Supporting Information

Rhodaelectro-catalyzed C–H activations directed by pharmacophores: enabling modification of bioactive compounds

Shangyong Wu,^{‡a} Binbin Yuan,^{‡b} Yongke Lei,^a Xiaoli Su,^a Tristan von Münchow,^b João C. A. Oliveira,^b Xuewu Huang,^a Zhaojun Ding,^a Rongrong Xu,^a Lutz Ackermann,^{*b} and Jiayu Mo ^{*a}

^aGuangxi Key Laboratory of Bioactive Molecules Research and Evaluation,

School of Pharmacy, Guangxi Medical University,

Shuangyong Road 22, 530021 Nanning, P. R. China

E-mail: jiayumo@gxmu.edu.cn

^bWöhler Research Institute for Sustainable Chemistry (WISCh),

Georg-August-Universität Göttingen

Tammannstrasse 2, 37077 Göttingen, Germany

Fax: +49/ 551-39-6777

E-mail: Lutz.Ackermann@chemie.uni-goettingen.de

Table of Contents

1. General Remarks
2. Synthesis of Substrates
3. Optimization of Reaction Conditions
4. General Procedure for Electrooxidative C–H Annulation S-6
5. Characterization Data of Products
6. Mechanistic Studies
7. DFT Calculations S-43
8. References
9. NMR Spectra

1. General Remarks

Unless otherwise noted, catalytic reactions were carried out in undivided electrochemical cells (10 mL) using pre-dried glassware. N-(pyridin-2-yl)benzamide 1^{[1,} $^{2, 9-14]}$ and alkynes $2^{[3-8]}$ were prepared according to previously reported procedures. All reagents and solvents were purchased from commercial suppliers (Adamas-beta, Bidepharm, General Reagent) and used without further purification unless mentioned otherwise. Nickel foam (10 mm × 15 mm × 1.5 mm, 99.9%; obtained from Kunshan City Yushan town Wulife electronic material management department, China) and graphite felt electrodes (thickness 3.0 mm, Anhui Senrise Technologies, China) were connected using stainless steel adapters. The electrocatalytic reactions were conducted at constant current modes using a Mestek DP3005B as power supply. Thin-layer chromatography (TLC) was performed on $200 \pm 50 \mu m$ glass-backed silica gel plates purchased from Shanghai Titan Technology Co., Ltd., China. Column chromatography was carried out on silica gel (200-300 mesh) purchased from Yantai Xinnuo Chemical Co., Ltd., China. NMR spectra were recorded on Bruker Avance NEO 600 instrument. Chemical shifts (δ) are given in ppm relative to the solvent residual peak, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet), and coupling constants (J) are in Hertz (Hz). All FT-IR spectra were recorded on a PerkinElmer L1600300 Spectrum TWO LiTa (UK). High revolution mass spectra (HRMS) were obtained on an Agilent 6545 Q-TOF. Melting point ranges were taken with a Melting Point Apparatus X-5 (Beijing Unitedvision Technology Co., Ltd.).

2. Synthesis of Substrates

The amide **1q** was obtained from commercial sources. The amides **1**,^[1] **1a-h**,^[1] **1j-k**,^[1] **1m**,^[1] **1s-t**,^[1] **1i**,^[2] **11**,^[2] **1n-p**,^[2] **1r**^[2] were synthesized according to literature procedures. The characterization data were consistent with those reported.

The alkynes **2**, **2g**, **2h**, **2i**, **2m**, **2n** were obtained from commercial sources. Alkynes **2a**-**2c**,^[3] **2d**,^[4] **2e**,^[3] **2f**,^[5] **2j**,^[6] **2k**,^[7] **2l**^[8] were synthesized according to literature procedures. The characterization data were consistent with those reported.

The amide **BC-7** was obtained from commercial sources. The amides **BC-1**,^[9] **BC-2**, ^[10] **BC-3**,^[11] **BC-4**,^[12] **BC-5**,^[13] **BC-6**,^[13] **BC-8**^[14] were synthesized according to literature procedures. The characterization data were consistent with those reported.

BC-7

BC-8

3. Optimization of Reaction Conditions

BC-6

BC-5

	$GF [] [] Ni foam$ $+ \qquad Ph \qquad [Cp*RhCl_2]_2 (2.5 mol \%) \\ NaOPiv (20 mol \%) \\ HFIP/H_2O = 3 : 1 \\ 80 °C, CCE = 2.0 mA \\ 24 h, air \\ 2$	O N N Ph
Entry	Variation from standard conditions	3 [%]
1	None	90
2	16 h	82
3	CsF in place of NaOPiv	trace
4	HOPiv in place of NaOPiv	trace
5	GF(+) / Pt(-)	23
6	RVC(+) / Ni foam(-)	trace
7	RVC(+) / Pt(-)	trace
8	TFE / H ₂ O	trace
9	No electricity	NR
10	[RuCl ₂ (<i>p</i> -cymene)] ₂ in place of [Cp [*] RhCl ₂] ₂	NR
11	Pd(OAc) ₂ in place of [Cp [*] RhCl ₂] ₂	NR

[[]a] Undivided cell, GF anode, Ni foam cathode, constant current electrolysis = 2.0 mA, 1 (0.40 mmol), 2 (0.60 mmol), NaOPiv (20 mol %), [Cp*RhCl₂]₂ (2.5 mol %), solvent (4.0 mL), under air, 24 h; yields of isolated product.

4. General Procedure for Electrooxidative C–H Annulation

The electrocatalysis was carried out in an undivided cell with a graphite felt (GF) anode (10 mm × 15 mm × 3.0 mm) and a Nickel foam (Ni foam) cathode (10 mm × 15 mm × 1.5 mm). The cell was charged with *N*-(pyridin-2-yl)benzamide **1** (0.40 mmol), alkyne **2** (0.60 mmol, 1.50 equiv), NaOPiv (9.93 mg, 0.08 mmol, 20 mol %), $[Cp^*RhCl_2]_2$ (6.18 mg, 0.01 mmol, 2.5 mol %) and a HFIP/H₂O solvent mixture (3/1, 4.0 mL). Electrocatalysis was performed at 80 °C with a constant current of 2.0 mA maintained for 24 h. The electrodes were washed with dichloromethane (3 × 4.0 mL) in an ultrasonic bath. The combined mixtures were filtered and concentrated under reduced pressure at 50 °C. The residue was purified by chromatography on silica gel to afford the corresponding products **3**.

Figure SI-1. Setup diagram of the electrolysis.

Gram-scale: The electrocatalysis was carried out in an undivided cell under air with a GF anode (25 mm \times 50 mm \times 3.0 mm) and a Ni foam cathode (25 mm \times 50 mm \times 1.5 mm). The cell was charged with *N*-(pyridin-2-yl)benzamide **1** (793 mg, 4.0 mmol), alkyne **2** (1.07 g, 6.0 mmol, 1.50 equiv), NaOPiv (99.3 mg, 0.80 mmol, 20 mol %), [Cp*RhCl₂]₂ (61.8 mg, 0.10 mmol, 2.5 mol %) and HFIP/H₂O solvent mixture (3/1, 32 mL). Electrocatalysis was performed at 80 °C with a constant current of 8.0 mA maintained for 72 h. The electrodes were washed with dichloromethane (3 \times 8.0 mL) in an ultrasonic bath. The combined mixtures were filtered and concentrated under reduced pressure at 50 °C. The residue was purified by chromatography on silica gel to afford product **3** (1.43 g, 95%).

5. Characterization Data of Products

3,4-Diphenyl-2-(pyridin-2-yl)isoquinolin-1(2*H***)-one (3): The general procedure was followed using 1** (79.3 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **3** (135 mg, 90%) as colorless solid. The NMR data is identical to that previously reported.^[15] **M.p.** = 250–251 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.57 (d, *J* = 7.8 Hz, 1H), 8.40 (d, *J* = 6.0 Hz, 1H), 7.62–7.59 (m, 2H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.27 (d, *J* = 8.1 Hz, 1H), 7.24–7.20 (m, 3H), 7.19 (d, *J* = 6.3 Hz, 1H), 7.17–7.13 (m, 2H), 7.09 (t, *J* = 6.0 Hz, 1H), 7.02–6.85 (m, 5 H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 162.8 (Cq), 152.8 (Cq), 149.2 (CH), 140.2 (Cq), 137.9 (Cq), 137.7 (CH), 136.2 (Cq), 134.4 (Cq), 132.9 (CH), 131.7 (CH), 127.2 (CH), 127.2 (CH), 127.1 (CH), 127.4 (CH), 127.4 (CH), 127.4 (CH), 127.2 (CH), 127.2 (CH), 127.1 (CH), 125.8 (CH), 125.7 (Cq), 125.1 (CH), 123.0 (CH), 119.1 (Cq). **IR** (KBr): 3060, 1661, 1591, 1468, 1434, 1322, 1157, 997, 778, 754, 700 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 375 (100) [M+H]⁺, 397 (4) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₆H₁₈N₂O [M+H]⁺ 375.1492, found 375.1492.

3,4-Diphenyl-2-(4-(trifluoromethyl)pyridin-2-yl)isoquinolin-1(2*H***)-one (4): The general procedure was followed using 1a** (107 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 1:1) yielded **4** (168 mg, 95%) as yellow solid. **M.p.** = 230–231 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.57–8.55 (m, 2H), 7.62 (t, *J* = 7.8 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.46 (s, 1H),

7.29 (d, J = 5.4 Hz, 1H), 7.27 (d, J = 8.2 Hz, 1H), 7.25–7.22 (m, 2H), 7.19 (d, J = 7.2 Hz, 1H), 7.18–7.14 (m, 2H), 6.97–6.89 (m, 5H). ¹³C **NMR** (150 MHz, CDCl₃) $\delta = 162.7$ (C_q), 154.0 (C_q), 150.2 (CH), 140.0 (q, ² $J_{C-F} = 34.5$ Hz, C_q), 139.7 (C_q), 137.9 (C_q), 135.9 (C_q), 134.1 (C_q), 133.2 (CH), 131.7 (CH), 131.7 (CH), 128.3 (CH), 128.2 (CH), 127.8 (CH), 127.5 (CH), 127.4 (CH), 127.4 (CH), 127.2 (CH), 126.0 (CH), 125.5 (C_q), 122.3 (q, ¹ $J_{C-F} = 271.5$ Hz, C_q), 121.4 (q, ³ $J_{C-F} = 3.7$ Hz, CH), 119.6 (CH), 119.6 (C_q), 118.7 (q, ³ $J_{C-F} = 3.5$ Hz, CH). ¹⁹F **NMR** (564 MHz, CDCl₃) $\delta = - 64.77$ (s). **IR** (KBr): 3030, 1659, 1592, 1556, 1412, 1336, 1083, 994, 781, 699 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 443 (100) [M+H]⁺, 465 (6) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₇H₁₇F₃N₂O [M+H]⁺ 443.1371, found 443.1366.

2-(4-Methylpyridin-2-yl)-3,4-diphenylisoquinolin-1(2*H***)-one (5): The general procedure was followed using 1b** (84.8 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **5** (108 mg, 70%) as colorless solid. **M.p.** = 233–234 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.56 (dd, *J* = 8.0 Hz, 1.5Hz, 1 H), 8.23 (d, *J* = 5.4 Hz, 1 H), 7.58 (t, *J* = 7.8 Hz, 1 H), 7.52 (t, *J* = 7.2 Hz, 1 H), 7.25 (d, *J* = 8.4 Hz, 1 H), 7.23–7.20 (m, 2H), 7.18–7.12 (m, 3H), 7.11–7.01 (m, 2H), 6.96–6.87 (m, 5H), 2.24 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 162.8 (C_q), 152.8 (C_q), 149.1 (CH), 148.8 (C_q), 140.3 (C_q), 137.9 (C_q), 136.3 (C_q), 134.5 (C_q), 132.8 (CH), 131.7 (CH), 127.0 (CH), 128.1 (CH), 128.1 (CH), 128.1 (CH), 127.4 (CH), 127.1 (CH), 127.0 (CH), 126.9 (CH), 126.9 (CH), 125.7 (CH), 125.7 (CH), 125.7 (CH), 125.7 (CH), 127.0 (CH), 126.9 (CH), 126.9 (CH), 125.7 (CH), 125.7 (CH), 124.1 (CH), 119.0 (C_q), 20.9 (CH₃). **IR** (KBr): 3054, 3022, 1656, 1605, 1479, 1442, 1331, 998, 785, 704 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 389 (100) [M+H]⁺, 411(20) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₇H₂₀N₂O [M+H]⁺ 389.1650, found 389.1648.

2-(4-Methoxypyridin-2-yl)-3,4-diphenylisoquinolin-1(2*H***)-one (6): The general procedure was followed using 1c** (91.2 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **6** (114 mg, 71%) as colorless solid. **M.p.** = 252–253 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.56 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.19 (d, *J* = 5.8 Hz, 1H), 7.58 (ddd, *J* = 8.3, 7.1, 1.5 Hz, 1H), 7.52 (ddd, *J* = 8.0, 7.1, 1.2 Hz, 1H), 7.24 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.23–7.19 (m, 2H), 7.17 (d, *J* = 7.2 Hz, 1H), 7.15–7.12 (m, 2H), 7.11–6.88 (m, 5H), 6.71 (d, *J* = 2.3 Hz, 1H), 6.61 (dd, *J* = 5.8, 2.3 Hz, 1H), 3.72 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 167.0 (C_q), 162.6 (C_q), 154.2 (C_q), 149.8 (CH), 140.1 (C_q), 137.9 (C_q), 136.3 (C_q), 134.4 (C_q), 132.8 (CH), 131.7 (CH), 127.0 (CH), 127.0 (CH), 125.8 (CH), 125.7 (C_q), 119.0 (C_q), 111.0 (CH), 109.9 (CH), 55.5 (CH₃). **IR** (KBr): 3062, 2975, 1651, 1590, 1445, 1335, 1273, 1029, 777, 699 cm⁻¹. **MS** (ESI) *m/z* calcd for C₂₇H₂₀N₂O₂ [M+H]⁺ 405.1600, found 405.1598.

2-(4-Chloropyridin-2-yl)-3,4-diphenylisoquinolin-1(2*H***)-one (7): The general procedure was followed using 1d** (92.8 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **7** (147 mg, 90%) as colorless solid. **M.p.** = 209–210 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.56 (dd, *J* = 8.2, 1.5 Hz, 1 H), 8.27 (d, *J* = 5.4 Hz, 1 H), 7.61 (ddd, *J* = 8.2, 7.1, 1.5 Hz, 1 H), 7.55 (ddd,

J= 8.2, 7.1, 1.5 Hz, 1 H), 7.29 (d, *J*= 1.8 Hz, 1 H), 7.27 (d, *J*= 7.1, 1.2 Hz, 1 H), 7.25– 7.22 (m, 2H), 7.20 (d, *J*= 7.1 Hz, 1 H), 7.18–7.13 (m, 2H), 7.10 (dd, *J*= 5.4, 1.8 Hz, 1H), 7.04–6.90 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.7 (C_q), 153.8 (C_q), 149.6 (CH), 145.1 (C_q), 139.8 (C_q), 137.9 (C_q), 136.0 (C_q), 134.1 (C_q), 133.1 (CH), 131.7 (CH), 131.7 (CH), 128.3 (CH), 128.2 (CH), 128.2 (CH), 127.7 (CH), 127.4 (CH), 127.4 (CH), 127.3 (CH), 127.3 (CH), 127.2 (CH), 127.2 (CH), 125.9 (CH), 125.7 (CH), 125.5 (C_q), 123.5 (CH), 119.4 (C_q). **IR** (KBr): 3059, 1659, 1574, 1479, 1392, 1334, 829, 779, 725, 700 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 409 (100) [M+H]⁺, 431(71) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₆H₁₇³⁵ClN₂O [M+H]⁺ 409.1103, found 409.1102.

2-(4-Bromopyridin-2-yl)-3,4-diphenylisoquinolin-1(2*H***)-one (8): The general procedure was followed using 1e** (111 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **8** (133 mg, 74%) as yellowish solid. **M.p.** = 214–215 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.56 (dd, *J* = 7.8, 1.2 Hz, 1 H), 8.19 (d, *J* = 5.3 Hz, 1 H), 7.61 (ddd, *J* = 8.2, 7.1, 1.5 Hz, 1 H), 7.54 (ddd, *J* = 8.2, 7.8, 1.2 Hz, 1 H), 7.44 (s, 1 H), 7.27 (d, *J* = 7.1, 1.5 Hz, 1 H), 7.26–7.21 (m, 3H), 7.20 (d, *J* = 7.3 Hz, 1 H), 7.18–7.13 (m, 2H), 7.05–6.90 (m, 5H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 162.7 (Cq), 153.5 (Cq), 149.5 (CH), 139.8 (Cq), 137.9 (Cq), 136.0 (Cq), 134.1 (Cq), 133.5 (Cq), 133.1 (CH), 131.7 (CH), 131.7 (CH), 128.6 (CH), 128.3 (CH), 128.2 (CH), 127.7 (CH), 127.4 (CH), 127.3 (CH), 127.3 (CH), 127.2 (CH), 127.2 (CH), 126.5 (CH), 125.9 (CH), 125.5 (Cq), 119.5 (Cq). **IR** (KBr): 3080, 1657, 1564, 1478, 1386, 1335, 1033, 780, 755, 699 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 453 (100) [M+H]⁺, 475(78) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₆H₁₇⁷⁹BrN₂O [M+H]⁺ 453.0596, found 453.0597.

2-(5-Fluoropyridin-2-yl)-3,4-diphenylisoquinolin-1(2*H***)-one (9): The general procedure was followed using 1f** (86.4 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **9** (95.1 mg, 61%) as colorless solid. **M.p.** = 161–162 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.54 (dd, *J* = 8.1, 1.2 Hz, 1H), 8.26 (d, *J* = 3.0 Hz, 1H), 7.64 (ddd, *J* = 8.3, 7.2, 1.2 Hz, 1H), 7.57 (ddd, *J* = 8.1, 7.2, 1.2 Hz, 1H), 7.33–7.28 (m, 2H), 7.25–7.17 (m, 3H), 7.16–7.09 (m, 3H), 7.00–6.87 (m, 5H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 163.5 (C_q), 158.6 (d, ¹*J*_{C-F} = 258.0 Hz, C_q), 148.3 (d, ⁴*J*_{C-F} = 3.4 Hz, C_q), 139.8 (C_q), 138.0 (C_q), 137.1 (d, ²*J*_{C-F} = 26.0 Hz, CH), 135.8 (C_q), 134.0 (C_q), 133.4 (CH), 131.6 (CH), 131.6 (CH), 128.3 (CH), 128.2 (CH), 127.9 (CH), 127.5 (CH), 127.5 (CH), 127.3 (CH), 127.3 (CH), 126.7 (CH), 125.2 (CH), 120.2 (C_q). ¹⁹**F NMR** (564 MHz, CDCl₃) δ = -127.43 (q, *J* = 3.2 Hz). **IR** (KBr): 3058, 1660, 1474, 1390, 1233, 1201, 1074, 780, 700, 549 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 393 (100) [M+H]⁺, 415(85) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₆H₁₇FN₂O [M+H]⁺ 393.1400, found 393.1398.

Methyl 6-(1-oxo-3,4-diphenylisoquinolin-2(1*H***)-yl)nicotinate (10): The general procedure was followed using 1g (102 mg, 0.40 mmol) and 2 (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 1:1) yielded 10 (115 mg, 67%) as colorless solid. M.p.** = 240–241 °C. ¹H **NMR** (600 MHz, CDCl₃) δ = 8.96 (d, *J* = 2.3 Hz, 1H), 8.54 (d, *J* = 8.0 Hz, 1H), 8.20 (dd, *J* = 8.2, 2.3 Hz, 1H), 7.60 (t, *J* = 7.7 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.33 (d, *J* = 8.2 Hz, 1H), 7.25 (d, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.0 Hz, 1H), 7.24 (t, *J* = 8.0 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.0 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.0 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.0 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.0 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 8.2 Hz, 1H), 7.25 (t, J = 8.2 Hz, 1H), 7.25 (t, J = 8.2 Hz, 1H), 7.25 (t, J = 8.2 H

J = 7.3 Hz, 2H), 7.18 (d, J = 7.1 Hz, 1H), 7.13 (d, J = 7.4 Hz, 2H), 6.98–6.93 (m, 2H), 6.91–6.88 (m, 3H), 3.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 165.1$ (C_q), 162.7 (C_q), 156.3 (C_q), 150.5 (CH), 139.6 (C_q), 138.8 (CH), 137.9 (C_q), 135.9 (C_q), 134.1 (C_q), 133.1 (CH), 131.7 (CH), 131.7 (CH), 128.2 (CH), 128.2 (CH), 128.2 (CH), 127.7 (CH), 127.4 (CH), 127.4 (CH), 127.2 (CH), 127.2 (CH), 127.2 (CH), 127.2 (CH), 125.9 (CH), 125.5 (C_q), 125.1 (C_q), 124.9 (CH), 119.5 (C_q), 52.6 (CH₃). **IR** (KBr): 3058, 1721, 1652, 1586, 1332, 1277, 1121, 1021, 776, 700 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 433 (36) [M+H]⁺, 455 (100) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₈H₂₀N₂O₃ [M+H]⁺ 433.1547, found 433.1547.

