Supplementary Information (SI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2025

## **Supporting Information**

# Nickel-Catalyzed Synthesis of Aryl Ketones from Arylsulfonium Salts and Nitriles

Ping Wu, Guan-Sheng Jiao\*, Cheng-Pan Zhang\*
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.

E-mail: cpzhang@whut.edu.cn, zhangchengpan1982@hotmail.com, gsjiao@whut.edu.cn.

ORCID for Cheng-Pan Zhang: 0000-0002-2803-4611.

#### **Table of contents**

| 1. General information.                                               | S2         |
|-----------------------------------------------------------------------|------------|
| 2. Optimization of the reaction conditions for Ni-catalyzed acylation | S2         |
| 3. Procedures for the synthesis of arylsulfonium salts                | S12        |
| 4. General procedures for the Ni-catalyzed acylation of arylsulfonium | salts with |
| nitriles                                                              | S14        |
| 5. The control experiments for mechanistic studies                    | S33        |
| 6. NMR spectra of the products                                        | S39        |

#### 1. General information.

All reactions were carried out under a nitrogen atmosphere. Unless otherwise specified, NMR spectra were recorded in CDCl<sub>3</sub>, CD<sub>3</sub>COCD<sub>3</sub>, or CD<sub>3</sub>CN on a 500 MHz (for <sup>1</sup>H), 471 MHz (for <sup>19</sup>F), and 126 MHz (for <sup>13</sup>C) spectrometer. All chemical shifts were reported in ppm relative to TMS (0 ppm for <sup>1</sup>H NMR) or PhOCF<sub>3</sub> (-58.0 ppm for <sup>19</sup>F NMR) as an internal or external standard. The coupling constants were reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. The HPLC experiments were carried out on a Wufeng LC-100 II instrument (column: SHIMEN Superb II, C18, 5 μm, 4.6 × 250 mm), and the yields of product were determined by using the corresponding pure compound as an external standard. Melting points were measured and uncorrected. MS experiments were performed on a TOF-Q ESI instrument. The dry solvents were purchased from commercial source and used without further purification. Note: The water contents of these dry solvents were determined to be 9 ppm for CH<sub>3</sub>CN, 12 ppm for 1,4-dioxane, and 32 ppm for CD<sub>3</sub>CN by Karl Fischer method. Only the NMR data are given for known compounds and the analytical data are in accordance with those reported in the literature.

#### 2. Optimization of the reaction conditions for Ni-catalyzed acylation.

Table S1. Synthesis of 3aa from 1a and 2a with different metal catalysts.<sup>a</sup>

| Entry | Metal catalyst                      | Ligand | Reductant | Yield (3aa, %) |
|-------|-------------------------------------|--------|-----------|----------------|
| 1     | (DPPF)PdCl <sub>2</sub>             | none   | none      | 0              |
| 2     | (DPPF)PdCl <sub>2</sub>             | none   | Zn        | 0              |
| 3     | (DPPF)PdCl <sub>2</sub>             | DPPE   | Zn        | 0              |
| 4     | (DPPF)PdCl <sub>2</sub>             | DPPE   | none      | 0              |
| 5     | $(PPh_3)_4Pd$                       | none   | none      | 0              |
| 6     | $(PPh_3)_4Pd$                       | none   | Zn        | 0              |
| 7     | (PPh <sub>3</sub> ) <sub>4</sub> Pd | DPPE   | Zn        | 0              |
| 8     | (PPh <sub>3</sub> ) <sub>4</sub> Pd | DPPE   | none      | 0              |

| 9  | $CoBr_2$                              | none | none | 0     |
|----|---------------------------------------|------|------|-------|
| 10 | $CoBr_2$                              | none | Zn   | 0     |
| 11 | $CoBr_2$                              | DPPE | Zn   | trace |
| 12 | $CoBr_2$                              | DPPE | none | 0     |
| 13 | Fe(OTf) <sub>2</sub>                  | none | none | 0     |
| 14 | Fe(OTf) <sub>2</sub>                  | none | Zn   | 0     |
| 15 | Fe(OTf) <sub>2</sub>                  | DPPE | Zn   | 0     |
| 16 | Fe(OTf) <sub>2</sub>                  | DPPE | none | 0     |
| 17 | $FeCl_3$                              | none | none | 0     |
| 18 | FeCl <sub>3</sub>                     | none | Zn   | 0     |
| 19 | FeCl <sub>3</sub>                     | DPPE | Zn   | 0     |
| 20 | $FeCl_3$                              | DPPE | none | 0     |
| 21 | $CuBr_2$                              | none | none | 0     |
| 22 | $CuBr_2$                              | none | Zn   | 0     |
| 23 | $CuBr_2$                              | DPPE | Zn   | 0     |
| 24 | $CuBr_2$                              | DPPE | none | 0     |
| 25 | Cu(MeCN) <sub>4</sub> PF <sub>6</sub> | none | none | 0     |
| 26 | $Cu(MeCN)_4PF_6$                      | none | Zn   | 0     |
| 27 | $Cu(MeCN)_4PF_6$                      | DPPE | Zn   | 0     |
| 28 | Cu(MeCN) <sub>4</sub> PF <sub>6</sub> | DPPE | none | 0     |
| 29 | $[RhCl(COD)]_2$                       | none | none | 0     |
| 30 | $[RhCl(COD)]_2$                       | none | Zn   | 0     |
| 31 | $[RhCl(COD)]_2$                       | DPPE | Zn   | 0     |
| 32 | $[RhCl(COD)]_2$                       | DPPE | none | 0     |
| 33 | Ni(COD) <sub>2</sub>                  | none | none | 0     |
| 34 | Ni(COD) <sub>2</sub>                  | none | Zn   | 0     |
| 35 | Ni(COD)2                              | DPPE | Zn   | 65    |
| 36 | $Ni(COD)_2$                           | DPPE | none | 0     |
| 37 | none                                  | DPPE | Zn   | 0     |

<sup>&</sup>lt;sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (1 mL), metal catalyst (10 mol%), ligand (10 mol%), reductant (1 equiv),  $H_2O$  (10 equiv),  $N_2$ , 70 °C, and 12 h. The yields were determined by HPLC using pure **3aa** ( $\lambda_m = 240$  nm, water / MeOH = 10 / 90 (v/v),  $t_R = 10 / 90$  (v/v),  $t_R = 10 / 90$ 

5.1 min) as an external standard. DPPF = 1'1-(bis(diphenylphosphino)ferrocene), COD = 1,5-cyclooctadiene. DPPE = 1,2-bis(diphenylphosphino)ethane)

Table S2. Synthesis of 3aa from 1a and 2a with different nickel catalysts.<sup>a</sup>

| Entry | [Ni] catalyst                                      | Yield ( <b>3aa</b> , %) |
|-------|----------------------------------------------------|-------------------------|
| 1     | (DME)NiBr <sub>2</sub>                             | 73                      |
| 2     | (diglyme)NiBr2                                     | 85                      |
| 3     | (DPPE)NiBr <sub>2</sub>                            | 55                      |
| 4     | (DPPP)NiCl <sub>2</sub>                            | 47                      |
| 5     | (PCy <sub>3</sub> ) <sub>2</sub> NiCl <sub>2</sub> | 12                      |
| 6     | $(PPh_3)_2NiBr_2$                                  | 24                      |
| 7     | $NiCl_2$                                           | 58                      |
| 8     | $NiBr_2$                                           | 43                      |
| 9     | $NiI_2$                                            | 42                      |
| 10    | $Ni(COD)_2$                                        | 65                      |

<sup>&</sup>lt;sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (1 mL), [Ni] catalyst (10 mol%), DPPE (10 mol%), H<sub>2</sub>O (10 equiv), Zn (1 equiv), N<sub>2</sub>, 70 °C, and 12 h. The yields were determined by HPLC using pure **3aa** ( $\lambda_m = 240$  nm, water / MeOH = 10 / 90 (v/v), t<sub>R</sub> = 5.1 min) as an external standard. DME = 1,2-dimethoxyethane, DPPE = 1,2-bis(diphenylphosphino)ethane), DPPP = 1,3-bis(diphenylphosphino)propane, PCy<sub>3</sub> = tri(cyclohexyl)phosphine

Table S3. Synthesis of 3aa from 1a and 2a with different ligands.<sup>a</sup>

| Entry | Ligand | Yield ( <b>3aa</b> , %) |
|-------|--------|-------------------------|
| 1     | DPPM   | 62                      |

| 2  | DPPE             | 85    |
|----|------------------|-------|
| 3  | DPPP             | 95    |
| 4  | DPPB             | 32    |
| 5  | DPPBZ            | 89    |
| 6  | Dpephos          | trace |
| 7  | BINAP            | 31    |
| 8  | Adbrettphos      | 0     |
| 9  | <i>t</i> Buxphos | 0     |
| 10 | Ruphos           | trace |
| 11 | PPh <sub>3</sub> | 0     |
| 12 | $PCy_3$          | 0     |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (1 mL), (diglyme)NiBr<sub>2</sub> (10 mol%), ligand (10 mol%), H<sub>2</sub>O (10 equiv), Zn (1 equiv), N<sub>2</sub>, 70 °C, and 12 h. The yields were determined by HPLC using pure **3aa** ( $\lambda_m = 240$  nm, water / MeOH = 10 / 90 (v/v), t<sub>R</sub> = 5.1 min) as an external standard.

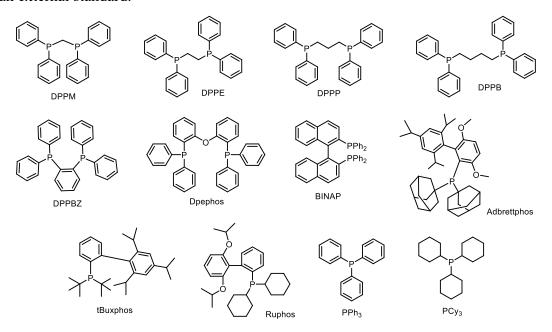



Table S4. Synthesis of 3aa from 1a and 2a with different reductants.<sup>a</sup>

| Entry | Reductant | Yield (3aa, %) |
|-------|-----------|----------------|
| 1     | Mn        | 71             |
| 2     | Mg        | 57             |
| 3     | Fe        | 27             |
| 4     | Cu        | 1              |
| 5     | Zn        | 95             |

<sup>&</sup>lt;sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (1 mL), (diglyme)NiBr<sub>2</sub> (10 mol%), DPPP (10 mol%), H<sub>2</sub>O (10 equiv), reductant (1 equiv), N<sub>2</sub>, 70 °C, and 12 h. The yields were determined by HPLC using pure **3aa** ( $\lambda_m$  = 240 nm, water / MeOH = 10 / 90 (v/v), t<sub>R</sub> = 5.1 min) as an external standard.

Table S5. Synthesis of 3aa from 1a and 2a with different equivalents of H<sub>2</sub>O.<sup>a</sup>

| Entry | X  | Yield ( <b>3aa</b> , %) |
|-------|----|-------------------------|
| 1     | 1  | 74                      |
| 2     | 2  | 77                      |
| 3     | 3  | 86                      |
| 4     | 5  | 96                      |
| 5     | 7  | 95                      |
| 6     | 10 | 95                      |
| 7     | 20 | 55                      |

<sup>&</sup>lt;sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (1 mL), (diglyme)NiBr<sub>2</sub> (10 mol%), DPPP (10 mol%), H<sub>2</sub>O (x equiv), Zn (1 equiv), N<sub>2</sub>, 70 °C, and 12 h. The yields were determined by HPLC using pure **3aa** ( $\lambda_m = 240$  nm, water / MeOH = 10 / 90 (v/v), t<sub>R</sub> = 5.1 min) as an external standard.

Table S6. Synthesis of 3aa from 1a and 2a using different catalyst loadings.<sup>a</sup>

| Entry | x : y     | Yield (3aa, %) |
|-------|-----------|----------------|
| 1     | 5:5       | 32             |
| 2     | 5:10      | 65             |
| 3     | 5:15      | 69             |
| 4     | 5:20      | 71             |
| 5     | 7.5 : 7.5 | 83             |
| 6     | 10:5      | 36             |
| 7     | 10:10     | 96             |
| 8     | 10:12     | 95             |
| 9     | 10:15     | 92             |
| 10    | 10:18     | 93             |
| 11    | 10:20     | 93             |
| 12    | 20:20     | 91             |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (1 mL), (diglyme)NiBr<sub>2</sub> (x mol%), DPPP (y mol%), H<sub>2</sub>O (5 equiv), Zn (1 equiv), N<sub>2</sub>, 70 °C, and 12 h. The yields were determined by HPLC using pure **3aa** ( $\lambda_m = 240$  nm, water / MeOH = 10 / 90 (v/v), t<sub>R</sub> = 5.1 min) as an external standard.

Table S7. Synthesis of 3aa from 1a and 2a at different temperatures.<sup>a</sup>

| Entry | Temperature | Yield (3aa, %) |
|-------|-------------|----------------|
| 1     | 50          | 23             |
| 2     | 60          | 68             |
| 3     | 65          | 85             |
| 4     | 70          | 96             |

| 5 | 75 | 94 |
|---|----|----|
| 6 | 80 | 95 |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (1 mL), (diglyme)NiBr<sub>2</sub> (10 mol%), DPPP (10 mol%), H<sub>2</sub>O (5 equiv), Zn (1 equiv), N<sub>2</sub>, 50-80 °C, and 12 h. The yields were determined by HPLC using pure **3aa** ( $\lambda_m = 240$  nm, water / MeOH = 10 / 90 (v/v), t<sub>R</sub> = 5.1 min) as an external standard.

Table S8. Synthesis of 3aa from 1a and 2a within different reaction times.<sup>a</sup>

| Entry | Time (h) | Yield (3aa, %) |
|-------|----------|----------------|
| 1     | 0.5      | 63             |
| 2     | 1        | 71             |
| 3     | 3        | 92             |
| 4     | 6        | 94             |
| 5     | 12       | 96             |
| 6     | 24       | 95             |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (1 mL), (diglyme)NiBr<sub>2</sub> (10 mol%), DPPP (10 mol%), H<sub>2</sub>O (5 equiv), Zn (1 equiv), N<sub>2</sub>, 70 °C, and 0.5-24 h. The yields were determined by HPLC using pure **3aa** ( $\lambda_m = 240$  nm, water / MeOH = 10 / 90 (v/v), t<sub>R</sub> = 5.1 min) as an external standard.

Table S9. Synthesis of 3aa from 1a and 2a in different solvents.<sup>a</sup>

| Entry | Solvent                  | Yield (3aa, %) |
|-------|--------------------------|----------------|
| 1     | 1,2-dichloroethane (DCE) | 45             |
| 2     | diglyme (DG)             | 70             |
| 3     | 1,4-dioxane              | 90             |

| 4  | <i>N,N</i> -dimethylacetamide (DMAc)         | 8  |
|----|----------------------------------------------|----|
| 5  | dimethyl carbonate (DMC)                     | 82 |
| 6  | 1,2-dimethoxyethane (DME)                    | 62 |
| 7  | <i>N</i> , <i>N</i> -dimethylformamide (DMF) | 31 |
| 8  | dimethyl sulfoxide (DMSO)                    | 6  |
| 9  | ethyl acetate (EA)                           | 77 |
| 10 | tetrahydrofuran (THF)                        | 77 |
| 11 | toluene                                      | 52 |

<sup>&</sup>lt;sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (10 equiv), (diglyme)NiBr<sub>2</sub> (10 mol%), DPPP (10 mol%), H<sub>2</sub>O (5 equiv), Zn (1 equiv), solvent (1 mL), N<sub>2</sub>, 70 °C, and 12 h. The yields were determined by HPLC using pure **3aa** ( $\lambda_m$  = 240 nm, water / MeOH = 10 / 90 (v/v),  $t_R$  = 5.1 min) as an external standard.

**Table S10**. Synthesis of **3aa** from **1a** and **2a** in presence of different equivalents of **2a** in 1,4-dioxane.<sup>a</sup>

| Entry | 2a (x equiv) | Yield (3aa, %) |
|-------|--------------|----------------|
| 1     | 1            | 43             |
| 2     | 2            | 55             |
| 3     | 5            | 90             |
| 4     | 10           | 90             |
| 5     | 20           | 91             |

<sup>&</sup>lt;sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (x equiv), (diglyme)NiBr<sub>2</sub> (10 mol%), DPPP (10 mol%), H<sub>2</sub>O (5 equiv), Zn (1 equiv), 1,4-dioxane (1 mL), N<sub>2</sub>, 70 °C, and 12 h. The yields were determined by HPLC using pure **3aa** ( $\lambda_m = 240$  nm, water / MeOH = 10 / 90 (v/v), t<sub>R</sub> = 5.1 min) as an external standard.

