m, 3H), 7.63 (d, *J* = 7.2 Hz, 2H), 7.54 (t, *J* = 8.0 Hz, 2H), 7.48 (dd, *J* = 12.9, 7.9 Hz, 1H), 7.44 – 7.41 (m, 4H), 7.33 – 7.26 (m, 10H), 7.18 (d, J = 8.2 Hz, 2H), 7.13 – 7.10 (m, 1H), 7.04 (bs, 1H), 5.69 (bs, 1H), 3.23 (bs, 3H), 2.73 (t, *J* = 7.8 Hz, 2H), 2.65 (t, *J* = 7.7 Hz, 2H), 1.77 – 1.70 (m, 2H), 1.66 – 1.59 (m, 2H), 1.53 – 1.45 (m, 2H), 1.40 – 1.32 (m, 2H), 1.04 (t, *J* = 7.3 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H).).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 142.7, 138.5, 137.7, 134.6, 133.9, 133.84, 133.80, 131.9, 131.8, 131.40, 131.38, 130.6, 129.2, 128.7, 128.4, 128.3, 128.2, 126.8, 126.7, 120.8, 97.9, 35.1, 33.9, 33.5, 32.1, 22.5, 22.2, 13.8, 13.7.

³¹P NMR (202 MHz, CD₂Cl₂): δ 27.9.

HRMS (APCI) m/z: [*M*+*H*⁺] Calcd for C₅₁H₄₉N₃OP⁺ 750.3613; Found: 750.3621.

1n: The s-buthyllithium solution in cyclohexane (7.5 mmol, 1.4 M) was mixed with 3 mL of dry tetrahydrofuran and cooled under Ar atmosphere to -75 °C followed by the addition of **PP5** (1.5 mmol) solution in 6 mL of tetrahydrofuran (made at reflux) - the cloudy mixture thickens and turns orange. After 1 hour, Ph₂PCl (7.5 mmol) was added and the obtained solution was brought to room temperature. Then it was poured onto 60 mL of water and 60 mL of dichloromethane and 6 mL of saturated Na₂CO₃(aq) were added, the organic layer was separated and evaporated. Then it was dissolved in 6 mL of tetrahydrofurane and 0.6 mL of 30% H₂O₂ was added. After 20 min, 50 mL of dichloromethane and 50 mL of water were added, the organic layer was separated and dried over Na₂SO₄, filtrated and evaporated. The resulting solid was suspended in diethyl ether and filtered to give 600mg (43.3%) of the product as a white solid.

¹H NMR: $(500 \text{ MHz}, \text{CD}_2\text{Cl}_2)$: δ 7.55 – 7.44 (m, 10H), 7.42 – 7.33 (m, 6H), 7.31 – 7.21 (m, 8H), 7.13 (dd, J = 8.2, 6.6 Hz, 4H), 7.09 – 7.05 (m, 2H), 7.01 (dd, J = 8.0, 4.8 Hz, 2H), 6.99 – 6.95 (m, 4H), 5.46 (s, 2H), 2.70 – 2.62 (m, 4H), 1.64 – 1.54 (m, 4H), 1.38 – 1.28 (m, 4H), 0.92 (t, J = 7.4 Hz, 6H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 142.6, 142.5, 140.7, 140.7, 136.71, 135.17, 135.10, 133.82, 133.63, 132.98, 132.88, 132.85, 132.80, 132.0, 131.6, 131.5, 131.2, 131.2, 131.1, 131.0, 130.4, 127.8, 127.7, 127.7, 127.2, 125.3, 94.5, 35.0, 33.1, 22.1, 13.6.

³¹P NMR (243 MHz, CD₂Cl₂): δ 24.8.

HRMS (APCI) m/z: $[M+H^+]$ Calcd for $C_{62}H_{57}N_2O_2P_2^+$ 923.3895; Found: 923.3885.

10: 10,10,15,15-tetraethyl-5-oxatruxene (1 mmol) was dissolved in 1ml of dry tetrahydrofuran at boiling, then cooled to 0 °C followed by the addition of n-butyllithium (1.2 mmol, 2.5 M in hexane) - the solution turned orange. After 1h at a constant temperature, trimethyl borate (1.2 mmol) was added and the mixture was brought to room temperature. After 1 h, (2bromophenyl)diphenylphosphine oxide (1 mmol), tetrakis(triphenylphosphine)palladium(0) (0.02 mmol), 1 mL of dry tetrahydrofuran, and a solution of K₂CO₃ (6 mmol) in 1 mL of distilled water were added and the obtained mixture was heated up to 80 °C. After 24 h, 30 mL of water was added and extracted with

2x30mL of ethyl acetate. The combined extracts were dried over Na₂SO₄. The crude mixture was adsorbed on silica gel, and purified via column chromatography using silica gel as stationary phase and 10% ethyl acetate in hexane \rightarrow 20% ethyl acetate in hexane \rightarrow 30% ethyl acetate in hexane as eluent. The resulting syellow oil was used without further purification.

HRMS (APCI) m/z: $[M+H^+]$ Calcd for C₅₂H₄₆O₂P⁺ 733.3235; Found: 733.3233.

1s: Synthesised according to **GP-1** from 304 mg (0.85 mmol) of (2bromophenyl)diphenylphosphine oxide and 221 mg (0.85 mmol) of thianthren-1-ylboronic acid. The crude product was purified via column chromatography using silica gel as stationary phase and hexane $\rightarrow 40\%$ ethyl acetate in hexane $\rightarrow 80\%$ ethyl acetate in hexane as eluent. Obtained residue was suspended in diethyl ether and filtered to give 134 mg (0.276 mmol, 33%) of a white solid.

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.68 – 7.62 (m, 4H), 7.52 – 7.50 (m, 2H), 7.46 – 7.40 (m, 2H), 7.37 – 7.33 (m, 6H), 7.31 – 7.29 (m, 2H), 7.21 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.05 (t, *J* = 7.7 Hz, 1H), 7.03 – 6.98 (m, 1H), 6.82 (td, *J* = 7.7, 2.9 Hz, 2H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 135.9, 135.8, 135.2, 134.3, 134.1, 134.04, 133.97, 133.4, 132.53, 132.45, 132.0, 131.89, 131.82, 131.3, 131.1, 130.6, 130.5, 128.7, 128.6, 128.5, 128.3, 128.2, 128.1, 128.0, 127.8, 127.68, 127.66, 127.6, 127.6, 127.4, 126.0.

³¹P NMR (202 MHz, CD₂Cl₂): δ 25.7.

HRMS (ESI) m/z: $[M + H^+]$ Calcd for C₃₀H₂₂S₂P⁺ 493.0850; Found: 493.0852.

1t: Synthesised according to **GP-1** from 597 mg (1.67 mmol) of (2bromophenyl)diphenylphosphine oxide and 304 mg (1.67 mmol) of (3,5dimethoxyphenyl)boronic acid. Crude product was purified by column chromatography on silica gel using 60-70% AcOEt/hexane mixture as eluent, giving 525 mg (1.272 mmol, 76%) of **1t** as a white solid.

¹H NMR: (400 MHz, CD₂Cl₂): δ 7.63 – 7.50 (m, 5H), 7.47 – 7.29 (m, 9H), 6.40 (d, J = 2.3 Hz, 2H), 6.14 (t, J = 2.3 Hz, 1H), 3.63 (s, 6H).

¹³C {¹H} NMR: (101 MHz, CD₂Cl₂): δ 160.2, 147.9 (d, J = 8.4 Hz), 143.0 (d, J = 4.2 Hz), 134.7 (d, J = 11.9 Hz), 134.2 (d, J = 104.1 Hz), 132.3 (d, J = 2.5 Hz), 132.3 (d, J = 101.8 Hz), 132.1 (d, J = 9.4 Hz), 132.0 (d, J = 9.7 Hz), 131.6 (d, J = 2.8 Hz), 128.6 (d, J = 12.0 Hz), 127.4 (d, J = 12.3 Hz), 108.8, 100.7, 55.8.

³¹P NMR (161 MHz, CD₂Cl₂): δ 27.1.

HRMS (ESI) m/z: $[M+H^+]$ Calcd for C₂₆H₂₄O₃P⁺ 415.1458; Found: 415.1461.

1u: Synthesised according to **GP-1** from 429 mg (1.20 mmol) of (2-bromophenyl)diphenylphosphine oxide and 410 mg (1.26 mmol) of 2-(7-isopropyl-1,4-dimethylazulen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. Crude product was purified by column chromatography on silica gel using 3:2:1 AcOEt/hexane/DCM mixture as eluent, giving 277 mg (0.584 mmol, 49%) of **1u** as a deep-blue solid.

¹H NMR: (600 MHz, CD₂Cl₂): δ 7.94 (d, J = 1.9 Hz, 1H), 7.72 (ddd, J = 13.5, 7.9, 1.4 Hz, 1H), 7.63 (tt, J = 7.5, 1.5 Hz, 1H), 7.45 (tdd, J = 7.7, 2.2, 1.3 Hz, 1H), 7.43 – 7.35 (m, 6H), 7.31 (t, J = 7.5 Hz, 2H), 7.22 – 7.16 (m, 4H), 6.96 (t, J = 5.3 Hz, 2H), 3.05 (hept, J =

(11), (1.43 - 7.53) (m, 61), (7.51) (t, 5 - 7.5 Hz, 211), (7.22 - 7.10) (m, 41), 0.90 (t, 5 - 5.5 Hz, 211), 5.5 (6.9 Hz, 1H), 2.55 (s, 3H), 2.15 (s, 3H), 1.36 (d, J = 6.9 Hz, 6H).

¹³C {¹H} NMR: (151 MHz, CD₂Cl₂): δ 147.5 (d, J = 4.3 Hz), 144.9, 144.1 (d, J = 8.8 Hz), 140.9, 136.5, 136.1, 135.2, 134.5 (d, J = 11.3 Hz), 134.0 (d, J = 104.1 Hz), 133.9, 133.0 (d, J = 102.4 Hz), 132.5 (d, J = 9.9 Hz), 132.0 (d, J = 9.5 Hz), 131.7 (d, J = 2.6 Hz), 131.4 (d, J = 2.8 Hz), 128.2 (d, J = 12.0 Hz), 127.1 (d, J = 12.2 Hz), 125.9, 123.8, 117.5, 38.8, 25.1, 24.2, 11.2.

³¹P NMR (243 MHz, CD₂Cl₂): δ 26.5.

HRMS (ESI) m/z: [*M*+*H*⁺] Calcd for C₃₃H₃₂OP⁺ 475.2185; Found: 475.2194.

1v: Synthesised according to **GP-1** from 712 mg (2.00 mmol) of (2bromophenyl)diphenylphosphine oxide and 656 mg (2.00 mmol) of 4,4,5,5-tetramethyl-2-(pyren-2-yl)-1,3,2-dioxaborolane. Crude product was purified by column chromatography on silica gel using 60-70% AcOEt/hexane mixture as eluent, giving 355 mg (0.743 mmol, 37%) of **1v** as a white solid.

¹H NMR: (400 MHz, CDCl₃): δ 8.15 (d, J = 7.6 Hz, 2H), 8.05 – 7.94 (m, 5H), 7.85 (d, J = 8.9 Hz, 2H), 7.70 – 7.41 (m, 9H), 7.19 – 7.12 (m, 2H), 7.10 – 7.00 (m, 4H).

¹³C {¹H} NMR: (101 MHz, CDCl₃): δ 147.8 (d, J = 8.6 Hz), 138.1 (d, J = 4.1 Hz), 134.2 (d, J = 11.8 Hz), 133.5, 132.7 (d, J = 102.0 Hz), 132.5 (d, J = 9.7 Hz), 132.5, 131.8 (d, J = 2.6 Hz), 131.6 (d, J = 9.4 Hz), 131.1 (d, J = 2.8 Hz), 130.7 (d, J = 111.2 Hz), 127.9 (d, J = 12.1 Hz), 127.7, 127.4, 127.0, 126.9 (d, J = 12.2 Hz), 125.9, 124.9, 124.4, 123.6.

³¹P NMR (161 MHz, CDCl₃): δ 27.5.

HRMS (ESI) m/z: [*M*+*Na*⁺] Calcd for C₃₄H₂₃OPNa⁺ 501.1379; Found: 501.1382.

1w: 9-(8-bromonaftalen-1-yl)phenanthrene (1 mmol) was dissolved in 2 mL of tetrahydrofuran and cooled to -78 °C in Ar atmosphere. After n-butyllithium (1.1 mmol, 2.5 M in hexane) was added - the mixture turned yellow, and after a while a yellow solid precipitated - the mixture was brought to room temperature. After 1h it was cooled again to -78 °C and Ph₂POCl (1.1 mmol) was added and the mixture was slowly warmed to room temperature. After 24 h 28 mL of dichloromethane was added, and the crude mixture was purified via chromatography on silica gel using

hexane $\rightarrow 50\%$ dichloromethane in hexane \rightarrow dichloromethane $\rightarrow 40\%$ ethyl acetate in hexane as eluent. The obtained solid residue was suspended in hexane and filtered off to give 173.5 mg (34.39%) of a light yellow solid.

¹H NMR: (500 MHz, CD₂Cl₂): δ 8.55 (s, 1H), 8.53 (s, 1H), 8.17 (d, J = 6.4 Hz, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.67 – 7.62 (m, 1H), 7.62 – 7.58 (m, 1H), 7.54 – 7.48 (m, 2H), 7.48 – 7.38 (m, 4H), 7.32 – 7.23 (m, 4H), 7.19 – 7.10 (m, 3H), 7.06 – 7.02 (m, 2H), 6.92 – 6.83 (m, 4H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 139.5, 138.0, 137.9, 135.4, 135.3, 133.9, 133.8, 133.8, 133.3, 133.0, 131.7, 130.93, 130.87, 130.85, 130.6, 130.5, 130.34, 130.28, 130.27, 130.2, 129.9, 129.19, 129.16, 127.9, 127.8, 127.6, 127.5, 127.3, 126.2, 125.9, 125.8, 125.7, 125.3, 123.7, 123.6, 122.3, 121.9.

³¹P NMR (243 MHz, CD₂Cl₂): δ 31.7.

HRMS (APCI) m/z: $[M+H^+]$ Calcd for C₃₆H₂₆OP⁺ 505.1721; Found: 505.1723.

Synthesis of phosphonium salts 2a-x:

GP-2: General procedure for the synthesis of phosphonium salts at room temperature:

To a Schenk vessel charged with phosphine oxide (1 equiv.) and equipped with a strring bar anhydrous DCM (0.1M) was added under argon atmosphere. Then Tf_2O (1.5 equiv. per reacting centre) was added and the mixture was stirred until complete conversion of the phosphine oxide was observed via TLC analysis. Upon reaction completion water and DCM was added, layers were separated and the aqueous phase was extracted with DCM (x2). Combined organic phases were concentrated *in vacuo*, and the residue was diluted with ethanol and evaporated (x2) to dispose traces of water. The crude product was purified by crystallization or column chromatography.

GP-3: General procedure for the synthesis of phosphonium salts from less active phosphine oxides:

To a Schenk vessel (*due to the high volatility of Tf_2O it is important to minimize available headspace in the reaction vessel to achieve efficient transformation*) charged with phosphine oxide (1 equiv.) and equipped with a strring bar anhydrous toluene (0.1M) was added under argon atmosphere. Then 1.5 equiv. of Tf_2O was added and the mixture was stirred at 90 °C until complete conversion of the phosphine oxide was observed via TLC analysis. Upon reaction completion water and DCM was added, layers were separated and the aqueous phase was extracted with DCM (x2). Combined organic phases were concentrated *in vacuo*, and the residue was diluted with ethanol and evaporated (x2) to dispose traces of water. The crude product was purified by crystallization or column chromatography.

Salt 2a: Synthesised according to **GP-2** from phosphine oxide **1a** (101 mg, 0.252 mmol), no additional purification step was required to obtain 134 mg (0.252 mmol, quantitative) of **2a** as an off-white solid.

Ph OTf ¹H NMR: $(500 \text{ MHz}, \text{CDCl}_3)$: δ^1 H NMR $(500 \text{ MHz}, \text{Chloroform-}d) \delta^7.99 (ddd, J = 3.6, 2.8, 1.1 \text{ Hz}, 1\text{H}), 7.93 - 7.78 (m, 9\text{H}), 7.76 - 7.68 (m, 4\text{H}), 7.32 (ddd, J = 3.9, 1.9, 1.0 \text{ Hz}, 1\text{H}), 6.68 (td, J = 3.8, 2.7 \text{ Hz}, 1\text{H}), 1.34 (s, 9\text{H}).$

¹³C {¹H} NMR: (126 MHz, CDCl₃): δ 152.0 (d, J = 10.6 Hz), 141.0 (d, J = 8.2 Hz), 136.0 (d, J = 3.2 Hz), 135.0 (d, J = 2.2 Hz), 133.4 (d, J = 12.5 Hz), 130.8 (d, J = 14.3 Hz), 128.5 (d, J = 7.7 Hz), 124.4 (d, J = 6.1 Hz), 123.5 (d, J = 12.8 Hz), 121.0 (q, J = 321.4 Hz), 118.2 (d, J = 11.4 Hz), 117.0 (d, J = 94.3 Hz), 114.4 (d, J = 7.1 Hz), 114.0 (d, J = 91.3 Hz), 109.9 (d, J = 128.4 Hz), 35.3, 31.2.

¹⁹F NMR (470 MHz, CDCl₃): δ -78.1.

³¹P NMR (202 MHz, CDCl₃): δ 4.8.

HRMS (ESI) m/z: [*M*⁺] Calcd for C₂₆H₂₅NP⁺ 382.1719; Found: 382.1729.

Salt 2b: Synthesised according to **GP-2** from phosphine oxide **1b** (90 mg, 0.250 mmol). Crude oily product was solubilized in minimal volume of EtOH, upon dropwise addition of Et_2O a yellowish solid precipitated. Filtration and washing with Et_2O yielded 69 mg (0.142 mmol, 57%) of **2b**.