6-Methyl-3,4-diphenyl-2-(pyridin-2-yl)isoquinolin-1(*2H***)-one (11):** The general procedure was followed using **1h** (84.9 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **11** (146 mg, 94%) as yellowish solid. The NMR data is identical to that previously reported.^[15] **M.p.** = 231–232 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.45 (d, *J* = 8.2 Hz, 1H), 8.38 (dd, *J* = 5.0, 1.8 Hz, 1H), 7.59 (ddd, *J* = 7.5, 7.2, 1.8 Hz, 1H), 7.34 (d, *J* = 8.2 Hz, 1H), 7.23–7.20 (m, 3H), 7.18 (d, *J* = 7.2 Hz, 1H), 7.14 (d, *J* = 7.3 Hz, 2H), 7.07 (dd, *J* = 7.5, 5.0 Hz, 1H), 7.02 (s, 1H), 7.01–6.83 (m, 5H), 2.38 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 162.8 (C_q), 152.9 (C_q), 149.2 (CH), 143.5 (C_q), 140.2 (C_q), 138.0 (C_q), 137.6 (CH), 136.3 (C_q), 134.6 (C_q), 131.8 (CH), 127.1 (CH), 127.0 (CH), 127.0 (CH), 127.0 (CH), 125.5 (CH), 125.2 (CH), 123.4 (C_q), 123.0 (CH), 119.0 (C_q), 22.2 (CH₃). **IR** (KBr): 3058, 2918, 1655, 1616, 1589, 1471, 1325, 844, 760, 700 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 389 (100) [M+H]⁺, 411 (1) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₇H₂₀N₂O [M+H]⁺ 389.1654, found 389.1648.

6-(Tert-butyl)-3,4-diphenyl-2-(pyridin-2-yl)isoquinolin-1(2H)-one The (12): general procedure was followed using 1i (102 mg, 0.40 mmol) and 2 (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded 12 (164 mg, 95%) as yellowish solid. M.p. = $260-261 \, ^{\circ}\text{C}$. ¹H NMR (600 MHz, CDCl₃) $\delta = 8.48$ (d, J = 8.5 Hz, 1H), 8.38 (d, J = 5.0 Hz, 1H), 7.60–7.57 (m, 2H), 7.25–7.20 (m, 4H), 7.18 (d, J = 6.7 Hz, 1H), 7.17–7.12 (m, 3H), 7.07 (dd, J = 7.5, 5.0 Hz, 1H), 7.03–6.88 (m, 4H), 1.25 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.7 (C_q), 156.4 (C_q), 153.0 (C_q), 149.2 (CH), 140.1 (C_q), 137.8 (C_q), 137.6 (CH), 136.3 (C_q), 134.7 (C_q), 131.8 (CH), 131.8 (CH), 128.0 (CH), 128.0 (CH), 128.0 (CH), 127.3 (CH), 127.2 (CH), 127.2 (CH), 127.0 (CH), 127.0 (CH), 127.0 (CH), 125.2 (CH), 125.1 (CH), 123.4 (C_q), 122.9 (CH), 121.9 (CH), 119.4 (C_q), 35.4 (C_q), 31.1 (CH₃). **IR** (KBr): 3055, 2965, 1658, 1606, 1588, 1467, 1433, 1324, 793, 705 cm⁻¹. MS (ESI) *m/z* (relative intensity): 431 (100) $[M+H]^+$, 453 (1) $[M+Na]^+$. **HR-MS** (ESI) m/z calcd for $C_{30}H_{26}N_2O$ $[M+H]^+$ 431.2124, found 431.2118.

6-Methoxy-3,4-diphenyl-2-(pyridin-2-yl)isoquinolin-1(2*H*)-one (13): The general procedure was followed using 1j (91.3 mg, 0.40 mmol) and 2 (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded 14 (147 mg, 91%) as colorless solid. The NMR data is identical to that previously reported.^[15] M.p. = 251–252 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.48 (d, *J* = 8.9 Hz, 1H), 8.37 (d, *J* = 4.8 Hz, 1H), 7.58 (ddd, *J* = 7.5, 7.4, 4.1 Hz, 1H), 7.23–7.18 (m, 3H), 7.18–7.11 (m, 3H), 7.09 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.06 (ddd, *J* = 7.5, 4.8, 1.0 Hz, 1H), 7.05–6.85 (m, 5H),

6.62 (d, J = 2.5 Hz, 1H), 3.73 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 163.2$ (C_q), 162.4 (C_q), 152.9 (C_q), 149.1 (CH), 140.8 (C_q), 140.1 (C_q), 137.6 (CH), 136.3 (C_q), 134.6 (C_q), 131.7 (CH), 131.7 (CH), 130.5 (CH), 128.1 (CH), 128.1 (CH), 128.1 (CH), 127.4 (CH), 127.4 (CH), 127.2 (CH), 127.2 (CH), 127.1 (CH), 125.2 (CH), 122.9 (CH), 119.5 (C_q), 118.8 (C_q), 115.6 (CH), 107.8 (CH), 55.4 (CH₃). **IR** (KBr): 3058, 2969, 1658, 1590, 1482, 1327, 1221, 1028, 759, 700 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 405 (100) [M+H]⁺, 427 (3) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₇H₂₀N₂O₂ [M+H]⁺ 405.1602, found 405.1598.

6-(Methylthio)-3,4-diphenyl-2-(pyridin-2-yl)isoquinolin-1(2H)-one (14): The general procedure was followed using 1k (97.7 mg, 0.40 mmol) and 2 (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded 14 (114 mg, 68%) as yellow solid. M.p. = 277–278 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.42 (d, J = 8.5 Hz, 1H), 8.38 (ddd, J = 4.9, 1.9, 0.9 Hz, 1H), 7.59 (ddd, J = 7.5, 7.3, 1.9 Hz, 1H), 7.36 (d, J = 8.5, 1H), 7.22–7.19 (m, 3H), 7.17 (dd, J = 7.3, 1.1 Hz, 1H), 7.14–7.10 (m, 2H), 7.08 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 7.08–6.95 (m, 2H), 6.95–6.88 (m, 4H), 2.37 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.5 (C_q), 152.8 (C_q), 149.2 (CH), 145.5 (C_q), 141.0 (C_q), 138.3 (C_q), 137.7 (CH), 135.9 (C_q), 134.4 (C_q), 131.7 (CH), 131.7 (CH), 128.6 (CH), 128.4 (CH), 128.2 (CH), 127.5 (CH), 127.2 (CH), 127.2 (CH), 127.2 (CH), 127.2 (CH), 127.1 (CH), 125.1 (CH), 124.5 (CH), 123.0 (CH), 122.4 (C_q), 121.1 (CH), 118.5 (C_q), 14.8 (CH₃). **IR** (KBr): 2962, 2925, 1646, 1465, 1262, 1097, 1021, 800, 701 cm⁻¹. **MS** (ESI) m/z (relative intensity): 421 (100) [M+H]⁺, 443 (4) $[M+Na]^+$. **HR-MS** (ESI) m/z calcd for $C_{27}H_{20}N_2OS$ $[M+H]^+$ 421.1373, found 421.1369.

3,4-Diphenyl-2-(pyridin-2-yl)-6-(trifluoromethyl)isoquinolin-1(2*H***)-one (15): The general procedure was followed using 11** (107 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **15** (153 mg, 86%) as yellow solid. The NMR data is identical to that previously reported.^[15] **M.p.** = 204–205 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.59 (d, *J* = 8.4 Hz, 1H), 8.33 (d, *J* = 3.7 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.53 (t, *J* = 8.1 Hz, 1H), 7.45 (s, 1H), 7.18–7.11 (m, 4H), 7.08–7.02 (m, 3H), 6.98–6.79 (m, 5H). ¹³C **NMR** (150 MHz, CDCl₃) δ = 162.0 (C_q), 152.4 (C_q), 149.3 (CH), 141.9 (C_q), 138.1 (C_q), 137.9 (CH), 134.5 (C_q), 134.4 (q, ²*J*_{C-F} = 32.3 Hz, C_q), 134.1 (C_q), 131.6 (CH), 127.8 (CH), 129.4 (CH), 128.4 (CH), 127.9 (CH), 127.9 (CH), 127.8 (CH), 127.5 (CH), 127.3 (CH), 124.9 (CH), 124.7 (C_q), 123.8 (q, ¹*J*_{C-F} = 271.5 Hz, C_q), 123.3 (CH), 123.1 (q, ³*J*_{C-F} = 4.2 Hz, CH), 118.8 (C_q). ¹⁹**F NMR** (564 MHz, CDCl₃) δ = -63.05 (s). **IR** (KBr): 2925, 1662, 1591, 1473, 1432, 1331, 1132, 1068, 908, 702 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 443 (100) [M+H]⁺, 465 (5) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₇H₁₇F₃N₂O [M+H]⁺ 443.1370, found 443.1366.

1-Oxo-3,4-diphenyl-2-(pyridin-2-yl)-1,2-dihydroisoquinoline-6-carbonitrile (16): The general procedure was followed using **1m** (89.5 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **16** (93.8 mg, 59%) as colorless solid. **M.p.** = 241–242 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.67 (d, *J* = 8.2 Hz, 1H), 8.44 (dd, *J* = 4.9, 1.8 Hz, 1H), 7.74 (d, *J* = 8.2 Hz, 1H), 7.66 (t, *J* = 7.7 Hz, 1H), 7.62 (s, 1H), 7.31–7.26 (m, 3H), 7.23 (d, *J* = 7.9 Hz, 1H), 7.17–7.13 (m, 3H), 7.10–7.96 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.7 (C_q), 152.2 (C_q), 149.4 (CH), 142.4 (C_q), 138.2 (C_q), 137.9 (CH), 134.8 (C_q), 133.6 (C_q), 131.5 (CH), 131.5 (CH), 130.6 (CH), 129.4 (CH), 128.7 (CH), 128.6 (CH), 128.6 (CH), 128.1 (C_q), 127.9 (CH), 127.9 (CH), 127.7 (CH), 127.7 (CH), 127.4 (CH), 127.4 (CH), 124.8 (CH), 123.4 (CH), 118.4 (C_q), 118.1 (C_q), 116.3 (C_q). **IR** (KBr): 3054, 2233, 1665, 1589, 1467, 1326, 1215, 996, 761, 712 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 400 (100) [M+H]⁺, 422 (2) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₇H₁₇N₃O [M+H]⁺ 400.1445, found 400.1444.

6-Fluoro-3,4-diphenyl-2-(pyridin-2-yl)isoquinolin-1(2H)-one (**17**): The general procedure was followed using **1n** (86.5 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **17** (141 mg, 90%) as yellowish solid. The NMR data is identical to that previously reported.^[15] **M.p.** = 207–208 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.56 (t, *J* = 7.2 Hz, 1H), 8.39 (d, *J* = 2.3 Hz, 1H), 7.60 (t, *J* = 7.9 Hz, 1H), 7.24–7.17 (m, 5H), 7.14–7.08 (m, 3H), 7.05–6.84 (m, 6H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 165.8 (d, ¹*J*_{C-F} = 252.4 Hz, C_q), 162.2 (C_q), 152.6 (C_q), 149.3 (CH), 141.6 (C_q), 140.5 (d, ³*J*_{C-F} = 9.9 Hz, C_q), 137.8 (CH), 135.7 (C_q), 134.2 (C_q), 131.5 (d, ³*J*_{C-F} = 9.0 Hz, CH), 131.5 (CH), 127.3 (CH), 125.0 (CH), 127.6 (CH), 127.6 (CH), 127.4 (CH), 127.3 (CH), 125.0 (CH), 123.2 (CH), 122.3 (C_q), 118.6 (d, ⁴*J*_{C-F} = 3.0 Hz, C_q), 115.6 (d, ²*J*_{C-F} = 24.0 Hz, CH), 111.1 (d, ²*J*_{C-F} = 24.0 Hz, CH). ¹⁹**F NMR** (564 MHz, CDCl₃) δ = -104.98 (q, *J* = 8.5). **IR** (KBr): 3058, 1666, 1614, 1472, 1324, 1183, 1138, 951, 761, 701 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 393 (100) [M+H]⁺, 415 (2) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₆H₁₇FN₂O [M+H]⁺ 393.1399, found 393.1398.

6-Chloro-3,4-diphenyl-2-(pyridin-2-yl)isoquinolin-1(2*H***)-one (18): The general procedure was followed using 10 (93.1 mg, 0.40 mmol) and 2 (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded 18 (144 mg, 88%) as colorless solid. M.p.** = 243–244 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.48 (d, *J* = 8.6 Hz, 1 H), 8.39 (ddd, *J* = 4.9, 1.9, 0.9 Hz, 1H), 7.60 (t, *J* = 7.7 Hz, 1H), 7.46 (d, *J* = 8.6, Hz, 1 H), 7.25–7.21 (m, 3H), 7.21–7.17 (m, 2H), 7.12 (d, *J* = 6.6 Hz, 2H), 7.09 (dd, *J* = 7.5, 4.9 Hz, 1H), 7.04–6.83 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.2 (C_q), 152.5 (C_q), 149.3 (CH), 141.7 (C_q), 139.6 (C_q), 139.3 (C_q), 137.8 (CH), 135.5 (C_q), 134.1 (C_q), 131.6 (CH), 131.6 (CH), 127.4 (CH), 127.4 (CH), 127.3 (CH), 125.2 (CH), 125.0 (CH), 127.6 (CH), 127.6 (CH), 127.4 (CH), 127.4 (CH), 127.3 (CH), 125.2 (CH), 1472, 1463, 1321, 883, 759, 706 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 409 (100) [M+H]⁺, 431 (2) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₆H₁₇³⁵ClN₂O [M+H]⁺ 409.1105, found 409.1102.

6-Bromo-3,4-diphenyl-2-(pyridin-2-yl)isoquinolin-1(2*H*)-one (19): The general procedure was followed using 1p (111 mg, 0.40 mmol) and 2 (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 1:1) yielded 19 (163 mg, 90%) as yellowish solid. The NMR data is identical to that previously reported.^[15] M.p. = 244–245 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.43–8.36 (m, 2H), 7.64–7.57 (m, 2H), 7.39 (d, *J* = 1.9 Hz, 1H), 7.25–7.21 (m, 2H), 7.21–7.17 (m, 2H), 7.11 (d, *J* = 7.4 Hz, 2H), 7.09 (ddd, *J* = 7.5, 4.8, 0.9 Hz, 1H), 7.04–6.80 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.3 (C_q), 152.5 (C_q), 149.3 (CH), 141.7 (C_q), 139.5 (C_q), 137.8 (CH),

135.4 (C_q), 134.1 (C_q), 131.6 (CH), 131.6 (CH), 130.4 (CH), 130.1 (CH), 128.4 (C_q), 128.4 (CH), 128.4 (CH), 128.3 (CH), 127.6 (CH), 127.4 (CH), 127.4 (CH), 127.3 (CH), 127.3 (CH), 127.3 (CH), 125.0 (CH), 124.4 (C_q), 123.2 (CH), 118.1 (C_q). **IR** (KBr): 3060, 1658, 1590, 1472, 1433, 1320, 1148, 1069, 759, 704 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 453 (100) $[M+H]^+$, 475 (2) $[M+Na]^+$. **HR-MS** (ESI) *m/z* calcd for C₂₆H₁₇⁷⁹BrN₂O $[M+H]^+$ 453.0601, found 453.0597.

6-Amino-3,4-diphenyl-2-(pyridin-2-yl)isoquinolin-1(2*H***)-one (20): The general procedure was followed using 1q** (42.7 mg, 0.20 mmol) and **2** (63.5 mg, 0.30 mmol). Purification by column chromatography (PE/EtOAc = 1:1) yielded **20** (34.2 mg, 44%) as colorless solid. **M.p.** = 305–306 °C. ¹**H NMR** (600 MHz, DMSO-*d*₆) δ = 8.27 (d, *J* = 5.0 Hz, 1 H), 8.0 (d, *J* = 8.7 Hz, 1 H), 7.68 (t, *J* = 7.7 Hz, 1 H), 7.34 (d, *J* = 7.8 Hz, 1 H), 7.24–7.10 (m, 6H), 7.02–6.93 (m, 2H), 6.89–6.85 (m, 3H), 6.78 (dd, *J* = 8.7, 2.1 Hz, 1 H), 6.12 (d, *J* = 2.1 Hz, 1 H), 5.99 (s, 2H). ¹³**C NMR** (150 MHz, DMSO-*d*₆) δ = 161.5 (Cq), 153.3 (Cq), 152.9 (Cq), 148.7 (CH), 140.4 (Cq), 139.8 (Cq), 137.8 (CH), 136.7 (Cq), 134.6 (Cq), 131.6 (CH), 127.0 (CH), 127.0 (CH), 127.0 (CH), 125.8 (CH), 127.3 (CH), 127.3 (CH), 127.3 (CH), 127.0 (CH), 127.0 (CH), 127.0 (CH), 125.8 (CH), 123.1 (Cq), 117.4 (CH), 115.4 (CH), 114.2 (Cq), 106.1 (CH). **IR** (KBr): 3471, 2962, 1636, 1599, 1579, 1483, 1332, 1116, 758, 699 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 390 (100) [M+H]⁺, 412 (2) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₆H₁₉N₃O [M+H]⁺ 390.1606, found 390.1602.

8-Methyl-3,4-diphenyl-2-(pyridin-2-yl)isoquinolin-1(2*H***)-one (21): The general procedure was followed using 1r (84.9 mg, 0.40 mmol) and 2 (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 1:1) yielded 21 (148 mg, 95%) as yellowish solid. The NMR data is identical to that previously reported.^[15] M.p. = 282–283 °C. ¹H NMR (600 MHz, CDCl₃) \delta = 8.42 (d,** *J* **= 5.0 Hz, 1H), 7.58 (t,** *J* **= 7.8 Hz, 1H), 7.41 (t,** *J* **= 7.4 Hz, 1H), 7.28 (d,** *J* **= 7.4 Hz, 1H), 7.22–7.18 (m, 2H), 7.18–7.15 (m, 2H), 7.14–7.12 (m, 2H), 7.08–7.06 (m, 2H), 7.02–6.86 (m, 5H), 2.97 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) \delta = 163.7 (C_q), 153.4 (C_q), 149.3 (CH), 142.6 (CH), 140.1 (C_q), 139.8 (C_q), 137.8 (CH), 137.0 (C_q), 134.5 (C_q), 132.0 (CH), 131.9 (C_q), 131.9 (CH), 127.0 (CH), 125.2 (CH), 124.2 (CH), 127.4 (CH), 127.2 (CH), 127.2 (CH), 127.2 (CH), 127.0 (CH), 127.0 (CH), 125.2 (CH), 124.2 (CH), 124.1 (C_q), 122.9 (CH), 119.1 (C_q), 24.4 (CH₃). IR** (KBr): 2963, 1657, 1589, 1470, 1435, 1332, 1300, 1150, 997, 698 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 389 (100) [M+H]⁺, 411 (1) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₇H₂₀N₂O [M+H]⁺ 389.1654, found 389.1648.

