Supplementary Information (SI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2025

Supplementary Information

A Versatile and Practical One-Pot Strategy for a Greener, Waste-Minimized Synthesis of Aryloxy- and Alkyloxy-Substituted Metallophthalocyanines via Tandem S_NAr -cyclotetramerization

Federica Palmeri^{a,b*}, Venanzio Raglione^{c*}, Laura Mancini^{b,†}, Gloria Zanotti^{b*}

^aDepartment of Chemistry, La Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy

^bIstituto di Struttura della Materia (ISM) Consiglio Nazionale delle Ricerche (CNR), Strada provinciale 35d/9, 00010, Montelibretti, Italy

^cIstituto di Struttura della Materia (ISM) Consiglio Nazionale delle Ricerche (CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy

†Present address: UOSD Medicina di Precisione in Senologia, Fondazione Policlinico A. Gemelli, L.go A. Gemelli 8, 00168, Rome, Italy

Table of contents

General procedure for solvent recovery	S4
Spectroscopic and Analytical Data of target compounds	S5
H NMR spectrum of tetra-(3,5-dimethylphenoxy)-zinc-phthalocyanine (1) in THF-d ₈	S14
13 C NMR spectrum of tetra- (3,5-dimethylphenoxy)-zinc-phthalocyanine (1) in THF- d_8	S14
H NMR spectrum of tetra-(p-tolyloxy)-zinc-phthalocyanine (2) in THF-d ₈	S15
13 C NMR spectrum of tetra-(p-tolyloxy)-zinc-phthalocyanine (2) in THF- d_8	S15
H NMR spectrum of tetra-(4-iodo-2,6-dimethylphenoxy)-zinc-phthalocyanine (3) in Pyr- d_5 .	S16
13 C NMR spectrum of tetra-(4-iodo-2,6-dimethylphenoxy)-zinc-phthalocyanine (3) in Pyr- d_5 .	S16
H NMR spectrum of <i>tert</i> -butyl(4-hydroxyphenyl)carbamate (4a) in CDCl ₃	S17
¹³ C NMR spectrum of <i>tert</i> -butyl(4-hydroxyphenyl)carbamate (4a) in CDCl ₃	S17
H NMR spectrum of tetra-(3,5-bis(trifluoromethyl)phenoxy)-zinc-phthalocyanine (5) in THF	- <i>d</i> ₈ . S18
¹³ C NMR spectrum of tetra-(3,5-bis(trifluoromethyl)phenoxy)-zinc-phthalocyanine (5) in THF	F - d_8 .
H NMR spectrum of tetra-(2-dimethylaminoethoxy)-zinc-phthalocyanine (6) in Pyr-d ₅	S19
¹³ C NMR spectrum of tetra-(2-dimethylaminoethoxy)-zinc-phthalocyanine (6) in Pyr-d ₅	S19
H NMR spectrum of tetra-(hexyloxy)-zinc-phthalocyanine (7) in THF-d ₈	S20
¹³ C NMR spectrum of tetra-(hexyloxy)-zinc-phthalocyanine (7) in THF-d ₈	S20
H NMR spectrum of octakis (3,5-dimethylphenoxy)-zinc-phthalocyanine (8) in THF- d_8	S21
13 C NMR spectrum of octakis(3,5-dimethylphenoxy)-zinc-phthalocyanine (8) in THF- d_8	S21
H NMR spectrum of octakis(p-tolyloxy)-zinc-phthalocyanine (9) in THF-d ₈	S22
¹³ C NMR spectrum of octakis(p-tolyloxy)-zinc-phthalocyanine (9) in THF-d ₈	S22
ATR spectrum of tetra-(3,5-dimethylphenoxy)-zinc-phthalocyanine (1)	S23
ATR spectrum of tetra-(p-tolyloxy)-zinc-phthalocyanine (2)	S23
ATR spectrum of tetra-(4-iodo-2,6-dimethylphenoxy)-zinc-phthalocyanine (3)	S24
ATR spectrum of phthalocyanine (4)	S24
ATR spectrum of tetra-(3,5-bis(trifluoromethyl)phenoxy)-zinc-phthalocyanine (5)	S25
ATR spectrum of tetra-(2-dimethylaminoethoxy)-zinc-phthalocyanine (6)	S25
ATR spectrum of tetra-(hexyloxy)-zinc-phthalocyanine (7).	S26
ATR spectrum of octakis(3,5-dimethylphenoxy)-zinc-phthalocyanine (8).	S26
ATR spectrum of octakis(p-tolyloxy)-zinc-phthalocyanine (9)	S27
UV-vis spectra of the synthesized zinc phthalocyanines (1-9).	S28
MALDI-TOF spectrum of tetra-(3,5-dimethylphenoxy)-zinc-phthalocyanine (1)	S29
MALDI-TOF spectrum of tetra-(p-tolyloxy)-zinc-phthalocyanine (2)	S30

MALDI-TOF spectrum of tetra-(4-iodo-2,6-dimethylphenoxy)-zinc-phthalocyanine (3)	S31
MALDI-TOF spectrum of tetra-(3,5-bis(trifluoromethyl)phenoxy)-zinc-phthalocyanine (5)	S32
MALDI-TOF spectrum of tetra-(2-dimethylaminoethoxy)-zinc-phthalocyanine (6)	S33
MALDI-TOF spectrum of tetra-(hexyloxy)-zinc-phthalocyanine (7).	S34
MALDI-TOF spectrum of octakis(3,5-dimethylphenoxy)-zinc-phthalocyanine (8)	S35
MALDI-TOF spectrum of octakis(p-tolyloxy)-zinc-phthalocyanine (9)	S36
E-factor calculation	S37
References	S47

General procedure for solvent recovery

Regarding the use of methanol and methanol/water mixtures during the workup: To minimize the amount of DMF and DBU in the recoverable mixture, we removed it separately during the filtration of the quenched reaction (with 1 N HCl), followed by washings with water. Then, the mixed water-methanol waste generated from crude and product washings in several reactions was collected into a single flask to reach a working volume of approximately 150–200 mL, suitable for distillation. Methanol does not form binary azeotropes with water and was therefore recovered using a standard distillation setup (atmospheric pressure) equipped with a Vigreux column to improve separation efficiency.

Regarding the organic solvents used as eluents: The solvent mixtures were recovered individually for the filtration on silica pad of each reaction by collecting the packing solvent (hexane), deposition solvent (THF), and eluted fractions. We then recovered the solvent mixtures using a rotary evaporator until dryness, discarding only a small fraction collected at the beginning of the evaporation process, and re-used the recovered mixtures several times for subsequent silica-pad filtrations, supplementing the volume when necessary with freshly prepared solvent at the initially set polarity. Since the separation is relatively simple, phthalocyanines being the only macrocyclic products and polar impurities remaining at the baseline (Rf \sim 0), the choice of eluent does not require a narrow polarity window, provided that it is not so polar as to co-elute the polar impurities with the target compound.

Spectroscopic and Analytical Data of target compounds

Tetra-(3,5-dimethylphenoxy)-zinc-phthalocyanine (1).

Purification of the crude was carried out by short pad filtration on silica gel, using THF for sample loading and a 3:1 hexane:THF mixture as the eluent. The target compound was obtained as a blue solid in 48% yield. 1 H NMR (600 MHz, THF- d_8): δ = 9.01 – 8.91 (m, 4H), 8.65 – 8.60 (m, 4H), 7.72 – 7.70 (m, 4H), 7.12 – 6.93 (m, 12H), 2.44 – 2.41 (m, 24H, CH₃) ppm; 13 C NMR (150 MHz, THF- d_8): δ = 160.62, 160.58, 160.54, 160.48, 160.40, 160.37, 158.99, 158.93, 158.89, 158.84, 158.81, 141.28, 141.24, 141.23, 141.19, 140.88, 140.86, 140.82, 140.80, 134.43, 134.33, 134.27, 126.59, 126.57, 126.53, 126.51, 126.49, 126.42, 126.41, 124.89, 124.74, 124.71, 121.38, 121.34, 118.49, 118.47, 118.39, 118.37, 118.36, 118.26, 118.23, 112.92, 112.87, 112.83, 21.75 ppm. FT-IR: ν = 2918, 2849, 2828, 1611, 1584, 1456, 1393, 1335, 1292, 1256, 1217, 1173, 1134, 1084, 1043, 1022, 951, 999, 820, 559, 534 cm⁻¹. UV-vis (THF): λ_{max} = 675, 352 nm. MALDI-TOF [M]*+: m/z = 1056.41, (Calcd: 1056.31).

Tetra-(p-tolyloxy)-zinc-phthalocyanine (2).

