

SUPPLEMENTARY INFORMATION

Asymmetric Synthesis of 4,5-Dihydropyrrole Derivatives via DKR: DROC of Activated Aziridines with Enaminones

Amit K. Sharma, Poulomi Mondal, ^[a] Ranjan Mali, ^[a] Noimur Rahman, Nilay K. Pal, ^[a] and Manas K. Ghorai ^[a]

^aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India

***Corresponding Author**

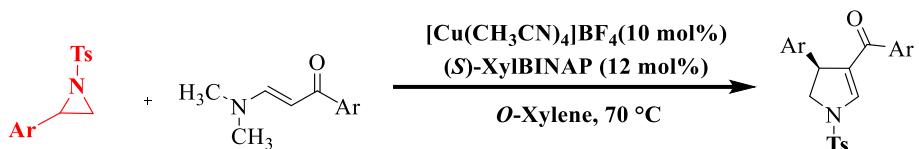
Manas K. Ghorai, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India; orcid.org/0000-0002-0472-4757; Phone: (+91)-512-2597518; Email: mkghorai@iitk.ac.in; Fax: (+91)-512-2596806

TABLE OF CONTENTS

Sl. No.	Contents	Page No.
1.	General Information	S2
2.	Experimental Procedures	S3
3.	X-ray Crystallographic Studies	S4-S5
4.	Analytical and Spectral Data of the Synthesized Compounds	S6-S20
5.	¹ H and ¹³ C NMR Spectra, and HPLC chromatograms of the synthesized compounds	S21-S75

1. General Information

All the chemicals involved in the synthesis were purchased from Merck, TCI and were used without further purification. Thin layer chromatography (TLC) was carried out for monitoring the progress of the reactions using silica gel 60 F254 precoated plates. TLC spots were visualized using an ultraviolet (UV) lamp or I_2 stain. Silica gel (230–400 mesh size) was used for flash column chromatographic purification using a combination of ethyl acetate and petroleum ether as the eluent. Unless otherwise mentioned, all of the reactions were carried out in oven-dried glassware under an inert atmosphere of nitrogen or argon using dry solvents. The purity of the synthesized products was confirmed by melting point, infrared Fourier transform infrared spectroscopy (FT-IR), Proton nuclear magnetic resonance (1H NMR) and ($^{13}C\{^1H\}$ NMR) spectroscopy. The melting points were determined in open capillaries in an Optics Technology melting point apparatus and are uncorrected. 1H NMR spectra were obtained at frequencies of 400 and 500 MHz. The chemical shifts are reported in parts per million (ppm, δ) with tetramethylsilane serving as the internal standard at δ 0.00. The splitting patterns observed in the 1H NMR spectra are noted as singlet (s), doublet (d), doublet of doublets (dd), triplet (t), multiplet (m), *etc.* Proton-decoupled carbon nuclear magnetic resonance ($^{13}C\{^1H\}$ NMR) spectra were recorded using frequencies of 100 and 125 MHz. High-resolution mass spectrometry (HRMS) was performed using an electrospray ionization (ESI) time-of-flight (TOF) mass spectrometer. KBr pellets were used for IR spectra of solid compounds. The enantiomeric excess (*ee*) of samples was measured using chiral high-performance liquid chromatography (HPLC) equipped with OJ-H, AS-H, and OD-H columns and an ultraviolet–visible (UV/vis) detector, with a mobile phase of hexane and isopropanol, and detection at 254 nm. Melting points were determined using a hot-stage apparatus and are uncorrected. Optical rotations were measured using a 6 mL cell with a 50 mm path length and are reported as $[\alpha]_D^{25}$ (*c* in g per 100 mL solvent) at 25 °C. The monosubstituted *N*-tosylaziridines and *N*-arylsulfonylaziridines were prepared by following the literature reports.⁷ All the reactions were performed in accordance with the established chemical safety protocols. Appropriate personal protective measures were taken. Experimental procedures, including the preparation of aziridines and transition-metal catalysts, were conducted in a well-ventilated fume hood. All the hazardous chemicals were handled with proper care and safety guidelines. No unusual or unexpected hazards were encountered during the experimental work.

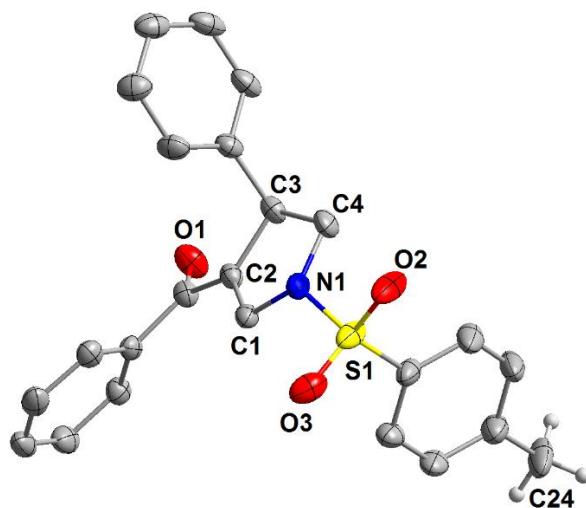

.

2. Experimental Procedures

General procedure for the synthesis of (*E*)-3-(dimethylamino)-1-Arylprop-2-en-1-one^[6]

Under an inert atmosphere, 1,1-dimethoxy-*N,N*-dimethylmethanamine (1.4 equiv.) was added to a solution of acetophenone (1.0 equiv.) in toluene, and the reaction mixture was stirred at 110 °C. Reaction progress was monitored by thin-layer chromatography (TLC). Upon completion, the reaction mixture was extracted with ethyl acetate, and the combined organic layers were washed with water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude product was purified by column chromatography using ethyl acetate/hexane as the eluent.

General procedure for the Dynamic Kinetic Resolution of Aziridines



In a double-neck round-bottom flask, $[(\text{CH}_3\text{CN})_4\text{Cu}]\text{BF}_4$ (10 mol%) and (S)-XylBINAP (12 mol%) were added under an argon atmosphere. The system was evacuated and refilled with argon five times. Subsequently, 1.0 mL of toluene was introduced, and the mixture was stirred at room temperature for 30 minutes, resulting in a clear solution. This was followed by the sequential addition of the given aziridine (1 equiv), dissolved in 1 mL toluene, and Enaminone (1 equiv), also dissolved in 1 mL toluene. The reaction mixture was stirred at room temperature and gradually heated to 70 °C using an oil bath and the disappearance of aziridine was monitored by TLC, visualized using iodine and UV light. After completion of the reaction, 10 mL of saturated aqueous NaHCO_3 solution and 10 mL of EtOAc were added, and the layers were separated. The aqueous layer was further extracted with EtOAc (3 x 10 mL). The organic extracts were dried over anhydrous Na_2SO_4 , and the solvent was evaporated under reduced pressure. The crude product was purified using flash column chromatography on silica gel (230–400 mesh), eluting with 7% ethyl acetate in petroleum ether. For the preparation of corresponding racemic products for HPLC assay, a similar method was employed using $[(\text{CH}_3\text{CN})_4\text{Cu}]\text{BF}_4$ (15 mol%), 1 equiv of aziridine, and 1 equiv of the respective nucleophiles, all in toluene.

3. X-ray Crystallographic Studies

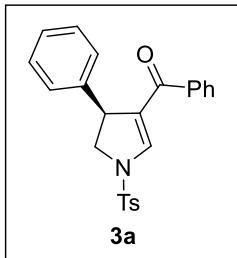
The pure compound **3a** was dissolved in minimum amount of EtOAc to ensure complete dissolution. Then hexane was added dropwise along the sides of the vial and the solvent system was set still and allowed to evaporate slowly leading to the formation of the corresponding crystals. Single-crystal X-ray studies were performed on a CCD Bruker SMART APEX diffractometer equipped with an Oxford Instruments low-temperature attachment. Data were collected at 100(2) K using graphite monochromatic Mo K_{α} radiation ($\lambda_{\alpha} = 0.71073$ Å). The frames were indexed, integrated, and scaled using the SMART and SAINT software packages¹ and the data were corrected for absorption using the SADABS program.² The structures were solved and refined with the SHELX³ and OLEX2⁴ suites of programs, while additional crystallographic calculations were performed by the program PLATON. All hydrogen atoms were included in the final stages of the refinement and were refined with a typical “riding model”. Disordered solvent molecules in the unit cell have been masked using Olex-2 mask program. The crystallographic figures have been generated using Diamond 3.1e⁵ software. Supplementary crystallographic data including their CCDC numbers (2392388 and 2392389) of the studied compounds can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

X-Ray Crystallographic Structure of **3a**.

Figure S1. X-ray crystallographic structure of **3a** (CCDC 2447031) with important atoms labelled. All the hydrogen atoms are omitted for the sake of clarity. Thermal ellipsoids are drawn at the 40% probability level.

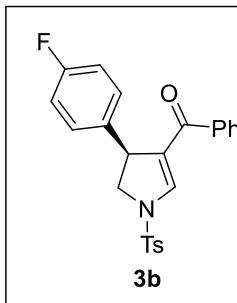
Table 1 Crystal data and structure refinement for **3a**.

Parameters	3a
Empirical formula	C ₂₄ H ₂₁ NO ₃ S
Formula weight	403.48
Crystal system	monoclinic
Space group	C2
a/Å	40.9515(11)
b/Å	5.8174(2)
c/Å	19.1046(5)
α/°	90
β/°	115.7480(10)
γ/°	90
V/Å ³	4099.4(2)
Z	8
ρ _{calc} g/cm ³	1.307
μ/mm ⁻¹	0.183
F(000)	1696.0
2Θ range for data collection/°	3.876 to 56.608
Index ranges	-49 ≤ h ≤ 54, -7 ≤ k ≤ 7, -25 ≤ l ≤ 25
Reflections collected	35300
Independent reflections	10214 [R _{int} = 0.0313, R _{sigma} = 0.0320]
Data/restraints/parameters	10214/1/525
Goodness-of-fit on F ²	1.041
Final R indexes [I>=2σ (I)] ^a	R ₁ = 0.0442, wR ₂ = 0.1178
Final R indexes [all data] ^a	R ₁ = 0.0479, wR ₂ = 0.1211
CCDC No.	2447031
^a R ₁ = Σ F _o - F _c /Σ F _o with F _o ² >2σ(F _o ²). wR ₂ = [Σw(F _o ² - F _c ²) ² /Σ F _o ² ²] ^{1/2}	


Supplementary References

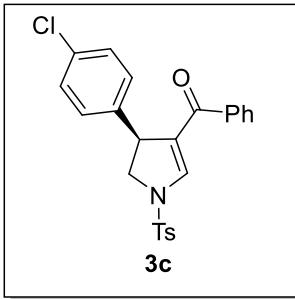
1. SAINT+ Software for CCD Diffractometers; Bruker AXS: Madison, WI, 2000.
2. G. M. Sheldrick, SADABS 2.0; University of Göttingen: Göttingen, Germany, 2000.
3. G. M. Sheldrick, SHELXL-2014: Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 2014.
4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, 42, 339–341.
5. K. Bradenburg, Diamond, Version 3.1e; Crystal Impact GbR: Bonn, Germany, 200
6. (a) R. Li, X. Wang, Z. Wei, C. Wu, F. Shi, *Org. Lett.* 2013, **15**, 4366; (b) Y. Jiang, V. Z. Y. Khong, E. Lourdusamy and C. -M. Park, *Chem. Commun.* 2012, **48**, 3133.

7. (a) J. U. Jeong, B. Tao, I. Sagasser, H. Henniges and K. B. Sharpless, *J. Am. Chem. Soc.*, 1998, **120**, 6844–6845. (b) M. Cernerud, H. Adolfsson and C. Moberg, *Tetrahedron: Asymmetry*, 1997, **8**, 2655–2662.


4. Analytical and Spectral Data of the Synthesized Compounds

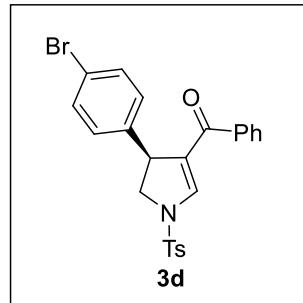
(S)-Phenyl(4-phenyl-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)methanone

Following the general method described above, **1a** (50 mg, 0.183 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (32 mg, 0.183 mmol, 1.0 equiv.) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (6 mg, 0.018 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (16.1 mg, 0.022 mmol, 0.12 equiv.) in toluene to afford **3a** (66.25 mg, 0.164 mmol) as a white powder in 90% yield. R_f 0.40 (20% ethyl acetate in petroleum ether) M_p = 148–150 °C; $[\alpha]_D^{25} = -15.189$ ($c = 0.158$ in CH_2Cl_2) for 95% *ee* sample. Optical purity was determined by chiral HPLC analysis (OD-H column), hexane–2-propanol, 97:3; flow rate = 1.0 mL/min; t_R 1: 43.30 min (minor), t_R 2: 54.23 min (major); R_f 0.3 (10% ethyl acetate in petroleum ether); IR ν_{max} (KBr, cm^{-1}): 2924.4, 2853.6, 1625.1, 1597.0, 1493.7, 1453.9, 1366.1, 1355.7, 1238.4, 1195.2, 1160.7, 1083.0, 1032.8, 1011.9, 968.2, 885.5, 863.5, 842.4, 813.8, 795.1, 776.3, 759.2, 722.4, 667.8, 625.0, 584.1, 541.1, 494.3; ^1H NMR (500 MHz, CDCl_3) δ 7.72 (d, $J = 8.3$ Hz, 2H), 7.63 (dd, $J = 8.1, 1.2$ Hz, 2H), 7.54 (t, $J = 7.4$ Hz, 1H), 7.44 (t, $J = 7.6$ Hz, 2H), 7.39 (d, $J = 8.1$ Hz, 2H), 7.31 (d, $J = 1.1$ Hz, 1H), 7.24 – 7.14 (m, 3H), 7.08 (dd, $J = 6.8, 1.5$ Hz, 2H), 4.52 (dd, $J = 11.1, 5.0$ Hz, 1H), 4.04 (t, $J = 11.0$ Hz, 1H), 3.77 (dd, $J = 10.8, 5.1$ Hz, 1H), 2.48 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 190.4, 145.2, 142.8, 142.3, 139.1, 133.2, 132.1, 130.4, 128.9, 128.6, 128.4, 127.6, 127.3, 127.1, 126.8, 56.8, 47.1, 21.8; HRMS (ESI-TOF) m/z : $[\text{M} + \text{H}]^+$ Calcd for $\text{C}_{24}\text{H}_{21}\text{NO}_3\text{S}$ 404.1315; Found 404.1313.


(S)-(4-(4-Fluorophenyl)-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)(phenyl)methanone

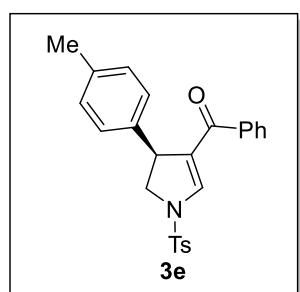
Following the general method described above, **1b** (50 mg, 0.172 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (30 mg, 0.172 mmol, 1.0 equiv.) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (5.38 mg, 0.017 mmol, 0.1 equiv) in the presence of (*S*)-XylBINAP (15.13 mg, 0.021 mmol, 0.12 equiv.) in toluene to afford **3b** (57.87 mg, 0.137 mmol) as a white powder in 80% yield. R_f 0.39 (20% ethyl acetate in petroleum ether) M_p = 156–158 °C; $[\alpha]_D^{25} = -32.192$ ($c = 0.125$ in CH_2Cl_2) for 80.06% *ee* sample. Optical

purity was determined by chiral HPLC analysis (AS-H column), hexane–2-propanol, 90:10 ; flow rate = 1.0 mL/min; t_R 1: 29.21 min(major), t_R 2: 64.89 min (minor); IR ν_{max} (KBr, cm^{-1}): 2922.2, 2852.7, 1624.1, 1589.3, 1575.8, 1508.3, 1462.0, 1444.7, 1367.5, 1357.9, 1238.3, 1220.9, 1184.3, 1157.3, 1085.9, 1033.8, 1012.6, 904.6, 869.9, 837.1, 815.9, 748.4, 711.4, 704.5, 663.5, 621.1, 611.4, 586.4, 540.1, 449.4, 426.4, 407.0; 1H NMR (500 MHz, $CDCl_3$) δ 7.70 (d, J = 8.3 Hz, 2H), 7.60 (dd, J = 8.2, 1.2 Hz, 2H), 7.57 – 7.50 (m, 1H, 7.43 (t, J = 7.6 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 1.1 Hz, 1H), 7.03 (dd, J = 8.7, 5.3 Hz, 2H), 6.88 (t, J = 8.7 Hz, 2H), 4.49 (dd, J = 11.1, 4.8 Hz, 1H), 4.01 (t, J = 11.0 Hz, 1H), 3.72 (dd, J = 10.8, 4.9 Hz, 1H), 2.47 (s, 3H); $^{13}C\{^1H\}$ NMR (125 MHz, $CDCl_3$) δ 190.4, 161.94 (d, J = 245.8 Hz), 145.5, 143.0, 139.1, 138.2, 133.3, 132.3, 130.5, 128.8, 128.6 (d, J = 8.0 Hz) 128.5, 127.7, 126.7, 115.65 (d, J = 21.5 Hz), 56.9, 46.5, 21.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for $C_{24}H_{20}FNO_3S$ 422.1221; Found 422.1231.


(S)-(4-(4-Chlorophenyl)-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)(phenyl)methanone

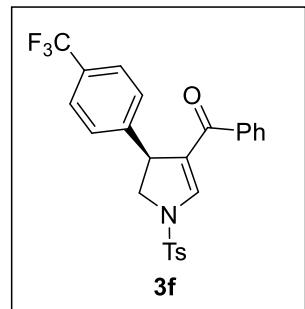
Following the general method described above, **1c** (50 mg, 0.163 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (29 mg, 0.163 mmol, 1.0 equiv.) and $[Cu(CH_3CN)_4]BF_4$ (5.1 mg, 0.016 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (14.37 mg, 0.020 mmol, 0.12 equiv.) in toluene to afford **3c** (55.52 mg, 0.127 mmol) as a white powder in 78% yield. R_f 0.41 (20% ethyl acetate in petroleum ether); Mp = 150–152 °C; $[\alpha]_D^{25} = -12.855$ (c = 0.198 in CH_2Cl_2) for 95.42% *ee* sample. Optical purity was determined by chiral HPLC analysis (AS-H column), hexane–2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 29.96 min(major), t_R 2: 48.64 min (minor); IR ν_{max} (KBr, cm^{-1}): 2922.2, 2852.7, 1622.1, 1591.3, 1573.9, 1492.9, 1464.0, 1444.7, 1411.9, 1367.5, 1238.3, 1205.5, 1184.3, 1157.3, 1085.9, 1033.8, 1014.6, 962.5, 904.6, 869.9, 839.0, 817.8, 794.7, 779.2, 738.7, 727.2, 717.5, 704.0, 669.3, 657.7, 634.6, 619.1, 611.4, 584.4, 538.1, 516.9; 1H NMR (500 MHz, $CDCl_3$) δ 7.70 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 7.0 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 1.0 Hz, 1H), 7.16 (d, J = 8.4 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 4.47 (dd, J = 11.1, 4.8 Hz, 1H), 4.02 (t, J = 11.0 Hz, 1H), 3.71 (dd, J = 10.8, 4.9 Hz, 1H), 2.47 (s, 3H); $^{13}C\{^1H\}$ NMR (125 MHz, $CDCl_3$) δ 190.3, 145.4, 143.1, 140.8, 138.9, 133.2, 133.1, 132.2, 130.4, 129.0,

128.7, 128.4, 128.4, 127.6, 126.3, 56.6, 46.6, 21.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₀ClNO₃S 438.0925; Found 438.0939.


(S)-(4-(4-Bromophenyl)-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)(phenyl)methanone

Following the general method described above, **1d** (50 mg, 0.142 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (25 mg, 0.142 mmol, 1.0 equiv) and [Cu(CH₃CN)₄]BF₄ (4.46 mg, 0.014 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (12.5 mg, 0.017 mmol, 0.12 equiv.) in toluene to afford **3d** (56.19 mg, 0.117 mmol) as a white powder in 82% yield.

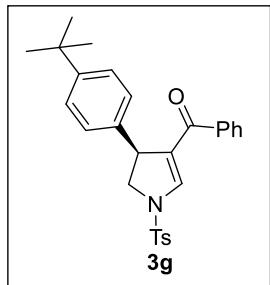
R_f 0.42 (20% ethyl acetate in petroleum ether); Mp = 156-158 °C; [α]_D²⁵ = -20.285 (c = 0.154 in CH₂Cl₂) for 87.64% *ee* sample. Optical purity was determined by chiral HPLC analysis (AS-H column), hexane-2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 27.30 min(major), t_R 2: 56.22 min (minor); IR ν_{max} (KBr, cm⁻¹): 2922.2, 2852.7, 1622.1, 1591.3, 1573.9, 1489.0, 1462.0, 1444.7, 1408.0, 1367.5, 1238.3, 1205.5, 1184.3, 1157.3, 1085.9, 1035.8, 1012.6, 962.5, 902.7, 868.0, 840.0, 815.9, 773.5, 725.2, 715.6, 704.0, 671.2, 611.4, 584.4, 536.2; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 8.3 Hz, 2H), 7.59 (d, *J* = 7.0 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.32 (s, 1H), 7.31 (d, *J* = 1.3 Hz, 2H), 6.94 (d, *J* = 8.4 Hz, 2H), 4.46 (dd, *J* = 11.1, 4.7 Hz, 1H), 4.02 (t, *J* = 11.0 Hz, 1H), 3.71 (dd, *J* = 10.8, 4.9 Hz, 1H), 2.48 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 190.3, 145.4, 143.1, 141.4, 138.9, 133.2, 132.2, 132.0, 130.4, 128.8, 128.7, 128.4, 127.6, 126.3, 121.2, 56.5, 46.6, 21.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₀BrNO₃S 482.0420; Found 482.0437.


(S)-Phenyl(4-(*p*-tolyl)-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)methanone

Following the general method described above, **1e** (50 mg, 0.174 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (31 mg, 0.174 mmol, 1.0 equiv.) and [Cu(CH₃CN)₄]BF₄ (5.5 mg, 0.017 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (15.34 mg, 0.021 mmol, 0.12 equiv.) in toluene to afford **3e** (68.28 mg, 0.164 mmol) as a white powder in 94% yield. R_f

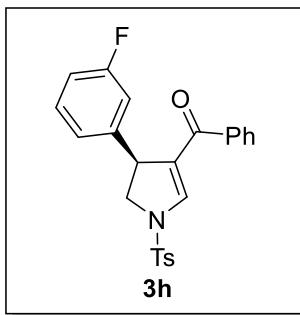
0.42 (20% ethyl acetate in petroleum ether) Mp = 155-157 °C; $[\alpha]_D^{25} = -15.504$ ($c = 0.121$ in CH_2Cl_2) for 75.82% *ee* sample. Optical purity was determined by chiral HPLC analysis (AS-H column), hexane-2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 25.69 min(major), t_R 2: 42.76 min (minor); IR ν_{max} (KBr, cm^{-1}): 2960.7, 2862.4, 1629.8, 1600.9, 1575.8, 1491.0, 1446.6, 1398.4, 1356.0, 1340.5, 1305.1, 1244.1, 1186.2, 1155.4, 1087.8, 1035.8, 1022.3, 1014.6, 9645.4, 887.3, 867.3, 842.9, 814.0, 790.8, 763.8, 754.2, 732.9, 711.7, 692.4, 665.4, 607.6, 586.4, 561.3, 542.0, 516.9; ^1H NMR (500 MHz, CDCl_3) δ 7.70 (d, $J = 8.3$ Hz, 2H), 7.61 (dd, $J = 8.2, 1.2$ Hz, 2H), 7.55 – 7.48 (m, 1H), 7.42 (t, $J = 7.6$ Hz, 2H), 7.37 (d, $J = 8.0$ Hz, 2H), 7.28 (d, $J = 1.1$ Hz, 1H), 7.00 (d, $J = 8.0$ Hz, 2H), 6.96 (d, $J = 8.1$ Hz, 2H), 4.48 (dd, $J = 11.4, 5.4$ Hz, 1H), 4.01 (t, $J = 10.9$ Hz, 1H), 3.73 (dd, $J = 10.7, 5.2$ Hz, 1H), 2.47 (s, 3H), 2.25 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 190.4, 145.1, 142.6, 139.3, 139.1, 136.8, 133.2, 132.0, 130.3, 129.5, 128.6, 128.4, 127.6, 126.9, 56.8, 46.8, 21.7, 21.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for $\text{C}_{25}\text{H}_{23}\text{NO}_3\text{S}$ 418.1471; Found 418.1483.

(*S*)-Phenyl(1-tosyl-4-(4-(trifluoromethyl)phenyl)-4,5-dihydro-1*H*-pyrrol-3-yl)methanone

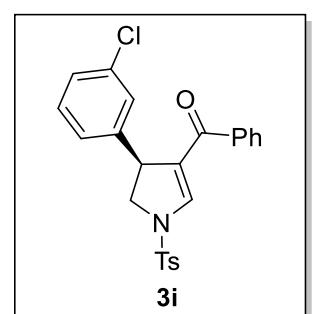


Following the general method described above, **1f** (50 mg, 0.142 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (25 mg, 0.142 mmol, 1.0 equiv.) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (4.5 mg, 0.014 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (12.5 mg, 0.017 mmol, 0.12 equiv.) in toluene to afford **3f** (63.53 mg, 0.135 mmol) as a white powder in 92% yield.

R_f 0.40 (20% ethyl acetate in petroleum ether); Mp = 148-150 °C; $[\alpha]_D^{25} = -29.634$ ($c = 0.115$ in CH_2Cl_2) for 90.48% *ee* sample. Optical purity was determined by chiral HPLC analysis (AS-H column), hexane-2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 18.52 min(major), t_R 2: 39.83 min (minor); IR ν_{max} (KBr, cm^{-1}): 2922.2, 2852.7, 1624.1, 1597.1, 1575.8, 1419.6, 1357.9, 1325.1, 1238.3, 1159.2, 1111.0, 1087.8, 1068.6, 1033.8, 1014.6, 900.8, 837.1, 814.0, 746.4, 719.4, 704.0, 671.2, 611.43, 582.5, 543.9, 503.4; ^1H NMR (500 MHz, CDCl_3) δ 7.72 (d, $J = 8.3$ Hz, 2H), 7.64 – 7.59 (m, 2H), 7.55 (t, $J = 7.4$ Hz, 1H), 7.45 (t, $J = 7.8$ Hz, 4H), 7.39 (d, $J = 8.2$ Hz, 2H), 7.37 (d, $J = 0.9$ Hz, 1H), 7.19 (d, $J = 8.1$ Hz, 2H), 4.57 (dd, $J = 11.1, 4.8$ Hz, 1H), 4.07 (t, $J = 11.0$ Hz, 1H), 3.75 (dd, $J = 10.9, 4.9$ Hz, 1H), 2.49 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3) δ 190.2, 146.3, 144.4 (q, $J = 265.3$ Hz), 138.9, 133.2, 132.3, 130.5, 129.4 (q, $J = 45.8$ Hz), 128.8, 128.4, 127.6, 127.5, 125.6 (q, $J = 28.8$ Hz),

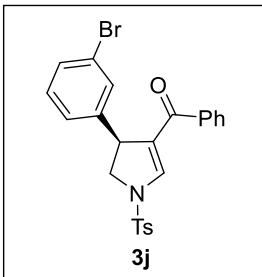

56.5, 47.0, 21.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₀F₃NO₃S 472.1189; Found 472.1190.

(S)-(4-(4-(Tert-butyl)phenyl)-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)(phenyl)methanone

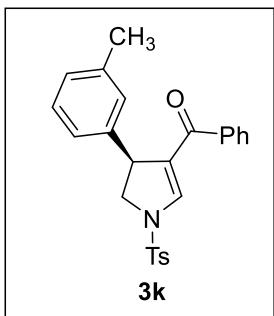

Following the general method described above, **1g** (50 mg, 0.152 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (27 mg, 0.152 mmol, 1.0 equiv.) and [Cu(CH₃CN)₄]BF₄ (4.76 mg, 0.015 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (13.39 mg, 0.018 mmol, 0.12 equiv.) in toluene to afford **3g** (64.87 mg, 0.141 mmol) as a white powder in 93% yield. R_f 0.43 (20% ethyl acetate in petroleum ether) Mp = 132-134°C; [α]_D²⁵ = -16.08 (c = 0.173 in CH₂Cl₂) for 75.28% *ee* sample. Optical purity was determined by chiral HPLC analysis (AS-H column), hexane-2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 19.65 min (major), t_R 2: 39.66 min (minor); IR ν_{max} (KBr, cm⁻¹) 2960.7, 2862.4, 1629.8, 1600.9, 1577.8, 1508.3, 1458.2, 1446.6, 1361.7, 1236.4, 1159.2, 1012.6, 966.3, 829.4, 794.7, 721.4, 696.3, 682.8, 667.4, 588.3, 576.7, 555.5, 543.9, 486.1; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.64 (d, *J* = 6.9 Hz, 2H), 7.53 (d, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.29 (d, *J* = 0.9 Hz, 1H), 7.22 (d, *J* = 8.3 Hz, 2H), 7.00 (d, *J* = 8.3 Hz, 2H), 4.50 (dd, *J* = 11.1, 4.9 Hz, 1H), 4.01 (t, *J* = 10.9 Hz, 1H), 3.77 (dd, *J* = 10.7, 5.1 Hz, 1H), 2.48 (s, 3H), 1.26 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 190.5, 150.1, 145.2, 142.7, 139.1, 133.3, 132.1, 130.4, 128.6, 128.5, 127.6, 126.7, 125.7, 56.9, 46.6, 31.4, 21.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₂₉NO₃S 460.1941; Found 460.1931

(S)-(4-(3-Fluorophenyl)-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)(phenyl)methanone

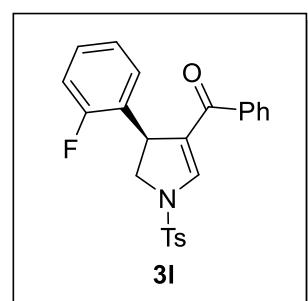
Following the general method described above, **1h** (50 mg, 0.172 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (30 mg, 0.172 mmol, 1.0 equiv.) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (5.38 mg, 0.017 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (15.13 mg, 0.021 mmol, 0.12 equiv.) in toluene to afford **3h** (57.14 mg, 0.135 mmol) as a white powder in 79% yield. R_f 0.38 (20% ethyl acetate in petroleum ether); $Mp = 100\text{--}102\text{ }^\circ\text{C}$; $[\alpha]_D^{25} = -11.729$ ($c = 0.185$ in CH_2Cl_2) for 87.14% *ee* sample. Optical purity was determined by chiral HPLC analysis (AS-H column), hexane–2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 24.24 min(major), t_R 2: 73.16 min (minor); IR ν_{max} (KBr, cm^{-1}) 2924.1, 2854.6, 1626.0, 1597.1, 1573.9, 1446.6, 1354.0, 1236.4, 1159.2, 1085.9, 1033.8, 1014.6, 950.9, 864.1, 844.8, 812.0, 788.9, 725.2, 693.3, 663.5, 597.9, 570.9, 542.0; ^1H NMR (500 MHz, CDCl_3) δ 7.71 (d, $J = 8.3$ Hz, 2H), 7.60 (dd, $J = 8.1, 1.2$ Hz, 2H), 7.56 – 7.50 (m, 1H), 7.44 (t, $J = 7.6$ Hz, 2H), 7.39 (d, $J = 8.1$ Hz, 2H), 7.33 (d, $J = 1.0$ Hz, 1H), 7.13 (dd, $J = 3.9, 1.3$ Hz, 2H), 7.02 – 6.97 (m, 1H), 6.92 (dd, $J = 2.4, 1.6$ Hz 1H), 4.47 (dd, $J = 11.3, 4.4$ Hz, 1H), 4.06 (t, $J = 11.1$ Hz, 1H), 3.69 (dd, $J = 10.9, 5.0$ Hz, 1H), 2.47 (s, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3) δ 190.2, 144.9 (d, $J = 241.8$ Hz), 143.3, 138.9, 134.7, 133.1, 132.2, 130.5, 130.1, 128.5 (d, $J = 44.9$ Hz), 127.5 (d, $J = 4.3$ Hz), 127.0, 126.0, 125.6, 56.6, 46.8, 21.9; HRMS (ESI-TOF) m/z : $[\text{M} + \text{H}]^+$ Calcd for $\text{C}_{24}\text{H}_{20}\text{FNO}_3\text{S}$ 422.1221; Found 422.1231.


(*S*)-(4-(3-Chlorophenyl)-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)(phenyl)methanone

Following the general method described above, **1i** (50 mg, 0.163 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (29 mg, 0.163 mmol, 1.0 equiv) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (5.1 mg, 0.016 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (14.37 mg, 0.020 mmol, 0.12 equiv.) in toluene to afford **3i** (58.36 mg, 0.134 mmol) as a white powder in 82% yield. R_f 0.40 (20% ethyl acetate in petroleum ether); $Mp = 160\text{--}162\text{ }^\circ\text{C}$; $[\alpha]_D^{25} = -24.481$ ($c = 0.137$ in CH_2Cl_2) for 79.74% *ee* sample. Optical purity was determined by chiral HPLC analysis (AS-H column), hexane–2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 28.512 min(major), t_R 2: 76.20 min (minor); IR ν_{max} (KBr, cm^{-1}) 2922.2, 2852.7, 1653.0, 1597.1, 1485.2, 1446.6, 1354.0, 1236.4, 1180.4, 1161.1, 1085.9, 1012.6, 987.5, 952.8, 902.7,

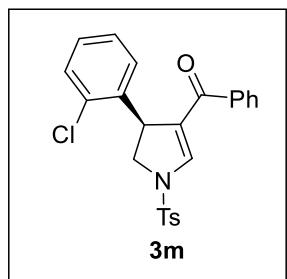

883.4, 858.3, 841.0, 814.0, 783.1, 740.7, 715.6, 707.9, 694.4, 665.4, 619.1, 576.7, 542.0, 520.8; ^1H NMR (500 MHz, CDCl_3) δ 7.72 (d, $J = 8.3$ Hz, 2H), 7.62 (dd, $J = 8.1, 1.2$ Hz, 2H), 7.55 (t, $J = 7.4$ Hz, 1H), 7.45 (t, $J = 7.6$ Hz, 2H), 7.39 (d, $J = 8.0$ Hz, 2H), 7.33 (d, $J = 1.0$ Hz, 1H), 7.18 (td, $J = 8.0, 6.0$ Hz, 1H), 6.90 (d, $J = 7.8$ Hz, 1H), 6.86 (td, $J = 8.8, 2.9$ Hz, 1H), 6.64 – 6.57 (m, 1H), 4.51 (dd, $J = 11.1, 4.9$ Hz, 1H), 4.07 (t, $J = 11.1$ Hz, 1H), 3.71 (dd, $J = 10.9, 5.0$ Hz, 1H), 2.48 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3) δ 190.3, 164.1, 162.1, 145.6, 144.9, 143.2, 138.97, 133.1, 132.2, 130.5, 130.4, 130.3, 128.7, 128.4, 127.6, 126.1, 123.0, 114.4, 114.2, 113.9, 113.7, 56.6, 46.8, 21.8; HRMS (ESI-TOF) m/z: $[\text{M} + \text{H}]^+$ Calcd for $\text{C}_{24}\text{H}_{20}\text{ClNO}_3\text{S}$ 438.0925; Found 438.0925.

(S)-(4-(3-Bromophenyl)-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)(phenyl)methanone

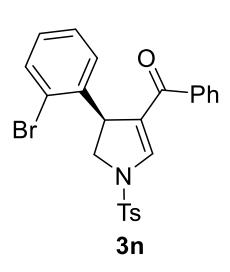

Following the general method described above, **1j** (50 mg, 0.142 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (25 mg, 0.142 mmol, 1.0 equiv.) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (4.46 mg, 0.014 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (12.5 mg, 0.017 mmol, 0.12 equiv.) in toluene to afford **3j** (58.24 mg, 0.121 mmol) as a white powder in 85% yield. R_f 0.42 (20% ethyl acetate in petroleum ether); $M_p = 180$ –182 $^{\circ}\text{C}$; $[\alpha]_D^{25} = -15.278$ ($c = 0.147$ in CH_2Cl_2) for 89.60% *ee* sample. Optical purity was determined by chiral HPLC analysis (AS-H column), hexane–2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 36.50 min (major), t_R 2: 84.60 min (minor); IR ν_{max} (KBr, cm^{-1}): 2922.2, 2852.7, 1685.8, 1627.9, 1597.1, 1577.8, 1431.2, 1363.7, 1356.0, 1236.4, 1159.2, 1120.6, 1085.9, 1033.8, 1014.6, 972.1, 949.0, 866.0, 846.7, 792.7, 725.2, 705.9, 696.3, 680.9, 669.3, 656.7, 628.8, 609.5, 594.1, 569.0, 543.9, 511.2; ^1H NMR (500 MHz, CDCl_3) δ 7.72 (d, $J = 8.3$ Hz, 2H), 7.62 (dd, $J = 8.2, 1.2$ Hz, 2H), 7.55 (t, $J = 7.4$ Hz, 1H), 7.45 (t, $J = 7.6$ Hz, 2H), 7.40 (d, $J = 8.0$ Hz, 2H), 7.34 (d, $J = 1.1$ Hz, 1H), 7.32 – 7.28 (m, 1H), 7.12 (t, $J = 1.7$ Hz, 1H), 7.08 (t, $J = 7.7$ Hz, 1H), 7.05 (dt, $J = 7.7, 1.4$ Hz, 1H), 4.48 (dd, $J = 11.2, 5.0$ Hz, 1H), 4.06 (t, $J = 11.1$ Hz, 1H), 3.71 (dd, $J = 10.9, 5.0$ Hz, 1H), 2.48 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3): δ 190.2, 145.5, 144.7, 143.3, 138.95, 133.1, 132.2, 130.5, 130.4, 130.0, 128.7, 128.4, 127.5, 126.0, 126.0, 123.0, 56.6, 46.8, 21.9; HRMS (ESI-TOF) m/z: $[\text{M} + \text{H}]^+$ Calcd for $\text{C}_{24}\text{H}_{20}\text{BrNO}_3\text{S}$ 482.0420; Found 482.0420.

(S)-Phenyl(4-(*m*-tolyl)-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)methanone

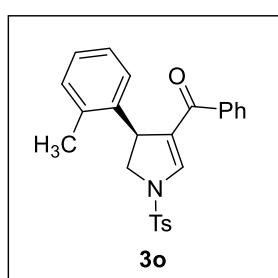
Following the general method described above, **1k** (50 mg, 0.174 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (31 mg, 0.174 mmol, 1.0 equiv.) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (5.5 mg, 0.017 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (15.34 mg, 0.021 mmol, 0.12 equiv.) in toluene to afford **3k** (58.11 mg, 0.139 mmol) as a white powder in 80% yield. R_f 0.42 (20% ethyl acetate in petroleum ether); M_p = 102-104 °C; $[\alpha]_D^{25} = -21.879$ ($c = 0.133$ in CH_2Cl_2) for 68.92% *ee* sample. Optical purity was determined by chiral HPLC analysis (OD-H column), hexane-2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1:14.20 min(major), t_R 2:20.18 min (minor); IR ν_{max} (KBr, cm^{-1}): 2918.1, 2891.3, 1629.8, 1599.0, 1575.8, 1491.0, 1446.6, 1398.4, 1356.0, 1340.5, 1236.4, 1193.9, 1186.2, 1166.9, 1153.4, 1087.8, 1037.7, 1024.2, 1012.6, 968.3, 954.8, 923.9, 887.3, 869.9, 860.2, 841.0, 808.2, 796.6, 742.6, 717.5, 700.2, 669.3, 609.5, 596.0, 569.0, 542.0, 526.6; ^1H NMR (500 MHz, CDCl_3) δ 7.72 (d, $J = 8.3$ Hz, 2H), 7.63 (dd, $J = 8.1, 1.2$ Hz, 2H), 7.54 (t, $J = 7.4$, Hz, 1H), 7.44 (t, $J = 7.6$ Hz, 2H), 7.39 (d, $J = 8.0$ Hz, 2H), 7.30 (d, $J = 1.0$ Hz, 1H), 7.09 (t, $J = 7.5$ Hz, 1H), 6.98 (d, $J = 7.5$ Hz, 1H), 6.87 (d, $J = 8.4$ Hz, 2H), 4.48 (dd, $J = 11.2, 5.1$ Hz, 1H), 4.04 (t, $J = 11.0$ Hz, 1H), 3.75 (dd, $J = 10.8, 5.2$ Hz, 1H), 2.48 (s, 3H), 2.24 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3): δ 190.4, 145.2, 142.8, 142.38, 139.18, 138.48, 133.38, 132.1, 130.4, 128.7, 128.6, 128.4, 128.1, 127.8, 127.6, 126.8, 124.1, 56.9, 47.1, 21.8, 21.5. HRMS (ESI-TOF) m/z : $[\text{M} + \text{H}]^+$ Calcd for $\text{C}_{25}\text{H}_{23}\text{NO}_3\text{S}$ 418.1471; Found 418.1476


(*S*)-(4-(2-Fluorophenyl)-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)(phenyl)methanone

Following the general method described above, **1l** (50 mg, 0.172 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (30 mg, 0.172 mmol, 1.0 equiv) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (5.38 mg, 0.017 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (15.13 mg, 0.021 mmol, 0.12 equiv.) in toluene to afford **3l** (64.38 mg, 0.153 mmol) as a white powder in 89% yield. R_f 0.38 (20% ethyl acetate in petroleum ether); M_p = 142-144 °C; $[\alpha]_D^{25} = -33.327$ ($c = 0.110$ in CH_2Cl_2) for 91.92% *ee* sample. Optical purity was determined by chiral HPLC analysis (AS-H column), hexane-2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1:29.24 min(major), t_R 2:53.70 min (minor). IR ν_{max} (KBr, cm^{-1}) 2920.2, 2891.3, 1633.7, 1602.8, 1494.8, 1365.6,

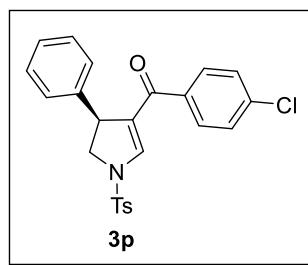

1247.9, 1228.7, 1199.7, 1186.2, 1155.4, 1087.8, 1035.8, 1022.3, 966.3, 894.97, 841.0, 814.0, 790.8, 761.9, 711.7, 692.4, 661.6, 615.3, 603.7, 586.4, 561.3, 542.0, 515.0, 499.6; ^1H NMR (500 MHz, CDCl_3) δ 7.71 (d, J = 8.4 Hz, 2H), 7.67 (dd, J = 8.2, 1.3 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.40 – 7.34 (m, 3H), 7.21 – 7.12 (m, 1H), 7.02 – 6.95 (m, 3H), 4.81 (dd, J = 11.4, 5.8 Hz, 1H), 4.08 (t, J = 11.1 Hz, 1H), 3.71 (dd, J = 10.5, 5.8 Hz, 1H), 2.47 (s, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3) δ 190.3, δ 160.59 (d, J = 246.8 Hz), 145.2, 143.93, 139.1, 133.4, 132.2, 130.4, 129.0, 128.9, 128.8, 128.7, 128.51 (d, J = 3.8 Hz), 128.4, 127.5, 124.5, 124.4, 115.80 (d, J = 21.8 Hz), 55.7, 40.9, 21.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for $\text{C}_{24}\text{H}_{20}\text{FNO}_3\text{S}$ 422.1221; Found 422.1228.