Ph Ph OTf ¹H NMR: (500 MHz, CD₂Cl₂): δ 8.16 (dd, J = 10.2, 7.6 Hz, 1H), 7.91 – 7.72 (m, 10H), 7.72 – 7.61 (m, 5H).

¹³C {¹H} NMR: (126 MHz, CDCl₃): δ 157.9 (d, J = 26.0 Hz), 139.0 (d, J = 15.6 Hz), 136.5 (d, J = 2.3 Hz), 136.1 (d, J = 3.3 Hz), 134.2 (d, J = 15.8 Hz), 133.4 (d, J = 12.1 Hz), 133.0 (d, J = 9.9 Hz), 131.0 (d, J = 13.8 Hz), 130.9 (d, J = 11.9 Hz), 126.7 (d, J = 14.7 Hz), 125.3 (d, J = 96.5 Hz), 123.6 (d, J = 8.8 Hz), 121.6 (d, J = 100.3 Hz), 121.0 (q, J = 320.8 Hz), 116.0 (d, J = 88.8 Hz).

¹⁹F NMR (470 MHz, CDCl₃): δ -78.1.

³¹P NMR (202 MHz, CDCl₃): δ 15.1

HRMS (ESI) m/z: [*M*⁺] Calcd for C₂₂H₁₆PS⁺ 343.0705; Found: 343.0714.

Salt 2c: Synthesised according to **GP-3** from phosphine oxide **1c** (86 mg, 0.250 mmol). Crude oily product was solubilized in minimal volume of *i*PrOH, upon dropwise addition of Et_2O a brownish solid precipitated. Filtration and washing with Et_2O yielded 81 mg (0.169 mmol, 68%) of **2c**.

FIT FIT OTT ¹H NMR: (500 MHz, CD_2Cl_2): δ 8.08 (dd, J = 11.0, 7.6 Hz, 1H), 7.98 – 7.82 (m, 9H), 7.80 – 7.63 (m, 5H), 7.24 – 7.11 (m, 1H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 168.5 (d, *J* = 33.5 Hz), 151.2 (d, *J* = 12.1 Hz), 136.8 (d, *J* = 3.3 Hz), 136.6 (d, *J* = 2.3 Hz), 134.3 (d, *J* = 11.0 Hz), 133.9 (d, *J* = 12.3 Hz), 133.6 (d, *J* = 9.1 Hz), 131.6 (d, *J* = 12.2 Hz), 131.3 (d, *J* = 14.1 Hz), 127.5 (d, *J* = 93.0 Hz), 122.4 (d, *J* = 8.5 Hz), 121.5 (q, *J* = 321.4 Hz), 115.9 (d, *J* = 91.2 Hz), 111.3 (d, *J* = 9.0 Hz), 105.7 (d, *J* = 118.2 Hz).

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.9.

³¹P NMR (202 MHz, CD₂Cl₂): δ 12.4

HRMS (ESI) m/z: [*M*⁺] Calcd for C₂₂H₁₆OP⁺ 327.0933; Found: 327.0940.

Salt 2d: Synthesised according to **GP-2** from phosphine oxide **1d** (105 mg, 0.255 mmol). Crude oily product was solubilized in minimal volume of EtOH, upon dropwise addition of Et_2O a white solid precipitated. Filtration and washing with Et_2O yielded 81 mg (0.169 mmol, 68%) of **2d**.

Ph' Ph OTf ¹H NMR: (500 MHz, CDCl₃): δ 8.33 (dd, J = 10.5, 7.6 Hz, 1H), 8.07 (dt, J = 7.6, 1.9 Hz, 1H), 7.96 - 7.80 (m, 8H), 7.78 - 7.65 (m, 6H), 7.61 - 7.49 (m, 2H).

¹³C {¹H} NMR: (126 MHz, CDCl₃): δ 160.3 (d, J = 24.7 Hz), 143.5 (d, J = 13.9 Hz), 138.8 (d, J = 16.5 Hz), 136.6 (d, J = 2.2 Hz), 136.5 (d, J = 3.3 Hz), 134.7 (d, J = 13.5 Hz), 133.5 (d, J = 12.3 Hz), 133.2 (d, J = 10.3 Hz), 132.2 (d, J = 12.1 Hz), 131.3 (d, J = 14.0 Hz), 128.2, 127.4, 125.9 (d, J = 96.5 Hz), 125.0, 124.7 (d, J = 8.8 Hz), 122.3, 121.1 (d, J = 321.1 Hz), 115.7 (d, J = 99.6 Hz), 115.5 (d, J = 88.6 Hz).

¹⁹F NMR (470 MHz, CDCl₃): δ -78.1.

³¹P NMR (202 MHz, CDCl₃): δ 16.8.

HRMS (ESI) m/z: [*M*⁺] Calcd for C₂₆H₁₈PS⁺ 393.0861; Found: 393.0868.

Salt 2e: Synthesised according to **GP-2** from phosphine oxide **1e** (104 mg, 0.263 mmol). Crude oily product was solubilized in minimal volume of EtOH, upon dropwise addition of Et_2O a off-white solid precipitated. Filtration and washing with Et_2O yielded 93 mg (0.176 mmol, 68%) of **2e**

Ph Ph OIT ¹H NMR: $(500 \text{ MHz}, \text{CDCl}_3)$: $\delta 8.52 \text{ (dd}, J = 11.1, 7.5 \text{ Hz}, 1\text{H}), 8.03 - 7.92 \text{ (m}, 5\text{H}), 7.92 - 7.86 \text{ (m}, 1\text{H}), 7.85 - 7.77 \text{ (m}, 4\text{H}), 7.72 \text{ (tt}, J = 7.7, 4.0 \text{ Hz}, 5\text{H}), 7.54 \text{ (dtd}, J = 16.5, 7.4, 1.4 \text{ Hz}, 2\text{H}).$

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 169.9 (d, J = 33.1 Hz), 159.8 (d, J = 11.6 Hz), 136.3 (d, J = 3.2 Hz), 136.0 (d, J = 2.3 Hz), 134.2 (d, J = 9.3 Hz), 133.3 (d, J = 12.4 Hz), 133.1 (d, J = 11.6 Hz), 132.9 (d, J = 12.3 Hz), 131.1 (d, J = 14.1 Hz), 127.8, 127.1 (d, J = 92.4 Hz), 126.9, 123.6 (d, J = 8.5 Hz), 122.9 (d, J = 8.6 Hz), 121.0 (q, J = 321.1 Hz), 120.3, 115.4 (d, J = 91.1 Hz), 113.7, 100.2 (d, J = 115.4 Hz).

¹⁹F NMR (470 MHz, CDCl₃): δ -78.1.

³¹P NMR (202 MHz, CDCl₃): δ 13.7.

HRMS (ESI) m/z: [*M*⁺] Calcd for C₂₆H₁₈OP⁺ 377.1090; Found: 377.1096.

Salt 2f: Synthesised according to **GP-2** from phosphine oxide **1f** (105 mg, 0.267 mmol). Crude oily product was solubilized in minimal volume of EtOH, upon dropwise addition of Et_2O a white solid precipitated. Filtration and washing with Et_2O yielded 96 mg (0.180 mmol, 68%) of **2f**.

¹H NMR: (500 MHz, CD₂Cl₂): δ 12.61 (s, 1H), 8.34 (dd, *J* = 7.7, 3.6 Hz, 1H), 7.94 – 7.75 (m, 9H), 7.71 – 7.62 (m, 4H), 7.59 – 7.49 (m, 2H), 7.31 (dt, *J* = 29.1, 7.5 Hz, 2H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 153.1 (d, *J* = 31.3 Hz), 142.4 (d, *J* = 12.1 Hz), 136.5 (d, *J* = 13.1 Hz), 135.8 (d, *J* = 2.2 Hz), 135.5 (d, *J* = 3.2 Hz), 133.0 (d, *J* = 12.1 Hz), 131.6 (d, *J* = 9.2 Hz), 130.5 (d, *J* = 13.6 Hz), 130.3 (d, *J* = 11.9 Hz), 128.4 (d, *J* = 94.6 Hz), 125.3 (d, *J* = 9.9 Hz), 125.0, 124.2 (d, *J* = 8.5 Hz), 123.8, 120.8 (q, *J* = 320.0 Hz), 118.6, 118.2 (d, *J* = 90.9 Hz), 115.2, 90.5 (d, *J* = 123.7 Hz).

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.9.

³¹P NMR (202 MHz, CD₂Cl₂): δ 12.5.

HRMS (ESI) m/z: [*M*⁺] Calcd for C₂₆H₁₉NP⁺ 376.1250; Found: 376.1259.

Salt 2g: Synthesised according to **GP-2** from phosphine oxide **1g** 407.5 mg (1 mmol). The residue was suspended in 10 mL of 5% methanol in diethyl ether solution, and the yellow solid was filtrated to give 240mg (44%).

¹H NMR: (600 MHz, CD₂Cl₂): δ 8.17 (dd, J = 7.8, 3.9 Hz, 1H), 8.02 (dd, J = 11.1, 7.5 Hz, 1H), 7.91 (tt, J = 7.8, 1.1 Hz, 1H), 7.88 – 7.81 (m, 6H), 7.72 – 7.64 (m, 6H), 7.57 (d, J = 7.9 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.40 – 7.36 (m, 1H), 4.28 (s, 3H).

¹³C {¹H} NMR: (151 MHz, CD₂Cl₂): δ 152.2 (d, $J_{P-C} = 31.2$ Hz), 143.5 (d, $J_{P-C} = 11.4$ Hz), 136.2 (d, $J_{P-C} = 12.9$ Hz), 135.8 (d, $J_{P-C} = 2.1$ Hz), 135.8 (d, $J_{P-C} = 3.2$ Hz), 133.1 (d, $J_{P-C} = 12.2$ Hz), 132.9 (d, $J_{P-C} = 9.2$ Hz), 130.7 (d, $J_{P-C} = 12.1$ Hz), 130.7 (d, $J_{P-C} = 13.8$ Hz), 128.9 (d, $J_{P-C} = 94.0$ Hz), 125.3, 124.9 (d, $J_{P-C} = 9.5$ Hz), 124.4, 123.8 (d, $J_{P-C} = 9.0$ Hz), 119.2, 117.6 (d, $J_{P-C} = 91.4$ Hz), 112.2 (d, $J_{P-C} = 1.5$ Hz), 91.5 (d, $J_{P-C} = 122.6$ Hz), 32.7.

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.9.

³¹P NMR (243 MHz, CD₂Cl₂): δ 10.7.

HRMS (ESI) m/z: [*M*⁺] Calcd for C₂₇H₂₁NP⁺ 390.1412; Found: 390.1411.

Salt 2h: Synthesised according to **GP-2** from phosphine oxide **1h** (41 mg, 0.100 mmol) in the presence of 1.5 equiv of DIPEA. Crude oily product was solubilized in minimal volume of EtOH, upon dropwise addition of Et₂O brownish, needle-like crystals precipitated. Filtration and washing with Et₂O yielded 40 mg (0.075 mmol, 75%) of **2h**.

¹H NMR: (500 MHz, CDCl₃): δ 8.67 (d, *J* = 3.0 Hz, 1H), 8.53 (dd, *J* = 8.2, 5.8 Hz, 1H), 8.08 (d, *J* = 7.6 Hz, 1H), 7.88 (ddt, *J* = 8.6, 7.3, 1.4 Hz, 1H), 7.78 (ddd, *J* = 14.6, 7.8, 1.3 Hz, 1H), 7.75 – 7.66 (m, 6H), 7.65 – 7.58 (m, 6H), 7.54 (t, *J* = 7.9 Hz, 1H), 4.13 (s, 3H).

¹³C {¹H} NMR: (126 MHz, CDCl₃): δ 140.1 (d, J = 17.4 Hz), 139.1 (d, J = 4.3 Hz), 137.3 (d, J = 9.6 Hz), 134.7, 134.6 (d, J = 3.3 Hz), 133.3 (d, J = 11.8 Hz), 130.4 (d, J = 13.5 Hz), 128.9 (d, J = 13.3 Hz), 125.8 (d, J = 9.0 Hz), 125.4 (d, J = 6.9 Hz), 124.8, 123.4 (d, J = 93.1 Hz), 122.7, 122.7, 121.0 (q, J = 320.9 Hz), 118.3 (d, J = 1.7 Hz), 113.3, 113.1 (d, J = 91.4 Hz), 82.9 (d, J = 121.3 Hz), 34.7.

¹⁹F NMR (470 MHz, CDCl3): δ -78.2.

³¹P NMR (202 MHz, CDCl₃): δ -1.3.

HRMS (ESI) m/z: [*M*⁺] Calcd for C₂₇H₂₁NP⁺ 390.1406; Found: 390.1410.

Salt 2i: Synthesised according to **GP-2** from phosphine oxide **1i** (146 mg, 0.302 mmol). Crude oily product was solubilized in minimal volume of EtOH, upon dropwise addition of Et_2O white solid precipitated. Filtration and washing with Et_2O yielded 110 mg (0.179 mmol, 59%) of **2i**.

¹H NMR: (500 MHz, CD₂Cl₂): δ 8.07 (td, *J* = 7.6, 1.8 Hz, 1H), 7.95 – 7.80 (m, 4H), 7.74 – 7.52 (m, 6H), 7.52 – 7.21 (m, 9H), 7.11 (t, *J* = 7.7 Hz, 1H), 6.43 (d, *J* = 8.3 Hz, 1H), 3.98 (s, 3H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 147.2 (d, J = 18.5 Hz), 144.1 (d, J = 8.3 Hz), 140.3 (d, J = 12.4 Hz), 138.3 (d, J = 3.1 Hz), 136.7 (d, J = 3.1 Hz), 136.5 (d, J = 10.9 Hz), 135.4 (d, J = 3.2 Hz), 135.0 (d, J = 2.7 Hz), 134.2 (d, J = 10.6 Hz), 133.6, 133.5 (d, J = 12.1 Hz), 132.1 (d, J = 10.7 Hz), 131.0 (d, J = 12.9 Hz), 131.0, 130.5, 130.2 (d, J = 13.7 Hz), 129.4, 129.0 (d, J = 12.7 Hz), 128.0 (d, J = 9.9 Hz), 127.3, 126.6 (d, J = 92.5 Hz), 125.1, 123.5, 121.6 (q, J = 320.9 Hz), 119.5, 117.8 (d, J = 91.4 Hz), 115.9 (d, J = 93.0 Hz), 112.3 (d, J = 1.5 Hz), 93.3 (d, J = 117.7 Hz), 33.7.

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.0.

³¹P NMR (202 MHz, CD₂Cl₂): δ 10.7.

HRMS (ESI) m/z: [*M*⁺] Calcd for C₃₃H₂₅NP⁺ 466.1719; Found: 466.1726.

Salt 2j: Synthesised according to **GP-2** from phosphine oxide **1j** 517.6 mg (0.5 mmol) in the presence of 3 eq of DIPEA. The residue was suspended in 10 mL of 10% methanol in diethyl ether solution, and the obtained brick red solid was filtrated and washed with 10 mL of 10% methanol in diethyl ether solution to give 572mg (88%).

¹H NMR: (600 MHz, CD₂Cl₂): δ 7.91 – 7.88 (m, 6H), 7.69 – 7.66 (m, 8H), 7.59 (d, J = 7.4 Hz, 4H), 7.57 (d, J = 7.4 Hz, 4H), 7.52 (d, J = 8.1 Hz, 4H), 7.42 (t, J = 7.7 Hz, 2H), 7.25 (d, J = 8.0 Hz, 4H), 7.00 (t, J = 7.9 Hz, 2H), 5.95 (d, J = 8.5 Hz, 2H), 2.78 (t, J = 7.6 Hz, 4H), 1.69 – 1.64 (m, 4H), 1.39 – 1.33 (m, 4H), 1.00 (t, J = 7.4 Hz, 6H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 149.3, 149.2, 147.3, 146.4, 146.18, 144.41, 144.33, 136.30, 135.00, 133.81, 133.77, 133.73,

130.8, 130.7, 130.7, 130.6, 130.6, 130.5, 128.3, 128.0, 126.2, 125.2, 123.9, 122.9, 122.2, 115.6, 115.0, 90.9, 90.1, 35.2, 33.8, 22.0, 13.6.

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.9.

³¹P NMR (243 MHz, CD₂Cl₂): δ 9.4.

HRMS (APCI) m/z: $[M + CF_3SO_3^+]$ Calcd for $C_{67}H_{54}N_2O_3S_3P_2F_3^+$ 1149.2724; Found: 1149.2722.

Salt 2k: Synthesised according to **GP-2** from phosphine oxide **1k** 100.3 mg (0.1 mmol) in the presence of 3 eq of DIPEA. The residue was suspended in 10 mL of 10% methanol in diethyl ether solution, and the obtained orange solid was filtrated and washed with 10 mL of 10% methanol in diethyl ether solution to give 72mg (52%).

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.95 – 7.90 (m, 4H), 7.73 – 7.69 (m, 8H), 7.66 – 7.58 (m, 10H), 7.55 (d, *J* = 7.9 Hz, 4H), 7.48 (t, *J* = 7.9 Hz, 2H), 7.28 (d, *J* = 7.7 Hz, 4H), 7.10 (t, *J* = 7.7 Hz, 2H), 6.03 (d, *J* = 8.1 Hz, 2H), 2.79 (t, *J* = 7.5 Hz, 4H), 1.69 – 1.63 (m, 4H), 1.34 (q, *J* = 7.5 Hz, 4H), 0.98 (t, *J* = 7.3 Hz, 6H).

 ^{13}C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 163.5, 163.4, 147.1, 145.7, 144.7, 141.8, 141.6, 136.59, 136.58, 136.56, 133.98, 133.95, 133.9, 133.8, 133.7, 133.6, 132.43, 132.36, 132.3, 130.81, 130.75, 130.7,

130.4, 129.2, 127.6, 125.3, 122.3, 122.2, 120.12, 120.05, 119.7, 114.1, 113.4, 113.3, 85.6, 84.6, 35.1, 33.6, 21.9, 13.7.