**Table S11**. Synthesis of **3aa** from **1a** and **2a** in presence of different equivalents of zinc powder in 1,4-dioxane.<sup>a</sup>

| Entry | X   | Yield (3aa, %) |
|-------|-----|----------------|
| 1     | 0.5 | 46             |
| 2     | 1   | 90             |
| 3     | 1.5 | 90             |
| 4     | 2   | 91             |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (5 equiv), (diglyme)NiBr<sub>2</sub> (10 mol%), DPPP (10 mol%), H<sub>2</sub>O (5 equiv), Zn (0.5-2 equiv), 1,4-dioxane (1 mL), N<sub>2</sub>, 70 °C, and 12 h. The yields were determined by HPLC using pure **3aa** ( $\lambda_m = 240$  nm, water / MeOH = 10 / 90 (v/v),  $t_R = 5.1$  min) as an external standard.

Table S12. Synthesis of 3aa under different conditions.<sup>a</sup>

| Entry | Variation of the reaction conditions | Yield (3aa, %) |
|-------|--------------------------------------|----------------|
| 1     | none                                 | 90             |
| 2     | no (diglyme)NiBr <sub>2</sub>        | 0              |
| 3     | no DPPP                              | 0              |
| 4     | no additional H <sub>2</sub> O       | 71             |
| 5     | no Zn                                | 0              |

<sup>&</sup>lt;sup>a</sup> Reaction conditions: **1a** (0.1 mmol), **2a** (5 equiv), (diglyme)NiBr<sub>2</sub> (10 mol%), DPPP (10 mol%), H<sub>2</sub>O (5 equiv), Zn (1 equiv), 1,4-dioxane (1 mL), N<sub>2</sub>, 70 °C, and 12 h. The yields were determined by HPLC using pure **3aa** ( $\lambda_m = 240$  nm, water / MeOH = 10 / 90 (v/v), t<sub>R</sub> = 5.1 min) as an external standard.

Table S13. Synthesis of 3aa from different arylsulfonium triflates with 2a.<sup>a</sup>

| Entry | Arylsulfonium triflate | Yield (3aa, %)    |
|-------|------------------------|-------------------|
| 1     | 1a                     | 96                |
| 2     | 1a                     | 90 b              |
| 3     | 4a                     | 49                |
| 4     | 4a                     | 46 <sup>b</sup>   |
| 5     | 4a                     | 64 <sup>b,c</sup> |
| 6     | 4a                     | 51 <sup>d</sup>   |
| 7     | 4a                     | 38 <sup>e</sup>   |
| 8     | 5a                     | 53                |
| 9     | 5a                     | 42 <sup>b</sup>   |
| 10    | 5a                     | 79 <sup>b,c</sup> |
| 11    | 6a                     | 51                |
| 12    | 6a                     | 39 b              |
| 13    | 6a                     | 47 <sup>b,c</sup> |
| 14    | 7a                     | 15                |
| 15    | 7a                     | 6 <sup>b</sup>    |
| 16    | 7a                     | 17 b,c            |
| 17    | 8a                     | 26                |
| 18    | 8a                     | 7 <sup>b</sup>    |
| 19    | 8a                     | 31 b,c            |
| 20    | 8a                     | 27 <sup>d</sup>   |
| 21    | 8a                     | 18 <sup>e</sup>   |

<sup>a</sup>Reaction conditions: arylsulfonium triflate (0.1 mmol), **2a** (1 mL), (diglyme)NiBr<sub>2</sub> (10 mol%), DPPP (10 mol%), H<sub>2</sub>O (5 equiv), Zn (1 equiv), N<sub>2</sub>, 70 °C, and 12 h. The yields were determined by HPLC using pure **3aa** ( $\lambda_m$  = 240 nm, water / MeOH = 10 / 90 (v/v),  $t_R$  = 5.1 min) as an external standard. <sup>b</sup> The reaction was conducted in a mixture of **2a** (5 equiv) and 1,4-dioxane (1 mL) instead of **2a** (1 mL) as the solvent. <sup>c</sup> The reaction was run at 100 °C. <sup>d</sup> The reaction was run for 24 h. <sup>e</sup> The reaction was run for 6 h.

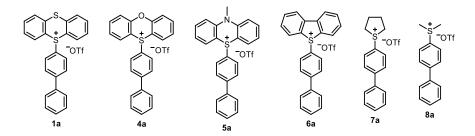



Table S14. Synthesis of deuterated aryl ketone 3ar from 1a.<sup>a</sup>

| Entry | Conditions                                              | Yield (3ar, %) | D (%) |
|-------|---------------------------------------------------------|----------------|-------|
| 1     | CD <sub>3</sub> CN (5 equiv)/D <sub>2</sub> O (5 equiv) | 90             | 99    |
| 2     | CD <sub>3</sub> CN (5 equiv)/H <sub>2</sub> O (5 equiv) | 89             | 91    |
| 3     | CD <sub>3</sub> CN (5 equiv)                            | 72             | 50    |
| 4     | CH <sub>3</sub> CN (5 equiv)/D <sub>2</sub> O (5 equiv) | 87             | 14    |

<sup>a</sup> Reaction conditions: **1a** (0.1 mmol), (diglyme)NiBr<sub>2</sub> (10 mol%), DPPP (10 mol%), CD<sub>3</sub>CN or CH<sub>3</sub>CN (**2r** or **2a**, 5 equiv), D<sub>2</sub>O or H<sub>2</sub>O (5 equiv), Zn (1 equiv), 1,4-dioxane (1 mL), N<sub>2</sub>, 70 °C, and 12 h. Isolated yield. *Note: The contents of moisture residual in dry CD<sub>3</sub>CN and CH<sub>3</sub>CN were 32 ppm and 9 ppm, respectively, and that in dry 1,4-dioxane was 12 ppm, which were measured by Karl-Fischer method. The percentage of <i>D-form was determined by <sup>1</sup>H NMR data*.

### 3. Procedures for the synthesis of arylsulfonium salts.

### 3.1. General procedure for the synthesis of 1a-r and 1t-c'. 1-6

In a nitrogen-filled glovebox, a round-bottom flask equipped with a stirring bar was charged with arene (2.0 mmol), thianthrene 5-oxide (0.464 g, 2.0 mmol), and MeCN (5.0 mL). The flask was capped with rubber stopper, taken out of the glovebox, and cooled to -40 °C. Then, trifluoroacetic anhydride (TFAA, 0.84 mL, 6.0 mmol) and trifluoromethanesulfonic acid (TfOH, 0.27 mL, 3.0 mmol) were added stepwise under N<sub>2</sub>. The reaction mixture was then stirred at -40 °C for 1 h, slowly warmed to room

temperature overnight, diluted with DCM (20 mL), and neutralized by a saturated aqueous NaHCO<sub>3</sub> solution (ca. 20 mL). After separation, the organic layer was washed with an aqueous NaOTf solution (5%,  $2 \times 20$  mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with a mixture of DCM/MeCN (3/1 (v/v)), and was further crystallized from DCM (2 mL)/*tert*-butyl methyl ether (20 mL) to give the pure arylsulfonium triflate.

# 3.2 Procedure for the synthesis of 1s.<sup>7</sup>

In a nitrogen-filled glovebox, a round-bottom flask equipped with a stir bar was charged

with thianthrene (0.648 g, 3.0 mmol), 4-nitrobenzeneboronic acid (0.334 g, 2.0 mmol), and Cu(OTf)<sub>2</sub> (1.446 g, 4.0 mmol). The flask was capped with rubber stopper and taken out of the glovebox. Then, water (72  $\mu$ L, 72.0 mg, 4.0 mmol) and dry MeCN (2 mL) were introduced via a syringe. The reaction mixture was stirred at 100 °C for 3 h, cooled to room temperature, quenched with an aqueous NH<sub>3</sub> solution (30 wt% in H<sub>2</sub>O, 20 mL), and extracted with DCM (3 × 20 mL). The combined organic layers were washed with an aqueous NaBF<sub>4</sub> solution (2 × 20 mL, 10% w/w), dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with a mixture of DCM/MeOH (50:1 to 20:1, v/v), and was further crystallized from DCM (2 mL)/*tert*-butyl methyl ether (20 mL) to afford **1s** (0.442 g, 52%) as a white solid.

# 4. General procedures for the Ni-catalyzed acylation of arylsulfonium salts with nitriles.

**Procedure A**: In a nitrogen-filled glovebox, a 15 mL reaction tube was charged with arylsulfonium salt (1, 0.2 mmol), (diglyme)NiBr<sub>2</sub> (7.1 mg, 0.02 mmol), DPPP (8.2 mg, 0.02 mmol), Zn (13.0 mg, 0.2 mmol), RCN (2, 1.0 mmol), and 1,4-dioxane (2 mL) with stirring. The reaction tube was sealed with a rubber stopper and taken out of the glovebox. Then, water (18  $\mu$ L, 1.0 mmol) was added through a microsyringe. The resulting mixture was heated at 70 °C for 12 h, cooled to room temperature, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with a mixture of petroleum ether/ethyl acetate to give the corresponding aryl ketones.

**Procedure B**: In a nitrogen-filled glovebox, a 15 mL reaction tube was charged with arylsulfonium salt (1, 0.2 mmol), (diglyme)NiBr<sub>2</sub> (7.1 mg, 0.02 mmol), DPPP (8.2 mg,

0.02 mmol), Zn (13.0 mg, 0.2 mmol), and CH<sub>3</sub>CN (2a, 2 mL) with stirring. The reaction tube was sealed with a rubber stopper and taken out of the glovebox. Then, H<sub>2</sub>O (18  $\mu$ L, 1.0 mmol) was added via a microsyringe. The resulting mixture was heated at 70 °C for 12 h, cooled to room temperature, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with a mixture of petroleum ether/ethyl acetate to give the corresponding aryl ketones.

**Procedure C**: In a nitrogen-filled glovebox, a 15 mL reaction tube was charged with arylsulfonium salt (1, 0.2 mmol), (diglyme)NiBr<sub>2</sub> (7.1 mg, 0.02 mmol), DPPP (8.2 mg, 0.02 mmol), Zn (13.0 mg, 0.2 mmol), CD<sub>3</sub>CN (**2r**, 52 μL, 1.0 mmol), and 1,4-dioxane (2 mL) with stirring. The reaction tube was sealed with a rubber stopper, and taken out of the glovebox. Then, D<sub>2</sub>O (18 μL, 1.0 mmol) was added via a microsyringe. The resulting mixture was heated at 70 °C for 12 h, cooled to room temperature, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with a mixture of petroleum ether/ethyl acetate to give the corresponding deuterated aryl ketones.

1-([1,1'-Biphenyl]-4-yl)ethan-1-one (**3aa**)<sup>8</sup>

White solid (35.3 mg, 89% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 7.4 Hz, 2H), 7.48 (t, J = 7.4 Hz, 2H), 7.41 (t, J = 7.7 Hz, 1H), 2.64 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.7, 145.8, 139.9, 135.9, 129.0, 128.9, 128.2, 127.3, 127.2, 26.6.

1-(4'-Fluoro-[1,1'-biphenyl]-4-yl)ethan-1-one (**3ba**)<sup>8</sup>

White solid (39.4 mg, 92% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (d, J = 8.2 Hz, 2H), 7.63 (d, J = 8.2 Hz, 2H), 7.58 (m, 2H), 7.15 (t, J = 8.5 Hz, 2H), 2.63 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -114.02 (m, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.5, 163.0 (d, J = 248.5 Hz), 144.7, 136.0 (d, J = 3.6 Hz), 135.9, 129.1, 128.9, 127.2, 115.9 (d, J = 21.4 Hz), 26.6.

1-(4'-Chloro-[1,1'-biphenyl]-4-yl)ethan-1-one (**3ca**)<sup>8</sup>

White solid (41.8 mg, 91% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 2.63 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.5, 144.4, 138.3, 136.2, 134.5, 129.2, 129.0, 128.5, 127.1, 26.6.

1-(4'-Bromo-[1,1'-biphenyl]-4-yl)ethan-1-one (**3da**)<sup>8</sup>

White solid (50.4 mg, 92% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 2.63 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.5, 144.5, 138.8, 136.2, 132.1, 129.0, 128.8, 127.0, 122.7, 26.6.

1-(4'-Iodo-[1,1'-biphenyl]-4-yl)ethan-1-one (**3ea**)

White solid (21.3 mg, 33% yield from **Procedure A** or 33.5 mg, 52% yield from **Procedure B**), m.p.: 163.2-163.7 °C. A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, J = 8.1 Hz, 2H), 7.80 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 2.63 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.5, 144.6, 139.4, 138.1, 136.3, 129.0, 127.0, 94.3, 26.6. IR (KBr): 2923, 2853, 1699, 1603, 1583, 1477, 1410, 1386, 1357, 1290, 1267, 1214, 1070, 1000, 963, 810, 603 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for [C<sub>14</sub>H<sub>12</sub>IO]<sup>+</sup> ([M + H]<sup>+</sup>): 322.9927; found: 322.9929.

4'-Acetyl-[1,1'-biphenyl]-4-yl trifluoromethanesulfonate (3fa)

White solid (67.4 mg, 98% yield from **Procedure A**). m.p.: 54.6-55.3 °C. A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, J = 8.1 Hz, 2H), 7.69-7.64 (m, 4H), 7.38 (d, J = 8.8 Hz, 2H), 2.64 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -72.77 (s, 3F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.4, 149.5, 143.6, 140.4, 136.5, 129.1, 129.0, 127.3, 121.9, 118.8 (q, J = 323.5 Hz), 26.6. IR (KBr): 3007, 2924, 1690, 1605, 1518, 1493, 1424, 1395, 1357, 1265, 1250, 1203, 1177, 1138, 1021, 1006, 963, 890, 826, 792, 733, 608 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for [C<sub>15</sub>H<sub>12</sub>F<sub>3</sub>O<sub>4</sub>S]<sup>+</sup> ([M + H]<sup>+</sup>): 345.0403; found: 345.0406.

# Acetophenone (3ga)<sup>9</sup>

Colorless oil (23.1 mg, 96% yield from **Procedure A** or 22.4 mg, 93% yield from **Procedure A** with [Ph<sub>3</sub>S][OTf] as the aryl source). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.8 Hz, 2H), 2.59 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  198.1, 137.2, 133.1, 128.6, 128.3, 26.6.

1-(4-Methoxyphenyl)ethan-1-one (3ha)<sup>9</sup>

White solid (29.1 mg, 97% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 10/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, J = 8.9 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 3.85 (s, 3H), 2.54 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.7, 163.5, 130.5, 130.4, 113.7, 55.4, 26.3.

1-(4-Tosylphenyl)ethan-1-one (**3ia**)<sup>10</sup>

White solid (50.4 mg, 92% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 10/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, J = 8.5 Hz, 2H), 7.71 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.08 (d, J = 8.5 Hz, 2H), 2.57 (s, 3H), 2.45 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.6, 153.0, 145.8, 135.8, 132.3, 130.0, 129.9, 128.5, 122.5, 26.6, 21.7.

N-(4-Acetylphenyl)-2,2,2-trifluoroacetamide (3ja)<sup>11</sup>

White solid (32.8 mg, 71% yield from **Procedure A** or 37.9 mg, 82% yield from **Procedure B**). A mixture of petroleum ether/ethyl acetate = 2/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.31 (s, 1H), 8.00 (d, J = 8.8 Hz, 2H), 7.72 (d, J = 8.8 Hz, 2H), 2.61 (s, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -75.67 (s, 3F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.8, 155.0 (q, J = 37.9 Hz), 139.4, 134.7, 129.8, 120.0, 115.4 (q, J = 288.9 Hz), 26.4.

N-(4-Acetylphenyl)-N-methylbenzamide (3ka)

White solid (53.1 mg, 85% yield from **Procedure A**). m.p.: 35.6-37.1 °C. A mixture of petroleum ether/ethyl acetate = 5/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 (d, J = 8.6 Hz, 2H), 7.31-7.28 (m, 3H), 7.19 (t, J = 7.7 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 3.52 (s, 3H), 2.53 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.9, 170.7, 149.2, 135.5, 134.6, 130.2, 129.3, 128.8, 128.0, 126.4, 38.1, 26.5. IR (KBr): 3058, 2921, 1681, 1645, 1598, 1573, 1508, 1422, 1358, 1266, 1177, 1105, 1014, 957, 844, 791, 720, 698, 602 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for  $[C_{16}H_{16}NO_2]^+$  ( $[M+H]^+$ ): 254.1176; found: 254.1182.