(S)-(4-(2-Chlorophenyl)-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)(phenyl)methanone

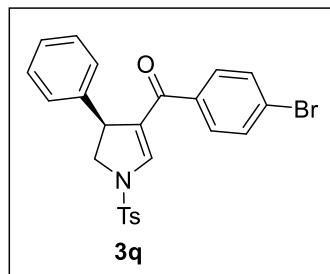

Following the general method described above, **1m** (50 mg, 0.163 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (29 mg, 0.163 mmol, 1.0 equiv.) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (5.1 mg, 0.016 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (14.37 mg, 0.020 mmol, 0.12 equiv.) in toluene to afford **3m** (68.32 mg, 0.156 mmol) as a white powder in 96% yield. R_f 0.40 (20% ethyl acetate in petroleum ether); $\text{Mp} = 172\text{--}174\text{ }^\circ\text{C}$; $[\alpha]_D^{25} = -11.841$ ($c = 0.151$ in CH_2Cl_2) for 91.14% *ee* sample. Optical purity was determined by chiral HPLC analysis (AS-H column), hexane–2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 24.84 min (major), t_R 2: 58.10 min (minor); IR ν_{max} (KBr, cm^{-1}) 2918.1, 2891.3, 1629.8, 1600.9, 1438.9, 1365.6, 1354.0, 1242.2, 1155.4, 1085.9, 1033.8, 1020.3, 842.9, 815.9, 754.2, 725.2, 702.1, 588.3, 553.6, 540.1, 489.9; ^1H NMR (500 MHz, CDCl_3) δ 7.74 – 7.65 (m, 4H), 7.57 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.43 (s, 1H), 7.39 – 7.31 (m, 3H), 7.15–7.09 (m, 2H), 6.94 (dd, J = 7.7, 1.6 Hz, 1H), 4.97 (dd, J = 11.5, 5.5 Hz, 1H), 4.12 (t, J = 11.1 Hz, 1H), 3.66 (dd, J = 10.7, 5.7 Hz, 1H), 2.46 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3): δ 190.2, 145.3, 144.6, 139.2, 139.0, 133.5, 133.4, 132.2, 130.4, 130.0, 128.8, 128.5, 128.4, 127.9, 127.5, 127.3, 124.4, 55.7, 44.4, 21.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for $\text{C}_{24}\text{H}_{20}\text{ClNO}_3\text{S}$ 438.0925; Found 438.0910.

(S)-(4-(2-Bromophenyl)-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)(phenyl)methanone

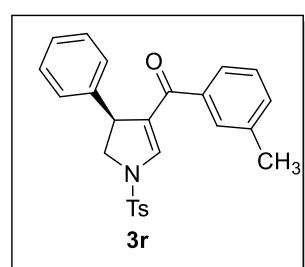
Following the general method described above, **1n** (50 mg, 0.142 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (25 mg, 0.142 mmol, 1.0 equiv.) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (4.46 mg, 0.014 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (12.5 mg, 0.017 mmol, 0.12 equiv.) in toluene to afford **3n** (51.39 mg, 0.107 mmol) as a white powder in 75% yield. R_f 0.42 (20% ethyl acetate in petroleum ether); M_p = 162–164 °C; $[\alpha]_D^{25} = -31.438$ ($c = 0.114$ in CH_2Cl_2) for 96.84% *ee* sample. Optical purity was determined by chiral HPLC analysis (AS-H column), hexane–2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 26.05 min(major), t_R 2: 60.64 min (minor); IR ν_{max} (KBr, cm^{-1}): 2922.2, 2852.7, 1627.9, 1599.0, 1469.8, 1365.6, 1352.1, 1240.2, 1157.3, 1118.7, 1085.9, 1031.9, 1020.3, 1010.7, 896.9, 864.1, 842.9, 810.1, 754.2, 702.1, 659.7, 603.7, 586.36, 553.6, 540.1, 488.0; ^1H NMR (500 MHz, CDCl_3) δ 7.72 (d, $J = 8.3$ Hz, 2H), 7.62 (dd, $J = 8.2, 1.2$ Hz, 2H), 7.57 – 7.52 (m, 1H), 7.45 (t, $J = 7.6$ Hz, 2H), 7.40 (d, $J = 8.0$ Hz, 2H), 7.34 (d, $J = 1.1$ Hz, 1H), 7.32 – 7.28 (m, 1H), 7.12 (t, $J = 1.7$ Hz, 1H), 7.08 (t, $J = 7.7$ Hz, 1H), 7.05 (dt, $J = 7.7, 1.4$ Hz, 1H), 4.48 (dd, $J = 11.2, 5.0$ Hz, 1H), 4.06 (t, $J = 11.1$ Hz, 1H), 3.71 (dd, $J = 10.9, 5.0$ Hz, 1H), 2.48 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3): δ 190.1, 145.3, 144.7, 141.0, 139.0, 133.4, 133.3, 132.2, 130.4, 128.8, 128.8, 128.4, 127.9, 127.5, 124.6, 124.1, 55.9, 46.7, 21.8; HRMS (ESI-TOF) m/z: $[\text{M} + \text{H}]^+$ Calcd for $\text{C}_{24}\text{H}_{20}\text{BrNO}_3\text{S}$ 482.0420; Found 482.0411.


(*S*)-Phenyl(4-(o-tolyl)-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)methanone

Following the general method described above, **1o** (50 mg, 0.174 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one **2a** (31 mg, 0.174 mmol, 1.0 equiv.) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (5.5 mg, 0.017 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (15.34 mg, 0.021 mmol, 0.12 equiv.) in toluene to afford **3o** (58 mg, 0.139 mmol) as a white powder in 95% yield. R_f 0.41 (20% ethyl acetate in petroleum ether); M_p = 140–142 °C; $[\alpha]_D^{25} = -20.186$ ($c = 0.129$ in CH_2Cl_2) for 80.04% *ee* sample. Optical purity was determined by chiral HPLC analysis (AS-H column), hexane–2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 17.86 min(major), t_R 2: 48.56 min (minor); IR ν_{max} (KBr, cm^{-1}): 2922.2, 2852.7, 1631.8, 1604.8, 1492.9, 1464.0, 1444.7, 1359.8, 1348.2, 1244.1, 1186.2, 1155.4, 1087.8, 1035.8, 1022.3, 1014.6, 9645.4, 887.3, 867.3, 842.9, 814.0, 790.8, 763.8, 754.2, 732.9, 711.73, 692.4, 665.4, 607.6, 586.4, 561.3, 542.0, 516.9, 476.4; ^1H

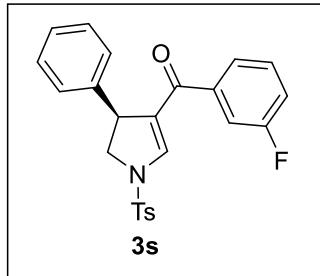

¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.66 (dd, *J* = 5.3, 3.2 Hz, 2H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.38 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 1.1 Hz, 1H), 7.12 – 7.03 (m, 2H), 6.99 (t, *J* = 7.4 Hz, 1H), 6.82 (d, *J* = 7.3 Hz, 1H), 4.77 (dd, *J* = 11.5, 5.5 Hz, 1H), 4.08 (t, *J* = 10.9 Hz, 1H), 3.63 (dd, *J* = 10.6, 5.6 Hz, 1H), 2.48 (s, 3H), 2.40 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 190.4, 145.2, 143.2, 140.7, 139.1, 135.6, 133.3, 132.1, 130.6, 130.4, 128.7, 128.4, 127.6, 127.1, 126.8, 126.7, 125.8, 56.5, 43.0, 21.8, 19.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₃NO₃S 418.1471; Found 418.1460.

(*S*)-(4-Chlorophenyl)(4-phenyl-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)methanone

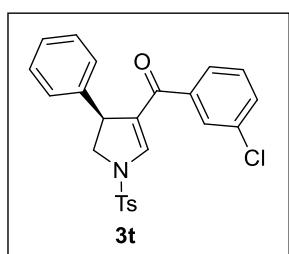

Following the general method described above, **1a** (50 mg, 0.183 mmol, 1.0 equiv) was reacted with (*E*)-1-(3-chlorophenyl)-3-(dimethylamino)prop-2-en-1-one **2b** (33.5 mg, 0.183 mmol, 1.0 equiv) and [Cu(CH₃CN)₄]BF₄ (6 mg, 0.018 mmol, 0.1 equiv) in the presence of (*S*)-XylBINAP (16.1 mg, 0.022 mmol, 0.12 equiv) in toluene to afford **3p** (60.78 mg, 0.139 mmol) as a white powder in 76% yield. R_f 0.40 (20% ethyl acetate in petroleum ether) Mp = 125–127 °C; [α]_D²⁵ = −24.793 (*c* = 0.121 in CH₂Cl₂) for 76.98% *ee* sample. Optical purity was determined by chiral HPLC analysis (AS-H column), hexane–2-propanol, 90:10 flow rate = 1.0 mL/min; t_R 1: 28.387 (major), t_R 2: 56.511 min (minor); IR ν_{max} (KBr, cm^{−1}): 2957.1, 2918.5, 2851.2, 1624.6, 1595.1, 1493.0, 1454.7, 1360.5, 1240.2, 1161.4, 1090.5, 1032.1, 1011.3, 839.7, 814.9, 752.4, 702.7, 665.8, 584.8, 544.0, 523.3; ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.40 (dd, *J* = 14.5, 8.3 Hz, 4H), 7.28 (d, *J* = 0.7 Hz, 1H), 7.24 – 7.16 (m, 3H), 7.07 (d, *J* = 6.6 Hz, 2H), 4.50 (dd, *J* = 11.1, 5.0 Hz, 1H), 4.04 (t, *J* = 11.0 Hz, 1H), 3.78 (dd, *J* = 10.8, 5.1 Hz, 1H), 2.48 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 189.1, 145.4, 142.9, 142.1, 138.4, 137.3, 133.2, 130.4, 129.8, 129.0, 128.9, 127.6, 127.4, 127.3, 127.2, 127.0, 126.5, 56.8, 47.1, 21.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₀ClNO₃S 438.0925; Found 438.0923.

(S)-(4-Bromophenyl)(4-phenyl-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)methanone

Following the general method described above, **1a** (50 mg, 0.183 mmol, 1.0 equiv.) was reacted with (*E*)-1-(3-bromophenyl)-3-(dimethylamino)prop-2-en-1-one **2c** (33.5 mg, 0.183 mmol, 1.0 equiv.) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (6 mg, 0.018 mmol, 0.1 equiv) in the presence of (*S*)-XylBINAP (16.1 mg, 0.022 mmol, 0.12 equiv) in toluene to afford **3q** (80.98 mg, 0.168 mmol) as a white powder in 92% yield. R_f 0.41 (20% ethyl acetate in petroleum ether) M_p = 120–122 °C; $[\alpha]_D^{25} = -19.117$ ($c = 0.136$ in CH_2Cl_2) for 82.90% *ee* sample Optical purity was determined by chiral HPLC analysis (AS-H column), hexane–2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 31.717 (major), t_R 2: 66.066 min (minor). IR ν_{max} (KBr, cm^{-1}): 3090.2, 2922.5, 2853.3, 1618.5, 1593.4, 1492.6, 1454.5, 1396.8, 1359.6, 1240.8, 1178.9, 1161.7, 1086.4, 1070.5, 1030.3, 1022.2, 1009.9, 968.0, 845.7, 835.4, 812.5, 752.9, 700.3, 665.7, 584.1, 542.0, 520.7, 491.9; ^1H NMR (500 MHz, CDCl_3) δ 7.72 (d, $J = 8.3$ Hz, 2H), 7.58 (d, $J = 8.4$ Hz, 2H), 7.49 (d, $J = 8.4$ Hz, 2H), 7.39 (d, $J = 8.1$ Hz, 2H), 7.29 (d, $J = 0.5$ Hz, 1H), 7.23 – 7.16 (m, 3H), 7.07 (d, $J = 6.6$ Hz, 2H), 4.50 (dd, $J = 11.1, 5.0$ Hz, 1H), 4.04 (t, $J = 11.0$ Hz, 1H), 3.78 (dd, $J = 10.8, 5.1$ Hz, 1H), 2.48 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3) δ 189.2, 145.4, 143.0, 142.1, 137.8, 133.2, 131.9, 130.4, 129.9, 128.9, 127.6, 127.4, 127.0, 126.9, 126.4, 56.8, 47.1, 21.8. HRMS (ESI-TOF) m/z : $[\text{M} + \text{H}]^+$ Calcd for $\text{C}_{24}\text{H}_{20}\text{BrNO}_3\text{S}$ 482.0420; Found 482.0415.

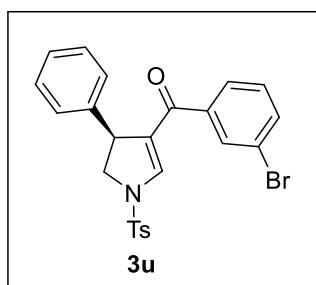

(S)-(4-Phenyl-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)(*m*-tolyl)methanone

Following the general method described above, **1a** (50 mg, 0.183 mmol, 1.0 equiv) was reacted with (*E*)-3-(dimethylamino)-1-(*m*-tolyl)prop-2-en-1-one **2d** (33.5 mg, 0.183 mmol, 1.0 equiv) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (6 mg, 0.018 mmol, 0.1 equiv) in the presence of (*S*)-XylBINAP (16.1 mg, 0.022 mmol, 0.12 equiv) in toluene to afford **3r** (53.43 mg, 0.128 mmol) as a white powder in 70% yield. R_f 0.42 (20% ethyl acetate in petroleum ether) M_p = 100–102 °C; $[\alpha]_D^{25} = -11.819$ ($c = 0.166$ in CH_2Cl_2) for 88.22% *ee* sample. Optical purity was determined by chiral HPLC analysis (OD-H column), hexane–2-propanol, 95:5; flow rate = 1.0 mL/min; t_R 1: 20.218 (major), t_R 2: 23.225 min (minor); IR ν_{max} (KBr, cm^{-1}): 2922.2, 2852.7, 1629.8, 1595.1, 1492.9, 1454.3, 1359.82, 1246.0, 1161.1, 1087.8, 1031.9, 889.2, 864.1, 812.0, 773.5, 738.7, 700.2, 665.4, 584.4, 543.9, 445.6; ^1H NMR (500 MHz, CDCl_3) δ 7.71 (d, $J = 8.3$ Hz, 2H), 7.43 – 7.37 (m, 4H), 7.34 (d, $J = 1.9$ Hz, 2H), 7.29

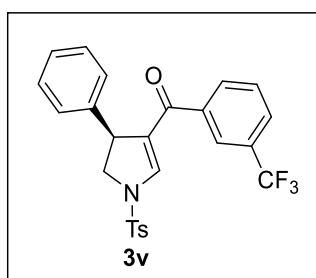

(d, $J = 1.1$ Hz, 1H), 7.23 – 7.14 (m, 3H), 7.07 (dd, $J = 8.0, 1.3$ Hz, 2H), 4.51 (dd, $J = 10.6, 5.1$ Hz, 1H), 4.03 (t, $J = 11.0$ Hz, 1H), 3.76 (dd, $J = 10.7, 5.1$ Hz, 1H), 2.48 (s, 3H), 2.41 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3) δ 190.6, 145.2, 142.8, 142.3, 139.1, 138.5, 133.3, 132.9, 130.4, 129.0, 128.9, 128.5, 127.6, 127.3, 127.1, 126.9, 125.6, 56.9, 47.1, 21.8, 21.5; HRMS (ESI-TOF) m/z: $[\text{M} + \text{H}]^+$ Calcd for $\text{C}_{25}\text{H}_{23}\text{NO}_3\text{S}$ 418.1471; Found 418.1487.

(S)-(3-Fluorophenyl)(4-phenyl-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)methanone

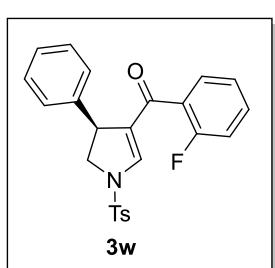
Following the general method described above, **1a** (50 mg, 0.183 mmol, 1.0 equiv) was reacted with (*E*)-3-(dimethylamino)-1-(3-fluorophenyl)prop-2-en-1-one **2e** (33.5 mg, 0.183 mmol, 1.0 equiv) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (6 mg, 0.018 mmol, 0.1 equiv) in the presence of (*S*)-XylBINAP (16.1 mg, 0.022 mmol, 0.12 equiv) in toluene to afford **3s** (65.5 mg, 0.155 mmol) as a white powder in 85% yield. R_f 0.37 (20% ethyl acetate in petroleum ether) Mp = 138–140 °C; $[\alpha]_D^{25} = -16.375$ ($c = 0.197$ in CH_2Cl_2) for 83.12% *ee* sample. Optical purity was determined by chiral HPLC analysis (OD-H column), hexane–2-propanol, 95:5; flow rate = 1.0 mL/min; t_R 1: 30.639 (major), t_R 2: 35.640 min (minor); IR ν_{max} (KBr, cm^{-1}): 2920.2, 2850.7, 1626.0, 1597.1, 1581.6, 1494.8, 1442.7, 1356.0, 1247.9, 1178.5, 1159.2, 1124.5, 1084.0, 1031.9, 962.5, 887.3, 808.2, 759.9, 746.4, 702.1, 665.4, 621.1, 588.3, 538.1, 447.5; ^1H NMR; (500 MHz, CDCl_3) δ 7.72 (d, $J = 8.3$ Hz, 2H), 7.42 (d, $J = 5.1$ Hz, 1H), 7.41 – 7.38 (m, 3H), 7.31 (d, $J = 1.0$ Hz, 1H), 7.28 (d, $J = 9.4$ Hz, 1H), 7.24 – 7.17 (m, 4H), 7.05 (dd, $J = 7.9, 1.5$ Hz, 2H), 4.50 (dd, $J = 11.0, 4.9$ Hz, 1H), 4.06 (t, $J = 11.0$ Hz, 1H), 3.77 (dd, $J = 10.8, 5.2$ Hz, 1H), 2.49 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3): δ 188.9, 163.79, 161.79, 145.49, 143.3, 142.19, 141.2, 133.29, 130.5, 128.9, 127.6, 127.4, 127.0, 126.4, 124.1, 124.1, 119.1, 119.0, 115.4, 115.3, 56.9, 47.1, 21.8; HRMS (ESI-TOF) m/z: $[\text{M} + \text{H}]^+$ Calcd for $\text{C}_{24}\text{H}_{20}\text{FNO}_3\text{S}$ 422.1221; Found 422.1241.


(S)-(3-Chlorophenyl)(4-phenyl-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)methanone

Following the general method described above, **1a** (50 mg, 0.183 mmol, 1.0 equiv) was reacted with (*E*)-1-(3-chlorophenyl)-3-(dimethylamino)prop-2-en-1-one **2f** (33.5 mg, 0.183 mmol, 1.0 equiv) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (6 mg, 0.018 mmol, 0.1 equiv) in the presence of (*S*)-XylBINAP (16.1 mg, 0.022 mmol, 0.12 equiv) in toluene to afford **3t** (50.38 mg, 0.115 mmol) as a white powder in 63% yield. R_f 0.40 (20%

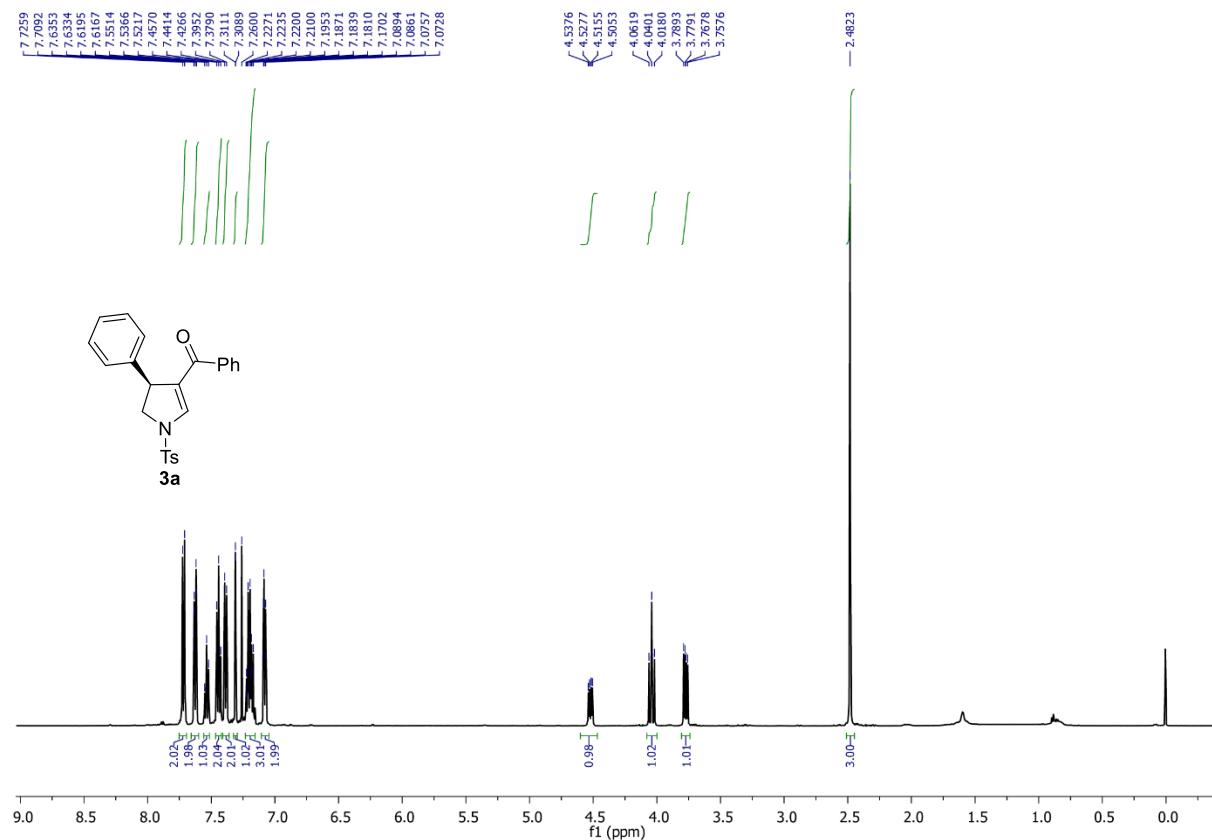

ethyl acetate in petroleum ether) Mp = 116-118 °C; $[\alpha]_D^{25} = -13.933$ ($c = 0.151$ in CH_2Cl_2) for 85.24% *ee* sample. Optical purity was determined by chiral HPLC analysis (OD-H column), hexane-2-propanol, 95:5; flow rate = 1.0 mL/min; t_R 1: 29.143 (major), t_R 2: 36.835 min (minor). IR ν_{max} (KBr, cm^{-1}) 2922.2, 2852.7, 1626.0, 1597.1, 1568.1 1492.9, 1454.3, 1417.7, 1365.6, 1305.8, 1236.4, 1159.2, 1087.8, 1014.6, 895.0, 868.0, 812.0, 779.2, 759.9, 748.4, 721.4, 700.2, 667.4, 586.4, 542.0, 445.6; ^1H NMR (500 MHz, CDCl_3) δ 7.73 (d, $J = 8.1$ Hz, 2H), 7.66 (d, $J = 8.7$ Hz, 1H), 7.53 (d, $J = 7.6$ Hz, 1H), 7.42 (d, $J = 8.0$ Hz, 2H), 7.33 (d, $J = 7.7$ Hz, 3H), 7.29 (s, 1H), 7.20 (d, $J = 7.4$ Hz, 2H), 7.03 (d, $J = 6.6$ Hz, 2H), 4.49 (dd, $J = 11.1$, 5.1 Hz, 1H), 4.06 (t, $J = 11.0$ Hz, 1H), 3.75 (dd, $J = 10.8$, 5.2 Hz, 1H), 2.50 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3): δ 188.7, 145.4, 143.5, 142.1, 141.0, 134.9, 133.2, 131.4, 130.5, 130.3, 130.0, 129.9, 129.2, 129.1, 128.9, 127.8, 127.6, 127.4, 127.3, 127.2, 127.06, 126.9, 126.5, 122.8, 57.0, 47.1, 21.8; HRMS (ESI-TOF) m/z: $[\text{M} + \text{H}]^+$ Calcd for $\text{C}_{24}\text{H}_{20}\text{ClNO}_3\text{S}$ 438.0925; Found 438.0926.

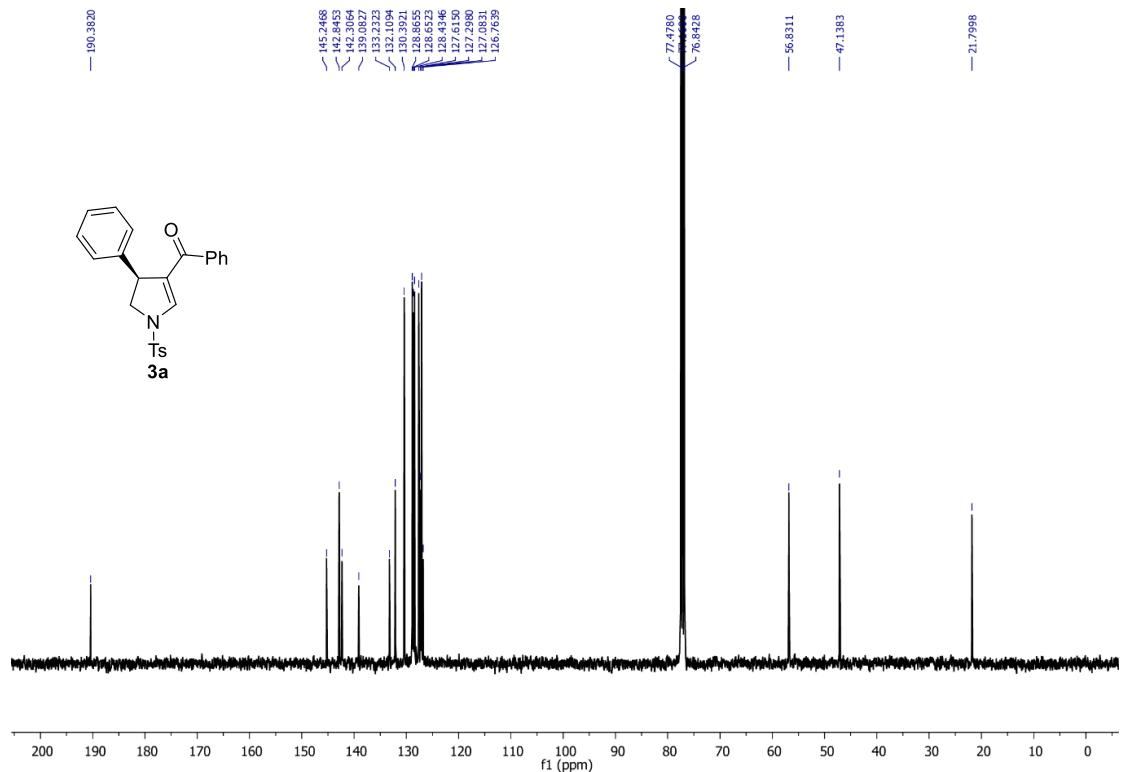
(S)-(3-Bromophenyl)(4-phenyl-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)methanone


Following the general method described above, **1a** (50 mg, 0.183 mmol, 1.0 equiv) was reacted with (*E*)-1-(3-bromophenyl)-3-(dimethylamino)prop-2-en-1-one **2g** (33.5 mg, 0.183 mmol, 1.0 equiv) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (6 mg, 0.018 mmol, 0.1 equiv) in the presence of (*S*)-XylBINAP (16.1 mg, 0.022 mmol, 0.12 equiv) in toluene to afford **3u** (61.62 mg, 0.128 mmol) as a white powder in 70% yield. R_f 0.37 (20% ethyl acetate in petroleum ether) Mp = 106-108 °C; $[\alpha]_D^{25} = -13.227$ ($c = 0.132$ in CH_2Cl_2) for 86.38% *ee* sample. Optical purity was determined by chiral HPLC analysis (OD-H column), hexane-2-propanol, 95:5; flow rate = 1.0 mL/min; t_R 1: 23.034 (major), t_R 2: 28.798 min (minor); R_f 0.38 (20% ethyl acetate in petroleum ether); IR ν_{max} (KBr, cm^{-1}): 2924.1, 2854.8, 1629.8, 1593.2, 1566.2, 1492.9, 1454.3, 1417.7, 1361.7, 1232.5, 1159.2, 1089.8, 1031.9, 896.9, 864.1, 812.0, 744.5, 719.4, 698.2, 665.4, 584.4, 545.8, 445.6; ^1H NMR (500 MHz, CDCl_3) δ 7.73 (d, $J = 8.3$ Hz, 2H), 7.70 (t, $J = 1.8$ Hz, 1H), 7.66 (d, $J = 8.0$ Hz, 1H), 7.53 (d, $J = 7.7$ Hz, 1H), 7.42 (d, $J = 8.0$ Hz, 2H), 7.32 (t, $J = 7.8$ Hz, 2H), 7.29 (d, $J = 1.1$ Hz, 1H), 7.20 (d, $J = 7.4$ Hz, 2H), 7.03 (dd, $J = 7.9$, 1.6 Hz, 2H), 4.49 (dd, $J = 10.9$, 4.9 Hz, 1H), 4.06 (t, $J = 11.0$ Hz, 1H), 3.75 (dd, $J = 10.8$, 5.2 Hz, 1H), 2.50 (s, 3H). $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3): δ 188.7, 145.4, 143.5, 142.1, 141.0, 134.9, 133.2, 131.4, 130.5, 130.3, 128.9, 127.6, 127.4, 127.3, 127.2, 127.1, 126.9, 126.5, 122.8, 57.0, 47.1, 21.8. HRMS (ESI-TOF) m/z: $[\text{M} + \text{H}]^+$ Calcd for $\text{C}_{24}\text{H}_{20}\text{BrNO}_3\text{S}$ 482.0420; Found 482.0415.

(S)-(4-Phenyl-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)(3-(trifluoromethyl)phenyl)methanone

Following the general method described above, **1a** (50 mg, 0.183 mmol, 1.0 equiv.) was reacted with (*E*)-3-(dimethylamino)-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one **2h** (33.5 mg, 0.183 mmol, 1.0 equiv) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (6 mg, 0.018 mmol, 0.1 equiv.) in the presence of (*S*)-XylBINAP (16.1 mg, 0.022 mmol, 0.12 equiv.) in toluene to afford **3v** (73.28 mg, 0.115 mmol) as a white powder in 85% yield. R_f 0.36 (20% ethyl acetate in petroleum ether); M_p = 145–147 °C; $[\alpha]_D^{25} = -12.917$ ($c = 0.181$ in CH_2Cl_2) for 75.38% *ee* sample. Optical purity was determined by chiral HPLC analysis (OD-H column), hexane–2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 16.749 (major), t_R 2: 21.391 min (minor); IR ν_{max} (KBr, cm^{-1}): 2922.2, 2850.8, 1635.6, 1599.0, 1494.8, 1454.3, 1365.6, 1323.2, 12593.5, 1234.4, 1159.2, 1118.7, 1085.9, 1072.4, 1024.2, 1014.6, 960.5, 900.8, 866.0, 814.0, 771.5, 758.0, 746.4, 698.2, 669.3, 592.1, 538.1; ^1H NMR (500 MHz, CDCl_3) δ 7.83 – 7.77 (m, 3H), 7.73 (d, $J = 8.3$ Hz, 2H), 7.59 (t, $J = 7.7$ Hz, 1H), 7.42 (d, $J = 8.1$ Hz, 2H), 7.28 (d, $J = 1.0$ Hz, 1H), 7.24 – 7.14 (m, 3H), 7.03 (dd, $J = 7.8, 1.6$ Hz, 2H), 4.51 (dd, $J = 10.9, 5.1$ Hz, 1H), 4.09 (t, $J = 11.0$ Hz, 1H), 3.76 (dd, $J = 10.8, 5.3$ Hz, 1H), 2.50 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 188.9, 145.5, 143.7, 140.8 (q, $J = 226.2$ Hz), 133.0, 131.5, 130.5, 130.0, 129.4 (q, 65.8 Hz), 128.9, 128.6, 128.5, 127.8, 127.5 (q, 14.5 Hz), 126.4, 125.1 (q, $J = 4.2$ Hz), 56.97, 47.1, 21.8; HRMS (ESI-TOF) m/z : $[\text{M} + \text{H}]^+$ Calcd for $\text{C}_{25}\text{H}_{20}\text{F}_3\text{NO}_3\text{S}$ 472.1189; Found 472.1188.


(S)-(2-Fluorophenyl)(4-phenyl-1-tosyl-4,5-dihydro-1*H*-pyrrol-3-yl)methanone


Following the general method described above, **1a** (50 mg, 0.183 mmol, 1.0 equiv) was reacted with (*E*)-3-(dimethylamino)-1-(2-fluorophenyl)prop-2-en-1-one **2i** (33.5 mg, 0.183 mmol, 1.0 equiv) and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{BF}_4$ (6 mg, 0.018 mmol, 0.1 equiv) in the presence of (*S*)-XylBINAP (16.1 mg, 0.022 mmol, 0.12 equiv) in toluene to afford **3w** (51.63 mg, 0.123 mmol) as a white powder in 67% yield. R_f 0.36 (20% ethyl acetate in petroleum ether) M_p = 152–154 °C; $[\alpha]_D^{25} = -18.359$ ($c = 0.139$ in CH_2Cl_2) for 90.68% *ee* sample. Optical purity was determined by chiral HPLC analysis (OD-H column), hexane–2-propanol, 90:10; flow rate = 1.0 mL/min; t_R 1: 20.658 (major), t_R 2: 25.425 min (minor); ^1H

¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.46 (dd, *J* = 15.5, 7.2 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.36 (t, *J* = 6.4 Hz, 1H), 7.28 (d, *J* = 1.4 Hz, 1H), 7.23 – 7.10 (m, 5H), 7.02 (dd, *J* = 7.7, 1.7 Hz, 2H), 4.48 (dd, *J* = 11.1, 5.0 Hz, 1H), 4.08 (t, *J* = 11.0 Hz, 1H), 3.68 (dd, *J* = 10.8, 5.1 Hz, 1H), 2.49 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 186.7, 159.31 (d, *J* = 250.2 Hz), 145.3, 144.8, 142.2, 133.14, 132.7, 132.6, 130.4, 130.1, 128.8, 127.7, 127.3, 127.1, 124.54 (d, *J* = 3.2 Hz), 116.37 (d, *J* = 22.1 Hz), 57.3, 46.6, 21.8. IR ν_{max} (KBr, cm⁻¹) 2918.3, 2848.6, 1629.8, 1595.1, 1485.2, 1450.5, 1356.0, 1236.4, 1159.2, 1084.0, 1012.6, 966.3, 895.0, 858.3, 814.0, 800.5, 781.2, 750.3, 719.4, 700.2, 667.4, 588.3, 538.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₀FNO₃S 422.1221; Found 422.1217.