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.9.

³¹P NMR (243 MHz, CD₂Cl₂): δ 4.6.

HRMS (APCI) m/z: [*M*+*OH*⁺] Calcd for C₆₆H₅₅N₂O₃P₂⁺ 985.3688; Found: 985.3682.

Salt 21: Synthesised according to **GP-2** from phosphine oxide **11** 92.3 mg (0.1 mmol) in the presence of 3 eq of DIPEA. The residue was suspended in 10 mL of 10% methanol in diethyl ether solution, and the obtained yellow solid was filtrated and washed with 10 mL of 10% methanol in diethyl ether solution to give 75mg (63%).

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.90 – 7.85 (m, 4H), 7.72 – 7.67 (m, 2H), 7.67 – 7.63 (m, 8H), 7.50 – 7.41 (m, 16H), 7.20 (d, *J* = 7.9 Hz, 4H), 6.92 (dd, *J* = 7.9, 3.7 Hz, 2H), 2.73 (t, *J* = 7.7 Hz, 4H), 1.65 – 1.58 (m, 4H), 1.31 (q, *J* = 7.5 Hz, 4H), 0.96 (t, *J* = 7.4 Hz, 6H).

 ^{13}C { $^{1}H\}$ NMR: (126 MHz, CD₂Cl₂): δ 148.1, 147.8, 146.6, 136.6, 136.5, 135.97, 135.95, 135.5, 134.2, 133.63, 133.58, 133.5, 133.2, 132.6, 132.5, 130.54, 130.49, 130.4, 130.3, 129.6, 129.5, 127.1, 126.3, 125.6, 122.34, 122.27, 122.2, 119.6, 116.2, 115.5, 35.1, 33.5, 22.1, 13.6.

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.9.

³¹P NMR (243 MHz, CD₂Cl₂): δ 10.4.

HRMS (ESI) m/z: $[M^{2+}]$ Calcd for C₆₂H₅₄N₂P₂²⁺ 444.1876; Found: 444.1887.

Salt 2m: Synthesised according to **GP-2** from phosphine oxide **1m** 187.5 mg (0.25 mmol). The crude product was purified via column chromatography using silica gel as the stationary phase and dichloromethane \rightarrow 50% ethyl acetate in dichloromethane \rightarrow acetone as eluent. Obtained solid was dissolved in isopropanol and layered with pentane. After 24h orange solid was filtered to give 90 mg (41%).

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.85 (t, J = 7.5 Hz, 2H), 7.76 – 7.69 (m, 3H), 7.64 – 7.60 (m, 6H), 7.55 (d, J = 7.6 Hz, 2H), 7.52 (d, J = 7.1 Hz, 2H), 7.46 (t, J = 7.8 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.39 – 7.35 (m, 1H), 7.29 (d, J = 8.3 Hz, 1H), 7.24 – 7.21 (m, 3H), 7.08 (d, J = 7.9 Hz, 2H), 7.03 (t, J = 7.5 Hz, 1H), 6.76 (dd, J = 7.9, 3.7 Hz, 1H), 3.20 (s, 3H), 2.89 (t, J = 7.8 Hz, 2H), 2.66 (t, J = 7.6 Hz, 2H), 1.82 – 1.76 (m, 2H), 1.61 – 1.55 (m, 2H), 1.48 (q, J = 7.5 Hz, 2H), 1.33 (q, J = 7.5 Hz, 2H),

1.04 (t, *J* = 7.4 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H).

 ^{13}C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 146.8, 144.3, 144.1, 142.7, 140.5, 137.4, 137.3, 136.2, 135.63, 135.60, 135.4, 135.1, 133.5, 133.4, 132.6, 132.5, 130.6, 130.4, 130.3, 130.0, 129.7, 128.6, 128.5, 127.4, 126.8, 126.04, 125.95, 124.7, 124.6, 124.1, 122.1, 121.2, 121.1, 119.9, 118.7, 117.19, 117.10, 116.5, 115.1, 109.7, 35.4, 35.0, 33.7, 33.4, 31.8, 22.3, 22.1, 13.7, 13.7.

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.9.

³¹P NMR (202 MHz, CD₂Cl₂): δ 9.5.

HRMS (ESI) m/z: [*M*⁺] Calcd for C₅₁H₄₇N₃P⁺ 732.3508; Found: 732.3493.

Salt 2n: Synthesised according to **GP-2** from phosphine oxide **1n** 92.3 mg (0.1 mmol) in the presence of 3 eq of DIPEA. The crude product was purified via column chromatography using silica gel as the stationary phase and ethyl acetate $\rightarrow 1\%$ acetonitrile in ethyl acetate as eluent. The residue was suspended in 5% dichloromethane in ethyl acetate solution and the beige solid was filtered to give 41 mg (35%).

¹H NMR: (600 MHz, CD₂Cl₂): δ 7.82 – 7.80 (m, 4H), 7.65 – 7.60 (m, 14H), 7.60 – 7.57 (m, 3H), 7.44 – 7.39 (m, 9H), 7.36 – 7.35 (m, 3H), 7.33 – 7.30 (m, 2H), 2.56 (t, *J* = 7.7 Hz, 4H), 1.48 – 1.42 (m, 4H), 1.21 – 1.18 (m, 4H), 0.81 (t, *J* = 7.3 Hz, 6H).

 ^{13}C {¹H} NMR: (151 MHz, CD₂Cl₂): δ 135.7, 135.48, 135.47, 135.3, 133.9, 133.8, 131.1, 130.3, 130.22, 130.15, 129.7, 129.6, 121.0, 120.4, 119.1, 34.5, 32.7, 21.9, 13.4.

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -79.0.

³¹P NMR (243 MHz, CD₂Cl₂): δ 5.0.

HRMS (ESI) m/z: $[M+CF_3SO_3^+]$ Calcd for $C_{63}H_{54}N_2O_3F_3SP_2^+$ 1037.3282; Found: 1037.3282.

Salt 20: Synthesised according to **GP-3** from phosphine oxide **10** 164.9 mg (0.225 mmol). The crude product was purified via column chromatography using silica gel as stationary phase and ethyl acetate $\rightarrow 10\%$ acetonitrile in ethyl acetate $\rightarrow 50\%$ acetonitrile in ethyl acetate as eluent. The residue was suspended in 10 mL of 10% isopropanol in a hexane solution and the white solid was filtered to give 87 mg (45%).

¹H NMR: (500 MHz, CD₂Cl₂): δ 9.05 (dd, J = 7.8, 3.3 Hz, 1H), 8.76 (dd, J = 8.1, 4.2 Hz, 1H), 8.46 (d, J = 7.5 Hz, 1H), 8.37 (d, J = 7.7 Hz, 1H), 8.25 (~t, J = 7.7 Hz, 1H), 8.20 (dd, J = 9.7, 7.9 Hz, 1H), 8.12 (dd, J = 9.5, 8.1 Hz, 1H), 7.96 – 7.84 (m, 7H), 7.80 – 7.76 (m, 4H), 7.68 (~td, J = 7.5, 1.3 Hz, 1H), 7.60 (d, J = 6.9 Hz, 1H), 7.57 (d, J = 7.0 Hz, 1H), 7.54 (d, J = 6.9 Hz, 1H), 7.50 (~td, J = 7.5, 1.4 Hz, 1H), 7.46 (~t,

J = 6.9 Hz, 1H), 3.03 (dq, *J* = 14.5, 7.3 Hz, 2H), 2.81 (dq, *J* = 14.3, 7.1 Hz, 2H), 2.40 – 2.32 (m, 4H), 0.30 (t, *J* = 7.3 Hz, 6H), 0.23 (t, *J* = 7.3 Hz, 6H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 152.5, 151.2, 150.7, 147.1, 146.2, 140.4, 138.1, 137.1, 136.5, 136.3, 133.5, 133.4, 132.4, 132.1, 131.3, 131.2, 131.0, 130.9, 127.9 127.5, 127.4, 127.3, 126.9, 126.2, 125.8, 125.7, 124.1, 122.6, 121.8, 118.1, 116.8, 116.1, 59.9, 57.2, 30.5, 29.7, 8.5, 8.1.

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.9.

³¹P NMR (202 MHz, CD₂Cl₂): δ 24.1

HRMS (ESI) m/z: [*M*⁺⁺] Calcd for C₅₂H₄₄OP⁺ 715.3130; Found: 715.3127.

Salt 2p: Synthesised according to **GP-3** from phosphine oxide **1p** (130 mg, 0.250 mmol). Crude oily product was solubilized in minimal volume of EtOH, upon dropwise addition of Et_2O a greenish solid precipitated. Filtration and washing with Et_2O yielded 123 mg (0.188 mmol, 75%) of **2p**.

¹H NMR: (500 MHz, CD₂Cl₂): δ 8.36 (ddd, J = 10.2, 7.5, 1.2 Hz, 1H), 8.32 – 8.23 (m, 2H), 8.05 (dd, J = 10.4, 7.5 Hz, 1H), 8.00 – 7.87 (m, 8H), 7.85 – 7.74 (m, 4H), 7.55 (td, J = 7.6, 4.3 Hz, 1H), 7.39 (ddt, J = 10.8, 7.3, 3.8 Hz, 4H), 7.31 (tt, J = 7.8, 1.5 Hz, 1H), 7.09 (dd, J = 6.8, 2.0 Hz, 2H), 6.52 (dd, J = 8.1, 3.6 Hz, 1H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 142.1 (d, J = 18.4 Hz), 141.8 (d, J = 19.2 Hz), 140.0, 138.9 (d, J = 2.6 Hz), 136.9 (d, J = 2.3 Hz), 136.4 (d, J = 3.2 Hz), 135.6 (d, J = 12.5 Hz), 133.6 (d, J = 11.7 Hz), 133.2, 133.1 (d, J = 5.1 Hz), 132.3 (d, J = 9.9 Hz), 131.5 (d, J = 12.0 Hz), 131.1 (d, J = 13.6 Hz), 127.0 (d, J = 9.9 Hz), 126.7, 123.9, 123.9 (d, J = 92.9 Hz), 121.1, 121.0 (q, J = 320.6 Hjz), 120.9 (d, J = 93.5 Hz), 120.9, 115.9 (d, J = 88.1 Hz), 109.8.

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.8.

³¹P NMR (202 MHz, CD₂Cl₂): δ 21.5.

HRMS (ESI) m/z: $[M^+]$ Calcd for C₃₆H₂₅NP⁺ 502.1719; Found: 502.1730.

Salt 2q: Synthesised according to **GP-3** from phosphine oxide **1q** 445.5 mg (1.0 mmol) in the presence of 3 eq of DIPEA. The crude product was purified via column chromatography using silica gel as stationary phase and dichloromethane $\rightarrow 10\%$ acetone in dichloromethane $\rightarrow 20\%$ acetone in dichloromethane $\rightarrow 40\%$ acetone in dichloromethane as eluent. The residue was suspended in 10 mL of 10% isopropanol in diethyl ether solution and the white solid was filtered to give 495 mg (86%).

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.89 (t, *J* = 7.5 Hz, 2H), 7.80 – 7.61 (m, 15H), 7.39 – 7.33 (m, 4H), 6.81 (dd, *J* = 8.8, 7.1 Hz, 2H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 145.8 (d, J_{P-C} = 3.5 Hz), 138.9, 135.8, 135.3 (d, J_{P-C} = 3.1 Hz), 133.7 (d, J_{P-C} = 11.3 Hz), 132.4 (d, J_{P-C} = 7.1 Hz), 131.8, 130.5 (d, J_{P-C} = 13.5 Hz), 130.2, 130.0, 123.6 (d, J_{P-C} = 11.8 Hz), 120.7 (d, J_{P-C} = 93.6 Hz), 118.8 (d, J_{P-C} = 7.0 Hz), 96.4 (d, J_{P-C} = 92.2 Hz).

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.9.

³¹P NMR (202 MHz, CD₂Cl₂): δ -2.3.

HRMS (APCI) m/z: [*M*⁺] Calcd for C₃₀H₂₃NP⁺ 428.1568; Found: 428.1566.

Salt 2r: Synthesised according to **GP-3** from phosphine oxide **1r** 370.4 mg (1.0 mmol). The crude product was purified via column chromatography using silica gel as stationary phase and dichloromethane $\rightarrow 10\%$ acetone in dichloromethane $\rightarrow 20\%$ acetone in dichloromethane $\rightarrow 40\%$ acetone in dichloromethane as eluent. The residue was suspended in 10 mL of 10% isopropanol in diethyl ether solution and the white solid was filtered to give 316 mg (61%).

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.97 (t, *J* = 8.3 Hz, 2H), 7.90 (t, *J* = 7.5 Hz, 2H), 7.77 – 7.65 (m, 12H), 7.60 – 7.57 (m, 2H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 156.3 (d, $J_{P-C} = 2.2$ Hz), 137.7 (d, $J_{P-C} = 1.9$ Hz), 135.9 (d, $J_{P-C} = 3.2$ Hz), 133.7 (d, $J_{P-C} = 11.7$ Hz), 131.9 (d, $J_{P-C} = 6.4$ Hz), 130.7 (d, $J_{P-C} = 13.8$ Hz), 126.6 (d, $J_{P-C} = 11.7$ Hz), 120.1 (d, $J_{P-C} = 6.1$ Hz), 118.8 (d, $J_{P-C} = 94.2$ Hz), 98.9 (d, $J_{P-C} = 92.6$ Hz).

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.9.

³¹P NMR (202 MHz, CD₂Cl₂): δ -8.3.

HRMS (ESI) m/z: [*M*⁺] Calcd for C₂₄H₁₈OP⁺ 353.1095; Found: 353.1096.

Salt 2s: Synthesised according to **GP-3** from phosphine oxide **1s** 24.6 mg (0.05 mmol). The crude product was purified via column chromatography using silica gel as the stationary phase and dichloromethane $\rightarrow 40\%$ acetone in dichloromethane as eluent. The residue was dissolved in acetone and layered with hexane. After 24h, the formed pale yellow solid was filtrated to give 22mg (70%).

¹H NMR: (500 MHz, CD₂Cl₂): δ 9.52 (dd, *J* = 8.2, 3.9 Hz, 1H), 8.11 – 8.01 (m, 2H), 7.93 – 7.85 (m, 4H), 7.82 – 7.69 (m, 10H), 7.64 – 7.60 (m, 1H), 7.47 – 7.40 (m, 2H).

 ^{13}C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 136.7, 136.37, 136.35, 134.6, 133.5, 133.4, 132.53, 132.45, 131.3, 131.2, 131.0, 130.9, 130.8, 130.4, 130.3, 129.7, 129.4, 129.0, 128.9, 77.5.

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.9.

³¹P NMR (202 MHz, CD₂Cl₂): δ 20.5.

HRMS (ESI) m/z: $[M^+]$ Calcd for $C_{30}H_{20}S_2P^+$ 475.0744; Found: 475.0742.

Salt 2t: Synthesised according to **GP-2** from phosphine oxide **1t** (41 mg, 0.100 mmol). Crude oily product was solubilized in minimal volume of EtOH, upon dropwise addition of Et_2O white solid precipitated. Filtration and washing with Et_2O yielded 37 mg (0.067 mmol, 67%) of **2t**.

OTf O ¹H NMR: (500 MHz, CDCl₃): δ 8.15 (dd, J = 7.9, 3.1 Hz, 1H), 7.96 – 7.90 (m, 1H), 7.87 (tt, J = 7.7, 1.4 Hz, 1H), 7.82 – 7.76 (m, 2H), 7.76 – 7.69 (m, 4H), 7.69 – 7.60 (m, 5H), 7.31 (t, J = 2.2 Hz, 1H), 6.66 (dd, J = 5.7, 1.8 Hz, 1H), 4.05 (s, 3H), 3.94 (s, 3H).

¹³C {¹H} NMR: (126 MHz, CDCl₃): δ 170.3, 164.1 (d, *J* = 4.9 Hz), 147.3 (d, *J* = 18.5 Hz), 143.7 (d, *J* = 19.3 Hz), 136.2, 135.7 (d, *J* = 3.2 Hz), 133.3 (d, *J* = 12.1 Hz), 131.7 (d, *J* = 4.2 Hz), 131.7 (d, *J* = 17.0 Hz), 130.6 (d, *J* = 13.9 Hz), 124.5 (d, *J* = 10.0 Hz), 122.8 (d, *J* = 93.6 Hz), 121.1 (d, *J* = 320.7 Hz), 117.2 (d, *J* = 90.3 Hz), 103.5 (d, *J* = 10.3 Hz), 99.7 (d, *J* = 7.6 Hz), 96.1 (d, *J* = 105.8 Hz), 57.1.

¹⁹F NMR (470 MHz, CDCl₃): δ -78.1.

³¹P NMR (202 MHz, CDCl₃): δ 23.2.

HRMS (ESI) m/z: [*M*⁺] Calcd for C₂₆H₂₂O₂P⁺ 397.1352; Found: 397.1356.

Salt 2u: Synthesised according to **GP-2** from phosphine oxide **1u** (48 mg, 0.100 mmol). Crude oily product was solubilized in minimal volume of EtOH, upon dropwise addition of Et₂O violet solid precipitated. Filtration and washing with Et₂O yielded 35 mg (0.058 mmol, 58%) of **2u**.

 $\bigcirc OTf$ (m, 2H), 3.23 (hept, J = 6.9 Hz, 1H), 2.94 (s, 3H), 2.62 (s, 3H), 1.43 (d, J = 6.9 Hz, 6H). (m, 2H), 3.23 (hept, J = 6.9 Hz, 1H), 2.94 (s, 3H), 2.62 (s, 3H), 1.43 (d, J = 6.9 Hz, 6H).