7-Bromo-3,4-diphenyl-2-(pyridin-2-yl)isoquinolin-1(*2H***)-one (22):** The general procedure was followed using **1s** (111 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **22** (152 mg, 84%) as yellowish solid. **M.p.** = 224–225 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.67 (s, 1H), 8.39 (d, *J* = 4.8 Hz, 1H), 7.66 (d, *J* = 8.7 Hz, 1H), 7.61 (t, *J* = 7.7 Hz, 1H), 7.23–7.17 (m, 4H), 7.14–7.08 (m, 4H), 7.03–6.86 (m, 5H). ¹³C NMR (150 MHz, CDCl₃) δ = 161.6 (C_q), 152.5 (C_q), 149.3 (CH), 140.7 (C_q), 137.9 (CH), 136.7 (C_q), 136.0 (CH), 135.7

(C_q), 134.1 (C_q), 131.6 (CH), 131.6 (CH), 130.8 (CH), 128.3 (CH), 128.3 (CH), 127.7 (CH), 127.6 (CH), 127.3 (CH), 127.3 (CH), 127.3 (CH), 127.3 (CH), 127.1 (C_q), 125.0 (CH), 123.2 (CH), 121.1 (C_q), 118.7 (C_q). **IR** (KBr): 3057, 1657, 1587, 1470, 1433, 1328, 835, 761, 699 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 453 (100) $[M+H]^+$, 475 (2) $[M+Na]^+$. **HR-MS** (ESI) *m/z* calcd for C₂₆H₁₇⁷⁹BrN₂O $[M+H]^+$ 453.0599, found 453.0597.

3,4-Diphenyl-2-(pyridin-2-yl)benzo[g]isoquinolin-1(2*H***)-one (23): The general procedure was followed using 1t** (99.3 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **23** (137 mg, 81%) as yellow solid. **M.p.** = 309–310 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 9.14 (s, 1H), 8.38 (d, *J* = 5.5 Hz, 1H), 8.07 (d, *J* = 7.8 Hz, 1H), 7.76 (d, *J* = 7.9 Hz, 1H), 7.67 (s, 1H), 7.59 (dd, *J* = 8.8, 6.8 Hz, 1H), 7.53–7.48 (m, 2H), 6.26–6.23 (m, 3H), 6.22–6.19 (m, 3H), 6.07 (t, *J* = 6.3 Hz, 1H), 6.04–5.94 (m, 2H), 5.90–5.87 (m, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 163.5 (C_q), 152.9 (C_q), 149.2 (CH), 139.0 (C_q), 137.8 (C_q), 137.8 (CH), 136.6 (C_q), 135.7 (C_q), 134.7 (C_q), 134.1 (C_q), 131.9 (CH), 131.9 (CH), 129.8 (CH), 129.5 (CH), 128.3 (CH), 128.3 (CH), 128.2 (CH), 128.2 (CH), 128.2 (CH), 124.4 (CH), 127.2 (CH), 127.1 (CH), 127.1 (CH), 126.3 (CH), 125.3 (CH), 124.8 (CH), 124.1 (C_q), 123.0 (CH), 119.2 (C_q). **IR** (KBr): 3055, 1663, 1623, 1489, 1433, 1420, 1213, 890, 714, 699 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 425 (100) [M+H]⁺, 447(1) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₃₀H₂₀N₂O [M+H]⁺ 425.1651, found 425.1648.

2-(Pyridin-2-yl)-3,4-di-p-tolylisoquinolin-1(2*H***)-one (24): The general procedure was followed using** *t***-AmOH/HFIP/H₂O = 1/2/1 as solvent, 1** (79.3 mg, 0.40 mmol) and **2a** (124 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **24** (109 mg, 68%) as yellowish solid. **M.p.** = 242–243 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.54 (d, *J* = 8.0 Hz, 1H), 8.40 (dd, *J* = 4.9 Hz, 1H), 7.61–7.55 (m, 2H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.19 (d, *J* = 7.7 Hz, 1H), 7.09 (dd, *J* = 7.5, 4.9 Hz, 1H), 7.04–7.00 (m, 4H), 6.97–6.73 (m, 2H), 6.70 (d, *J* = 8.3 Hz, 2H), 2.29 (s, 3H), 2.08 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 162.9 (C_q), 153.0 (C_q), 149.1 (CH), 140.2 (C_q), 138.2 (C_q), 137.6 (CH), 137.0 (C_q), 137.0 (C_q), 136.5 (C_q), 133.2 (C_q), 132.7 (CH), 131.6 (CH), 126.9 (CH), 126.9 (CH), 125.8 (CH), 125.6 (C_q), 125.1 (CH), 127.9 (CH), 126.9 (CH), 126.9 (CH), 126.9 (CH), 125.8 (CH), 125.6 (C_q), 1587, 1466, 1434, 1325, 1146, 994, 760, 709 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 403 (100) [M+H]⁺, 425(2) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₈H₂₂N₂O [M+H]⁺ 403.1810, found 403.1805.

2-(Pyridin-2-yl)-3,4-bis(4-(trifluoromethyl)phenyl)isoquinolin-1(2*H*)-one (25): The general procedure was followed using 1 (79.3 mg, 0.40 mmol) and 2b (189 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded 25 (106 mg, 52%) as yellowish solid. M.p. = 260-261 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.57 (d, J = 7.5 Hz, 1H), 8.36 (d, J = 4.4 Hz, 1H), 7.67–7.62 (m, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.51 (d, J = 7.6 Hz, 2H), 7.29–7.25 (m, 3 H), 7.20 (d, J = 7.8 Hz, 2H), 7.17–7.04 (m, 4H). ¹³C NMR (150 MHz, CDCl₃) δ = 162.5 (C_q), 152.2 (C_q), 149.4 (CH), 139.7 (C_q), 139.0 (C_q), 138.0 (CH), 137.7 (C_q), 137.0 (C_q), 133.3 (CH), 132.1 (CH), 122.1 (CH), 129.9 (q, ² J_{C-F} = 33.0 Hz, C_q), 129.7 (q, ² J_{C-F} = 31.5 Hz, C_q), 128.6 (CH), 128.6 (CH), 127.9 (CH), 127.9 (CH), 125.8 (C_q), 125.5 (CH), 125.4 (q, ³ J_{C-F} = 4.0 Hz, CH), 125.4 (q, ³ J_{C-F} = 4.0 Hz, CH), 125.0 (CH), 124.4 (q, ³ J_{C-F} = 4.5 Hz, CH), 124.1 (q, ¹ J_{C-F} = 270.0 Hz, C_q), 123.6 (q, ¹ J_{C-F} = 270.0 Hz, C_q), 123.5 (CH), 118.2 (C_q). ¹⁹F NMR (564 MHz, CDCl₃) δ = -62.64 (s), -62.99 (s). IR (KBr): 2935, 1667, 1608, 1464, 1434, 1322, 1123, 1067, 775, 703 cm⁻¹. MS (ESI) *m/z* (relative intensity): 511 (100) [M+H]⁺, 533(2) [M+Na]⁺. HR-MS (ESI) *m/z* calcd for C₂₈H₁₆F₆N₂O [M+H]⁺ 511.1241, found 511.1240.

3,4-Bis(4-fluorophenyl)-2-(pyridin-2-yl)isoquinolin-1(2*H***)-one (26): The general procedure was followed using 1** (39.7 mg, 0.20 mmol) and **2c** (64.3 mg, 0.30 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **26** (72.5 mg, 88%) as yellowish solid. The NMR data is identical to that previously reported.^[15] **M.p.** = 283–284 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.55 (d, *J* = 7.9 Hz, 1H), 8.40 (d, *J* = 5.3 Hz, 1H), 7.66–7.59 (m, 2H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.14–7.07 (m, 3H), 6.94 (t, *J* = 8.5 Hz, 4H), 6.62 (t, *J* = 8.5 Hz, 2H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 162.7 (C_q), 162.0 (d, ¹*J*_{C-F} = 246.0 Hz, C_q), 161.7 (d, ¹*J*_{C-F} = 252.0 Hz, C_q), 152.7 (C_q), 149.4 (CH), 139.5 (CH), 138.0 (CH), 137.9 (C_q), 137.7 (C_q), 133.3 (d, ³*J*_{C-F} = 7.6 Hz, CH), 133.0 (CH), 132.0 (d, ⁴*J*_{C-F} = 3.4 Hz, C_q), 130.4 (d, ⁴*J*_{C-F} = 3.5 Hz, C_q), 128.4 (CH), 127.3 (C_q), 125.7 (d, ³*J*_{C-F} = 13.9 Hz, CH), 125.6 (CH), 125.0 (CH), 123.2 (CH), 118.4 (C_q),

115.4 (d, ${}^{2}J_{C-F} = 21.4$ Hz, CH), 115.4 (d, ${}^{2}J_{C-F} = 21.4$ Hz, CH), 114.5 (d, ${}^{2}J_{C-F} = 21.8$ Hz, CH), 114.5 (d, ${}^{2}J_{C-F} = 21.8$ Hz, CH). 19**F NMR** (564 MHz, CDCl₃) δ = -112.90 (q, *J* = 7.0), -114.68 (q, *J* = 7.0). **IR** (KBr): 3052, 1661, 1616, 1508, 1467, 1434, 1325, 1158, 838, 712 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 411 (100) [M+H]⁺, 433(2) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₆H₁₆F₂N₂O [M+H]⁺ 411.1307, found 411.1306.

2-(Pyridin-2-yl)-3,4-di-*m***-tolylisoquinolin-1(2***H***)-one (27): The general procedure was followed using 1** (39.7 mg, 0.20 mmol) and **2d** (61.8 mg, 0.30 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **27** (79.8 mg, 99%) as brown solid. **M.p.** = 201–202 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.53 (d, *J* = 7.8 Hz, 1H), 8.38 (d, *J* = 4.6 Hz, 1H), 7.60–7.55 (m, 2H), 7.50 (t, *J* = 7.3 Hz, 1H), 7.25 (d, *J* = 7.9 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 7.10–7.05 (m, 2H), 6.98–6.94 (m, 2H), 6.92 (d, *J* = 7.3 Hz, 1H), 6.88–6.62 (m, 4H), 2.22 (s, 3H), 2.01 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 162.8 (C_q), 153.0 (C_q), 149.1 (CH), 140.2 (C_q), 138.1 (C_q), 137.6 (CH), 137.5 (C_q), 136.6 (C_q), 136.1 (C_q), 134.3 (C_q), 132.8 (CH), 132.4 (CH), 128.8 (CH), 128.2 (CH), 125.9 (CH), 125.9 (CH), 127.9 (CH), 127.7 (CH), 127.0 (CH), 126.9 (CH), 125.9 (CH), 125.9 (CH), 125.1 (CH), 123.0 (CH), 119.1 (C_q), 21.4 (CH₃), 21.1 (CH₃). **IR** (KBr): 2923, 2860, 1664, 1589, 1468, 1434, 1326, 997, 771, 704 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 403 (100) [M+H]⁺, 425(2) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₈H₂₂N₂O [M+H]⁺ 403.1812, found 403.1805.

3,4-Bis(3-fluorophenyl)-2-(pyridin-2-yl)isoquinolin-1(2H)-one (28): The general

procedure was followed using **1** (79.3 mg, 0.40 mmol) and **2e** (129 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **28** (112 mg, 68%) as colorless solid. **M.p.** = 216–217 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.61 (d, *J* = 7.2 Hz, 1H), 8.46 (d, *J* = 4.8 Hz, 1H), 7.74–7.66 (m, 2H), 7.62 (t, *J* = 7.8 Hz, 1H), 7.33–7.27 (m, 3H), 7.20–7.17 (m, 1H), 7.03–6.91 (m, 4H), 6.90–6.63 (m, 3H). ¹³C **NMR** (150 MHz, CDCl₃) δ = 162.6 (d, ¹*J*_{C-F} = 246.0 Hz, Cq), 162.6 (Cq), 161.4 (d, ¹*J*_{C-F} = 246.0 Hz, Cq), 152.4 (Cq), 149.3 (CH), 138.9 (Cq), 138.1 (d, ³*J*_{C-F} = 7.8 Hz, Cq), 137.9 (CH), 137.3 (Cq), 136.1 (d, ³*J*_{C-F} = 8.1 Hz, Cq), 133.1 (CH), 129.9 (d, ³*J*_{C-F} = 8.9 Hz, CH), 129.8 (d, ³*J*_{C-F} = 8.1 Hz, CH), 129.0 (d, ⁴*J*_{C-F} = 4.9 Hz, CH), 129.0 (d, ²*J*_{C-F} = 21.0 Hz, CH), 128.4 (CH), 127.5 (CH), 127.5 (CH), 125.7 (Cq), 125.6 (CH), 125.0 (CH), 123.3 (CH), 118.5 (d, ²*J*_{C-F} = 21.0 Hz, CH), 118.1 (Cq), 114.9 (d, ²*J*_{C-F} = 21.0 Hz, CH), 114.5 (d, ²*J*_{C-F} = 21.0 Hz, CH), 145, 1324, 1267, 1138, 760, 706 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 411 (100) [M+H]⁺, 433 (2) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₆H₁₆F₂N₂O [M+H]⁺ 411.1308, found 411.1303.

3,4-Bis(3-methoxyphenyl)-2-(pyridin-2-yl)isoquinolin-1(*2H***)-one (29):** The general procedure was followed using *t*-AmOH/HFIP/H₂O = 1/2/1 as solvent, **1** (79.3 mg, 0.40 mmol) and **2f** (143 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **29** (122 mg, 70%) as colorless solid. **M.p.** = 167–168 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.54 (d, *J* = 7.9 Hz, 1H), 8.41 (d, *J* = 4.8 Hz, 1H), 7.63–7.58 (m, 2H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.31 (t, *J* = 8.1 Hz, 1H), 7.22 (d, *J* = 7.9 Hz, 1H), 7.15 (d, *J* = 8.6 Hz, 1H), 7.11 (dd, *J* = 7.5, 4.9 Hz, 1H), 6.85–6.77 (m, 2H), 6.74 (d, *J* = 8.5 Hz, 2H), 6.67 (s, 1H), 6.57 (br, 1H), 6.46 (dd, *J* = 8.4, 2.5 Hz, 1H), 3.67 (d, *J* = 13.6 Hz, 3H), 3.53 (d, *J* = 8.9 Hz, 3H). ¹³C **NMR** (150 MHz, CDCl₃) δ = 162.7 (C_q), 159.3 (C_q), 158.4 (C_q), 152.9 (C_q), 149.1 (CH), 139.7 (C_q), 137.7 (C_q), 137.7 (CH),

137.5 (C_q), 135.5 (C_q), 132.8 (CH), 129.1 (CH), 129.0 (CH), 128.2 (CH), 127.1 (CH), 127.1 (CH), 125.8 (CH), 125.6 (C_q), 125.0 (CH), 124.2 (CH), 123.1 (CH), 118.8 (C_q), 117.1 (CH), 116.3 (CH), 114.0 (CH), 112.9 (CH), 55.2 (CH₃), 53.2 (CH₃). **IR** (KBr): 2966, 1658, 1595, 1468, 1328, 1284, 1226, 1035, 752, 713 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 435 (100) $[M+H]^+$, 457 (2) $[M+Na]^+$. **HR-MS** (ESI) *m/z* calcd for C₂₈H₂₂N₂O₃ $[M+H]^+$ 435.1707, found 435.1703.

3,4-Diethyl-2-(pyridin-2-yl)isoquinolin-1(2*H***)-one (30**): The general procedure was followed using **1** (39.7 mg, 0.20 mmol) and **2g** (24.6 mg, 0.30 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **30** (41.7 mg, 75%) as colorless solid. The NMR data is identical to that previously reported.^[15] **M.p.** = 114–115 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.68 (d, *J* = 5.2 Hz, 1H), 8.44 (d, *J* = 8.0, 1H), 7.90 (td, *J* = 7.7, 2.0 Hz, 1H), 7.76–7.67 (m, 2H), 7.44 (ddd, *J* = 8.1, 6.7, 1.4 Hz, 1H), 7.42–7.39 (m, 2H), 2.81 (q, *J* = 7.5 Hz, 2H), 2.41 (q, *J* = 7.5 Hz, 2H), 1.27 (t, *J* = 7.5 Hz, 3H), 1.01 (t, *J* = 7.5 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 163.2 (C_q), 153.1 (C_q), 149.8 (CH), 140.3 (C_q), 138.3 (CH), 137.2 (C_q), 132.8 (CH), 128.6 (CH), 126.0 (CH), 125.6 (C_q), 124.8 (CH), 123.8 (CH), 122.9 (CH), 115.1 (C_q), 23.1 (CH₂), 20.4 (CH₂), 14.8 (CH₃), 13.9 (CH₃). **IR** (KBr): 3064, 2978, 1655, 1466, 1328, 1221, 995, 777, 702, 652 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 279 (100) [M+H]⁺, 301 (3) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₁₈H₁₈N₂O [M+H]⁺ 279.1495, found 279.1492.

3,4-Dibutyl-2-(pyridin-2-yl)isoquinolin-1(2*H***)-one (31): The general procedure was followed using 1 (79.3 mg, 0.40 mmol) and 2h (83.0 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded 31 (77.6 mg, 58%) as reddish-**

brown solid. **M.p.** = 67–68 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.69 (d, J = 7.3 Hz, 1H), 8.45 (d, J = 8.0 Hz, 1H), 7.90 (t, J = 7.8 Hz, 1H), 7.71–6.67 (m, 2H), 7.46–7.38 (m, 3H), 2.74 (t, J = 8.7 Hz, 2H), 2.35 (t, J = 8.5 Hz, 2H), 1.69–1.54 (m, 4H), 1.54–1.49 (m, 2H), 1.12–1.05 (m, 2H), 1.00 (t, J = 7.3 Hz, 3H), 0.68 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 163.3 (Cq), 153.2 (Cq), 149.8 (CH), 139.4 (Cq), 138.3 (CH), 137.5(Cq), 132.8 (CH), 128.5 (CH), 126.0 (CH), 125.5 (Cq), 125.0 (CH), 123.8 (CH), 123.0 (CH), 114.2 (Cq), 32.6 (CH₂), 31.2 (CH₂), 29.6 (CH₂), 27.2 (CH₂), 23.3 (CH₂), 22.8 (CH₂), 14.1 (CH₃), 13.4 (CH₃). **IR** (KBr): 2964, 1657, 1467, 1432, 1324, 1262, 1103, 1019, 800, 703 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 335 (100) [M+H]⁺, 357 (3) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₂H₂₆N₂O [M+H]⁺ 335.2121, found 335.2118.

4-Methyl-3-phenyl-2-(pyridin-2-yl)isoquinolin-1(2H)-one (32): The general procedure was followed using 1 (39.7 mg, 0.20 mmol) and 2i (34.9 mg, 0.30 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **32** (47.2 mg, 75%) as colorless solid. The NMR data is identical to that previously reported.^[15] M.p. = 169-170 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.54 (d, J = 7.5 Hz, 1H), 8.37 (d, J = 4.8 Hz, 1H), 7.74 (d, J = 7.5 Hz, 2H), 7.59–7.54 (m, 2H), 7.25–7.08 (m, 6H), 7.06 (dd, J = 7.6, 4.8 Hz, 1H), 2.12 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 162.6$ (C_a), 153.0 (C_a), 149.1 (CH), 139.2 (C_q), 137.9 (C_q), 137.5 (CH), 134.9 (C_q), 132.9 (CH), 128.5 (CH), 127.9 (CH), 127.8 (CH), 127.8 (CH), 126.9 (CH), 126.9 (CH), 126.9 (CH), 125.9 (C_q), 125.0 (CH), 123.6 (CH), 122.8 (CH), 110.7 (C_q), 14.7 (CH₃). IR (KBr): 3077, 2919, 1652, 1587, 1465, 1327, 1186, 996, 760, 699 cm⁻¹. MS (ESI) *m/z* (relative intensity): 313 (100) $[M+H]^+$, 335 (1) $[M+Na]^+$. **HR-MS** (ESI) m/z calcd for $C_{21}H_{16}N_2O [M+H]^+$ 313.1339, found 313.1335.

4-Cyclopropyl-3-phenyl-2-(pyridin-2-yl)isoquinolin-1(2*H***)-one (33): The general procedure was followed using 1** (39.7 mg, 0.20 mmol) and **2j** (42.7 mg, 0.30 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **33** (38.3 mg, 56%) as colorless solid. **M.p.** = 174–175 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.50 (d, *J* = 8.0 Hz, 1H), 8.40 (dd, *J* = 5.5, 1.9 Hz, 1H), 8.28 (d, *J* = 8.2 Hz, 1H), 7.76 (ddd, *J* = 8.0, 7.1, 1.1 Hz, 1H), 7.58 (td, *J* = 7.7, 1.9 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.21–7.11 (m, 5H), 7.10–7.07 (m, 2H), 1.75 (tt, *J* = 8.4, 5.6 Hz, 1H), 0.72–0.58 (m, 2H), 0.18–0.13 (m, 2H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 162.9 (Cq), 153.0 (Cq), 149.1 (CH), 141.9 (Cq), 138.9 (Cq), 137.6 (CH), 135.3 (Cq), 132.6 (CH), 128.4 (CH), 127.7 (CH), 127.7 (CH), 127.7 (CH), 127.5 (CH), 126.8 (CH), 126.9 (Cq), 125.2 (CH), 124.9 (CH), 122.9 (CH), 115.5 (Cq), 10.5 (CH), 9.0 (CH₂). **IR** (KBr): 2919, 2866, 1652, 1588, 1465, 1437, 1329, 996, 761, 699 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 339 (100) [M+H]⁺, 361 (2) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₃H₁₈N₂O [M+H]⁺ 339.1492, found 339.1492.