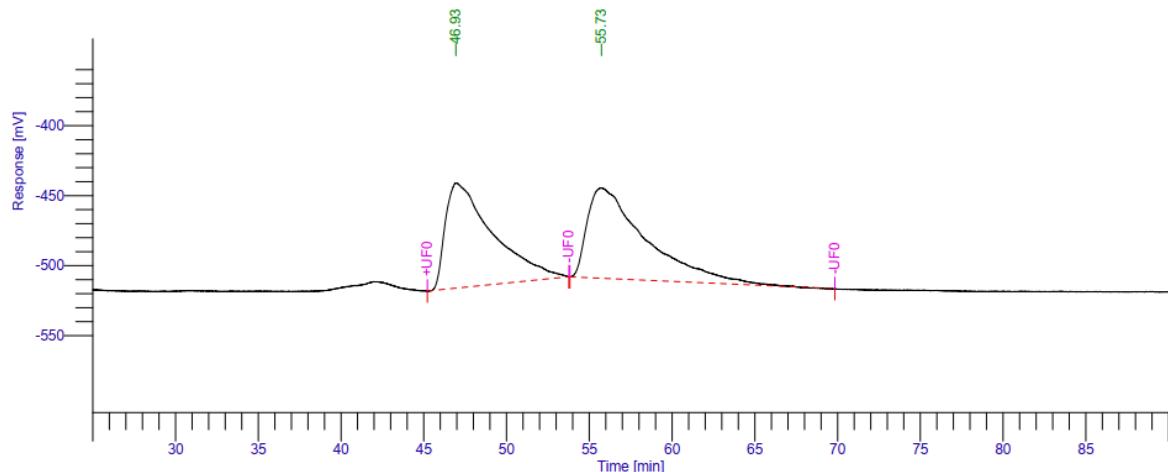
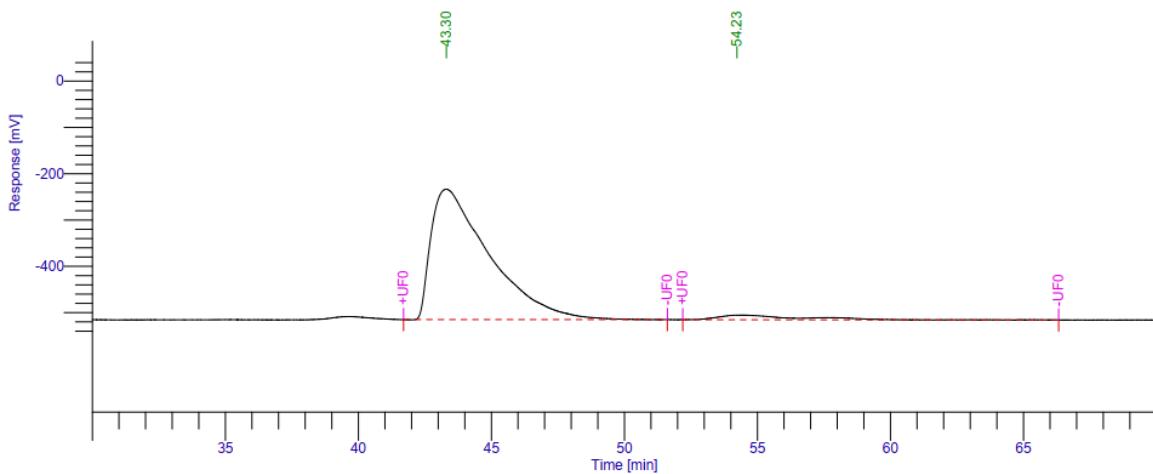

¹H and (¹³C{¹H} NMR) NMR Spectra, and HPLC chromatograms of the synthesized compounds

Figure S2. ¹H NMR spectrum of **3a** (500 MHz, CDCl₃)

Figure S3. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3a** (125 MHz, CDCl_3)

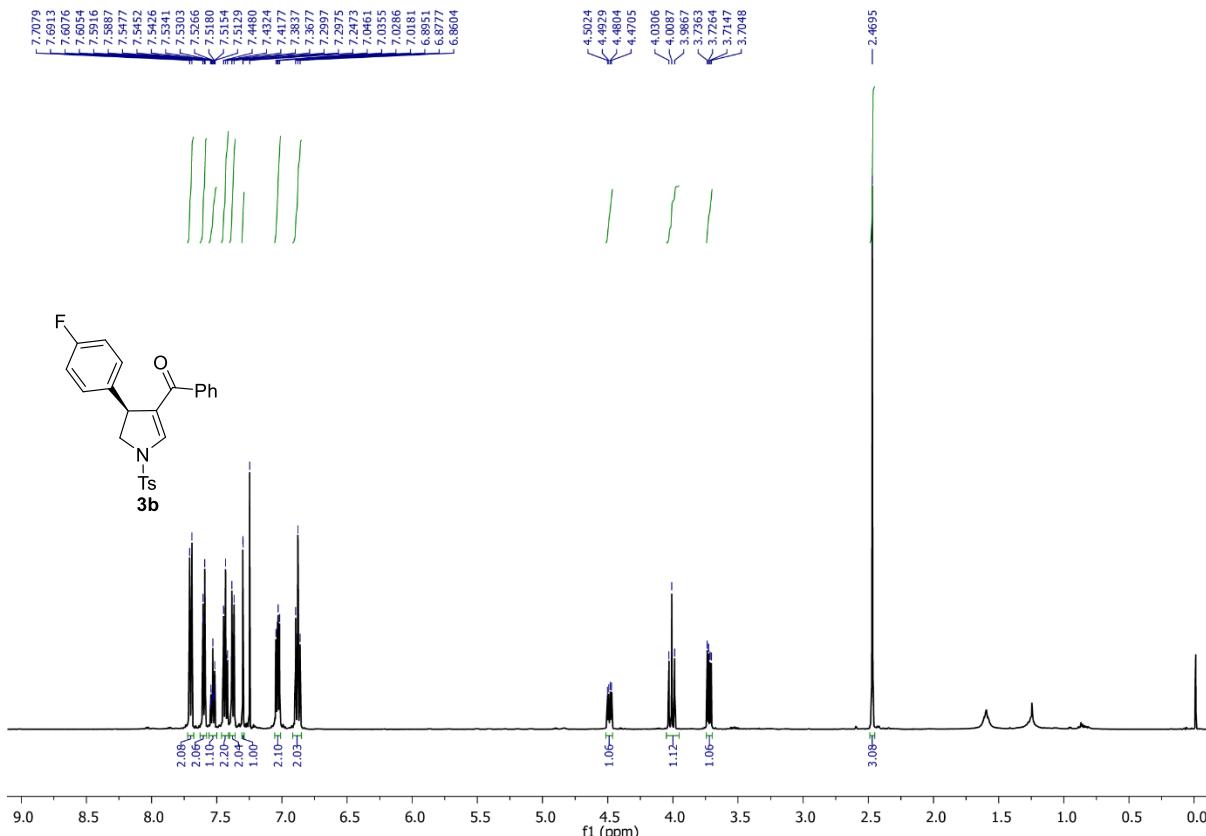


AKS-4-64RAC, OD-H

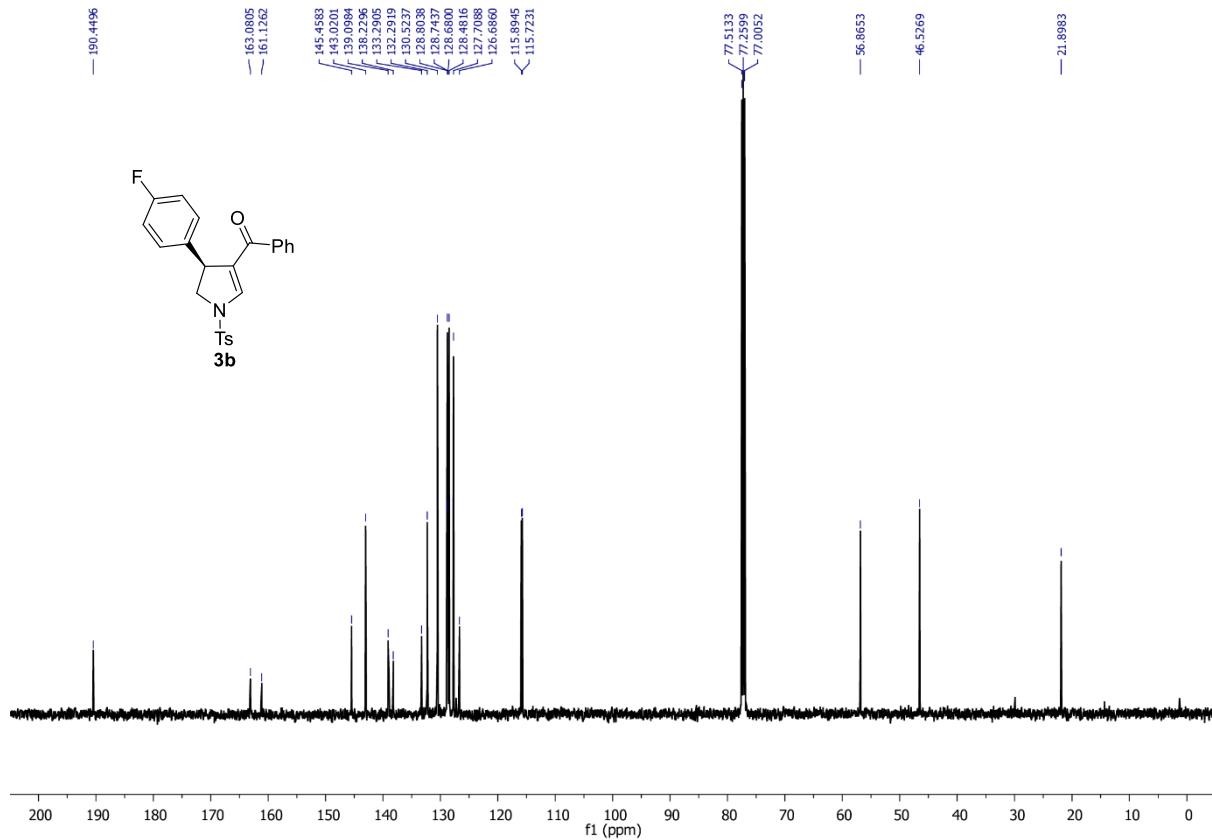
AKS-4-64RAC, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		46.933	14893032.39	75183.71	48.42	48.42			*MM	14.8930	14.8930
2		55.726	15863488.81	64584.09	51.58	51.58			*MM	15.8635	15.8635
			30756521.20	139767.80	100.00	100.00				30.7565	30.7565

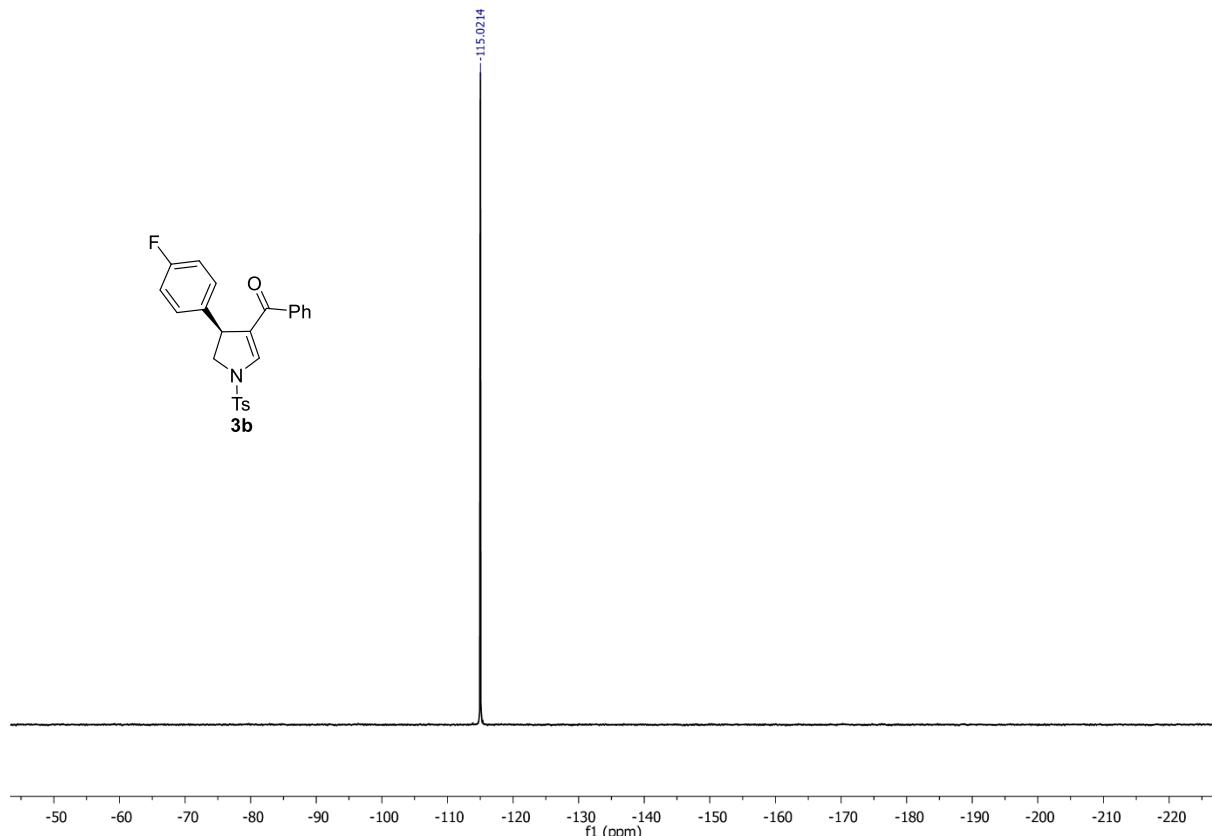
Figure S4. HPLC chromatogram of racemic compound **3a** (OD-H column; 97:3 Hexane–Isopropanol; 1.0 mL min^{-1})



AKS-4-177Chiral, OD-H


AKS-4-177Chiral, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		43.303	42860058.36	281625.34	97.69	97.69			*MM	42.8601	42.8601
2		54.230	2110923.84	9995.90	2.31	2.31			*MM	2.1109	2.1109
			44970982.20	291621.25	100.00	100.00				44.9710	44.9710


Figure S5. HPLC chromatogram of chiral compound **3a** (OD-H column; 97:3 Hexane–Isopropanol; 1.0 mL min⁻¹)

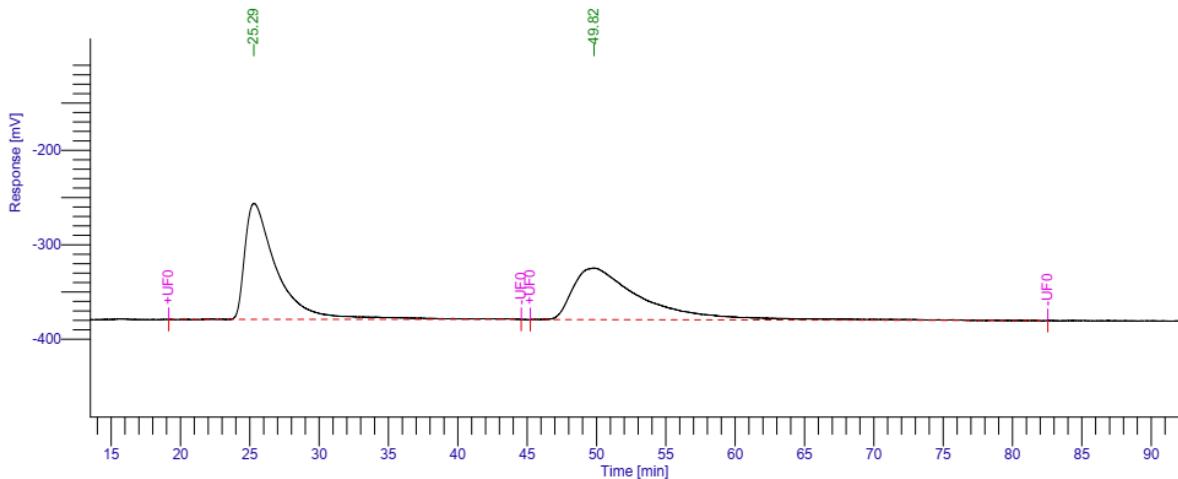
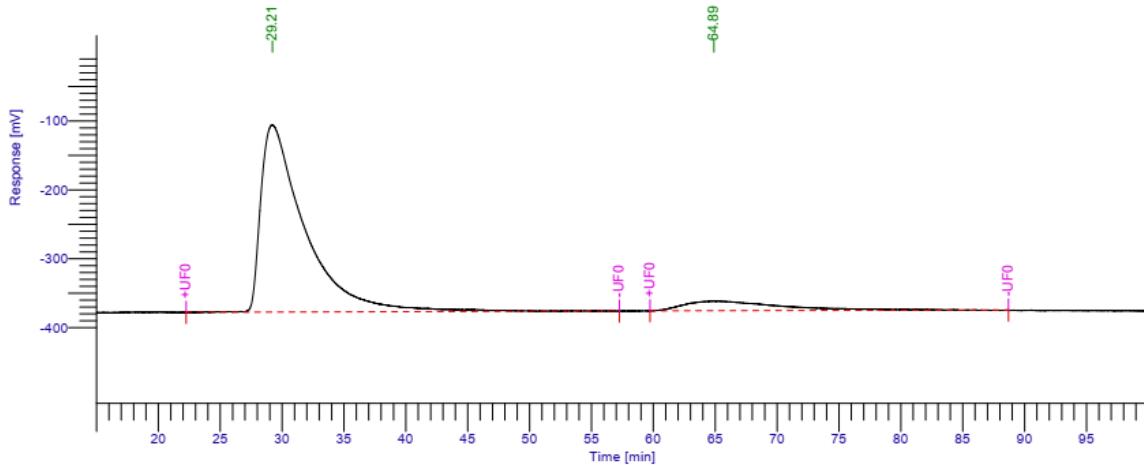

Figure S6. ¹H NMR spectrum of **3b** (500 MHz, CDCl₃)

Figure S7. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3b** (125 MHz, CDCl_3)

Figure S8. ^{19}F NMR spectrum of **3b** (500 MHz, CDCl_3)

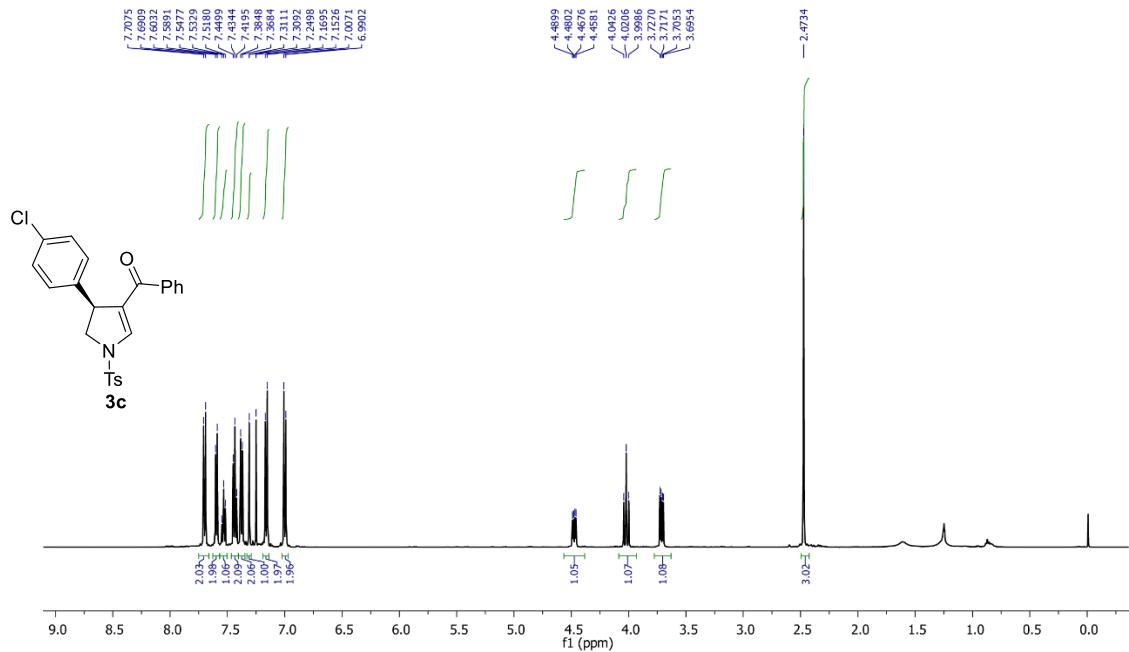


AKS-5-50RAC, AS-H

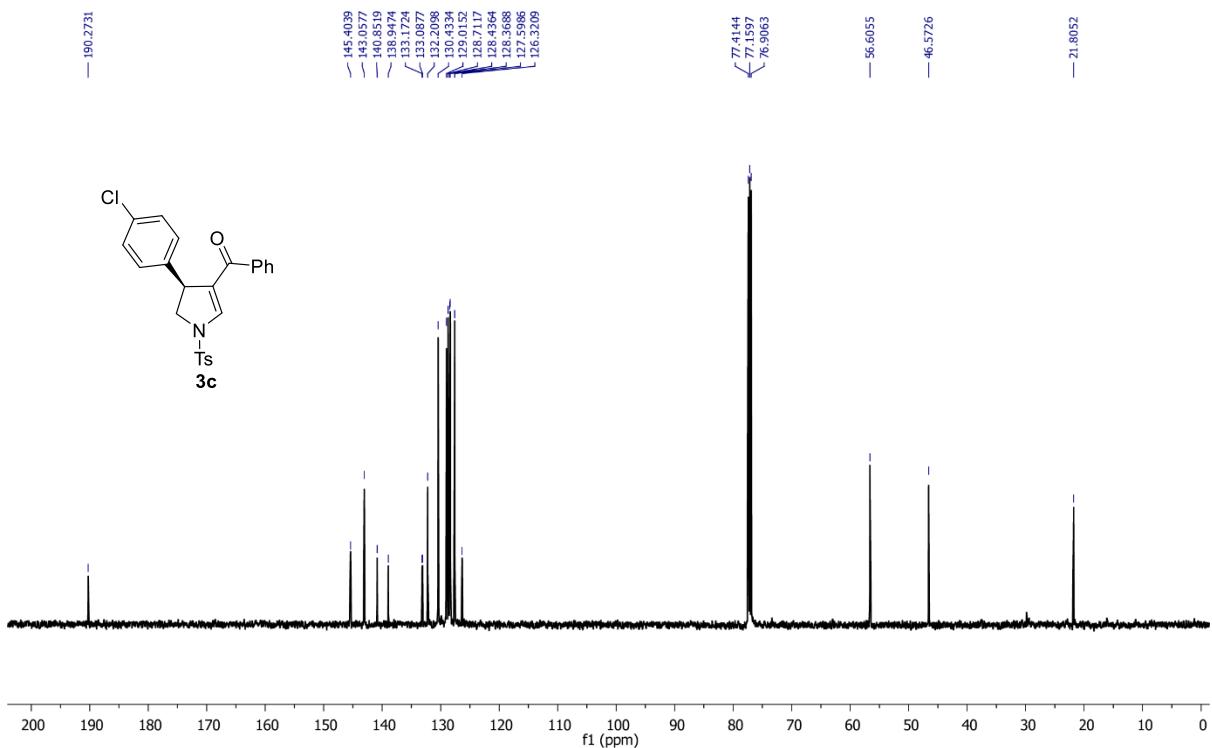
AKS-5-50RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		25.293	19790913.23	122761.93	51.36	51.36			*MM	19.7909	19.7909
2		49.815	18745477.60	54572.71	48.64	48.64			*MM	18.7455	18.7455
3		110.016	62.26	57.33	0.00	0.00			BB	0.0001	0.0001
			38536453.08	177391.97	100.00	100.00				38.5365	38.5365

Figure S9. HPLC chromatogram of racemic compound **3b** (As-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)



AKS-5-49CHIRAL, AS-H


AKS-5-49CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		29.209	67318576.82	272001.17	90.03	90.03			*MM	67.3186	67.3186
2		64.885	7456464.42	13911.86	9.97	9.97			*MM	7.4565	7.4565
			74775041.24	285913.02	100.00	100.00				74.7750	74.7750

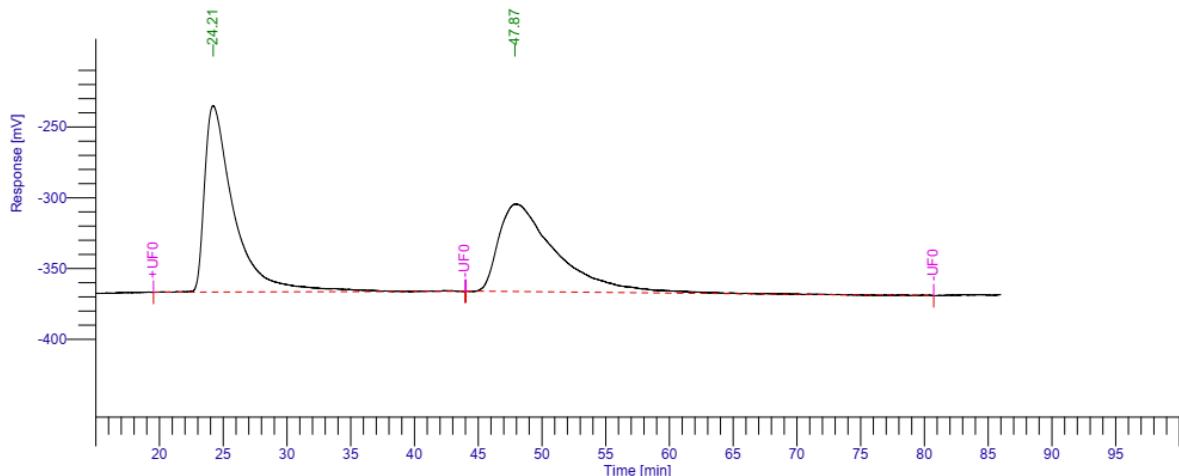
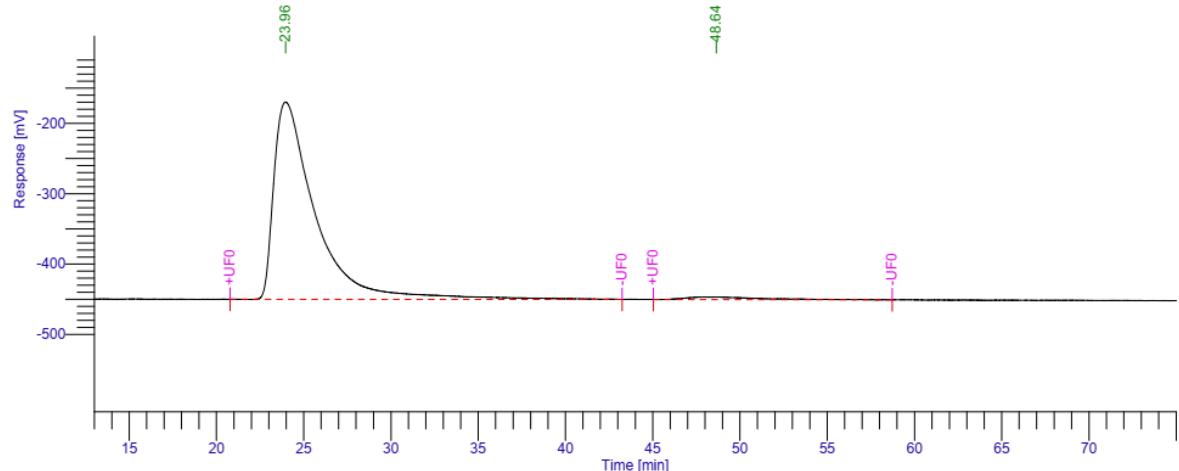

Figure S10. HPLC chromatogram of chiral compound **3b** (As-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S11. ^1H NMR spectrum of **3c** (500 MHz, CDCl_3)

Figure S12. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3c** (125 MHz, CDCl_3)

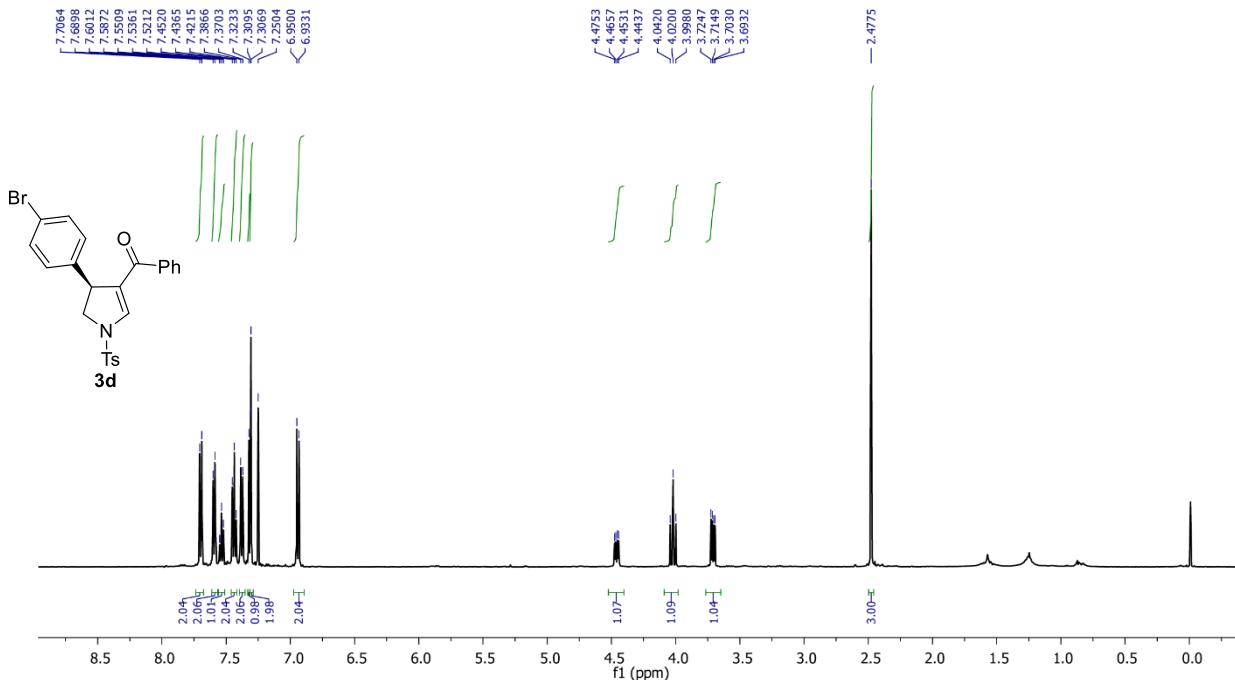


AKS-5-44RAC, AS-H

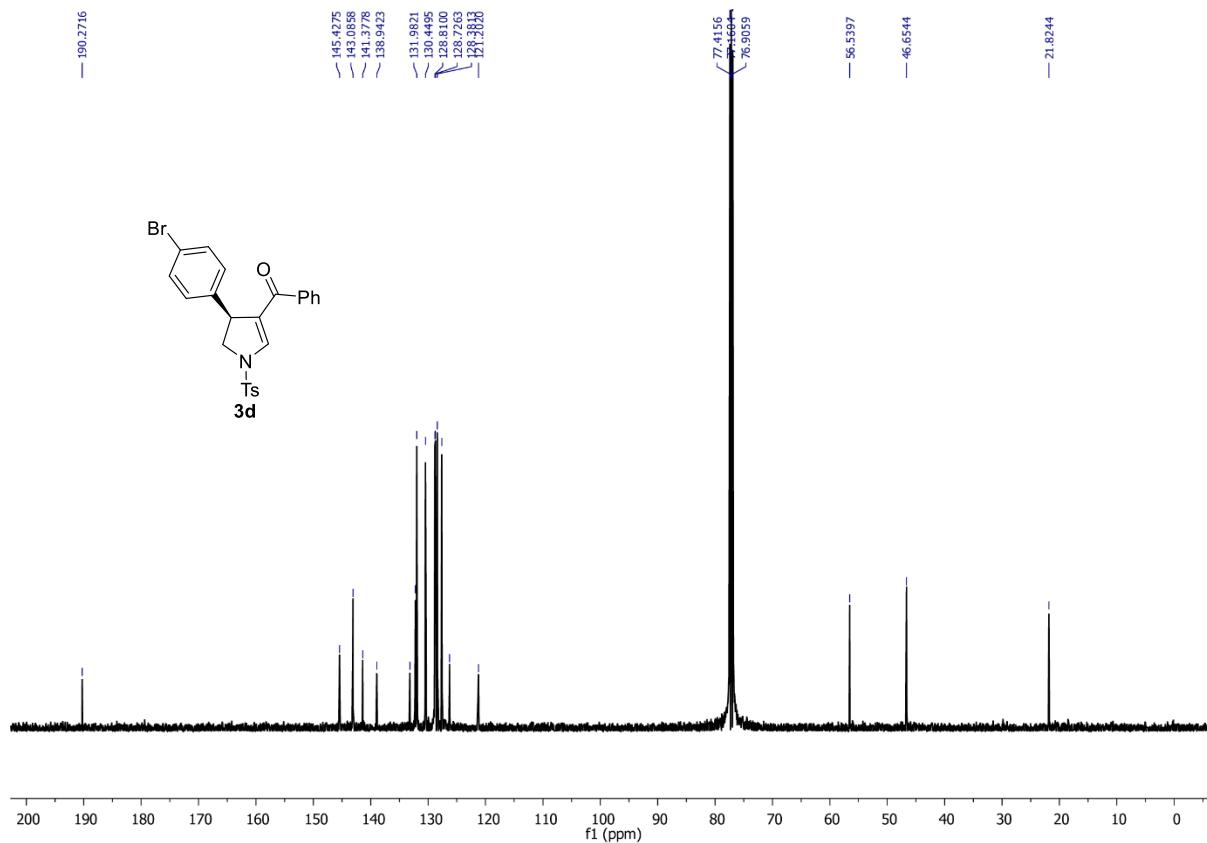
AKS-5-44RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		24.207	21106177.70	131700.61	52.07	52.07			*MM	21.1062	21.1062
2		47.872	19425578.16	61811.21	47.93	47.93			*MM	19.4256	19.4256
			40531755.87	193511.82	100.00	100.00				40.5318	40.5318

Figure S13. HPLC chromatogram of racemic compound **3c** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)



AKS-5-43CHIRAL, AS-H


AKS-5-43CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		23.958	46310204.64	280318.73	97.71	97.71			*MM	46.3102	46.3102
2		48.642	1086451.13	3760.27	2.29	2.29			*MM	1.0865	1.0865
			47396655.77	284079.00	100.00	100.00				47.3967	47.3967

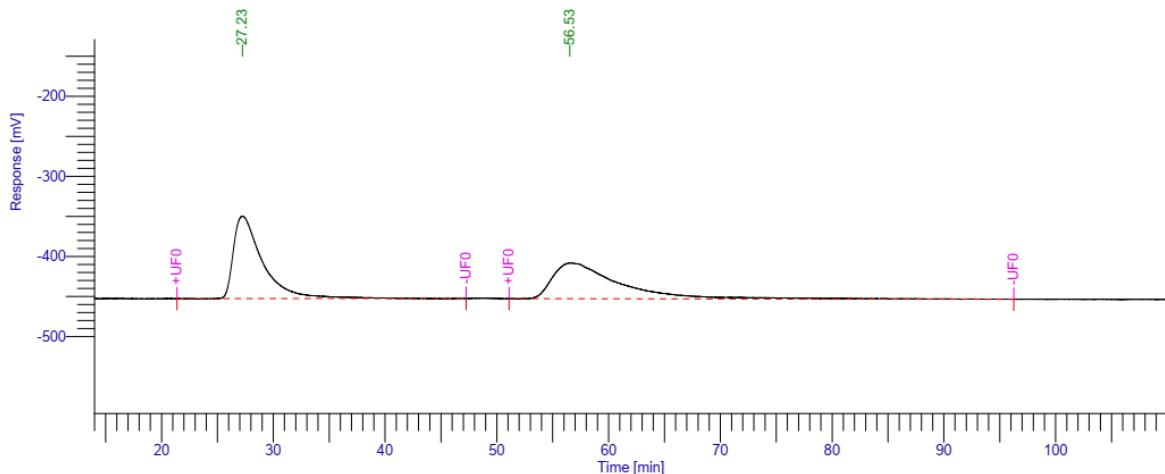
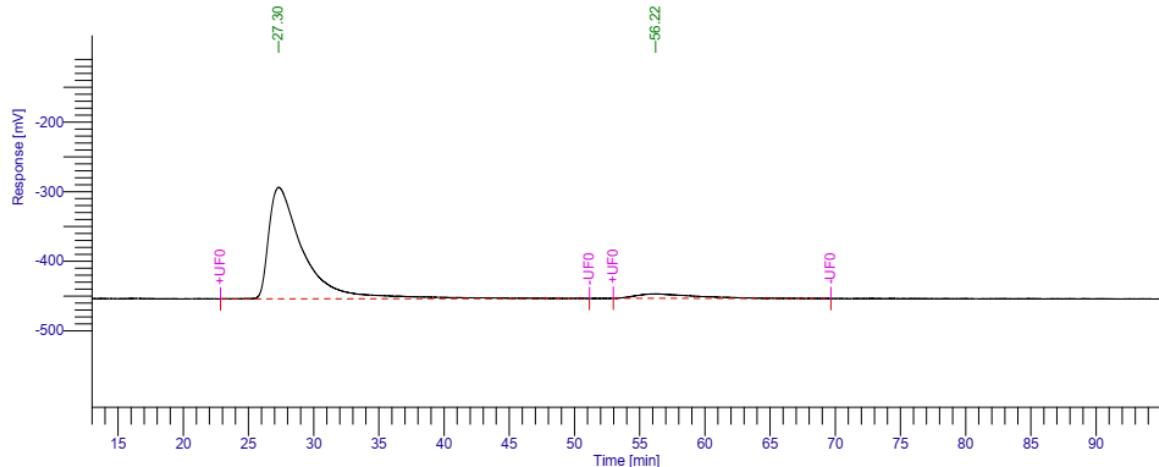

Figure S14. HPLC chromatogram of chiral compound **3c** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S15. ^1H NMR spectrum of **3d** (500 MHz, CDCl_3)

Figure S16. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3d** (125 MHz, CDCl_3)

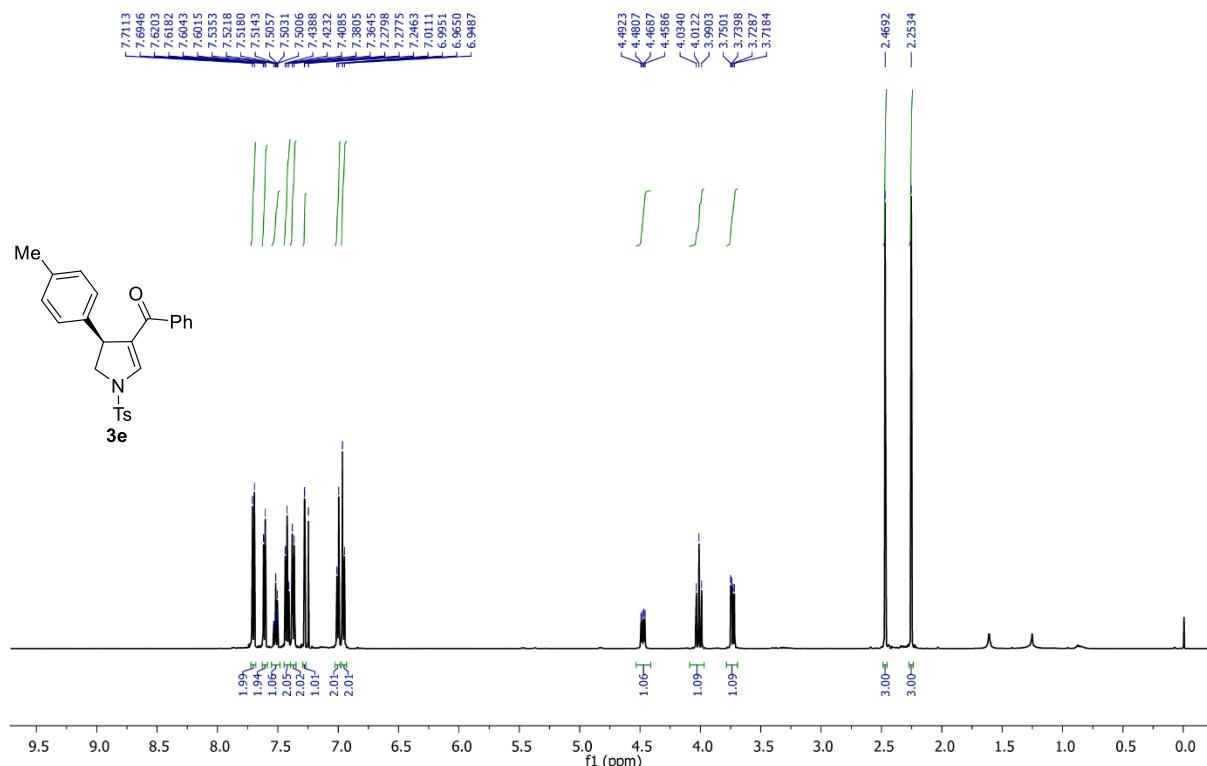


AKS-5-46RAC, AS-H

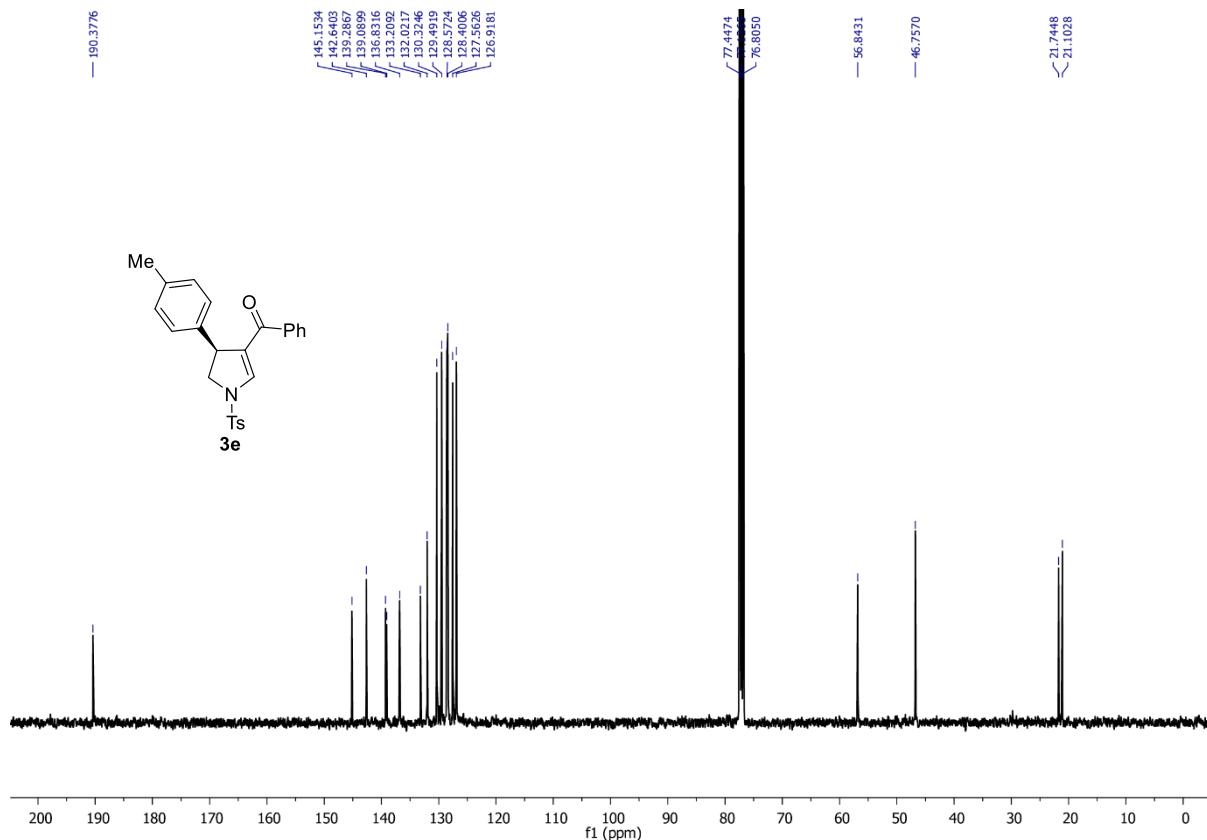
AKS-5-46RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		27.229	18697576.31	102994.36	50.21	50.21			*MM	18.6976	18.6976
2		56.525	18542026.69	44743.28	49.79	49.79			*MM	18.5420	18.5420
			37239603.00	147737.65	100.00	100.00				37.2396	37.2396

Figure S17. HPLC chromatogram of racemic compound **3d** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)



AKS-5-45CHIRAL, AS-H


AKS-5-45CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		27.302	29482627.56	160219.22	93.82	93.82			*MM	29.4826	29.4826
2		56.217	1940883.66	6370.78	6.18	6.18			*MM	1.9409	1.9409
			31423511.22	166590.00	100.00	100.00				31.4235	31.4235