Purification of the crude was carried out by short pad filtration on silica gel, using THF for sample loading and a 3:1 hexane:THF mixture as the eluent. The target compound was obtained as a blue solid in 43% yield. 1 H NMR (600 MHz, THF- d_8): δ = 8.94 – 8.77 (m, 4H), 8.64 – 8.50 (m, 4H) 7.69 – 7.61 (m, 4H), 7.45 – 7.35 (m, 16H), 2.49 – 2.47 (m, 12H) ppm; 13 C NMR (150 MHz, THF- d_8): δ = 160.70, 160.66, 160.62, 160.54, 156.60, 156.58, 156.51, 156.44, 156.38, 156.34, 153.49, 152.46, 141.14, 141.08, 141.06, 134.47, 134.45, 134.31, 134.30, 134.24, 134.22, 134.08, 134.03, 134.00, 131.61, 131.54, 124.87, 124.84, 124.64, 124.59, 120.92, 120.88, 120.81, 120.77, 120.71, 120.68, 120.60, 120.57, 112.47, 112.38, 112.32, 111.95, 111.87, 111.78, 21.17 ppm. FT-IR: ν = 3024, 2922, 2860, 1602, 1504, 1472, 1393, 1335, 1259, 1227, 1205, 1161, 1115, 1086, 1043, 1016, 945, 889, 868, 816, 743, 668, 498 cm⁻¹. UV-vis (THF): λ_{max} = 675, 352 nm. MALDI-TOF [M]*+: m/z = 1000.37, (Calcd: 1000.25).

Tetra-(4-iodo-2,6-dimethylphenoxy)-zinc-phthalocyanine (3).

Purification of the crude was performed by short pad filtration on silica gel, using THF for sample loading and a gradient elution with increasing polarity (from 4:1 to 1:1 petroleum ether:THF). The target compound was obtained as a blue solid in 37% yield. ¹H NMR (600 MHz, Pyr- d_5) $\delta = 9.36 - 9.68$ (m, 4H), 8.87 – 9.19 (m, 4H), 7.74 (m, 4H), 7.60 – 7.67 (m, 8H), 2.19 (m, 24H) ppm; ¹³C NMR (150 MHz, Pyr- d_5): $\delta = 159.92$, 159.75, 159.60, 151.66, 151.64, 151.54, 151.54, 151.50, 142.92, 142.92, 138.41, 138.39, 138.35, 134.18, 134.18, 125.68, 125.68, 117.55, 117.49, 117.02, 116.88, 114.87, 114.86, 90.73, 90.71, 90.70, 90.64, 90.61, 79.53, 79.09, 34.77, 34.71, 30.55, 30.24, 29.34, 24.15, 24.15, 21.15, 16.53, 16.50, 15.99, 15.96, 15.96 ppm. FT-IR: v = 2926, 2850, 1607, 1460, 1392, 1337, 1268, 1213, 1179, 1115, 1084, 1038, 944, 852, 813, 764, 743 cm⁻¹. UV-vis (THF): $\lambda_{\text{max}} = 677$, 351 nm. MALDI-TOF [M]⁺⁺: m/z = 1559.83, (Calcd: 1559.90).

Tert-butyl(4-hydroxyphenyl)carbamate (4a).

 1 H NMR (600 MHz, CDCl₃): δ = 7.17 – 7.16 (m, 2H), 6.74 – 6.73 (m, 2H), 6.35 (bs , 1H), 5.33 (bs, 1H), 1.51 (s, 9H) ppm; 13 C NMR (150 MHz, CDCl₃): δ = 153.56, 152.04, 130.99, 121.4, 115.74, 80.46, 28.38.

Phthalocyanine (4).

Purification of the crude by Soxhlet extraction with methanol gave a phthalocyanine-based product as a green solid. FT-IR: ν = 3309, 2930, 2860, 1721, 1593, 1484, 1466, 1395, 1362, 1333, 1314, 1267, 1220, 1112, 1092, 1041, 1007, 946, 885, 832, 743, 724, 696 cm⁻¹. UV-vis (Pyridine): λ_{max} = 685, 355 nm.

Tetra-(3,5-bis(trifluoromethyl)phenoxy)-zinc-phthalocyanine (5).

$$F_3C$$
 CF_3
 CF_3

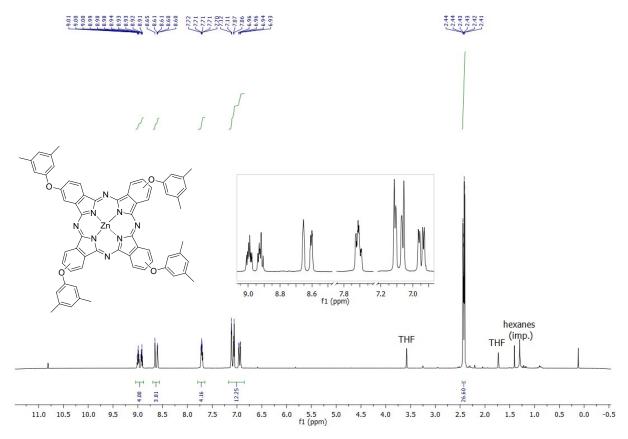
Purification of the crude was performed by short pad filtration on silica gel, using a 5:3 hexane:ethyl acetate mixture for both sample loading and elution. The target compound was obtained as a blue solid in 27% yield. 1 H NMR (600 MHz, THF- d_8): $\delta = 9.17 - 9.06$ (m, 4H), 8.80-8.75 (m, 4H), 8.05-7.84 (m, 16H) ppm; 13 C NMR (150 MHz, THF- d_8): $\delta = 160.59$, 160.57, 160.54, 157.96, 157.94, 157.86, 157.78, 157.76, 141.32, 141.29, 141.25, 141.20, 141.18, 141.13, 135.94, 135.92, 135.86, 135.84, 134.67, 134.65, 134.63, 134.61, 134.45, 134.43, 134.41, 134.39, 134.32, 125.52, 125.49, 125.46, 124.44 (q, CF3, J = 272 Hz), 122.21, 122.17, 119.88, 119.84, 119.81, 118.07, 118.02, 117.96, 117.93, 117.91, 117.85, 114.43, 114.40, 114.37, 114.33 ppm. FT-IR: $\nu = 1607$, 1487, 1460, 1337, 1275, 1231, 1171, 1125, 1105, 1084, 1045, 961, 945, 914, 885, 847, 735, 700, 681, 617, 449, 436 cm⁻¹. UV-vis (THF): $\lambda_{max} = 670$, 349 nm. MALDI-TOF [M]*+: m/z = 1488.20, (Calcd: 1488.08).

Tetra-(2-dimethylaminoethoxy)-zinc-phthalocyanine (6).

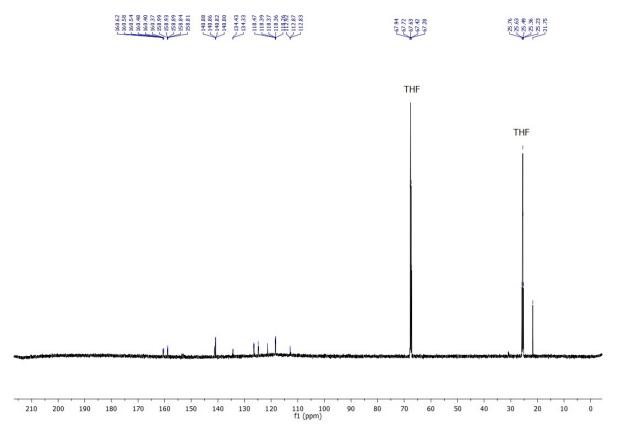
Purification of the crude by several washings with a 3:1 water:methanol mixture gave the target product in 49% yield as a green solid. 1 H NMR (600 MHz, Pyr- d_{5}) δ = 9.56 (m, 4H), 9.30 (d, J = 8.1 Hz, 4H), 7.84 – 7.92 (m, 4H), 4.56 (m, 8H), 2.92 (m, 8H), 2.40 (s, 12H), 2.35 (s, 12H) ppm; 13 C NMR (150 MHz, Pyr- d_{5}): δ = 161.49, 161.27, 153.54, 141.12, 132.08, 132.06, 118.67, 118.63, 115.87, 113.99, 112.54, 108.54, 106.59, 106.52, 67.47, 67.45, 67.37, 67.35, 58.56, 58.52, 57.95, 57.88, 45.90, 45.84, 45.63, 45.50, 37.20, 29.79, 29.75, 23.49, 23.45 ppm. FT-IR: v = 2935, 2859, 2830, 2781, 2370, 2322, 2212, 1606, 1508, 1488, 1456, 1436, 1388, 1337, 1278, 1229, 1112, 1089, 1040, 952, 836, 827, 770, 746, 727 cm $^{-1}$. UV-vis (THF): λ_{max} = 677, 351 nm. MALDI-TOF [M] $^{*+}$: m/z = 924.32, (Calcd: 924.35).

Tetra-(hexyloxy)-zinc-phthalocyanine (7).