4-Butyl-2-(pyridin-2-yl)-3-(4-(trifluoromethyl)phenyl)isoquinolin-1(2H)-one (34): The general procedure was followed using **1** (39.7 mg, 0.20 mmol) and **2k** (67.9 mg, 0.30 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **34** (51.2 mg, 60%) as colorless solid. **M.p.** = 148–149 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.54 (d, *J* = 8.0 Hz, 1H), 8.35 (dd, *J* = 4.9, 1.9 Hz, 1H), 7.80–7.75 (m, 2H), 7.62–7.55 (m, 2H), 7.44 (d, *J* = 7.8 Hz, 2H), 7.39–7.26 (m, 2H), 7.16 (d, *J* = 7.9, 1H), 7.08 (ddd, *J* = 7.5, 4.9, 1.1 Hz, 1H), 2.44 (t, *J* = 8.2 Hz, 2H), 1.51 (p, *J* = 7.6 Hz, 2H), 1.24 (h, *J* = 7.4 Hz, 2H), 0.79 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 162.4 (C_q), 152.6 (C_q), 149.4 (CH), 138.5 (C_q), 137.8 (CH), 137.8 (C_q), 136.8 (C_q), 133.1 (CH), 130.2 (q, ${}^{2}J_{C-F} = 32.6$ Hz, C_q), 129.0 (CH), 129.0 (CH), 128.9 (CH), 127.4 (CH), 127.2 (CH), 126.5 (C_q), 125.0 (CH), 124.7 (q, ${}^{3}J_{C-F} = 3.8$ Hz, CH), 124.7 (q, ${}^{3}J_{C-F} = 3.8$ Hz, CH), 123.9 (q, ${}^{1}J_{C-F} = 271.5$ Hz, C_q), 123.2 (CH), 116.1 (C_q), 32.6 (CH₂), 28.0 (CH₂), 22.9 (CH₂), 13.8 (CH₃). ¹⁹F NMR (564 MHz, CDCl₃) $\delta = -62.81$ (s). IR (KBr): 2964, 1657, 1467, 1432, 1324, 1262, 1103, 1019, 800, 703 cm⁻¹. MS (ESI) *m/z* (relative intensity): 423 (100) [M+H]⁺, 445 (2) [M+Na]⁺. HR-MS (ESI) *m/z* calcd for C₂₅H₂₁F₃N₂O [M+H]⁺ 423.1684, found 423.1679.

4-Benzoyl-3-methyl-2-(pyridin-2-yl)isoquinolin-1(2*H***)-one (35): The general procedure was followed using 1** (79.3 mg, 0.40 mmol) and **21** (86.5 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **35** (106 mg, 78%) as yellowish solid. **M.p.** = 203–204 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.56 (dd, *J* = 8.1, 1.2 Hz, 1H), 8.18 (dd, *J* = 4.9, 1.9 Hz, 1H), 7.82–7.79 (m, 2H), 7.77 (d, *J* = 8.4 Hz, 2H), 7.66–7.61 (m, 2H), 7.54–7.49 (m, 2H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.09 (dd, *J* = 7.4, 4.9 Hz, 1H), 2.2 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 192.0 (C_q), 161.6 (C_q), 151.5 (C_q), 148.3 (CH), 137.6 (C_q), 137.5 (CH), 137.0 (C_q), 136.3 (C_q), 133.6 (CH), 133.6 (CH), 133.3 (CH), 129.4 (CH), 128.8 (CH), 128.6 (CH), 128.6 (CH), 128.2 (CH), 126.6 (C_q), 124.5 (CH), 124.1 (CH), 123.1 (CH), 112.6 (C_q), 14.2 (CH₃). **IR** 3061, 3013, 1665, 1434, 1317, 1208, 777, 767, 722, 692 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 341 (100) [M+H]⁺, 363 (4) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₂H₁₆N₂O₂ [M+H]⁺ 341.1287, found 341.1285.

general procedure was followed using **1** (79.3 mg, 0.40 mmol) and **2m** (79.2 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 1:1) yielded **36** (35.0 mg, 27%) as colorless solid. **M.p.** = 239–240 °C. ¹**H NMR** (600 MHz, DMSO*d*₆) δ = 8.33–8.27 (m, 2H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.87 (t, *J* = 7.6 Hz, 1H), 7.72 (t, *J* = 7.8 Hz, 1H), 7.62 (t, *J* = 7.7 Hz, 1H), 7.35 (d, *J* = 7.9 Hz, 1H), 7.25–7.17 (m, 6H), 4.92 (t, *J* = 4.9 Hz, 1H), 4.31 (s, 2H). ¹³**C NMR** (150 MHz, DMSO-*d*₆) δ = 161.5 (C_q), 152.4 (C_q), 148.7 (CH), 141.4 (C_q), 137.8 (CH), 136.8 (C_q), 133.3 (C_q), 133.0 (CH), 125.4 (CH), 127.4 (CH), 127.4 (CH), 127.3 (CH), 127.3 (CH), 127.0 (CH), 125.4 (CH), 125.4 (C_q), 145.0 (CH), 123.2 (CH), 113.9 (C_q), 57.4 (CH₂). **IR** (KBr): 3408, 3053, 1644, 1589, 1471, 1434, 1341, 1026, 997, 773, 698 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 329 (36) [M+H]⁺, 351 (100) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₁H₁₆N₂O₂ [M+H]⁺ 329.1285, found 329.1285.

3-Methyl-2-(pyridin-2-yl)isoquinolin-1(*2H***)-one (37):** The general procedure was followed using **1** (79.3 mg, 0.40 mmol) and **20** (51.7 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **37** (65.0 mg, 69%) as colorless solid. The NMR data is identical to that previously reported.^[16] **M.p.** = 118–119 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.67 (d, *J* = 4.8 Hz, 1H), 8.36 (d, *J* = 8.1 Hz, 1H), 7.90 (td, *J* = 7.7, 1.9 Hz, 1H), 7.63 (ddd, *J* = 8.3, 7.1, 1.4 Hz, 1H), 7.46 (d, *J* = 7.1 Hz, 1H), 7.43–7.38 (m, 3H), 6.42 (s, 1H), 2.01 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 163.7 (C_q), 152.5 (C_q), 150.0 (CH), 138.8 (C_q), 138.7 (CH), 137.5 (C_q), 132.9 (CH), 128.2 (CH), 126.3 (CH), 125.4 (CH), 124.9 (C_q), 124.3 (CH), 124.0 (CH), 106.0 (CH), 20.8 (CH₃). **IR** (KBr): 3052, 1667, 1586, 1496, 1436, 1309, 995, 821, 749, 694 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 237 (100) [M+H]⁺, 259 (3) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₁₅H₁₂N₂O [M+H]⁺ 237.1023, found 237.1022.

3,4-Diphenyl-2-(5-phenylpyridin-2-yl)isoquinolin-1(2*H***)-one (38**): The general procedure was followed using **BC-1** (110 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **38** (164 mg, 91%) as yellowish solid. **M.p.** = 274–275 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.61 (s, 1H), 8.59 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.79 (dd, *J* = 8.1, 2.5 Hz, 1H), 7.61 (ddd, *J* = 8.4, 7.2, 1.5 Hz, 1H), 7.54 (ddd, *J* = 8.4, 8.0, 2.5 Hz, 1H), 7.49 (d, *J* = 7.1 Hz, 2H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.28 (dd, *J* = 8.4, 2.5 Hz, 2H), 7.23 (t, *J* = 7.4 Hz, 2H), 7.21–7.15 (m, 3H), 7.13–6.88 (m, 5H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 162.9 (C_q), 151.8 (C_q), 147.5 (CH), 140.2 (C_q), 138.0 (C_q), 137.0 (C_q), 136.2 (C_q), 136.0 (CH), 135.9 (Cq), 134.5 (Cq), 132.9 (CH), 131.8 (CH), 128.1 (CH), 127.5 (CH), 127.3 (CH), 127.3 (CH), 127.1 (CH), 127.1 (CH), 127.1 (CH), 127.3 (CH), 127.3 (CH), 127.1 (CH), 127.1 (CH), 127.1 (CH), 127.3 (CH), 127.3 (CH), 119.2 (C_q). **IR** (KBr): 3027, 1657, 1585, 1470, 1328, 1159, 1030, 784, 759, 700 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 451 (100) [M+H]⁺, 473(1) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₃₂H₂₂N₂O [M+H]⁺ 451.1810, found 451.1805.

3,4-Diphenyl-2-(quinolin-2-yl)isoquinolin-1(2*H***)-one (39): The general procedure was followed using BC-2** (99.3 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **39** (142 mg, 84%) as colorless solid. **M.p.** = 251–252 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.58 (d, *J* = 7.9 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 8.5 Hz, 1H), 7.73 (d, *J* = 8.1 Hz, 1H),

7.65–7.58 (m, 2H), 7.54 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 8.2 Hz, 1H), 7.23 (t, J = 7.5 Hz, 2H), 7.20–7.15 (m, 3H), 7.13–6.90 (m, 2H), 6.80 (t, J = 7.5 Hz, 2H), 6.77–6.72 (m, 1H). ¹³**C NMR** (150 MHz, CDCl₃) $\delta = 163.0$ (C_q), 152.3 (C_q), 147.2 (C_q), 140.2 (C_q), 138.0 (C_q), 137.9 (CH), 136.2 (C_q), 134.3 (C_q), 132.9 (CH), 131.8 (CH), 131.8 (CH), 129.8 (CH), 129.2 (CH), 128.2 (CH), 128.1 (CH), 127.5 (CH), 127.4 (CH), 127.4 (CH), 127.3 (CH), 127.1 (C_q), 127.1 (CH), 127.1 (CH), 127.1 (CH), 125.8 (CH), 125.8 (CH), 125.8 (Cq), 122.5 (CH), 119.4 (C_q). **IR** (KBr): 3057, 1665, 1586, 1492, 1330, 816, 762, 738, 701 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 425 (100) [M+H]⁺, 447 (1) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₃₀H₂₀N₂O [M+H]⁺ 425.1653, found 425.1648.

Methyl-6-(7-isopropoxy-1-oxo-3,4-diphenyl-5-(2-(thiophen-3-yl)ethoxy) isoquinolin-2(1*H*)-yl)nicotinate (40): The general procedure was followed using BC-3 (88.2 mg, 0.20 mmol) and 2 (53.5 mg, 0.30 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded 40 (48.0 mg, 39%) as colorless solid. M.p. = 190–191 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.97 (d, *J* = 2.3 Hz, 1H), 8.17 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.64 (s, 1H), 7.27 (d, *J* = 3.8 Hz, 1H), 7.20 (dd, *J* = 4.9, 2.9 Hz, 1H), 7.07–7.06 (m, 2H), 7.03–6.99 (m, 3H), 6.92–6.88 (m, 2H), 6.87–6.83 (m, 3H), 6.80 (d, *J* = 2.9 Hz, 1H), 6.77 (d, *J* = 4.9 Hz, 1H), 6.67 (s, 1H), 4.76 (p, *J* = 6.1 Hz, 1H), 3.90 (s, 3H), 3.78 (t, *J* = 7.4 Hz, 2H), 2.19 (t, *J* = 7.4 Hz, 2H), 1.39 (d, *J* = 6.1 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ = 165.2 (Cq), 162.0 (Cq), 158.0 (Cq), 157.0 (Cq), 156.6 (Cq), 150.5 (CH), 140.1 (Cq), 138.7 (CH), 138.2 (Cq), 137.3 (Cq), 134.3 (Cq), 131.0 (CH), 128.3 (CH), 128.3 (CH), 127.3 (Cq), 127.0 (CH), 127.0 (CH), 127.0 (CH), 127.0 (CH), 127.0 (CH), 127.0 (CH), 126.8 (CH), 126.8 (CH), 126.8 (CH), 125.7 (CH), 102.5 (CH), 70.3 (CH), 68.5 (CH₂), 52.6 (CH₃), 29.0 (CH₂), 22.1 (CH₃). **IR** (KBr): 2976, 1736, 1650, 1593, 1491, 1371, 1281, 1117, 1057, 759, 700 cm⁻¹. **MS** (ESI) *m*/*z* (relative intensity): 617 (42) [M+H]⁺, 639 (100) [M+Na]⁺. **HR-MS** (ESI) *m*/*z* calcd for C₃₇H₃₂N₂O₅S [M+H]⁺ 617.2108, found 617.2105.

2-(5-Aminopyridin-2-yl)-3,4-diphenyl-6-(trifluoromethyl)isoquinolin-1(2H)-one

(41): The general procedure was followed using **BC-4** (61.0 mg, 0.20 mmol) and **2** (53.5 mg, 0.30 mmol). Purification by column chromatography (PE/EtOAc = 1:1) yielded **41** (48.4 mg, 53%) as colorless solid. **M.p.** = 290–291 °C. ¹**H NMR** (600 MHz, DMSO-*d*₆) δ = 8.55 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.59 (s, 1H), 7.33–7.20 (m, 5H), 7.17–7.05 (m, 2H), 7.02–6.90 (m, 5H), 6.79 (d, *J* = 8.4 Hz, 1H), 5.38 (s, 2H). ¹³**C NMR** (150 MHz, DMSO-*d*₆) δ = 161.0 (C_q), 144.3 (C_q), 143.4 (C_q), 140.1 (C_q), 137.7 (C_q), 135.1 (C_q), 134.0 (C_q), 132.5 (q, ²*J*_{C-F} = 31.5 Hz, C_q), 131.3 (CH), 131.3 (CH), 129.3 (CH), 128.3 (CH), 128.3 (CH), 128.3 (CH), 127.5 (CH), 127.5 (CH), 127.4 (CH), 126.8 (CH), 124.5 (CH), 121.7 (q, ³*J*_{C-F} = 3.0 Hz, CH), 121.1 (CH), 116.8 (C_q). **IR** (KBr): 3022, 1662, 1486, 1316, 1282, 1170, 1067, 929, 794, 700 cm⁻¹. ¹⁹**F NMR** (564 MHz, DMSO-*d*₆) δ = -61.80 (s). **MS** (ESI) *m/z* (relative intensity): 458 (100) [M+H]⁺, 480(50) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₇H₁₈F₃N₃O [M+H]⁺ 458.1487, found 458.1475.

7-Chloro-6-fluoro-3,4-diphenyl-2-(1H-pyrrolo[3,2-b]pyridin-5-yl)isoquinolin-

S-32

1(2*H***)-one (42):** The general procedure was followed using **BC-5** (116 mg, 0.40 mmol) and **2** (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 1:1) yielded **42** (167 mg, 90%) as yellow solid. **M.p.** = 316–317 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 9.40 (s, 1H), 8.63 (d, *J* = 7.5 Hz, 1H), 7.24–7.17 (m, 3H), 7.12 (d, *J* = 7.7 Hz, 1H), 7.09–7.00 (m, 5H), 6.88 (d, *J* = 7.7 Hz, 1H), 6.83–6.74 (m, 3H), 6.71 (d, *J* = 8.3 Hz, 1H), 6.32 (s, 1H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 162.1 (Cq), 160.9 (d, ¹*J*C–F = 255.0 Hz, Cq), 145.2 (Cq), 145.1 (Cq), 142.8 (CH), 138.9 (d, ³*J*C–F = 9.1 Hz, CH), 135.5 (Cq), 133.8 (Cq), 131.6 (Cq), 131.4 (d, ²*J*C–F = 24.0 Hz, Cq), 131.3 (Cq), 130.9 (CH), 130.9 (CH), 127.0 (CH), 122.9 (d, ⁴*J*C–F = 2.1 Hz, Cq), 121.2 (d, ²*J*C–F = 19.5 Hz, Cq), 120.3 (CH), 118.4 (d, ⁴*J*C–F = 3.0 Hz, Cq), 116.3 (CH), 112.5 (d, ²*J*C–F = 23.3 Hz, CH), 102.5 (CH). ¹⁹**F NMR** (564 MHz, CDCl₃) δ = -107.8 (t, *J* = 9.6 Hz). **IR** (KBr): 3024, 1647, 1590, 1443, 1345, 1145, 1025, 874, 763, 699 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 466 (100) [M+H]⁺, 324 (64), 301 (35), 279 (88), 149 (13). **HR-MS** (ESI) *m/z* calcd for C₂₈H₁₇³⁵ClFN₃O [M+H]⁺ 466.1124, found 466.1117.

6,7-Dichloro-3,4-diphenyl-2-(1*H***-pyrrolo[3,2-***b***]pyridin-5-yl)isoquinolin-1(2***H***)one (43): The general procedure was followed using BC-6 (122 mg, 0.40 mmol) and 2 (107 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 1:1) yielded 43 (175 mg, 91%) as yellowish solid. M.p. = 348-349 \text{ °C}. ¹H NMR (600 MHz, DMSO-***d***₆) \delta = 11.35 (s, 1H), 8.45 (s, 1H), 7.67 (d,** *J* **= 8.2 Hz, 1H), 7.60 (s, 1H), 7.28– 7.24 (m, 3H), 7.21 (d,** *J* **= 7.1, 1H), 7.19 (s, 1H), 7.17–7.11 (m, 2H), 7.08 (d,** *J* **= 8.4 Hz, 1H), 7.02 (s, 1H), 6.88–6.86 (m, 1H), 6.82–6.80 (m, 2H), 6.45–6.42 (m, 1H). ¹³C NMR (150 MHz, DMSO-***d***₆) \delta = 160.3 (C_q), 145.0 (C_q), 144.6 (C_q), 143.3 (C_q), 137.4 (CH), 136.1 (C_q), 135.0 (C_q), 133.7 (C_q), 131.4 (CH), 131.3 (C_q), 130.9 (C_q), 130.3 (CH), 130.1 (C_q), 129.6 (CH), 129.1 (CH), 128.3 (CH), 128.3 (CH), 127.5 (CH), 127.5 (CH),** 127.4 (CH), 127.2 (CH), 126.7 (C_q), 126.6 (CH), 124.8 (CH), 119.7 (C_q), 117.1 (CH), 115.9 (CH), 101.6 (CH). **IR** (KBr): 3020, 1645, 1561, 1458, 1342, 1126, 1030, 891, 720, 696 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 482 (100) $[M+H]^+$, 324 (18), 279 (34), 177 (15). **HR-MS** (ESI) *m/z* calcd for C₂₈H₁₇³⁵Cl₂N₃O $[M+H]^+$ 482.0829, found 482.0821.

N-(2-(5-chloropyridin-2-yl)-5-methoxy-1-oxo-3,4-diphenyl-1,2-dihydroisoquinolin-8-yl)-4-cyanobenzamide (44): The general procedure was followed using BC-7 (81.0 mg, 0.20 mmol) and 2 (53.5 mg, 0.30 mmol). Purification by column chromatography (PE/EtOAc = 1:1) yielded 44 (65.3 mg, 56%) as golden solid. M.p. =268–269 °C. ¹H NMR (600 MHz, CDCl₃) δ = 13.85 (s, 1H), 9.03 (d, J = 9.1 Hz, 1H), 8.38 (d, J=2.7 Hz, 1H), 8.12 (d, J=8.1 Hz, 2H), 7.73 (d, J=8.1 Hz, 2H), 7.56 (dd, J= 8.4, 2.6 Hz, 1H), 7.19 (d, J=9.1 Hz, 1H), 7.09–7.04 (m, 3H), 7.03–7.00 (m, 3H), 6.93– 6.82 (m, 5H), 3.30 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 164.8 (C_a), 163.8 (C_a), 152.1 (C_q), 150.5 (C_q), 148.3 (CH), 140.3 (C_q), 139.7 (C_q), 139.4 (C_q), 137.8 (CH), 135.3 (C_q), 133.5 (C_q), 132.6 (C_q), 131.7 (CH), 131.7 (CH), 130.3 (C_q), 128.9 (C_q), 128.3 (CH), 128.3 (CH), 127.8 (CH), 127.8 (CH), 127.8 (CH), 127.8 (CH), 127.3 (CH), 127.3 (CH), 127.3 (CH), 126.8 (CH), 125.8 (CH), 125.6 (CH), 119.3 (CH), 118.6 (CH), 118.4 (C_q), 117.8 (CH), 114.9 (C_q), 114.3 (C_q), 56.6 (CH₃). **IR** (KBr): 3392, 3022, 1655, 1486, 1316, 1281, 1170, 1067, 904, 794, 700 cm⁻¹. MS (ESI) *m/z* (relative intensity): 583 (100) $[M+H]^+$, 605 (8) $[M+Na]^+$. **HR-MS** (ESI) m/z calcd for $C_{35}H_{23}{}^{35}CIN_4O_3$ [M+H]⁺ 583.1539, found 583.1531.