## 2-(4-Acetylphenyl)isoindoline-1,3-dione (3la)<sup>12</sup>

White solid (40.3 mg, 76% yield from **Procedure A** or 49.3 mg, 93% yield from **Procedure B**). A mixture of petroleum ether/ethyl acetate = 2/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, J = 8.0 Hz, 2H), 7.98 (m, 2H), 7.82 (m, 2H), 7.63 (d, J = 8.0 Hz, 2H), 2.64 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.0, 166.7, 136.1, 136.0, 134.7, 131.6, 129.1, 126.1, 123.9, 26.6.

# 1-(4-(4-Bromophenoxy)phenyl)ethan-1-one (3ma)<sup>13</sup>

White solid (52.1 mg, 90% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, J = 8.3 Hz, 2H), 7.49 (d, J = 8.3 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.4 Hz, 2H), 2.57 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.6, 161.3, 154.8, 133.1, 132.4, 130.6, 121.7, 117.5, 117.2, 26.4.

# 4-(4-Acetylphenoxy)benzonitrile (3na)<sup>13</sup>

White solid (38.8 mg, 82% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500

MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (d, J = 8.7 Hz, 2H), 7.65 (d, J = 8.7 Hz, 2H), 7.10-7.08 (m, 4H), 2.60 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.5, 160.1, 159.4, 134.4, 133.7, 130.8, 119.3, 119.2, 118.5, 107.4, 26.5.

1-(2-Methoxy-5-(prop-1-en-1-yl)phenyl)ethan-1-one (30a)<sup>14</sup>

Colorless oil (27.7 mg, 73% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 10/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 (d, J = 2.5 Hz, 0.91H), 7.69 (d, J = 2.5 Hz, 0.09H), 7.45-7.42 (m, 1H), 6.96 (d, J = 8.5 Hz, 0.09H), 6.92 (d, J = 8.5 Hz, 0.91H), 6.38-6.34 (m, 1H), 6.17 (m, 0.91H), 5.76 (m, 0.09H), 3.94 (s, 0.27H), 3.92 (s, 2.73H), 2.64 (s, 0.27H), 2.63 (s, 2.73H), 1.91-1.87 (m, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.8, 157.8, 130.8, 130.7, 129.5, 128.2, 127.6, 124.9, 111.8, 55.6, 31.7, 18.3.

### 3-Acetyl-4-methoxybenzaldehyde (3pa)

White solid (26.3 mg, 74% yield from **Procedure A** or 31.4 mg, 88% yield from **Procedure B**), m.p.: 108.1-108.8 °C. A mixture of petroleum ether/ethyl acetate = 10/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.92 (s, 1H), 8.23 (s, 1H), 8.03 (dd, J = 8.2 Hz, 2.1 Hz, 1H), 7.11 (d, J = 8.3 Hz, 1H), 4.02 (s, 3H), 2.63 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  198.4, 190.2, 163.2, 133.9, 133.6, 129.7, 128.6, 112.2, 56.1, 31.6. IR (KBr): 3082, 2995, 2955, 2929, 2841, 2739, 1694, 1668, 1597, 1577, 1492, 1428, 1410, 1359, 1281, 1255, 1228, 1185, 1153, 1017, 989, 920, 823, 771, 647 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for [C<sub>10</sub>H<sub>11</sub>O<sub>3</sub>]<sup>+</sup> ([M+H]<sup>+</sup>): 179.0703; found: 179.0706.

1-(3,4-Dimethylphenyl)ethan-1-one (3qa)<sup>15</sup>

Colorless oil (26.6 mg, 90% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 10/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 (s, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.21 (d, J = 8.1 Hz, 1H), 2.57 (s, 3H), 2.32 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  198.1, 142.5, 136.8, 135.2, 129.8, 129.4, 126.1, 26.5, 19.9, 19.7.

Methyl 5-acetyl-2-methoxybenzoate (3ra)<sup>16</sup>

White solid (36.2 mg, 87% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 10/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.39 (d, J = 2.3 Hz, 1H), 8.10 (dd, J = 8.8 Hz, 2.3 Hz, 1H), 7.02 (d, J = 8.8 Hz, 1H), 3.97 (s, 3H), 3.91 (s, 3H), 2.57 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.0, 165.9, 162.6, 133.8, 132.6, 129.7, 119.9, 111.8, 56.3, 52.2, 26.3.

1-(2,3-Dihydrobenzofuran-5-yl)ethan-1-one (**3ta**)<sup>12</sup>

White solid (29.8 mg, 92% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (s, 1H), 7.79 (d, J = 8.4 Hz, 1H), 6.80 (d, J = 8.4 Hz, 1H), 4.65 (t, J = 8.8 Hz, 2H), 3.24 (t, J = 8.8 Hz, 2H), 2.54 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.6, 164.4, 130.8, 130.4, 127.6, 125.5, 108.9, 72.1, 29.0, 26.3.

1-(Benzo[d][1,3]dioxol-5-yl)ethan-1-one (**3ua**) $^{12}$ 

White solid (28.2 mg, 86% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (d, J = 8.9 Hz, 1H), 7.42 (s, 1H), 6.83 (d, J = 8.9 Hz, 1H), 6.03 (s,

2H), 2.53 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 196.1, 151.7, 148.1, 132.2, 124.7, 107.9, 107.8, 101.8, 26.4.

1-(5-Phenylthiophen-2-yl)ethan-1-one (3va)<sup>12</sup>

White solid (20.6 mg, 51% yield from **Procedure A** or 31.1 mg, 77% yield from **Procedure B**). A mixture of petroleum ether/ethyl acetate = 10/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.66-7.64 (m, 3H), 7.44-7.35 (m, 3H), 7.32 (d, J = 4.2 Hz, 1H), 2.56 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  190.5, 152.8, 143.1, 133.4, 133.3, 129.1, 129.0, 126.3, 123.9, 26.6.

1-(4-(4-(2-(Pyridin-2-yloxy)propoxy)phenoxy)phenyl)ethan-1-one (3wa)

White solid (65.3 mg, 90% yield from **Procedure A**), m.p.: 31.2-31.7 °C. A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. HNMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (d, J= 7.1 Hz, 1H), 7.91 (d, J= 8.2 Hz, 2H), 7.57 (t, J= 8.2 Hz, 1H), 7.01-6.92 (m, 6H), 6.86 (t, J= 6.6 Hz, 1H), 6.75 (d, J= 8.2 Hz, 1H), 5.63-5.56 (m, 1H), 4.20 (dd, J= 9.8 Hz, 5.4 Hz, 1H), 4.09 (dd, J= 9.8 Hz, 4.8 Hz, 1H), 2.55 (s, 3H), 1.49 (d, J= 6.5 Hz, 3H). HNMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.7, 163.1, 162.9, 156.0, 148.6, 146.7, 138.8, 131.4, 130.6, 121.6, 116.8, 116.3, 116.0, 111.7, 71.0, 69.2, 26.4, 17.0. IR (KBr): 3057, 2978, 2925, 2872, 1678, 1596, 1570, 1498, 1471, 1432, 1357, 1270, 1250, 1228, 1197, 1165, 1000, 957, 834, 779 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for [C<sub>22</sub>H<sub>22</sub>NO<sub>4</sub>]<sup>+</sup> ([M + H]<sup>+</sup>): 364.1543; found: 364.1552.

5-Acetyl-1-(2,6-dichlorophenyl)indolin-2-one (3xa)

Yellow solid (47.8 mg, 75% yield from Procedure A or 55.5 mg, 87% yield from

**Procedure B**), m.p.: 135.0-136.1 °C. A mixture of petroleum ether/ethyl acetate = 2/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (s, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.52 (d, J = 8.6 Hz, 2H), 7.41 (t, J = 8.6 Hz, 1H), 6.45 (d, J = 8.2 Hz, 1H), 3.82 (s, 2H), 2.58 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.6, 173.4, 147.4, 135.4, 132.8, 131.1, 129.9, 129.7, 129.1, 125.0, 124.4, 108.7, 35.3, 26.4. IR (KBr): 3058, 2961, 2923, 2852, 1737, 1669, 1612, 1567, 1497, 1464, 1441, 1366, 1324, 1264, 1188, 1156, 1107, 1068, 1019, 962, 948, 821, 789, 730, 665 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for  $[C_{16}H_{12}Cl_2NO_2]^+$  ( $[M + H]^+$ ): 320.0240; found: 320.0240.

1-([1,1'-Biphenyl]-4-yl)pentan-1-one (**3ab**)<sup>17</sup>

White solid (31.9 mg, 67% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 7.8 Hz, 2H), 7.47 (t, J = 7.8 Hz, 2H), 7.40 (t, J = 7.5 Hz, 1H), 3.00 (t, J = 7.2 Hz, 2H), 1.75 (m, 2H), 1.44 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  200.2, 145.5, 139.9, 135.8, 128.9, 128.6, 128.2, 127.3, 127.2, 38.4, 26.6, 22.5, 13.9.

6-([1,1'-Biphenyl]-4-yl)-6-oxohexanenitrile (**3ac**)

White solid (37.3 mg, 71% yield from **Procedure A**), m.p.: 125.6-125.9 °C. A mixture of petroleum ether/ethyl acetate = 40/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, J = 7.9 Hz, 2H), 7.59 (d, J = 7.9 Hz, 2H), 7.53 (d, J = 7.2 Hz, 2H), 7.38 (t, J = 7.2 Hz, 2H), 7.31 (t, J = 7.3 Hz, 1H), 2.96 (t, J = 6.8 Hz, 2H), 2.31 (t, J = 6.8 Hz, 2H), 1.83 (m, 2H), 1.73 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  198.7, 145.9, 139.8, 135.5, 129.0, 128.6, 128.3, 127.3, 127.2, 119.5, 37.4, 25.1, 23.2, 17.2. IR (KBr): 3066, 3038, 2954, 2931, 2872, 2245, 1675, 1602, 1440, 1428, 1355, 1288, 1257, 1194, 1076, 1006, 980, 850, 749, 697 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for [C<sub>18</sub>H<sub>17</sub>NNaO]<sup>+</sup> ([M + Na]<sup>+</sup>): 286.1202; found: 286.1206.

1-([1,1'-Biphenyl]-4-yl)-2-(4-methoxyphenyl)ethan-1-one (3ad)

White solid (45.9 mg, 76% yield from **Procedure A**), m.p.: 163.2-163.5 °C. A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (d, J = 7.5 Hz, 2H), 7.65 (d, J = 7.5 Hz, 2H), 7.59 (d, J = 7.1 Hz, 2H), 7.45 (t, J = 7.3 Hz, 2H), 7.38 (t, J = 7.3 Hz, 1H), 7.19 (d, J = 8.9 Hz, 2H), 6.86 (d, J = 8.9 Hz, 2H), 4.24 (s, 2H), 3.77 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.6, 158.6, 145.8, 139.8, 135.3, 130.5, 129.3, 129.0, 128.3, 127.3, 126.6, 114.2, 55.3, 44.7. IR (KBr): 3055, 3000, 2948, 2904, 2832, 1686, 1613, 1515, 1450, 1401, 1338, 1305, 1246, 1226, 1202, 1180, 1107, 1034, 998, 840, 798, 764, 721, 692 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for  $[C_{21}H_{19}O_2]^+$  ( $[M+H]^+$ ): 303.1380; found: 303.1388.

1-([1,1'-Biphenyl]-4-yl)-2-(4-fluorophenyl)ethan-1-one (**3ae**)

White solid (37.7 mg, 65% yield from **Procedure A**), m.p.: 188.2-188.5 °C. A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (d, J = 7.3 Hz, 2H), 7.72 (d, J = 7.3 Hz, 2H), 7.65 (d, J = 7.3 Hz, 2H), 7.51 (t, J = 7.3 Hz, 2H), 7.44 (t, J = 8.1 Hz, 1H), 7.29 (m, 2H), 7.07 (t, J = 8.1 Hz, 2H), 4.33 (s, 2H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -115.94 (m, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.0, 161.8 (d, J = 247.7 Hz), 146.0, 139.8, 135.1, 131.1 (d, J = 8.8 Hz), 130.2 (d, J = 3.5 Hz), 129.2, 129.0, 128.3, 127.4, 127.3, 115.6 (d, J = 22.1 Hz), 44.6. IR (KBr): 3062, 2923, 2905, 2862, 1676, 1600, 1513, 1450, 1406, 1330, 1225, 1199, 1156, 1092, 991, 866, 837, 797, 763, 689 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for  $[C_{20}H_{16}FO]^+$  ( $[M+H]^+$ ): 291.1180; found: 291.1188.

1-([1,1'-Biphenyl]-4-yl)-3-phenylpropan-1-one (**3af**)<sup>18</sup>

White solid (40.6 mg, 71% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 7.7 Hz, 2H), 7.68 (d, J = 7.7 Hz, 2H), 7.63 (d, J = 7.4 Hz, 2H), 7.47 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.4 Hz, 1H), 7.33-7.26 (m, 4H), 7.22 (t, J = 7.0 Hz, 1H), 3.34 (t, J = 8.2 Hz, 2H), 3.31 (t, J = 8.2 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  198.8, 145.8, 141.3, 139.9, 135.7, 128.9, 128.6, 128.5, 128.4, 128.2, 127.3, 126.1, 40.5, 30.2.

1-([1,1'-Biphenyl]-4-yl)-4-phenylbutan-1-one (**3ag**)

White solid (46.8 mg, 78% yield from **Procedure A**), m.p.: 121.9-122.5 °C. A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (d, J = 7.3 Hz, 2H), 7.67 (d, J = 7.3 Hz, 2H), 7.62 (d, J = 7.5 Hz, 2H), 7.47 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 1H), 7.31 (t, J = 7.3 Hz, 2H), 7.24-7.20 (m, 3H), 3.02 (t, J = 7.6 Hz, 2H), 2.75 (t, J = 7.6 Hz, 2H), 2.12 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.7, 145.6, 141.7, 139.9, 135.8, 128.7, 128.6, 128.5, 128.4, 128.2, 127.3, 127.2, 125.9, 37.7, 35.2, 25.8. IR (KBr): 3058, 3027, 2933, 1678, 1603, 1485, 1451, 1402, 1354, 1258, 1200, 1183, 1143, 1115, 1064, 1026, 1005, 983, 903, 862, 824, 749, 686, cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for [C<sub>22</sub>H<sub>21</sub>O]<sup>+</sup> ([M + H]<sup>+</sup>): 301.1587; found: 301.1581.

1-([1,1'-Biphenyl]-4-yl)-2-methylpropan-1-one (**3ah**)<sup>19</sup>

White solid (36.3 mg, 81% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 7.1 Hz,

2H), 7.48 (t, J = 7.4 Hz, 2H), 7.40 (t, J = 7.1 Hz, 1H), 3.60 (m, 1H), 1.26 (d, J = 6.9 Hz, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  204.1, 145.5, 140.0, 134.9, 129.0, 128.9, 128.2, 127.3, 35.4, 19.2.

## [1,1'-Biphenyl]-4-yl(cyclopropyl)methanone (3ai)<sup>20</sup>

White solid (33.7 mg, 76% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 7.3 Hz, 2H), 7.48 (t, J = 7.3 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 2.72 (m, 1H), 1.28 (m, 2H), 1.06 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  200.1, 145.4, 140.0, 136.7, 128.9, 128.6, 128.1, 127.3, 127.2, 17.2, 11.6.

### [1,1'-Biphenyl]-4-yl(cyclobutyl)methanone (3aj)

White solid (34.9 mg, 74% yield from **Procedure A**), m.p.: 87.9-88.2 °C. A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, J = 7.8 Hz, 2H), 7.67 (d, J = 7.8 Hz, 2H), 7.62 (d, J = 7.7 Hz, 2H), 7.47 (t, J = 7.4 Hz, 2H), 7.40 (t, J = 7.4 Hz, 1H), 4.05 (m, 1H), 2.47 (m, 2H), 2.33 (m, 2H), 2.15 (m, 1H), 1.95 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  200.6, 145.5, 140.0, 134.4, 129.0, 128.9, 128.1, 127.3, 127.2, 42.3, 25.1, 18.2. IR (KBr): 3057, 3031, 2981, 2938, 2857, 1673, 1602, 1485, 1447, 1404, 1347, 1249, 1227, 1190, 1114, 1077, 1006, 968, 853, 741, 697 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for [C<sub>17</sub>H<sub>17</sub>O]<sup>+</sup> ([M + H]<sup>+</sup>): 237.1274; found: 237.1282.