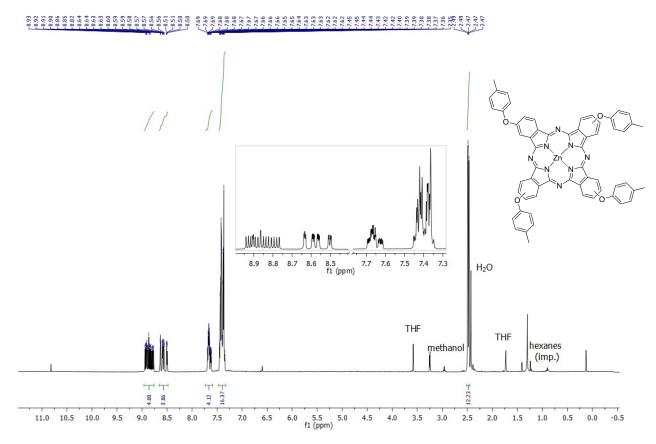
Purification of the crude was carried out by short pad filtration on silica gel, using THF for sample loading and a 2:1 hexane:THF mixture as the eluent. The target compound was obtained as a blue solid in 22% yield. ¹H NMR (600 MHz, THF- d_8): $\delta = 8.98 - 8.88$ (m, 4H), 8.55 - 8.51 (m, 4H), 7.57 - 7.49 (m, 4H), 4.49 (bs, 8H), 2.14 - 2.09 (m, 8H), 1.82 - 1.78 (m, 8H), 1.61 - 1.53 (m, 16H), 1.08 - 1.04 (m, 12H) ppm; ¹³C NMR (150 MHz, THF- d_8): $\delta = 161.94$, 132.52, 125.90, 124.03, 69.41, 32.87, 30.74, 27.05, 23.73, 14.55 ppm. FT-IR: v = 2954, 2925, 2859, 2361, 2341, 2321, 1603, 1495, 1460, 1384, 1335, 1277, 1228, 1112, 1083, 1046, 946, 874, 846, 818, 770, 746, 726, 658 cm⁻¹. UV-vis (THF): $\lambda_{max} = 676$, 349 nm. MALDI-TOF [M+H]⁺: m/z = 977.522, (Calcd: 976.43).

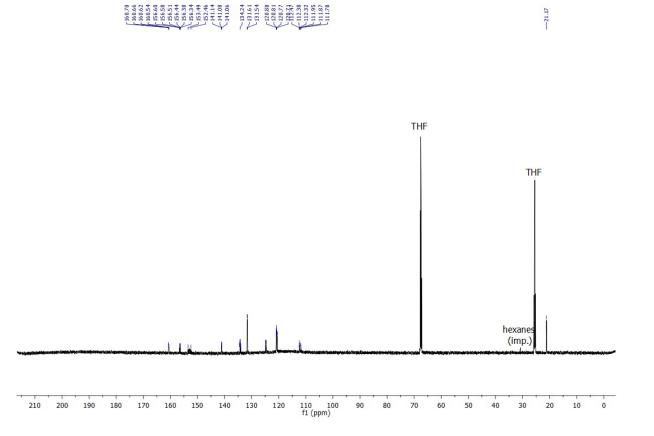

Octakis(3,5-dimethylphenoxy)-zinc-phthalocyanine (8).

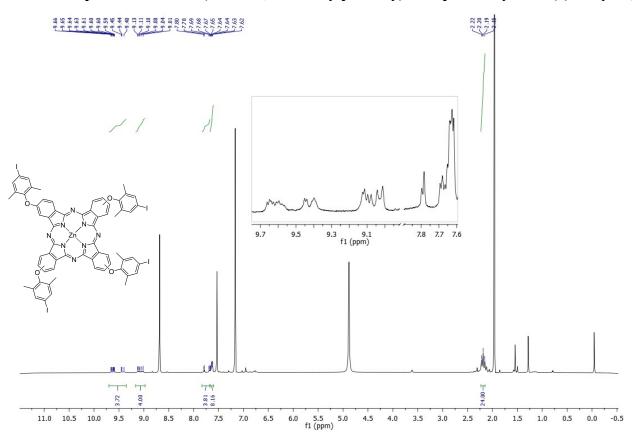
Purification of the crude was carried out by short pad filtration on silica gel, using THF for sample loading and a 2:1 petroleum ether:THF mixture as the eluent. The target compound was obtained as a green solid in 30% yield. 1 H NMR (600 MHz, THF- d_{8}): 8.75 (s, 8H), 6.89 (s, 16H), 6.79 (m, 8H), 2.31 (s, 48H) ppm; 13 C NMR (150 MHz, THF- d_{8}): 159.03, 151.29, 140.23, 135.58, 125.80, 116.82, 115.53, 21.58 ppm. FT-IR: v = 3011, 2918, 2853, 1614, 1587, 1445, 1396, 1389, 1261, 1177, 1132, 1086, 1038, 1022, 947, 868, 833, 744, 723, 683 cm⁻¹. UV-vis (THF): λ_{max} = 679, 357 nm. MALDITOF [M+H]+: m/z =1536.639, (Calcd: 1539.124).

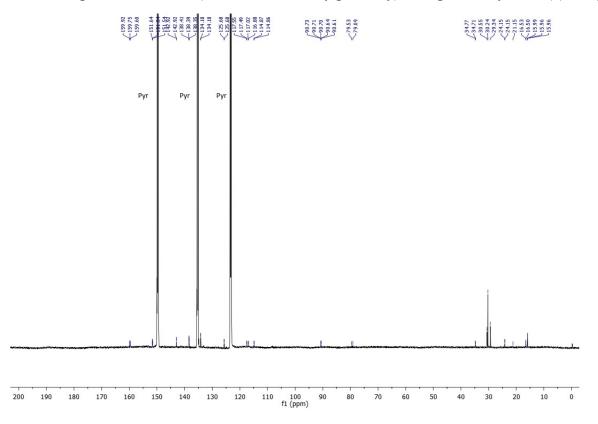

Octakis(p-tolyloxy)-zinc-phthalocyanine (9).

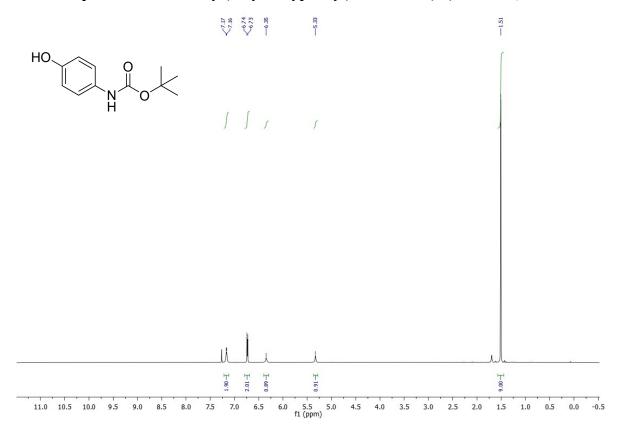
Purification of the crude was performed by short pad filtration on silica gel, using THF for sample loading and gradient elution with increasing polarity, from 7:1 to 3:1 to 2:1 petroleum ether:THF. The target compound was obtained as a green solid in 31% yield. 1 H NMR (600 MHz, THF- d_8): 8.72 (s, 8H), 7.20 – 7.17 (m, 32H), 2.35 (s, 24H) ppm; 13 C NMR (150 MHz, THF- d_8): 156.95, 152.86, 151.27, 135.53, 133.41, 131.15, 119.06, 115.28, 21.05. FT-IR: v = 3028, 2918, 2855, 1605, 1504, 1485, 1447, 1398, 1337, 1265, 1202, 1173, 1138, 1090, 1028, 953, 890, 860, 810, 725, 698, 486, 473 cm⁻¹. UV-vis (THF): $\lambda_{max} = 676$, 356 nm. MALDI-TOF [M+H]⁺: m/z =1425.052, (Calcd: 1426.908).

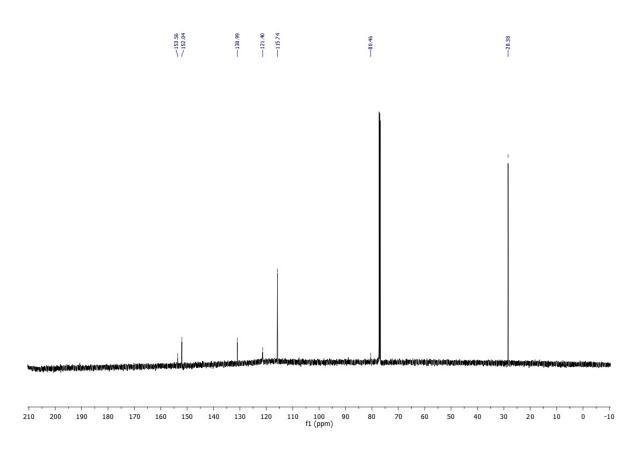

¹H NMR spectrum of tetra-(3,5-dimethylphenoxy)-zinc-phthalocyanine (1) in THF-d₈.

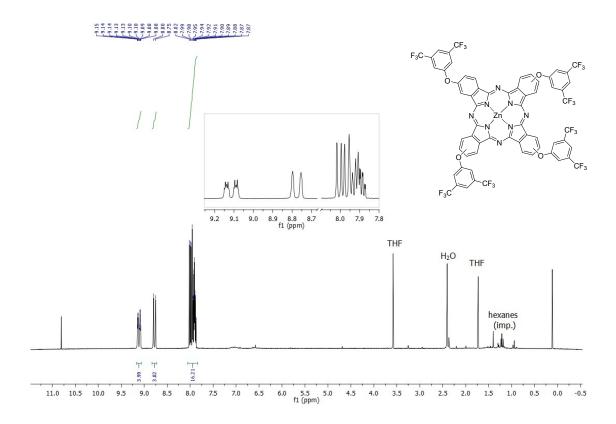

 $^{13}\mathrm{C}$ NMR spectrum of tetra- (3,5-dimethylphenoxy)-zinc-phthalocyanine (1) in THF- d_8 .