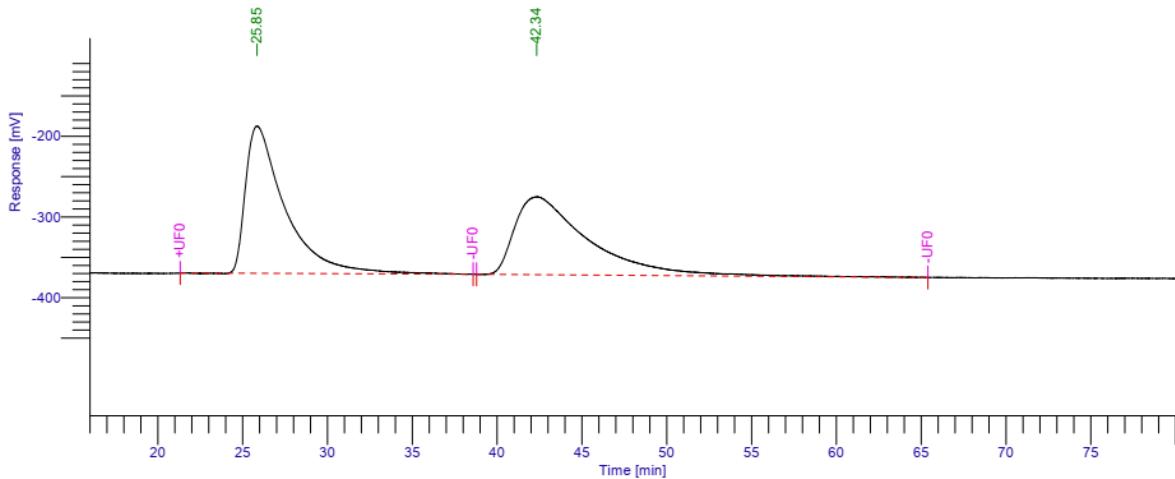
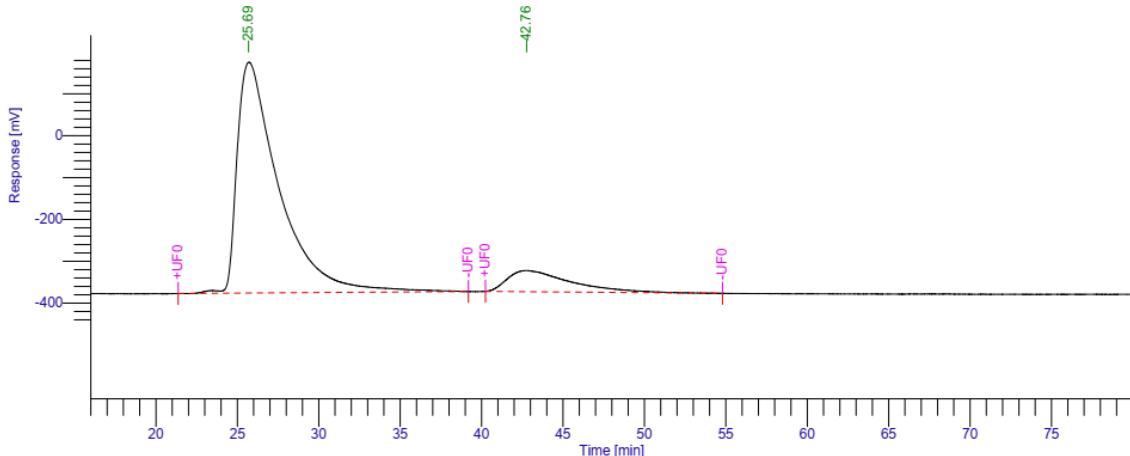

Figure S18. HPLC chromatogram of chiral compound **3d** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S19. ^1H NMR spectrum of **3e** (500 MHz, CDCl_3)

Figure S20. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3e** (125 MHz, CDCl_3)

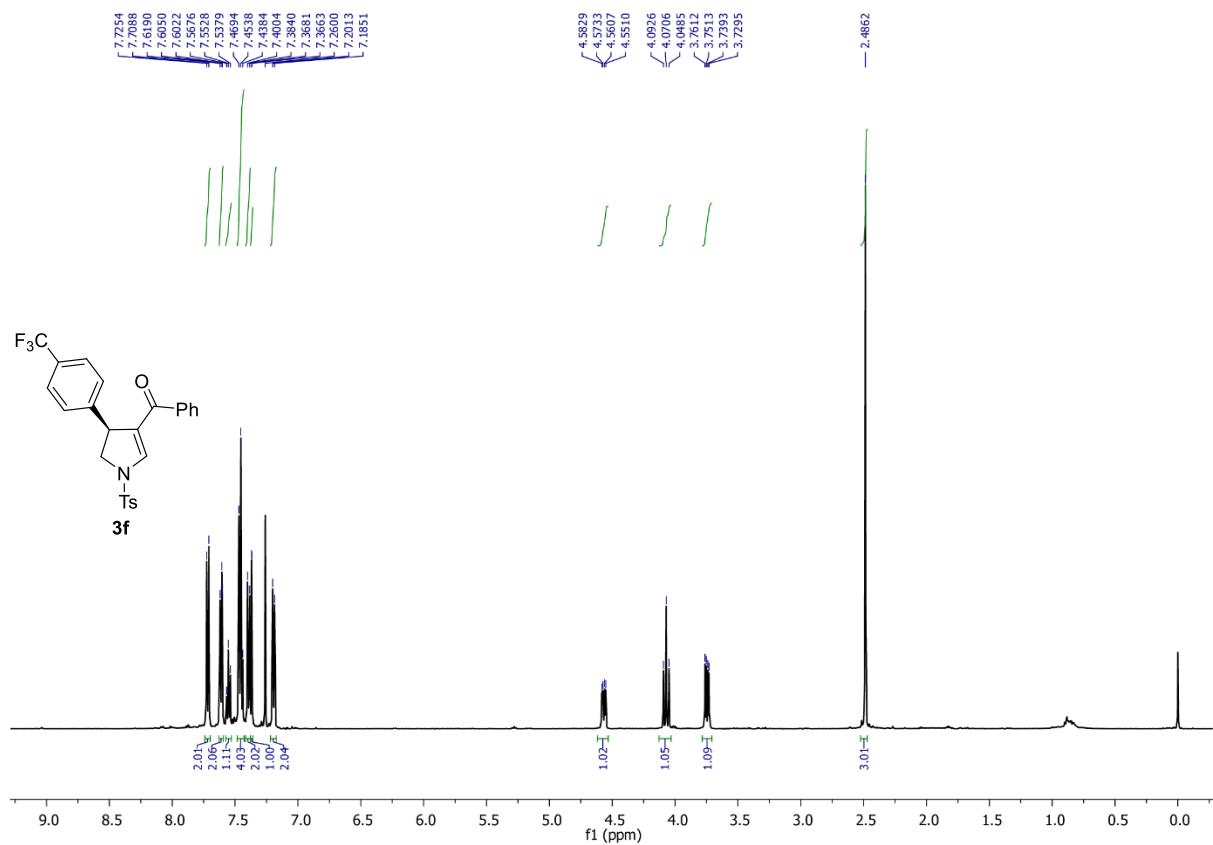


AKS-5-48RAC, AS-H

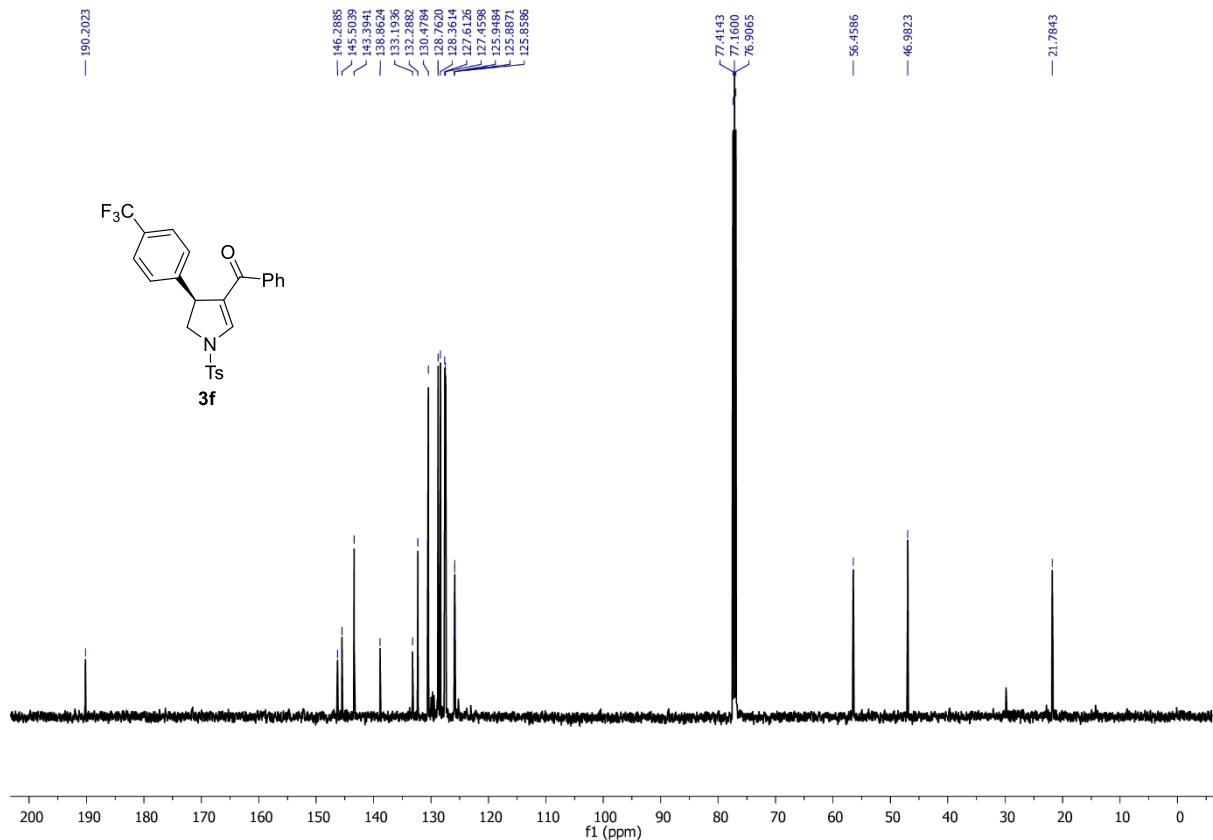
AKS-5-48RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		25.850	29491868.30	182382.48	50.50	50.50			*MM	29.4919	29.4919
2		42.335	28907217.14	96331.93	49.50	49.50			*MM	28.9072	28.9072
			58399085.45	278714.41	100.00	100.00				58.3991	58.3991

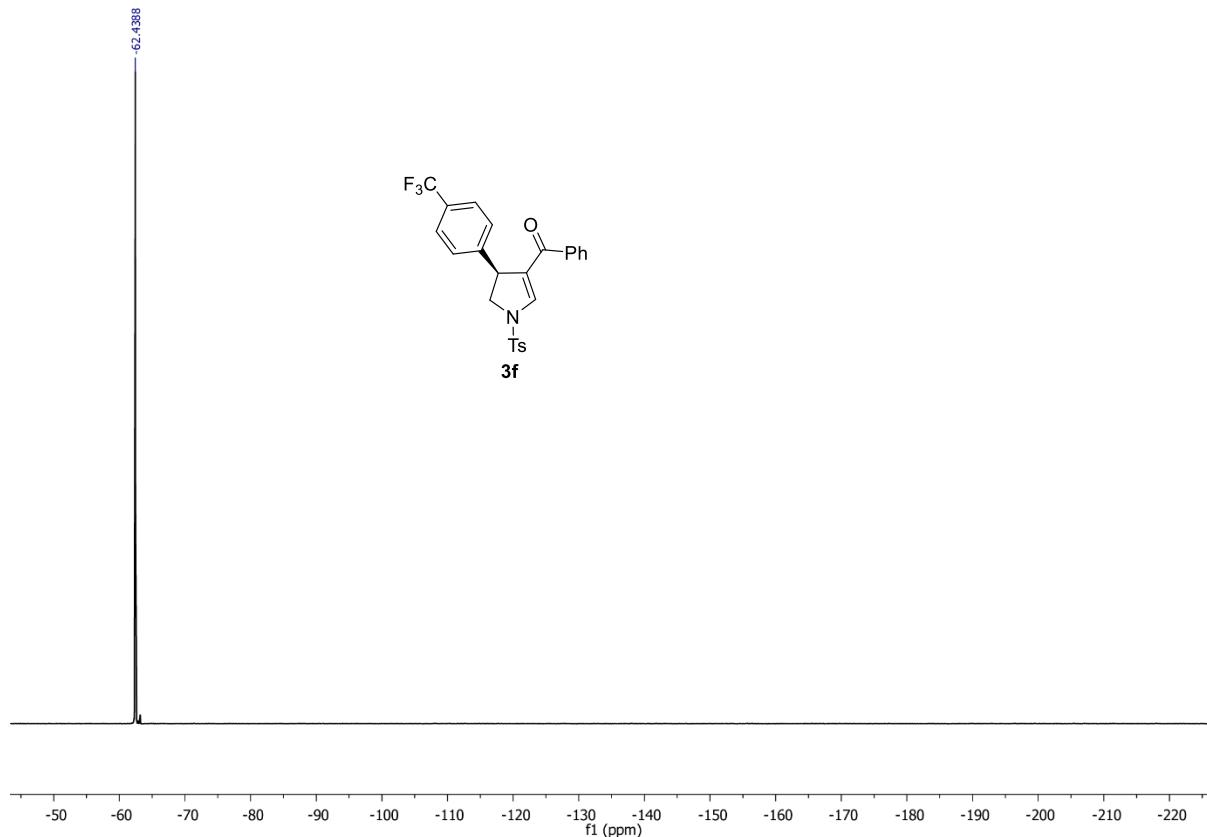
Figure S20. HPLC chromatogram of racemic compound **3e** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)



AKS-5-47CHIRAL, AS-H


AKS-5-47CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		25.689	98328516.60	551531.04	87.91	87.91			*MM	98.3285	98.3285
2		42.761	13523262.39	50572.42	12.09	12.09			*MM	13.5233	13.5233
			1.12e+08	602103.46	100.00	100.00				111.8518	111.8518


Figure S21. HPLC chromatogram of chiral compound **3e** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

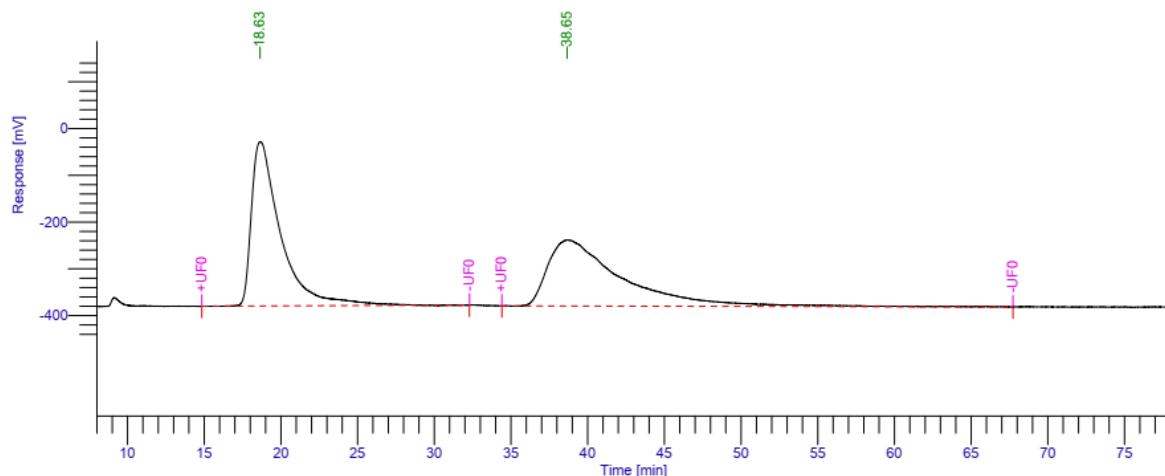
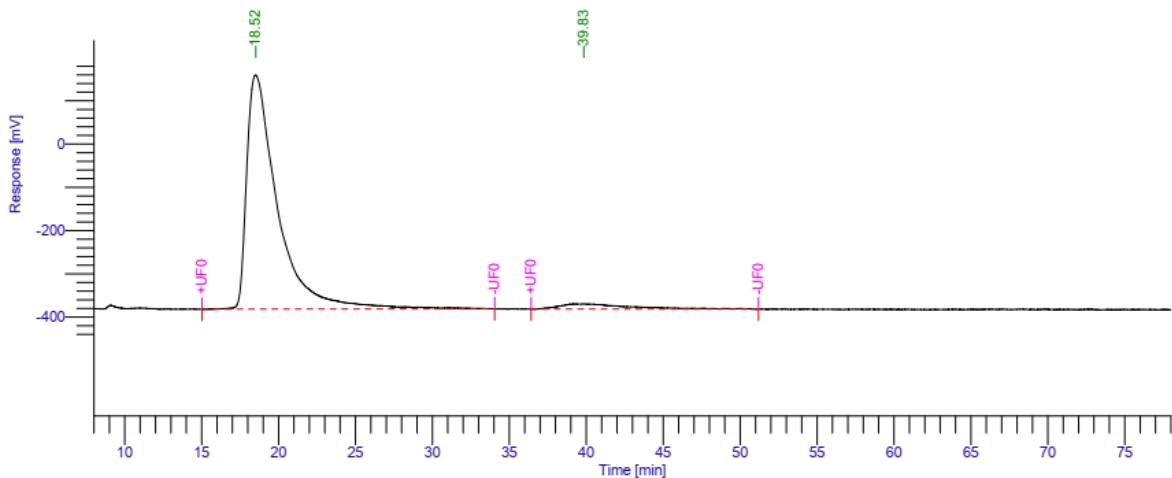

Figure S22. ^1H NMR spectrum of **3f** (500 MHz, CDCl₃)

Figure S23. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3f** (125 MHz, CDCl₃)

Figure S24. ^{19}F NMR spectrum of **3f** (500 MHz, CDCl_3)

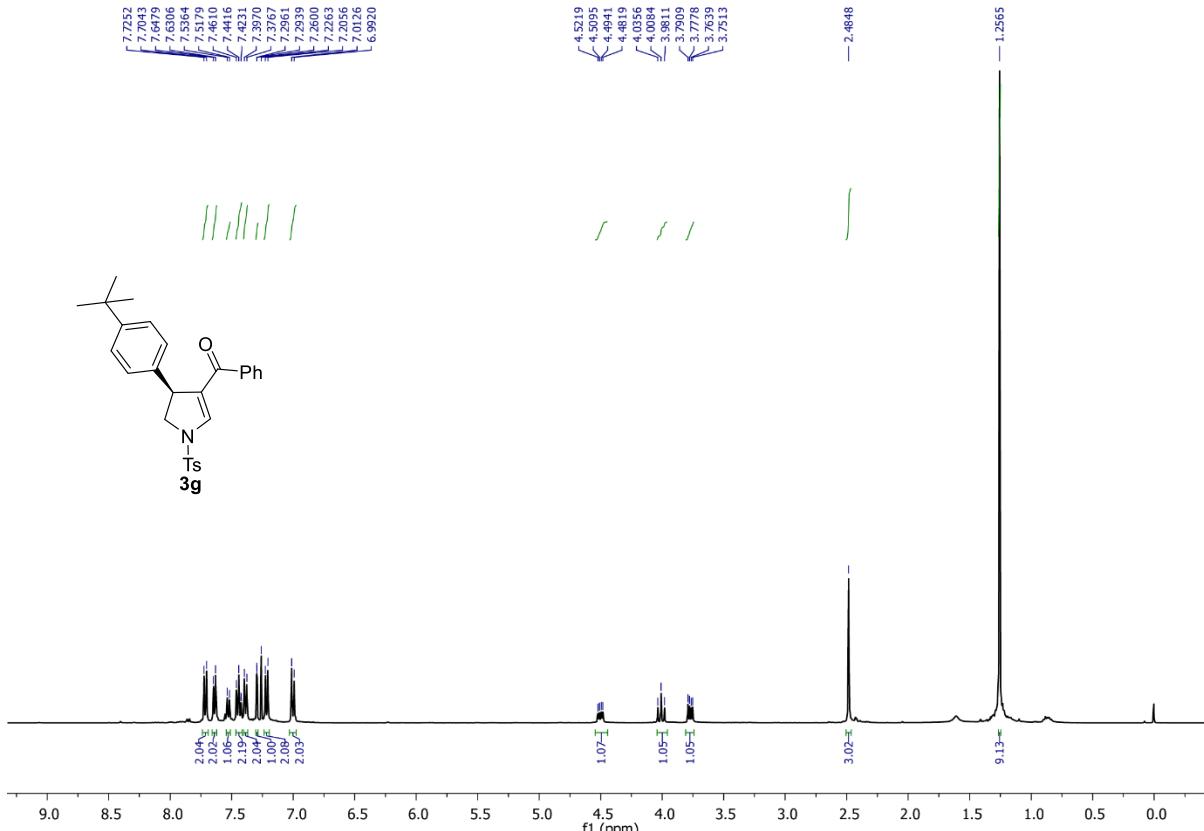


AKS-5-73RAC, AS-H

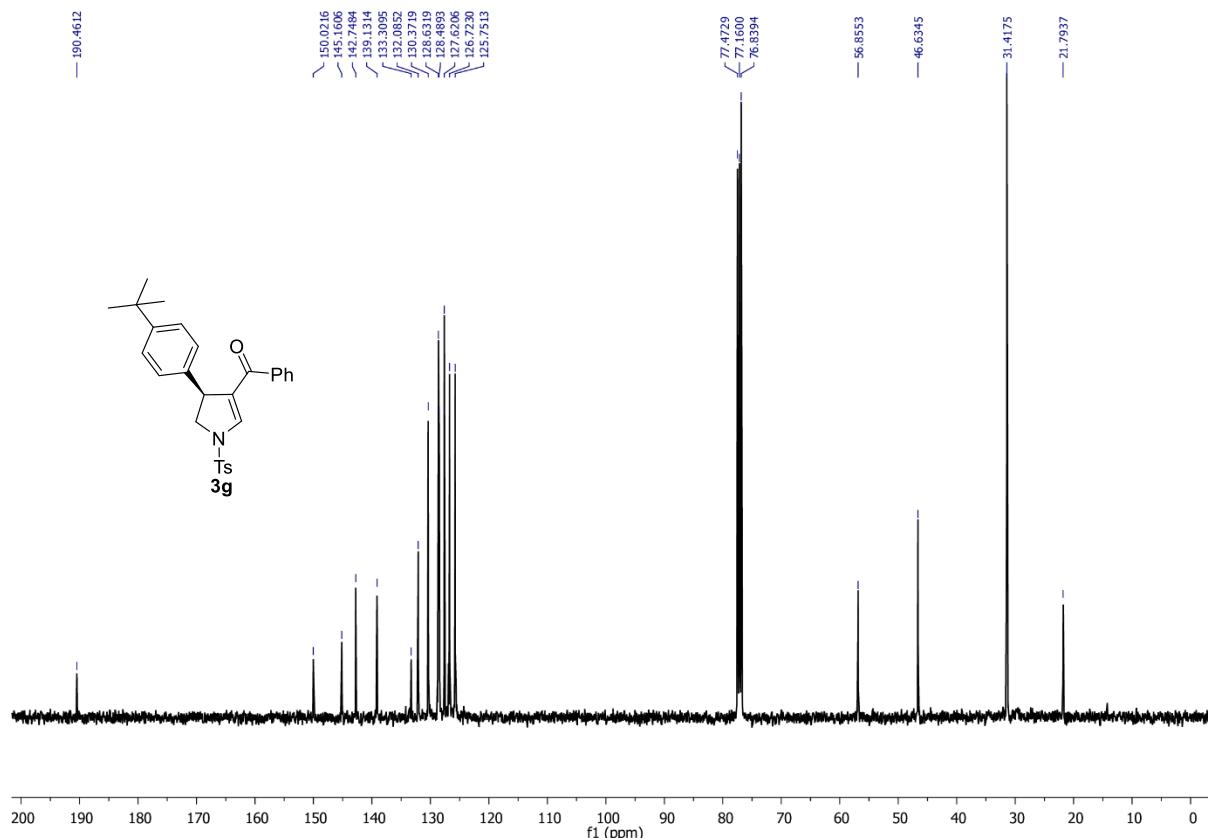
AKS-5-73RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		18.634	46384310.44	351121.39	49.61	49.61			*MM	46.3843	46.3843
2		38.654	47113239.01	141179.45	50.39	50.39			*MM	47.1132	47.1132
			93497549.45	492300.85	100.00	100.00				93.4975	93.4975

Figure S25. HPLC chromatogram of racemic compound **3f** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min^{-1})



AKS-5-72CHIRAL, AS-H


AKS-5-72CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		18.517	75413101.88	541282.01	95.24	95.24			*MM	75.4131	75.4131
2		39.835	3771089.16	11833.74	4.76	4.76			*MM	3.7711	3.7711
			79184191.04	553115.75	100.00	100.00				79.1842	79.1842

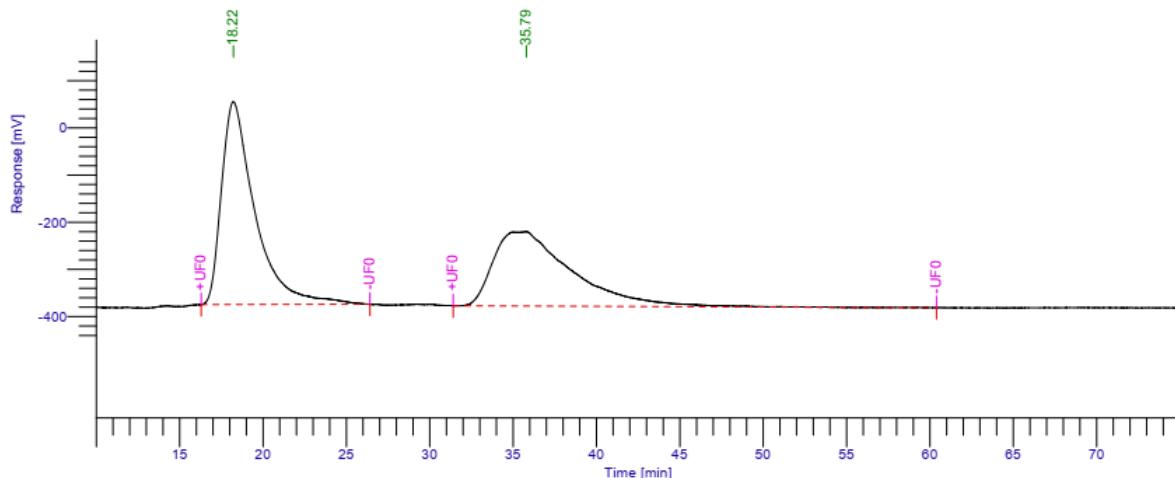
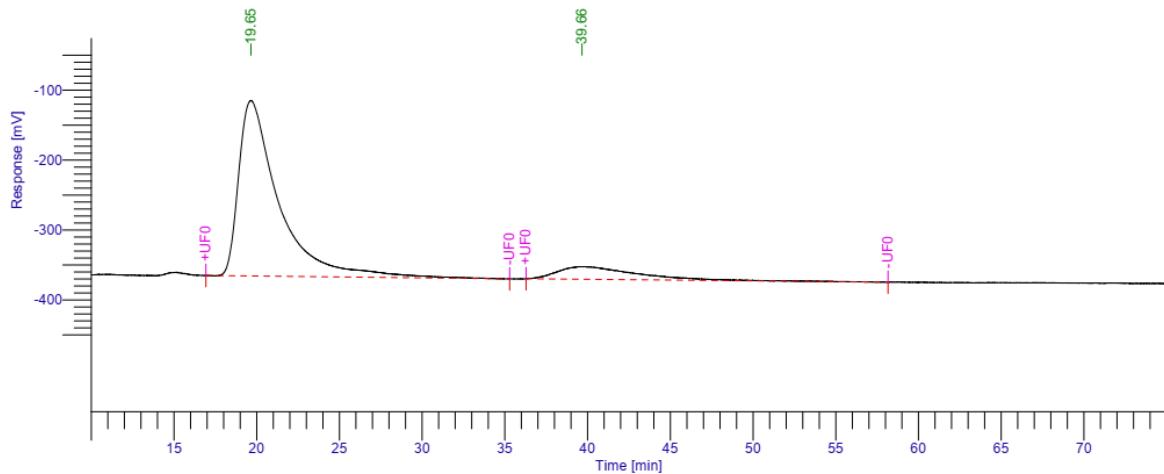

Figure S26. HPLC chromatogram of chiral compound **3f** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S27. ¹H NMR spectrum of **3g** (500 MHz, CDCl₃)

Figure S28. ¹³C{¹H} NMR spectrum of **3g** (125 MHz, CDCl₃)

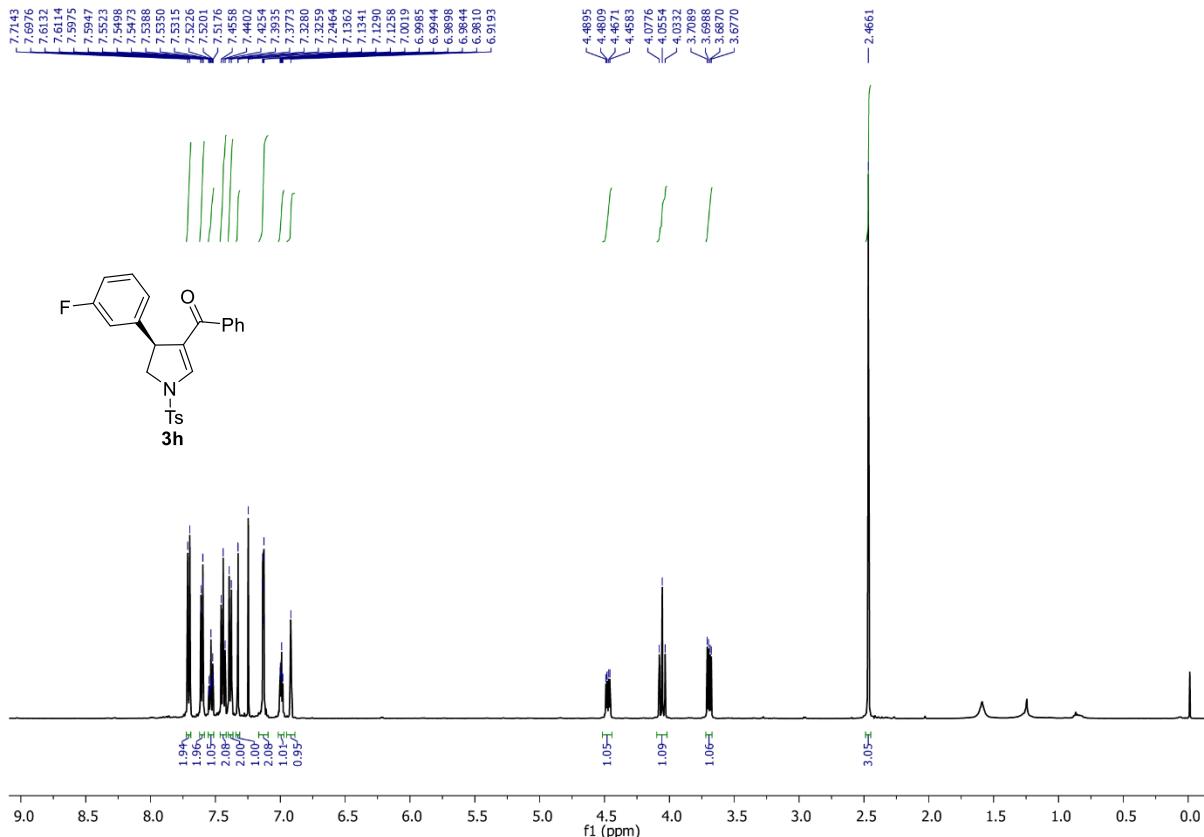


AKS-5-75RAC, AS-H

AKS-5-75RAC, AS-H

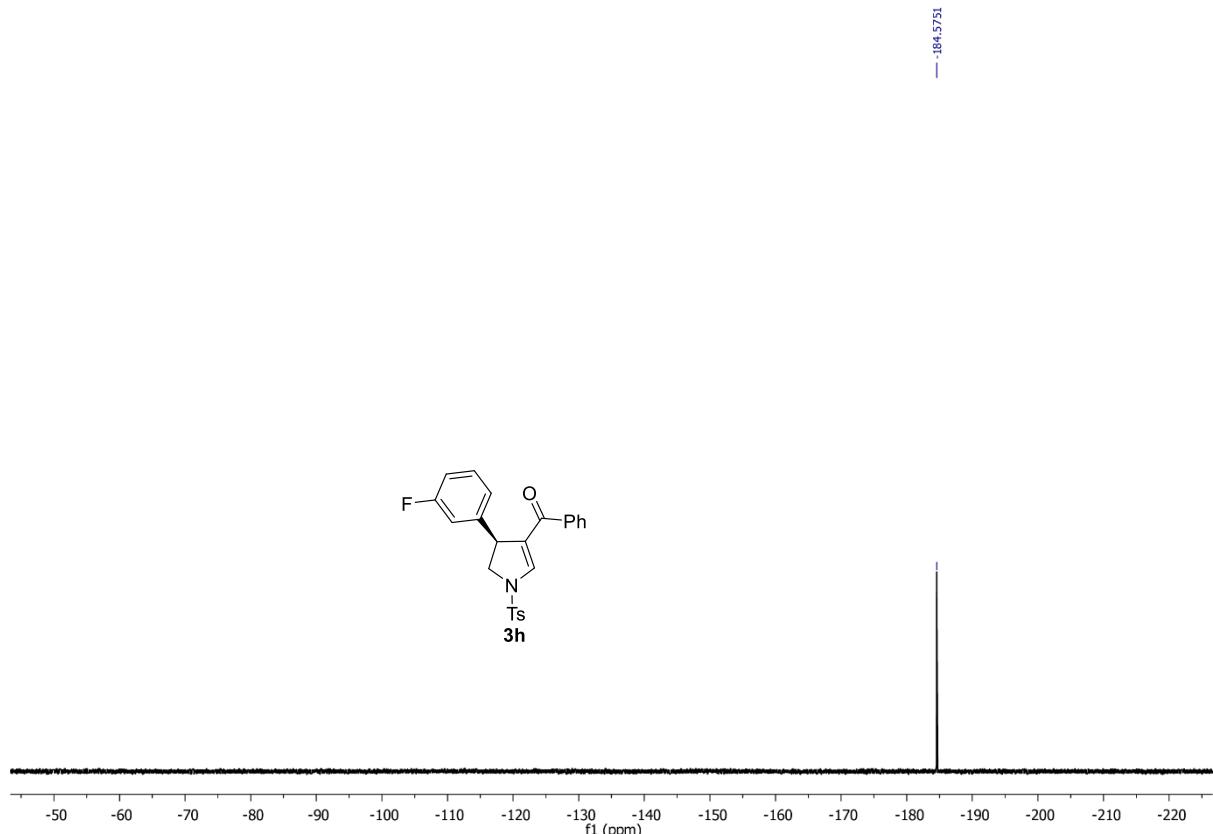
Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		18.223	59822629.69	430185.29	53.87	53.87			*MM	59.8226	59.8226
2		35.787	51217864.67	157921.19	46.13	46.13			*MM	51.2179	51.2179
			1.11e+08	588106.48	100.00	100.00				111.0405	111.0405

Figure S29. HPLC chromatogram of racemic compound **3g** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)


AKS-5-165CHIRAL, AS-H


AKS-5-165CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		19.653	42262439.93	251032.43	87.64	87.64			*MM	42.2624	42.2624
2		39.659	5962067.21	18113.56	12.36	12.36			*MM	5.9621	5.9621
			48224507.15	269146.00	100.00	100.00				48.2245	48.2245


Figure S30. HPLC chromatogram of chiral compound **3g** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min^{-1})

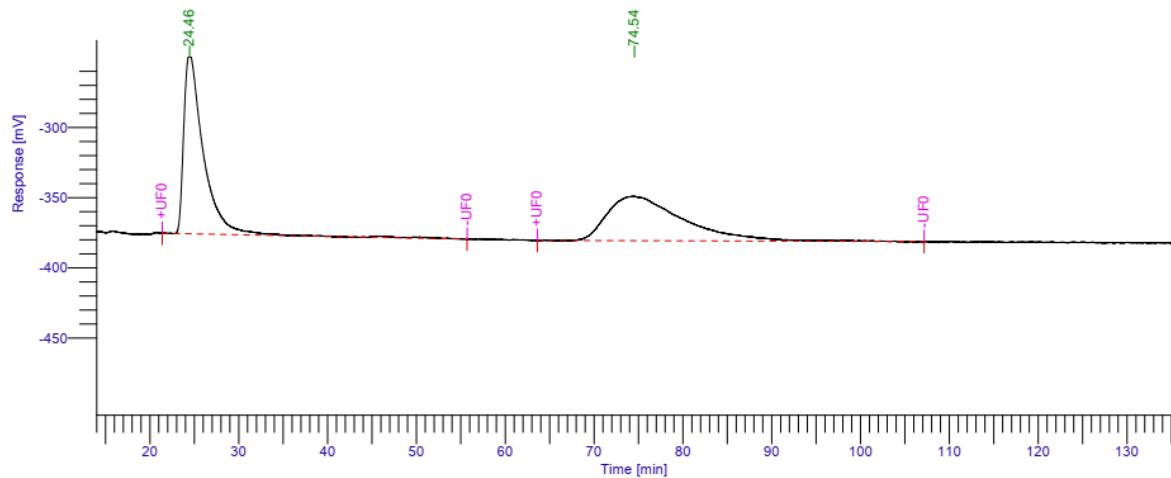
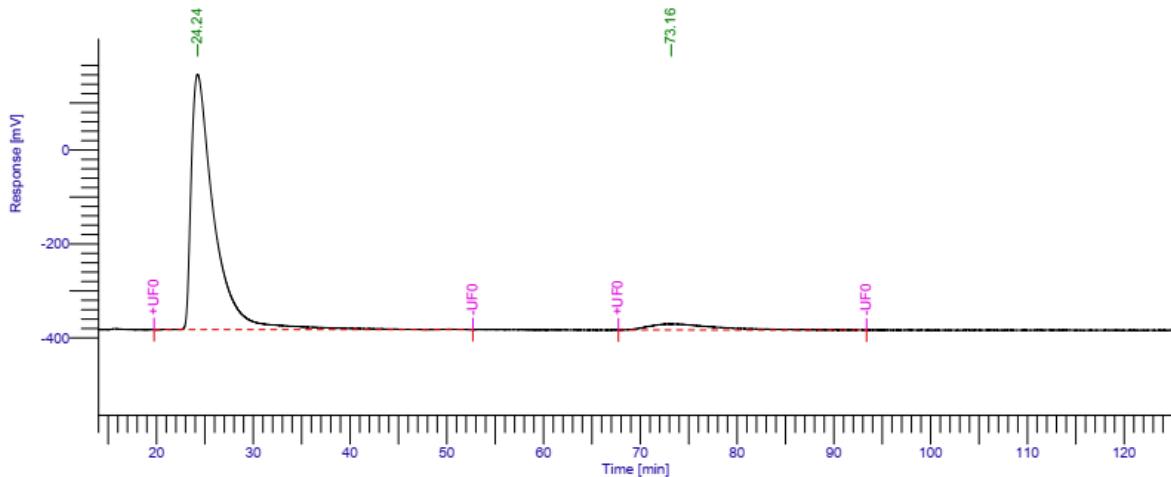

Figure S31. ^1H NMR spectrum of **3h** (500 MHz, CDCl_3)

Figure S32. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3h** (125 MHz, CDCl_3)

Figure S33. ^{19}F NMR spectrum of **3h** (500 MHz, CDCl_3)