#### [1,1'-Biphenyl]-4-yl(cyclopentyl)methanone (3ak)

White solid (41.5 mg, 83% yield from **Procedure A**), m.p.: 63.5-63.9 °C. A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 7.5 Hz, 2H), 7.47 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.9 Hz, 1H), 3.76 (m, 1H), 1.96 (m, 4H), 1.80-1.67 (m, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  202.3, 145.4, 140.0, 135.7, 129.1, 128.9, 128.1, 127.3, 127.2, 46.5, 30.1, 26.4. IR (KBr): 3063, 3032, 2952, 2866, 1668, 1603, 1488, 1447, 1405, 1356, 1228, 1005, 973, 852, 743, 696 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for  $[C_{18}H_{19}O]^+$  ( $[M + H]^+$ ): 251.1430; found: 251.1436.

1-([1,1'-Biphenyl]-4-yl)-2-methyl-2-phenylpropan-1-one. (3al)

White solid (39.6 mg, 66% yield from **Procedure A**), m.p.: 125.4-125.8 °C. A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 7.3 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 7.45 (t, J = 7.7 Hz, 2H), 7.42-7.31 (m, 5H), 7.32 (t, J = 7.4 Hz, 1H), 1.69 (s, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  203.1, 145.5, 144.3, 139.9, 134.8, 130.4, 129.1, 128.8, 128.0, 127.1, 126.8, 126.6, 125.8, 51.5, 27.9. IR (KBr): 3021, 2988, 2976, 2934, 2852, 1670, 1600, 1493, 1447, 1405, 1385, 1360, 1251, 1162, 973, 899, 851, 743, 702 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for [C<sub>22</sub>H<sub>20</sub>NaO]<sup>+</sup> ([M + Na]<sup>+</sup>): 323.1406; found: 323.1404.

### [1,1'-Biphenyl]-4-yl(2-fluorophenyl)methanone (3am)

White solid (43.6 mg, 79% yield from **Procedure A**), m.p.: 80.8-81.2 °C. A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 7.6 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.54 (t, J = 7.6 Hz, 1H), 7.50 (m, 1H), 7.44 (t, J = 8.1 Hz, 2H), 7.37 (t, J = 7.5 Hz, 1H), 7.24 (m, 1H), 7.15 (t, J = 8.8 Hz, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -110.9 (m, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  193.0, 160.1 (d, J = 252.4 Hz), 146.2,

139.9, 136.1, 133.0 (d, J = 8.8 Hz), 130.7 (d, J = 3.1 Hz), 130.5, 129.0, 128.3, 127.4, 127.3, 127.2, 124.3 (d, J = 3.6 Hz), 116.3 (d, J = 22.3 Hz). IR (KBr): 3080, 3030, 2922, 2849, 1657, 1613, 1604, 1484, 1450, 1400, 1309, 1291, 1221, 1097, 933, 854, 750, 692 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for  $[C_{19}H_{14}FO]^+$  ( $[M + H]^+$ ): 277.1023; found: 277.1019.

# [1,1'-Biphenyl]-4-yl(3-chlorophenyl)methanone (3an)

White solid (39.7 mg, 68% yield from **Procedure A**), m.p.: 115.2-116.1 °C. A mixture of petroleum ether/ethyl acetate = 40/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, J = 8.0 Hz, 2H), 7.72 (s, 1H), 7.63-7.59 (m, 3H), 7.55 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 7.6 Hz, 1H), 7.38 (t, J = 7.3 Hz, 2H), 7.36-7.30 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  194.8, 145.7, 139.8, 139.5, 135.6, 134.6, 132.3, 130.7, 129.8, 129.7, 129.1, 128.3, 128.1, 127.3, 127.1. IR (KBr): 3065, 3037, 1643, 1603, 1567, 1465, 1447, 1401, 1317, 1291, 1267, 1153, 1080, 969, 907, 851, 775, 738 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for [C<sub>19</sub>H<sub>14</sub>ClO]<sup>+</sup> ([M + H]<sup>+</sup>): 293.0728; found: 293.0733.

# [1,1'-Biphenyl]-4-yl(phenyl)methanone (3ao)<sup>21</sup>

White solid (31.8 mg, 61% yield from **Procedure A**). A mixture of petroleum ether/ethyl acetate = 40/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, J = 8.3 Hz, 2H), 7.74 (d, J = 7.6 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 7.7 Hz, 2H), 7.50 (t, J = 7.4 Hz, 1H), 7.41-7.36 (m, 4H), 7.31 (t, J = 7.3 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.3, 145.3, 140.0, 137.8, 136.3, 132.4, 130.7, 130.0, 128.9, 128.3, 128.2, 127.3, 126.9.

# [1,1'-Biphenyl]-4-yl(p-tolyl)methanone ( $\mathbf{3ap}$ ) $^{21}$

White solid (39.7 mg, 73% yield from Procedure A). A mixture of petroleum

ether/ethyl acetate = 40/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.87 (d, J = 7.4 Hz, 2H), 7.76 (d, J = 7.4 Hz, 2H), 7.69 (d, J = 7.5 Hz, 2H), 7.65 (d, J = 7.5 Hz, 2H), 7.48 (t, J = 7.2 Hz, 2H), 7.40 (t, J = 7.5 Hz, 1H), 7.30 (d, J = 7.5 Hz, 2H), 2.45 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.1, 145.0, 143.2, 140.1, 136.7, 136.1, 130.6, 130.3, 129.0, 128.9, 128.1, 127.3, 126.9, 21.7.

#### [1,1'-Biphenyl]-4-yl(4-(trifluoromethyl)phenyl)methanone (3aq)

White solid (50.2 mg, 77% yield from **Procedure A**), m.p.: 192.1-192.5 °C. A mixture of petroleum ether/ethyl acetate = 40/1 (v/v) as eluents for column chromatography. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.94-7.89 (m, 4H), 7.78 (d, J = 8.2 Hz, 2H), 7.73 (d, J = 7.6 Hz, 2H), 7.66 (d, J = 7.6 Hz, 2H), 7.50 (t, J = 7.3 Hz, 2H), 7.43 (t, J = 7.2 Hz, 1H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  -62.9 (s, 3F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  195.2, 146.0, 141.0, 139.8, 135.4, 133.7 (q, J = 31.6 Hz), 130.8, 130.1, 129.1, 128.4, 127.4, 127.2, 125.4 (q, J = 3.6 Hz), 123.7 (q, J = 272.4 Hz). IR (KBr): 3062, 2923, 2851, 1644, 1602, 1485, 1408, 1313, 1292, 1273, 1175, 1125, 1109, 1069, 1017, 934, 863, 844, 759, 730, 690 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for [C<sub>20</sub>H<sub>14</sub>F<sub>3</sub>O]<sup>+</sup> ([M + H]<sup>+</sup>): 327.0991; found: 327.0997.

1-([1,1'-Biphenyl]-4-yl)ethan-1-one-2,2,2- $d_3$  (3ar)<sup>22</sup>

White solid (35.8 mg, 90% yield from **Procedure C**, 99% D-form determined by  ${}^{1}$ H NMR). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography.  ${}^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 8.1 Hz, 2H), 7.63 (d, J = 7.5 Hz, 2H), 7.48 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 7.3 Hz, 1H), 2.60 (m, 0.02H).  ${}^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.8, 145.8, 139.9, 135.9, 129.0, 128.9, 128.2, 127.3, 127.2, 25.8 (m).

1-(4-(4-(2-(Pyridin-2-yloxy)propoxy)phenoxy)phenyl)ethan-1-one-2,2,2-d3 (**3wr**)

White solid (72.2 mg, 87% yield from **Procedure C**, 99% D-form determined by  ${}^{1}\text{H}$  NMR), m.p.: 31.2-31.7 °C. A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography.  ${}^{1}\text{H}$  NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (d, J = 4.0 Hz, 1H), 7.91 (d, J = 8.6 Hz, 2H), 7.57 (t, J = 7.3 Hz, 1H), 7.00-6.96 (m, 4H), 6.92 (d, J = 8.4 Hz, 2H), 6.86 (t, J = 6.0 Hz, 1H), 6.74 (d, J = 8.3 Hz, 1H), 5.60 (m, 1H), 4.21 (dd, J = 9.7 Hz, 5.2 Hz, 1H), 4.09 (dd, J = 9.7 Hz, 4.6 Hz, 1H), 2.51 (m, 0.04H), 1.49 (d, J = 6.5 Hz, 3H).  ${}^{13}\text{C}$  NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.8, 163.2, 162.9, 156.1, 148.7, 146.8, 138.7, 131.5, 130.5, 121.6, 116.8, 116.4, 116.1, 111.7, 71.1, 69.2, 25.6 (m), 17.0. IR (KBr): 3056, 2962, 2922, 2849, 1674, 1596, 1498, 1471, 1432, 1272, 1228, 1198, 1165, 1081, 1041, 957, 826, 780 cm ${}^{-1}$ . HRMS-ESI (m/z) calcd. for [C<sub>22</sub>H<sub>19</sub>D<sub>3</sub>NO<sub>4</sub>] ${}^{+}$  ([M + H] ${}^{+}$ ): 367.1732; found: 367.1741.

5-(Acetyl-*d*<sub>3</sub>)-1-(2,6-dichlorophenyl)indolin-2-one (**3xr**)

$$\begin{array}{c|c} O & & \\ \hline \\ CI & & \\ \hline \\ CI & & \\ \end{array}$$

Yellow solid (49.6 mg, 77% yield from **Procedure C**, 99% D-form determined by  ${}^{1}\text{H}$  NMR), m.p.: 135.2-136.4 °C. A mixture of petroleum ether/ethyl acetate = 2/1 (v/v) as eluents for column chromatography.  ${}^{1}\text{H}$  NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (s, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.4 Hz, 2H), 7.44 (t, J = 8.4 Hz, 1H), 6.48 (d, J = 8.1 Hz, 1H), 3.85 (s, 2H), 2.57 (m, 0.04H).  ${}^{13}\text{C}$  NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.7, 173.4, 147.5, 135.4, 132.8, 131.1, 129.9, 129.7, 129.1, 125.0, 124.5, 108.7, 35.4, 25.7 (m). IR (KBr): 3080, 2913, 1733, 1676, 1666, 1613, 1496, 1465, 1439, 1361, 1327, 1295, 1265, 1190, 1156, 1104, 1091, 815, 790, 665 cm $^{-1}$ . HRMS-ESI (m/z) calcd. for  $[C_{16}H_{9}D_{3}Cl_{2}NO_{2}]^{+}$  ([M + H] $^{+}$ ): 323.0428; found: 323.0432.

Methyl 4-(4'-(acetyl-  $d_3$ )-[1,1'-biphenyl]-4-yl)-4-oxobutanoate (**3yr**)

Yellow solid (55.1 mg, 88% yield from **Procedure C**, 99% D-form determined by  ${}^{1}$ H NMR), m.p.: 85.1-86.5 °C. A mixture of petroleum ether/ethyl acetate = 2/1 (v/v) as eluents for column chromatography.  ${}^{1}$ H NMR (500 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  8.09-8.05 (m, 4H), 7.73-7.71 (m, 4H), 3.71 (s, 3H), 3.36 (t, J = 6.6 Hz, 2H), 2.80 (t, J = 6.6 Hz, 2H), 2.61 (m, 0.04H).  ${}^{13}$ C NMR (126 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  197.6, 197.5, 173.3, 144.5, 144.3, 136.7, 136.1, 128.9, 128.7, 127.5, 127.4, 51.8, 33.5, 28.1, 25.8 (m). IR (KBr): 3075, 3060, 2949, 2923, 2850, 1735, 1672, 1602, 1554, 1438, 1419, 1394, 1331, 1275, 1176, 1152, 1084, 1004, 976, 827, 794 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for [C<sub>19</sub>H<sub>16</sub>D<sub>3</sub>O<sub>4</sub>]<sup>+</sup> ([M + H]<sup>+</sup>): 314.1466; found: 314.1472.

N-(5-(Acetyl- $d_3$ )-4'-chloro-[1,1'-biphenyl]-2-yl)nicotinamide- $d_1$  (3zr)

Yellow solid (43.1 mg, 61% yield from **Procedure C**, 99% D-form determined by  ${}^{1}H$  NMR), m.p.: 66.9-67.5 °C. A mixture of petroleum ether/ethyl acetate = 2/1 (v/v) as eluents for column chromatography.  ${}^{1}H$  NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.76 (m, 1H), 8.63 (d, J = 8.5 Hz, 1H), 8.12 (s, 1H), 8.06 (m, 2H), 7.91 (s, 1H), 7.56 (d, J = 7.7 Hz, 2H), 7.45-7.41 (m, 3H), 2.61 (m, 0.03H).  ${}^{13}C$  NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  196.8, 163.2, 152.8, 138.6, 135.4, 135.3, 135.2, 133.4, 131.2, 131.1, 130.6, 130.2, 129.9, 129.6, 129.0, 124.0, 120.8, 25.6 (m). IR (KBr): 3232, 3041, 2921, 2850, 1672, 1581, 1515, 1479, 1413, 1297, 1235, 1209, 1150, 1092, 1012, 906, 834, 817, 708, 685, 644 cm ${}^{-1}$ . HRMS-ESI (m/z) calcd. for  $[C_{20}H_{12}D_4ClN_2O_2]^+$  ( $[M+H]^+$ ): 355.1146; found: 355.1142.

Methyl 2-(4'-(acetyl-d<sub>3</sub>)-2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (3a'r)

Colorless liquid (57.6 mg, 95% yield from **Procedure C**, 99% D-form determined by  $^{1}$ H NMR). A mixture of petroleum ether/ethyl acetate = 20/1 (v/v) as eluents for column chromatography.  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (d, J = 8.2 Hz, 2H), 7.63 (d, J = 8.2 Hz, 2H), 7.41 (t, J = 8.0 Hz, 1H), 7.18-7.13 (m, 2H), 3.76 (q, J = 6.9 Hz, 1H), 3.70

(s, 3H), 2.60 (m, 0.03H), 1.53 (d, J = 7.4 Hz, 3H). <sup>19</sup>F NMR (471 MHz, CDCl<sub>3</sub>)  $\delta$  - 116.9 (m, 1F). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.7, 174.3, 159.7 (J = 249.9 Hz), 142.9 (J = 7.8 Hz), 140.2, 136.2, 130.7 (J = 4.1 Hz), 129.1 (J = 3.6 Hz), 128.5, 126.7 (J = 12.9 Hz), 123.8 (J = 3.0 Hz), 115.5 (J = 23.1 Hz), 52.2, 44.9, 25.9 (m), 18.4. IR (KBr): 2953, 2953, 2849, 1737, 1678, 1605, 1575, 1428, 1399, 1335, 1267, 1199, 1170, 1064, 921, 863, 818, 721 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for [C<sub>18</sub>H<sub>14</sub>D<sub>3</sub>FNaO<sub>3</sub>]<sup>+</sup> ([M + Na]<sup>+</sup>): 326.1242; found: 326.1251.

9-(Acetyl- $d_3$ )-3-chloro-6-methyldibenzo[ $c_sf$ ][1,2]thiazepin-11(6H)-one 5,5-dioxide (3 $\mathbf{b}$ ' $\mathbf{r}$ )

Orange solid (93.0 mg, 85% yield from **Procedure C**, 98% D-form determined by  ${}^{1}$ H NMR), m.p.: 65.1-65.4 °C. A mixture of petroleum ether/ethyl acetate = 2/1 (v/v) as eluents for column chromatography.  ${}^{1}$ H NMR (500 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  8.86 (s, 1H), 8.25 (d, J = 8.6 Hz, 1H), 7.94 (s, 1H), 7.89 (d, J = 8.6 Hz, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.40 (d, J = 7.7 Hz, 1H), 3.46 (s, 3H), 2.65 (m, 0.05H).  ${}^{13}$ C NMR (126 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  196.3, 189.1, 144.8, 138.9, 138.3, 134.3, 134.1, 133.8, 133.7, 133.1, 132.9, 129.7, 124.9, 123.5, 38.4, 25.9 (m). IR (KBr): 3076, 2922, 2852, 1682, 1593, 1488, 1466, 1388, 1363, 1267, 1233, 1186, 1172, 1141, 1105, 1046, 954, 887, 820, 785, 730, 683 cm ${}^{-1}$ . HRMS-ESI (m/z) calcd. for [C<sub>16</sub>H<sub>10</sub>D<sub>3</sub>CINO<sub>4</sub>S] ${}^{+}$  ([M + H] ${}^{+}$ ): 353.0437; found: 353.0442.