¹H NMR spectrum of tetra-(p-tolyloxy)-zinc-phthalocyanine (2) in THF-d₈.

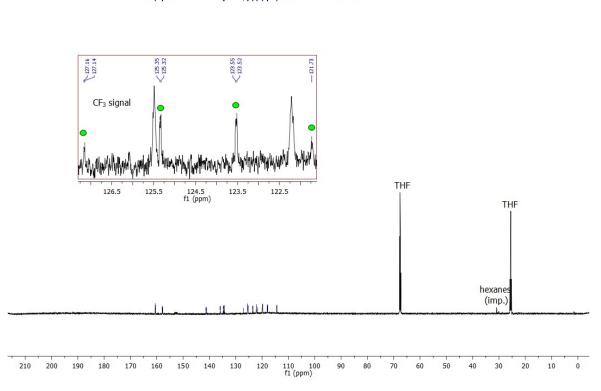

13 C NMR spectrum of tetra-(p-tolyloxy)-zinc-phthalocyanine (2) in THF- d_8 .


¹H NMR spectrum of tetra-(4-iodo-2,6-dimethylphenoxy)-zinc-phthalocyanine (3) in Pyr-d₅.

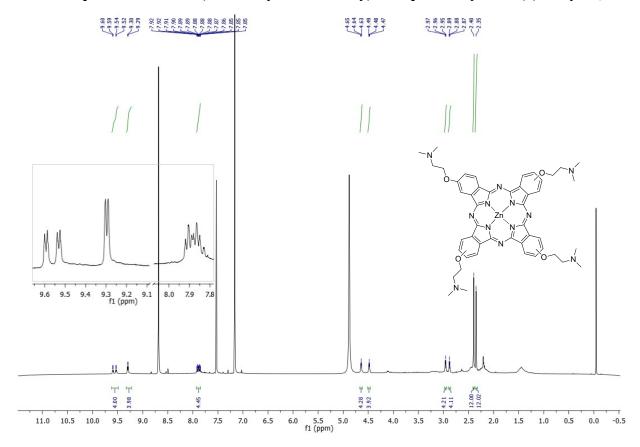

13 C NMR spectrum of tetra-(4-iodo-2,6-dimethylphenoxy)-zinc-phthalocyanine (3) in Pyr- d_5 .


¹H NMR spectrum of *tert*-butyl(4-hydroxyphenyl)carbamate (4a) in CDCl₃.

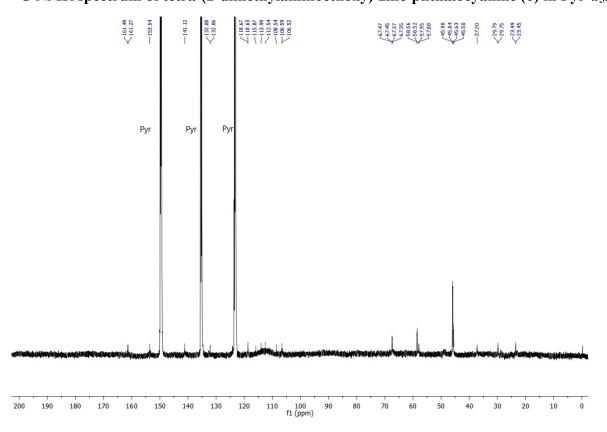
¹³C NMR spectrum of tert-butyl(4-hydroxyphenyl)carbamate (4a) in CDCl₃.

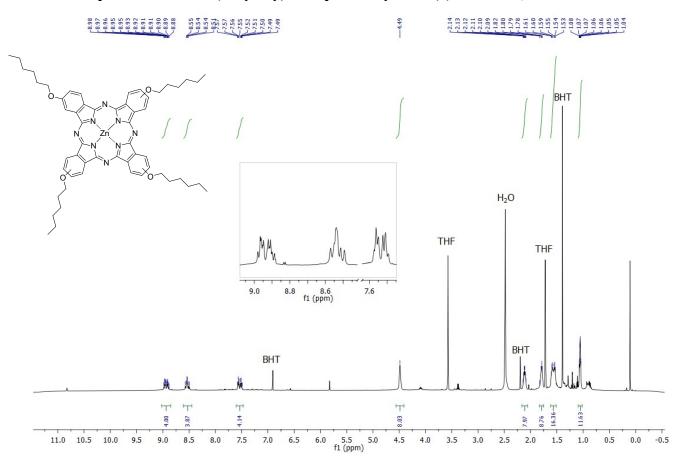


¹H NMR spectrum of tetra-(3,5-bis(trifluoromethyl)phenoxy)-zinc-phthalocyanine (5) in THF- d_8 .

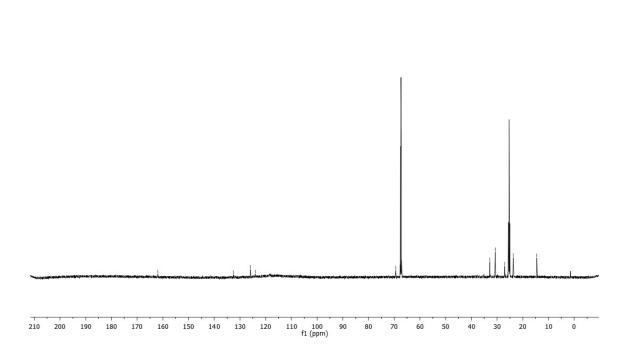


 $^{13}\mathrm{C}$ NMR spectrum of tetra-(3,5-bis(trifluoromethyl)phenoxy)-zinc-phthalocyanine (5) in THF- $d_8.$

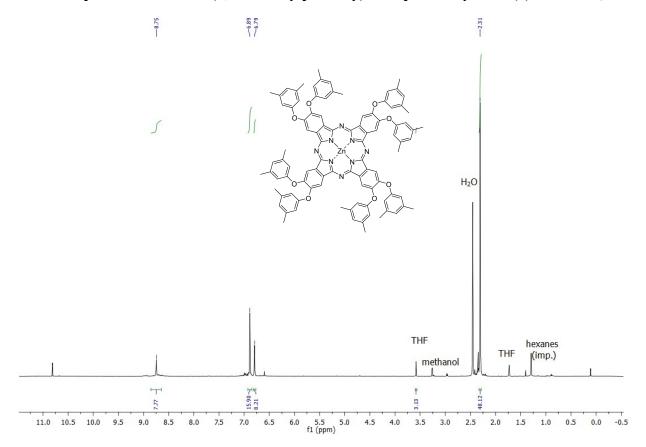

18.05.9 18.


¹H NMR spectrum of tetra-(2-dimethylaminoethoxy)-zinc-phthalocyanine (6) in Pyr-d₅.

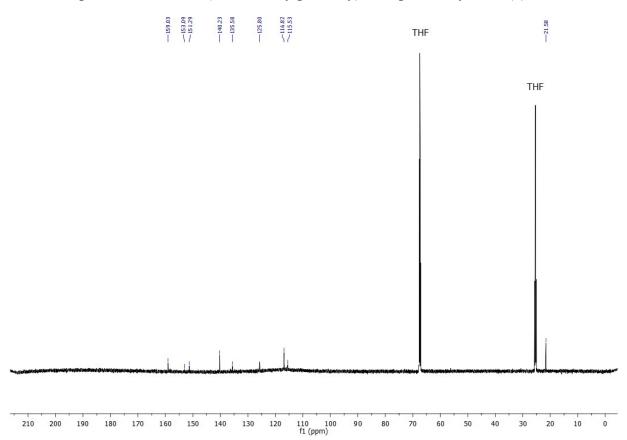
 $^{13}\mathrm{C}$ NMR spectrum of tetra-(2-dimethylaminoethoxy)-zinc-phthalocyanine (6) in Pyr- d_5 .



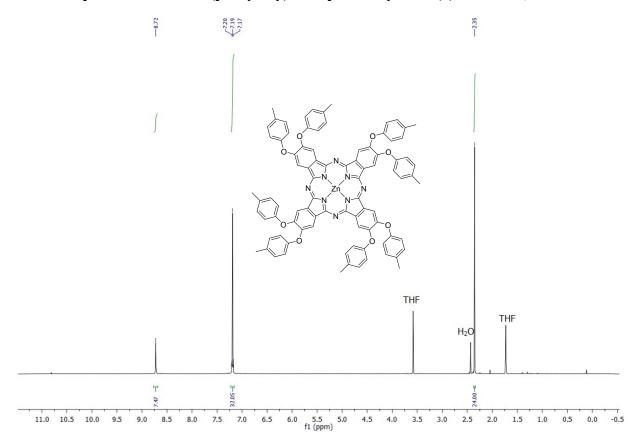
¹H NMR spectrum of tetra-(hexyloxy)-zinc-phthalocyanine (7) in THF-d₈.