¹³C {¹H} NMR: (126 MHz, CDCl₃): δ 153.9 (d, J = 23.1 Hz), 150.1, 148.8 (d, J = 12.9 Hz), 146.2, 143.0 (d, J = 9.0 Hz), 140.9 (d, J = 14.1 Hz), 139.0, 136.9, 135.5, 135.5, 134.0, 133.7 (d, J = 11.4 Hz), 132.4 (d, J = 97.4 Hz), 131.6 (d, J = 11.0 Hz), 131.3 (d, J = 12.3 Hz), 130.8 (d, J = 13.3 Hz), 125.7 (d, J = 8.7 Hz), 123.5 (d, J = 10.7 Hz), 121.1 (q, J = 321.1 Hz), 119.7 (d, J = 89.3 Hz), 96.9 (d, J = 114.8 Hz), 38.7, 28.5, 24.6, 12.1.

¹⁹F NMR (470 MHz, CDCl₃): δ -78.0.

³¹P NMR (202 MHz, CD₂Cl₃): δ 13.5.

HRMS (ESI) m/z: [*M*⁺] Calcd for C₃₃H₃₀P⁺ 457.2080; Found: 457.2089.

Salt 2v: Synthesised according to **GP-3** from phosphine oxide **1v** (120 mg, 0.250 mmol). Crude oily product was solubilized in minimal volume of EtOH, upon dropwise addition of toluene a yellow solid precipitated. Filtration and washing with toluene yielded 134 mg (0.220 mmol, 87%) of **2v**.

¹H NMR: (500 MHz, CD_2Cl_2): δ 8.95 (d, J = 2.9 Hz, 1H), 8.49 (dd, J = 7.8, 3.2 Hz, 1H), 8.46 – 8.35 (m, 4H), 8.31 (d, J = 8.9 Hz, 1H), 8.17 (t, J = 7.6 Hz, 1H), 8.10 – 7.99 (m, 2H), 7.98 – 7.86 (m, 6H), 7.73 (td, J = 7.8, 3.6 Hz, 5H), 7.31 – 7.14 (m, 1H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 145.5 (d, J = 18.8 Hz), 142.7 (d, J = 19.7 Hz), 138.7, 138.5, 137.3, 136.7 (d, J = 3.3 Hz), 135.0 (d, J = 9.6 Hz), 134.3 (d, J = 11.8 Hz), 133.7, 133.2, 132.2 (d, J = 11.9 Hz), 132.0 (d, J = 10.4 Hz), 131.5 (d, J = 13.3 Hz), 130.7, 129.3 (d, J = 6.6 Hz), 129.1 (d, J = 101.8 Hz), 128.2 (d, J = 34.0 Hz), 125.9 (d, J = 10.8 Hz), 125.8, 124.7 (d, J = 10.0 Hz), 124.3, 124.0 (d, J = 95.7 Hz), 123.2 (d, J = 5.8 Hz), 121.6 (q, J = 320.9 Hz), 120.0 (d, J = 10.7 Hz), 116.9 (d, J = 86.7 Hz), 110.9 (d, J = 96.4 Hz).

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -76.9.

³¹P NMR (202 MHz, CD₂Cl₂): δ 25.4.

HRMS (ESI) m/z: $[M^+]$ Calcd for C₃₄H₂₂P⁺ 461.1454; Found: 461.1462.

Salt 2w: Synthesised according to **GP-3** from phosphine oxide **1w** 151.4 mg (0.3 mmol). The crude product was purified via column chromatography using aluminum oxide as the stationary phase and ethyl acetate \rightarrow acetonitrile as eluent. The residue was suspended in 10 mL of dichloromethane in diethyl ether and formed a pale yellow solid was filtrated to give 100mg (52%).

¹H NMR: (500 MHz, CD_2Cl_2): δ 8.91 (t, J = 8.4 Hz, 2H), 8.49 (d, J = 8.2 Hz, 1H), 8.34 (d, J = 7.4 Hz, 1H), 8.30 (d, J = 8.8 Hz, 2H), 8.07 – 7.88 (m, 5H), 7.86 – 7.73 (m, 8H), 7.64 (bs, 4H), 7.47 (t, J = 8.1 Hz, 1H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 148.8 (d, $J_{P-C} = 4.1$ Hz), 138.7 (d, $J_{P-C} = 3.4$ Hz), 138.3 (d, $J_{P-C} = 2.1$ Hz), 138.0, 137.5 (d, $J_{P-C} = 8.9$ Hz), 137.3 (d, $J_{P-C} = 2.3$ Hz), 135.8 (d, $J_{P-C} = 8.4$ Hz), 134.6, 133.4 (d, $J_{P-C} = 14.2$ Hz), 133.2, 133.2 (d, $J_{P-C} = 13.3$ Hz), 132.0 (d, $J_{P-C} = 11.8$ Hz), 131.4, 131.3, 131.22, 131.16, 130.9, 130.3 (d, $J_{P-C} = 1.2$ Hz), 130.1 (d, $J_{P-C} = 14.7$ Hz), 130.1 (d, $J_{P-C} = 15.0$ Hz), 129.9, 129.2 (d, $J_{P-C} = 8.1$ Hz), 126.8 (d, $J_{P-C} = 1.4$ Hz), 126.4, 115.9 (d, $J_{P-C} = 94.6$ Hz), 111.2 (d, $J_{P-C} = 88.8$ Hz).

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.9.

³¹P NMR (243 MHz, CD₂Cl₂): δ 1.7.

HRMS (ESI) m/z: [*M*⁺] Calcd for C₃₆H₂₄P⁺ 487.1616; Found: 487.1619.

Salt 2x: Synthesised according to **GP-3** from phosphine oxide **1x** (111 mg, 0.250 mmol). Crude oily product was solubilized in minimal volume of EtOH, upon dropwise addition of Et_2O a white solid precipitated. Filtration and washing with Et_2O yielded 109 mg (0.190 mmol, 76%) of **2x**.

¹H NMR: (500 MHz, CD₂Cl₂): δ 8.25 – 8.15 (m, 2H), 8.06 – 8.01 (m, 1H), 8.01 – 7.92 (m, 2H), 7.88 – 7.67 (m, 9H), 7.66 – 7.48 (m, 7H), 4.74 (d, *J* = 4.0 Hz, 1H).

¹³C {¹H} NMR: (126 MHz, CDCl₃): δ 149.8 (d, *J* = 6.1 Hz), 142.0 (d, *J* = 5.8 Hz), 140.9 (d, *J* = 9.4 Hz), 140.4, 140.0, 136.6 (d, *J* = 3.2 Hz), 136.0 (d, *J* = 3.1 Hz), 135.1 (d, J = 3.

2.3 Hz), 135.0 (d, J = 11.0 Hz), 134.5 (d, J = 10.3 Hz), 133.8 (d, J = 11.5 Hz), 131.1 (d, J = 13.4 Hz), 131.0 (d, J = 13.5 Hz), 130.6 (d, J = 12.0 Hz), 129.7 (d, J = 8.1 Hz), 129.1 (d, J = 7.0 Hz), 128.9 (d, J = 13.2 Hz), 127.7, 127.0 (d, J = 8.7 Hz), 126.1 (d, J = 3.1 Hz), 122.1, 121.1 (d, J = 321.5 Hz), 118.1 (d, J = 88.5 Hz), 115.7 (d, J = 88.9 Hz), 115.3 (d, J = 90.4 Hz), 114.6 (d, J = 88.5 Hz), 48.8 (d, J = 9.4 Hz).

¹⁹F NMR (470 MHz, CDCl₃): δ -78.0.

³¹P NMR (202 MHz, CDCl₃): δ 7.3.

HRMS (ESI) m/z: $[M^+]$ Calcd for $C_{31}H_{22}P^+$ 425.1454; Found: 425.1458.

Intermolecular substitiution

Salt 4a: N,2-dimethylindole (0.5 mmol) and triphenylphosphine oxide (0.5 mmol) were dissolved in dichloromethane under Ar atmosphere at room temperature. Then it was cooled to -78 °C, and trifluoromethanesulfonic anhydride (0.75 mmol) was added. After warming to room temperature, 50 mL of water and 50 mL of dichloromethane were added. The organic layer was separated and 50 mL of CHCl₃ was added and evaporated. The residue was suspended in a mixture of diethyl ether with propan-2-ol (19:1), and filtered, obtaining 126 mg (45.5 %) of a white solid.

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.90 – 7.86 (m, 3H), 7.79 – 7.69 (m, 12H), 7.56 (d, J = 8.4 Hz, 1H), 7.34 (t, J = 8.1 Hz, 1H), 6.98 (t, J = 7.7 Hz, 1H), 6.35 (d, J = 8.2, 1H), 3.86 (s, 3H), 1.95 (s, 3H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 136.7, 136.37, 136.35, 134.6, 133.5, 133.4, 132.53, 132.45, 131.3, 131.2, 131.0, 130.9, 130.8, 130.4, 130.3, 129.7, 129.4, 129.0, 128.9, 77.5.

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -79.0.

³¹P NMR (243 MHz, CD₂Cl₂): δ 11.4.

HRMS (ESI) m/z: [M⁺] Calcd for C₂₈H₂₅NP⁺ 406.1725; Found: 406.1722.

Salt 4b: N,2-dimethylindole (0.5 mmol) and triphenylarsine oxide (0.5 mmol) were dissolved in dichloromethane under Ar atmosphere at room temperature. Then it was cooled to -78 °C, and trifluoromethanesulfonic anhydride (0.75 mmol) was added. After warming to room temperature, 50 mL of water and 50 mL of dichloromethane were added. The organic layer was separated and 50 mL of CHCl₃ was added and evaporated. The residue was suspended in a mixture of diethyl ether with propan-2-ol (19:1), and

filtered, obtaining 173 mg (57.7 %) of a white solid.

¹H NMR: (500 MHz, CD₂Cl₂): δ 7.88 – 7.83 (m, 3H), 7.75 – 7.71 (m, 12H), 7.56 (d, J = 8.4 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.00 (t, J = 8.1 Hz, 1H), 6.55 (d, J = 8.1 Hz, 1H), 3.86 (s, 3H), 2.11 (s, 3H).

¹³C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 146.6, 138.2, 134.4, 132.6, 131.1, 128.0, 123.3, 122.7, 122.3, 118.4, 110.9, 30.8, 12.8.

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -79.0.

HRMS (ESI) m/z: [M⁺] Calcd for C₂₈H₂₅NAs⁺ 450.1203; Found: 406.1201.

Salt 6: STEP 1 (AsBr₃ synthesis): Bromine (2.25 mmol) in 1 mL of pentane was added to arsenic (1.5 mmol) cooled to -78 °C under Ar atmosphere and then brought to room temperature. After 1 h solvent was evaporated under reduced pressure, and the solid residue (light yellow solid) was dissolved in 1 mL of dry tetrahydrofuran. STEP 2 (arsine synthesis): To a solution of s-butyllithium (2 mmol, 1.4 M in cyclohexane) in 1 mL of dry tetrahydrofuran cooled to -78 °C under Ar atmosphere, a mixture of 2-(2-bromophenyl)-N-methylindole (1 mmol) in 1mL of dry tetrahydrofuran was added. After 1 h phenylmagnesium bromide (3 mmol, 1 M in

diethyl ether) was added, followed by the addition of AsBr₃ solution. The obtained mixture was warmed to room temperature - the solution became a cloudy light yellow color. After 24 h, 20 mL of water was added and extracted with 4x20mL of dichloromethane, the organic layer was separated, dried over MgSO₄ and evaporated. The crude arsine was dissolved in hexane and purified via column chromatography (to remove AsPh₃) using silica gel as stationary phase and hexane \rightarrow 10% dichloromethane in hexane \rightarrow 20% dichloromethane in hexane as eluent to obtain 93.1 mg of oil. Arsine undergoes decomposition, thus was used to immediately the next step. STEP 3: The obtained oil was dissolved in 2 mL of dry 1,2-dichloroethane, di-*t*-butylperoxide (1 mmol) was added followed by the addition of trifluoromethanesulfonic anhydride (1 mmol). Then, the mixture was heated to ~40 oC to initiate

the reaction. After 0.5h, 10 mL of distilled water was added and extracted with 3x10 mL CHCl₃. The combined extracts were evaporated and the crude product was purified via chromatography using silica gel as stationary phase and dichloromethane $\rightarrow 10\%$ acetone in dichloromethane $\rightarrow 20\%$ acetone in dichloromethane $\rightarrow 50\%$ acetone in dichloromethane as eluent. The brown residue was suspended in a mixture of diethyl ether with propane-2-ol (19:1), to give 72 mg (57.7\%, after step 3, the overall yield is 12.3\%) of a pale yellow solid.

¹H NMR: (500 MHz, CD₂Cl₂): δ 8.23 (d, J = 7.8 Hz, 1H), 8.07 (d, J = 7.6 Hz, 1H), 7.90 (t, J = 7.7 Hz, 1H), 7.86 – 7.79 (m, 6H), 7.74 – 7.69 (m, 4H), 7.68 (d, J = 9.9 Hz, 2H), 7.61 (d, J = 7.9 Hz, 1H), 7.50 (t, J = 8.2 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 4.31 (s, 3H).

 ^{13}C {¹H} NMR: (126 MHz, CD₂Cl₂): δ 149.4, 142.9, 135.5, 135.0, 134.9, 132.9, 132.1, 131.3, 130.8, 130.6, 125.2, 125.1, 124.5, 123.9, 121.2, 119.0, 111.9, 94.4, 32.8.

¹⁹F NMR (470 MHz, CD₂Cl₂): δ -78.9.

HRMS (ESI) m/z: [*M*⁺] Calcd for C₂₇H₂₁NAs⁺ 434.0890; Found: 434.0892.

Scheme S1

3. NMR spectra

Figure S1: 500 MHz ¹H NMR spectrum of PP1 in CD₂Cl₂

Figure S3: 500 MHz ¹H NMR spectrum of PP2 in CD₂Cl₂

Figure S4: 126 MHz ^{13}C {1H} NMR spectrum of PP2 in CD_2Cl_2

Figure S5: 500 MHz ¹H NMR spectrum of PP3 in CD₂Cl₂

Figure S6: 126 MHz ^{13}C {1H} NMR spectrum of PP3 in CD_2Cl_2

Figure S10: 126 MHz ^{13}C {^1H} NMR spectrum of PP5 in CD_2Cl_2

Figure S11: 500 MHz ¹H NMR spectrum of 1a in CDCl₃

Figure S12: 126 MHz ^{13}C {1H} NMR spectrum of 1a in CDCl3

Figure S16: 162 MHz ^{31}P NMR spectrum of 1d in CD_2Cl_2

Figure S18: 126 MHz ^{13}C {^1H} NMR spectrum of 1e in CD_2Cl_2

Figure S22: 202 MHz ^{31}P NMR spectrum of 1h in CD_2Cl_2

Ph Р || || Ph-1i D.93 – 2.94 -[2.97 -9.01 -7.96 -1.00 -0.97 -5.0 f1 (ppm) 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Figure S23: 500 MHz ¹H NMR spectrum of 1i in CD₂Cl₂ 137.95 133.48 133.48 133.48 133.48 133.48 133.48 133.48 133.48 133.48 133.59 133.59 133.59 133.59 133.59 133.59 133.59 133.59 133.58 133.59 133.58 135.58 13 104.19 Т Ph Ph Ö 1i 100 f1 (ppm) 90 60 200 190 180 170 160 150 140 130 120 110 80 70 50 40 30 20 10 ό

Figure S25: 202 MHz ^{31}P NMR spectrum of 1i in CD_2Cl_2

Figure S27: 151 MHz ^{13}C { $^{1}\text{H}} NMR spectrum of 1j in CD_2Cl_2$

Figure S28: 243 MHz $^{\rm 31}P$ NMR spectrum of 1j in CD_2Cl_2

Figure S31: 243 MHz ³¹P NMR spectrum of 1k in CD₂Cl₂

Figure S35: 500 MHz ¹H NMR spectrum of 1m in CD₂Cl₂

Figure S36: 126 MHz ^{13}C {1H} NMR spectrum of 1m in CD_2Cl_2

Figure S37: 202 MHz ³¹P NMR spectrum of 1m in CD₂Cl₂

Figure S38: 500 MHz $^1\!H$ NMR spectrum of 1n in CD_2Cl_2

Figure S39: 126 MHz ¹³C {¹H} NMR spectrum of 1n in CD₂Cl₂

Figure S40: 202 MHz ^{31}P NMR spectrum of 1n in CD_2Cl_2

7,55 7,75

Figure S41: 500 MHz ¹H NMR spectrum of 1s in CD₂Cl₂

Figure S42: 126 MHz ^{13}C { $^{1}H\}$ NMR spectrum of 1s in $CD_{2}Cl_{2}$

Figure S46: 161 MHz ^{31}P NMR spectrum of 1t in CD_2Cl_2

Figure S48: 151 MHz ¹³C {¹H} NMR spectrum of 1u in CD₂Cl₂

Figure S52: 161 MHz ^{31}P NMR spectrum of 1v in CDCl3

Figure S54: 126 MHz ^{13}C {1H} NMR spectrum of 1w in CD2Cl2

Figure S55: 243 MHz ³¹P NMR spectrum of 1w in CD₂Cl₂

Figure S58: 470 MHz ¹⁹F NMR spectrum of 2a in CDCl₃

Figure S62: 470 MHz ¹⁹F NMR spectrum of 2b in CDCl₃

Figure S66: 470 MHz ^{19}F NMR spectrum of 2c in CD_2Cl_2

Figure S70: 470 MHz $^{19}\mathrm{F}$ NMR spectrum of 2d in CDCl_3

Figure S74: 470 MHz ¹⁹F NMR spectrum of 2e in CDCl₃

Figure S78: 470 MHz ^{19}F NMR spectrum of 2f in CD_2Cl_2

Figure S80: 600 MHz ^1H NMR spectrum of 2g in CD_2Cl_2

Figure S81: 151 MHz $^{13}\text{C}\left\{^{1}\text{H}\right\}$ NMR spectrum of 2g in $\text{CD}_{2}\text{Cl}_{2}$