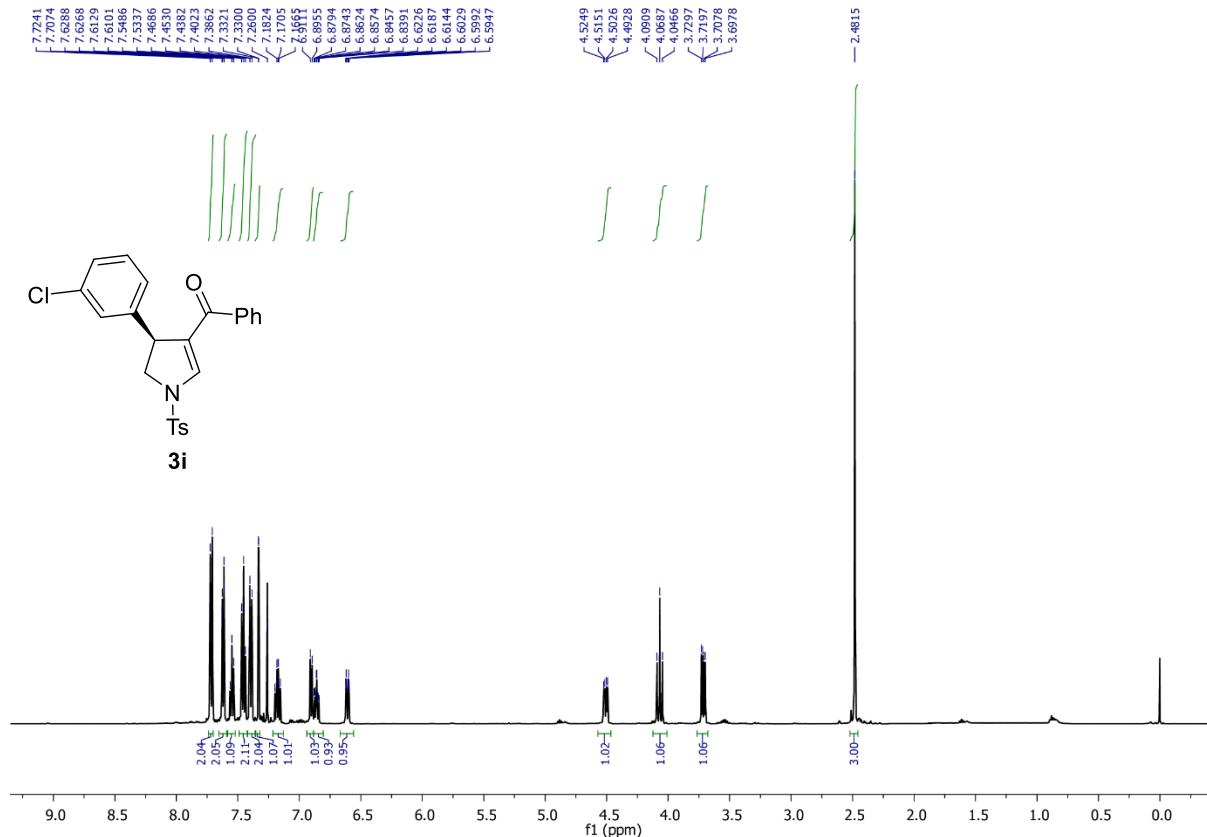


AKS-5-58RAC, AS-H

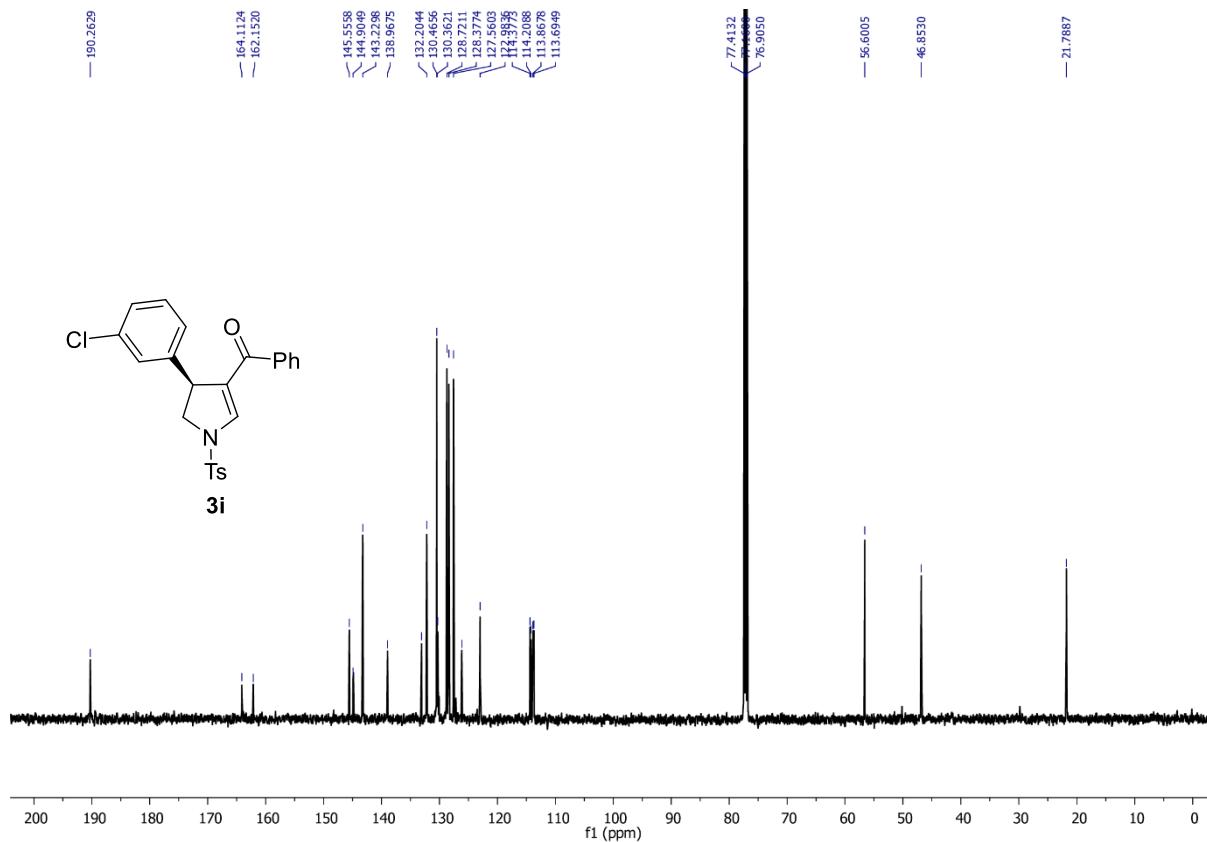
AKS-5-58RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		24.457	19728066.80	128812.53	51.20	51.20			*MM	19.7281	19.7281
2		74.543	18806459.14	31707.57	48.80	48.80			*MM	18.8065	18.8065
			38534525.94	160520.10	100.00	100.00				38.5345	38.5345

Figure S34. HPLC chromatogram of racemic compound **3h** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)



AKS-5-51CHIRAL, AS-H


AKS-5-51CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		24.244	89303055.10	543321.82	93.57	93.57			*MM	89.3031	89.3031
2		73.165	6132391.32	12841.07	6.43	6.43			*MM	6.1324	6.1324
			95435446.42	556162.89	100.00	100.00				95.4354	95.4354

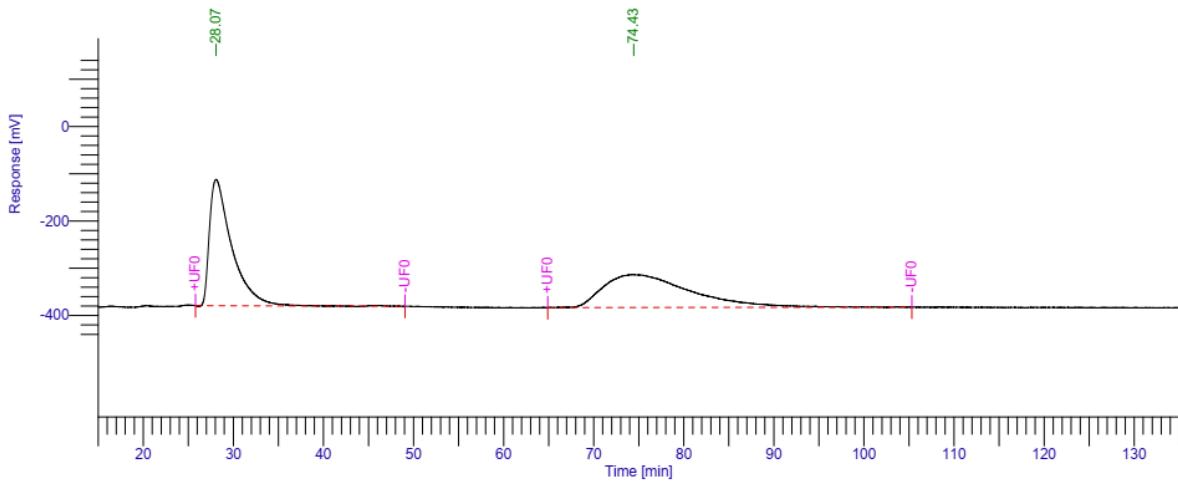
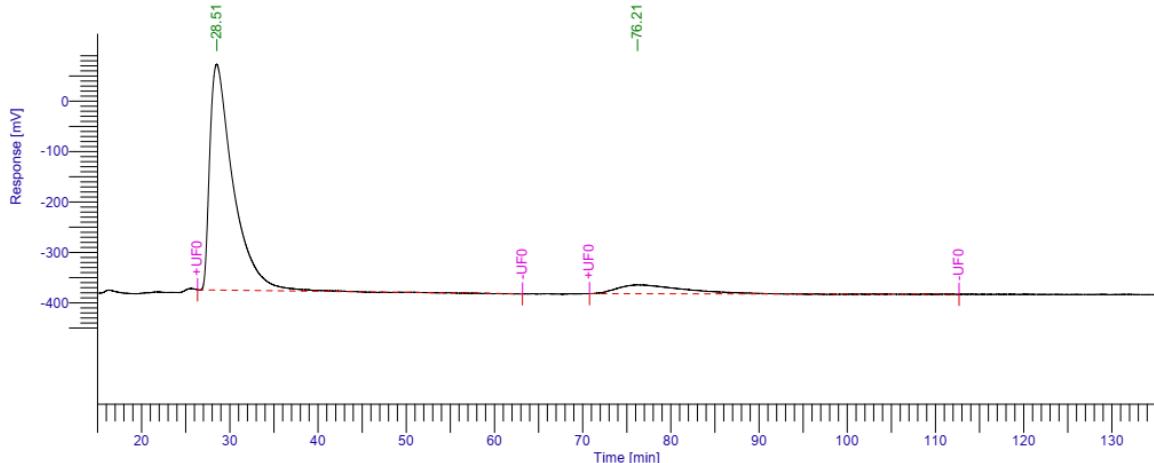

Figure S35. HPLC chromatogram of chiral compound **3h** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S36. ^1H NMR spectrum of **3i** (500 MHz, CDCl_3)

Figure S37. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3i** (125 MHz, CDCl_3)

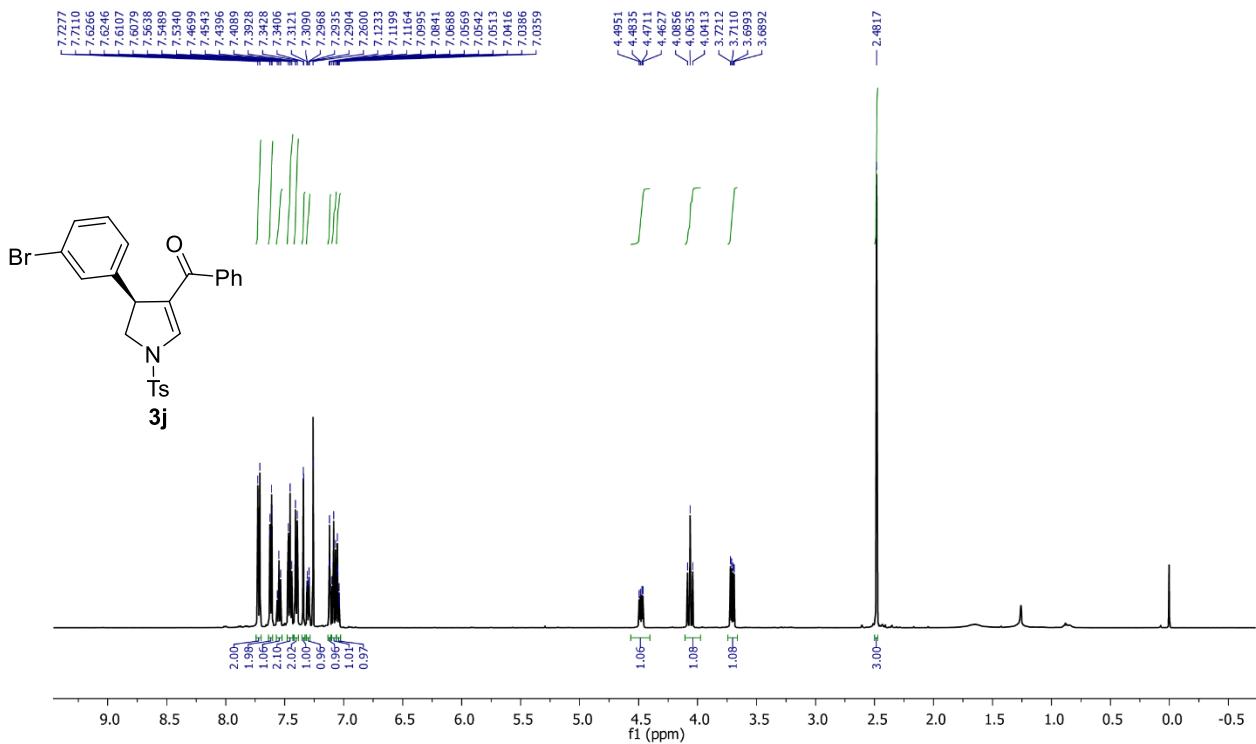


AKS-5-59RAC, AS-H

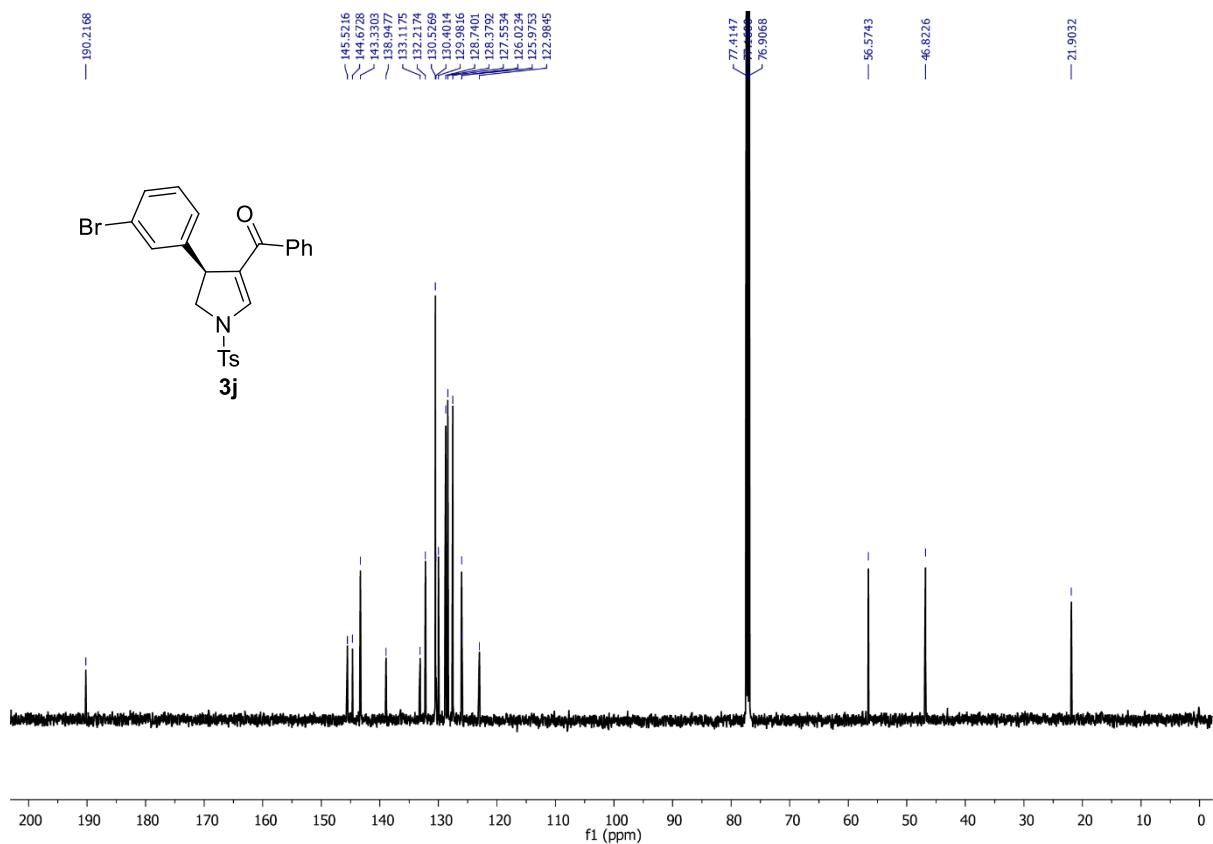
AKS-5-59RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		28.072	46163400.20	267242.72	49.73	49.73			*MM	46.1634	46.1634
2		74.433	46667909.94	69606.62	50.27	50.27			*MM	46.6679	46.6679
			92831310.14	336849.34	100.00	100.00				92.8313	92.8313

Figure S38. HPLC chromatogram of racemic compound **3i** (AS-H column; 90:10 Hexane-Isopropanol; 1.0 mL min⁻¹)



AKS-5-53CHIRAL, AS-H


AKS-5-53CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		28.512	82580202.87	447932.14	89.87	89.87			*MM	82.5802	82.5802
2		76.208	9312374.24	17708.33	10.13	10.13			*MM	9.3124	9.3124
			91892577.11	465640.48	100.00	100.00				91.8926	91.8926

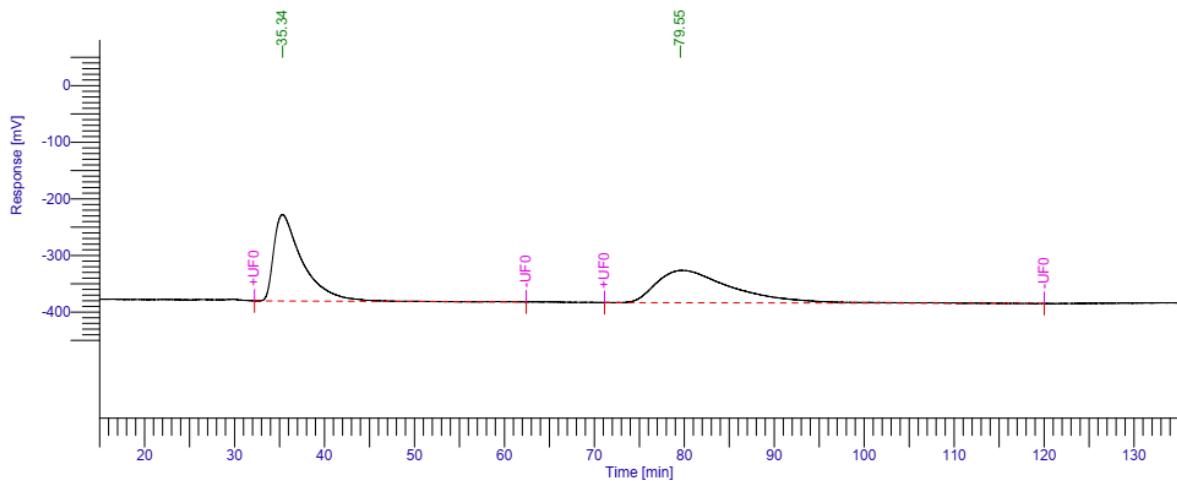
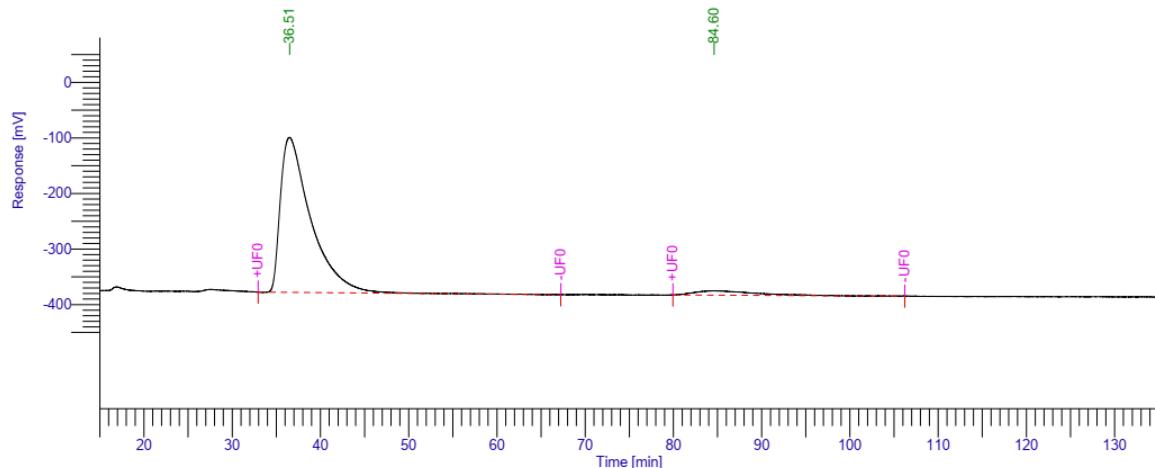

Figure S39. HPLC chromatogram of chiral compound **3i** (AS-H column; 90:10 Hexane-Isopropanol; 1.0 mL min⁻¹)

Figure S40. ^1H NMR spectrum of **3j** (500 MHz, CDCl_3)

Figure S41. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3j** (125 MHz, CDCl_3)

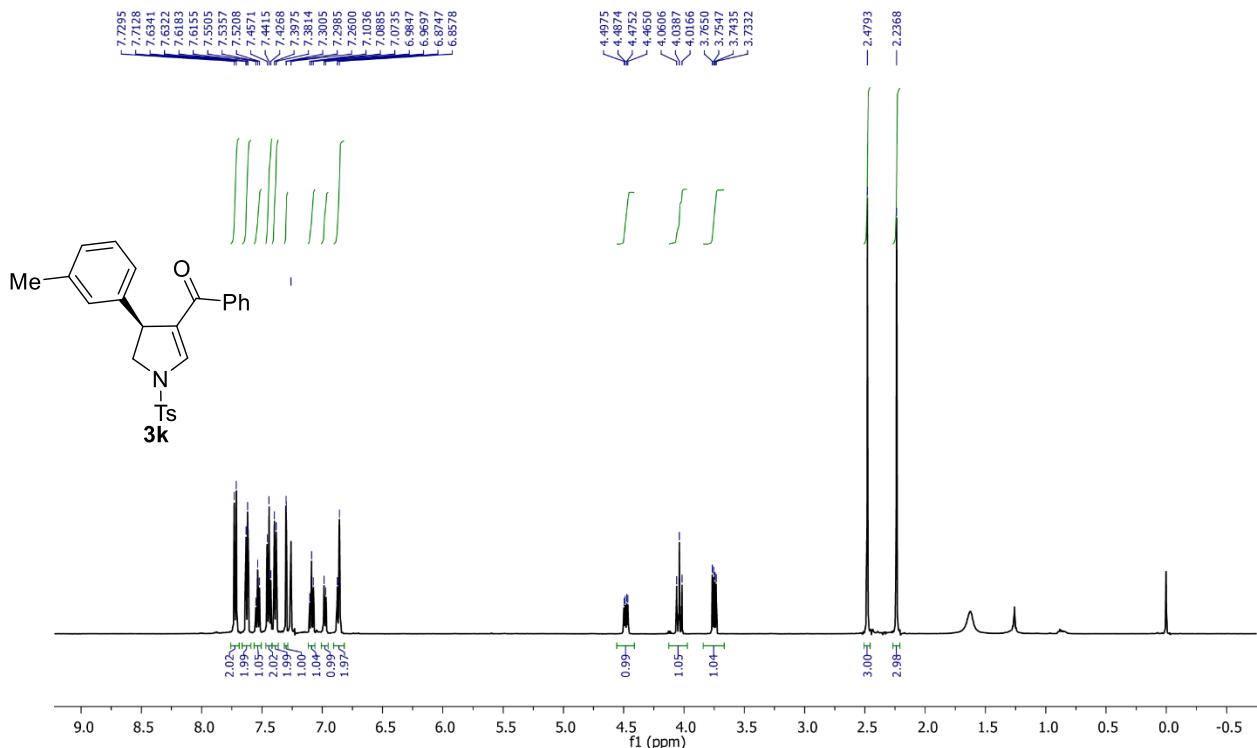


AKS-5-56RAC, AS-H

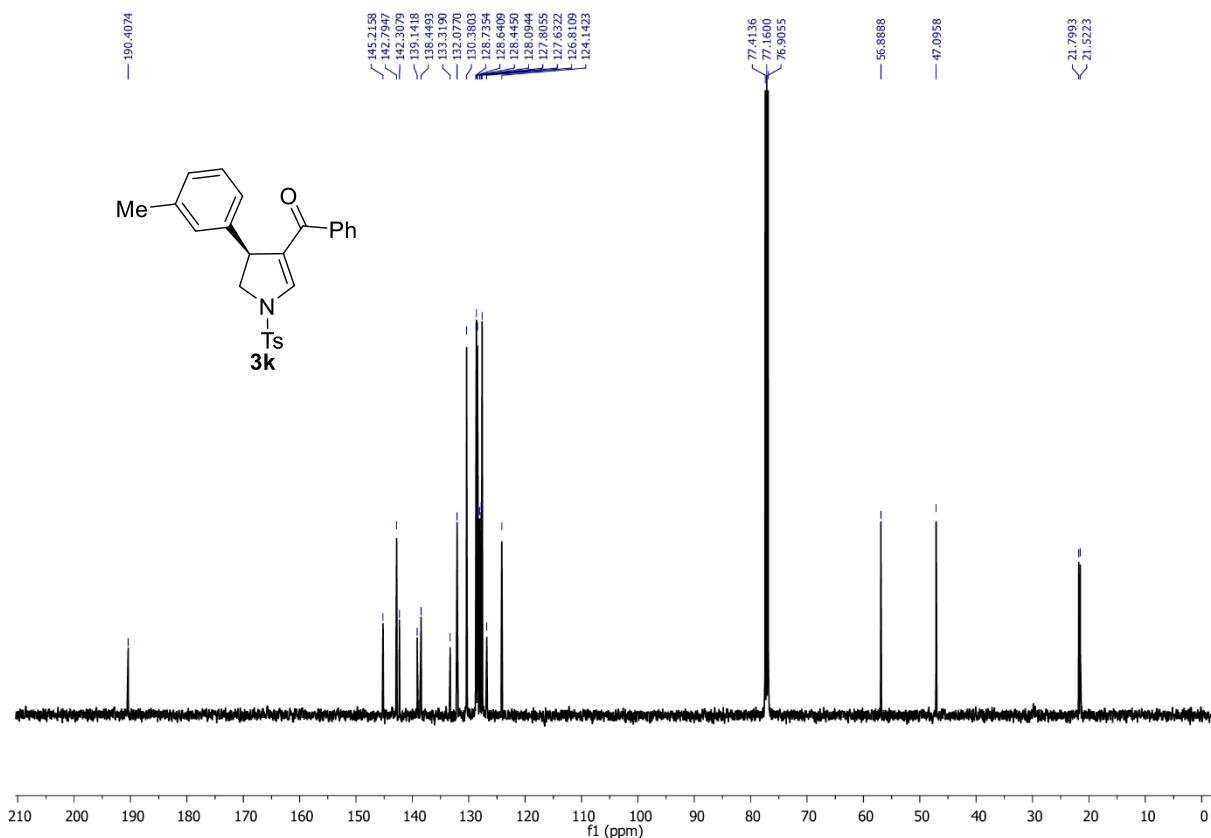
AKS-5-56RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		35.339	33793543.50	152377.68	50.17	50.17			*MM	33.7935	33.7935
2		79.552	33564852.70	57284.64	49.83	49.83			*MM	33.5649	33.5649
			67358396.20	209662.33	100.00	100.00				67.3584	67.3584

Figure S42. HPLC chromatogram of racemic compound **3j** (AS-H column; 90:10 Hexane-Isopropanol; 1.0 mL min⁻¹)



AKS-5-55CHIRAL, AS-H


AKS-5-55CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		36.505	66767972.06	278915.33	94.80	94.80			*MM	66.7680	66.7680
2		84.597	3659405.88	7727.93	5.20	5.20			*MM	3.6594	3.6594
			70427377.95	286643.26	100.00	100.00				70.4274	70.4274

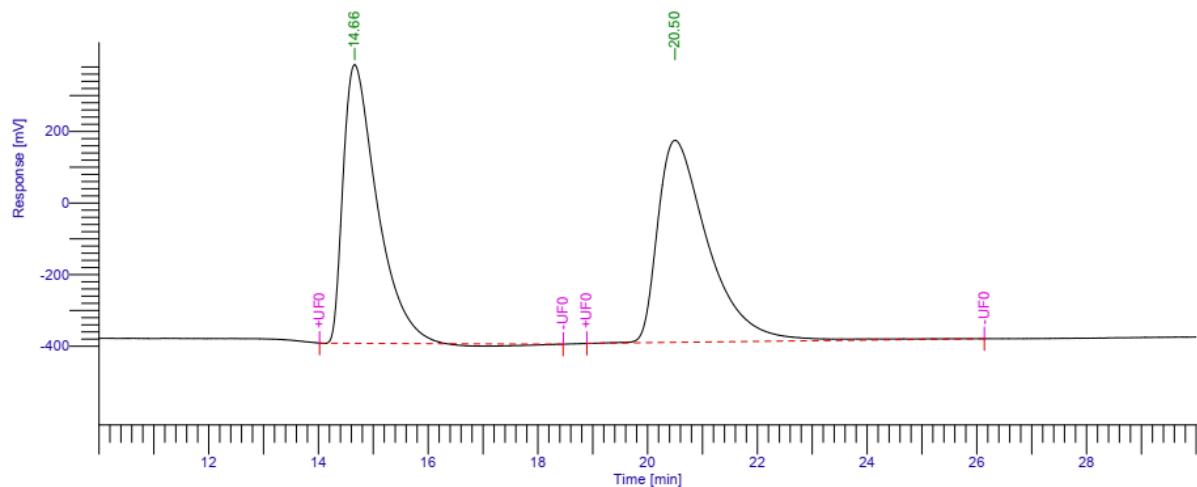
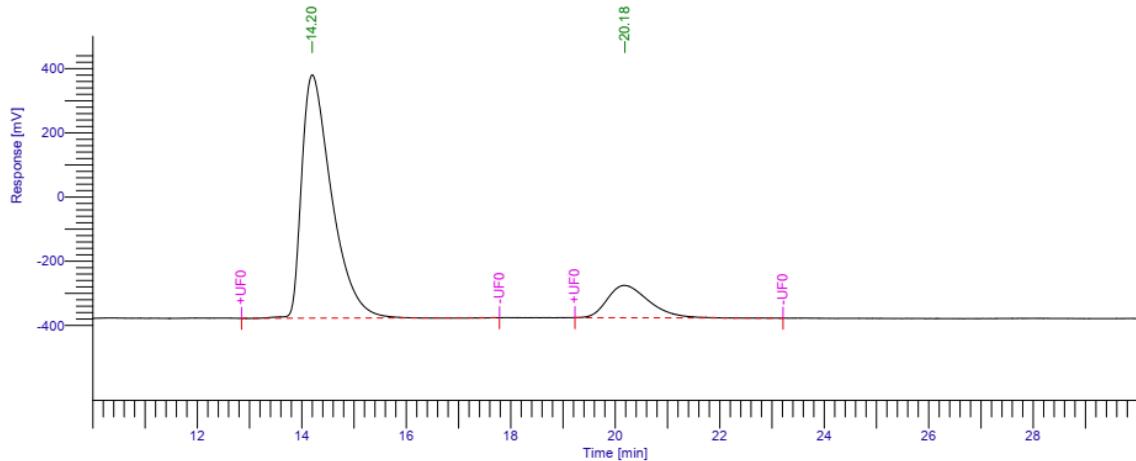

Figure S43. HPLC chromatogram of chiral compound **3j** (AS-H column; 90:10 Hexane-Isopropanol; 1.0 mL min⁻¹)

Figure S44. ^1H NMR spectrum of **3k** (500 MHz, CDCl_3)

Figure S45. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3k** (125 MHz, CDCl_3)

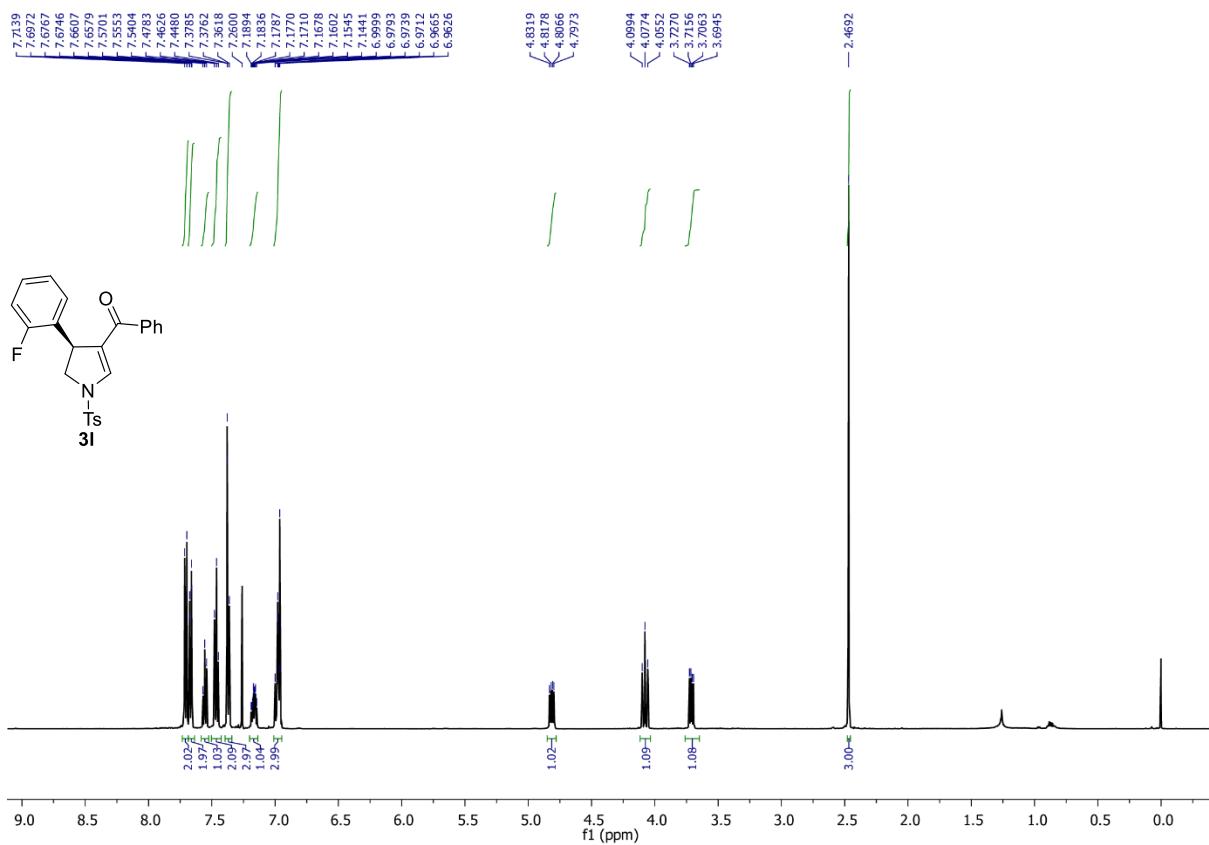


AKS-5-62RAC, OD-H

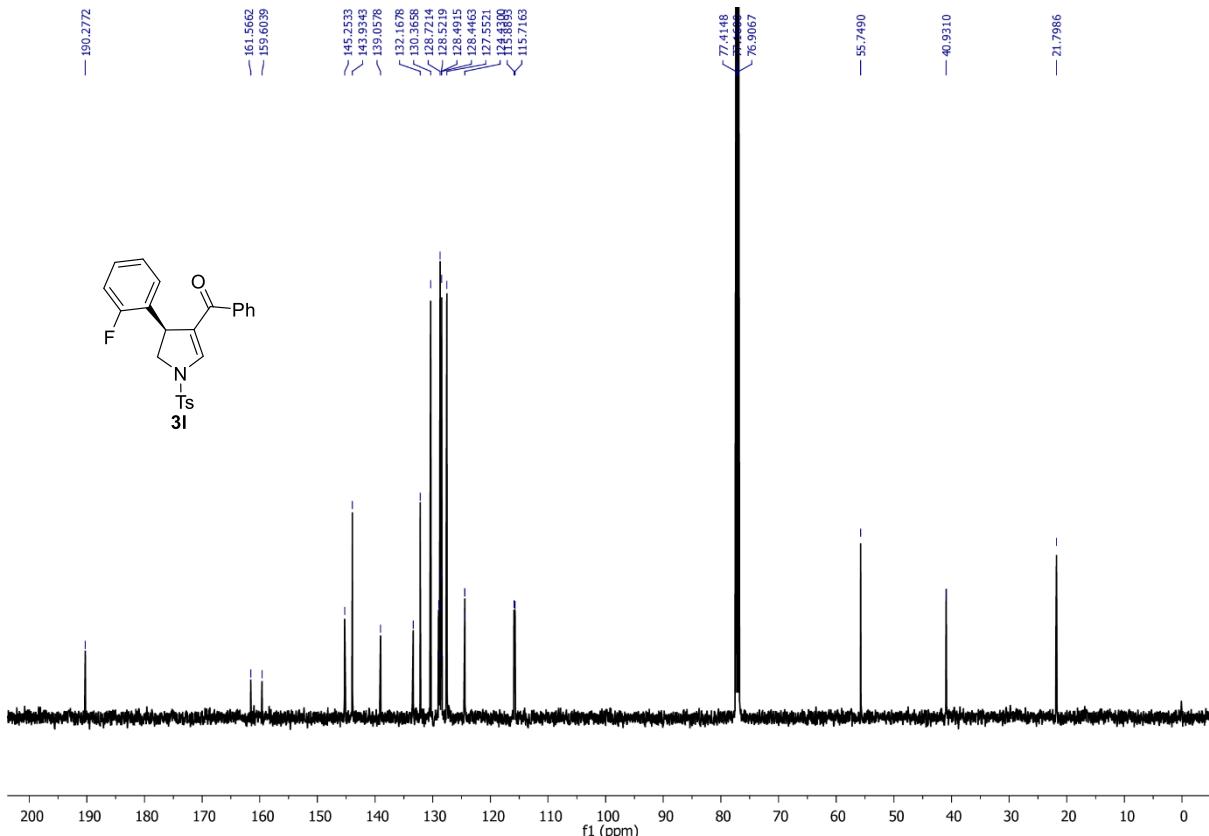
AKS-5-62RAC, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		14.659	33608949.95	778296.07	48.22	48.22			*MM	33.6089	33.6089
2		20.497	36088493.19	564351.14	51.78	51.78			*MM	36.0885	36.0885
			69697443.14	1.34e+06	100.00	100.00				69.6974	69.6974

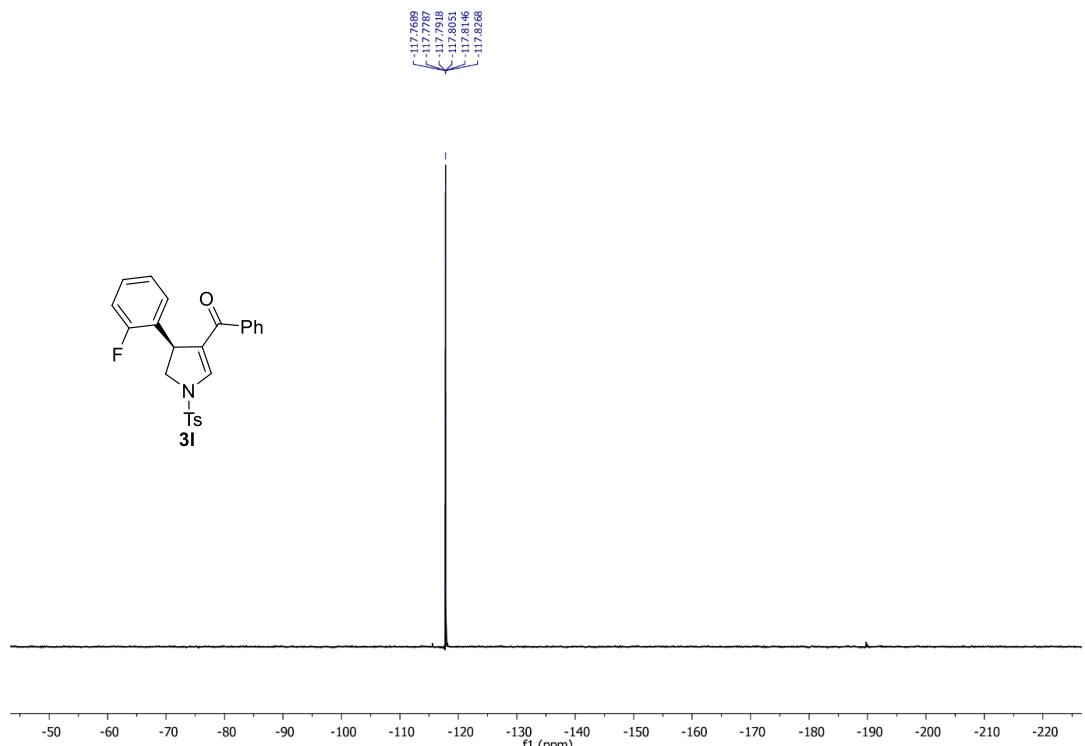
Figure S46. HPLC chromatogram of racemic compound **3k** (OD-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)



AKS-5-61CHIRAL, OD-H


AKS-5-61CHIRAL, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		14.197	30093577.85	757680.02	84.46	84.46			*MM	30.0936	30.0936
2		20.181	5538586.18	100755.35	15.54	15.54			*MM	5.5386	5.5386
			35632164.04	858435.36	100.00	100.00				35.6322	35.6322


Figure S47. HPLC chromatogram of chiral compound **3k** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

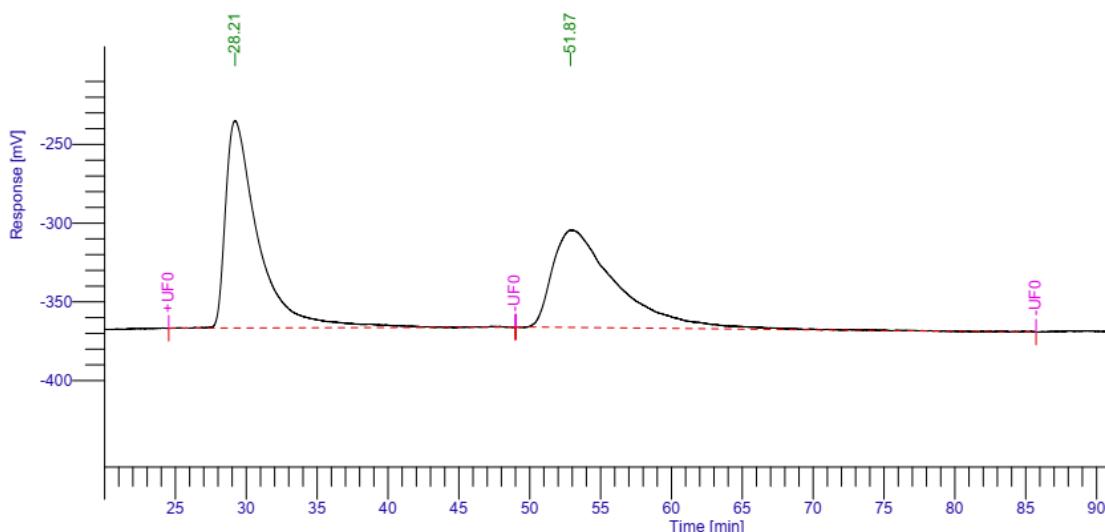
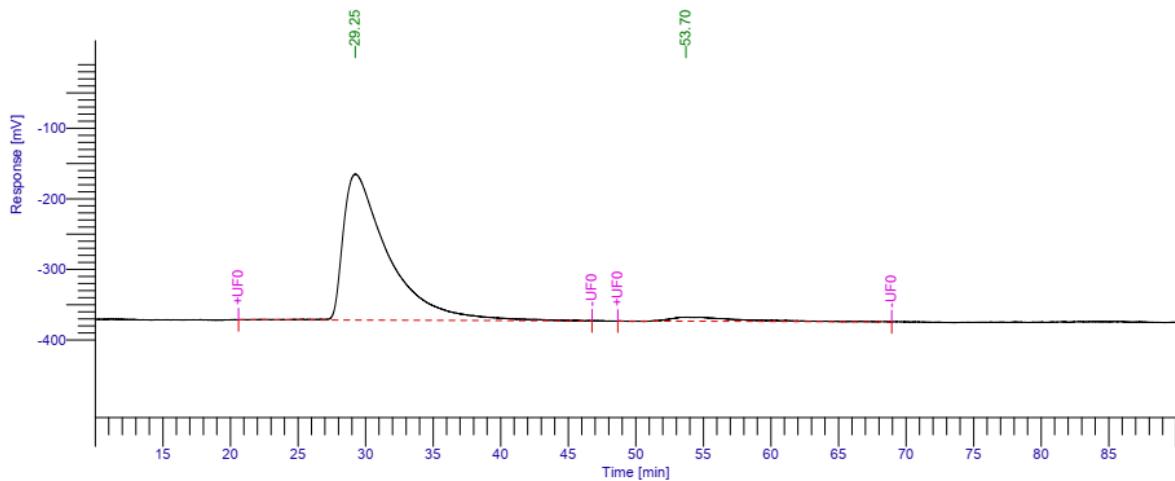