4-Carbamimidoyl-N-(2-(5-chloropyridin-2-yl)-5-methoxy-1-oxo-3,4-diphenyl-1,2dihydroisoquinolin-8-yl)benzamide (45): The general procedure was followed using BC-8 (150 mg, 0.27 mmol) and 2 (73.1 mg, 0.41 mmol). Purification by column chromatography (PE/EtOAc = 1:1) yielded 45 (31.6 mg, 20%) as brown solid. M.p. =319–320 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 13.74 (s, 1H), 9.04 (d, J = 9.1 Hz, 1H), 8.37 (d, J=2.6 Hz, 1H), 8.09 (d, J=8.1 Hz, 2H), 7.86 (d, J=8.1 Hz, 2H), 7.55 (dd, J= 8.4, 2.6 Hz, 1H), 7.20 (d, J=9.1 Hz, 1H), 7.08 (d, J=8.4 Hz, 1H), 7.05 (d, J=6.9 Hz, 2H), 7.03-7.00 (m, 3H), 6.94-6.84 (m, 5H), 6.18 (s, 1H), 5.73 (s, 1H), 3.29 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ = 168.6 (C_q), 164.8 (C_q), 164.8 (C_q), 151.9 (C_q), 150.7 (C_q), 148.3 (CH), 140.2 (C_q), 139.8 (C_q), 138.7 (C_q), 137.8 (CH), 135.9 (C_q), 135.7 (C_q), 133.6 (C_q), 131.7 (CH), 131.7 (CH), 130.4 (C_q), 128.9 (C_q), 128.0 (CH), 128.0 (CH), 127.9 (CH), 127.9 (CH), 127.9 (CH), 127.8 (CH), 127.8 (CH), 127.3 (CH), 127.3 (CH), 126.8 (CH), 126.8 (CH), 125.8 (CH), 125.7 (CH), 119.3 (CH), 118.5 (C_q), 118.0 (CH), 114.3 (C_q), 56.7 (CH₃). **IR** (KBr): 2955, 1654, 1611, 1490, 1459, 1383, 1316, 1272, 1134, 700 cm⁻¹. MS (ESI) m/z (relative intensity): 601 (62) [M+H]⁺, 623 (100) $[M+Na]^+$. HR-MS (ESI) m/z calcd for $C_{35}H_{25}^{35}ClN_4O_4$ $[M+H]^+$ 601.1637, found 601.1637.

2-(5-Aminopyridin-2-yl)-3-methyl-6-(trifluoromethyl)isoquinolin-1(2H)-one (46): The general procedure was followed using **BC-4** (56.2 mg, 0.20 mmol) and **20**

(25.9 mg, 0.30 mmol). Purification by column chromatography (PE/EtOAc = 1:1) yielded **46** (48.0 mg, 75%) as yellow solid. **M.p.** = 222–223 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.45 (d, *J* = 8.4 Hz, 1H), 8.03 (s, 1H), 7.72 (s, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.12–7.08 (m, 2H), 6.45 (s, 1H), 4.05 (s, 2H), 2.05 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 163.3 (C_q), 142.2 (C_q), 141.7 (C_q), 137.4 (C_q), 136.6 (CH), 134.3 (q, ²*J*_{C-F} = 33.0 Hz, C_q), 129.3 (CH), 128.5 (C_q), 127.0 (C_q), 123.9 (q, ¹*J*_{C-F} = 272.2 Hz, C_q), 123.8 (CH), 123.7 (CH), 122.7 (q, ³*J*_{C-F} = 4.4 Hz, CH), 122.1 (q, ³*J*_{C-F} = 3.4 Hz, CH), 105.3 (CH), 21.0 (CH₃). ¹⁹**F NMR** (564 MHz, CDCl₃) δ = -63.07 (s). **IR** (KBr): 2957, 2925, 1670, 1570, 1484, 1320, 1114, 1073, 893, 699 cm⁻¹. **MS** (ESI) *m*/*z* (relative intensity): 320 (37) [M+H]⁺, 342 (100) [M+Na]⁺. **HR-MS** (ESI) *m*/*z* calcd for C₁₆H₁₂F₃N₃O [M+Na]⁺ 342.0825, found 342.0826.

3-Methyl-2-(quinolin-2-yl)isoquinolin-1(2*H***)-one (47): The general procedure was followed using BC-2** (99.3 mg, 0.40 mmol) and **2o** (51.7 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc = 2:1) yielded **47** (104 mg, 91%) as colorless solid. **M.p.** = 165–166 °C. ¹**H NMR** (600 MHz, CDCl₃) δ = 8.38 (d, *J* = 8.0 Hz, 1H), 8.35 (d, *J* = 8.5 Hz, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.93 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.77 (ddd, *J* = 8.4, 6.8, 1.4 Hz, 1H), 7.66–7.62 (m, 2H), 7.49 (d, *J* = 3.0 Hz, 1H), 7.48 (d, *J* = 2.6 Hz, 1H), 7.44 (t, *J* = 6.0 Hz, 1H), 6.47 (s, 1H), 2.07 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ = 163.8 (Cq), 151.9 (Cq), 147.6 (Cq), 138.9 (CH), 138.7 (Cq), 137.5 (Cq), 132.9 (CH), 130.2 (CH), 129.5 (CH), 128.1 (CH), 127.9 (Cq), 127.7 (CH), 127.7 (CH), 126.3 (CH), 125.5 (CH), 125.0 (Cq), 121.7 (CH), 106.2 (CH), 20.8 (CH₃). **IR** (KBr): 2923, 1663, 1628, 1430, 1377, 1238, 958, 810, 746, 695 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 287 (100) [M+H]⁺, 309 (87) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₁₉H₁₄N₂O [M+H]⁺ 287.1180, found 287.1179.

Methyl-6-(7-isopropoxy-3-methyl-1-oxo-5-(2-(thiophen-3-yl)ethoxy)isoquinolin-2(1*H*)-yl)nicotinate (48): The general procedure was followed using BC-3 (88.2 mg, 0.20 mmol) and 2o (25.9 mg, 0.30 mmol). Purification by column chromatography (PE/EtOAc = 5:1) yielded 48 (26.0 mg, 27%) as yellow solid. M.p. = 101–102 °C. ¹H NMR (600 MHz, CDCl₃) δ = 9.27 (s, 1H), 8.49 (dd, *J* = 8.1, 2.4 Hz, 1H), 7.49 (d, *J* = 8.1 Hz, 1H), 7.34 (d, *J* = 2.3 Hz, 1H), 7.30 (dd, *J* = 4.9, 2.9 Hz, 1H), 7.12 (d, *J* = 3.0 Hz, 1H), 7.06 (d, *J* = 4.9 Hz, 1H), 6.71–6.68 (m, 2H), 4.69 (p, *J* = 6.0 Hz, 1H), 4.27 (t, *J* = 6.7 Hz, 2H), 4.00 (s, 3H), 3.23 (t, *J* = 6.7 Hz, 2H), 2.00 (s, 3H), 1.35 (d, *J* = 6.0 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ = 165.2 (C_q), 163.0 (C_q), 157.2 (C_q), 156.1 (C_q), 154.7 (C_q), 151.2 (CH), 139.6 (CH), 138.5 (C_q), 134.8 (C_q), 128.5 (CH), 126.4 (Cq), 126.2 (Cq), 125.8 (CH), 124.2 (CH), 122.9 (Cq), 121.8 (CH), 106.0 (CH), 101.5 (CH), 100.6 (CH), 70.3 (CH), 68.8 (CH₂), 52.8 (CH₃), 30.3 (CH₂), 22.1 (CH₃), 22.1 (CH₃), 20.8 (CH₃). **IR** (KBr): 2923, 1728, 1663, 1607, 1566, 1379, 1280, 1117, 1024, 847, 782 cm⁻¹. **MS** (ESI) *m*/*z* (relative intensity): 479 (76) [M+H]⁺, 501 (100) [M+Na]⁺.

3-Methyl-2-(5-phenylpyridin-2-yl)isoquinolin-1(2*H*)-one (49): The general procedure was followed using BC-1 (110 mg, 0.40 mmol) and 20 (51.7 mg, 0.60 mmol). Purification by column chromatography (PE/EtOAc/DCM = 5:1:1) yielded 49 (76.0 mg, 61%) as colorless solid. M.p. = 171-172 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.88 (s, 1H), 8.39 (d, *J* = 8.0 Hz, 1H), 8.08 (dd, *J* = 8.1, 2.5 Hz, 1H), 7.66–

7.63 (m, 3H), 7.52 (t, J = 7.6 Hz, 2H), 7.49–7.42 (m, 4H), 6.45 (s, 1H), 2.09 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) $\delta = 163.7$ (C_q), 151.4 (C_q), 148.2 (CH), 138.8 (C_q), 137.5 (C_q), 137.1 (C_q), 137.0 (CH), 137.0 (C_q), 132.9 (CH), 129.3 (CH), 129.3 (CH), 128.6 (CH), 128.2 (CH), 127.4 (CH), 127.4 (CH), 126.3 (CH), 125.4 (CH), 124.9 (C_q), 124.0 (CH), 106.0 (CH), 20.9 (CH₃). **IR** (KBr): 3056, 2926, 1663, 1628, 1476, 1382, 1190, 804, 745, 693 cm⁻¹. **MS** (ESI) *m/z* (relative intensity): 313 (100) [M+H]⁺, 335 (65) [M+Na]⁺. **HR-MS** (ESI) *m/z* calcd for C₂₁H₁₆N₂O [M+H]⁺ 313.1339, found 313.1335.

6. Mechanistic Studies

6.1 Competition Experiments

The electrocatalysis was carried out in an undivided cell with a GF anode (10 mm × 15 mm × 3.0 mm) and a Ni foam cathode (10 mm × 15 mm × 1.5 mm). The cell was charged with *N*-(pyridin-2-yl)benzamide **1h** (0.40 mmol), *N*-(pyridin-2-yl)benzamide **1l** (0.40 mmol), alkyne **2** (0.40 mmol, 1.0 equiv), NaOPiv (9.93 mg, 0.08 mmol, 20 mol %), $[Cp^*RhCl_2]_2$ (6.18 mg, 0.01 mmol, 2.5 mol %) and a HFIP/H₂O solvent mixture (3/1, 4.0 mL). Electrocatalysis was performed at 80 °C with a constant current of 2.0 mA maintained for 24 h. The electrodes were washed with dichloromethane (3 × 4.0 mL) in an ultrasonic bath. The combined mixtures were filtered and concentrated under reduced pressure at 50 °C. The residue was purified by column chromatography on silica gel (PE/EtOAc = 2:1) affording **15** (47.7 mg) and **11** (23.3 mg). Accordingly, the yields of **15** and **11** were calculated to be 27% and 15%, respectively, and the ratio between **15** and **11** was 1.84/1.00.

6.2 Kinetic Isotope Effect (KIE) Experiments

The model reaction using substrates 1 (0.40 mmol) or substrates $[D_5]$ -1 (0.40 mmol) were carried out to determine the KIE by comparison of the initial rates, after 20 minutes at a stable constant current of 2.0 mA. The conversions were determined by ¹H NMR measurement using 1,3,5-trimethoxybenzene (0.10 mmol) as the internal standard.

Figure SI-2. Linear function fit for the reaction rate of 3.

Figure SI-3. Linear function fit for the reaction rate of [D₄]-3.

The intermolecular isotope effect value is determined to be 1.13. $k_H/k_D = (0.1257)/(0.1116) = 1.13$

6.3 H/D Exchange Experiments

The electrocatalysis was carried out in an undivided cell with a GF anode (10 mm × 15 mm × 3.0 mm) and a Ni foam cathode (10 mm × 15 mm × 1.5 mm). The cell was charged with *N*-(pyridin-2-yl)benzamide **1** (0.40 mmol), alkyne **2** (0.60 mmol, 1.50 equiv.), NaOPiv (9.93 mg, 0.08 mmol, 20 mol %), $[Cp^*RhCl_2]_2$ (6.18 mg, 0.01 mmol, 2.5 mol %) and a HFIP/D₂O solvent mixture (3/1, 4.0 mL). Electrocatalysis was performed at 80 °C with a constant current of 2.0 mA maintained for 24 h. The electrodes were washed with dichloromethane (3 × 4.0 mL) in an ultrasonic bath. The combined mixtures were filtered and concentrated under reduced pressure at 50 °C. Purification by column chromatography (PE/EtOAc = 2/1) yielded $[D_n]$ -**3** (132 mg, 88%) as a colorless solid.

The electrocatalysis was carried out in an undivided cell with a GF anode (10 mm × 15 mm × 3.0 mm) and a Ni foam cathode (10 mm × 15 mm × 1.5 mm). The cell was charged with 3,4-diphenyl-2-(pyridin-2-yl)isoquinolin-1(2*H*)-one **3** (0.40 mmol), NaOPiv (9.93 mg, 0.08 mmol, 20 mol %), [Cp*RhCl₂]₂ (6.18 mg, 0.01 mmol, 2.5 mol %) and a HFIP/D₂O solvent mixture (3/1, 4.0 mL). Electrocatalysis was performed at 80 °C with a constant current of 2.0 mA maintained for 24 h. The electrodes were washed with dichloromethane (3 × 4.0 mL) in an ultrasonic bath. The combined mixtures were filtered and concentrated under reduced pressure at 50 °C. Purification by column chromatography (PE/EtOAc = 2/1) yielded **3** (142 mg, 95%) as a colorless solid.

7. DFT Calculations

All DFT calculations were performed with Gaussian 16, Revision A.03 package.^[17] Geometry optimizations were conducted at the PBE0^[18] level of theory in combination with Grimme's D3 dispersion corrections with a Becke-Johnson damping scheme (D3BJ)^[19] in the gas phase. All atoms were described with a def2-SVP basis set.^[20] The vibrational frequencies were computed at the same level of theory to identify each stationary point as either intermediate (zero imaginary frequencies) or transition states (one imaginary frequency) and further provide the thermal and nonthermal corrections at 353.15 K. The single-point energies were further evaluated with PBE0^[18] functional in combination with a standalone version of Grimme's D4 dispersion corrections,^[21] with a def2-TZVP basis set.^[20] Solvent effects were taken into account using the polarizable continuum model (PCM)^[22] for the mixed solvent system of HFIP and water in a 3:1 ratio. Since specific PCM solvent parameters for HFIP are not available in Gaussian 16, the parameters were defined according to literature values^[23] (dielectric constant at 298 K (i.e. "Eps", ε) was set to 16.7 and square of refractive index (i.e. "EpsInf", n^2) was set to 1.625625). The reported energies are based on gas phase Gibbs free energies with def2-SVP basis set for which the electronic energies were corrected by PBE0-D4 with a def2-TZVP basis set including solvent effects.

Transition state **TS1** was verified by intrinsic reaction coordinate (IRC) calculations,^[24] which was shown below.

Figure SI-4. IRC results for the TS1 along the forward pathway.

Figure SI-5. IRC results for the TS1 along the reverse pathway.

Table SI-4. Calculated electronic energies at the PBE0-D4/def2-TZVP-PCM(HFIP/H₂O) level of theory and Gibbs free energies for all structures (all in Hartree).

Structure	Electronic Energy	Total Gibbs Free Energy
int1	-1192.810394	-1192.395495
int2	-1840.399753	-1839.801915
int3	-1840.388336	-1839.790421
TS1	-1840.384473	-1839.789244
int4	-1840.385178	-1839.787369
int5	-1493.583771	-1493.121073
TS2	-1493.572943	-1493.11289
int6	-1493.590422	-1493.126072
int7	-1685.828126	-1685.323785
TS3	-1685.810723	-1685.308037
int8	-1685.86699	-1685.359293
int9	-1685.88929	-1685.380095
TS4	-1685.849082	-1685.340004
int10	-1685.862965	-1685.353225
PivOH	-346.7829782	-346.6757592
benzamide	-647.5691104	-647.4190014
1,2-diphenylethyne	-539.0220241	-538.8751291

Cartesian Coordinates of the Optimized Structure

int1

Lowest frequency = 10.0983 cm⁻¹ Charge = 0, Multiplicity = 1

С	1.873514000	-1.969304000	-0.267154000
С	2.317194000	-0.986601000	-1.205366000
С	2.845826000	0.146697000	-0.460065000
С	2.693394000	-0.141544000	0.930629000
С	2.055776000	-1.437595000	1.060029000
С	1.201458000	-3.261101000	-0.569474000
С	2.273458000	-1.082714000	-2.690056000
С	3.425900000	1.374216000	-1.071415000
С	3.051595000	0.750006000	2.066242000
С	1.708516000	-2.136899000	2.327817000
С	-2.199435000	-0.753119000	-0.020845000
Н	1.248623000	-3.502988000	-1.638652000
Η	1.666678000	-4.083329000	-0.006120000
Η	0.139583000	-3.187238000	-0.281760000
Η	1.994671000	-0.118441000	-3.136983000
Η	3.260957000	-1.368453000	-3.088742000
Н	1.539798000	-1.828417000	-3.021690000
Η	3.472662000	2.198303000	-0.347871000
Н	4.448113000	1.183622000	-1.437245000
Η	2.815860000	1.712951000	-1.920328000
Η	4.012705000	0.439606000	2.507519000
Η	3.141845000	1.794689000	1.743435000
Η	2.285236000	0.711508000	2.852112000
Η	0.807590000	-2.751821000	2.198646000
Η	2.530723000	-2.795845000	2.653942000
Н	1.509283000	-1.419929000	3.135457000

0	-0.974858000	-1.172761000	-0.027981000
С	-3.221519000	-1.912786000	-0.008978000
С	-4.632895000	-1.341766000	0.075455000
Н	-5.375538000	-2.155829000	0.074451000
Н	-4.763892000	-0.748824000	0.991958000
Н	-4.838520000	-0.675515000	-0.773937000
С	-2.942593000	-2.810652000	1.199284000
Н	-1.930949000	-3.238187000	1.148227000
Н	-3.025079000	-2.244767000	2.140580000
Н	-3.667960000	-3.639577000	1.238162000
С	-3.055226000	-2.715656000	-1.302884000
Н	-3.776270000	-3.548735000	-1.334050000
Н	-3.232186000	-2.081720000	-2.185890000
Н	-2.040869000	-3.132479000	-1.382010000
0	-0.071581000	1.491699000	-1.088766000
С	-0.480550000	2.003997000	-0.005929000
С	-1.291696000	3.281601000	0.006702000
0	-0.099034000	1.457211000	1.073301000
С	-2.163224000	3.323839000	1.260333000
С	-2.149015000	3.354190000	-1.255414000
С	-0.271269000	4.431438000	0.026122000
Н	-2.738398000	4.262786000	1.283565000
Н	-2.858940000	2.473893000	1.261904000
Н	-1.548915000	3.266344000	2.170075000
Н	-1.524195000	3.316218000	-2.158964000
Н	-2.845741000	2.505585000	-1.284351000
Н	-2.722519000	4.294402000	-1.263555000
Н	-0.798295000	5.398388000	0.033621000
Н	0.364734000	4.381615000	0.923578000
Н	0.376478000	4.401262000	-0.863695000