Figure S82: 470 MHz ^{19}F NMR spectrum of 2g in CD_2Cl_2

Figure S86: 470 MHz ¹⁹F NMR spectrum of 2h in CDCl₃

Figure S90: 470 MHz ¹⁹F NMR spectrum of 2i in CD₂Cl₂

Figure S93: 151 MHz ^{13}C { $^{1}\text{H}\text{}$ NMR spectrum of 2j in CD_2Cl_2

Figure S94: 470 MHz ^{19}F NMR spectrum of 2j in CD₂Cl₂

Figure S95: 243 MHz ³¹P NMR spectrum of 2j in CD₂Cl₂

Figure S96: 500 MHz 1 H NMR spectrum of 2k in CD₂Cl₂

Figure S97: 126 MHz ^{13}C {1H} NMR spectrum of 2k in CD_2Cl_2

Figure S98: 470 MHz $^{19}\mathrm{F}$ NMR spectrum of 2k in $\mathrm{CD_2Cl_2}$

Figure S99: 243 MHz ³¹P NMR spectrum of 2k in CD₂Cl₂

Figure S100: 500 MHz ^1H NMR spectrum of 2l in CD_2Cl_2

Figure S101: 126 MHz ^{13}C {1H} NMR spectrum of 2I in CD_2Cl_2

Figure S102: 470 MHz ^{19}F NMR spectrum of 2l in CD_2Cl_2

Figure S103: 243 MHz ³¹P NMR spectrum of 2l in CD₂Cl₂

Figure S105: 126 MHz $^{13}\text{C}\left\{^{1}\text{H}\right\}$ NMR spectrum of 2m in CD2Cl2

Figure S106: 470 MHz ^{19}F NMR spectrum of 2m in CD_2Cl_2

Figure S107: 202 MHz ³¹P NMR spectrum of 2m in CD₂Cl₂

Figure S108: 600 MHz ¹H NMR spectrum of 2n in CD₂Cl₂

Figure S109: 151 MHz ^{13}C {^1H} NMR spectrum of 2n in CD_2Cl_2

Figure S110: 470 MHz $^{19}\mathrm{F}$ NMR spectrum of 2n in $\mathrm{CD_2Cl_2}$

Figure S111: 243 MHz ³¹P NMR spectrum of 2n in CD₂Cl₂

Figure S112: 500 MHz ^1H NMR spectrum of 20 in CD_2Cl_2

Figure S118: 470 MHz ^{19}F NMR spectrum of 2p in CD_2Cl_2

Figure S119: 202 MHz ³¹P NMR spectrum of 2p in CD₂Cl₂

Figure S121: 126 MHz $^{13}\text{C}\left\{^{1}\text{H}\right\}$ NMR spectrum of 2q in CD_2Cl_2

Figure S122: 470 MHz ^{19}F NMR spectrum of 2q in CD_2Cl_2

Figure S129: 126 MHz ^{13}C {1H} NMR spectrum of 2s in CD2Cl2

Figure S130: 470 MHz ^{19}F NMR spectrum of 2s in CD_2Cl_2

Figure S131: 202 MHz ³¹P NMR spectrum of 2s in CD₂Cl₂

88.88 88.16

Figure S134: 470 MHz $^{19}\mathrm{F}$ NMR spectrum of 2t in CDCl_3

Figure S138: 470 MHz ¹⁹F NMR spectrum of 2u in CDCl₃

Figure S142: 470 MHz ¹⁹F NMR spectrum of 2v in CD₂Cl₂

Figure S143: 202 MHz ³¹P NMR spectrum of 2v in CD₂Cl₂

Figure S144: 500 MHz ^1H NMR spectrum of 2w in CD_2Cl_2

Figure S145: 126 MHz ^{13}C {1H} NMR spectrum of 2w in CD2Cl2

Figure S146: 470 MHz ^{19}F NMR spectrum of 2w in CD_2Cl_2

Figure S147: 202 MHz ³¹P NMR spectrum of 2w in CD₂Cl₂

Figure S150: 470 MHz ¹⁹F NMR spectrum of 2x in CDCl₃

Figure S153: 126 MHz ^{13}C {1H} NMR spectrum of 4a in CD_2Cl_2

Figure S154: 470 MHz ^{19}F NMR spectrum of 4a in CD_2Cl_2

Figure S156: 500 MHz ¹H NMR spectrum of 4b in CD₂Cl₂

Figure S157: 126 MHz ^{13}C {1H} NMR spectrum of 4a in CD_2Cl_2

Figure S158: 470 MHz ^{19}F NMR spectrum of 4b in CD_2Cl_2

Figure S160: 126 MHz ^{13}C {1H} NMR spectrum of 6 in CD_2Cl_2

Figure S161: 470 MHz $^{\rm 19}{\rm F}$ NMR spectrum of 6 in ${\rm CD_2Cl_2}$

4. UV-Vis spectra

Figure S162: Absorption (solid) and emission (dot) spectra of 2a in dichloromethane, tetrahydrofuran and acetonitrile

Figure S163: Absorption (solid) and emission (dot) spectra of 2b in dichloromethane, tetrahydrofuran and acetonitrile

Figure S164: Solid state emission (dot) spectrum of 2b.

Figure S165: Absorption (solid) and emission (dot) spectra of 2c in dichloromethane, tetrahydrofuran and acetonitrile

Figure S166: Solid state emission (dot) spectrum of 2c

Figure S167: Absorption (solid) and emission (dot) spectra of 2d in dichloromethane, tetrahydrofuran and acetonitrile

Figure S168: Solid state emission (dot) spectrum of 2d.

Figure S169: Absorption (solid) and emission (dot) spectra of 2e in dichloromethane, tetrahydrofuran and acetonitrile

Figure S170: Solid state emission (dot) spectrum of 2e

Figure S171: Absorption (solid) and emission (dot) spectra of 2f in dichloromethane, tetrahydrofuran and acetonitrile

Figure S172: Solid state emission (dot) spectrum of 2f.

Figure S173: Absorption (solid) and emission (dot) spectra of 2f' in dichloromethane, tetrahydrofuran and acetonitrile (measured after the addition of 100µl of DBU to 2f solution)

Figure S174: Absorption (solid) and emission (dot) spectra of 2g in dichloromethane, tetrahydrofuran and acetonitrile

Figure S175: Solid state emission (dot) spectrum of 2g

Figure S176: Absorption (solid) and emission (dot) spectra of 2h in dichloromethane, tetrahydrofuran and acetonitrile

Figure S177: Solid state emission (dot) spectrum of 2h

Figure S178: Absorption (solid) and emission (dot) spectra of 2i in dichloromethane, tetrahydrofuran and acetonitrile

Figure S179: Solid state emission (dot) spectrum of 2i

Figure S180: Absorption (solid) and emission (dot) spectra of 2j in dichloromethane, tetrahydrofuran and acetonitrile

Figure S181: Solid state emission (dot) spectrum of 2j

Figure S182: Absorption (solid) and emission (dot) spectra of 2k in dichloromethane, tetrahydrofuran and acetonitrile

Figure S183: Solid state emission (dot) spectrum of 2k

Figure S184: Absorption (solid) and emission (dot) spectra of 2l in dichloromethane, tetrahydrofuran and acetonitrile

Figure S185: Solid state emission (dot) spectrum of 2I

Figure S186: Absorption (solid) and emission (dot) spectra of 2m in toluene in dichloromethane, tetrahydrofuran and acetonitrile

Figure S187: Solid state emission (dot) spectrum of 2m

Figure S188: Absorption (solid) and emission (dot) spectra of 2n in dichloromethane, tetrahydrofuran and acetonitrile

Figure S189: Solid state emission (dot) spectrum of 2n

Figure S190: Absorption (solid) and emission (dot) spectra of 20 in dichloromethane, tetrahydrofuran and acetonitrile

Figure S191: Solid state emission (dot) spectrum of 20

Figure S192: Absorption (solid) and emission (dot) spectra of 2p in dichloromethane, tetrahydrofuran and acetonitrile

Figure S193: Solid state emission (dot) spectrum of 2p

Figure S194: Absorption (solid) and emission (dot) spectra of 2q in dichloromethane, tetrahydrofuran and acetonitrile

Figure 195: Absorption (solid) and emission (dot) spectra of 2r in dichloromethane, tetrahydrofuran and acetonitrile

Figure S196: Absorption (solid) and emission (dot) spectra of 2s in dichloromethane, tetrahydrofuran and acetonitrile

Figure S197: Solid state emission (dot) spectrum of 2s

Figure S198: Absorption (solid) and emission (dot) spectra of 2t in dichloromethane, tetrahydrofuran and acetonitrile

Figure S199: Solid state emission (dot) spectrum of 2t

Figure S200: Absorption (solid) and emission (dot) spectra of 2u in dichloromethane, tetrahydrofuran and acetonitrile

Figure S201: Absorption (solid) and emission (dot) spectra of 2v in dichloromethane, tetrahydrofuran and acetonitrile

Ph Ph

ÕTI

2v

Figure S202: Solid state emission (dot) spectrum of 2v

Figure S203: Absorption (solid) and emission (dot) spectra of 2w in dichloromethane, tetrahydrofuran and acetonitrile

Figure S204: Absorption (solid) and emission (dot) spectra of 2x in dichloromethane, tetrahydrofuran and acetonitrile

Figure S205: Absorption (solid) and emission (dot) spectra of 2x' in dichloromethane (measured after the addition of 100µl of DBU to 2x solution)

Figure S206: Absorption (solid) spectra of 4a in dichloromethane, tetrahydrofuran and acetonitrile

Figure S207: Absorption (solid) spectra of 4b in dichloromethane, tetrahydrofuran and acetonitrile

Figure S208: Absorption (solid) and emission (dot) spectra of 6 in dichloromethane, tetrahydrofuran and acetonitrile

$$pK_a = -\log\left(\frac{\left(\frac{A(590)}{l\cdot\varepsilon(590)}\right)^2}{C_0 - \frac{A(590)}{l\cdot\varepsilon(590)}}\right) = 7.05$$

$$A(590) = 0.02104 / \varepsilon(590) = 5704.95101 / l = 1$$

Equation S1: Acidic dissociation equilibrium constant for 2x.

Table S1: Spectroscopic data in dichloromethane (red), tetrahydrofuran (orange), acetonitrile (blue) and solid (bold black) for salts. Redox properties measured in acetonitrile.

salt	λ _{abs} (ε·10 ⁻³) [nm] ([cm ⁻¹ M ⁻¹])	λ _{em} [nm]	Δv [cm ⁻¹]	Φ _{FL} [%]	λ _{em} s [nm]	Φ _{FL} s [%]	E _{ox} ^{onset}	E _{red} ^{onset}	Е _{номо}	E _{LUMO}
	341 (1.9)	426	5900	9.7						
2a	338 (1.6) 336 (1.6)	428 429	6200 6500	15.1 16.9	n.d	n.d.	1.40	-1.87	-6.17	-2.91
	250 (2.0)	400	FEOO	100						
01-	350 (3.9)	433	5500	~100	450	40 5	4 40	4 74	0.05	2.00
20	349 (3.3)	445	6200	~100	459	43.5	1.48	-1.71	-0.25	-3.06
	346 (3.3)	440	0000	~100						
	346 (2.9)	440	6200	72.3						
2c	343 (2.6)	459	7400	75.0	558	14.1	1.47	-1.77	-6.24	-3.00
	344 (2.9)	448	6700	85.5						
	307 (4.9), 340 (3.9), 368 (3.0)	460	5400	60.9						
2d	306 (4.6), 338 (3.4), 366 (2.5)	464	5800	62.4	482	18.9	1.53	-1.56	-6.30	-3.21
	304 (6.0), 334 (3.6), 364 (2.8)	462	5800	61.0						
	360 (5.4)	460	6000	68.5						
2e	353 (5.7)	467	6900	69.1	472	58.3	1.45	-1.59	-6.22	-3.18
	353 (5.0)	466	6900	67.5						
	304 (12.8), 371 (3.7)	490	6500	56.7						
2f	301 (17.8), 354 (4.4)	493	8000	59.5	483	31.7	1.16	-1.85	-5.93	-2,92
	301 (19.8), 356 (4.9)	491	7700	63.0						,
	315 (19.3)	577	n.d.	2.2						
2f'a	319 (12.9)	577	n.d.	2.2	n.d.	n.d.	n.d.	n.d.	-	-
	313 (26.7)	577	n.d.	2.1						

	371 (3.8)	490	6500	89.4						
2g	370 (3.2)	500	7000	~100%	553	77.1	1.14	-1.84	-5.91	-2.93
-	364 (3.7)	500	7500	92.8						
	350 (13.2) 363 (11.3)	401	2600	30.0						
2h	352 (12 7) 364 (11 1)	410	3100	89.1	504	53 3	1 23	-2.00	-6.00	-2 77
	348 (13.0), 360 (11.4)	410	3400	83.1	004	00.0	1.20	2.00	0.00	2.77
	278 (10 2) 300 (15 8)	300	8300	24						
2i	277 (18 7) 301 (15 5)	414	0100	2.6	409	14	1 22	-2.23	-5.00	-2.54
21	276 (18.3), 298 (15.3)	426	10100	2.3	405	1.4	1.22	-2.20	-0.99	-2.04
	E00 (40 E)	633	4000	10.0						
21	500 (13.5)	640	4000	10.0 27 /	633	0 1	nd	n d	_	_
~ j	489 (3.7)	640	4800	18.6	000	0.1	n.u.	n.a.	-	-
	483 (6 3)	642	5100	0.8						
24	465 (6.3)	633	4800	0.0	619	8.8	nd	n d	_	_
28	463 (3.0)	659	6400	<0.001	015	0.0	n.u.	n.u.	-	-
	200 (00 7) 407 (45 0)	500	4200	50.7						
21	322 (20.7), 427 (13.3)	540	4300	59.7 74.9	EEQ	E 2	nd	nd		
21	321 (25.9), 422 (13.8)	539	4900 5100	51.4	550	5.2	n.u.	n.u.	-	-
	262 (24.2) 460 (7.0)	670	6000	2.0						
2m	302 (31.3), 400 (7.0) 358 (30.3), 450 (6.7)	672	7300	2.0	639	9.4	0.25	_1 00	-5.02	-2.87
2111	355 (31.8), 442 (7.1)	705	8400	0.4	039	5.4	0.25	-1.90	-5.02	-2.07
	264 (2.0)	462	6100	64.0						
2	301 (3.2)	403	6400	62.0	600	0.6	nd	nd		
211	356 (3.1)	403	6700	52.1	000	0.0	n.u.	n.u.	-	-
			0100	02.1						
_	352 (8.1), 407 (1.9)	530	5700	16.9						
20	347 (6.9), 402 (1.4)	530	6000	15.1	492	10.7	1.05	-1.66	-5.82	-3.11
	343 (9.2), 391 (2.2)	550	7400	11.4						
	323 (6.4), 333 (7.8), 387 (0.9)	535	7100	10.8						
2р	323 (7.3), 333 (8.2), 375 (1.0)	567	9000	5.4	504	2.2	0.99	-1.66	-5.76	-3.11
	323 (7.3), 333 (8.2), 371 (0.9)	559	9100	4.3						
	331 (10.9), 344 (10.6), 355 (10.0)	388	2400	5.4						
2q	331 (10.7), 344 (10.5), 355 (9.9)	388	2400	5.2	n.d	n.d.	1.22	-2.19	-5.99	-2.58
	331 (10.3), 344 (10.3), 355 (9.6)	390	2500	4.7						
	278 (8.1), 300 (8.9), 307 (8.5)	328	2100	3.4						
2r	278 (4.9), 301 (6.9), 307 (7.1)	329	2200	6.1	n.d	n.d.	1.37	-2.08	-6.14	-2.69
	277 (5.0), 300 (7.2), 306 (7.4)	329	2300	3.0						
	371 (3.5)	557	9000	8.0						
2s	366 (2.9)	575	9900	11.1	532	2.0	1.05	-1.63	-5.82	-3.14
	366 (3.4)	583	10200	9.1						
	329 (7.5), 336 (7.4)	387	3900	7.9						
2t	328 (7.8), 337 (7.4)	390	4000	4.5	381	35.5	1.61	-1.87	-6.38	-2.90
	328 (7.5), 335 (7.2)	390	4200	3.6						
	347 (53.6), 394 (13.4), 562 (1.3)	n.d.	n.d.	n.d						
2u	346 (62.3), 394 (14.7), 561 (1.3)	418, 441. 698	3500#	<0.001	n.d	n.d.	0.96	-1.41	-5.73	-3.36
	344 (59.4), 392 (13.7), 559 (1.4)	n.d.	n.d.	n.d.						
	384 (18.5), 401 (12.7), 425 (15.7)	434, 456	500	91.1						
2v	381 (17.0), 400 (10.5), 424 (13.6	434, 458	500	97.3	507	11.4	1.21	-1.55	-5.98	-3.22
	379 (18.0), 398 (10.3), 422 (13.5)	434, 455	700	92.5						
	388 (12.1)	466	4300	9.9						
2w	387 (11.8)	466	4400	8.6	n.d.	n.d.	1.38	-1.50	-6.15	-3.27
	387 (11.3)	466	4400	10.0						
	318 (5.0), 378 (0.3), 590 (0.1)	351	n.d.	12.9						
2x	320 (7.1), 379 (3.1), 602 (1.2)	n.d.	n.d.	n.d.	n.d.	n.d.	1.51	-2.05	-6.28	-2.72
	317 (11.0), 370 (4.2), 582 (2.0)	355, 652	n.d.	5.5*						
2x'a	379 (11.9), 465 (5.7), 590 (5.7)	657	1700	0.5	n.d.	n.d.	n.d.	n.d.	-	-
	074 (40.0) 007 (40.0)	ام م	لد س	ام ما						
12	274 (12.9), 287 (10.0) 275 (17.0), 287 (13.7)	n.d.	n.d.	n.d.	nd	nd	1 22	-0.30	-6.00	-2 AF
-70	210 (11.0), 201 (10.1)	n.u.	n.u.	n.u.	n.u.	n.u.	1.20	-2.52	-0.00	-2.4J