Figure S48. ^1H NMR spectrum of **3l** (500 MHz, CDCl_3)

Figure S49. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3l** (125 MHz, CDCl_3)

Figure S50. ^{19}F NMR spectrum of **3I** (500 MHz, CDCl_3)

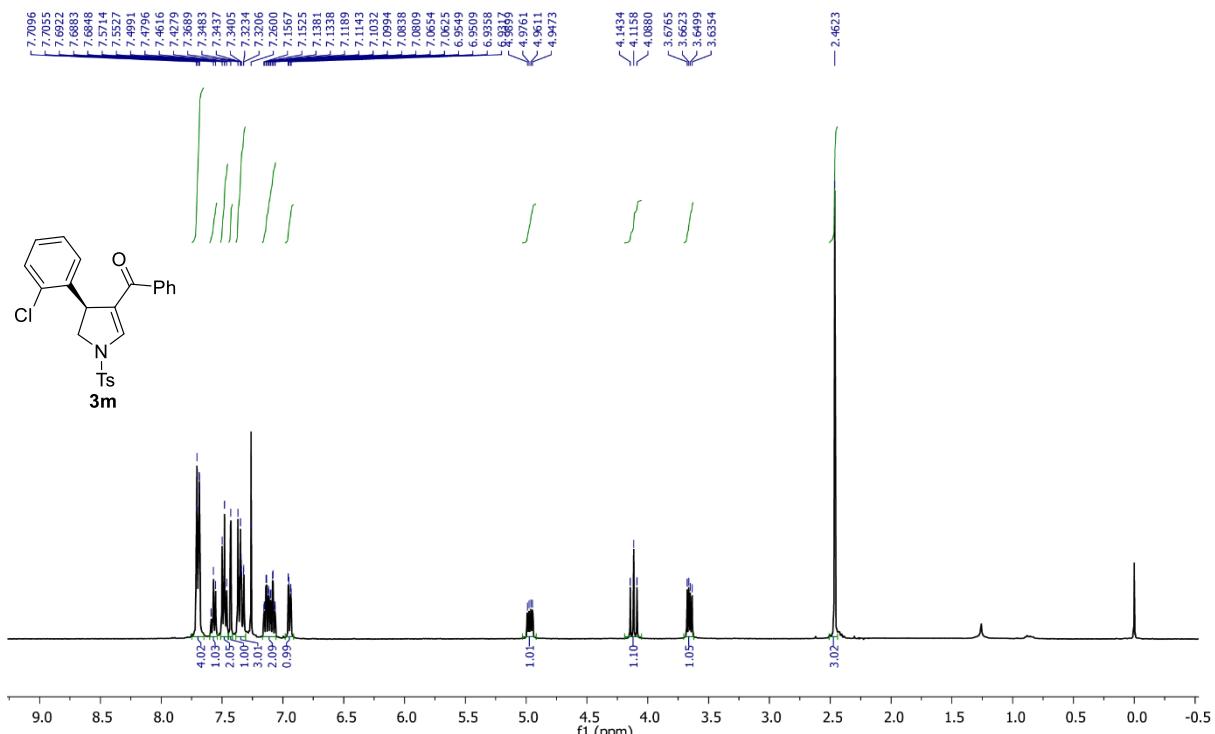


AKS-5-65RAC, AS-H

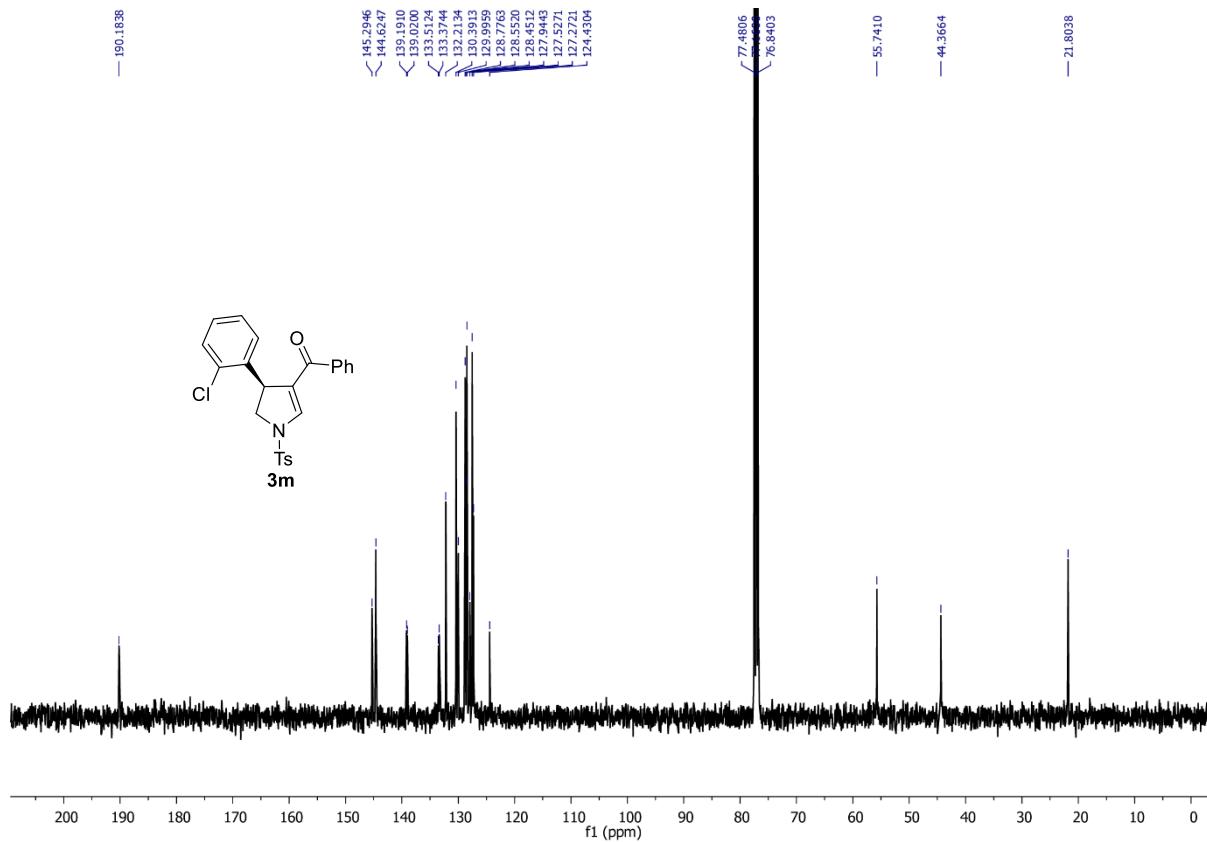
AKS-5-65RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		28.207	21106177.70	131700.61	52.07	52.07			*MM	21.1062	21.1062
2		51.872	19425578.16	61811.21	47.93	47.93			*MM	19.4256	19.4256
			40531755.87	193511.82	100.00	100.00				40.5318	40.5318

Figure S51. HPLC chromatogram of racemic compound **3I** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min^{-1})



AKS-5-64CHIRAL, AS-H


AKS-5-64CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		29.245	47758982.87	206976.55	95.96	95.96			*MM	47.7590	47.7590
2		53.702	2010171.06	5840.45	4.04	4.04			*MM	2.0102	2.0102
			49769153.93	212817.00	100.00	100.00				49.7692	49.7692

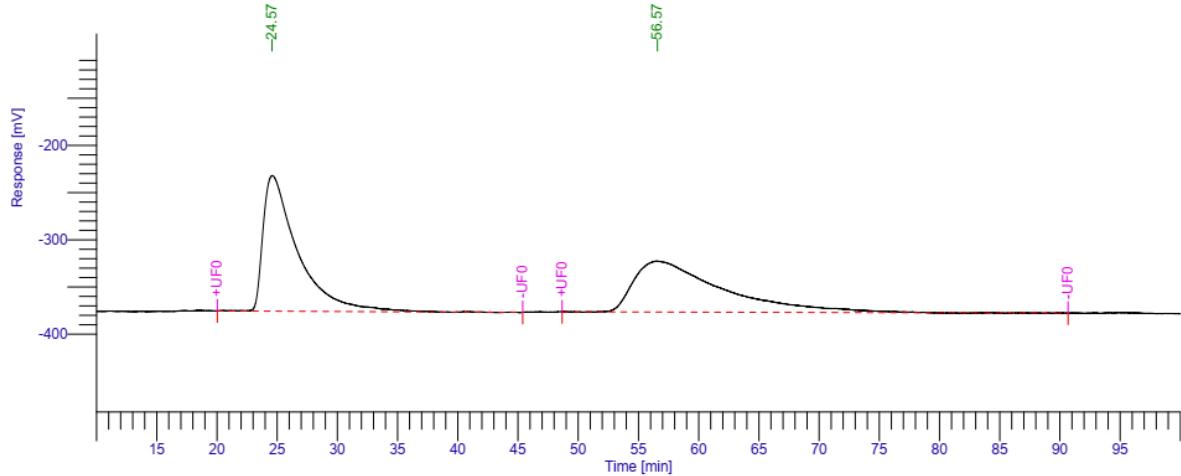
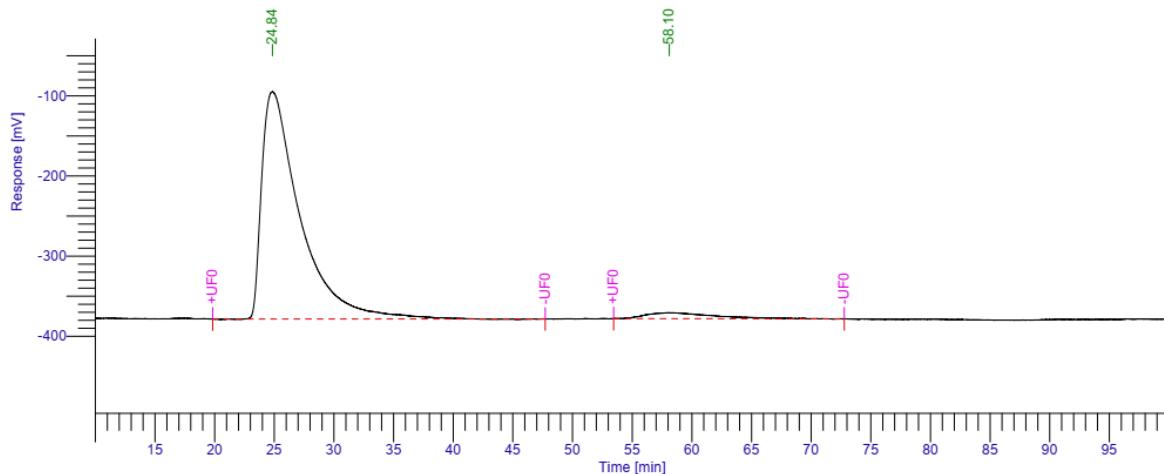

Figure S52. HPLC chromatogram of chiral compound **3l** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S53. ¹H NMR spectrum of **3m** (500 MHz, CDCl₃)

Figure S54. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3m** (125 MHz, CDCl_3)

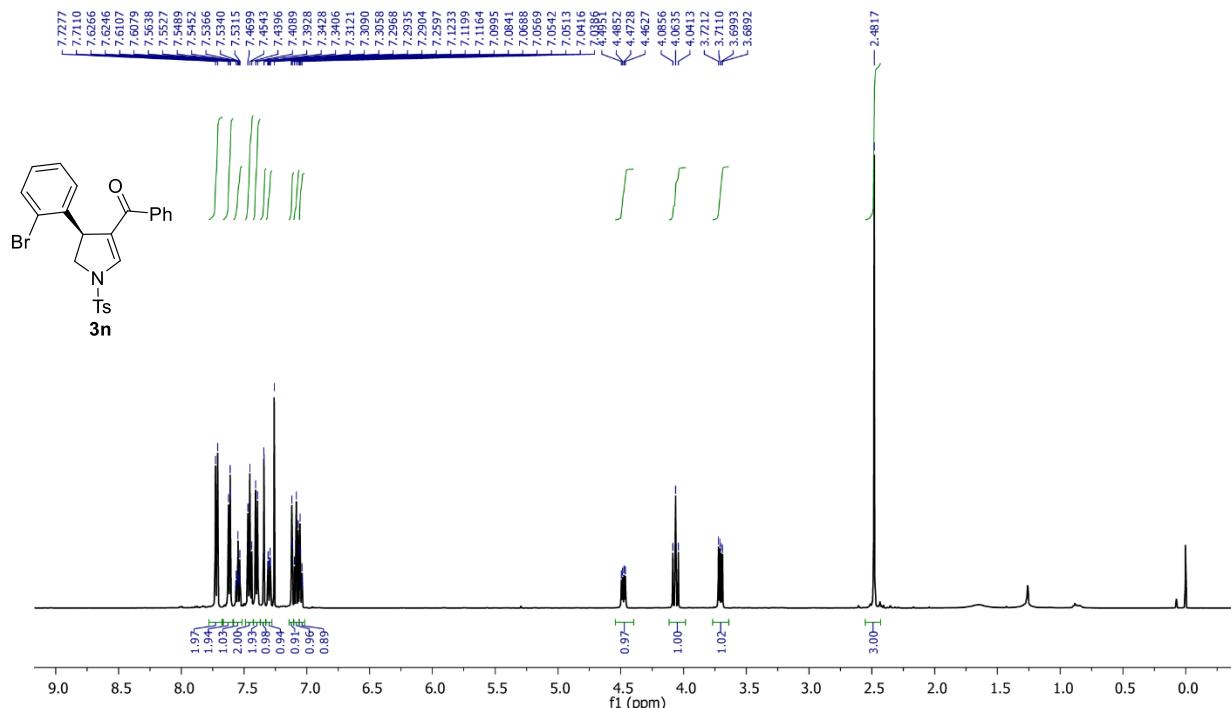


AKS-5-67RAC, AS-H

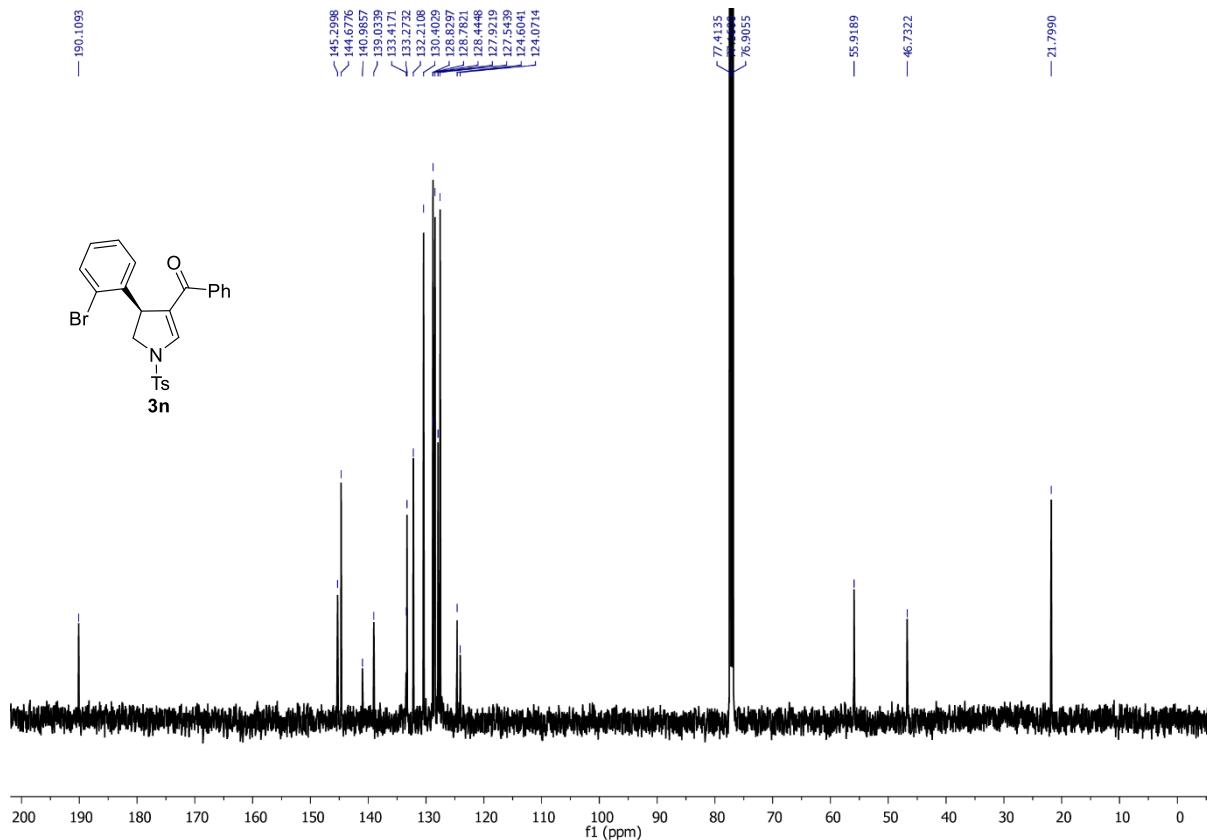
AKS-5-67RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		24.567	28676016.40	143607.50	51.20	51.20			*MM	28.6760	28.6760
2		56.569	27333129.28	54059.89	48.80	48.80			*MM	27.3331	27.3331
			56009145.68	197667.39	100.00	100.00				56.0091	56.0091

Figure S55. HPLC chromatogram of racemic compound **3m** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min^{-1})



AKS-5-66CHIRAL, AS-H


AKS-5-66CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		24.838	63235687.05	283735.81	95.57	95.57			*MM	63.2357	63.2357
2		58.102	2934547.11	7485.26	4.43	4.43			*MM	2.9345	2.9345
			66170234.16	291221.07	100.00	100.00				66.1702	66.1702

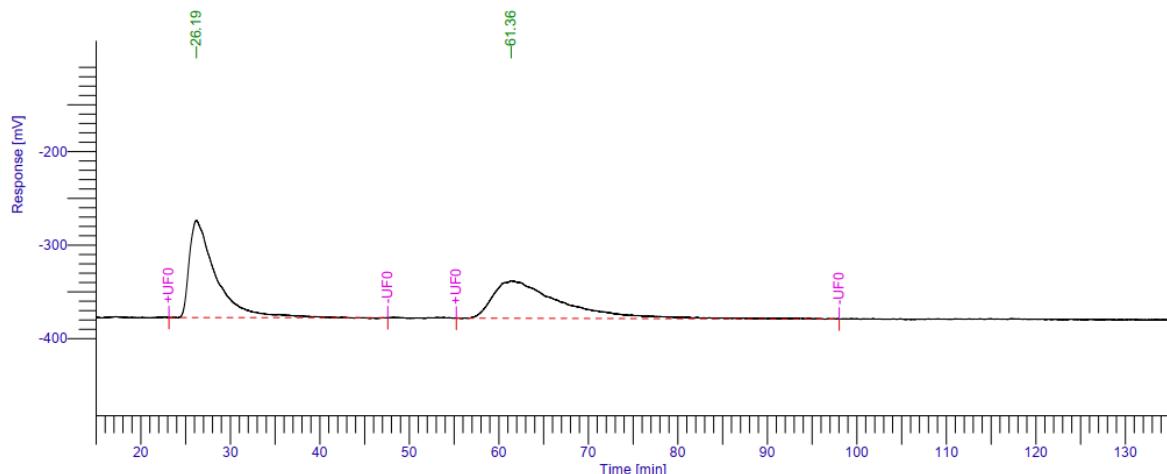
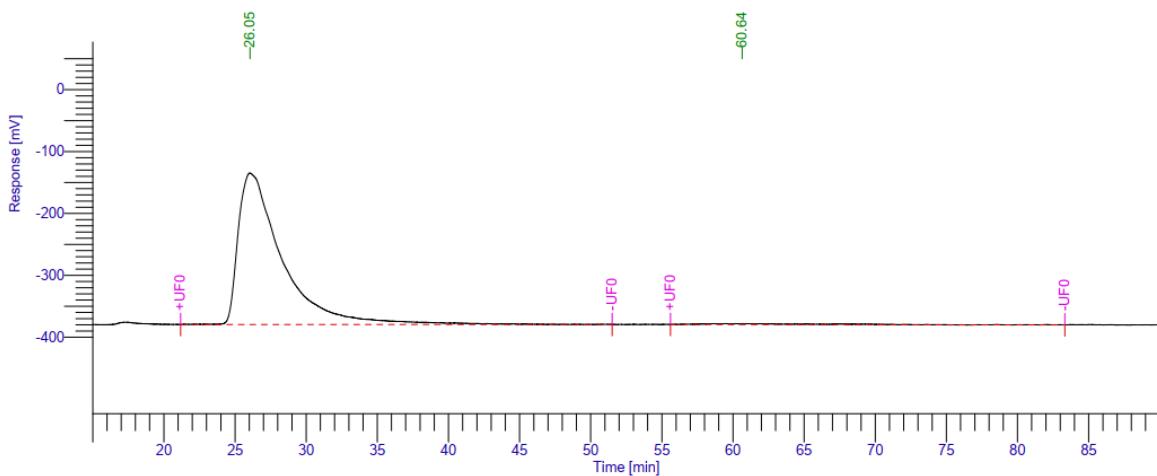

Figure S56. HPLC chromatogram of chiral compound **3m** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S57. ¹H NMR spectrum of **3n** (500 MHz, CDCl₃)

Figure S58. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3n** (125 MHz, CDCl_3)



AKS-5-69RAC, AS-H

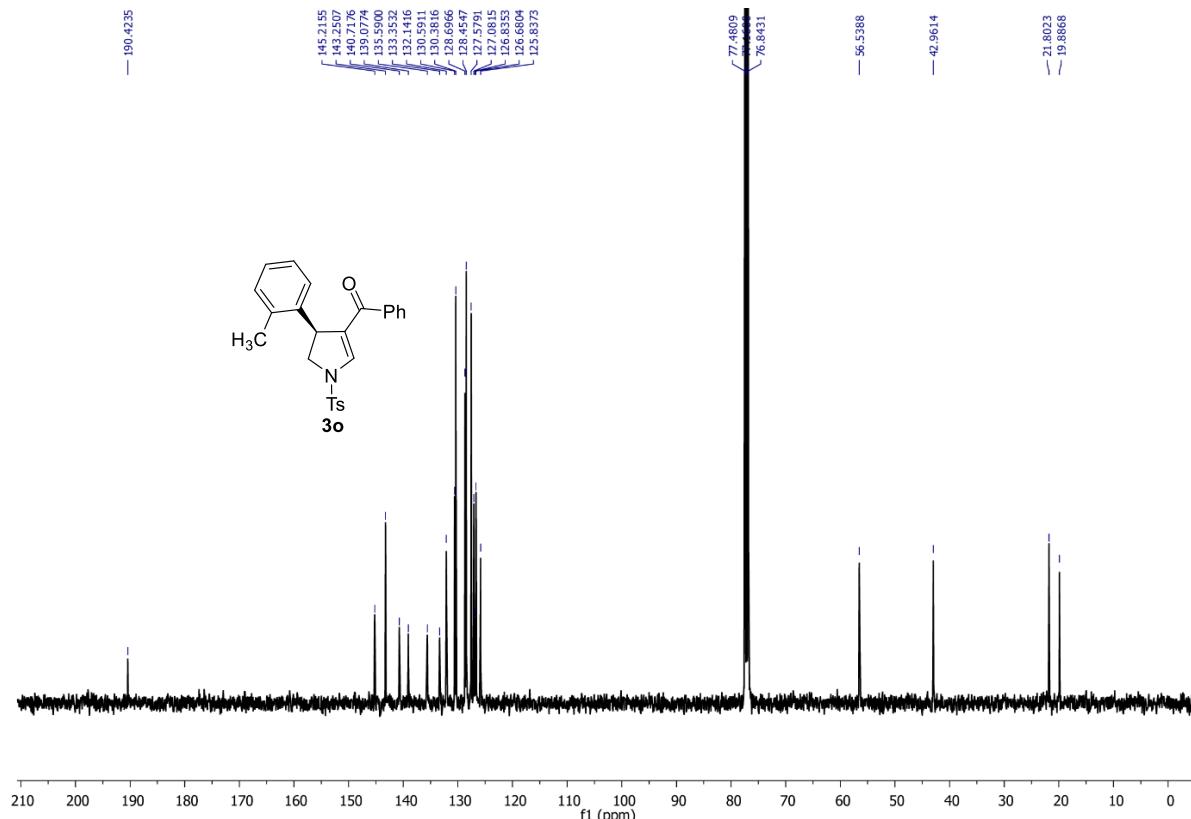
AKS-5-69RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		26.195	21345380.03	104043.98	50.51	50.51			*MM	21.3454	21.3454
2		61.358	20915258.80	40059.35	49.49	49.49			*MM	20.9153	20.9153
			42260638.83	144103.32	100.00	100.00			42.2606	42.2606	

Figure S59. HPLC chromatogram of chiral compound **3n** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min^{-1})



AKS-5-68CHIRAL, AS-H


AKS-5-68CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		26.048	52513757.00	244679.88	98.42	98.42			*MM	52.5138	52.5138
2		60.639	843846.22	1566.34	1.58	1.58			*MM	0.8438	0.8438
			53357603.22	246246.22	100.00	100.00				53.3576	53.3576

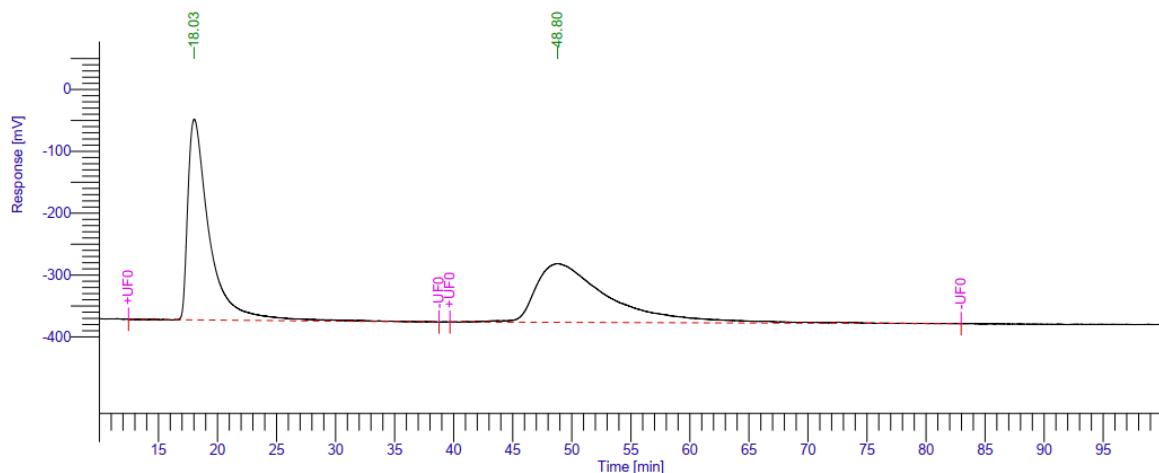
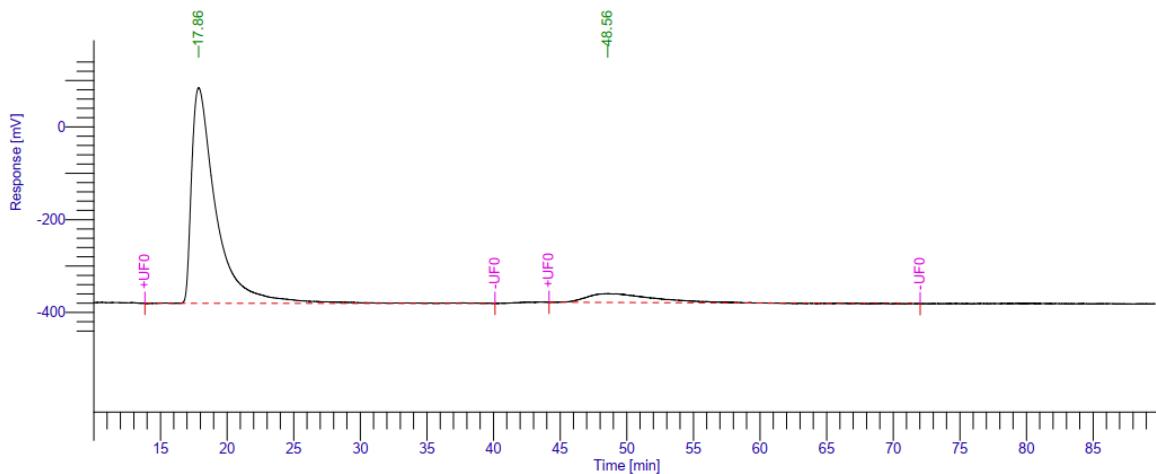

Figure S60. HPLC chromatogram of chiral compound **3n** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S61. ¹H NMR spectrum of **3o** (500 MHz, CDCl₃)

Figure S62. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3o** (125 MHz, CDCl_3)

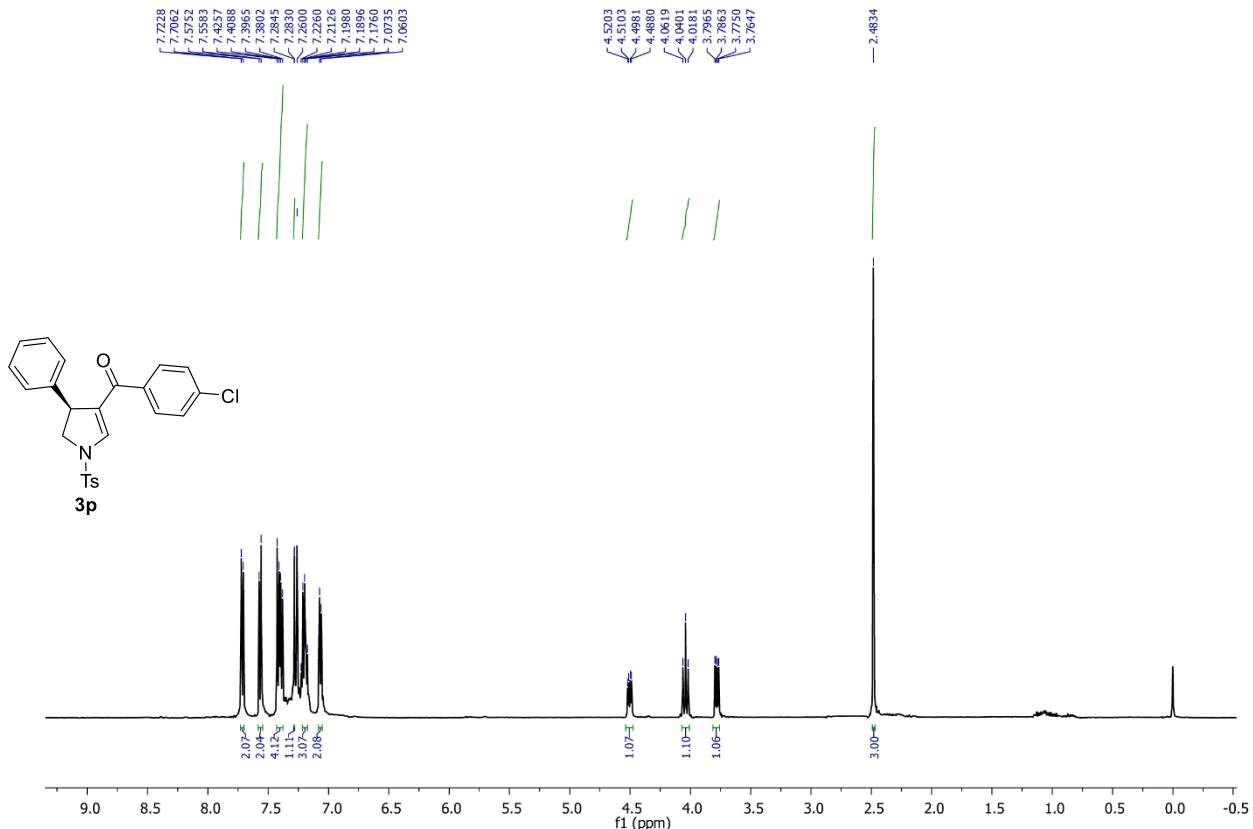


AKS-5-71RAC, AS-H

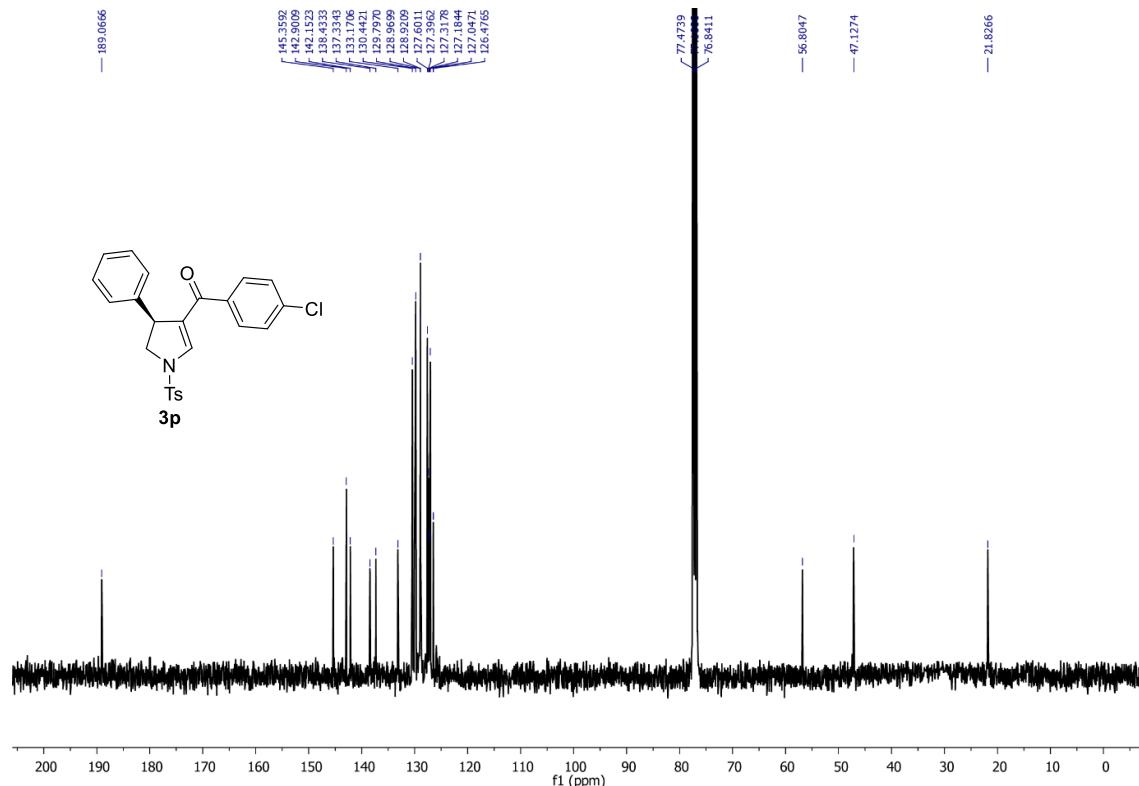
AKS-5-71RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		18.025	41276578.71	324539.71	50.19	50.19			*MM	41.2766	41.2766
2		48.796	40971695.56	94931.23	49.81	49.81			*MM	40.9717	40.9717
			82248274.27	419470.94	100.00	100.00				82.2483	82.2483

Figure S63. HPLC chromatogram of chiral compound **3o** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min^{-1})



AKS-5-70CHIRAL, AS-H


AKS-5-70CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		17.864	59588266.53	464696.12	90.02	90.02			*MM	59.5883	59.5883
2		48.561	6606737.64	19029.17	9.98	9.98			*MM	6.6067	6.6067
			66195004.17	483725.29	100.00	100.00				66.1950	66.1950

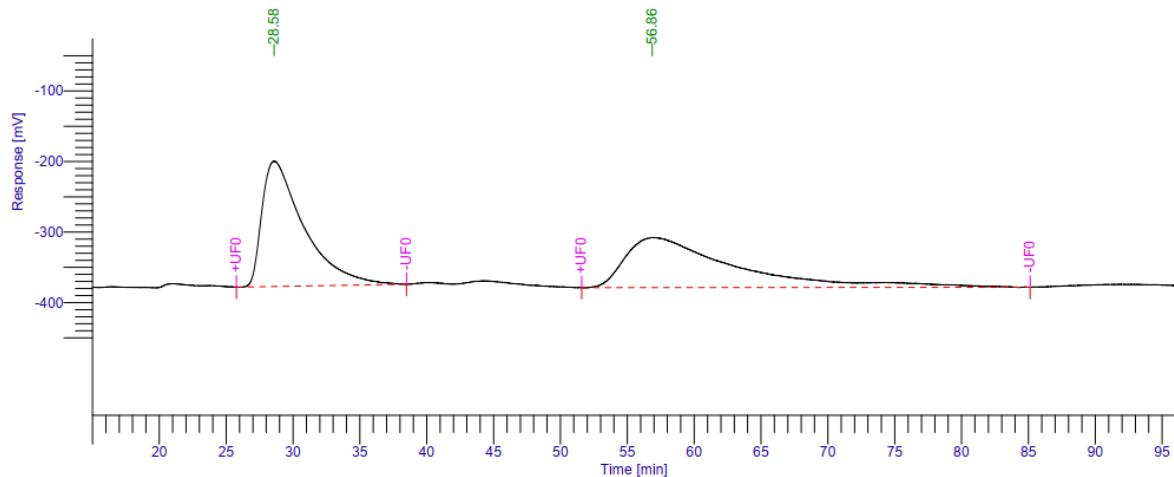
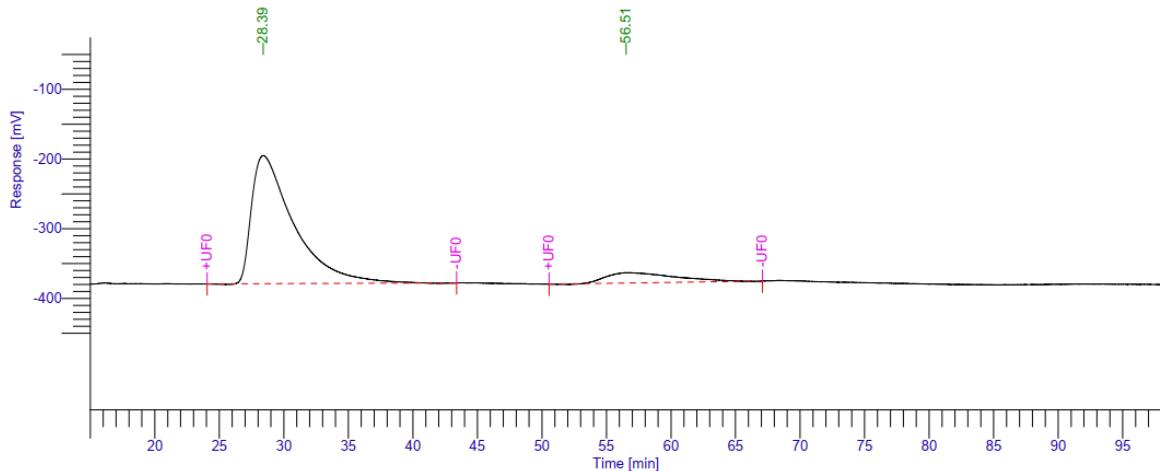

Figure S64. HPLC chromatogram of chiral compound **3o** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S65. ¹H NMR spectrum of **3p** (500 MHz, CDCl₃)

Figure S66. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3p** (125 MHz, CDCl₃)