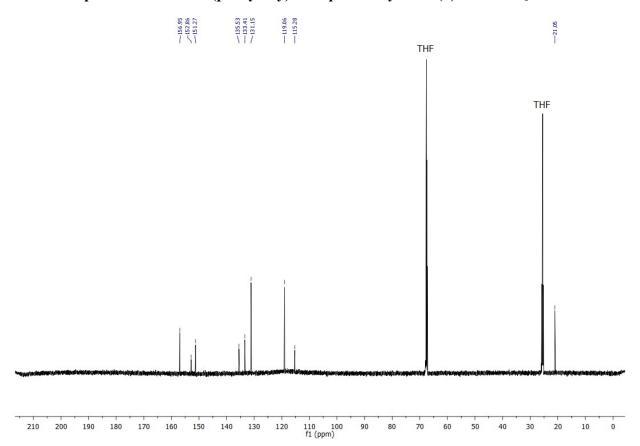

¹³C NMR spectrum of tetra-(hexyloxy)-zinc-phthalocyanine (7) in THF-d₈.

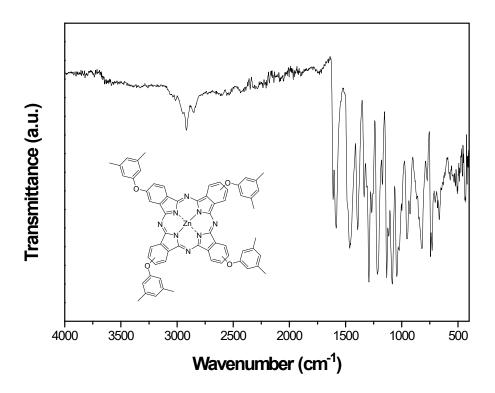
-132.52 -125.90

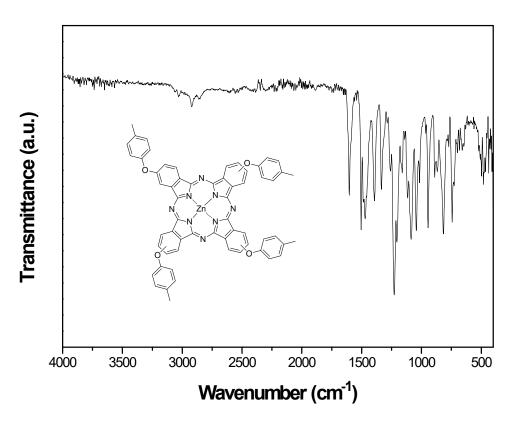


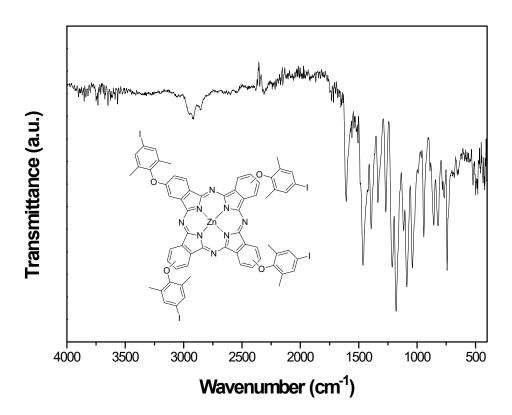
~32.87 ~30.74 ~27.05 ~23.73

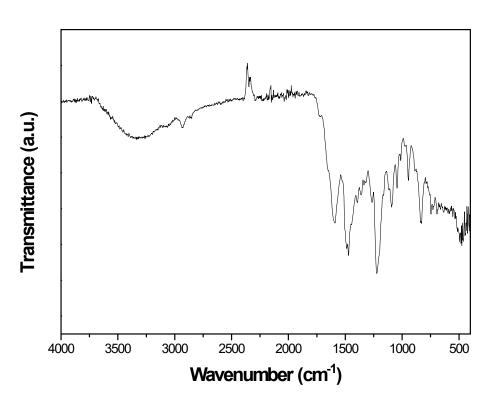

$^1\mathrm{H}$ NMR spectrum of octakis (3,5-dimethylphenoxy)-zinc-phthalocyanine (8) in THF- d_8 .

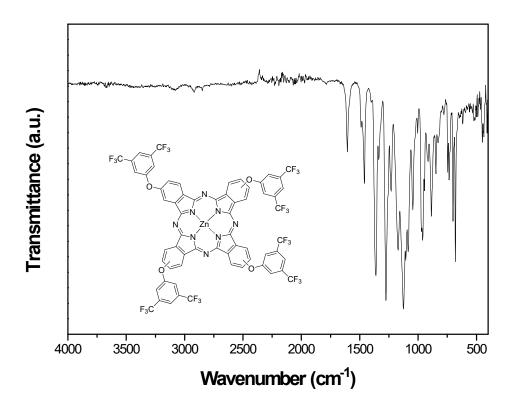

¹³C NMR spectrum of octakis(3,5-dimethylphenoxy)-zinc-phthalocyanine (8) in THF-d₈.

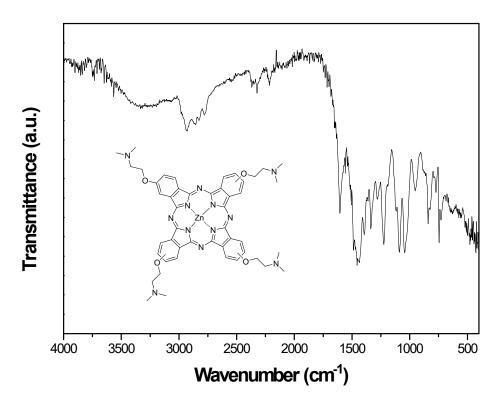

$^1\mathrm{H}$ NMR spectrum of octakis(p-tolyloxy)-zinc-phthalocyanine (9) in THF- d_8 .

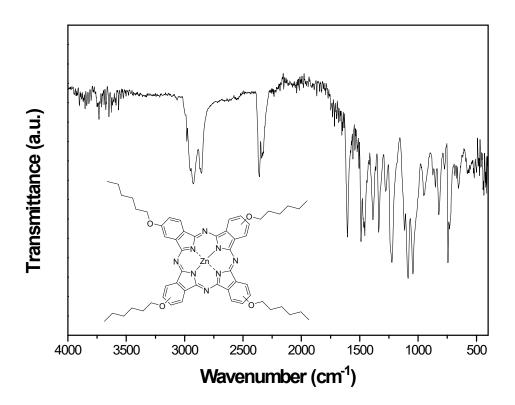

¹³C NMR spectrum of octakis(p-tolyloxy)-zinc-phthalocyanine (9) in THF-d₈.


ATR spectrum of tetra-(3,5-dimethylphenoxy)-zinc-phthalocyanine (1).

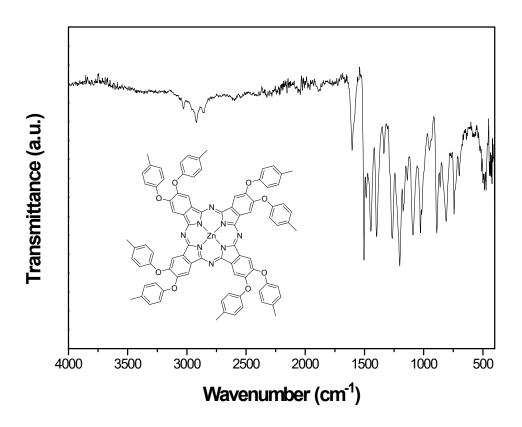

ATR spectrum of tetra-(p-tolyloxy)-zinc-phthalocyanine (2).

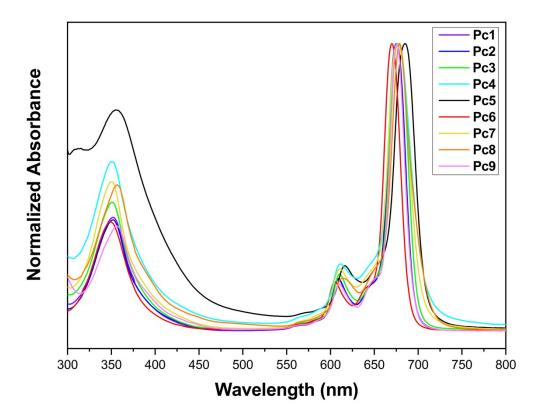

ATR spectrum of tetra-(4-iodo-2,6-dimethylphenoxy)-zinc-phthalocyanine (3).


ATR spectrum of phthalocyanine (4).

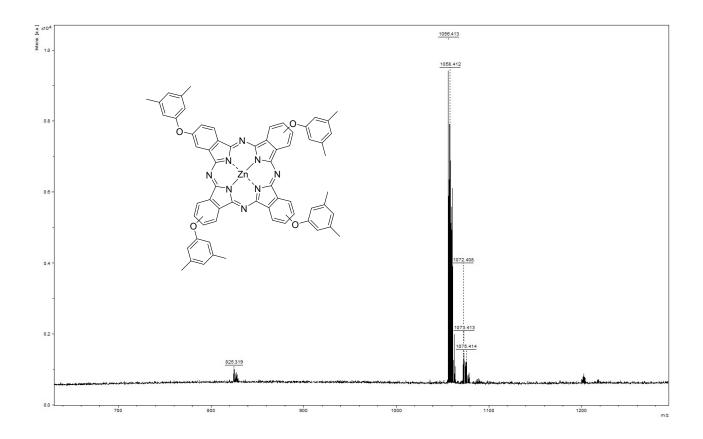

ATR spectrum of tetra-(3,5-bis(trifluoromethyl)phenoxy)-zinc-phthalocyanine (5).