	274 (32.4)	n.d.	n.d.	n.d.						
4b	272 (11.3), 279 (10.8), 288 (9.5) 272 (14.3), 280 (13.7), 288 (12.1) 271 (11.4), 279 (10.8), 287 (9.7)	n.d. n.d. n.d.	n.d. n.d. n.d.	<mark>n.d.</mark> n.d. n.d.	n.d.	n.d.	1.16	-2.05	-5.93	-2.72
6	361 (5.2) 362 (5.2) 358 (5.1)	472, 486 440 n.d.	6500 4900 n.d.	<0.001 0.1 n.d.	n.d.	n.d.	1.12	-1.59	-5.89	-3.18

$$\begin{split} \lambda_{abs} \ / \ \lambda_{em} \ - \ absorption \ / \ emission \ wavelength, \ \epsilon \ - \ molar \ absorption \ coefficient, \ \Delta v \ - \ Stokes \ shift, \ \Phi_{FL} \ - \ fluorescence \ quantum \ yield \ in \ solid, \ * \ - \ determined \ for \ transition \ between \ S_0 \ and \ S_1 \ states, \ * \ - \ determined \ for \ transition \ between \ S_0 \ and \ S_1 \ states, \ * \ - \ determined \ for \ two \ emission \ bands, \ ^a \ - \ measured \ after \ addition \ of \ 100 \mu l \ of \ DBU, \ E_{ox}^{onset} \ / \ E_{red}^{onset} \ - \ oxidation \ / \ reduction \ potential \ (vs \ Fc/Fc^* \ couple) \ onset, \ E_{HOMO} \ / \ E_{LUMO} \ - \ HOMO \ / \ LUMO \ energy \end{split}$$

	solvent	λ _{abs} [nm]	λ _{flu} [nm]	Δν [cm ⁻¹]	Φ _{FL} [%]	
	dichloromethane	350	433	5500	≈100	
	chloroform	349	441	6000	≈100	
	ethyl acetate	347	446	6400	96.0	
2b	tetrahydrofuran	349	445	6200	≈100	
	acetone	348	441	6100	91.1	
	acetonitrile	348	440	6000	≈100	
	dimethylformamide	348	443	6200	≈100	
	dimethylsulfoxide	351	449	6200	27.0	
	toluene	444	637	6800	1.3	
	dichloromethane	460	672	6900	2.0	
	chloroform	455	666	7000	<0.001	
	ethyl acetate	441	670	7800	2.5	
2m	tetrahydrofuran	450	672	7300	1.1	
	acetone	447	693	8000	0.8	
	acetonitrile	442	705	8400	0.4	
	dimethylformamide	443	703	8300	1.6	
	dimethylsulfoxide	444	701	8300	1.1	
	dichloromethane	483	642	5100	0.8	
	chloroform	489	641	4800	0.6	
	ethyl acetate	486	673	5700	<0.001	
2k	tetrahydrofuran	485	633	4800	0.4	
	acetone	480	650	5400	0.7	
	acetonitrile	453	659	6400	<0.001	
	dimethylformamide	449	603	5700	6.38	
	dimethylsulfoxide	450	652	6900	0.77	
	dichloromethane	371	490	6500	89.4	
	chloroform	368	500	7200	93.83	
	ethyl acetate	367	508	7600	57.06	
2g	tetrahydrofuran	370	500	7000	≈100	
	acetone	367	499	7200	60.06	
	acetonitrile	364	500	7500	92.8	
	dimethylformamide	367	503	7400	79.50	
	dimethylsulfoxide	365	502	7500	91.71	

Figure S209: Absorption (solid) and emission (dot) spectra of 2b (left) and 2g (right)

wavenumber [cm⁻¹]

Figure S211: Stokes shift vs $E_{T}(30)$ solvent parameter plot and linear regession for 2b

Figure S214: Stokes shift vs $E_T(30)$ solvent parameter plot and linear regession for 2m

Figure S215: Stokes shift vs SP (solvent polarizability), SdP (solvent dipolaritiy), SA (solvent acidity), SB (solvent basicity) parameter plot and linear regression for 2b

Figure S216: Stokes shift vs SP (solvent polarizability), SdP (solvent dipolaritiy), SA (solvent acidity), SB (solvent basicity) parameter plot and linear regression for 2g

Figure S217: Stokes shift vs SP (solvent polarizability), SdP (solvent dipolaritiy), SA (solvent acidity), SB (solvent basicity) parameter plot and linear regression for 2k

Figure S218: Stokes shift vs SP (solvent polarizability), SdP (solvent dipolaritiy), SA (solvent acidity), SB (solvent basicity) parameter plot and linear regression for 2m

5. Electrochemistry

All cyclic voltammetry measurements were counducted using Bio-Logic SP-50 potentiostat equipped with 2.25 mm² glassy carbon electrode as a working electrode, Ag/AgCl/NaCl(sat) electrode as a reference electrode and platinum wire as a counter electrode. All measurements were conducted in anhydrous MeCN, in the presence of 0.1 M tetrabutylammonium hexafluorophosphate as a supporting electrolyte. Concentration of the analyte were kept in range of 4-10 mM, and the scan rate was set to 100 mV/s. The direction of potential sweep is indicated with a suffix following the compound symbol on the chart legend (_ox – positive potential first, _red – negative potential first). Before the measurement a cyclic voltammogram of every electrolyte solution was recorded and is presented as a light gray trace on each figure. To check wheather reversibility of the reduction peaks could be achieved, additional measurments in DCE and DMF were performed for salt **2g** (Fig. S226 and S227). Unfortunately, only a minute improvement in reversibility was observed in DCE when the potential scan rate was increased to 200 mV/s.

Figure S219: Cyclic volammogram of 2a in MeCN

Figure S220: Cyclic volammogram of 2b in MeCN

Figure S221: Cyclic volammogram of 2c in MeCN

Figure S222: Cyclic volammogram of 2d in MeCN

Figure S223: Cyclic volammogram of 2e in MeCN

Figure S224: Cyclic volammogram of 2f in MeCN

Figure S225: Cyclic volammogram of 2g in MeCN

Figure S226: Cyclic volammogram of 2g in DMF

Figure S227: Cyclic volammogram of 2g in DCE

Figure S228: Cyclic volammogram of 2h in MeCN

Figure S229: Cyclic volammogram of 2i in MeCN

Figure S230: Cyclic volammogram of 2m in MeCN

Figure S231: Cyclic volammogram of 20 in MeCN

Figure S232: Cyclic volammogram of 2p in MeCN

Figure S233: Cyclic volammogram of 2q in MeCN

Figure 234: Cyclic volammogram of 2r in MeCN

Figure S235: Cyclic volammogram of 2s in MeCN

Figure S236: Cyclic volammogram of 2t in MeCN

Figure S237: Cyclic volammogram of 2u in MeCN

Figure S238: Cyclic volammogram of 2v in MeCN

Figure S239: Cyclic volammogram of 2w in MeCN

Figure S240: Cyclic volammogram of 2x in MeCN

Figure S241: Cyclic volammogram of 4a in MeCN

Figure S242: Cyclic volammogram of 4b in MeCN

Figure S243: Cyclic volammogram of 6 in MeCN

6. Computational studies

The ground-state equilibrium geometries of all compounds were optimized using the Møller-Plesset (MP2) method.¹³ Vertical excitation energies of the lowest excited states were computed with the second-order algebraicdiagrammatic construction (ADC(2)) method.¹⁴¹⁵ The ADC(2) method was also employed to determine the excited state equilibrium geometries.¹⁶ The calculations were performed with the Turbomole 7.3 program package and the valence double-zeta def2-SVP basis set of was used.¹⁷

Discussion and conclusions

A pivotal role of the charge-transfer (CT) states in determining the photophysical properties of the discussed class of compounds is emphasized by quantum-chemical computations. At the equilibrium geometry of the ground state, the vertical energy of these states is well above that of the lowest excited singlet states, which carry oscillator strength for optical excitation. As the absorbing, locally excited (LE) state has an equilibrium geometry similar to that of the ground state, the molecular geometry in the CT state undergoes more drastic changes upon energy relaxation. During relaxation, the electron density, initially distributed over two phenyl moieties, localizes on the phosphorus (or arsenic) atom. Neutralization of the atom changes its hybridization, and the two phenyl rings adopt a perpendicular orientation with respect to the molecular ring. Since the CT state is "dark" with respect to radiative transitions and intersects (or nearly intersects) the ground state, it serves as a pathway for fast nonradiative decay of electronic excitation. Its influence on the fluorescence yield depends on the relative energetics of the LE and CT states and the energetic barrier separating the minima of these states. Both factors are expected to be sensitive to the environment.

Ph' Ph OTf			
State	E_{abs}/eV	f	el. configuration
S ₁	4.009	0.123	0.92(29a"-30a")+0.25(28a"-31a")
S ₂	4.660	0.044	0.53(29a"-31a")-0.49(26a"-30a")+0.47(28a"-30a")
S ₃	5.016	0.008	0.61(27a"-61a')+0.39(28a"-62a')

State	E ₀₋₀ /eV	E _{flu} /eV	SOM01	SOMO2
¹ LE	3.586	3.205		
¹ CT	3.446	3.205		

Table S4: Fluorescence ADC(2)/def2-SVP @ ADC(2)/def2-SVP geometry for 2b

Table S5: Absorption ADC(2)/def2-SVP@MP2 geometry for 2c

Ph' Ph OTf			
State	E _{abs} /eV	f	el. configuration
S ₁	4.077	0.095	0.92(28a"-29a")+0.21(28a"-30a")
S ₂	4.740	0.050	0.53(28a"-30a")-0.51(25a"-29a")+0.45(27a"-29a")
S ₃	5.014	0.007	0.61(26a"-58a')+0.39(27a"-59a')

State	E ₀₋₀ /eV	E _{flu} /eV	SOM01	SOMO2
¹ LE	3.618	3.203		
¹ CT	3.380	0.543		

Table S6: Fluorescence ADC(2)/def2-SVP @ ADC(2)/def2-SVP geometry for 2c

Table S7: Absorption ADC(2)/def2-SVP@MP2 geometry for 2d

Ph Ph OTf				
State	E/eV	f	el. configuration	
S ₁	3.757	0.176	0.95(31a"-32a")	
S ₂	3.991	0.121	0.94(30a"-32a")	
S ₃	4.519	0.056	0.55(31a"-33a")+0.50(27a"-32a")+0.44(29a"-32a")	
S ₄	4.886	0.001	0.86(31a"-72a')	

State	E ₀₋₀ /eV	E _{flu} /eV	SOM01	SOMO2
¹ LE	3.317	2.905		
¹ CT	2.541	1.823		

Table S9: Absorption ADC(2)/def2-SVP @ MP2/def2-SVP geometry for 2e

State	E ₀₋₀ /eV	E _{flu} /eV	SOM01	SOMO2
¹ LE	3.350	2.905		
¹ CT	3.258	0.398		

Table S10: Fluorescence ADC(2)/def2-SVP @ ADC(2)/def2-SVP geometry for 2e

Table S11: Absorption ADC(2)/def2-SVP@MP2 geometry for 2f

H N Ph Ph OTf				
State	E/eV	f	el. configuration	
S ₁	3.742	0.133	0.93(30a"-31a")	
S ₂	4.252	0.126	0.92(29a"-31a")	
S ₃	4.533	0.172	0.69(30a"-32a")+0.41(25a"-31a")	
S ₄	4.774	0.0	0.91(30a"-69a')	

State	E ₀₋₀ /eV	E _{flu} /eV	SOM01	SOMO2
¹ LE	3.286	2.857		
¹ CT	3.186	0.271		

Table S12: Fluorescence ADC(2)/def2-SVP @ ADC(2)/def2-SVP geometry for 2f

Table S13: Absorption ADC(2)/def2-SVP @ MP2/def2-SVP geometry for 2f'

Ph Ph				
State	E/eV	f	el. configuration	
S ₁	3.141	0.025	0.85(30a"-31a")+0.43(29a"-31a")	
S ₂	3.455	0.001	0.74(30a"-69a')+0.61(29a"-69a')	
S ₃	3.570	0.146	0.83(29a"-31a")-0.44(30a"-31a")	
S ₄	4.112	0.278	0.80(30a"-32a")+0.43(29a"-32a")	

State	E ₀₋₀ /eV	E _{flu} /eV	SOM01	SOMO2
¹ LE	2.686	2.272		
¹ CT	2.201	-1.629		

Table S14: Fluorescence ADC(2)/def2-SVP @ ADC(2)/def2-SVP geometry for 2f'

Table S15: Absorption ADC(2)/def2-SVP@MP2 geometry for 2g in C_1 symmetry

Ph Ph OTf			
State	E/eV	f	el. configuration
¹ LE	3.506 0.084 0.93(102a-103a)		
¹ LE	3.985	0.182	0.92(101a-103a)
¹ LE/ ¹ CT	4.457	0.177	0.60(102a-104a)-0.35(102a-106a)-0.33(96a-103a)
¹ CT	4.626	0.042	0.70(102a-105a)+0.54(102a-104a)

Table S16: Absorption ADC(2)/def2-SVP @ MP2/def2-SVP geometry for 2h

			Ph P Ph O OTf
State	E/eV	f	el. configuration
S ₁	3.953	0.313	0.95(31a"-32a")
S ₁	4.370	0.074	0.85(30a"-32a")
S ₁	4.698	0.0	0.96(31a"-72a')

Table S17: Fluorescence ADC(2)/def2-SVP @ ADC(2)/def2-SVP geometry

State	E ₀₋₀ /eV	E _{flu} /eV	SOM01	SOMO2
¹ LE	3.682	3.48		
¹ CT	3.382	0.501	- A A A A A A A A A A A A A A A A A A A	A A A

Table S18: Absorption ADC(2)/def2-SVP @ MP2/def2-SVP geometry for 2i
--

			OTf Ph' Ph
State	E _{abs} /eV	f	el. configuration
S ₁	4.309	0.126	0.82(118a-119a)
S ₂	4.397	0.155	0.74(118a-120a)-0.34(118a-119a)+0.30(117a-119a)
S ₃	4.498	0.159	0.67(117a-119a)-0.38(117a-120a)-0.32(118a-120a)

Table S19: Absorption ADC(2)/def2-SVP @ MP2/def2-SVP geometry for 2k

			nBu OTf Ph Ph Ph Ph Ph Ph Ph OTf nBu
State	E _{abs} /eV	f	el. configuration
S ₁	2.802	0.232	0.97(111au-112ag)
S ₂	3.883	0.058	0.90(111au-113ag)
S ₃	3.197	0.0	0.95(111au-112au)
S ₄	3.878	0.0	0.93(111au-113au)
S ₅	3.907	0.235	0.66(108au-112ag)+0.41(102au-112ag)-0.37(110au-112ag)

Table S20: Absorption ADC(2)/def2-SVP @ MP2/def2-SVP geometry for 2I

			nBu OTf Ph Ph Ph Ph Ph Ph OTf nBu	
State	E _{abs} /eV	f	el. configuration	
S ₁	3.177	0.424	0.96(101au-102ag)	
S ₂	S ₂ 3.526 0.0 0.94(101au-102au)			
S ₃	3.944	0.194	0.83(100au-102ag)+0.38(93au-102ag)	
S ₄	4.210	0.350	0.85(101au-103ag)+0.20(100au-102ag)	

HOMOs		
93au	100au	101au

Table S21: Absorption ADC(2)/def2-SVP@MP2 geometry for 6

As Ph⊖Ph OTf			
State	E _{abs} /eV	f	el. configuration
S ₁	3.729	0.136	0.92(34a"-35a")
S ₂	4.138	0.177	0.92(33a"-35a")
S ₃	4.536	0.162	0.72(34a"-36a')+0.42(30a"-35a')
S ₄	4.727	0.0	0.89(34a"-78a')

State	E ₀₋₀ /eV	E _{flu} /eV	SOM01	SOMO2
¹ LE	3.280	2.864		
¹ CT	2.592	-0.164		

Table S22: Fluorescence ADC(2)/def2-SVP @ ADC(2)/def2-SVP geometry for 6

Table S23: Absorption ADC(2)/def2-SVP@MP2 geometry for 6 in C₁ symmetry

As Ph Ph OTf			
State	E/eV	f	el. configuration
¹ LE	3.595	0.106	0.93(111a-112a)
¹ LE	4.037	0.189	0.92(110a-112a)
¹ CT	4.501	0.198	0.48(111a-113a)+0.47(111a-114a)-0.36(111a-115a)-0.34(105a-
			112a)

Figure S244: Relative energies of ¹LE and ¹CT in the ground and excited states optimized geometries for 2b,c and 6

Figure S245: Relative energies of ¹LE and ¹CT in the ground and excited states optimized geometries for 2d, f.f'

Figure S246: Relative energies of ¹LE and ¹CT in the ground and excited states optimized geometries for 2h

Figure S247: Relative energies of ¹LE and ¹CT in the ground and excited states optimized geometries for 2b,c,g and 6 in C₁ symmetry

2f ¹GS MP2/def2-SVP geometry coordinates

```
FINAL HEAT OF FORMATION = -1393.419080
```

Ν	-3.341936	-0.233183	-0.011243
С	-3.297885	1.151637	0.028806
С	-1.925997	1.557933	0.049505
С	-1.172248	0.344590	0.030277
С	-2.077014	-0.725578	-0.010805
С	-4.350871	2.079384	0.044736
С	-4.007287	3.427887	0.086903
С	-2.655044	3.848836	0.109815
С	-1.609214	2.931788	0.093098
н	-5.395205	1.759275	0.027117
н	-4.799351	4.179707	0.100812
Н	-2.433383	4.917793	0.140963
Н	-0.568638	3.265686	0.107897
Ρ	0.460082	-0.312086	-0.003835
С	-0.101418	-2.035391	-0.039590
С	-1.521421	-2.075083	-0.044479
С	1.405992	0.084695	1.462665
С	1.415013	0.082822	-1.467449
С	0.663554	-3.201780	-0.054948
С	-0.003531	-4.436657	-0.079039
С	-1.405387	-4.486195	-0.084383
С	-2.173871	-3.312795	-0.063980
Н	1.756349	-3.161396	-0.047841
н	0.572472	-5.364358	-0.091907