N-(4-(Acetyl- $d_3$ )-2,6-dimethylphenyl)-2-(2-oxopyrrolidin-1-yl)acetamide (3c'r)

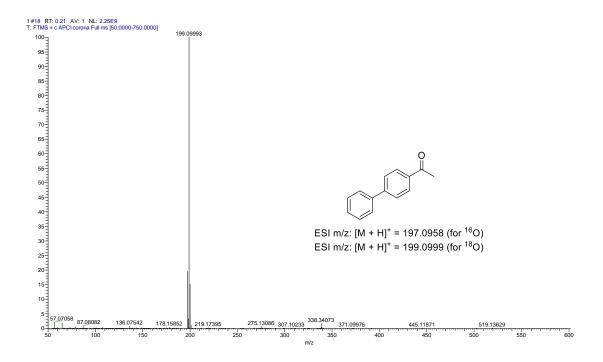
Orange solid (49.5 mg, 85% yield from **Procedure C**, 98% D-form determined by  $^{1}$ H NMR), m.p.: 156.1-156.5 °C. A mixture of petroleum ether/ethyl acetate = 1/1 (v/v) as eluents for column chromatography.  $^{1}$ H NMR (500 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  8.57 (s, 1H), 7.55 (s, 2H), 4.00 (s, 2H), 3.46 (t, J = 7.1 Hz, 2H), 2.37 (m, 0.07H), 2.18 (t, J = 8.0 Hz, 2H), 2.13 (s, 6H), 1.98-1.91 (m, 2H).  $^{13}$ C NMR (126 MHz, CD<sub>3</sub>COCD<sub>3</sub>)  $\delta$  196.8, 175.1, 166.5, 139.2, 135.9, 135.6, 127.8, 54.1, 47.7, 29.8, 25.6 (m), 17.8, 17.7. IR (KBr): 3218,

2958, 2922, 2853, 1694, 1678, 1644, 1598, 1528, 1467, 1445, 1421, 1320, 1286, 1250, 1226, 1166, 1033, 977, 884, 860, 764, 720, 641 cm<sup>-1</sup>. HRMS-ESI (m/z) calcd. for  $[C_{16}H_{17}D_3N_2NaO_3]^+$  ( $[M + Na]^+$ ): 314.1554; found: 314.1560.

#### An example for scale-up synthesis of 3aa.

**Procedure**: In a nitrogen-filled glovebox, 5-([1,1'-biphenyl]-4-yl)-5*H*-thianthren-5-ium triflate (**1a**, 1.20 g, 2.32 mmol), (diglyme)NiBr<sub>2</sub> (82.4 mg, 0.232 mmol), DPPP (95.1 mg, 0.232 mmol), Zn (150.8 mg, 2.32 mmol), CH<sub>3</sub>CN (**2a**, 0.606 mL, 11.6 mmol), and 1,4-dioxane (20 mL) were added to a 100 mL reaction tube. The reaction tube was sealed with a rubber stopper, and taken out of the glovebox. Then, H<sub>2</sub>O (0.209 mL, 11.6 mmol) was added via a microsyringe. The resulting mixture was heated at 70 °C under N<sub>2</sub> for 12 h, cooled to room temperature, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with a mixture of petroleum ether/ethyl acetate (40/1) to give **3aa** as a white solid (373.1 mg, 82%).

#### 5. The control experiments for mechanistic studies.


# 5.1. The Ni-catalyzed reactions of 1a with 2a under optimal conditions in the presence of different radical inhibitors.

**Procedure**: In a nitrogen-filled glovebox, **1a** (51.8 mg, 0.1 mmol), (diglyme)NiBr<sub>2</sub> (3.6 mg, 0.01 mmol), DPPP (4.1 mg, 0.01 mmol), Zn (6.5 mg, 0.1 mmol), CH<sub>3</sub>CN (**2a**, 26  $\mu$ L, 0.5 mmol), radical inhibitor (2 equiv), and 1,4-dioxane (1 mL) were added to a 15 mL reaction tube. The reaction tube was sealed with a rubber stopper and taken out of the glovebox. Then, H<sub>2</sub>O (9.0  $\mu$ L, 0.5 mmol) was added via a microsyringe. The

resulting mixture was heated at 70 °C under  $N_2$  for 12 h. The yield of the product was determined by HPLC analysis of the reaction mixture using pure **3aa** ( $\lambda_m = 240$  nm, water / MeOH = 10 / 90 (v/v),  $t_R = 5.1$  min) as an external standard.

# 5.2. The <sup>18</sup>O-labelling experiment.

**Procedure**: In a nitrogen-filled glovebox, **1a** (103.6 mg, 0.2 mmol), (diglyme)NiBr<sub>2</sub> (7.1 mg, 0.02 mmol), DPPP (8.2 mg, 0.02 mmol), Zn (13.0 mg, 0.2 mmol), CH<sub>3</sub>CN (**2**, 52 μL, 1.0 mmol), and 1,4-dioxane (2 mL) were added to a 15 mL reaction tube. The reaction tube was sealed with a rubber stopper and taken out of the glovebox. Then, H<sub>2</sub><sup>18</sup>O (20 μL, 1.0 mmol) was added via a microsyringe. The resulting mixture was heated at 70 °C under N<sub>2</sub> for 12 h, cooled to room temperature, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with a mixture of petroleum ether/ethyl acetate (40/1) to give 4-acetylbiphenyl (35.2 mg, 89%) as a white solid with 83.6% of <sup>18</sup>O content, which was verified by ESI-HRMS (**Figure S1**).



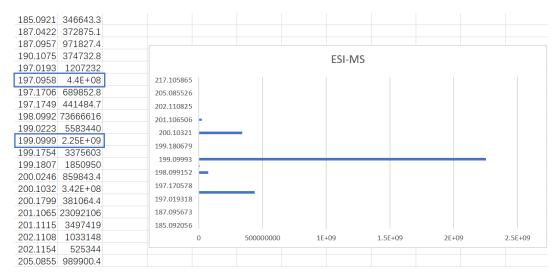



Figure S1. <sup>18</sup>O-labelling experiment

The area of normal  $^{16}$ O-containing acetylbiphenyl MS peak 197.0958 is 439983584, and the area of  $^{18}$ O-labeled acetylbiphenyl MS peak 199.0999 is 2253223680. The area ratio of peak 199.0999 to peak 197.0958 is calculated as 2253223680  $\div$  (439983584 + 2253223680) = 0.836.

## 5.3. The <sup>1</sup>H NMR analysis of the reaction mixtures.

**Procedure A (without H<sub>2</sub>O)**: In a nitrogen-filled glovebox, **1a** (51.8 mg, 0.1 mmol), (diglyme)NiBr<sub>2</sub> (3.6 mg, 0.01 mmol), DPPP (4.1 mg, 0.01 mmol), Zn (6.5 mg, 0.1 mmol), and CD<sub>3</sub>CN (**2r**, 1 mL) were added to a 15 mL reaction tube. The reaction tube was sealed with a rubber stopper and taken out of the glovebox. The reaction mixture was heated at 70 °C under N<sub>2</sub> for 12 h and cooled to room temperature. The reaction tube was taken into the glovebox. The resulting mixture was transferred into a sealed NMR tube in the glovebox and was analyzed by <sup>1</sup>H NMR spectroscopy. The spectrum was shown in **Figure S2**, wherein the imine intermediate was observed according to the NMR data.<sup>23</sup>

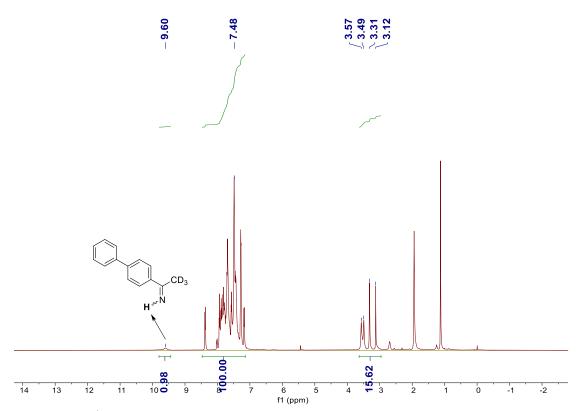
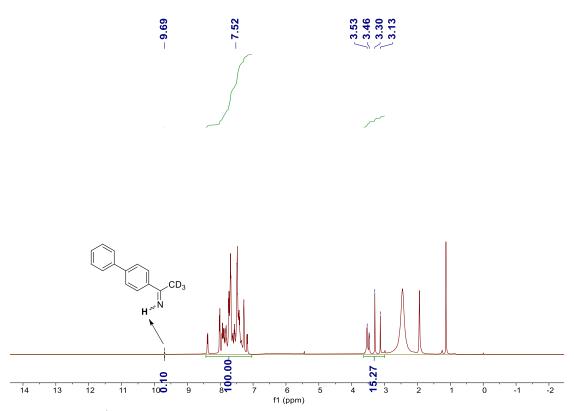
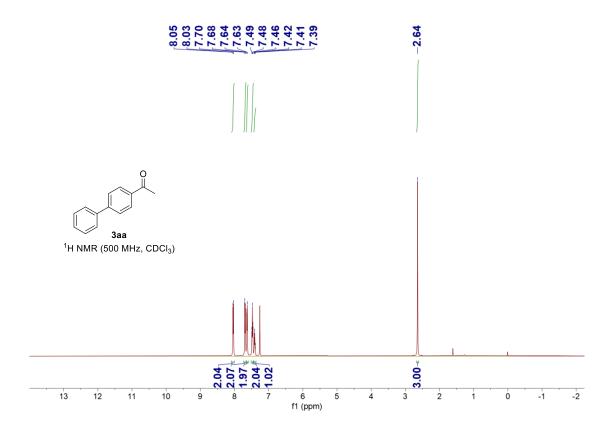
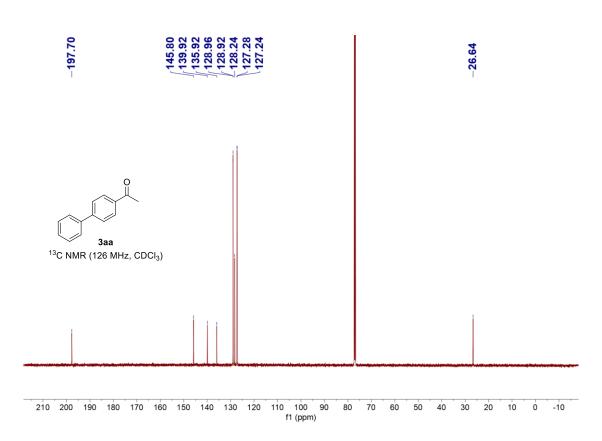


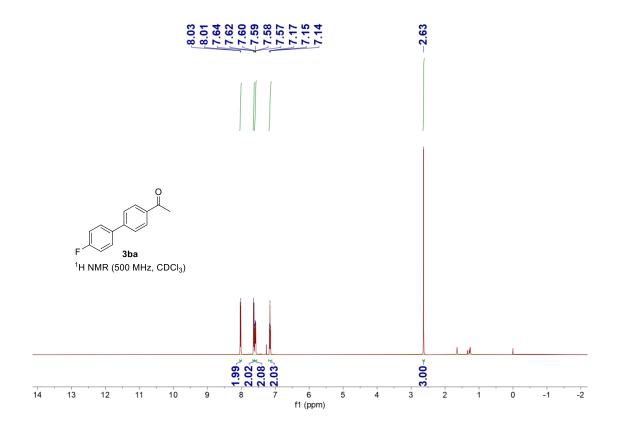

Figure S2. <sup>1</sup>H NMR spectrum of the reaction mixture without additional H<sub>2</sub>O added

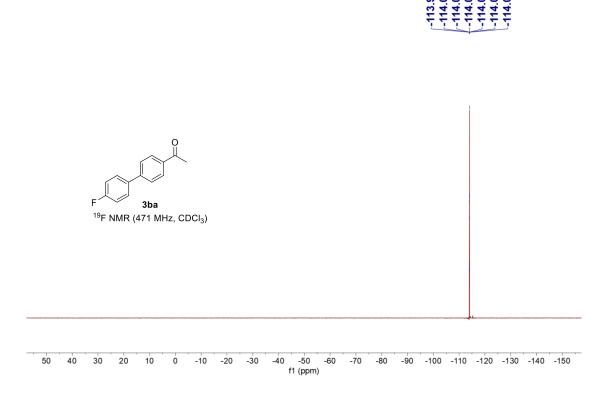
**Procedure B (with H<sub>2</sub>O)**: In a nitrogen-filled glovebox, **1a** (51.8 mg, 0.1 mmol), (diglyme)NiBr<sub>2</sub> (3.6 mg, 0.01 mmol), DPPP (4.1 mg, 0.01 mmol), Zn (6.5 mg, 0.1 mmol), and CD<sub>3</sub>CN (**2r**, 1 mL) were added to a 15 mL reaction tube. The reaction tube was sealed with a rubber stopper and taken out of the glovebox. Then, H<sub>2</sub>O (9.0 μL, 0.5 mmol) was added via a microsyringe. The resulting mixture was heated at 70 °C under N<sub>2</sub> for 12 h, cooled to room temperature, transferred into an NMR tube, and analyzed by <sup>1</sup>H NMR spectroscopy. The spectrum was shown in **Figure S3**, wherein the imine intermediate was observed according to the NMR data.<sup>23</sup>

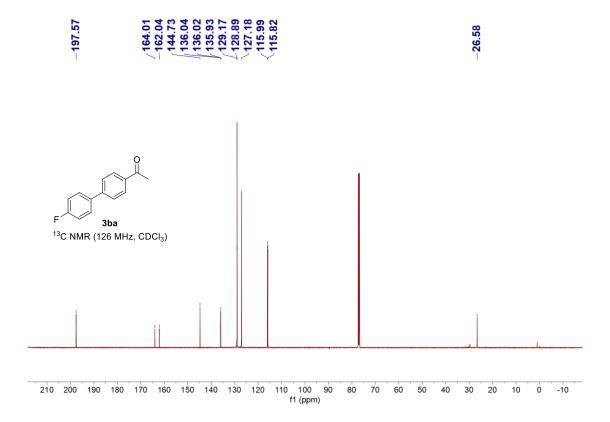


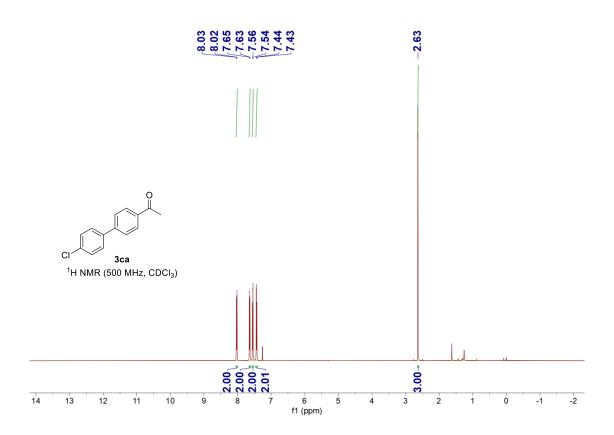


Figure S3. <sup>1</sup>H NMR spectrum of the reaction mixture with H<sub>2</sub>O (5 equiv) added