ATR spectrum of tetra-(2-dimethylaminoethoxy)-zinc-phthalocyanine (6).

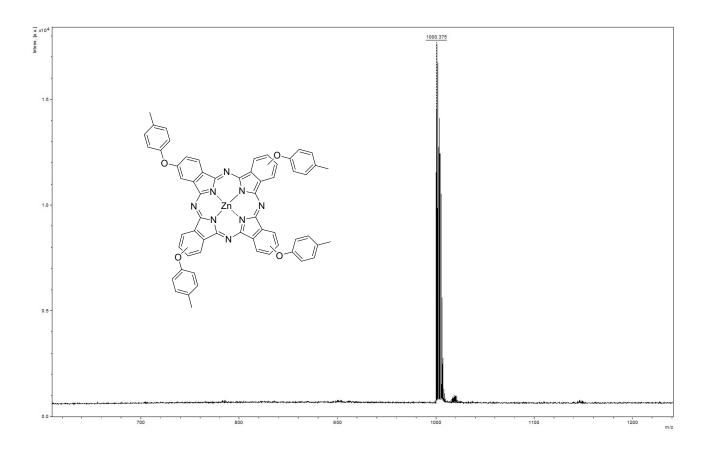

ATR spectrum of tetra-(hexyloxy)-zinc-phthalocyanine (7).


ATR spectrum of octakis(3,5-dimethylphenoxy)-zinc-phthalocyanine (8).

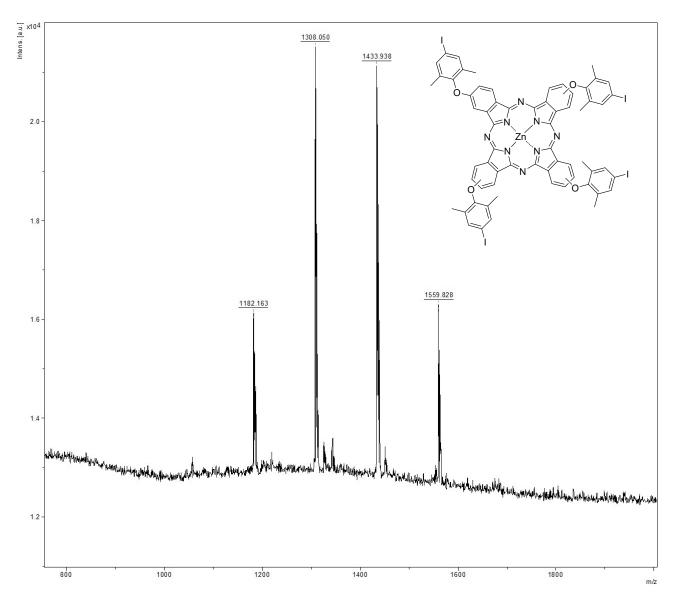
ATR spectrum of octakis(p-tolyloxy)-zinc-phthalocyanine (9).



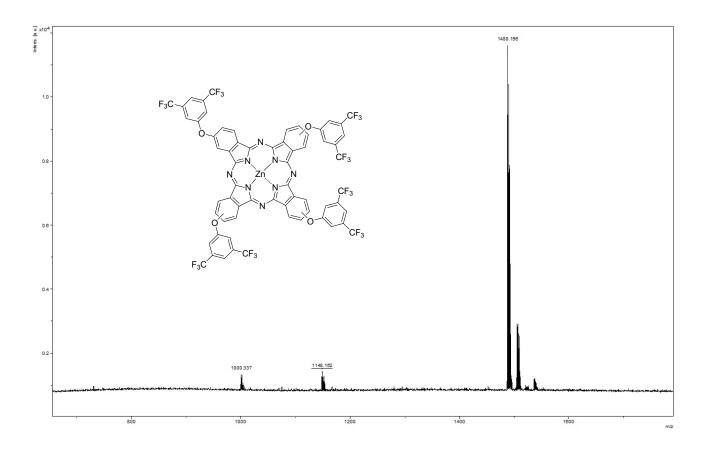
UV-vis spectra of the synthesized zinc phthalocyanines (1-9).



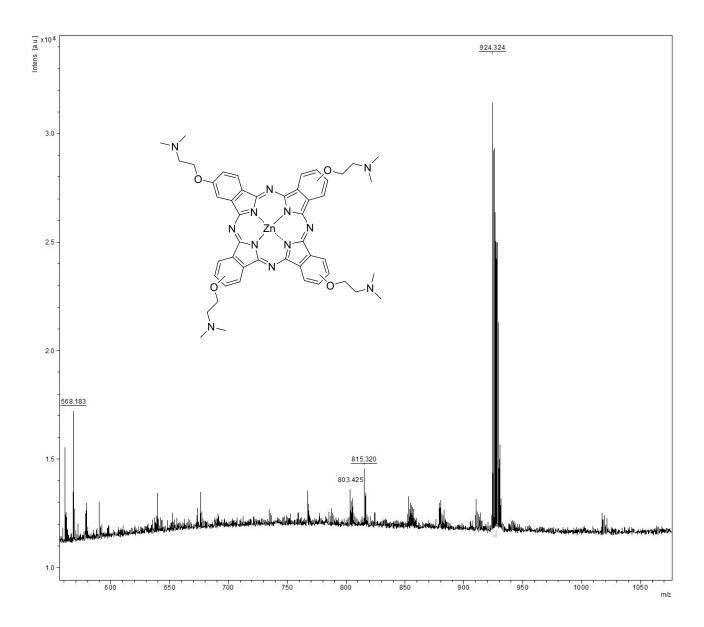
Absorption spectra of zinc phthalocyanines (1-9) in THF, except for 4 in pyridine.


MALDI-TOF spectrum of tetra-(3,5-dimethylphenoxy)-zinc-phthalocyanine (1).

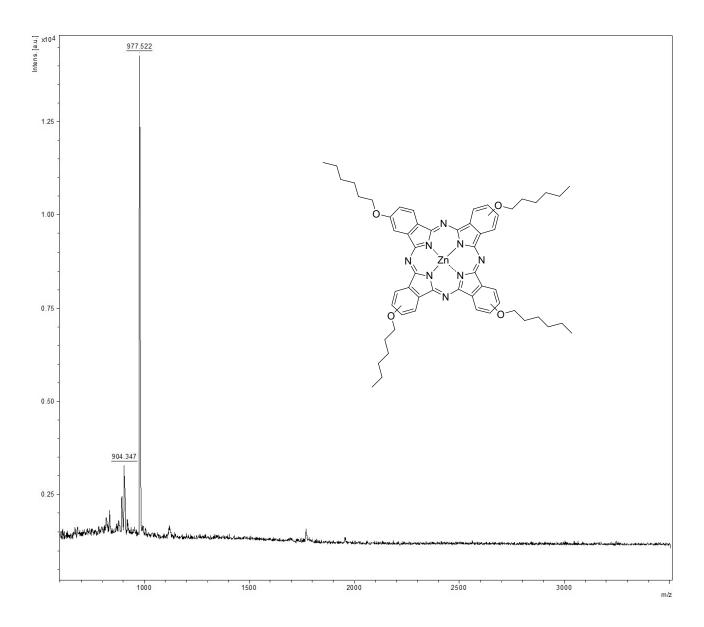
MALDI-TOF spectrum of tetra-(p-tolyloxy)-zinc-phthalocyanine (2).