Н	-1.908554	-5.455624	-0.101494
Н	-3.265305	-3.373103	-0.065491
С	2.766870	-0.272567	1.531966
С	3.475674	-0.027080	2.711626
С	2.834524	0.566063	3.808365
С	1.481556	0.921036	3.730839
С	0.755343	0.676893	2.560343
Н	3.271496	-0.721314	0.671667
Н	4.531877	-0.297861	2.775429
Н	3.395166	0.758285	4.725821
Н	0.988809	1.389280	4.585689
Н	-0.300671	0.951570	2.492283
С	2.266878	1.203912	-1.458267
С	2.927137	1.567864	-2.636317
С	2.732648	0.828486	-3.810554
С	1.878384	-0.282530	-3.813925
С	1.208445	-0.658583	-2.645799
Н	2.422336	1.778277	-0.541165
Н	3.594309	2.432618	-2.637749
Н	3.253113	1.116643	-4.726540
Н	1.732216	-0.857569	-4.730878
Н	0.539967	-1.523603	-2.647319
Н	-4.194879	-0.783584	-0.034719

2f ¹LE MP2/def2-SVP geometry coordinates

FINAL HEAT OF FORMATION = -1393.304400

Ν	-3.349623	-0.635894	0.017361
С	-3.400157	0.765213	0.053170
С	-2.045657	1.266080	0.042854
С	-1.205465	0.143947	-0.020063
С	-2.070427	-1.053971	-0.016414
С	-4.495086	1.605810	0.105627
С	-4.237893	2.996852	0.135671
С	-2.927483	3.514996	0.121353
С	-1.822366	2.665763	0.072463
Н	-5.519333	1.226062	0.117217
Н	-5.084959	3.685809	0.174957
Н	-2.781015	4.596548	0.145696
Н	-0.803191	3.059660	0.065388
Ρ	0.500421	-0.347111	-0.018487
С	0.049968	-2.061871	0.041098
С	-1.394047	-2.279942	-0.075197
С	1.499725	0.099497	1.419744
С	1.339501	0.402271	-1.441326
С	0.913109	-3.184846	0.022595
С	0.368693	-4.462082	-0.053210
С	-1.039963	-4.678011	-0.163550
С	-1.909438	-3.601738	-0.160055
Н	1.997208	-3.053059	0.092519
н	1.036643	-5.327605	-0.045837

Н	-1.425555	-5.696284	-0.244759
Н	-2.988773	-3.764324	-0.241911
С	1.491921	-0.747666	2.544531
С	2.164655	-0.356257	3.706406
С	2.800086	0.891412	3.768121
С	2.780428	1.746036	2.657575
С	2.127888	1.359410	1.482081
Н	0.976167	-1.710777	2.498696
Н	2.182722	-1.022054	4.572347
Н	3.314878	1.196700	4.681860
Н	3.274860	2.719018	2.707565
Н	2.127537	2.021859	0.612333
С	2.739596	0.296860	-1.557635
С	3.369914	0.740206	-2.725908
С	2.614591	1.271758	-3.779003
С	1.220077	1.362360	-3.665428
С	0.576295	0.909015	-2.510137
Н	3.335132	-0.110379	-0.735507
Н	4.456315	0.666122	-2.815433
Н	3.111940	1.615672	-4.688588
Н	0.631176	1.773895	-4.488628
Н	-0.513294	0.961507	-2.430165
Н	-4.166620	-1.241429	0.044921

2f ¹CT MP2/def2-SVP geometry coordinates

FINAL HEAT OF FORMATION = -1393.297250

Ν	-2.712100	-0.000995	0.000000
С	-2.589249	1.390558	0.000000
С	-1.186027	1.715934	0.000000
С	-0.493030	0.501125	0.000000
С	-1.484245	-0.553790	0.000000
С	-3.573984	2.368463	0.000000
С	-3.134501	3.704449	0.000000
С	-1.762307	4.054356	0.000000
С	-0.777784	3.075800	0.000000
Н	-4.638747	2.125893	0.000000
Н	-3.882355	4.501018	0.000000
Н	-1.483649	5.109566	0.000000
Н	0.284731	3.328482	0.000000
Ρ	1.208404	-0.198843	0.000000
С	0.452233	-1.886673	0.000000
С	-0.976039	-1.886738	0.000000
С	1.327590	-0.050945	1.938532
С	1.327590	-0.050945	-1.938532
С	1.147172	-3.098669	0.000000
С	0.418991	-4.296052	0.000000
С	-0.992729	-4.300137	0.000000
С	-1.698629	-3.102260	0.000000
Н	2.239923	-3.114815	0.000000
н	0.954073	-5.248993	0.000000

-1.529697	-5.250918	0.000000
-2.792350	-3.104857	0.000000
2.367202	0.762822	2.420209
2.492636	0.993853	3.796966
1.587173	0.414363	4.695231
0.556442	-0.403214	4.213748
0.419629	-0.638811	2.837873
3.081477	1.206560	1.719161
3.305298	1.622579	4.170134
1.689943	0.591177	5.768107
-0.144885	-0.867182	4.912746
-0.383516	-1.294793	2.488227
2.367202	0.762822	-2.420209
2.492636	0.993853	-3.796966
1.587173	0.414363	-4.695231
0.556442	-0.403214	-4.213748
0.419629	-0.638811	-2.837873
3.081477	1.206560	-1.719161
3.305298	1.622579	-4.170134
1.689943	0.591177	-5.768107
-0.144885	-0.867182	-4.912746
-0.383516	-1.294793	-2.488227
-3.596080	-0.504718	0.000000
	-1.529697 -2.792350 2.367202 2.492636 1.587173 0.556442 0.419629 3.081477 3.305298 1.689943 -0.144885 -0.383516 2.367202 2.492636 1.587173 0.556442 0.419629 3.081477 3.305298 1.689943 -0.144885 -0.383516 -3.596080	-1.529697-5.250918-2.792350-3.1048572.3672020.7628222.4926360.9938531.5871730.4143630.556442-0.4032140.419629-0.6388113.0814771.2065603.3052981.6225791.6899430.591177-0.144885-0.867182-0.383516-1.2947932.3672020.7628222.4926360.9938531.5871730.4143630.556442-0.4032140.419629-0.6388113.0814771.2065603.3052981.6225791.6899430.591177-0.144885-0.867182-0.383516-1.294793-3.596080-0.504718

7. Bioimaging

Figure S248: Intracellular localization of 2g compound and Mito Red as detected using confocal fluorescence microscopy.
(A; B). the fluorescence of 2g compound excitation wavelength 405 nm and (A) emission wavelength 510±50 nm and (B) excitation wavelength 559 nm and emission wavelength 594±30 nm.
(C) the fluorescence of Mito Red recorded with 559 nm excitation wavelength and emission wavelength 594±30 nm.
(C) the fluorescence of Alto Red recorded with 559 nm excitation wavelength and emission wavelength 594±30 nm.

Figure S249: Intracellular localization of 2g compound and Mito Red as detected using confocal fluorescence microscopy.
(A) fluorescence of 2g compound excitation wavelength 405 nm emission wavelength 500±50 nm, (B) fluorescence of Mito Red compound excitation wavelength 405 nm emission wavelength 594±50 nm nm . (C) overlay picture recorded sequentially as at (A) and (B) parameters for two fluorophores in living cells U-87. Scale bar 20 μm.

Figure S250: Pearson's coefficient r and Manders' coefficients M1 and M2 of colocalization 2g compound and Mito Red. Columns represent the coefficient value and bars ±SEM, n value 9 cells from 3 independent experiments.

Cell culture conditions

The U-87 cell line was cultured at 37°C in a humidified atmosphere containing 5% CO_2 in DMEM supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 U/ml penicillin, and 100 μ g/ml streptomycin.

Fluorescence of 2g and Mito Red in U87 cell line

Fluorescence localization of **2g** within the cells. The U-87 cells were loaded with fluorophores in DMEM medium supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 U/ml penicillin, and 100 μ g/ml streptomycin at 37°C in a humidified atmosphere containing 5% CO2 for 15 to 30 minutes with the 4a compound at the final concentration ranging from 500 nM. The final concentration of the Mito Red was 100 nM and Pluronic 127 was added to reach the final concentration in medium 0.2%. Both fluorophores were dissolved in DMSO. Before measurements, the incubation medium was replaced with FluoroBriteTM DMEM. The measurements were performed with the use of Olympus IX83 confocal microscope with the water objective 60x UPLSAPO 60XW. Registered data were transferred to the Image and analyzed for presentation.

8. X-ray analysis

Figure S251: X-ray crystal structure of 2i shown with 50% probability ellipsoids. a) – top view, b) side view with applied depth cue

A colorless needle-like specimen of $C_{34}H_{25}F_3NO_3PS$ (2i), approximate dimensions 0.128 mm x 0.298 mm x 0.310 mm, was used for the X-ray crystallographic analysis.

Table S24: Sample and crystal data for 2i

Chemical formula	$C_{34}H_{25}F_3NO_3PS$
Formula weight	615.58 g/mol
Temperature	296(2) K
Wavelength	1.54178 Å
Crystal size	0.128 x 0.298 x 0.310 mm
Crystal habit	Colorless needle
Crystal system	monoclinic
Space group	P _{1 21/c 1}
	a = 12.7109(7) Å / α = 90°
Unit cell dimensions	b = 27.0146(15) Å / β = 108.653(4)°
	c = 9.0263(6) Å / γ = 90°
Volume	2936.6(3) Å ³
Z	4
Density (calculated)	1.392 g/cm ³
Absorption coefficient	1.392 mm ⁻¹
F(000)	1272

Table S25: Data collection and structure refinement for 2i

Theta range for data collection	3.27 to 69.07 °
Index ranges	-14<=h<=14, -24<=k<=30, -10<=l<=7
Reflections collected	13897
Independent reflections	3614 [R(int) = 0.0752]
Coverage of independent reflections	66.0%

numerical		
0.7860 and 0.5800		
direct methods		
SHELXL-2014 (Sheldric	k, 2014)	
Full-matrix least-squar	res on F ²	
SHELXL-2014 (Sheldrick, 2014)		
$\Sigma w(F_o^2 - F_c^2)^2$		
3614 / 16 / 390		
1.057		
0.008		
2119 data; I>2σ(I) all data	R1 = 0.1489, wR2 = 0.3481 R1 = 0.2149, wR2 = 0.3921	
w=1/[$\sigma^2(F_o^2)$ +(0.1516P) ² +22.6325P] where P=(F_o^2 +2 F_c^2)/3		
0.0008(4)		
1.231 and -1.049 eÅ ⁻³		
0.104 eÅ ⁻³		
	numerical 0.7860 and 0.5800 direct methods SHELXL-2014 (Sheldric Full-matrix least-squar SHELXL-2014 (Sheldric $\Sigma w(F_o^2 - F_c^2)^2$ 3614 / 16 / 390 1.057 0.008 2119 data; I>2 σ (I) all data w=1/[$\sigma^2(F_o^2)$ +(0.1516P where P=(F_o^2 +2 F_c^2)/3 0.0008(4) 1.231 and -1.049 eÅ ⁻³	

Table S26: Atomic coordinates and equivalent isotropic atomic displacement parameters ($Å^2$) for 2i. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
P1	0.3817(2)	0.37959(9)	0.6041(4)	0.0540(10)
N2	0.1491(7)	0.2971(3)	0.6640(11)	0.060(2)
C26	0.2230(8)	0.4166(4)	0.3421(13)	0.059(3)
C17	0.5380(9)	0.4106(4)	0.8854(16)	0.064(3)
C22	0.3625(9)	0.4740(4)	0.4839(16)	0.070(3)
C33	0.0535(9)	0.2890(5)	0.7201(15)	0.081(4)
C15	0.3430(8)	0.4245(3)	0.8576(14)	0.049(3)
C1	0.2063(9)	0.2596(4)	0.6237(14)	0.060(3)
C2	0.1895(12)	0.2080(4)	0.6217(15)	0.082(4)
C3	0.2591(13)	0.1776(5)	0.5775(17)	0.085(4)
C6	0.2951(9)	0.2783(4)	0.5841(14)	0.064(3)
C4	0.3429(14)	0.1964(4)	0.5294(17)	0.091(4)
C5	0.3634(10)	0.2468(4)	0.5338(14)	0.073(3)
C8	0.2005(8)	0.3408(4)	0.6573(13)	0.056(3)
C7	0.2907(8)	0.3317(3)	0.6079(13)	0.056(3)
C9	0.1562(8)	0.3892(4)	0.6818(13)	0.055(3)
C10	0.2214(8)	0.4279(4)	0.7687(14)	0.058(3)
C11	0.1699(11)	0.4721(4)	0.7777(16)	0.080(4)
C14	0.0431(9)	0.3983(5)	0.6039(16)	0.078(4)
C16	0.4238(8)	0.4073(3)	0.7916(13)	0.051(3)
C19	0.4906(11)	0.4456(4)	0.0962(15)	0.073(4)
C20	0.3800(10)	0.4436(4)	0.0103(15)	0.065(3)
C18	0.5694(10)	0.4296(4)	0.0318(17)	0.071(4)
C21	0.3179(8)	0.4273(4)	0.4675(13)	0.052(3)
C25	0.1746(9)	0.4544(5)	0.2353(15)	0.075(4)
C24	0.2201(10)	0.5004(5)	0.2548(17)	0.078(4)
C23	0.3123(11)	0.5106(4)	0.3777(18)	0.082(4)
C27	0.4985(9)	0.3551(4)	0.5620(16)	0.063(3)
C28	0.5702(10)	0.3226(5)	0.6674(16)	0.083(4)
C32	0.5139(10)	0.3656(5)	0.4187(18)	0.080(4)
C31	0.6001(12)	0.3436(6)	0.3828(19)	0.108(5)

C29	0.6592(12)	0.3022(6)	0.625(3)	0.115(6)
C30	0.6740(14)	0.3131(8)	0.486(3)	0.133(7)
F1	0.8098(11)	0.3844(5)	0.920(2)	0.280(10)
C13	0.9945(10)	0.4429(6)	0.6162(19)	0.094(5)
C12	0.0589(11)	0.4790(5)	0.7031(19)	0.097(5)
C34	0.8845(10)	0.3586(6)	0.020(2)	0.183(13)
S1	0.8500(10)	0.3389(6)	0.1817(15)	0.456(15)
01	0.7278(11)	0.3221(4)	0.0913(19)	0.182(6)
02	0.914(2)	0.3065(9)	0.270(2)	0.51(3)
F3	0.9843(10)	0.3749(6)	0.048(3)	0.57(3)
F2	0.8870(12)	0.3095(6)	0.9498(18)	0.375(17)
03	0.8487(13)	0.3895(5)	0.200(3)	0.320(18)

Table S27: Bond lengths (Å) for 2i

P1-C7	1.743(10)	P1-C27	1.774(11)
P1-C16	1.769(11)	P1-C21	1.790(11)
N2-C8	1.360(12)	N2-C1	1.362(13)
N2-C33	1.475(13)	C26-C25	1.404(15)
C26-C21	1.396(14)	C26-H26	0.93
C17-C18	1.354(15)	C17-C16	1.430(14)
C17-H17	0.93	C22-C21	1.371(14)
C22-C23	1.381(16)	C22-H22	0.93
C33-H33A	0.96	C33-H33B	0.96
C33-H33C	0.96	C15-C20	1.405(15)
C15-C16	1.421(13)	C15-C10	1.499(14)
C1-C6	1.383(14)	C1-C2	1.409(15)
C2-C3	1.357(18)	C2-H2	0.93
C3-C4	1.369(18)	C3-H3	0.93
C6-C5	1.392(15)	C6-C7	1.462(14)
C4-C5	1.386(16)	C4-H4	0.93
C5-H5	0.93	C8-C7	1.377(14)
C8-C9	1.469(14)	C9-C10	1.408(14)
C9-C14	1.406(14)	C10-C11	1.378(14)
C11-C12	1.367(17)	C11-H11	0.93
C14-C13	1.375(17)	C14-H14	0.93
C19-C20	1.373(15)	C19-C18	1.379(17)
C19-H19	0.93	C20-H20	0.93
C18-H18	0.93	C25-C24	1.358(16)
C25-H25	0.93	C24-C23	1.359(17)
C24-H24	0.93	C23-H23	0.93
C27-C28	1.397(15)	C27-C32	1.398(16)
C28-C29	1.416(18)	C28-H28	0.93
C32-C31	1.373(16)	C32-H32	0.93
C31-C30	1.37(2)	C31-H31	0.93
C29-C30	1.36(2)	C29-H29	0.93
C30-H30	0.93	F1-C34	1.285(13)
C13-C12	1.351(18)	C13-H13	0.93
C12-H12	0.93	C34-F3	1.289(13)
C34-S1	1.737(16)	C34-F2	1.476(16)
S1-O2	1.283(13)	S1-O3	1.379(15)
S1-01	1.573(14)		