0	-2.570798000	0.408574000	-0.029594000
Rh	0.790392000	-0.133208000	-0.004828000

Lowest frequency = 15.1394 cm⁻¹ Charge = 0, Multiplicity = 1

С	4.878563000	0.413648000	-0.984918000
С	6.020022000	0.166833000	-0.225058000
С	6.042122000	-0.891154000	0.686842000
С	4.924683000	-1.704714000	0.830076000
С	3.767657000	-1.438726000	0.089597000
С	2.616940000	-2.374698000	0.207941000
0	2.768488000	-3.556691000	0.445792000
Н	4.925351000	-2.556508000	1.513361000
Н	6.939317000	-1.084706000	1.279384000
Н	6.902641000	0.799808000	-0.346100000
Н	4.865448000	1.236014000	-1.703331000
С	0.331452000	-2.444171000	-0.641654000
С	0.417709000	-3.741148000	-1.190297000
С	-0.603456000	-4.188380000	-2.007182000
Н	1.298253000	-4.343008000	-0.976914000
С	-1.745083000	-2.136891000	-1.627972000
С	-1.694198000	-3.355963000	-2.276886000
Н	-0.536638000	-5.181376000	-2.458115000
Н	-2.569731000	-1.438496000	-1.778053000
Н	-2.492997000	-3.649140000	-2.958597000
N	-0.793315000	-1.720958000	-0.779373000
N	1.378107000	-1.807566000	-0.034060000
С	3.742954000	-0.378139000	-0.824090000

С	-3.538953000	-0.290436000	0.787536000
С	-2.876961000	-1.382444000	1.440727000
С	-1.951476000	-0.849632000	2.403894000
С	-2.106874000	0.586695000	2.396572000
С	-3.054125000	0.938788000	1.389677000
С	-4.583798000	-0.356072000	-0.272415000
С	-3.095100000	-2.834316000	1.194180000
С	-1.067110000	-1.627807000	3.316137000
С	-1.411585000	1.521367000	3.318926000
С	-3.462209000	2.318760000	1.014808000
С	-0.464263000	1.058598000	-2.056854000
Н	-4.708972000	-1.375599000	-0.660327000
Н	-5.559031000	-0.026620000	0.120158000
Н	-4.318882000	0.302806000	-1.113237000
Н	-2.145161000	-3.386000000	1.162053000
Н	-3.699642000	-3.256780000	2.013045000
Н	-3.624677000	-3.019910000	0.252115000
Н	-0.126684000	-1.089648000	3.497634000
Н	-1.552067000	-1.805189000	4.290780000
Н	-0.808486000	-2.604246000	2.884515000
Н	-1.929432000	1.517959000	4.292501000
Н	-0.372919000	1.208340000	3.490130000
Н	-1.399496000	2.541529000	2.920898000
Н	-3.945791000	2.330362000	0.029918000
Н	-4.167634000	2.732574000	1.753781000
Н	-2.569514000	2.957047000	0.955839000
0	-1.514963000	0.886271000	-1.325207000
С	-0.696208000	2.050426000	-3.213011000
С	0.611881000	2.269839000	-3.965150000
Н	0.455932000	2.961981000	-4.808135000

Н	1.377988000	2.697330000	-3.301942000
Н	1.007936000	1.321688000	-4.355590000
С	-1.203856000	3.371809000	-2.628907000
Н	-2.162573000	3.224581000	-2.113032000
Н	-0.496898000	3.775056000	-1.888784000
Н	-1.341046000	4.116102000	-3.430246000
С	-1.751885000	1.452881000	-4.148784000
Н	-1.946902000	2.132814000	-4.993937000
Н	-1.416295000	0.487970000	-4.562121000
Н	-2.697550000	1.287778000	-3.612103000
Н	2.839609000	-0.171303000	-1.407257000
0	-0.344202000	2.724686000	0.692235000
С	0.572733000	1.951467000	0.932413000
С	1.950014000	2.520614000	1.321948000
0	0.481978000	0.658689000	0.880310000
С	2.817374000	1.501192000	2.052675000
С	1.732331000	3.743548000	2.214523000
С	2.601752000	2.964109000	0.005033000
Н	3.789763000	1.948511000	2.313380000
Н	2.336696000	1.170712000	2.987078000
Н	3.009236000	0.612549000	1.442728000
Н	1.059855000	4.460891000	1.725947000
Н	1.283474000	3.459115000	3.180011000
Н	2.694579000	4.236945000	2.424559000
Н	3.630405000	3.316699000	0.182758000
Н	2.633467000	2.138678000	-0.718056000
Н	2.023260000	3.783381000	-0.447181000
0	0.618655000	0.505758000	-1.901828000
Н	1.261386000	-0.784313000	0.061486000
Rh	-1.427668000	-0.112260000	0.466236000

int3 Lowest frequency = 22.8671 cm⁻¹ Charge = 0, Multiplicity = 1

С	3.296266000	2.453828000	2.163041000
С	4.065587000	3.334784000	1.406076000
С	3.543536000	3.890422000	0.236095000
С	2.252991000	3.570186000	-0.164837000
С	1.478259000	2.677816000	0.588716000
С	0.074673000	2.468749000	0.153536000
0	-0.466495000	3.240653000	-0.617989000
Η	1.813944000	4.006482000	-1.063667000
Н	4.147060000	4.577029000	-0.361804000
Η	5.079396000	3.587822000	1.725761000
Н	3.704526000	2.013878000	3.075435000
С	-1.956114000	1.573732000	1.175647000
С	-2.553396000	2.838668000	1.290295000
С	-3.836176000	2.909986000	1.818268000
Η	-2.035017000	3.735697000	0.957723000
С	-3.793620000	0.544254000	2.075571000
С	-4.485009000	1.743633000	2.220520000
Η	-4.326566000	3.881694000	1.915458000
Η	-4.248223000	-0.404548000	2.383841000
Η	-5.493205000	1.762369000	2.637870000
N	-2.571169000	0.464046000	1.563905000
N	-0.631173000	1.379191000	0.695788000
С	2.006618000	2.117712000	1.757496000
С	-1.276132000	-1.709940000	-2.308524000
С	-2.409893000	-0.976415000	-1.771442000

С	-2.231124000	0.396936000	-2.101122000
С	-0.988941000	0.540825000	-2.836140000
С	-0.429248000	-0.770212000	-2.995122000
С	-1.051782000	-3.174842000	-2.201561000
С	-3.518856000	-1.590200000	-0.991796000
С	-3.153006000	1.521663000	-1.795904000
С	-0.472037000	1.801303000	-3.435040000
С	0.811128000	-1.101291000	-3.743787000
С	-0.158736000	-1.518537000	1.810633000
Н	-1.698916000	-3.614288000	-1.432535000
Н	-1.267141000	-3.667784000	-3.163757000
Н	-0.006246000	-3.359766000	-1.916605000
Н	-4.201265000	-0.828308000	-0.596378000
Н	-4.098335000	-2.282961000	-1.622252000
Н	-3.109893000	-2.151829000	-0.138808000
Н	-2.588368000	2.420500000	-1.514547000
Н	-3.745535000	1.756403000	-2.695855000
Н	-3.848654000	1.276770000	-0.983635000
Н	-0.977539000	2.008470000	-4.393292000
Н	-0.636328000	2.654844000	-2.763700000
Н	0.606128000	1.730348000	-3.631110000
Н	1.273269000	-2.013983000	-3.351220000
Н	0.565871000	-1.241973000	-4.809801000
Н	1.547088000	-0.289640000	-3.669354000
0	-0.633986000	-1.674270000	0.645274000
С	-0.211051000	-2.765622000	2.701793000
С	0.682081000	-2.570719000	3.923259000
Н	0.617805000	-3.450110000	4.583340000
Н	1.733235000	-2.438198000	3.627022000
Н	0.383946000	-1.678805000	4.491054000

С	0.237389000	-3.985478000	1.895186000
Н	-0.421265000	-4.146653000	1.031361000
Н	1.256628000	-3.851703000	1.502632000
Н	0.221397000	-4.886954000	2.528231000
С	-1.672512000	-2.929662000	3.139222000
Н	-1.778045000	-3.810692000	3.792290000
Н	-2.018544000	-2.044372000	3.694964000
Н	-2.327959000	-3.063791000	2.265946000
Н	1.425633000	1.411623000	2.351791000
0	1.784133000	-2.383935000	-1.106760000
С	2.182525000	-1.296925000	-0.709507000
С	3.654851000	-1.108026000	-0.295655000
0	1.456450000	-0.235590000	-0.567508000
С	4.169637000	0.250485000	-0.767586000
С	4.496311000	-2.230089000	-0.896544000
С	3.694408000	-1.190758000	1.235426000
Н	5.215449000	0.394330000	-0.451527000
Н	4.137425000	0.324056000	-1.866688000
Н	3.565236000	1.067198000	-0.356948000
Н	4.106858000	-3.213135000	-0.599928000
Н	4.485412000	-2.189524000	-1.996704000
Н	5.542062000	-2.142553000	-0.560812000
Н	4.719106000	-1.015404000	1.601519000
Н	3.025577000	-0.447897000	1.689336000
Н	3.376585000	-2.187426000	1.579547000
0	0.293665000	-0.452774000	2.266824000
Н	-0.111193000	0.690621000	1.358299000
Rh	-0.563487000	-0.311795000	-0.913030000

TS1 Lowest frequency = -678.9279 cm⁻¹ Charge = 0, Multiplicity = 1

С	-3.136865000	2.310565000	-2.463192000
С	-3.905521000	3.236070000	-1.760604000
С	-3.388727000	3.843745000	-0.614714000
С	-2.104404000	3.532419000	-0.185237000
С	-1.332167000	2.592327000	-0.879425000
С	0.079982000	2.404110000	-0.444841000
0	0.640745000	3.290812000	0.182432000
Н	-1.668274000	4.017611000	0.689707000
Н	-3.990121000	4.567365000	-0.059639000
Н	-4.912350000	3.484488000	-2.104923000
Н	-3.537684000	1.834270000	-3.360751000
С	2.072911000	1.311427000	-1.244770000
С	2.682591000	2.517477000	-1.642332000
С	3.981957000	2.474945000	-2.125396000
Н	2.153562000	3.464212000	-1.552831000
С	3.954847000	0.118563000	-1.810616000
С	4.650085000	1.252989000	-2.214437000
Н	4.473722000	3.401089000	-2.433725000
Н	4.424093000	-0.871202000	-1.866667000
Н	5.672992000	1.182013000	-2.587918000
N	2.713398000	0.147285000	-1.338111000
N	0.732210000	1.223690000	-0.815928000
С	-1.856705000	1.981275000	-2.022499000
С	1.078034000	-1.392643000	2.588167000
С	2.261894000	-0.758237000	2.029348000
С	2.098683000	0.650363000	2.142434000
С	0.805233000	0.913832000	2.744618000

С	0.207773000	-0.356349000	3.060839000
С	0.839732000	-2.856406000	2.686293000
С	3.415263000	-1.496944000	1.447936000
С	3.068955000	1.704647000	1.748274000
С	0.273817000	2.251665000	3.121038000
С	-1.090106000	-0.548507000	3.759130000
С	0.244523000	-1.723915000	-1.614896000
Н	1.503428000	-3.406153000	2.007159000
Н	1.026283000	-3.208025000	3.714384000
Н	-0.197940000	-3.076446000	2.400302000
Н	4.146597000	-0.812947000	1.002130000
Н	3.920531000	-2.091250000	2.225821000
Н	3.069329000	-2.179864000	0.658490000
Н	2.550878000	2.545501000	1.266615000
Н	3.577206000	2.082779000	2.650883000
Н	3.832190000	1.323626000	1.058598000
Η	0.674945000	2.561173000	4.100868000
Η	0.550130000	3.010215000	2.376609000
Η	-0.821866000	2.233349000	3.195621000
Η	-1.530843000	-1.520193000	3.510665000
Η	-0.930465000	-0.483981000	4.848431000
Η	-1.809452000	0.231832000	3.476367000
0	0.591849000	-1.784164000	-0.417992000
С	0.263037000	-3.016831000	-2.422500000
С	-0.626808000	-2.887686000	-3.656488000
Н	-0.582211000	-3.815511000	-4.247371000
Н	-1.675145000	-2.711279000	-3.373701000
Н	-0.305963000	-2.050871000	-4.291480000
С	-0.202633000	-4.172508000	-1.536313000
Н	0.452600000	-4.285704000	-0.662348000

Η	-1.220883000	-3.999456000	-1.157158000
Н	-0.195830000	-5.112563000	-2.109389000
С	1.724663000	-3.226297000	-2.846415000
Н	1.814663000	-4.150366000	-3.438696000
Н	2.082645000	-2.384944000	-3.458957000
Н	2.378352000	-3.311902000	-1.965700000
Н	-1.267063000	1.254335000	-2.580448000
0	-1.877360000	-2.216383000	1.286481000
С	-2.243804000	-1.194547000	0.721027000
С	-3.695823000	-1.051007000	0.224142000
0	-1.500167000	-0.169302000	0.458706000
С	-4.229597000	0.336633000	0.576581000
С	-4.560843000	-2.131344000	0.865535000
С	-3.669767000	-1.239227000	-1.296985000
Н	-5.258731000	0.458974000	0.202112000
Н	-4.250000000	0.484388000	1.668607000
Н	-3.602452000	1.122425000	0.139902000
Н	-4.163510000	-3.132610000	0.650689000
Н	-4.590381000	-2.018399000	1.959898000
Н	-5.592874000	-2.067291000	0.485003000
Н	-4.680918000	-1.112538000	-1.716599000
Н	-3.000418000	-0.510283000	-1.772223000
Н	-3.319891000	-2.250524000	-1.558443000
0	-0.080212000	-0.651695000	-2.211341000
Н	0.187854000	0.284716000	-1.540901000
Rh	0.496309000	-0.191437000	0.947573000

Lowest frequency = 12.5757 cm^{-1} Charge = 0, Multiplicity = 1

С	3.057344000	-2.063422000	-2.701442000
С	3.849205000	-3.031603000	-2.087512000
С	3.355966000	-3.740044000	-0.990333000
С	2.071081000	-3.488232000	-0.523244000
С	1.276779000	-2.504454000	-1.124575000
С	-0.142444000	-2.379036000	-0.680037000
0	-0.696639000	-3.356269000	-0.192054000
Н	1.651941000	-4.058485000	0.307653000
Н	3.974649000	-4.498779000	-0.505429000
Н	4.854631000	-3.235281000	-2.463770000
Η	3.438292000	-1.510044000	-3.562801000
С	-2.126073000	-1.182674000	-1.285518000
С	-2.743967000	-2.309682000	-1.870703000
С	-4.050539000	-2.196792000	-2.317424000
Η	-2.209870000	-3.254556000	-1.950005000
С	-4.031541000	0.070891000	-1.608553000
С	-4.728602000	-0.982626000	-2.187405000
Н	-4.543000000	-3.062216000	-2.768541000
Н	-4.508603000	1.051337000	-1.486618000
Η	-5.758543000	-0.858043000	-2.525713000
N	-2.779987000	-0.024179000	-1.170846000
N	-0.782991000	-1.160527000	-0.887177000
С	1.779681000	-1.791748000	-2.216560000
С	-0.928596000	1.055248000	2.770478000
С	-2.138107000	0.467403000	2.213506000
С	-1.953934000	-0.940770000	2.143869000
С	-0.615967000	-1.245896000	2.617193000
С	-0.015163000	-0.008830000	3.050058000
С	-0.708936000	2.501297000	3.036599000

С	-3.338122000	1.247297000	1.807177000
С	-2.939262000	-1.956365000	1.690013000
С	-0.041282000	-2.606132000	2.798802000
С	1.327298000	0.122026000	3.674560000
С	-0.366721000	1.937761000	-1.404933000
Н	-1.418700000	3.114837000	2.467403000
Н	-0.845596000	2.719559000	4.108601000
Н	0.306677000	2.781365000	2.725715000
Н	-4.086757000	0.609354000	1.323940000
Н	-3.798164000	1.724191000	2.687408000
Н	-3.057460000	2.034986000	1.093264000
Н	-2.450105000	-2.719072000	1.067495000
Н	-3.376186000	-2.455111000	2.571099000
Н	-3.753734000	-1.504723000	1.110509000
Н	-0.326874000	-3.011645000	3.784074000
Н	-0.400553000	-3.294435000	2.022417000
Н	1.055831000	-2.579913000	2.749730000
Н	1.730348000	1.131234000	3.534968000
Н	1.251666000	-0.096970000	4.752707000
Н	2.037546000	-0.591038000	3.234478000
0	-0.646117000	1.828173000	-0.206435000
С	-0.435640000	3.305336000	-2.063136000
С	0.473928000	3.359125000	-3.289560000
Н	0.392726000	4.347432000	-3.766993000
Н	1.526276000	3.198877000	-3.012232000
Н	0.198518000	2.591755000	-4.025488000
С	-0.034772000	4.370663000	-1.042830000
Н	-0.710262000	4.360105000	-0.176954000
Н	0.982521000	4.194572000	-0.662789000
Н	-0.071982000	5.367317000	-1.508254000

С	-1.901959000	3.490774000	-2.485361000
Н	-2.028434000	4.472385000	-2.967738000
Н	-2.211164000	2.710946000	-3.197405000
Н	-2.569914000	3.442953000	-1.612517000
Н	1.166487000	-1.036184000	-2.707392000
0	1.892567000	2.124109000	1.368069000
С	2.256304000	1.170427000	0.691731000
С	3.698004000	1.096962000	0.150466000
0	1.519558000	0.166129000	0.344903000
С	4.266957000	-0.299316000	0.401266000
С	4.555126000	2.151760000	0.842731000
С	3.635258000	1.382237000	-1.353862000
Н	5.288904000	-0.376721000	-0.003677000
Н	4.317621000	-0.514360000	1.481139000
Н	3.644272000	-1.068706000	-0.070133000
Н	4.135606000	3.156998000	0.700007000
Н	4.608477000	1.970818000	1.926828000
Н	5.580183000	2.132790000	0.439135000
Н	4.640418000	1.312603000	-1.800245000
Н	2.977818000	0.665470000	-1.862740000
Н	3.252806000	2.398136000	-1.542090000
0	-0.056368000	0.944101000	-2.160967000
Н	-0.216199000	0.040887000	-1.639382000
Rh	-0.444513000	0.062864000	0.955013000

int5 Lowest frequency = 23.556 cm^{-1} Charge = 0, Multiplicity = 1

С	2.713511000	-0.034457000	-2.390395000
С	3.904574000	-0.747941000	-2.482023000

С	4.011840000	-2.007765000	-1.879044000
С	2.935402000	-2.551095000	-1.183688000
С	1.750569000	-1.823456000	-1.065499000
С	0.580273000	-2.393885000	-0.320904000
0	0.434976000	-3.604427000	-0.228158000
Н	2.986074000	-3.540397000	-0.723500000
Н	4.944298000	-2.571417000	-1.965643000
Н	4.746950000	-0.341491000	-3.047365000
Н	2.601772000	0.924734000	-2.901708000
С	-1.473238000	-1.696648000	0.725121000
С	-2.232161000	-2.824321000	0.337305000
С	-3.512878000	-2.968476000	0.844367000
Н	-1.800522000	-3.557704000	-0.339703000
С	-3.191907000	-0.954343000	2.065081000
С	-4.025229000	-2.013705000	1.726326000
Н	-4.118376000	-3.827388000	0.543414000
Н	-3.537136000	-0.182192000	2.764956000
Н	-5.031888000	-2.091582000	2.140385000
N	-1.960127000	-0.800648000	1.590161000
N	-0.218776000	-1.423957000	0.205842000
С	1.631850000	-0.564471000	-1.676521000
Rh	0.598319000	0.482777000	0.247596000
С	0.363625000	1.541753000	2.044852000
С	1.236069000	0.413792000	2.289542000
С	2.387524000	0.558069000	1.457729000
С	2.256047000	1.816875000	0.734448000
С	1.028290000	2.420446000	1.098996000
С	-0.925726000	1.865416000	2.707732000
С	0.955442000	-0.707622000	3.223928000
С	3.576466000	-0.336339000	1.425026000

С	3.286331000	2.400239000	-0.167481000
С	0.444661000	3.691369000	0.592953000
С	-1.661372000	0.799196000	-1.687602000
Н	-1.263359000	1.047593000	3.351921000
Н	-0.811683000	2.781118000	3.311644000
Н	-1.702863000	2.038182000	1.949980000
Н	1.446174000	-1.633373000	2.897030000
Н	1.325719000	-0.457869000	4.231784000
Н	-0.124286000	-0.896317000	3.274792000
Н	4.026346000	-0.373145000	0.424098000
Н	4.344207000	0.020153000	2.132040000
Н	3.310842000	-1.363989000	1.704139000
Н	3.941461000	3.070723000	0.413491000
Н	3.913757000	1.623572000	-0.620283000
Н	2.833209000	2.990526000	-0.974813000
Н	-0.570254000	3.505716000	0.209930000
Н	0.378878000	4.436707000	1.401535000
Н	1.045772000	4.119205000	-0.219469000
0	-1.137915000	1.197532000	-0.581994000
С	-3.126062000	1.220332000	-1.908119000
С	-3.228681000	1.871617000	-3.288295000
Н	-4.279231000	2.100039000	-3.528915000
Н	-2.659362000	2.814254000	-3.327201000
Н	-2.826024000	1.197751000	-4.057177000
С	-3.620140000	2.171687000	-0.823605000
Н	-3.544036000	1.706546000	0.169457000
Н	-3.032947000	3.102503000	-0.806667000
Н	-4.674172000	2.436681000	-1.005023000
С	-3.948813000	-0.073939000	-1.880840000
Н	-5.010867000	0.146342000	-2.075449000