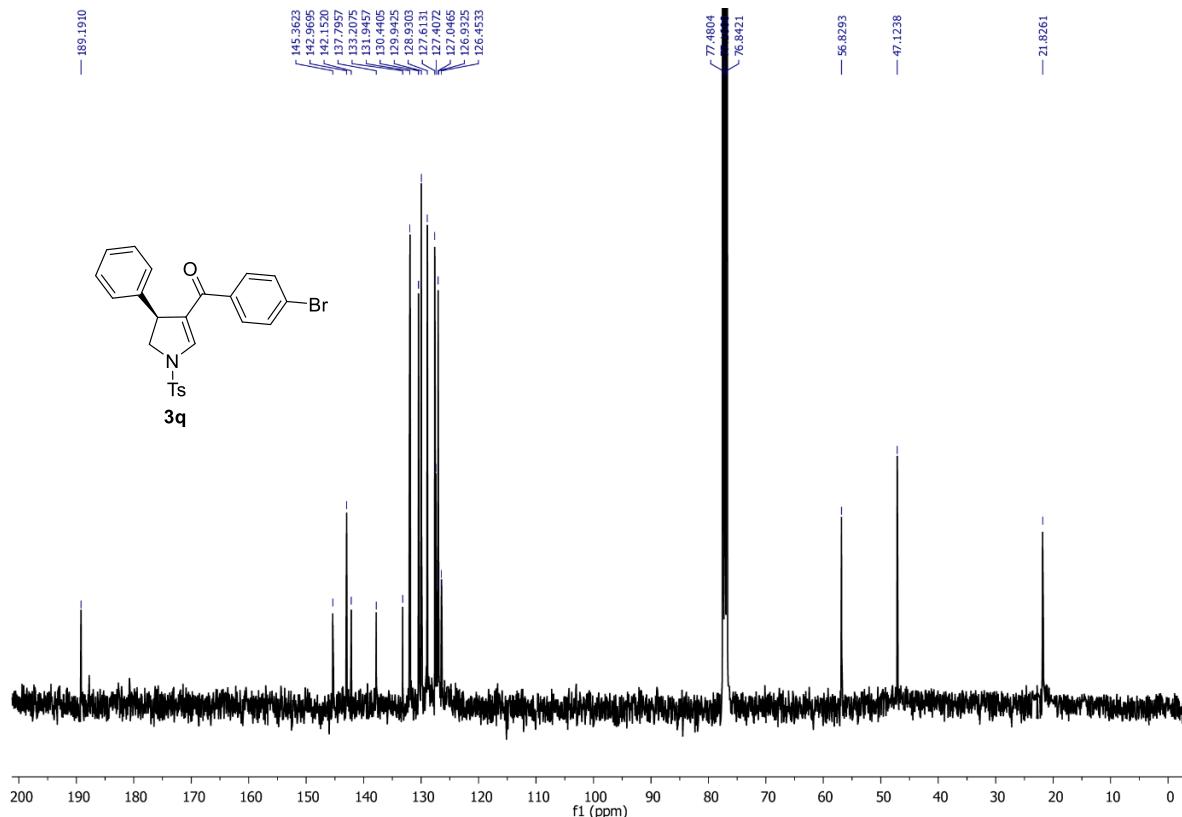
AKS-5-114RAC, AS-H

AKS-5-114RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		28.578	38689578.96	177709.23	49.26	49.26			*MM	38.6896	38.6896
2		56.855	39847731.97	71018.65	50.74	50.74			*MM	39.8477	39.8477
			78537310.93	248727.89	100.00	100.00			78.5373	78.5373	

Figure S67. HPLC chromatogram of racemic compound **3p** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

AKS-5-113CHIRAL, AS-H


AKS-5-113CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		28.387	41788728.06	183806.61	88.49	88.49			*MM	41.7887	41.7887
2		56.511	5437343.25	14909.46	11.51	11.51			*MM	5.4373	5.4373

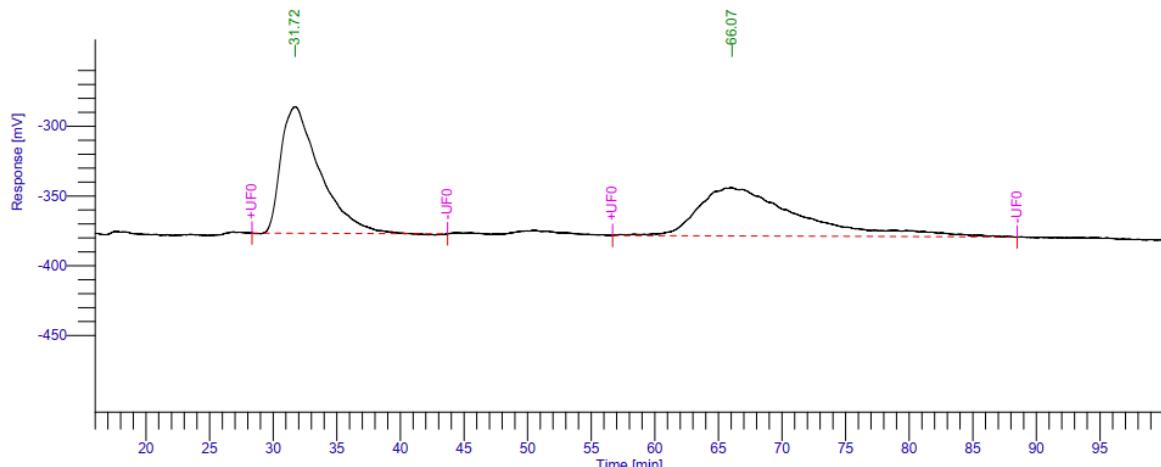
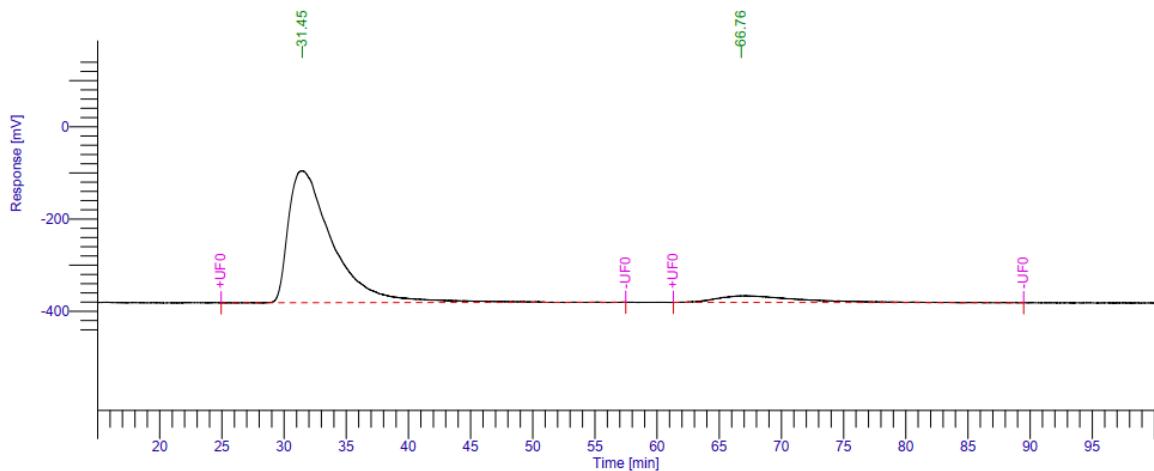

Figure S68. HPLC chromatogram of chiral compound **3p** (AS-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S69. ¹H NMR spectrum of **3q** (500 MHz, CDCl₃)

Figure S70. ¹³C{¹H} NMR spectrum of **3q** (125 MHz, CDCl₃)

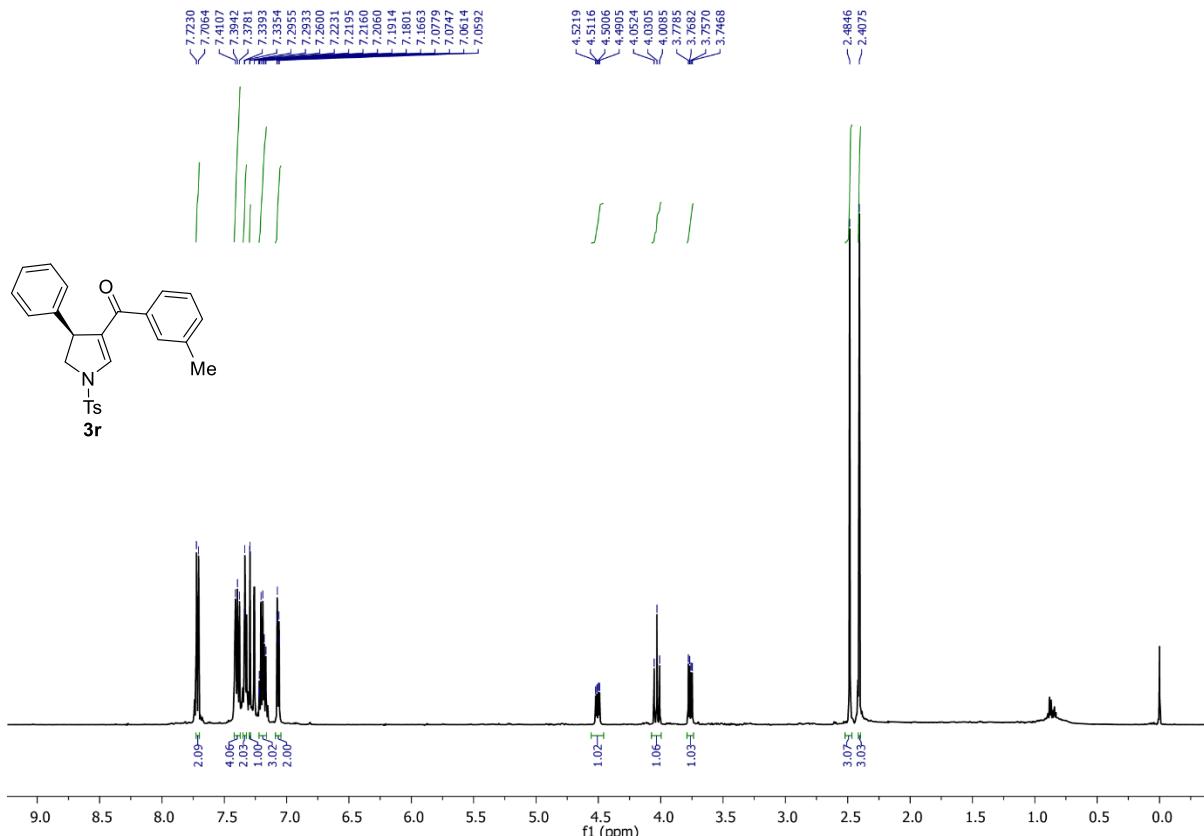


AKS-5-85RAC, AS-H

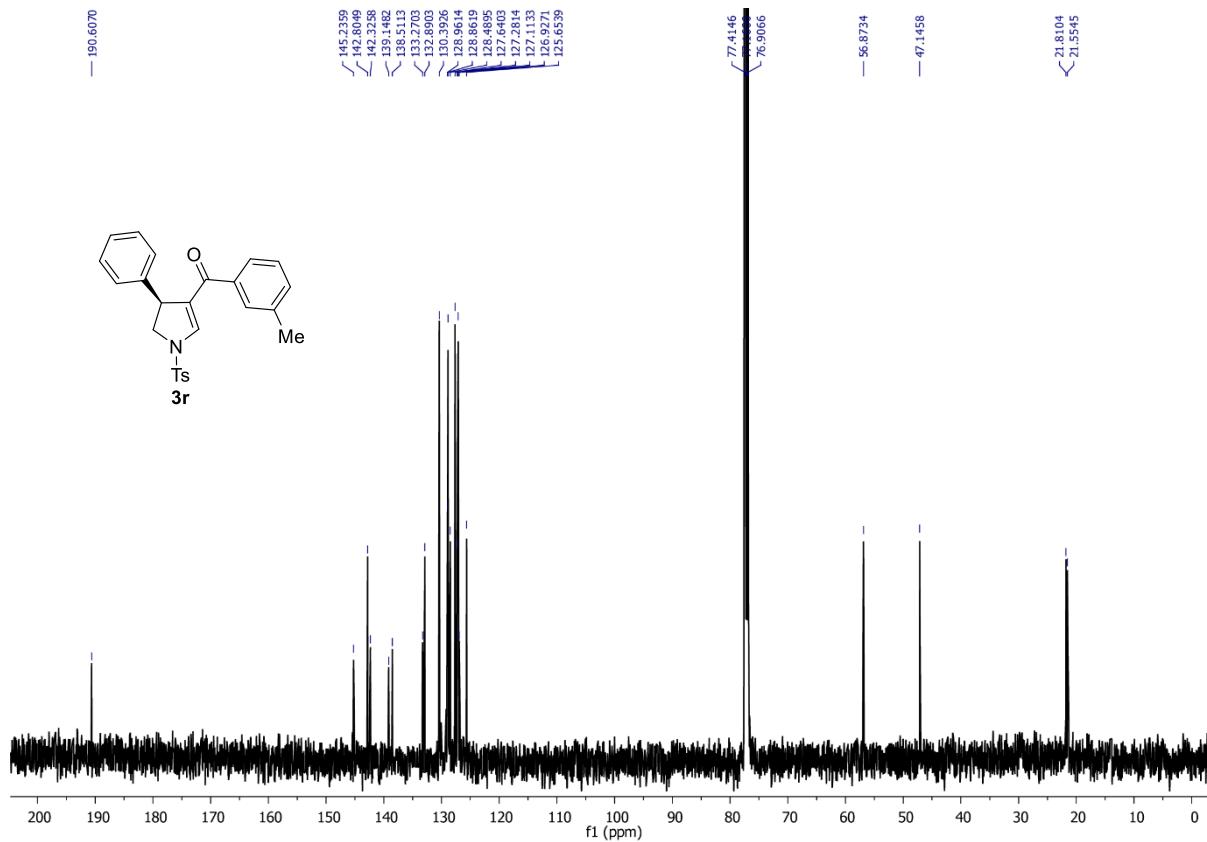
AKS-5-85RAC, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		31.717	19371848.67	90781.06	50.61	50.61			*MM	19.3718	19.3718
2		66.066	18908170.19	34580.32	49.39	49.39			*MM	18.9082	18.9082
			38280018.86	125361.38	100.00	100.00				38.2800	38.2800

Figure S71. HPLC chromatogram of racemic compound **3q** (As-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)



AKS-5-84CHIRAL, AS-H


AKS-5-84CHIRAL, AS-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		31.453	70410055.89	285466.54	91.45	91.45			*MM	70.4101	70.4101
2		66.763	6580549.62	14530.30	8.55	8.55			*MM	6.5805	6.5805
			76990605.52	299996.84	100.00	100.00				76.9906	76.9906

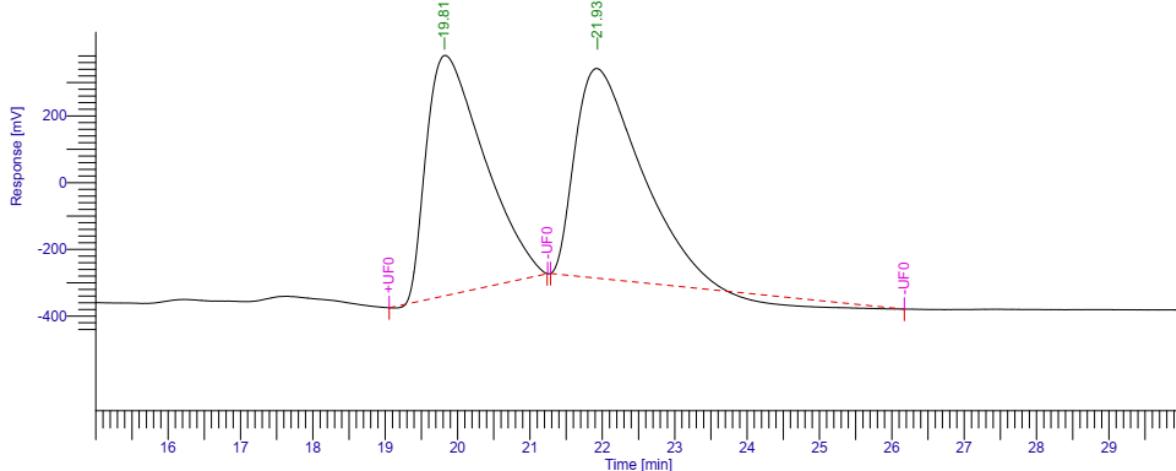
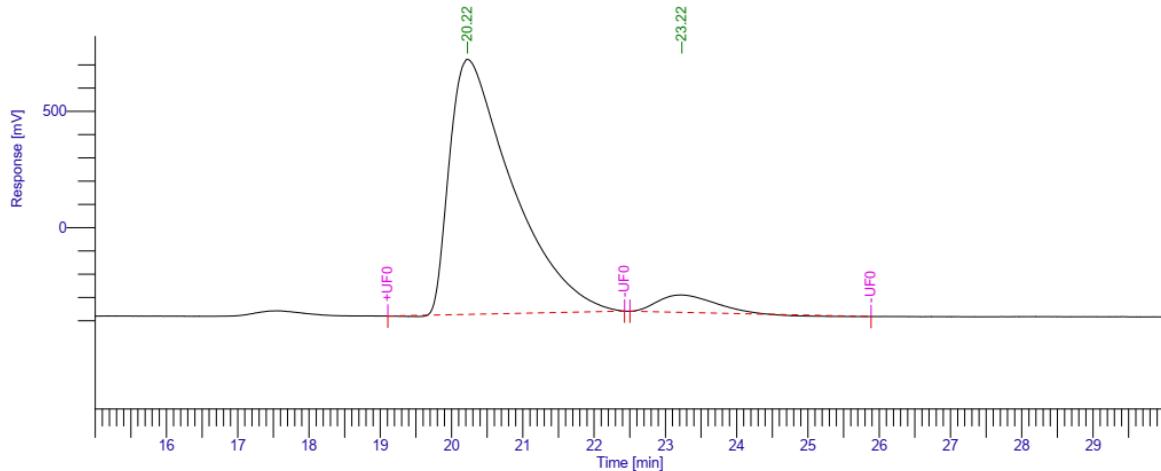

Figure S72. HPLC chromatogram of chiral compound **3q** (As-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S73. ¹H NMR spectrum of **3r** (500 MHz, CDCl₃)

Figure S74. ¹³C{¹H} NMR spectrum of **3r** (125 MHz, CDCl₃)

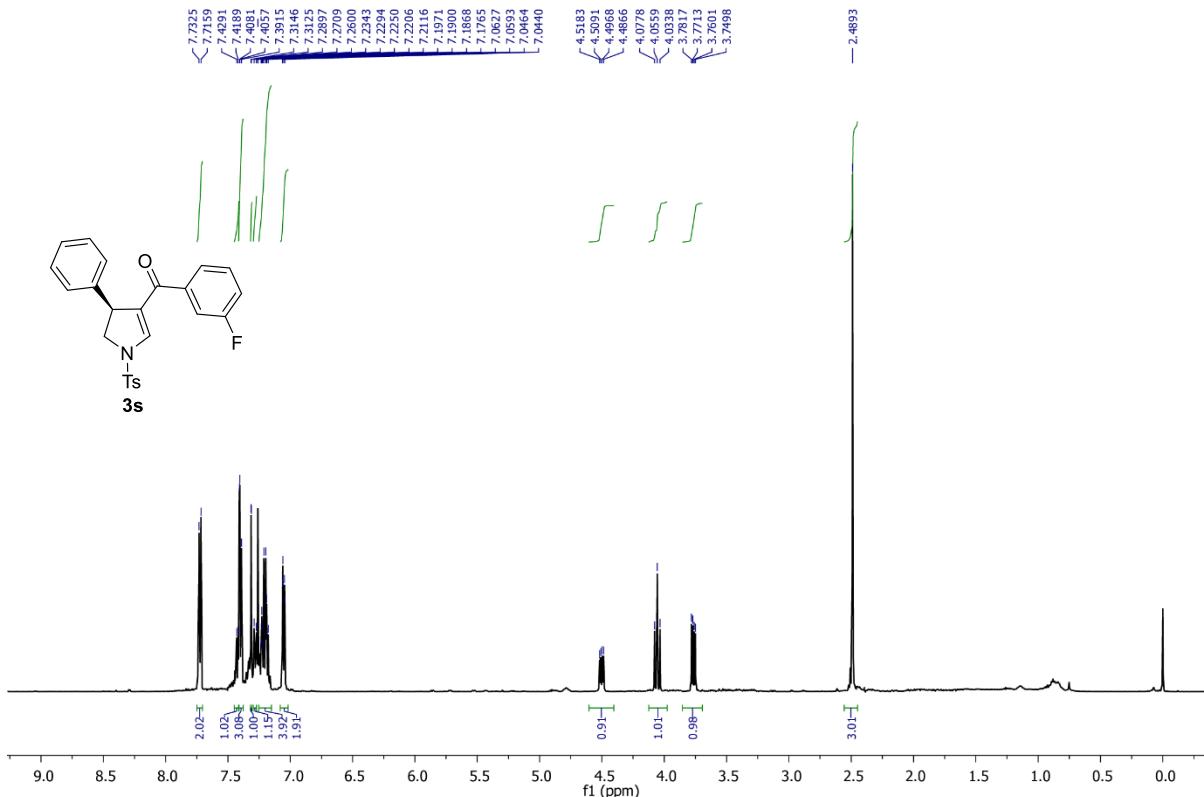


AKS-5-136RAC, OD-H

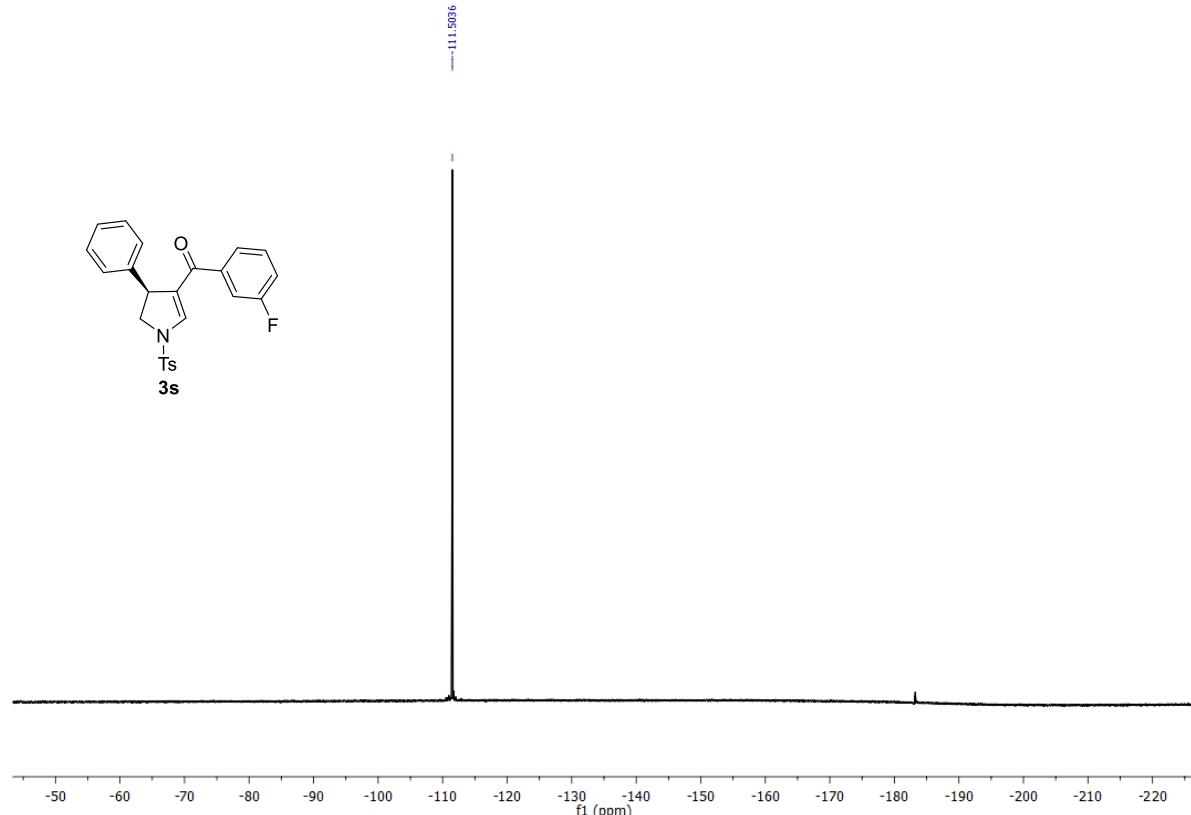
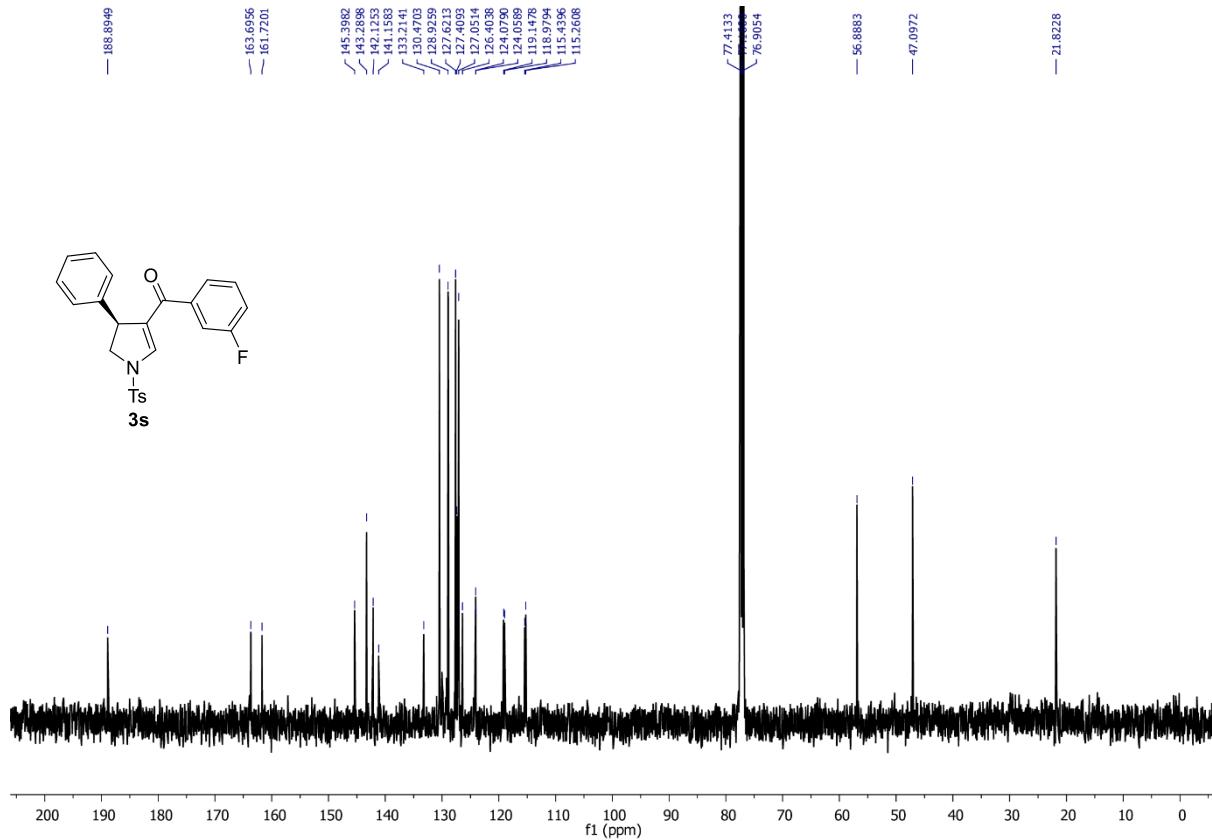
AKS-5-136RAC, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		19.815	39924711.79	720386.31	49.68	49.68			*MM	39.9247	39.9247
2		21.927	40435357.85	628688.85	50.32	50.32			*MM	40.4354	40.4354
			80360069.64	1.35e+06	100.00	100.00			80.3601	80.3601	

Figure S75. HPLC chromatogram of racemic compound **3r** (OD-H column; 95:5 Hexane–Isopropanol; 1.0 mL min⁻¹)



AKS-5-135CHIRAL OD-H



AKS-5-135CHIRAL OD-H

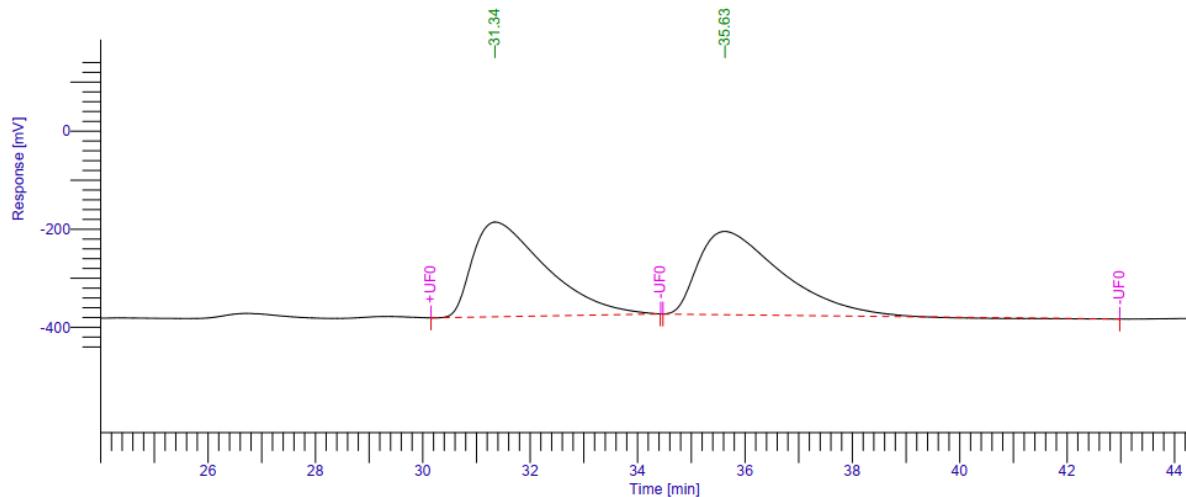
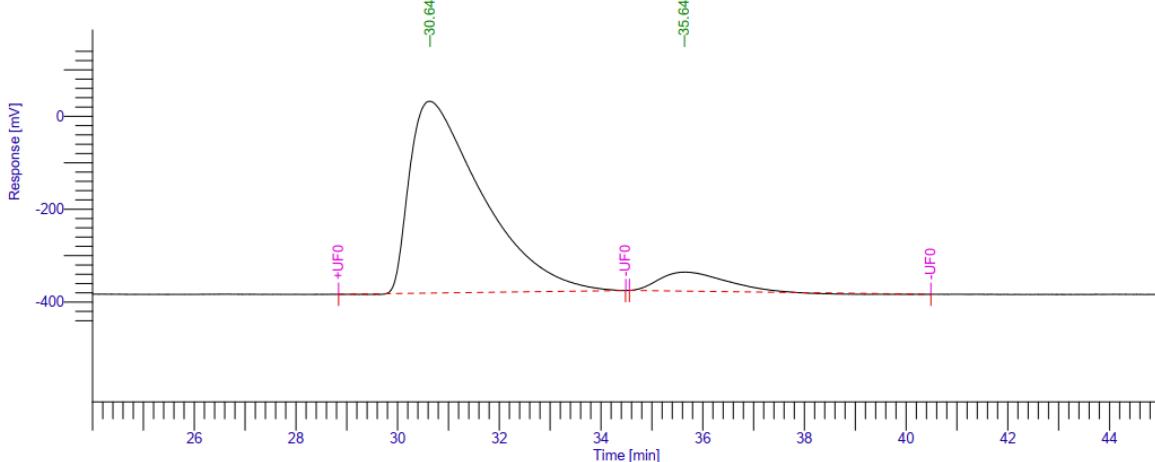

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		20.218	67120969.13	1.10e+06	94.11	94.11			*MM	67.1210	67.1210
2		23.225	4204546.87	74650.27	5.89	5.89			*MM	4.2045	4.2045
			71325516.00	1.17e+06	100.00	100.00				71.3255	71.3255

Figure S76. HPLC chromatogram of chiral compound **3r** (OD-H column; 95:5 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S77. ¹H NMR spectrum of **3s** (500 MHz, CDCl₃)

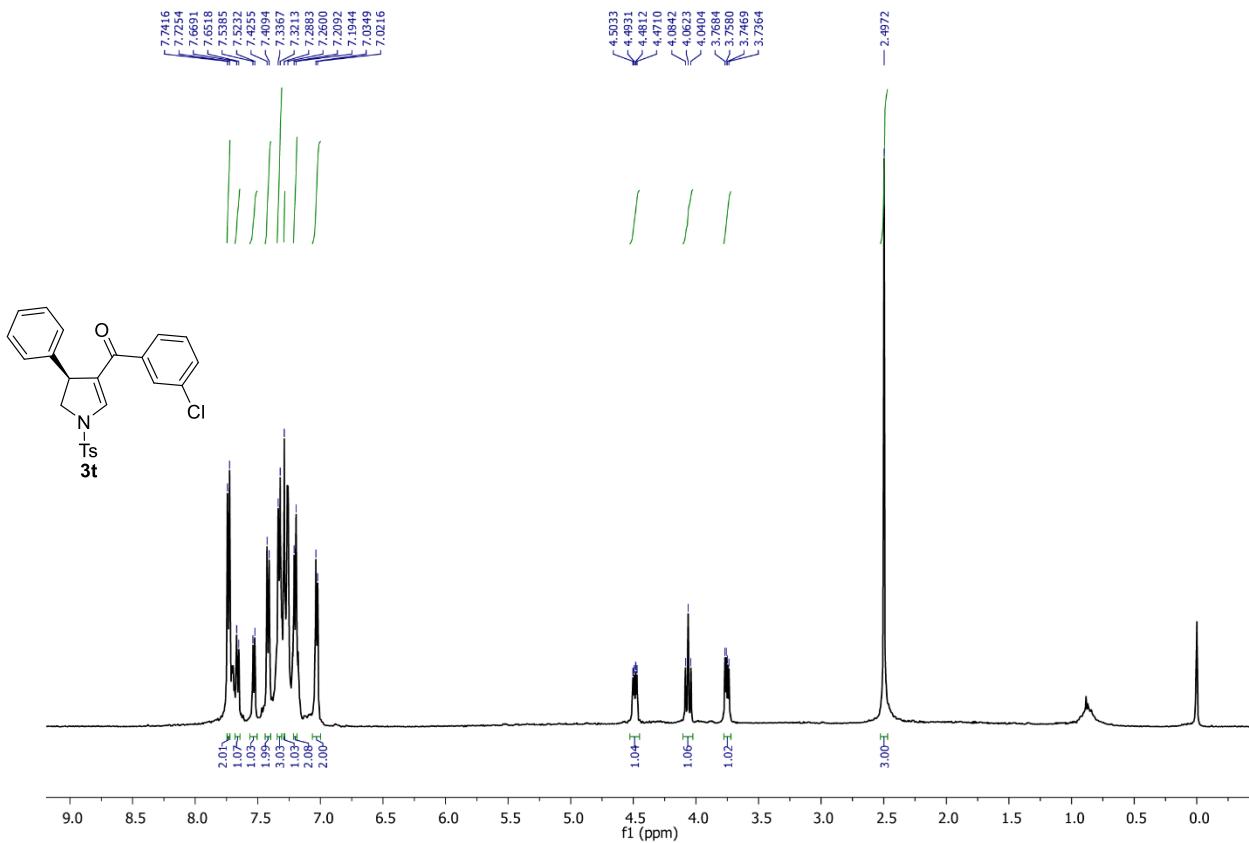


AKS-5-142RAC, OD-H

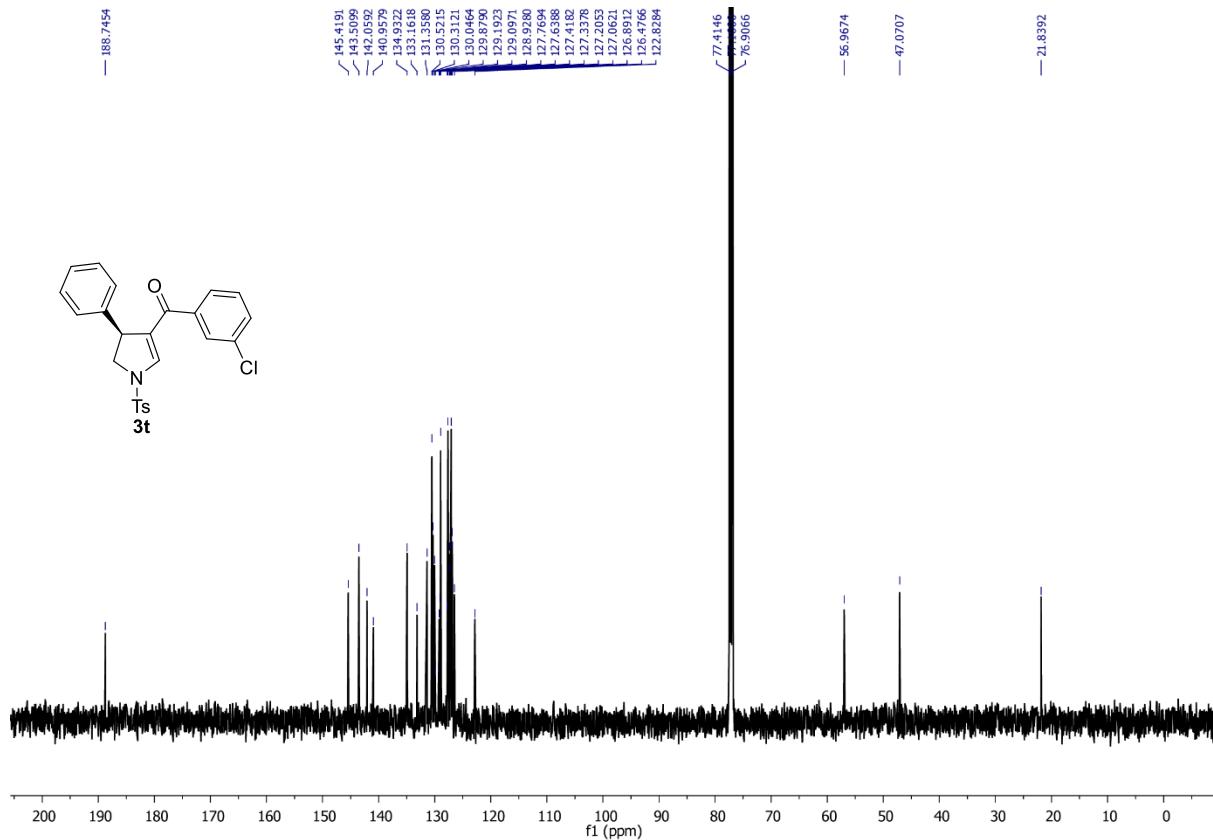
AKS-5-142RAC, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area	Norm. Area	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		31.343	18278145.10	193036.95	49.83	49.83			*MM	18.2781	18.2781
2		35.625	18403510.38	169830.69	50.17	50.17			*MM	18.4035	18.4035

Figure S80. HPLC chromatogram of racemic compound **3s** (OD-H column; 95:5 Hexane–Isopropanol; 1.0 mL min⁻¹)



AKS-5-141CHIRAL, OD-H


AKS-5-141CHIRAL, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area	Norm. Area	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		30.639	40965757.64	412855.07	91.56	91.56			*MM	40.9658	40.9658
2		35.640	3777024.98	40973.38	8.44	8.44			*MM	3.7770	3.7770
			44742782.61	453828.45	100.00	100.00				44.7428	44.7428

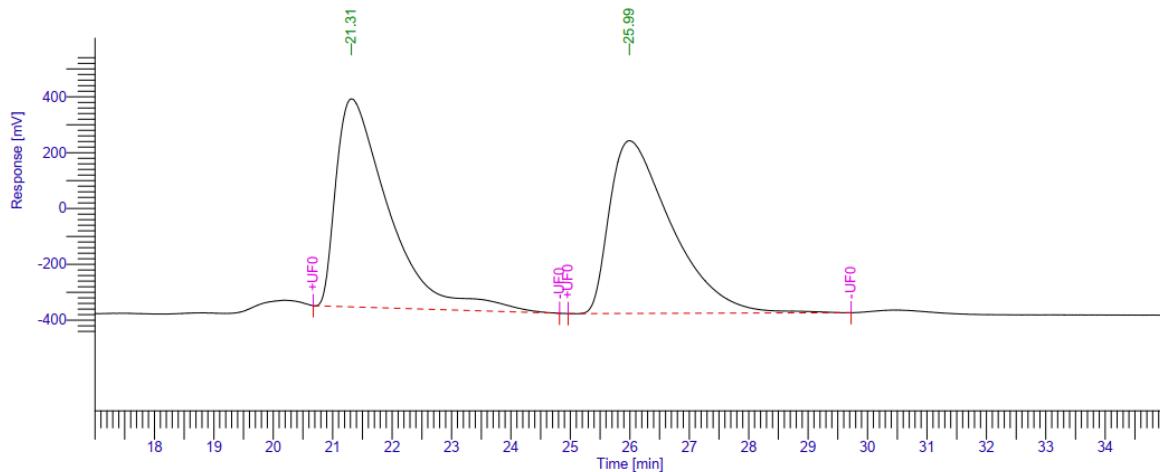
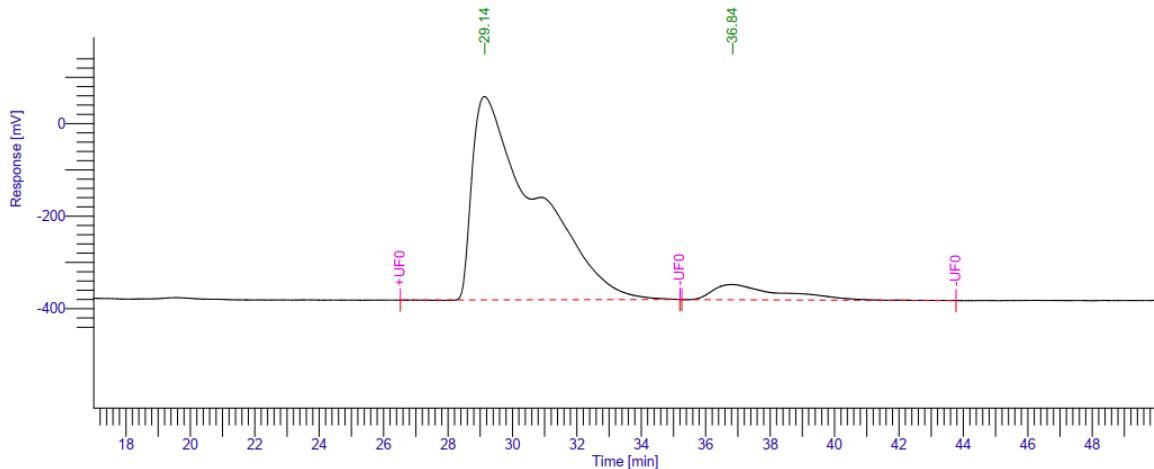