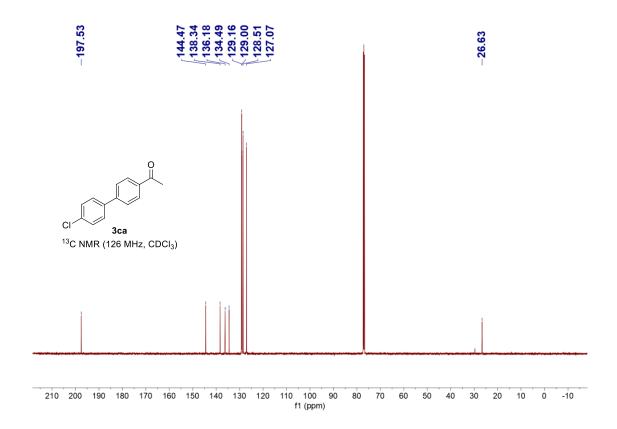

## References

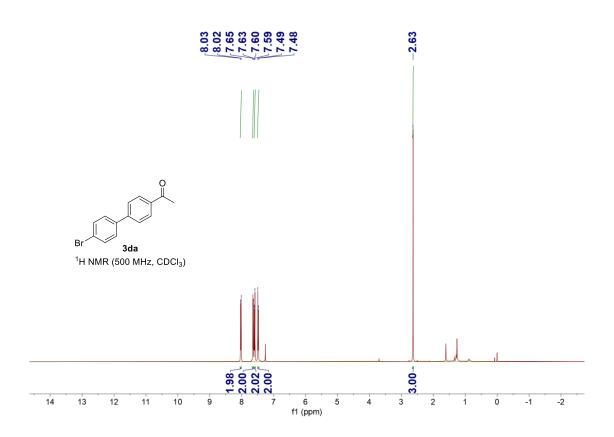

- 1. Lin, Z.-H.; Yao, Y.-F.; Zhang, C.-P. Org. Lett. 2022, 24, 8417-8422.
- 2. Song, J.-W.; Xia, F.; Zhang, X.-L.; Zhang, C.-P. Org. Chem. Front. 2024, 11, 4219-4230.
- 3. Nie, X.-X.; Huang, Y.-H.; Wang, P. Org. Lett. 2020, 22, 7716-7720.
- 4. Wang, M.; Zhang, X.; Ma, M.; Zhao, B. Org. Lett. 2022, 24, 6031-6036.
- 5. Roberts, R. A.; Metze, B. E.; Nilova, A.; Stuar, D. R. *J. Am. Chem. Soc.* **2023**, *145*, 3306-3311.
- 6. Xia, F.; Wang, Y.-H.; Ding, X.-Y.; Zhang, C.-P. *Chem. Asian J.* **2025**, DOI: 10.1002/asia.202500331.
- 7. Xie, Y.; Zhang, L.; Ritter, T. Angew. Chem. Int. Ed. 2025, 64, e202502441.
- 8. Pan, S.; Hu, B.; Liu, D.; Kuvarega, A. T.; Mamba, B. B.; Gui, J. Eur. J. Org. Chem. **2024**, *27*, e202400518.
- 9. Hsieh, J.-C.; Chen, Y.-C.; Cheng, A.-Y.; Tseng, H.-C. Org. Lett. 2012, 14, 1282-1285.
- 10. Yue, H.; Zhu, C.; Rueping, M. Angew. Chem. Int. Ed. 2018, 57, 1371-1375.
- 11. Alsaedi, A. M. R.; Farghalyb, T. A.; Shaaban, M. R. Arabian J. Chem. 2022, 15, 103782.

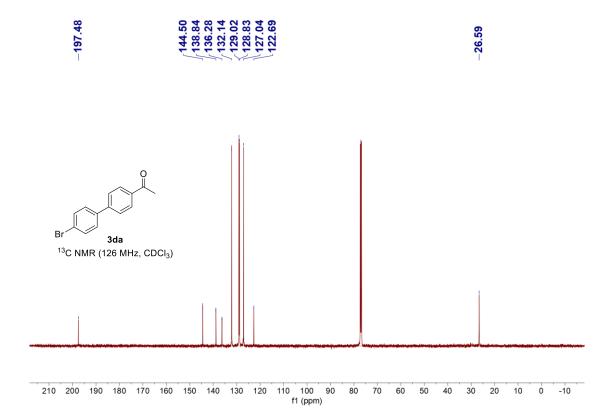

- 12. Liu, G.; Xu, B. Tetrahedron Lett. 2018, 59, 869-872.
- 13. Polidano, K.; Reed-Berendt, B. G.; Basset, A.; Watson, A. J. A.; Williams, J. N. J.; Morrill, L. C. *Org. Lett.* **2017**, *19*, 6716-6719.
- 14. Li, G.; Yan, Y.; Zhang, P.; Xu, X.; Jin, Z. ACS Catal. 2021, 11, 10460-10466.
- 15. Fiedler, P.; Exner, O. Collect. Czech. Chem. Commun. 2004, 69, 797-810.
- 16. Jin, N.; Yang, Y.; Xu, W.; Yang, X.; Gong, G.; Xu, Y. Chin. J. Chem. **2012**, *30*, 333-340.
- 17. Xia, Y.; Wang, J.; Dong, G. J. Am. Chem. Soc. 2018, 140, 5347-5351.
- 18. Ma, Z.; Wang, Y. Org. Biomol. Chem. 2018, 16, 7470-7476.
- 19. Latham, D. E.; Polidano, K.; Williams, J. M. J.; Morrill, L. C. Org. Lett. **2019**, *21*, 7914-7918.
- 20. Sun, Y.; Huang, X.; Li, X.; Luo, F.; Zhang, L.; Chen, M.; Zheng, S.; Peng, B. *Adv. Synth. Catal.* **2017**, *360*, 1082-1087.
- 21. Meng, G.; Szostak, R.; Szostak, M. Org. Lett. 2017, 19, 3596-3599.
- 22. Wang, J., Burdzinski, G., Gustafson, T. L., Platz, M. S. J. Am. Chem. Soc. 2007, 129, 2597-2606.
- 23. (a) Shibata, S.; Masui, Y.; Onaka, M. *Tetrahedron Lett.* **2021**, *67*, 152840. (b) Zhou, M.; Lin, Y.; Chen, X.-X.; Xu, G.; Chung, L. W.; Tang, W. *Angew. Chem. Int. Ed.* **2023**, *62*, e20230033.