Н	-3.586717000	-0.774911000	-2.646130000
Н	-3.876457000	-0.570174000	-0.901005000
0	-1.093355000	0.115919000	-2.533348000
Н	0.605437000	-0.139310000	-1.862732000

TS2

Lowest frequency = -791.3996 cm⁻¹ Charge = 0, Multiplicity = 1

С	-2.571886000	-1.066979000	1.977964000
С	-3.616675000	-1.987492000	1.943441000
С	-3.627249000	-3.001183000	0.978343000
С	-2.583494000	-3.107575000	0.061452000
С	-1.550314000	-2.174442000	0.093660000
С	-0.397151000	-2.268109000	-0.854319000
0	-0.173171000	-3.291129000	-1.486523000
Н	-2.546369000	-3.902354000	-0.687447000
Н	-4.448998000	-3.721590000	0.957333000
Н	-4.421125000	-1.931284000	2.681626000
Н	-2.547077000	-0.304458000	2.761195000
С	1.575867000	-1.008447000	-1.460971000
С	2.389238000	-2.134007000	-1.734839000
С	3.673218000	-1.925208000	-2.210737000
Н	1.991419000	-3.133590000	-1.576954000
С	3.249693000	0.411992000	-2.160858000
С	4.136568000	-0.625054000	-2.426755000
Н	4.318303000	-2.784578000	-2.412408000
Н	3.551181000	1.453720000	-2.332373000
Н	5.142943000	-0.423942000	-2.797881000
N	2.016707000	0.232908000	-1.700442000
N	0.321249000	-1.104564000	-0.886076000

С	-1.530049000	-1.131999000	1.040189000
Rh	-0.618384000	0.538963000	-0.045651000
С	-0.467704000	2.370926000	-1.179548000
С	-1.207809000	1.405726000	-1.934177000
С	-2.366345000	1.025132000	-1.168173000
С	-2.378735000	1.835739000	0.037884000
С	-1.201733000	2.627256000	0.046349000
С	0.787522000	3.071209000	-1.562219000
С	-0.835122000	0.859082000	-3.266294000
С	-3.444790000	0.092130000	-1.599748000
С	-3.487015000	1.897253000	1.030107000
С	-0.753544000	3.575154000	1.103065000
С	1.479340000	-0.021211000	1.935754000
Н	1.188841000	2.684404000	-2.504920000
Н	0.600276000	4.152472000	-1.671348000
Н	1.557855000	2.925681000	-0.791645000
Н	-1.144629000	-0.189548000	-3.366506000
Н	-1.329380000	1.440021000	-4.062157000
Н	0.250785000	0.901720000	-3.411948000
Н	-3.887842000	-0.430553000	-0.740806000
Н	-4.248046000	0.637055000	-2.123219000
Н	-3.055879000	-0.674390000	-2.282934000
Н	-4.173749000	2.716296000	0.757697000
Н	-4.065350000	0.966051000	1.051878000
Н	-3.118197000	2.095899000	2.045216000
Н	0.303877000	3.398965000	1.348352000
Н	-0.854383000	4.616976000	0.757628000
Н	-1.340819000	3.463407000	2.023721000
0	1.100197000	0.843586000	1.100071000
С	2.889263000	0.112336000	2.510300000

С	2.867045000	-0.242696000	3.996653000
Н	3.889489000	-0.224167000	4.404817000
Η	2.259955000	0.475994000	4.569316000
Η	2.442647000	-1.244069000	4.150451000
С	3.431381000	1.521723000	2.292963000
Η	3.447970000	1.774372000	1.223895000
Η	2.813576000	2.272704000	2.808935000
Η	4.456906000	1.593335000	2.687351000
С	3.745021000	-0.903173000	1.736691000
Η	4.783879000	-0.868937000	2.101024000
Η	3.360329000	-1.924093000	1.873156000
Η	3.751254000	-0.679813000	0.659049000
0	0.782405000	-1.005331000	2.277247000
Н	-0.370745000	-0.908955000	1.576416000

Lowest frequency = 22.7074 cm⁻¹ Charge = 0, Multiplicity = 1

С	-2.530204000	2.070217000	-0.723266000
С	-3.139546000	3.237037000	-0.255020000
С	-2.869578000	3.716679000	1.029862000
С	-1.956174000	3.044672000	1.836847000
С	-1.340807000	1.886500000	1.358884000
С	-0.237632000	1.229276000	2.121035000
0	0.113870000	1.619371000	3.225753000
Н	-1.682936000	3.401963000	2.833205000
Н	-3.357058000	4.626752000	1.387672000
Н	-3.832588000	3.781451000	-0.902758000
Н	-2.756177000	1.719027000	-1.733746000
С	1.569731000	-0.320891000	1.639226000

С	2.369619000	0.028991000	2.756294000
С	3.624551000	-0.544857000	2.881809000
Н	1.976827000	0.735554000	3.483475000
С	3.211160000	-1.758476000	0.883395000
С	4.077115000	-1.462203000	1.930273000
Н	4.253132000	-0.276806000	3.735508000
Н	3.507175000	-2.480838000	0.111075000
Н	5.058009000	-1.935175000	2.001745000
N	2.009907000	-1.212629000	0.735454000
N	0.332789000	0.230973000	1.368550000
С	-1.638223000	1.357483000	0.089241000
Rh	-0.775524000	-0.431718000	-0.249152000
С	-0.619769000	-2.588790000	-0.928882000
С	-0.973694000	-2.563368000	0.429233000
С	-2.179911000	-1.752712000	0.569886000
С	-2.639725000	-1.418957000	-0.761370000
С	-1.632380000	-1.838140000	-1.671017000
С	0.591088000	-3.192592000	-1.549456000
С	-0.269692000	-3.199395000	1.574968000
С	-2.931712000	-1.539963000	1.839592000
С	-3.957252000	-0.812158000	-1.094131000
С	-1.628073000	-1.671438000	-3.151984000
С	1.435750000	1.359215000	-1.417756000
Н	1.235959000	-3.655490000	-0.792848000
Н	0.317303000	-3.960214000	-2.291459000
Н	1.186367000	-2.420107000	-2.059831000
Н	-0.106769000	-2.478051000	2.388290000
Н	-0.880155000	-4.024399000	1.977807000
Н	0.709109000	-3.595866000	1.283079000
Н	-3.540332000	-0.626816000	1.790768000

Η	-3.602852000	-2.389065000	2.052955000
Н	-2.244249000	-1.431425000	2.689679000
Н	-4.727176000	-1.601267000	-1.125605000
Н	-4.264953000	-0.068761000	-0.347414000
Н	-3.946606000	-0.320341000	-2.075670000
Н	-0.619916000	-1.423659000	-3.513355000
Н	-1.943871000	-2.602045000	-3.652928000
Н	-2.307116000	-0.869113000	-3.470247000
0	0.784483000	0.328433000	-1.544775000
С	2.832133000	1.511500000	-1.988367000
С	2.856214000	2.725849000	-2.923936000
Н	3.872082000	2.862437000	-3.324565000
Н	2.171711000	2.588353000	-3.775405000
Н	2.567097000	3.642963000	-2.391999000
С	3.216944000	0.238906000	-2.734920000
Н	3.177793000	-0.630713000	-2.064215000
Н	2.536743000	0.047323000	-3.577716000
Н	4.239292000	0.335510000	-3.129605000
С	3.782208000	1.740349000	-0.801532000
Н	4.811959000	1.845383000	-1.175763000
Н	3.516094000	2.652804000	-0.250335000
Н	3.756355000	0.893357000	-0.100010000
0	0.999475000	2.407946000	-0.771441000
Н	0.103971000	2.213744000	-0.405722000

int7 Lowest frequency = 12.1210 cm^{-1} Charge = 0, Multiplicity = 1

73

С	-2.167963000	-2.412399000	-0.492717000
С	-3.535105000	-2.683409000	-0.593516000

S-65

С	-4.479574000	-1.777493000	-0.104581000
С	-4.051795000	-0.584943000	0.471633000
С	-2.685576000	-0.319442000	0.570589000
С	-2.192414000	0.996842000	1.054128000
0	-2.953437000	1.861838000	1.469376000
Н	-4.751167000	0.171344000	0.836932000
Н	-5.546231000	-1.997372000	-0.191787000
Н	-3.866762000	-3.611163000	-1.068948000
Н	-1.447631000	-3.124383000	-0.903891000
С	-0.131181000	2.280235000	1.073782000
С	-0.709494000	3.469703000	1.588264000
С	0.087182000	4.593420000	1.735984000
Н	-1.762560000	3.463564000	1.857056000
С	1.908473000	3.342881000	0.875610000
С	1.436426000	4.548105000	1.380926000
Н	-0.350773000	5.511161000	2.138108000
Н	2.962093000	3.252999000	0.577785000
Н	2.095978000	5.410680000	1.489254000
N	1.165676000	2.252707000	0.719703000
N	-0.827485000	1.099998000	0.903130000
С	-1.731609000	-1.232938000	0.111760000
Rh	0.160051000	-0.658150000	0.464259000
С	2.275941000	-1.097042000	1.368956000
С	1.431326000	-0.589986000	2.367294000
С	0.256560000	-1.443381000	2.447754000
С	0.476112000	-2.567015000	1.573326000
С	1.655598000	-2.307216000	0.829795000
С	3.624984000	-0.575618000	1.019598000
С	1.683393000	0.570686000	3.262198000
С	-0.839414000	-1.304539000	3.448668000

С	-0.315734000	-3.826218000	1.566454000
С	2.302741000	-3.251858000	-0.123962000
Н	3.634547000	0.522610000	1.012242000
Н	4.369080000	-0.917913000	1.758761000
Н	3.957771000	-0.917289000	0.031789000
Н	0.786230000	1.193997000	3.379430000
Н	1.965972000	0.206225000	4.264460000
Н	2.490174000	1.209234000	2.885518000
Н	-1.761043000	-1.789022000	3.099220000
Н	-0.554668000	-1.759270000	4.412372000
Н	-1.074422000	-0.247007000	3.631818000
Н	0.071017000	-4.494181000	2.355229000
Н	-1.379672000	-3.647118000	1.765119000
Н	-0.233974000	-4.362224000	0.612198000
Н	2.961946000	-2.726422000	-0.825841000
Н	2.919905000	-3.986389000	0.421260000
Н	1.559328000	-3.811140000	-0.709083000
С	0.975192000	-0.039004000	-1.565815000
С	-0.245477000	0.132268000	-1.713135000
С	2.347879000	-0.021106000	-1.994683000
С	-1.519830000	0.580813000	-2.189494000
С	3.155368000	1.094768000	-1.728306000
С	2.874258000	-1.085569000	-2.744282000
С	-1.923389000	1.900975000	-1.930025000
С	-2.375216000	-0.276327000	-2.899036000
С	4.466980000	1.133915000	-2.189209000
Н	2.724942000	1.912533000	-1.152471000
С	4.190825000	-1.042203000	-3.194192000
Н	2.235782000	-1.939198000	-2.978844000
С	-3.175592000	2.339736000	-2.343919000

Η	-1.254844000	2.567920000	-1.384909000
С	-3.622989000	0.172527000	-3.313034000
Н	-2.058551000	-1.299466000	-3.101489000
С	4.993381000	0.063875000	-2.913232000
Н	5.086467000	2.009387000	-1.980011000
Н	4.590710000	-1.875327000	-3.777125000
С	-4.030121000	1.476056000	-3.027461000
Н	-3.489574000	3.360724000	-2.117519000
Н	-4.289658000	-0.504902000	-3.851106000
Н	6.025722000	0.096131000	-3.269178000
Н	-5.019137000	1.819780000	-3.339588000

TS3 Lowest frequency = -260.3355 cm⁻¹

Charge = 0, Multiplicity = 1

С	2.213129000	1.421989000	-1.836028000
С	3.550445000	1.821376000	-1.877933000
С	4.388319000	1.604203000	-0.779879000
С	3.889013000	0.989976000	0.369575000
С	2.551971000	0.610368000	0.421023000
С	1.970879000	-0.052790000	1.624972000
0	2.689659000	-0.408245000	2.550800000
Н	4.512597000	0.799142000	1.246412000
Н	5.436045000	1.910515000	-0.826024000
Н	3.946782000	2.291220000	-2.782108000
Н	1.570450000	1.551116000	-2.709336000
С	-0.124622000	-1.012700000	2.357658000
С	0.439974000	-1.767653000	3.418224000
С	-0.384710000	-2.585431000	4.172289000
Н	1.505122000	-1.681006000	3.615389000

С	-2.214844000	-1.866662000	2.847605000
С	-1.751801000	-2.651868000	3.895263000
Н	0.045506000	-3.173830000	4.987407000
Н	-3.281656000	-1.872885000	2.586359000
Н	-2.431798000	-3.282459000	4.470434000
N	-1.441935000	-1.078131000	2.107207000
N	0.610289000	-0.203722000	1.513205000
С	1.702489000	0.828293000	-0.675857000
Rh	-0.250302000	0.954532000	0.001682000
С	-1.907295000	2.255869000	-0.740966000
С	-2.150371000	1.938305000	0.634026000
С	-1.032852000	2.452972000	1.390414000
С	-0.136639000	3.121061000	0.499299000
С	-0.676664000	2.984116000	-0.828958000
С	-2.831342000	1.978496000	-1.876758000
С	-3.396981000	1.358139000	1.202714000
С	-0.884899000	2.347940000	2.868877000
С	1.120482000	3.833762000	0.865287000
С	-0.155592000	3.649317000	-2.056230000
Н	-3.426508000	1.072591000	-1.701988000
Н	-3.528456000	2.821903000	-2.014448000
Н	-2.284779000	1.837414000	-2.819016000
Н	-3.171475000	0.704415000	2.054055000
Н	-4.075647000	2.158921000	1.543683000
Н	-3.935947000	0.760322000	0.455827000
Н	0.170921000	2.319901000	3.168995000
Н	-1.357050000	3.215549000	3.358883000
Н	-1.366080000	1.437417000	3.248055000
Н	0.951330000	4.919122000	0.963344000
Н	1.518091000	3.470021000	1.822320000

Η	1.903231000	3.680042000	0.108004000
Н	-0.328395000	3.042527000	-2.956150000
Н	-0.671584000	4.612854000	-2.207302000
Н	0.919786000	3.855249000	-1.982800000
С	-0.639352000	-0.669141000	-1.200625000
С	0.641981000	-0.785360000	-1.236336000
С	-1.857795000	-1.256034000	-1.697923000
С	1.638623000	-1.850500000	-1.232761000
С	-2.927800000	-1.529272000	-0.829467000
С	-1.994147000	-1.548594000	-3.066016000
С	1.283665000	-3.040902000	-0.574710000
С	2.890438000	-1.763372000	-1.856732000
С	-4.101438000	-2.089917000	-1.321308000
Н	-2.787864000	-1.300474000	0.228495000
С	-3.177265000	-2.098552000	-3.550591000
Н	-1.163663000	-1.331650000	-3.741312000
С	2.157219000	-4.123574000	-0.559599000
Н	0.319926000	-3.093851000	-0.064324000
С	3.758042000	-2.849313000	-1.839109000
Н	3.181831000	-0.835737000	-2.350416000
С	-4.234959000	-2.370647000	-2.682617000
Н	-4.923698000	-2.309763000	-0.635588000
Н	-3.274158000	-2.318156000	-4.616697000
С	3.396102000	-4.031213000	-1.191519000
Н	1.871879000	-5.040066000	-0.038066000
Н	4.730454000	-2.770588000	-2.330742000
Н	-5.162018000	-2.802860000	-3.066548000
Н	4.086257000	-4.878040000	-1.171576000

Lowest frequency = 22.0461 cm⁻¹ Charge = 0, Multiplicity = 1

С	1.131093000	3.094291000	-0.276111000
С	0.493418000	4.248217000	0.128838000
С	-0.389069000	4.220331000	1.226153000
С	-0.617644000	3.034204000	1.890362000
С	0.015190000	1.836271000	1.483861000
С	-0.176115000	0.615360000	2.352728000
0	0.048664000	0.670914000	3.550759000
Н	-1.266046000	2.997023000	2.768354000
Н	-0.874743000	5.140085000	1.561042000
Н	0.685506000	5.188945000	-0.393169000
Н	1.833795000	3.114729000	-1.112463000
С	-0.930356000	-1.660238000	2.085550000
С	-0.570538000	-2.070402000	3.393576000
С	-0.855863000	-3.366519000	3.787737000
Н	-0.087310000	-1.356751000	4.056556000
С	-1.810930000	-3.748928000	1.649315000
С	-1.493582000	-4.243636000	2.906890000
Н	-0.577200000	-3.695063000	4.792640000
Н	-2.311819000	-4.391692000	0.913542000
Н	-1.734672000	-5.270886000	3.184865000
N	-1.543032000	-2.508460000	1.248419000
N	-0.670642000	-0.394771000	1.599380000
С	0.932095000	1.860939000	0.397499000
Rh	-0.948187000	0.474601000	-0.288588000
С	-2.344449000	-0.568157000	-1.523955000
С	-3.153736000	0.160536000	-0.549217000
С	-2.922679000	1.534822000	-0.723451000

С	-1.955773000	1.687927000	-1.805635000
С	-1.663744000	0.403990000	-2.343132000
С	-2.468863000	-2.020672000	-1.814191000
С	-4.068851000	-0.483901000	0.430822000
С	-3.554597000	2.662721000	0.013634000
С	-1.524097000	2.995498000	-2.368035000
С	-0.866730000	0.113083000	-3.566165000
Н	-2.479156000	-2.588473000	-0.876021000
Н	-3.404055000	-2.211728000	-2.367985000
Н	-1.630593000	-2.382472000	-2.422470000
Н	-4.302043000	0.185332000	1.269385000
Н	-5.017614000	-0.759392000	-0.059516000
Н	-3.609953000	-1.396600000	0.832831000
Н	-2.825650000	3.455090000	0.236401000
Н	-4.362915000	3.114649000	-0.585648000
Н	-3.988612000	2.329191000	0.965568000
Н	-2.294780000	3.378038000	-3.058435000
Н	-1.379764000	3.746527000	-1.580087000
Н	-0.582779000	2.906866000	-2.925786000
Н	-0.389212000	-0.873496000	-3.512184000
Н	-1.519510000	0.128068000	-4.454791000
Н	-0.072225000	0.856235000	-3.717637000
С	0.934869000	-0.217655000	-0.621323000
С	1.746678000	0.667823000	-0.008805000
С	1.284499000	-1.394611000	-1.413352000
С	3.187215000	0.605448000	0.297047000
С	0.746251000	-2.661639000	-1.141936000
С	2.156325000	-1.257480000	-2.509904000
С	3.905398000	-0.602052000	0.207090000
С	3.877867000	1.741287000	0.753726000
С	1.090548000	-3.759513000	-1.926965000
---	-------------	--------------	--------------
Н	0.044972000	-2.765414000	-0.312548000
С	2.485817000	-2.353612000	-3.300209000
Н	2.577484000	-0.273249000	-2.728488000
С	5.258098000	-0.655738000	0.519774000
Н	3.390091000	-1.513312000	-0.095766000
С	5.233592000	1.684666000	1.067919000
Н	3.344978000	2.685986000	0.876368000
С	1.957444000	-3.612544000	-3.009768000
Н	0.670746000	-4.740935000	-1.691596000
Н	3.163340000	-2.226022000	-4.148266000
С	5.935554000	0.488509000	0.944099000
Н	5.788209000	-1.608271000	0.441880000
Н	5.742292000	2.585841000	1.419275000
Н	2.219228000	-4.474793000	-3.627742000
Н	6.998842000	0.442455000	1.190874000

int9

Lowest frequency = 18.2975 cm⁻¹ Charge = 0, Multiplicity = 1

С	-2.281341000	-2.837903000	-0.547819000
С	-2.281816000	-4.183373000	-0.198902000
С	-1.585455000	-4.608437000	0.932849000
С	-0.904823000	-3.671415000	1.702422000
С	-0.861566000	-2.323418000	1.329447000
С	-0.194682000	-1.372012000	2.278918000
0	-0.463957000	-1.381617000	3.471062000
Н	-0.402006000	-3.967303000	2.626161000
Н	-1.594738000	-5.660475000	1.227296000
Н	-2.840265000	-4.901630000	-0.804204000