Table S28: Bond angles (°) for2i

C7-P1-C27	109.5(5)	C7-P1-C16	107.1(5)
C27-P1-C16	110.2(5)	C7-P1-C21	113.0(5)
C27-P1-C21	110.3(5)	C16-P1-C21	106.6(5)
C8-N2-C1	109.1(8)	C8-N2-C33	127.2(10)
C1-N2-C33	123.5(9)	C25-C26-C21	118.7(10)
C25-C26-H26	120.6	C21-C26-H26	120.6
C18-C17-C16	121.8(11)	C18-C17-H17	119.1
C16-C17-H17	119.1	C21-C22-C23	119.9(11)
C21-C22-H22	120.0	C23-C22-H22	120.0
N2-C33-H33A	109.5	N2-C33-H33B	109.5
H33A-C33-H33B	109.5	N2-C33-H33C	109.5
H33A-C33-H33C	109.5	H33B-C33-H33C	109.5
C20-C15-C16	118.2(10)	C20-C15-C10	117.9(9)
C16-C15-C10	123.7(10)	N2-C1-C6	110.3(9)
N2-C1-C2	130.3(11)	C6-C1-C2	119.5(12)
C3-C2-C1	119.4(13)	C3-C2-H2	120.3
C1-C2-H2	120.3	C4-C3-C2	121.1(12)
C4-C3-H3	119.4	С2-С3-Н3	119.5
C5-C6-C1	120.4(10)	C5-C6-C7	135.1(11)
C1-C6-C7	104.5(10)	C3-C4-C5	120.9(13)
C3-C4-H4	119.6	C5-C4-H4	119.6
C4-C5-C6	118.6(12)	C4-C5-H5	120.7
C6-C5-H5	120.7	N2-C8-C7	108.8(9)
N2-C8-C9	123.5(9)	C7-C8-C9	127.3(9)
C8-C7-C6	107.3(9)	C8-C7-P1	120.1(8)
C6-C7-P1	132.2(8)	C10-C9-C14	118.3(10)
C10-C9-C8	124.0(9)	C14-C9-C8	117.5(10)
C9-C10-C11	118.1(10)	C9-C10-C15	125.1(9)
C11-C10-C15	116.8(10)	C12-C11-C10	121.6(12)
С12-С11-Н11	119.2	C10-C11-H11	119.2
C13-C14-C9	121.9(12)	C13-C14-H14	119.1
C9-C14-H14	119.1	C17-C16-C15	117.7(10)
C17-C16-P1	122.1(8)	C15-C16-P1	120.1(8)
C20-C19-C18	120.0(12)	C20-C19-H19	120.0
C18-C19-H19	120.0	C19-C20-C15	122.0(11)
C19-C20-H20	119.0	C15-C20-H20	119.0
C19-C18-C17	120 3(12)	C19-C18-H18	119.9
C17-C18-H18	119.9	C22-C21-C26	120.0(10)
C22-C21-P1	120.5(9)	C26-C21-P1	119.5(8)
C24-C25-C26	120.1(12)	C24-C25-H25	120.0
C26-C25-H25	120.0	C25-C24-C23	120 7(12)
C25-C24-H24	119.6	C23-C24-H24	119.6
C24-C23-C22	120.5(12)	C24-C23-H23	119.7
C22-C23-H23	119.7	C28-C27-C32	120.3(11)
C28-C27-P1	119 9(10)	C32-C27-P1	119 7(8)
C27-C28-C29	117.6(14)	C27-C28-H28	121.2
C29-C28-H28	121 2	(31-(32-(27	119 2(13)
C31-C32-H32	120.4	C27-C32-H32	120 A
(30-(31-(32	121 8(15)	C30-C31-H31	110 1
C32-C31-H31	119 1	(28-(29-(30	121 7(15)
C28-C29-H29	119 1	С30-С29-Н29	119 2
C31-C30-C29	119 4(14)	C31-C30-H30	120.2
	±±2.7(±7)	C31 C30 1130	120.5

C20 C20 H20	120.2	C12 C12 C14	110 2/12)
С29-С30-П30	120.3	012-013-014	118.3(12)
C12-C13-H13	120.8	C14-C13-H13	120.8
C13-C12-C11	121.8(12)	C13-C12-H12	119.1
C11-C12-H12	119.1	F3-C34-F1	114.4(14)
F3-C34-S1	115.9(15)	F1-C34-S1	115.3(12)
F3-C34-F2	103.6(13)	F1-C34-F2	107.5(14)
S1-C34-F2	97.5(11)	O2-S1-O3	129.1(15)
O2-S1-C34	116.8(13)	O3-S1-C34	79.2(18)
02-S1-01	116.8(16)	O3-S1-O1	107.5(8)
C34-S1-O1	97.2(9)		

Table S29: Torsion angles (°) for 2i

C8-N2-C1-C6	-2.1(13)	C33-N2-C1-C6	-176.7(10)
C8-N2-C1-C2	176.1(12)	C33-N2-C1-C2	1.5(19)
N2-C1-C2-C3	-179.5(12)	C6-C1-C2-C3	-1.5(19)
C1-C2-C3-C4	-2.(2)	N2-C1-C6-C5	-177.9(10)
C2-C1-C6-C5	3.7(18)	N2-C1-C6-C7	1.7(13)
C2-C1-C6-C7	-176.7(10)	C2-C3-C4-C5	4.(2)
C3-C4-C5-C6	-2.(2)	C1-C6-C5-C4	-2.2(19)
C7-C6-C5-C4	178.5(13)	C1-N2-C8-C7	1.6(13)
C33-N2-C8-C7	175.9(10)	C1-N2-C8-C9	175.1(10)
C33-N2-C8-C9	-10.5(17)	N2-C8-C7-C6	-0.5(13)
C9-C8-C7-C6	-173.7(10)	N2-C8-C7-P1	-174.1(7)
C9-C8-C7-P1	12.7(17)	C5-C6-C7-C8	178.7(13)
C1-C6-C7-C8	-0.7(13)	C5-C6-C7-P1	-9.(2)
C1-C6-C7-P1	171.8(9)	C27-P1-C7-C8	172.0(10)
C16-P1-C7-C8	52.5(11)	C21-P1-C7-C8	-64.6(11)
C27-P1-C7-C6	0.2(14)	C16-P1-C7-C6	-119.3(12)
C21-P1-C7-C6	123.6(11)	N2-C8-C9-C10	138.5(11)
C7-C8-C9-C10	-49.2(18)	N2-C8-C9-C14	-46.5(16)
C7-C8-C9-C14	125.8(13)	C14-C9-C10-C11	2.6(16)
C8-C9-C10-C11	177.6(11)	C14-C9-C10-C15	-179.6(11)
C8-C9-C10-C15	-4.6(17)	C20-C15-C10-C9	-134.1(11)
C16-C15-C10-C9	51.9(15)	C20-C15-C10-C11	43.7(14)
C16-C15-C10-C11	-130.3(11)	C9-C10-C11-C12	-1.0(18)
C15-C10-C11-C12	-179.0(12)	C10-C9-C14-C13	-3.0(18)
C8-C9-C14-C13	-178.3(12)	C18-C17-C16-C15	-0.4(15)
C18-C17-C16-P1	-176.7(9)	C20-C15-C16-C17	0.1(14)
C10-C15-C16-C17	174.0(9)	C20-C15-C16-P1	176.4(7)
C10-C15-C16-P1	-9.7(13)	C7-P1-C16-C17	122.3(9)
C27-P1-C16-C17	3.2(10)	C21-P1-C16-C17	-116.5(8)
C7-P1-C16-C15	-53.9(9)	C27-P1-C16-C15	-172.9(8)
C21-P1-C16-C15	67.4(9)	C18-C19-C20-C15	1.4(17)
C16-C15-C20-C19	-0.6(15)	C10-C15-C20-C19	-174.9(10)
C20-C19-C18-C17	-1.8(18)	C16-C17-C18-C19	1.3(17)
C23-C22-C21-C26	1.0(17)	C23-C22-C21-P1	-179.9(9)
C25-C26-C21-C22	-0.4(15)	C25-C26-C21-P1	-179.5(8)
C7-P1-C21-C22	158.1(9)	C27-P1-C21-C22	-79.0(10)
C16-P1-C21-C22	40.7(10)	C7-P1-C21-C26	-22.8(10)
C27-P1-C21-C26	100.1(9)	C16-P1-C21-C26	-140.2(8)
C21-C26-C25-C24	0.0(17)	C26-C25-C24-C23	-0.4(19)
C25-C24-C23-C22	1.(2)	C21-C22-C23-C24	-1.4(19)

C7-P1-C27-C28	-64.4(11)	C16-P1-C27-C28	53.1(11)
C21-P1-C27-C28	170.6(10)	C7-P1-C27-C32	111.1(10)
C16-P1-C27-C32	-131.4(10)	C21-P1-C27-C32	-13.9(11)
C32-C27-C28-C29	1.6(19)	P1-C27-C28-C29	177.1(11)
C28-C27-C32-C31	0.(2)	P1-C27-C32-C31	-175.4(11)
C27-C32-C31-C30	-3.(2)	C27-C28-C29-C30	-1.(2)
C32-C31-C30-C29	3.(3)	C28-C29-C30-C31	-1.(3)
C9-C14-C13-C12	2.(2)	C14-C13-C12-C11	0.(2)
C10-C11-C12-C13	0.(2)	F3-C34-S1-O2	-54.(2)
F1-C34-S1-O2	168.9(18)	F2-C34-S1-O2	55.5(17)
F3-C34-S1-O3	74.8(15)	F1-C34-S1-O3	-62.6(16)
F2-C34-S1-O3	-176.0(11)	F3-C34-S1-O1	-178.6(13)
F1-C34-S1-O1	43.9(16)	F2-C34-S1-O1	-69.5(10)

Table S30: Anisotropic atomic displacement parameters (Å²) for 2i. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
P1	0.0553(16)	0.0461(16)	0.066(2)	0.0053(16)	0.0272(13)	0.0040(11)
N2	0.059(5)	0.060(6)	0.064(7)	0.005(5)	0.022(4)	-0.012(4)
C26	0.061(7)	0.050(6)	0.069(9)	-0.010(6)	0.027(6)	0.004(5)
C17	0.060(7)	0.052(7)	0.084(10)	0.008(7)	0.028(6)	0.007(5)
C22	0.061(7)	0.053(7)	0.096(10)	-0.005(7)	0.025(6)	-0.007(5)
C33	0.071(8)	0.092(9)	0.078(10)	0.005(8)	0.024(6)	-0.026(6)
C15	0.061(6)	0.036(6)	0.055(8)	-0.006(6)	0.026(5)	-0.002(4)
C1	0.065(7)	0.045(7)	0.064(9)	0.005(6)	0.014(6)	-0.014(5)
C2	0.114(11)	0.055(8)	0.070(10)	-0.003(7)	0.019(8)	-0.022(7)
C3	0.144(13)	0.036(7)	0.080(11)	-0.006(7)	0.042(9)	-0.001(8)
C6	0.083(8)	0.045(7)	0.064(9)	0.000(6)	0.024(6)	0.000(6)
C4	0.154(14)	0.043(8)	0.081(12)	0.006(8)	0.045(10)	0.007(8)
C5	0.102(9)	0.051(7)	0.069(10)	-0.002(7)	0.032(7)	0.001(6)
C8	0.056(6)	0.053(7)	0.061(8)	0.008(6)	0.022(5)	-0.005(5)
C7	0.059(6)	0.041(6)	0.071(9)	0.000(6)	0.025(5)	-0.004(4)
C9	0.053(6)	0.052(7)	0.065(8)	0.009(6)	0.028(5)	0.003(5)
C10	0.058(6)	0.049(6)	0.075(9)	-0.004(6)	0.034(6)	0.000(5)
C11	0.093(9)	0.060(8)	0.108(12)	-0.021(8)	0.061(8)	0.004(6)
C14	0.060(7)	0.079(8)	0.096(11)	0.019(8)	0.025(6)	0.003(6)
C16	0.058(6)	0.041(6)	0.058(8)	-0.004(6)	0.022(5)	-0.005(4)
C19	0.102(10)	0.056(7)	0.052(9)	-0.007(7)	0.011(7)	-0.010(6)
C20	0.094(9)	0.048(7)	0.065(9)	0.000(7)	0.042(7)	-0.005(6)
C18	0.080(8)	0.060(8)	0.066(10)	-0.014(7)	0.013(7)	-0.004(6)
C21	0.054(6)	0.050(6)	0.059(8)	-0.002(6)	0.030(5)	-0.005(5)
C25	0.064(7)	0.074(9)	0.084(10)	0.002(8)	0.019(6)	0.010(6)
C24	0.069(8)	0.076(9)	0.092(11)	0.013(8)	0.031(7)	0.018(7)
C23	0.094(10)	0.050(7)	0.109(12)	0.004(8)	0.042(9)	0.003(7)
C27	0.066(7)	0.058(7)	0.072(10)	0.008(7)	0.031(6)	0.012(5)
C28	0.088(9)	0.083(9)	0.079(10)	0.013(8)	0.028(7)	0.035(7)
C32	0.088(9)	0.089(9)	0.075(11)	0.015(8)	0.043(7)	0.033(7)
C31	0.108(11)	0.143(14)	0.090(12)	0.005(11)	0.057(9)	0.039(10)
C29	0.085(10)	0.124(13)	0.133(17)	-0.005(12)	0.032(10)	0.046(9)
C30	0.108(13)	0.189(19)	0.126(17)	0.013(15)	0.068(12)	0.064(12)
F1	0.174(13)	0.261(17)	0.41(3)	0.202(18)	0.096(15)	0.051(12)
C13	0.051(7)	0.105(11)	0.127(13)	0.009(10)	0.030(8)	0.018(7)

C12	0.068(9)	0.085(10)	0.144(15)	0.013(10)	0.044(9)	0.027(8)
C34	0.018(7)	0.137(17)	0.34(4)	0.12(2)	-0.016(12)	-0.006(8)
S1	0.266(14)	0.70(4)	0.37(2)	-0.12(2)	0.061(14)	0.29(2)
01	0.134(11)	0.124(10)	0.301(19)	0.049(11)	0.087(12)	0.023(8)
02	0.64(5)	0.66(5)	0.162(16)	0.05(2)	0.05(2)	0.60(5)
F3	0.105(11)	0.195(16)	1.35(9)	-0.19(3)	0.12(3)	-0.035(10)
F2	0.31(2)	0.30(2)	0.33(2)	-0.199(18)	-0.157(17)	0.203(18)
03	0.101(12)	0.24(2)	0.45(4)	0.10(2)	-0.158(18)	-0.069(13)

Table S31: Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for 2i.

	x/a	y/b	z/c	U(eq)
H26	0.1924	0.3850	0.3296	0.07
H17	0.5922	0.3993	0.8446	0.077
H22	0.4264	0.4811	0.5664	0.084
H33A	-0.0122	0.2837	0.6324	0.121
H33B	0.0432	0.3177	0.7771	0.121
H33C	0.0671	0.2606	0.7874	0.121
H2	0.1311	0.1949	0.6504	0.099
H3	0.2498	0.1435	0.5799	0.102
H4	0.3866	0.1750	0.4934	0.109
H5	0.4217	0.2594	0.5037	0.087
H11	0.2115	0.4980	0.8359	0.096
H14	-0.0001	0.3735	0.5422	0.094
H19	0.5124	0.4578	1.1979	0.088
H20	0.3279	0.4553	1.0545	0.078
H18	0.6444	0.4319	1.0892	0.085
H25	0.1113	0.4479	0.1511	0.09
H24	0.1879	0.5252	0.1832	0.093
H23	0.3418	0.5424	0.3905	0.099
H28	0.5600	0.3146	0.7620	0.1
H32	0.4663	0.3873	0.3485	0.096
H31	0.6084	0.3496	0.2857	0.129
H29	0.7087	0.2809	0.6937	0.138
H30	0.7340	0.2999	0.4615	0.16
H13	-0.0809	0.4482	0.5660	0.113
H12	0.0270	0.5093	0.7125	0.116

9. References

- J. Desroches, A. Gilbert, C. Houle and J.-F. Paquin, *Synthesis (Stuttg).*, 2017, 49, 4827–4844.
- 2 C. Baillie and J. Xiao, *Tetrahedron*, 2004, **60**, 4159–4168.
- 3 X.-L. Huang, C. Li, J. Wang and S.-D. Yang, *Synthesis (Stuttg).*, 2022, 54, 4711–4720.
- 4 K. Górski, J. Mech-Piskorz, K. Noworyta, B. Leśniewska and M. Pietraszkiewicz, *New J. Chem.*, 2018, **42**, 5844–5852.
- 5 C. Fan, F. Zhao, P. Gan, S. Yang, T. Liu, C. Zhong, D. Ma, J. Qin and C. Yang, *Chem. A Eur. J.*, 2012, **18**, 5510–5514.
- 6 Y. Okuda, T. Sato, S. Takebe, M. Mori, M. Fujimoto, K. Masuda, T. Sabato, K. Wakamatsu, H. Akashi and A. Orita, *J. Org. Chem.*, 2024, **89**, 7747–7757.
- 7 C. Han, Z. Zhang, H. Xu, G. Xie, J. Li, Y. Zhao, Z. Deng, S. Liu and P. Yan, *Chem. A Eur. J.*, 2013, **19**, 141–154.
- 8 D. N. Coventry, A. S. Batsanov, A. E. Goeta, J. A. K. Howard, T. B. Marder and R. N. Perutz, *Chem. Commun.*, 2005, 2172.
- 9 WO 2010/038956 A2, .
- 10 T. Iwai, R. Tanaka and M. Sawamura, Organometallics, 2016, 35, 3959–3969.
- 11 H. Gross, Chem. Ber., 1962, 95, 2270–2275.
- 12 P. Boontiem and S. Kiatisevi, *Inorganica Chim. Acta*, 2020, **506**, 119538.
- 13 C. Møller and M. S. Plesset, *Phys. Rev.*, 1934, **46**, 618–622.
- 14 J. Schirmer, *Phys. Rev. A*, 1982, **26**, 2395–2416.
- 15 A. B. Trofimov and J. Schirmer, J. Phys. B At. Mol. Opt. Phys., 1995, 28, 2299–2324.
- 16 C. Hättig, in Advances in Quantum Chemistry, 2005, vol. 50, pp. 37–60.
- 17 TURBOMOLE GmbH, TURBOMOLE V7.0, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, https://www.turbomole.org/.