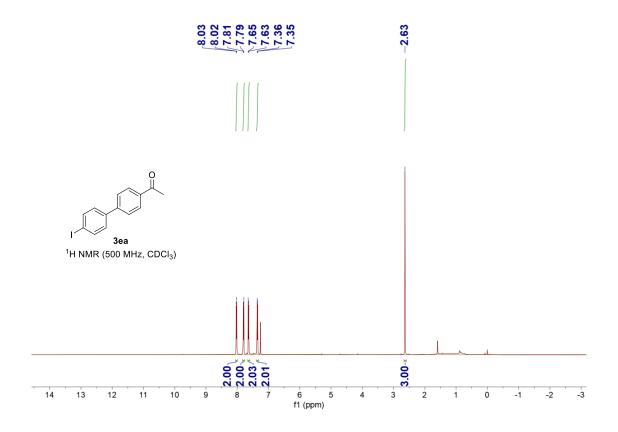

## 6. NMR spectra of the products.

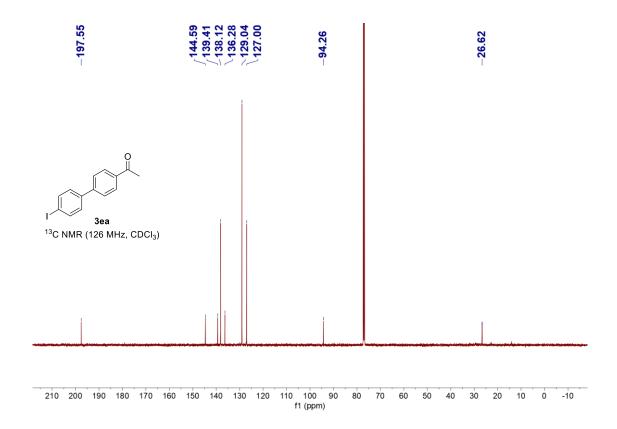


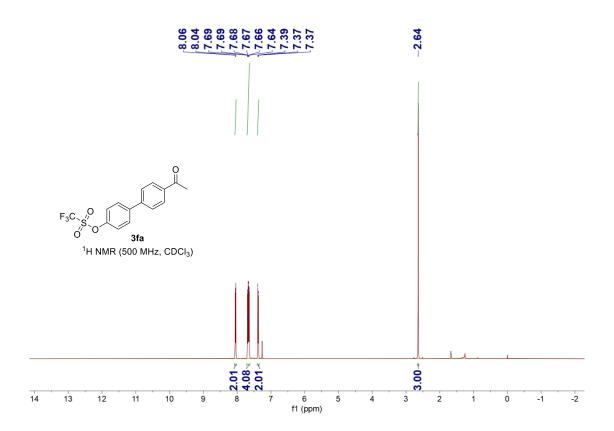



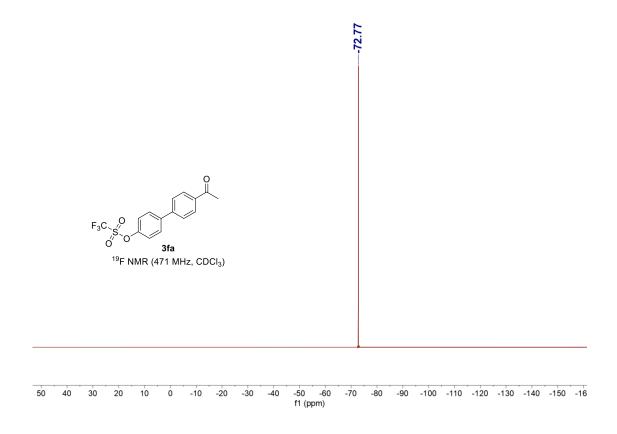



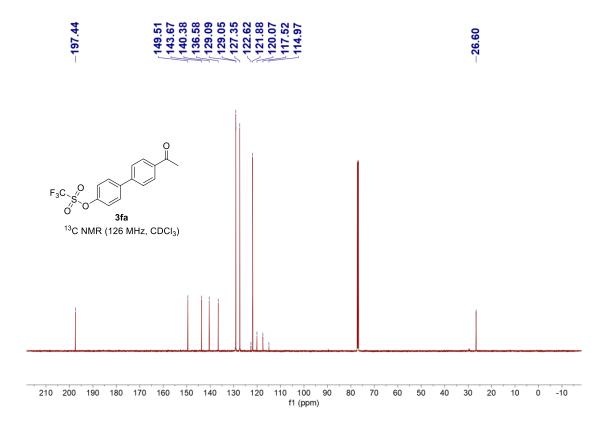



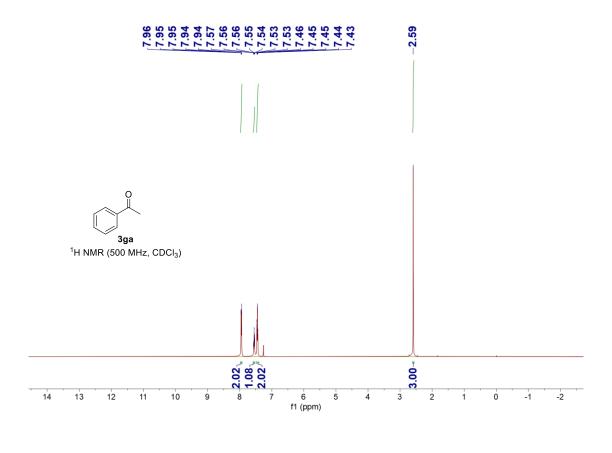



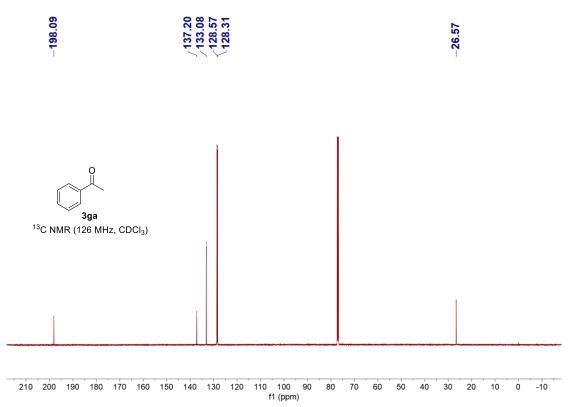



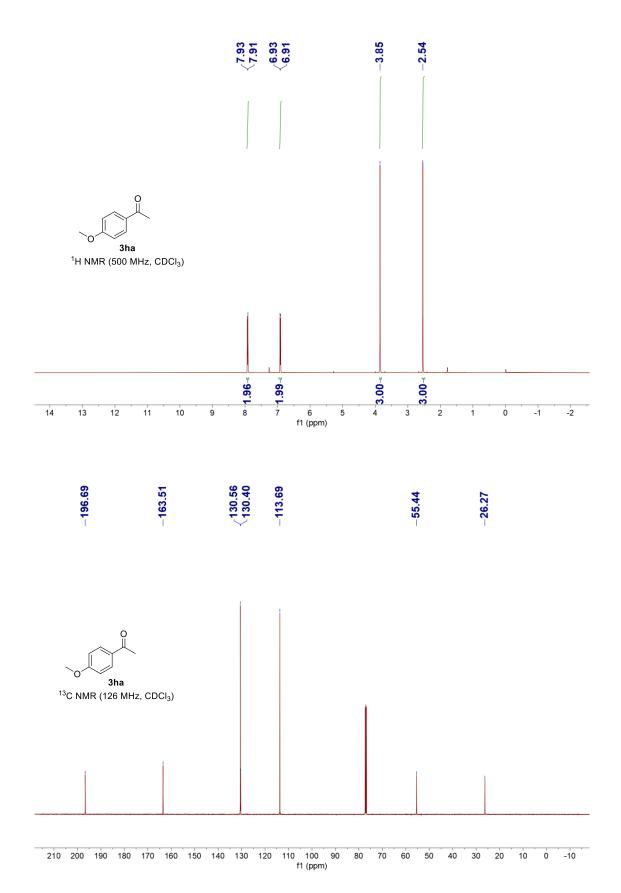



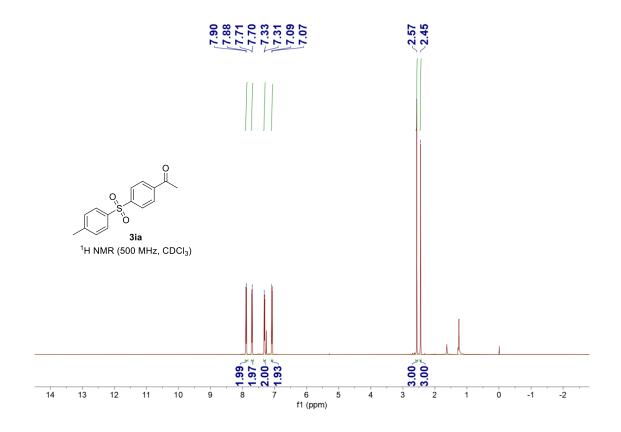



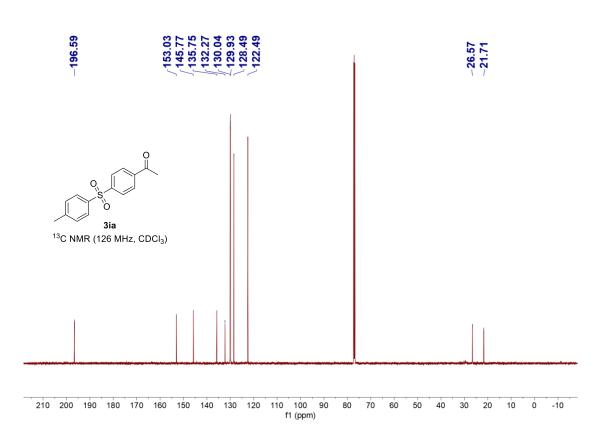



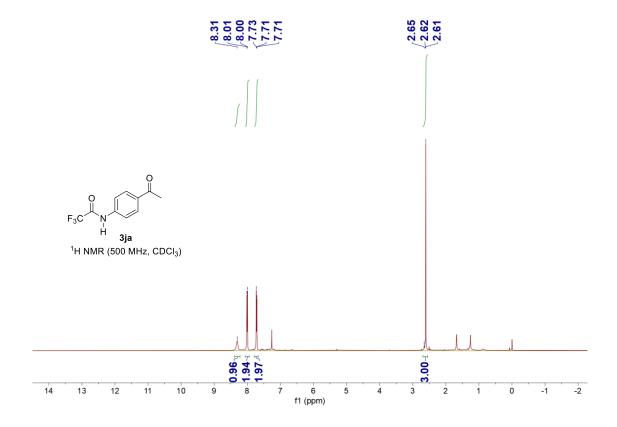



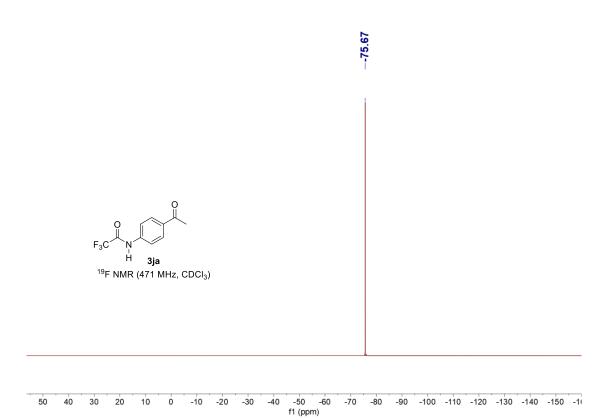



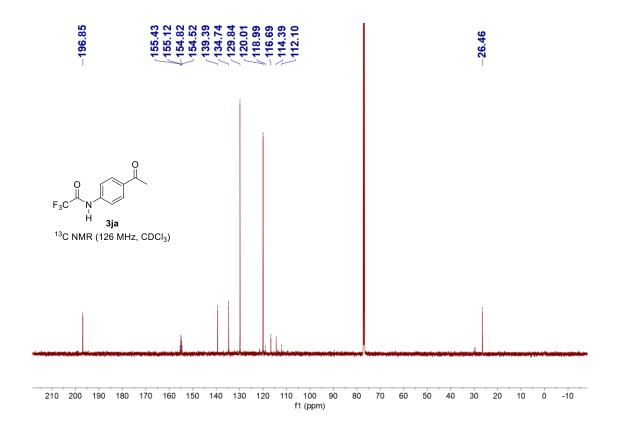



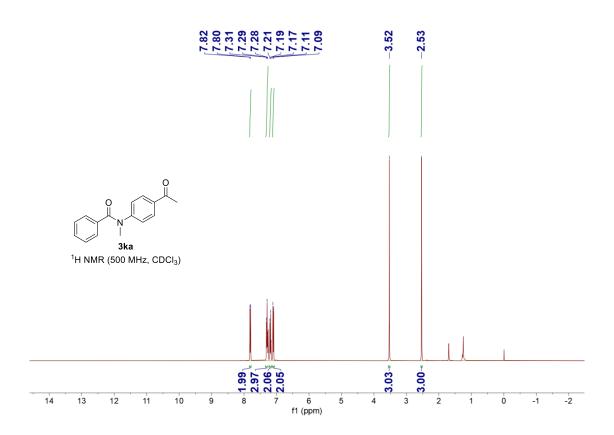



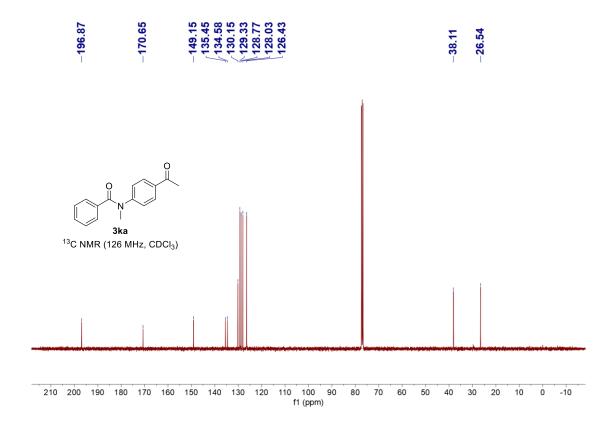



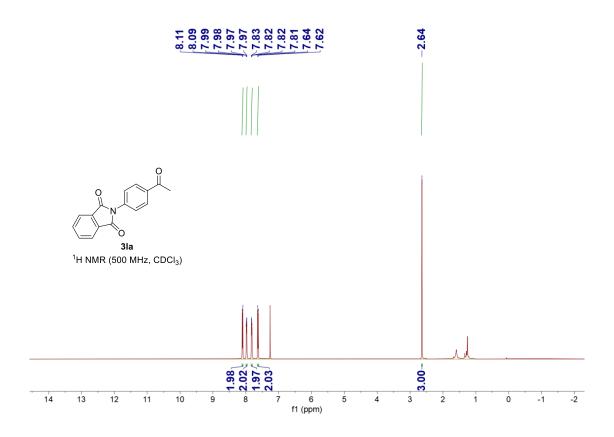



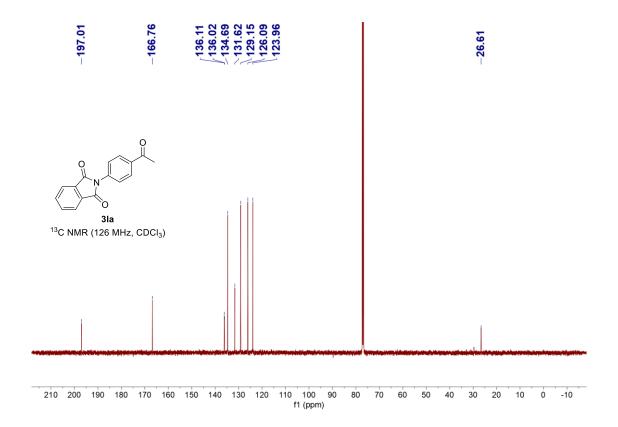



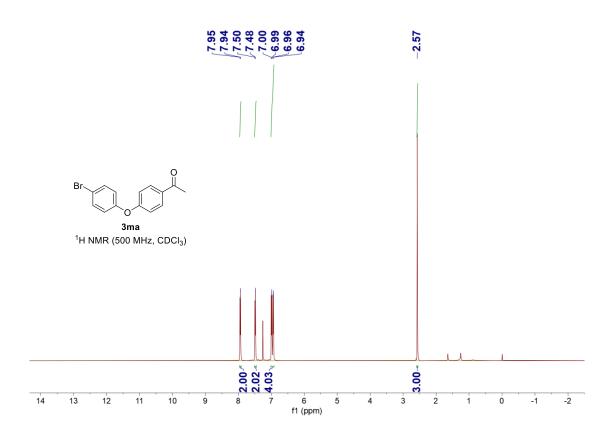



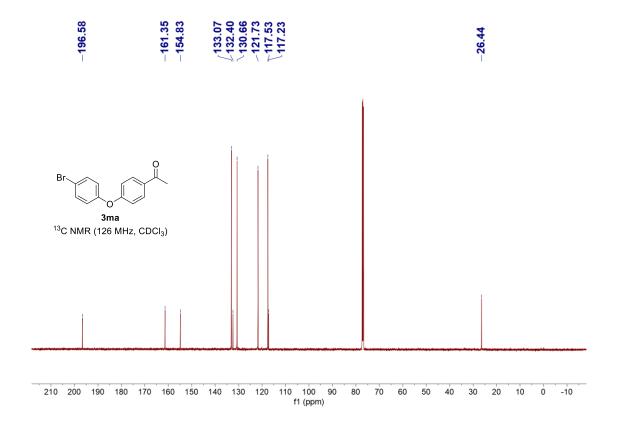



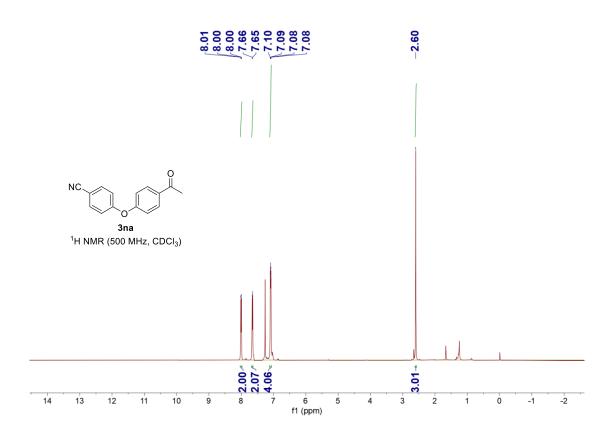



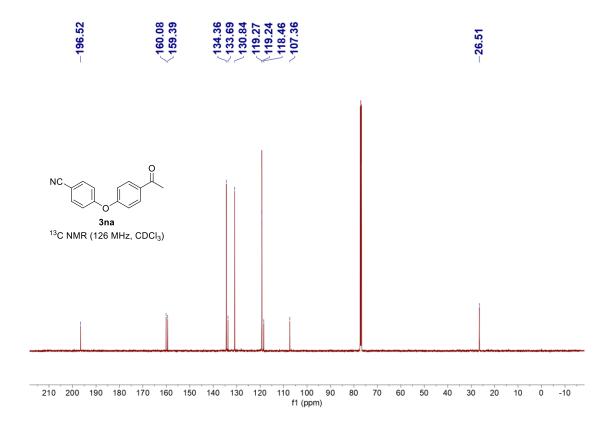



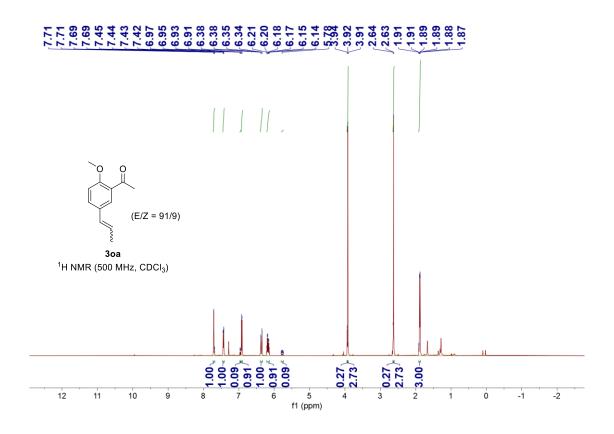



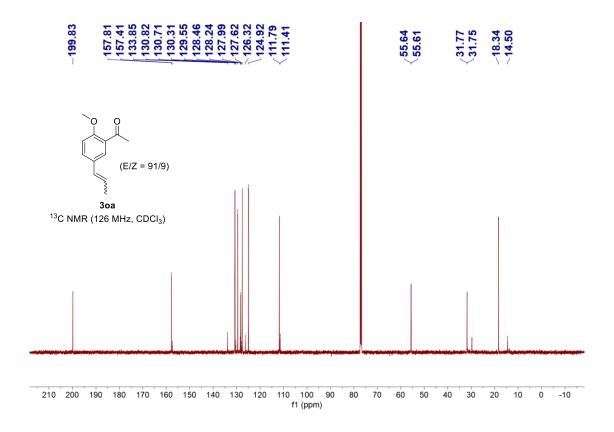



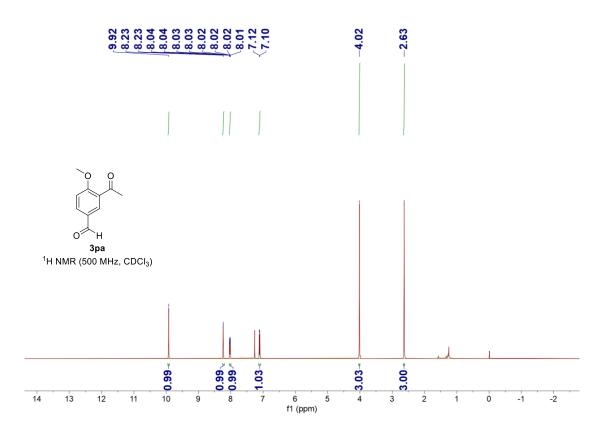



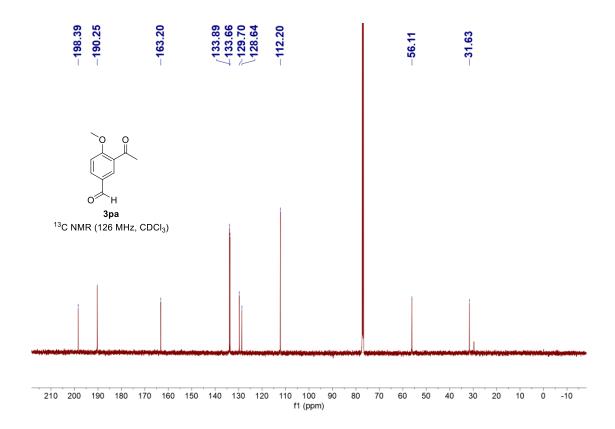



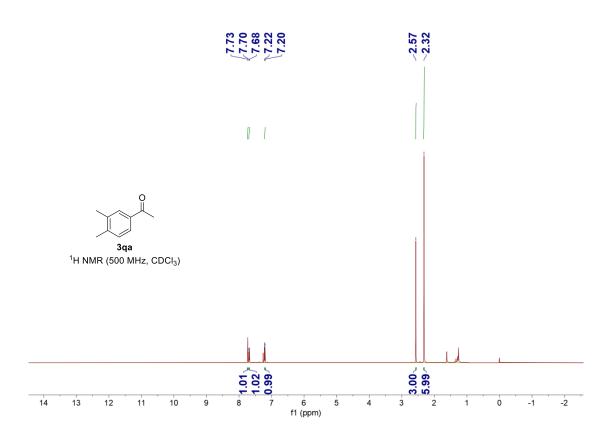