Н	-2.861168000	-2.501635000	-1.411133000
С	1.025196000	0.699257000	2.185418000
С	0.845695000	1.289548000	3.445325000
С	1.229943000	2.616892000	3.580411000
Н	0.413440000	0.698278000	4.250638000
С	1.899976000	2.672000000	1.280516000
С	1.764974000	3.326973000	2.497415000
Н	1.107368000	3.114864000	4.545785000
Н	2.272337000	3.176201000	0.384660000
Н	2.059268000	4.372522000	2.592528000
N	1.547598000	1.397885000	1.150846000
N	0.696526000	-0.528789000	1.697330000
С	-1.555803000	-1.881089000	0.181893000
Rh	1.303813000	-0.165995000	-0.237647000
С	2.626383000	0.119787000	-1.944984000
С	3.414630000	-0.511972000	-0.890966000
С	2.825275000	-1.756685000	-0.596408000
С	1.660843000	-1.922384000	-1.451253000
С	1.591324000	-0.783991000	-2.325583000
С	2.996247000	1.408138000	-2.600185000
С	4.618777000	0.098751000	-0.259583000
С	3.249757000	-2.747096000	0.432036000
С	0.890478000	-3.187114000	-1.602415000
С	0.608703000	-0.631363000	-3.436504000
Н	3.143770000	2.212891000	-1.865140000
Н	3.938677000	1.297262000	-3.161846000
Н	2.226811000	1.743542000	-3.306933000
Н	4.866761000	-0.390179000	0.691877000
Н	5.497103000	0.013667000	-0.921284000
Н	4.465516000	1.168204000	-0.053431000

Η	2.381165000	-3.124156000	0.991165000
Н	3.743931000	-3.612430000	-0.039583000
Н	3.949896000	-2.308219000	1.154893000
Н	1.471986000	-3.911213000	-2.198992000
Н	0.666773000	-3.651898000	-0.633077000
Н	-0.064817000	-3.018937000	-2.112429000
Н	0.616111000	0.384093000	-3.853471000
Н	0.846042000	-1.330114000	-4.255062000
Н	-0.413322000	-0.844979000	-3.091686000
С	-0.636992000	0.397614000	-0.410586000
С	-1.679681000	-0.450135000	-0.225006000
С	-0.821989000	1.855662000	-0.552532000
С	-3.089809000	-0.000354000	-0.410153000
С	-1.470091000	2.572390000	0.468275000
С	-0.275078000	2.584795000	-1.618757000
С	-4.057331000	-0.302373000	0.560796000
С	-3.487986000	0.726527000	-1.540599000
С	-1.559215000	3.960296000	0.424900000
Н	-1.893885000	2.021054000	1.310476000
С	-0.378666000	3.972075000	-1.672633000
Н	0.234984000	2.045730000	-2.416823000
С	-5.371652000	0.133516000	0.418776000
Н	-3.764216000	-0.878170000	1.442584000
С	-4.803940000	1.157348000	-1.686728000
Н	-2.748890000	0.956049000	-2.310845000
С	-1.016314000	4.669545000	-0.646390000
Н	-2.059106000	4.493318000	1.237543000
Н	0.044919000	4.514326000	-2.522272000
С	-5.750902000	0.866953000	-0.705562000
Н	-6.106398000	-0.101330000	1.193070000

Н	-5.092498000	1.722741000	-2.576389000
Н	-1.089367000	5.759121000	-0.681680000
Н	-6.783407000	1.206143000	-0.819076000

TS4 Lowest frequency = -369.8507 cm⁻¹ Charge = 0, Multiplicity = 1

С	-2.604407000	-2.770006000	0.293120000
С	-2.622274000	-4.013484000	0.895659000
С	-1.749288000	-4.309152000	1.955381000
С	-0.878056000	-3.328323000	2.394458000
С	-0.825249000	-2.070469000	1.771669000
С	0.074768000	-1.077288000	2.369445000
0	0.513342000	-1.135939000	3.508091000
Η	-0.208032000	-3.497023000	3.240491000
Η	-1.766322000	-5.291624000	2.431789000
Н	-3.320806000	-4.773782000	0.536300000
Н	-3.290387000	-2.560049000	-0.529859000
С	1.231467000	1.019571000	1.871150000
С	1.368407000	1.671730000	3.093955000
С	2.231374000	2.761603000	3.131103000
Н	0.836342000	1.301601000	3.968051000
С	2.706934000	2.458072000	0.798571000
С	2.902801000	3.171629000	1.974137000
Н	2.383004000	3.299807000	4.069585000
Η	3.202728000	2.731020000	-0.136466000
Η	3.571708000	4.033115000	1.984127000
N	1.897328000	1.402177000	0.766451000
N	0.424082000	-0.044465000	1.505679000
С	-1.696172000	-1.755446000	0.689129000

Rh	1.284225000	-0.215311000	-0.421801000
С	2.269953000	-0.230984000	-2.335305000
С	3.184473000	-0.905025000	-1.406797000
С	2.537444000	-2.048923000	-0.915364000
С	1.210055000	-2.098248000	-1.513117000
С	1.096756000	-1.029836000	-2.463148000
С	2.625293000	0.972482000	-3.142972000
С	4.553178000	-0.419089000	-1.071439000
С	3.040734000	-3.040119000	0.076588000
С	0.273250000	-3.247536000	-1.377514000
С	-0.066921000	-0.804015000	-3.364359000
Η	3.144922000	1.730003000	-2.538042000
Н	3.296956000	0.704358000	-3.976416000
Η	1.733528000	1.446039000	-3.576272000
Η	4.945997000	-0.909545000	-0.170669000
Н	5.256992000	-0.616435000	-1.897604000
Н	4.566022000	0.666017000	-0.888922000
Н	2.285434000	-3.239341000	0.852185000
Η	3.271836000	-4.003414000	-0.408415000
Н	3.952089000	-2.688125000	0.578169000
Н	0.621009000	-4.087685000	-2.003107000
Н	0.206231000	-3.606281000	-0.341539000
Η	-0.740693000	-2.984082000	-1.699445000
Η	-0.102458000	0.231506000	-3.730195000
Н	-0.022306000	-1.468544000	-4.243362000
Н	-1.012233000	-1.006108000	-2.839778000
С	-0.614274000	0.408912000	0.100623000
С	-1.732650000	-0.441729000	0.083796000
С	-0.845078000	1.880720000	0.049901000
С	-3.025604000	0.059105000	-0.438713000

С	-1.628024000	2.485990000	1.040957000
С	-0.296571000	2.685453000	-0.955620000
С	-4.220761000	-0.142261000	0.277168000
С	-3.109529000	0.775383000	-1.644945000
С	-1.861848000	3.858723000	1.023562000
Н	-2.062121000	1.859951000	1.824386000
С	-0.549197000	4.052678000	-0.991142000
Н	0.333273000	2.212351000	-1.712209000
С	-5.434283000	0.355606000	-0.185805000
Н	-4.185686000	-0.686677000	1.223826000
С	-4.321249000	1.283106000	-2.105127000
Н	-2.202115000	0.936693000	-2.228270000
С	-1.329531000	4.645043000	0.003230000
Н	-2.471072000	4.316050000	1.806915000
Н	-0.130322000	4.663510000	-1.794781000
С	-5.492984000	1.075660000	-1.379741000
Н	-6.343031000	0.190606000	0.399016000
Н	-4.349844000	1.840214000	-3.045084000
Н	-1.519498000	5.720974000	-0.016498000
Н	-6.445475000	1.470238000	-1.741435000

int10

Lowest frequency = 25.6714 cm⁻¹ Charge = 0, Multiplicity = 1

С	2.936295000	-2.367518000	-0.922121000
С	3.063349000	-3.515553000	-1.672211000
С	2.148395000	-3.824563000	-2.701459000
С	1.095924000	-2.963875000	-2.929503000
С	0.937292000	-1.793949000	-2.162110000

С	-0.216519000	-0.967965000	-2.444375000
0	-1.032109000	-1.133628000	-3.335414000
Н	0.345634000	-3.161653000	-3.698101000
Н	2.263883000	-4.735754000	-3.291488000
Н	3.885120000	-4.203442000	-1.455183000
Н	3.647788000	-2.170797000	-0.119538000
С	-1.489062000	0.990078000	-1.721339000
С	-1.814569000	1.674593000	-2.874467000
С	-2.920019000	2.526366000	-2.812752000
Н	-1.236650000	1.523172000	-3.784393000
С	-3.212229000	1.926082000	-0.503994000
С	-3.619564000	2.659346000	-1.615059000
Н	-3.229392000	3.084709000	-3.698446000
Н	-3.726265000	1.990010000	0.457148000
Н	-4.481347000	3.323992000	-1.537120000
N	-2.167815000	1.099322000	-0.574273000
N	-0.404112000	0.094877000	-1.521485000
С	1.876675000	-1.437654000	-1.145447000
Rh	-1.185249000	-0.349958000	0.529856000
С	-2.309939000	-0.678470000	2.297437000
С	-2.685352000	-1.770147000	1.402981000
С	-1.505827000	-2.491466000	1.131208000
С	-0.413623000	-1.891927000	1.891539000
С	-0.940731000	-0.841680000	2.698560000
С	-3.264883000	0.299315000	2.897183000
С	-4.056838000	-2.015504000	0.871550000
С	-1.335014000	-3.639860000	0.198071000
С	0.960688000	-2.462174000	1.979858000
С	-0.262699000	-0.120463000	3.813879000
Н	-4.127245000	0.479546000	2.239744000

Η	-3.661353000	-0.082435000	3.853572000
Н	-2.778996000	1.264219000	3.102194000
Н	-4.034365000	-2.686282000	0.001845000
Н	-4.711156000	-2.474715000	1.632539000
Н	-4.539455000	-1.080448000	0.547907000
Н	-0.508595000	-3.457139000	-0.507919000
Н	-1.094752000	-4.565808000	0.746339000
Н	-2.242799000	-3.819794000	-0.392931000
Н	1.020704000	-3.184051000	2.812194000
Н	1.237035000	-2.991937000	1.059513000
Н	1.717213000	-1.684291000	2.149820000
Н	-0.441630000	0.964909000	3.781702000
Н	-0.630676000	-0.481444000	4.790865000
Н	0.823043000	-0.280636000	3.794051000
С	0.543061000	0.545502000	-0.505660000
С	1.741899000	-0.226676000	-0.409305000
С	0.681386000	2.046559000	-0.428418000
С	2.818617000	0.294387000	0.447540000
С	1.449213000	2.681419000	-1.411818000
С	0.091261000	2.822999000	0.569802000
С	4.163973000	0.296885000	0.034550000
С	2.524412000	0.866994000	1.697615000
С	1.612089000	4.064020000	-1.404215000
Н	1.931096000	2.072711000	-2.181965000
С	0.260548000	4.205754000	0.587545000
Н	-0.504820000	2.314220000	1.331871000
С	5.164682000	0.827472000	0.842407000
Н	4.420053000	-0.101060000	-0.949790000
С	3.523824000	1.403018000	2.503925000
Н	1.486854000	0.880293000	2.030695000

С	1.017762000	4.830334000	-0.401957000
Н	2.212923000	4.545537000	-2.179592000
Н	-0.199773000	4.799173000	1.381322000
С	4.852943000	1.381596000	2.084747000
Н	6.199615000	0.822291000	0.490606000
Η	3.260456000	1.839523000	3.470993000
Н	1.149969000	5.915002000	-0.389707000
Н	5.639925000	1.800462000	2.716245000

PivOH

Lowest frequency = 43.2569 cm^{-1} Charge = 0, Multiplicity = 1

С	0.963879000	-0.799927000	1.255402000
С	0.571268000	-0.010252000	-0.000006000
Н	0.678922000	-0.259430000	2.171313000
Η	0.481292000	-1.787230000	1.272851000
Η	2.054888000	-0.946234000	1.275514000
С	0.963755000	-0.800406000	-1.255144000
С	1.240103000	1.360029000	-0.000294000
Η	0.678619000	-0.260311000	-2.171238000
Η	2.054773000	-0.946629000	-1.275361000
Η	0.481246000	-1.787755000	-1.272123000
Η	2.334433000	1.243421000	-0.000255000
Η	0.950378000	1.942682000	-0.886303000
Η	0.950342000	1.943067000	0.885448000
С	-0.938687000	0.182024000	0.000076000
0	-1.513260000	1.239142000	-0.000004000
0	-1.601974000	-0.985371000	0.000000000
Н	-2.544924000	-0.760556000	-0.000011000

benzamide

Lowest frequency = 35.6025 cm⁻¹ Charge = 0, Multiplicity = 1

С	3.587899000	-1.522661000	0.249139000
С	4.567125000	-0.573979000	-0.041319000
С	4.202418000	0.750668000	-0.283810000
С	2.863339000	1.123037000	-0.240481000
С	1.872449000	0.173300000	0.030788000
С	0.456563000	0.665776000	0.060783000
0	0.199420000	1.850011000	0.165267000
Н	2.550158000	2.154578000	-0.412852000
Η	4.968298000	1.497575000	-0.505155000
Н	5.619204000	-0.867246000	-0.071840000
Н	3.870301000	-2.557203000	0.456765000
С	-1.885356000	-0.185492000	-0.035317000
С	-2.557341000	1.032098000	0.154197000
С	-3.946012000	0.998996000	0.155303000
Η	-1.986821000	1.948807000	0.286931000
С	-3.841765000	-1.355208000	-0.210041000
С	-4.614453000	-0.210959000	-0.028991000
Η	-4.506553000	1.925954000	0.299901000
Н	-4.319157000	-2.330212000	-0.360506000
Н	-5.704224000	-0.268270000	-0.033981000
N	-2.513654000	-1.347371000	-0.213496000
N	-0.498407000	-0.309248000	-0.053760000
Н	-0.206052000	-1.263615000	-0.227333000
С	2.245894000	-1.151810000	0.284969000
Н	1.499357000	-1.906730000	0.545415000

1,2-diphenylethyne

Lowest frequency = 18.3058 cm⁻¹ Charge = 0, Multiplicity = 1

С	-0.608905000	-0.000014000	0.000006000
С	0.608908000	0.000000000	0.000246000
С	2.037116000	-0.000011000	0.000127000
С	2.751375000	0.856759000	0.856012000
С	2.751213000	-0.856771000	-0.855905000
С	4.142176000	0.853575000	0.852707000
Н	2.199483000	1.523064000	1.521752000
С	4.142012000	-0.853595000	-0.852860000
Н	2.199194000	-1.523060000	-1.521554000
С	4.841845000	-0.000014000	-0.000139000
Н	4.685680000	1.524104000	1.522571000
Н	4.685390000	-1.524119000	-1.522831000
Н	5.934343000	-0.000017000	-0.000243000
С	-2.037117000	0.000016000	0.000009000
С	-2.751280000	0.856816000	-0.855926000
С	-2.751310000	-0.856801000	0.855904000
С	-4.142080000	0.853640000	-0.852772000
Н	-2.199313000	1.523155000	-1.521569000
С	-4.142109000	-0.853617000	0.852708000
Н	-2.199363000	-1.523160000	1.521545000
С	-4.841846000	0.000017000	-0.000039000
Н	-4.685508000	1.524217000	-1.522649000
Н	-4.685563000	-1.524199000	1.522560000
Н	-5.934343000	0.000017000	-0.000057000

8. References

- D.-Q. Dong, S.-H. Hao, H. Zhang and Z.-L. Wang, *Chin. Chem. Lett.*, 2017, 28, 1597–1599.
- [2] E. S. Devi, A. Alanthadka, A. Tamilselvi, S. Nagarajan, V. Sridharana and C. U. Maheswaria, Org. Biomol. Chem., 2016, 14, 8228–8231.
- [3] M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois,
 C.-J. Markworth and P. A. Grieco, *Org. Lett.*, 2002, 4, 3199-3202.
- [4] Q.-L. Yang, Y. Liu, Y.-R. Luo, Z. H. Li, H.-W. Jia, Y. B. Fu, G.-R. Qu and H.-M. Guo, Org. Lett., 2022, 24, 4234–4239.
- [5] F. Friscourt, C. J. Fahrni and G.-J. Boons, J. Am. Chem. Soc., 2012, 134, 18809-18815.
- [6] J. Teske and B. Plietker, Org. Lett., 2018, 20, 2257-2260.
- [7] J. Peng, C. Chen, J. Chen, X. Su, C. Xi and H. Chen, Org. Lett., 2014, 16, 3776– 3779.
- [8] Y. Hu, J. Nan, X. Gong, J. Zhang, J. Yin and Y. Ma, Chem. Commun., 2021, 57, 4930-4933.
- [9] L. H. Heitman, J. P. D. van Veldhoven, A. M. Zweemer, K. Ye, J. Brussee and A. P. IJzerman, *J. Med. Chem.*, 2008, **51**, 4724–4729.
- [10] I. A. P. S. Rajan, M. Subramani, G. Pushparathinam and S. Rajendran, Asian. J. Org. Chem., 2022, 11, e202200378.
- [11] D. Mckerrecher, J. V. Allen, S. S. Bowker, S. Boyd, P. W. R. Caulkett, G. S. Currie,
 C. D. Davies, M. L. Fenwick, H. Gaskin, E. Grange, R. B. Hargreaves, B. R.
 Hayter, R. James, K. M. Johnson, C. Johnstone, C. D. Jones, S. Lackie, J. W.
 Rayner and R. P. Walker, *Bioorg. Med. Chem. Lett.*, 2005, 15, 2103–2106.
- [12] H. Kakuta, X. Zheng, H. Oda, S. Harada, Y. Sugimoto, K. Sasaki and A. Tai, J. Med. Chem., 2008, 51, 2400–2411.
- [13] N. T. Tzvetkov, H.-G. Stammler, S. Hristova, A. G. Atanasov and L. Antonov, *Eur. J. Med. Chem.*, 2019, **162**, 793–809.
- [14] E. Duchamp and S. Hanessian, Org. Lett., 2020, 22, 8487-8491.

- [15] R. H. Mei, H. Wang, S. Warratz, S. A. Macgregor and L. Ackermann, *Chem. Eur. J.*, 2016, 22, 6759–6763.
- [16] H. Q. Zhao, X. Xu, H. Y. Yu, B. H. Li, X. Y. Xu, H. R. Li, L. J. Xu, Q. H. Fan and P. J. Walsh, Org. Lett., 2020, 22, 4228–4234.
- [17] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [18] a) C. Adamo and V. Barone, J. Chem. Phys. 1999, 110, 6158–6169. b) M.
 Ernzerhof, G. E. Scuseria, J. Chem. Phys. 1999, 110, 5029–5036.
- [19] a) Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.* 2011, **32**, 1456–1465; b)
 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.* 2010, **132**, 154104.
- [20] a) F. Weigend, *Phys. Chem. Chem. Phys.* 2006, **8**, 1057–1065; b) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297–3305; c) A. Schaefer, C. Huber and R. Ahlrichs, *J. Chem. Phys.* 1994, **100**, 5829–5835; d) A. Schaefer, H. Horn and R. Ahlrichs, *J. Chem. Phys.* 1992, **97**, 2571–2577.
- [21] a) E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, Se. Spicher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122; b) E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 034112.
- [22] a) J. L. Pascual-ahuir, E. Silla and I. Tuñon, J. Comput. Chem., 1994, 15, 1127-

1138; b) S. Miertuš and J. Tomasi, *Chem. Phys.*, 1982, 65, 239-245; c) S. Miertuš,
E. Scrocco and J. Tomasi, *Chem. Phys.*, 1981, 55, 117-129.

- [23] J. R. Parrish Jr and E. R. Blout, Biopolymers, 1971, 10, 1491-1512.
- [24] K. Fukui, Acc. Chem. Res., 1981, 14, 363-368.

S-89

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 ppm

.

ppm

S-96

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (ppm

ppm

S-101

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

150 140 130 120 ppm

ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (ppm

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 ppm

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

170 160 120 110 <u>9</u>0 <u>5</u>0 0 ppm

<u>9</u>0 70 ppm

ppm

ppm