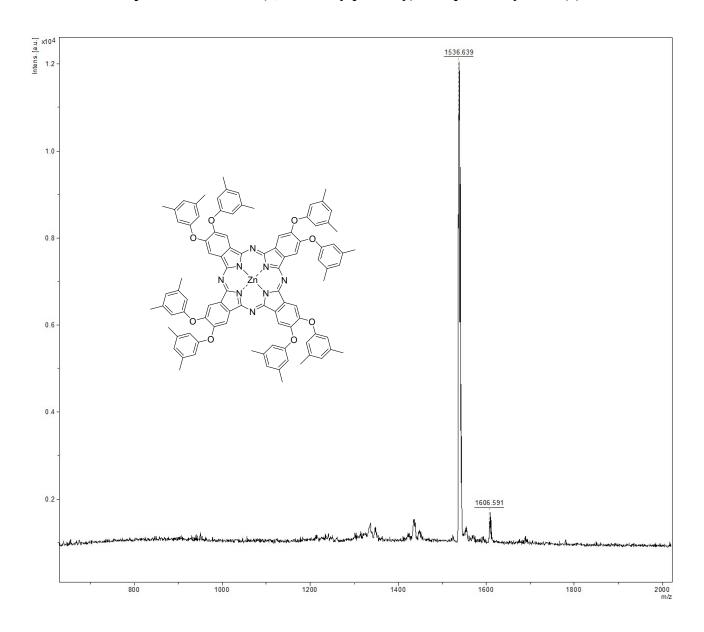


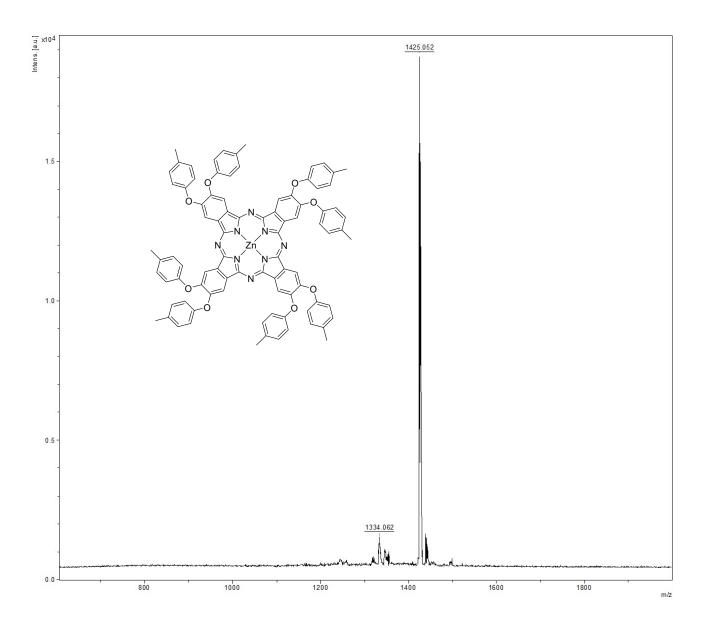
MALDI-TOF spectrum of tetra-(4-iodo-2,6-dimethylphenoxy)-zinc-phthalocyanine (3).



The peaks at m/z 1433.938, 1308.050, and 1182.163 are compatible with the loss of 1, 2, and 3 iodine atoms respectively.


$MALDI-TOF\ spectrum\ of\ tetra-(3,5-bis(trifluoromethyl)phenoxy)-zinc-phthalocyanine\ (5).$


MALDI-TOF spectrum of tetra-(2-dimethylaminoethoxy)-zinc-phthalocyanine (6).


MALDI-TOF spectrum of tetra-(hexyloxy)-zinc-phthalocyanine (7).

MALDI-TOF spectrum of octakis(3,5-dimethylphenoxy)-zinc-phthalocyanine (8).

MALDI-TOF spectrum of octakis(p-tolyloxy)-zinc-phthalocyanine (9).

E-factor calculation

The E-factor (Environmental factor) is used to assess the environmental impact of a chemical process and is defined as the ratio of the total mass of waste generated to the mass of the isolated product.

General equation for the calculation of E-factor:

$$E-factor = \frac{Mass\ of\ total\ waste\ (g)}{Mass\ of\ product\ (g)}$$

In all calculations, water is excluded from the waste count. This exclusion is consistent with standard practices in green chemistry, where water is typically not considered a harmful by-product.¹

An estimated 80% of the organic solvents used in the processes described in our paper are recovered and reused, thanks to careful work-up and purification procedures. In particular, solvent mixtures employed in silica pad filtrations are collected and reused multiple times. Although slight variations in polarity may occur upon reuse, the recycled eluents remained suitable for similar separations. This solvent recovery significantly reduces the amount of waste attributed to the process, leading to a more accurate and representative E-factor. The approach reflects an emphasis on sustainability through the minimization of solvent waste and the efficient use of resources.

For literature-reported procedures in which complete experimental details were not available, reasonable approximations were employed to estimate the E-factor, most of which were derived from established sources:^{2,3}

- It was assumed that crude products obtained from 1.0 g of starting material would require two washes with 20 mL of water or aqueous solvent mixtures, as well as two washes with 15 mL of organic solvents.
- In cases involving solvent extraction, it was estimated that three separate extractions with 50 mL of organic solvent (totaling 150 mL), along with 1 g of a drying agent such as Na₂SO₄ or MgSO₄, would be necessary to isolate 1 g of crude product from the reaction mixture.
- For crystallization steps, it is assumed that 100 mL of solvent are required to isolate 1 g of product, with the procedure performed only once.
- For purifications involving column chromatography, the processing of 1 g of product was assumed to require 400 mL of eluent and a silica gel column packed with 263 g of 60 µm silica gel, as previously reported under ideal conditions (i.e., efficient separation with Rf > 0.3 and optimal sample loading).⁴
- The density of all aqueous solutions (e.g. HCl 1N or aqueous salt solutions) was approximated to 1.0 g/mL.

These standardized approximations were consistently applied across all procedures to facilitate direct comparison while preserving realistic estimates of material consumption and waste production.

• E-factor calculation for compound 1.

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considered toward E-factor (after 80% solvent recovery) (g)
3,5-dimethylphenol			0.36	
DMF	4.0	0.948	3.792	
K ₂ CO ₃			1.2	
4-nitrophthalonitrile			0.5	
Zinc acetate dihydrate			0.172	
DBU	0.4	1.018	0.407	
Water	30.0		30.0	
HCl 1N			2.0	
Silica gel			8.0	
THF	19.5	0.888	17.32	3.463
Hexane	37.5	0.661	24.79	4.958
Methanol	45.0	0.792	35.64	7.128

Amount of product = 0.364 g (48% yield)

Total E-Factor = 257.7

E-factor 80% solvent recovery = 86.9

• E-factor calculation for compound 2.

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considered toward E-factor (after 80% solvent recovery) (g)
4-methylphenol			0.319	
DMF	4.0	0.948	3.792	
K ₂ CO ₃			1.2	
4-nitrophthalonitrile			0.5	
Zinc acetate dihydrate			0.172	
DBU	0.4	1.018	0.407	
Water	28.0		28.0	
HCl 1N			2.0	
Silica gel			10.0	
THF	28.75	0.888	25.53	5.106
Hexane	76.25	0.661	50.40	10.08
Methanol	10.0	0.792	7.92	1.584

Amount of product = 0.313 g (43% yield)

Total E-factor = 326.2

E-factor 80% solvent recovery = 111.3

• E-factor calculation for compound 3.

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considered toward E-factor (after 80% solvent recovery) (g)
4-iodo-2,6-dimethylphenol			0.365	
DMF	2.5	0.948	2.37	
K_2CO_3			0.6	
4-nitrophthalonitrile			0.25	
Zinc acetate dihydrate			0.086	
DBU	0.2	1.018	0.204	
Water	4.5		4.5	
HCl 1N			0.5	
Silica gel			13.0	
THF	40.5	0.888	35.96	7.193
Petroleum ether	66.0	0.666	43.96	8.791
Methanol	25.0	0.792	19.8	3.96

Amount of product = 0.210 g (37% yield)

Total E-factor = 556.6

E-factor 80% solvent recovery = 176.7

• E-factor calculation for compound 5.

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considered toward E-factor (after 80% solvent recovery) (g)
3,5-			0.678	
bis(trifluoromethyl)phenol			0.070	
DMF	4.0	0.948	3.792	
K_2CO_3			1.2	
4-nitrophthalonitrile			0.5	
Zinc acetate dihydrate			0.172	
DBU	0.4	1.018	0.407	
Water	29.0		29.0	
Silica gel			10.0	
Hexane	31.4	0.661	20.755	4.151
Ethyl acetate	20.6	0.902	18.501	3.716

Amount of product = 0.290 g (27% yield)

Total E-factor = 192.1

E-factor 80% solvent recovery = 83.9

• E-factor calculation for compound **6**.

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considered toward E-factor (after 80% solvent recovery) (g)
2-(dimethylamino)ethanol	0.4	0.89	0.356	
DMF	4.0	0.948	3.792	
K_2CO_3			1.2	
4-nitrophthalonitrile			0.5	
Zinc acetate dihydrate			0.172	
DBU	0.4	1.018	0.407	
Water	34.0		4.5	
HCl 1N	4.0		4.0	
Methanol	7.0	0.792	5.544	1.109

Amount of product = 0.330 g (49% yield)

Total E-factor: 47.4

E-factor 80% solvent recovery = 34.0

• E-factor calculation for compound 7.

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considered toward E-factor (after 80% solvent recovery) (g)
Hexan-1-ol	0.4	0.814	0.326	
DMF	4.0	0.948	3.792	
K ₂ CO ₃			1.2	
4-nitrophthalonitrile			0.5	
Zinc acetate dihydrate			0.172	
DBU	0.4	1.018	0.407	
HCl 1N	2.0		2.0	
Water	22.0		22.0	
Silica gel			10.0	
THF	20.0	0.888	17.76	3.552
Hexane	30.0	0.661	19.83	3.966
Methanol	19.0	0.792	15.048	3.010

Amount of product = 0.16 g (22% yield)

Total E-factor = 443.0

E-factor 80% solvent recovery = 179.8

• E-factor calculation for compound 8.