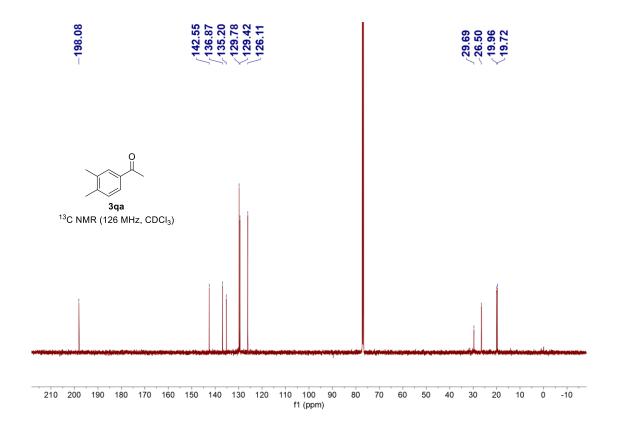



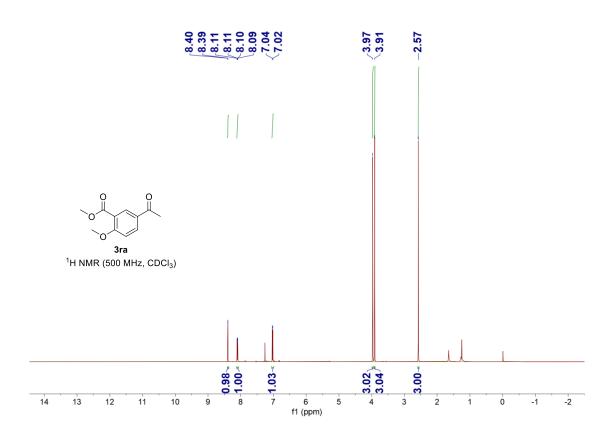



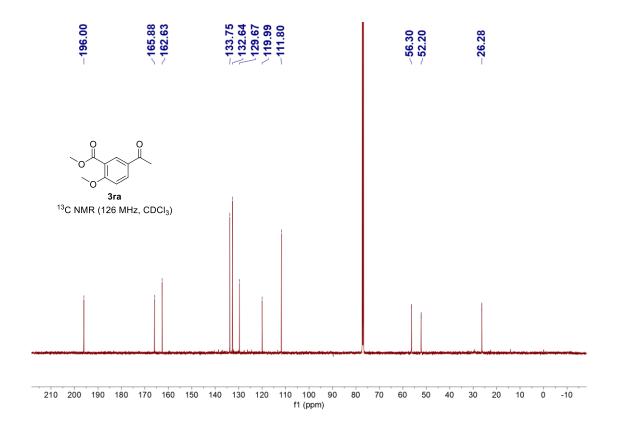



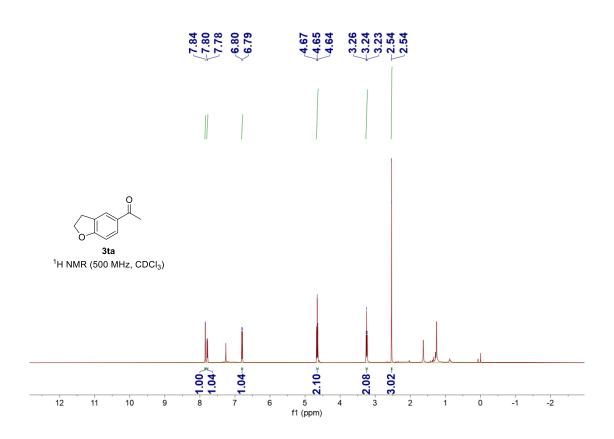



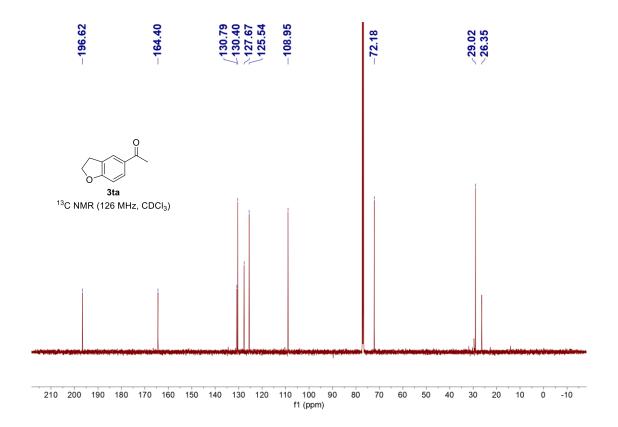



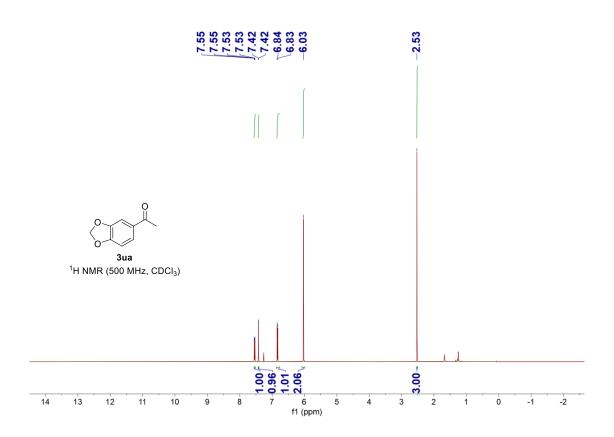



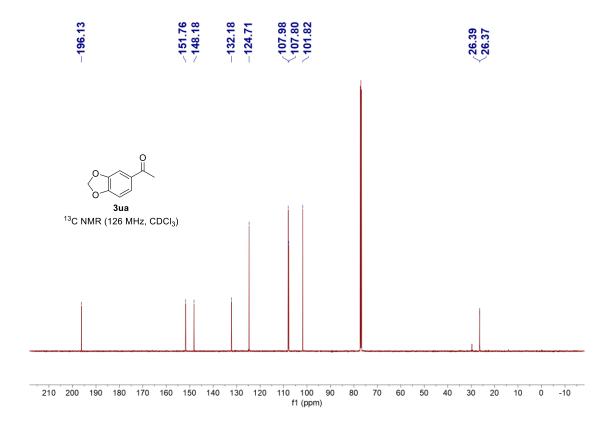



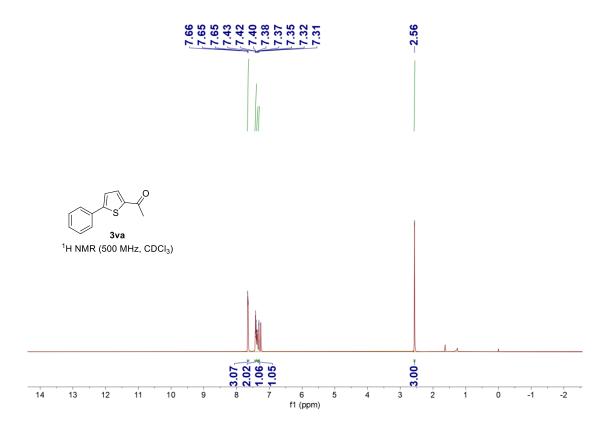



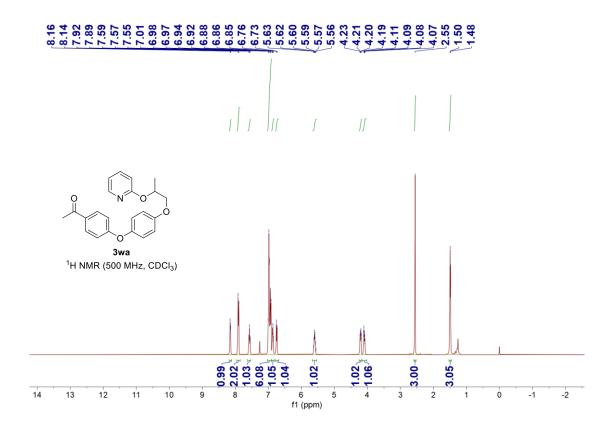



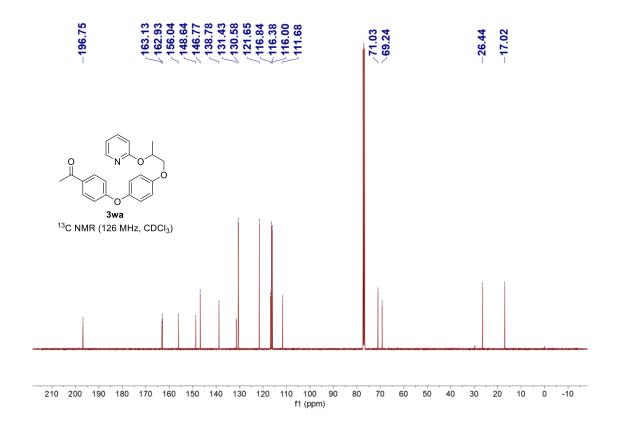



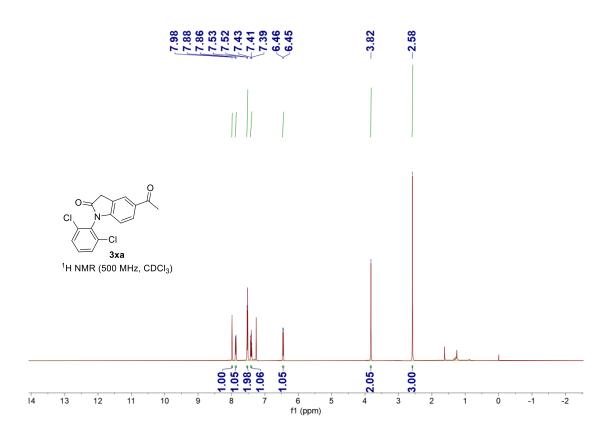



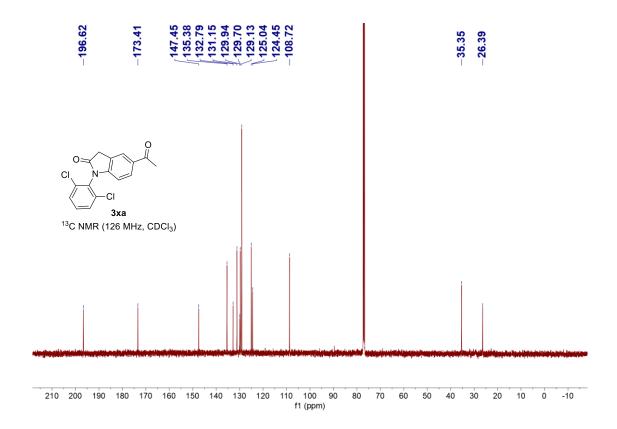



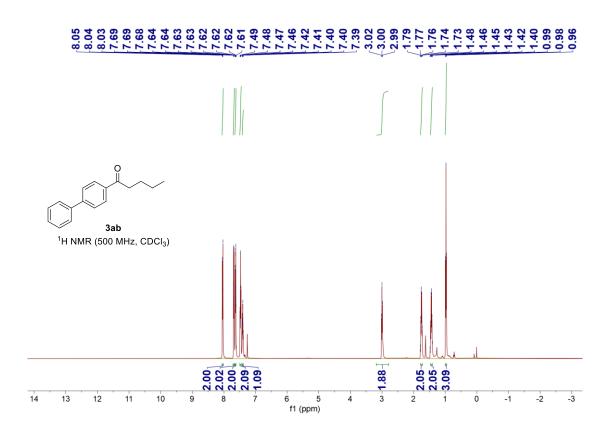


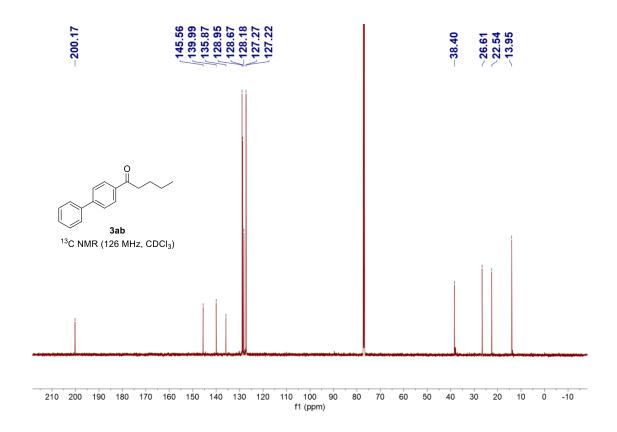



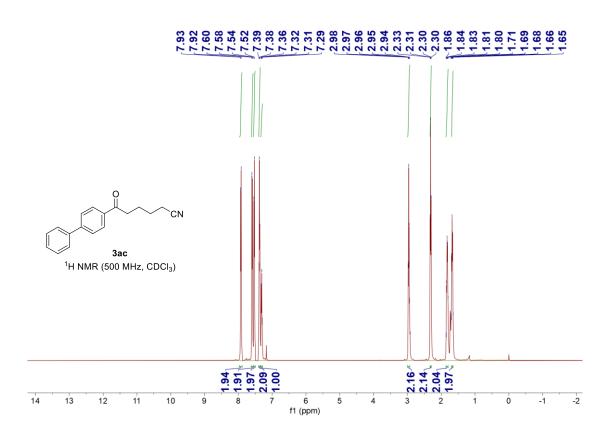



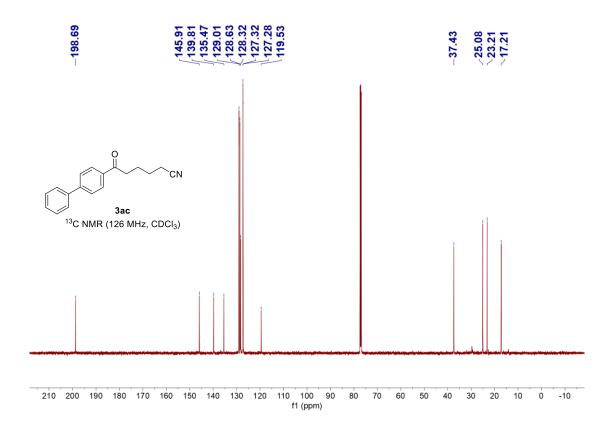



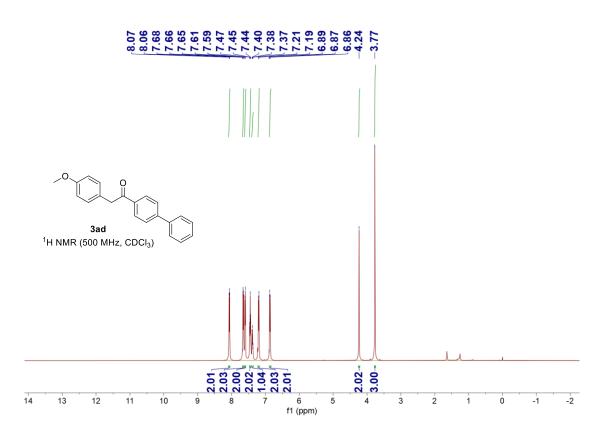



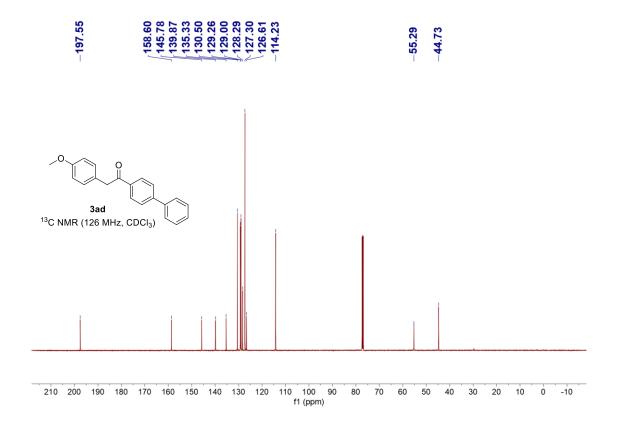



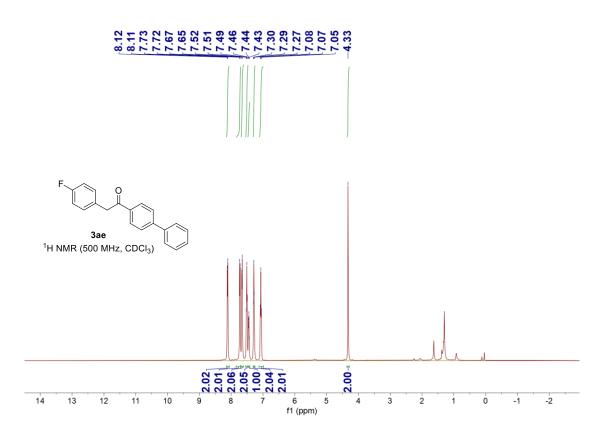



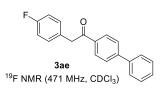



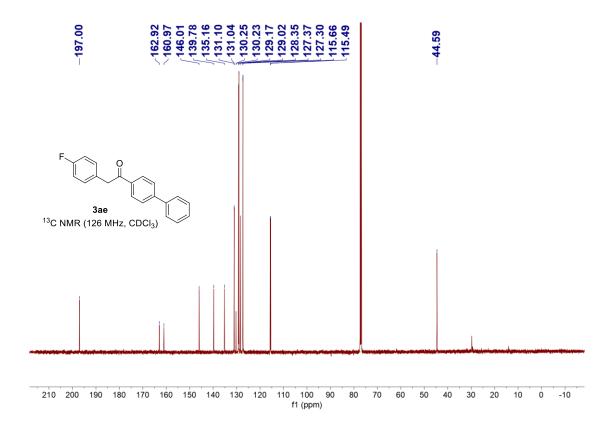



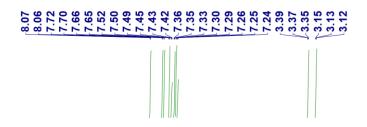



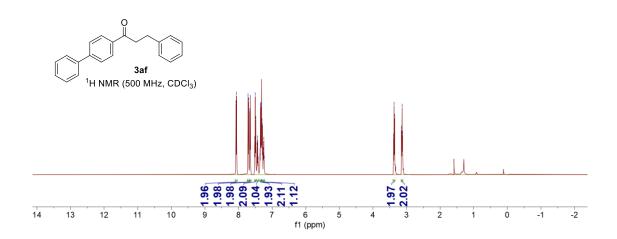


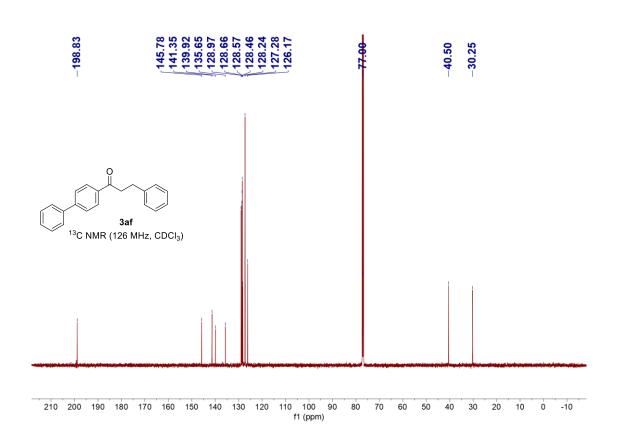



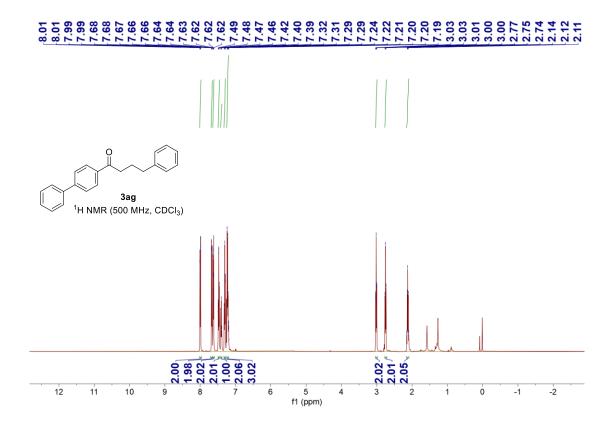




50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 f1 (ppm)