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considered toward E-factor (after 80% solvent recovery) (g)
3,5-dimethylphenol			0.368	
DMF	4.0	0.948	3.792	
K_2CO_3			0.423	
4,5-dichlorophthalonitrile			0.2	
Zinc acetate dihydrate			0.06	
DBU	0.152	1.018	0.155	
HCl 1N	5.0		5.0	
Water	10.0		10.0	
Silica gel			10.0	
THF	30.0	0.888	26.64	5.328
Hexane	60.0	0.661	39.66	7.932
Methanol	10.0	0.792	7.92	1.584

Grams of product = 0.118 g (30% yield)

Total E-factor = 797.4

E-factor 80% solvent recovery = 294.3

• E-factor calculation for compound 9.

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considered toward E-factor (after 80% solvent recovery) (g)
4-methylphenol			0.34	
DMF	4.0	0.948	3.792	
K ₂ CO ₃			0.423	
4,5-dichlorophthalonitrile			0.2	
Zinc acetate dihydrate			0.061	
DBU	0.152	1.018	0.155	
HCl 1N	5.0		5.0	
Water	10.0		10.0	
Silica gel			10.0	
THF	17.7	0.888	15.73	3.146
Hexane	57.3	0.661	38.16	7.630
Methanol	15.0	0.792	11.88	2.376

Amount of product = 0.114 g (31% yield)

Total E-factor = 751.1

E-factor 80% solvent recovery = 289.5

E-factor calculation for compound 2 synthesized according to the literature method.⁵

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considering a 80% recovery (g)
4-methylphenol			6.92	
4-nitrophthalonitrile			5.41	
DMSO	60.0	1.100	66.0	
K_2CO_3			10.35	
Dichloromethane	200.0	1.327	265.4	53.08
Na ₂ CO ₃ 5% solution in water	200.0		200.0	
Sodium sulfate			7.0	
Hexane	680.0	0.661	449.48	89.90

Amount of product = 6.83 g (73% yield)

E-factor = 147.0

E-factor assuming 80% solvent recovery = 63.2

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considering a 80% recovery (g)
4-(p-methylphenoxy)phthalonitrile			2.34	
Zinc powder			1.308	
Ammonium molibdate			0.2	
Neutral alumina			263.0	
Toluene	3.0	0.862	2.586	0.52
THF	1025.0	0.888	910.2	182.04
Chloroform	30.0	1.489	44.67	8.93
Methanol	450.0	0.792	356.4	71.28

Amount of product = 1.22 g (52% yield)

E-factor = 1294.7

E-factor assuming 80% solvent recovery = 433.1

Total yield: 38%, total E-factor: 1441.7, total E-factor assuming 80% solvent recovery = 496.3

E-factor calculation for compound 5 synthesized according to the literature method.⁶

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considering a 80% recovery (g)
4-nitrophthalonitrile			1.0	
3,5-bis(trifluoromethyl)phenol			1.66	
DMF	40.0	0.948	37.92	
K ₂ CO ₃			7.98	
Ethanol	130.0	0.789	102.57	20.514

Amount of product = 1.3 g (63% yield)

E-factor = 115.2

E-factor assuming 80% solvent recovery = 52.1

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considering a 80% recovery (g)
3,5-			0.06	
bis(trifluoromethyl)phenoxy]phthalonitrile				
Zinc acetate			0.01	
Dimethylaminoethanol	2.0		1.78	
Hexane	4.5	0.661	2.97	0.594
Silica gel			2.89	
Dichloromethane	4.26	1.327	5.65	1.13
Methanol	0.14	0.792	0.11	0.022

Amount of product = 0.012 g (11% yield)

E-factor = 1121.5

E-factor assuming 80% solvent recovery = 539.5

Total yield: 7%, total E-factor: 1236.7, total E-factor assuming 80% solvent recovery = 591.6.

E-factor calculation for compound **6** synthesized according to the literature.

Synthetic procedure with 13% total yield:⁷

• The amount of DMF was estimated to be 4 mL. To calculate the quantity of solvent required for extraction, a crude product mass of 0.75 g was assumed.

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considering a 80% recovery (g)
4-nitrophthalonitrile			0.5	
1,2-(dimethylamino)-ethanol			0.356	
K ₂ CO ₃			4.0	
DMF	4.0	0.948	3.792	
Chloroform (extraction)	398.2	1.489	592.92	118.584
Na ₂ SO ₄			0.75	
Silica gel			197.25	
Methanol	14.3	0.792	11.326	2.265

Amount of product = 0.565 g (91% yield)

E-factor = 1434.2

E-factor assuming 80% solvent recovery = 579.0

• A crude product mass of 250 mg was assumed.

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considering a 80% recovery (g)
4-(2-(dimethylamino)ethoxy)phthalonitrile			0.215	
DBU			0.152	
Pentanol	8.0		6.488	
Zinc acetate			0.064	
Aqueous acetic acid	6.45	1.0	6.45	
Diethyl ether	6.45	0.713	4.599	0.92
Ethyl acetate	6.45	0.902	5.818	1.164
Dichloromethane	6.45	1.327	8.559	1.712
Chloroform	83.95	1.489	125.001	25.00
K ₂ CO ₃	37.5		37.5	
Silica gel			65.75	
Methanol	40.0		31.68	6.336

Product obtained = 0.032 g (14% yield)

E-factor = 9132.6

E-factor assuming 80% solvent recovery = 4741.2

Total yield: 13%, total E-factor: 10566.8, Total E-factor assuming 80% solvent recovery = 5320.2.

Synthetic procedure with 55% total yield:8

The corresponding phthalonitrile precursor for this synthesis was prepared according to reference ⁷.

• For the calculation of extraction solvent volumes, it was assumed that 0.6 g of crude product was obtained.

Chemical	Volume (mL)	Density (g/mL)	Mass (g)	Mass of solvents considering a 80% recovery (g)
4-(2-(dimethylamino)ethoxy)phthalonitrile			0.5	
DMAE	0.7	0.890	0.623	
Butan-1-ol	0.7	0.810	0.567	
Zinc acetate			0.15	
Dichloromethane	90.0	1.327	119.43	23.886
Na ₂ SO ₄			0.6	
Al ₂ O ₃			50.0	
Chloroform	240.0	1.489	357.36	71.472

Amount of product = 0.32 g (60% yield)

E-factor = 1652.8

E-factor assuming 80% solvent recovery = 460.9

Total yield: 55%, total E-factor: 3087.0, total E-factor assuming 80% solvent recovery: 1039.9.

References

- (1) Sheldon, R. A. The E Factor at 30: A Passion for Pollution Prevention. *Green Chem.* **2023**, *25* (5), 1704–1728. https://doi.org/10.1039/D2GC04747K.
- (2) Osedach, T. P.; Andrew, T. L.; Bulović, V. Effect of Synthetic Accessibility on the Commercial Viability of Organic Photovoltaics. *Energy Environ. Sci.* **2013**, *6* (3), 711. https://doi.org/10.1039/c3ee24138f.
- (3) Zanotti, G.; Palmeri, F.; Raglione, V. Phthalocyanines Synthesis: A State-of-The-Art Review of Sustainable Approaches Through Green Chemistry Metrics. *Chemistry A European Journal* **2024**, *30* (44), e202400908. https://doi.org/10.1002/chem.202400908.
- (4) Ghiglietti, E.; Incarbone, E. A.; Mattiello, S.; Beverina, L. Efficient Copper-Free Sonogashira Coupling in Water and under Ambient Atmosphere. *Eur J Org Chem* **2024**, *27* (21), e202400223. https://doi.org/10.1002/ejoc.202400223.
- (5) Shankar, R.; Vasudevan, P.; Jha, N. K. Synthesis, Characterisation, Association in Solution and Electrical Conductivity in Solid State of a Few Aryloxy Substituted Soluble Phthalocyanines. *Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry* **1997**, *27* (9), 1277–1297. https://doi.org/10.1080/00945719708000158.
- (6) Korkmaz, E.; Ahmetali, E.; Atmaca, G. Y.; Karaoğlu, H. P.; Erdoğmuş, A.; Koçak, M. B. Investigation of Photophysical and Photochemical Properties of Phthalocyanines Bearing Fluorinated Groups. *Monatsh Chem* **2020**, *151* (2), 181–190. https://doi.org/10.1007/s00706-019-02543-y.
- (7) Zhang, L.; Huang, J.; Ren, L.; Bai, M.; Wu, L.; Zhai, B.; Zhou, X. Synthesis and Evaluation of Cationic Phthalocyanine Derivatives as Potential Inhibitors of Telomerase. *Bioorganic & Medicinal Chemistry* **2008**, *16* (1), 303–312. https://doi.org/10.1016/j.bmc.2007.09.037.
- (8) Pinto, S. M. A.; Tomé, V. A.; Calvete, M. J. F.; Pereira, M. M.; Burrows, H. D.; Cardoso, A. M. S.; Pallier, A.; C.A. Castro, M. M.; Tóth, É.; Geraldes, C. F. G. C. The Quest for Biocompatible Phthalocyanines for Molecular Imaging: Photophysics, Relaxometry and Cytotoxicity Studies. *Journal of Inorganic Biochemistry* **2016**, *154*, 50–59. https://doi.org/10.1016/j.jinorgbio.2015.10.013.