Figure S81. HPLC chromatogram of chiral compound **3s** (OD-H column; 95:5 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S82. ^1H NMR spectrum of **3t** (500 MHz, CDCl_3)

Figure S83. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3t** (125 MHz, CDCl_3)

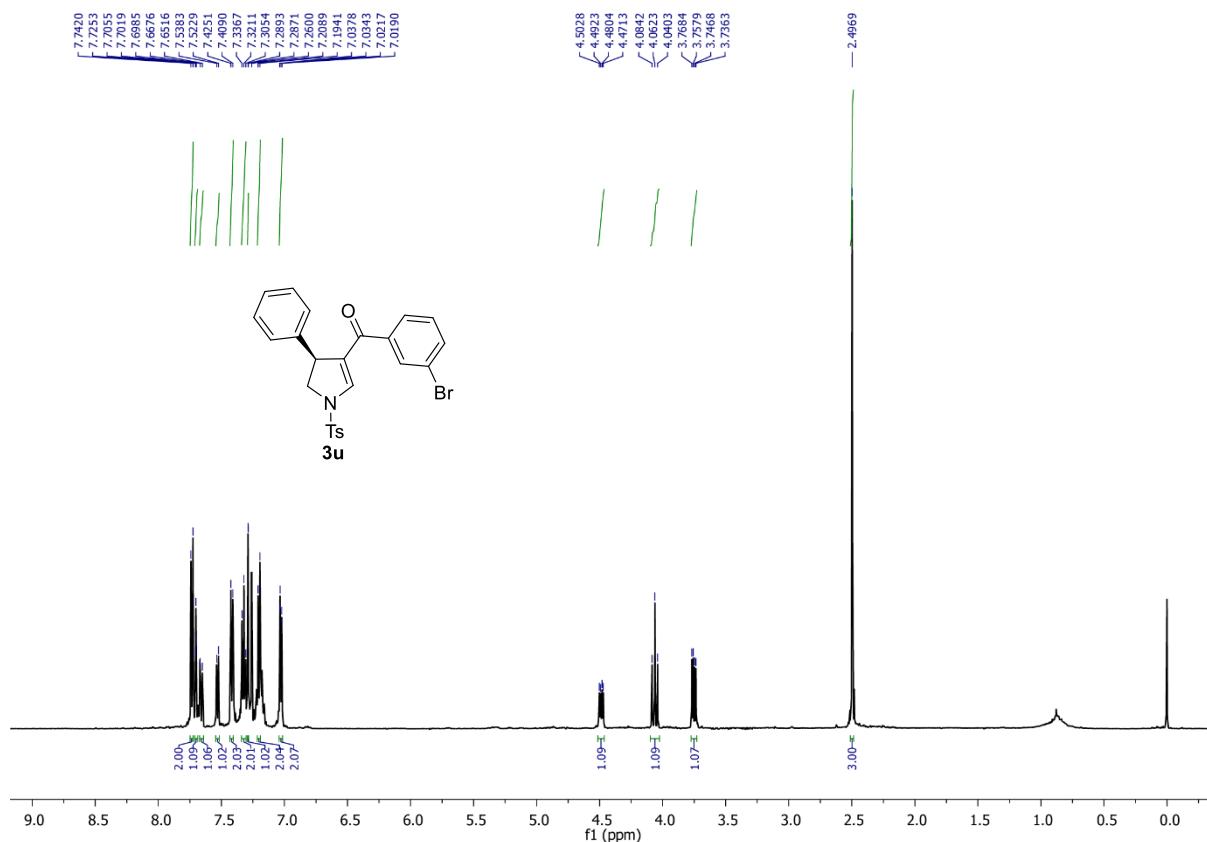


AKS-5-94RAC, OD-H

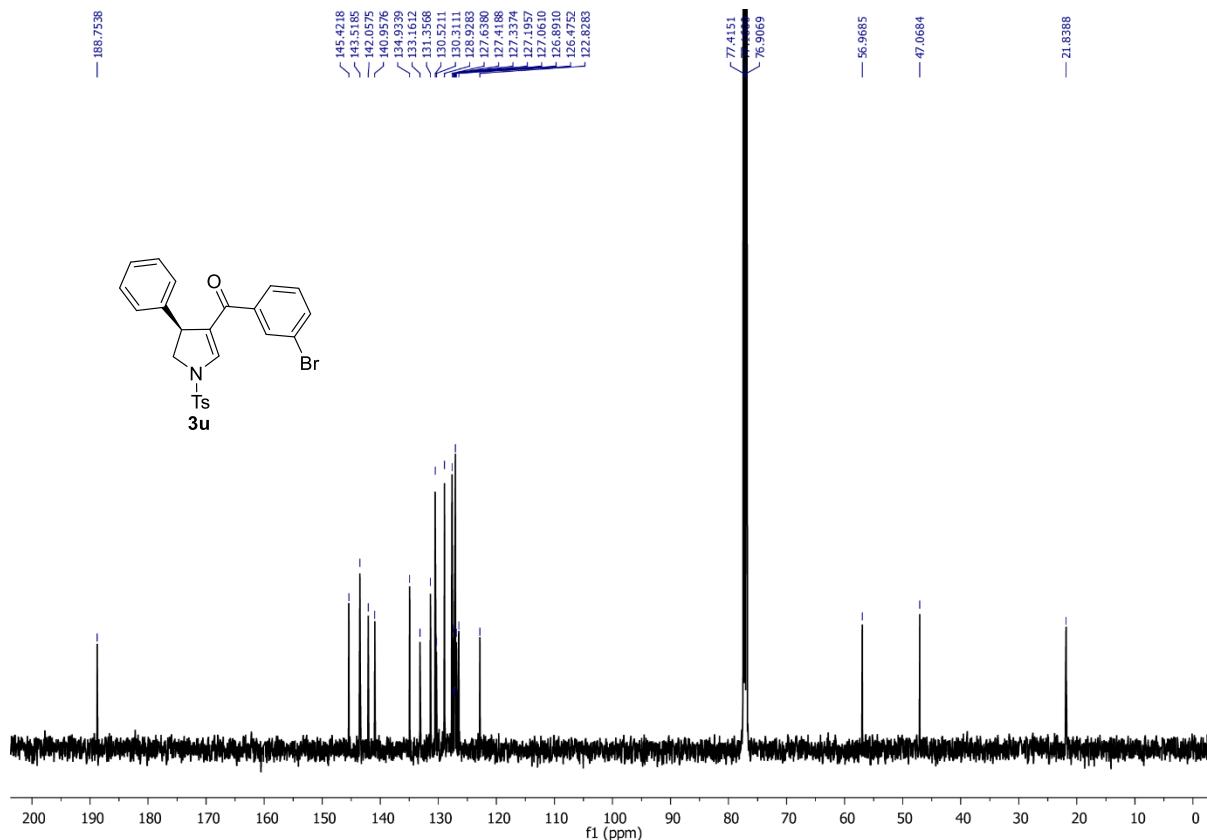
AKS-5-94RAC, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		21.311	46011339.92	745007.10	50.63	50.63			*MM	46.0113	46.0113
2		25.989	44857337.97	618184.71	49.37	49.37			*MM	44.8573	44.8573
			90868677.90	1.36e+06	100.00	100.00				90.8687	90.8687

Figure S84. HPLC chromatogram of racemic compound **9a** (OD-H column; 95:5 Hexane–Isopropanol; 1.0 mL min⁻¹)



AKS-5-168, OD-H


AKS-5-168, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		29.143	60074819.39	439212.95	92.62	92.62			*MM	60.0748	60.0748
2		36.835	4788499.64	32971.82	7.38	7.38			*MM	4.7885	4.7885
			64863319.03	472184.77	100.00	100.00				64.8633	64.8633

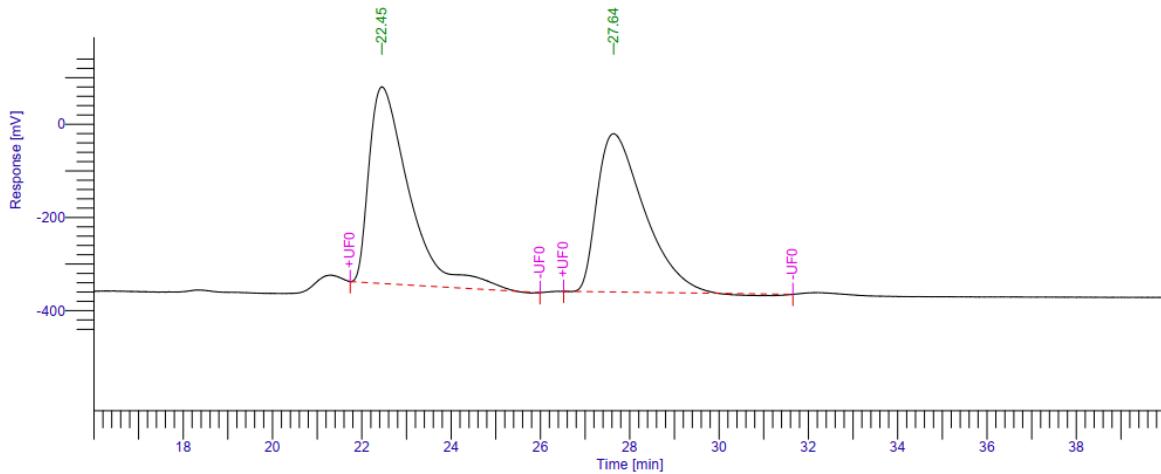
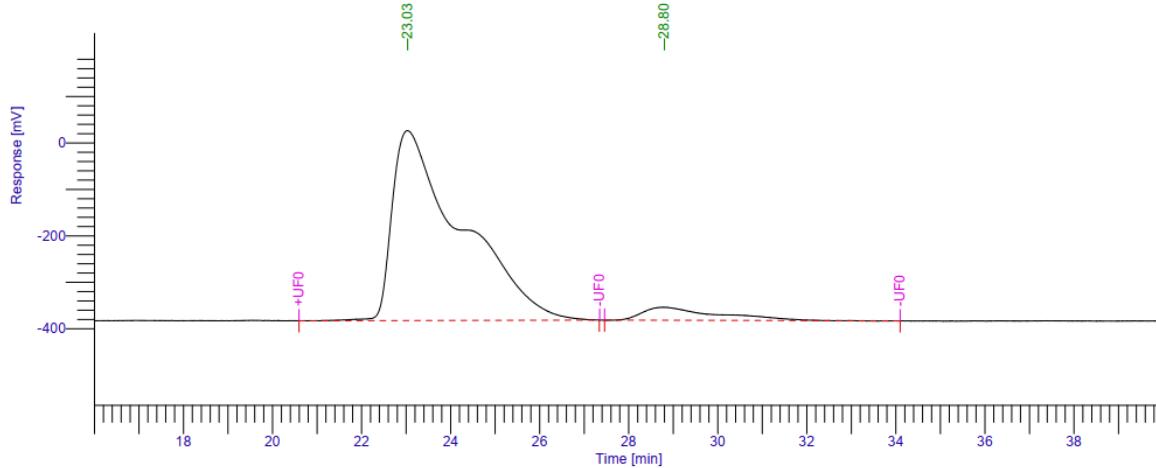

Figure S85. HPLC chromatogram of chiral compound **3t** (OD-H column; 95:5 Hexane–Isopropanol; 1.0 mL min⁻¹)

Figure S86. ^1H NMR spectrum of **3u** (500 MHz, CDCl_3)

Figure S87. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3u** (125 MHz, CDCl_3)

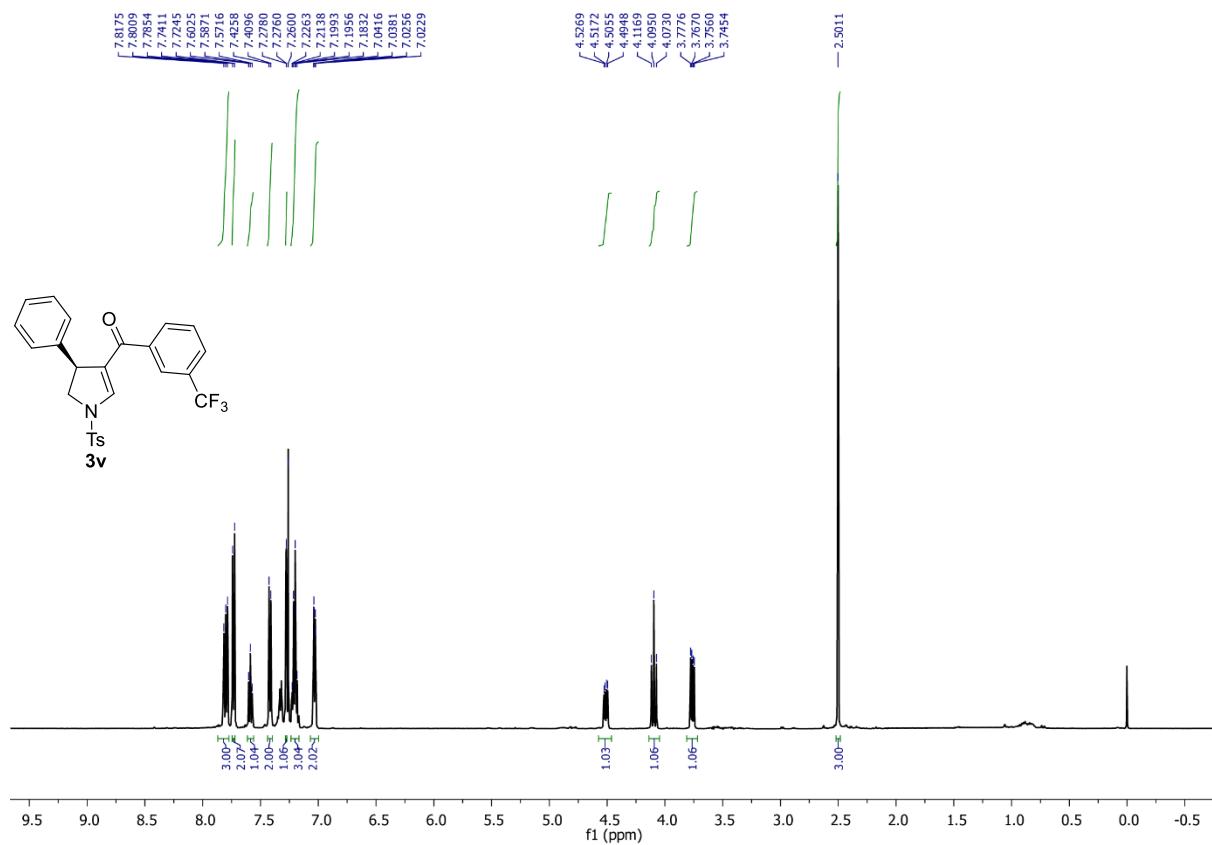


AKS-5-96RAC, OD-H

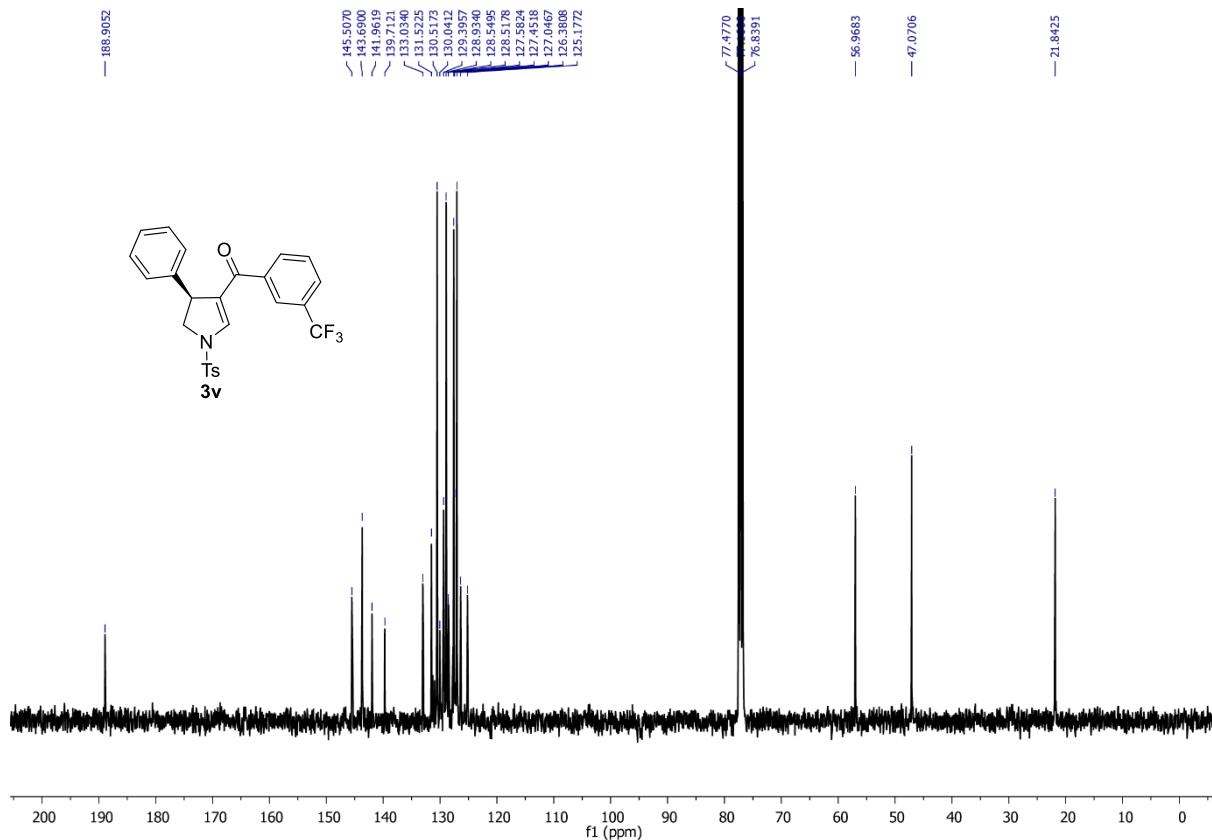
AKS-5-96RAC, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		22.447	26422426.91	422191.46	51.45	51.45			*MM	26.4224	26.4224
2		27.639	24936422.14	339809.20	48.55	48.55			*MM	24.9364	24.9364
			51358849.05	762000.66	100.00	100.00				51.3588	51.3588

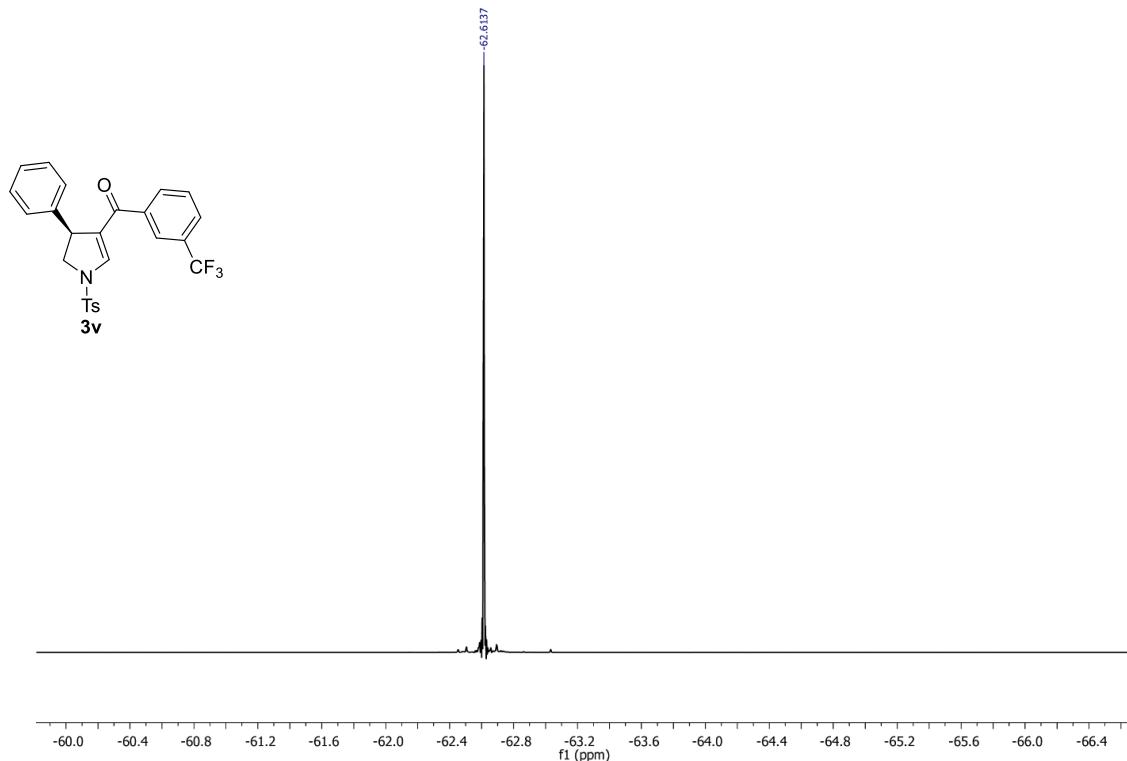
Figure S88. HPLC chromatogram of racemic compound **3u** (OD-H column; 95:5 Hexane–Isopropanol; 1.0 mL min⁻¹)



AKS-5-169CHIRAL, OD-H


AKS-5-169CHIRAL, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		23.034	43805201.97	408850.87	93.19	93.19			*MM	43.8052	43.8052
2		28.798	3201663.04	27906.71	6.81	6.81			*MM	3.2017	3.2017
			47006865.01	436757.58	100.00	100.00				47.0069	47.0069


Figure S89. HPLC chromatogram of chiral compound **3u** (OD-H column; 95:5 Hexane–Isopropanol; 1.0 mL min⁻¹)

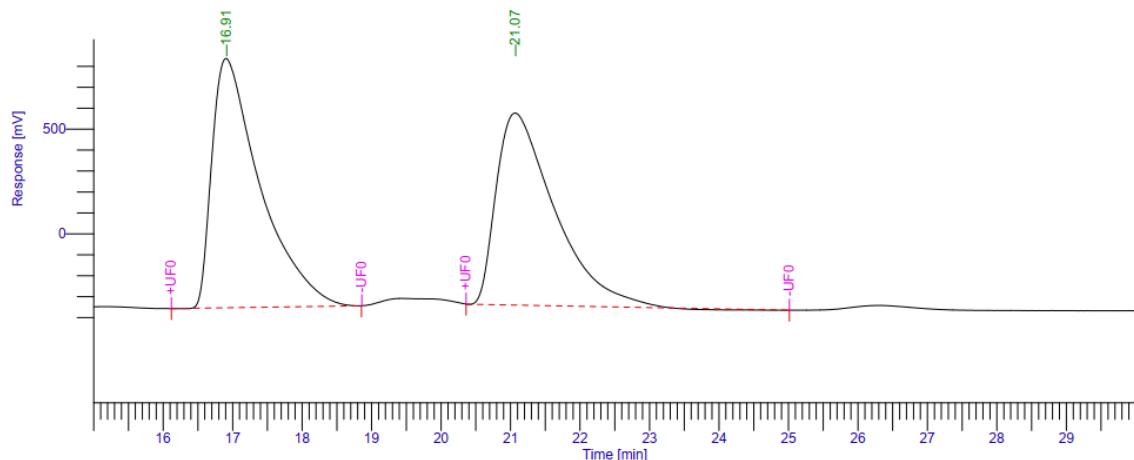
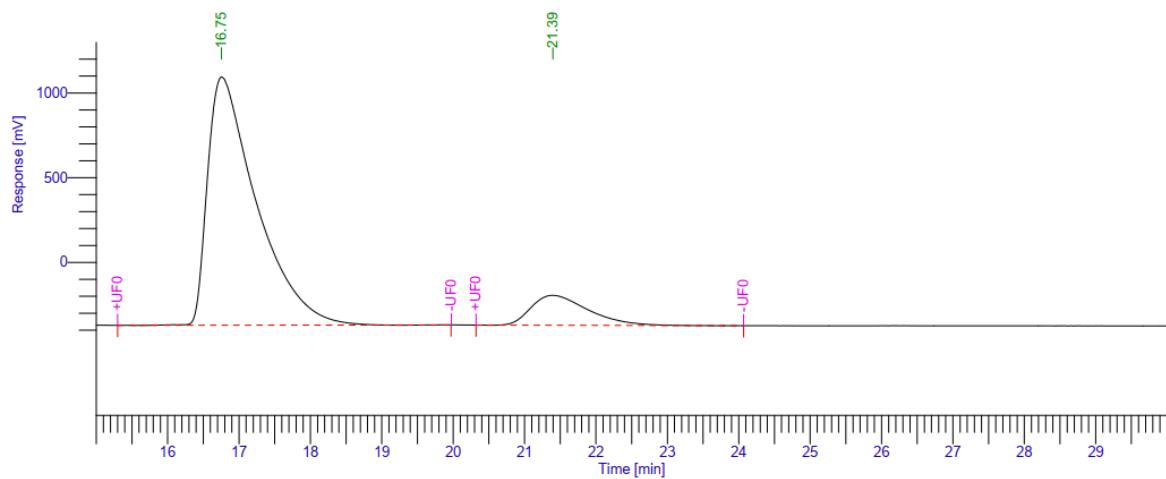

Figure S90. ^1H NMR spectrum of **3v** (500 MHz, CDCl_3)

Figure S91. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of **3v** (125 MHz, CDCl_3)

Figure S92. ^{19}F NMR spectrum of **3v** (500 MHz, CDCl_3)

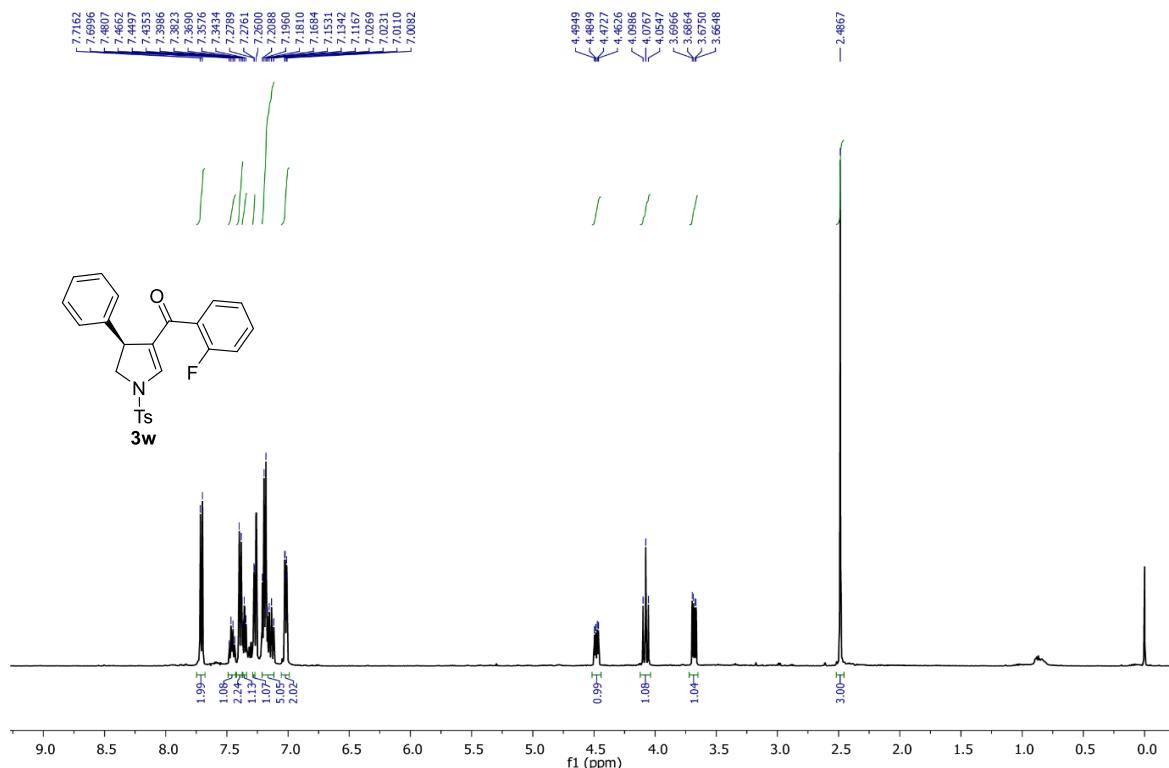


AKS-5-144RAC, OD-H

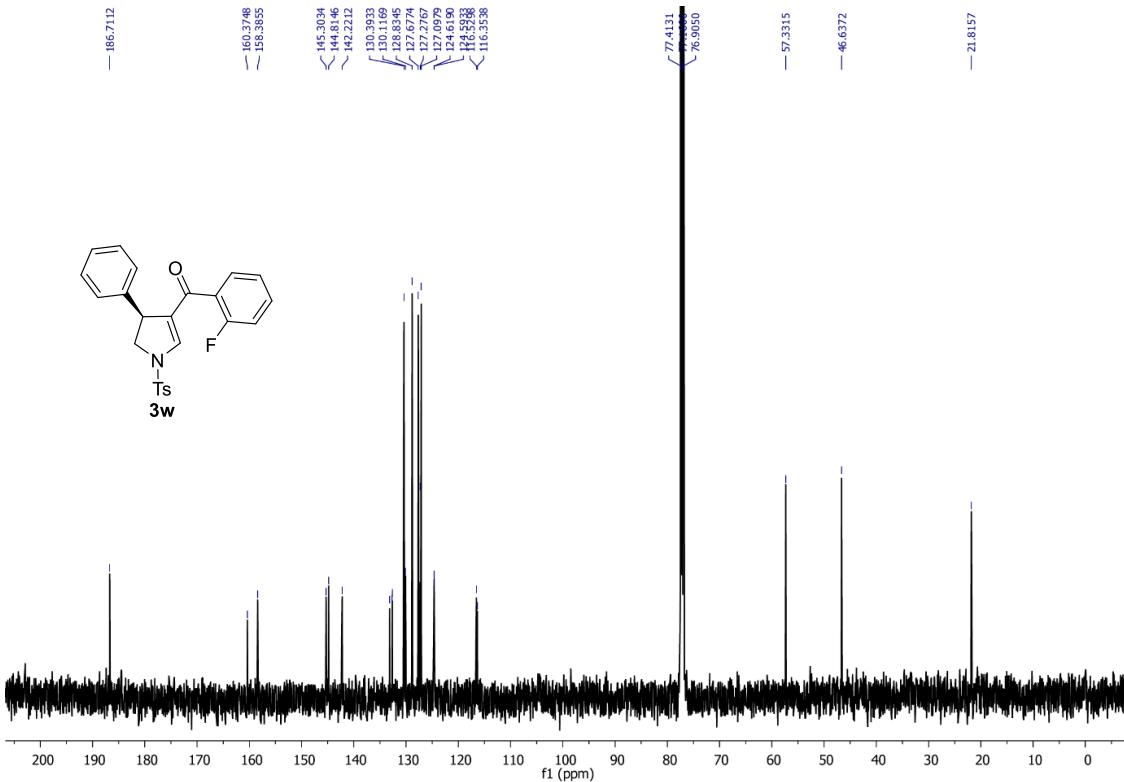
AKS-5-144RAC, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		16.911	57352168.02	1.19e+06	51.67	51.67			*MM	57.3522	57.3522
2		21.069	53655171.70	917058.57	48.33	48.33			*MM	53.6552	53.6552
			1.11e+08	2.11e+06	100.00	100.00				111.0073	111.0073

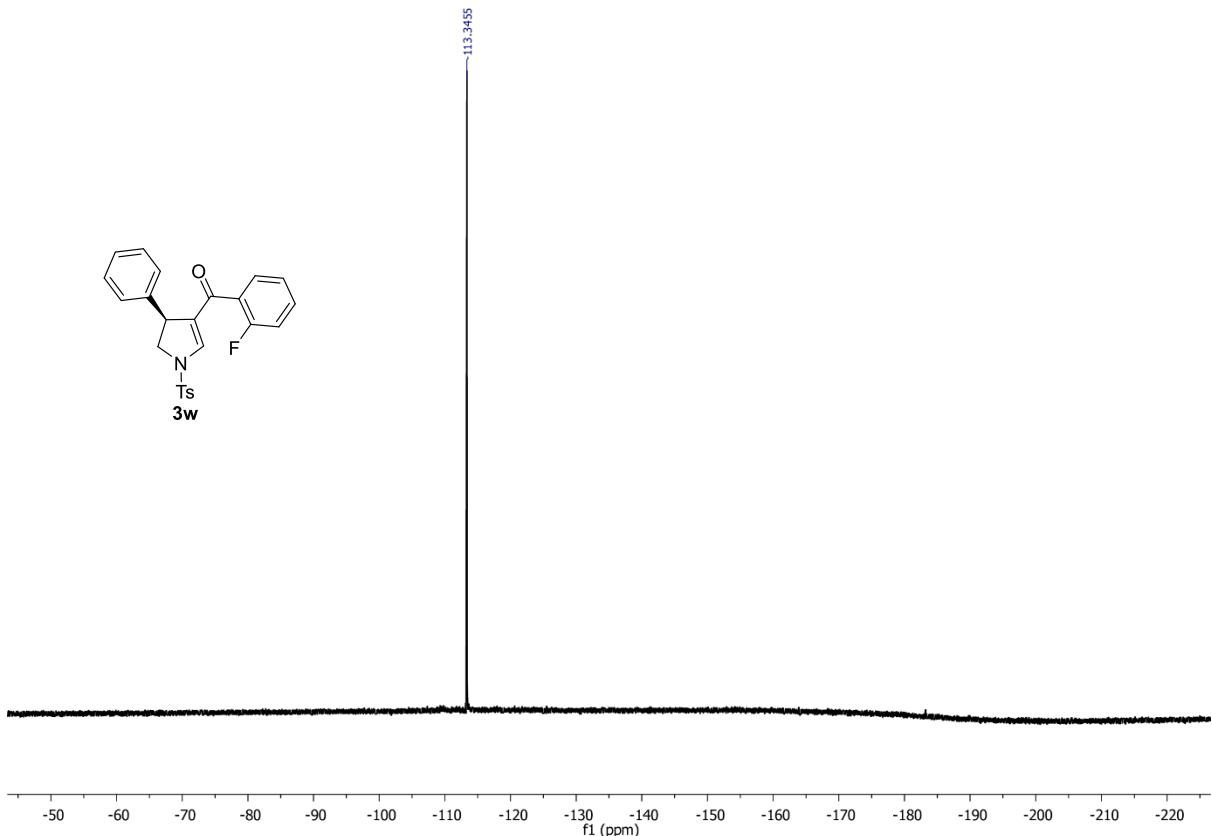
Figure S93. HPLC chromatogram of racemic compound **3v** (OD-H column; 90:10 Hexane–Isopropanol; 1.0 mL min^{-1})



AKS-5-143CHIRAL, OD-H


AKS-5-143CHIRAL, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		16.749	69469714.17	1.47e+06	87.69	87.69			*MM	69.4697	69.4697
2		21.391	9755772.36	176532.81	12.31	12.31			*MM	9.7558	9.7558
			79225486.53	1.64e+06	100.00	100.00				79.2255	79.2255


Figure S94. HPLC chromatogram of chiral compound **3v** (OD-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)

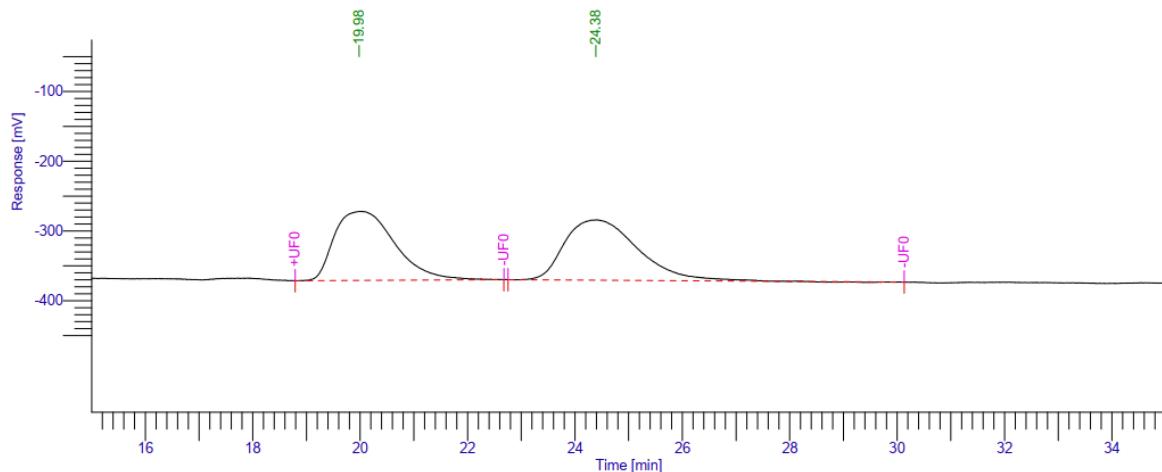
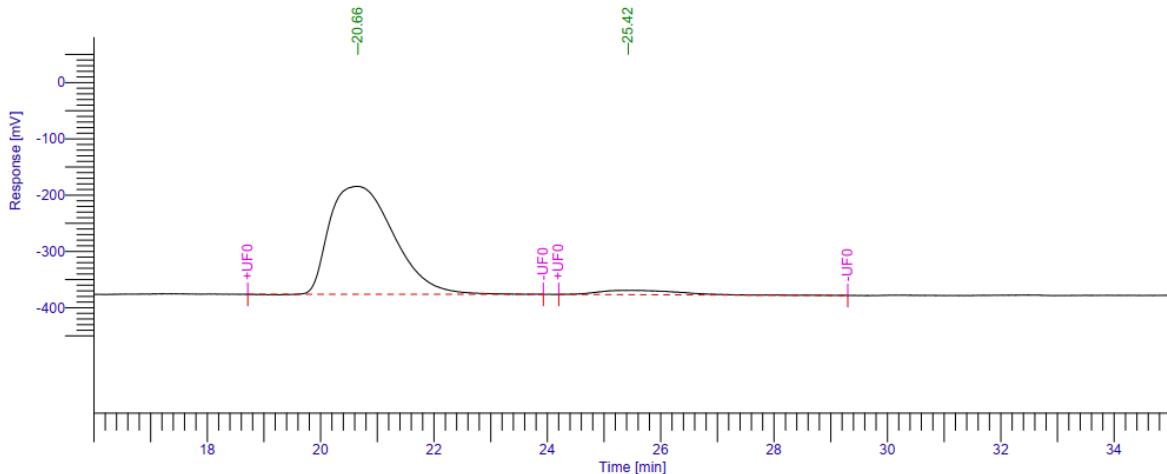

Figure S95. ¹H NMR spectrum of **3w** (500 MHz, CDCl₃)

Figure S96. $^{13}\text{C}\{\text{H}\}$ NMR spectrum of **3w** (125 MHz, CDCl_3)

Figure S97. ^{19}F NMR spectrum of **3w** (500 MHz, CDCl_3)

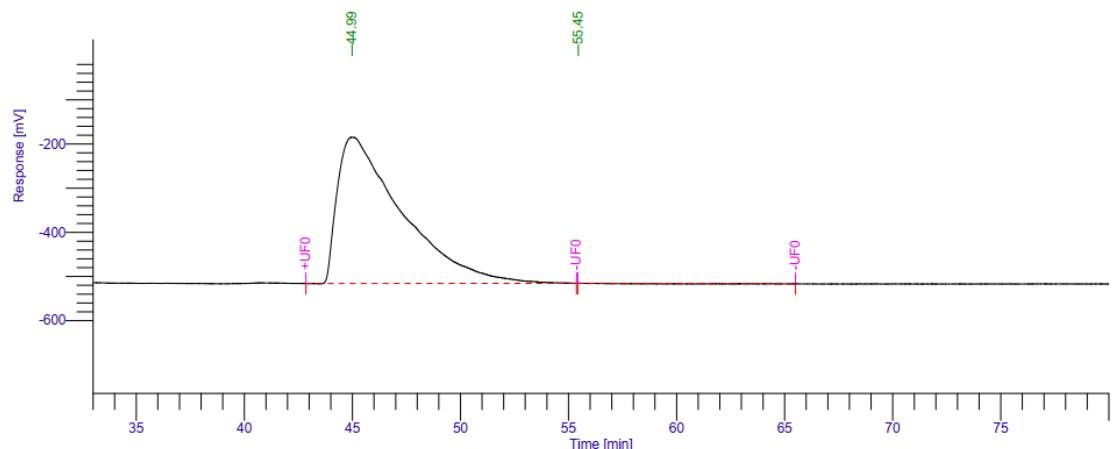


AKS-5-167RAC, OD-H

AKS-5-167RAC, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		19.976	7717715.83	98851.69	48.56	48.56			*MM	7.7177	7.7177
2		24.383	8173991.75	86400.38	51.44	51.44			*MM	8.1740	8.1740
			15891707.58	185252.07	100.00	100.00				15.8917	15.8917

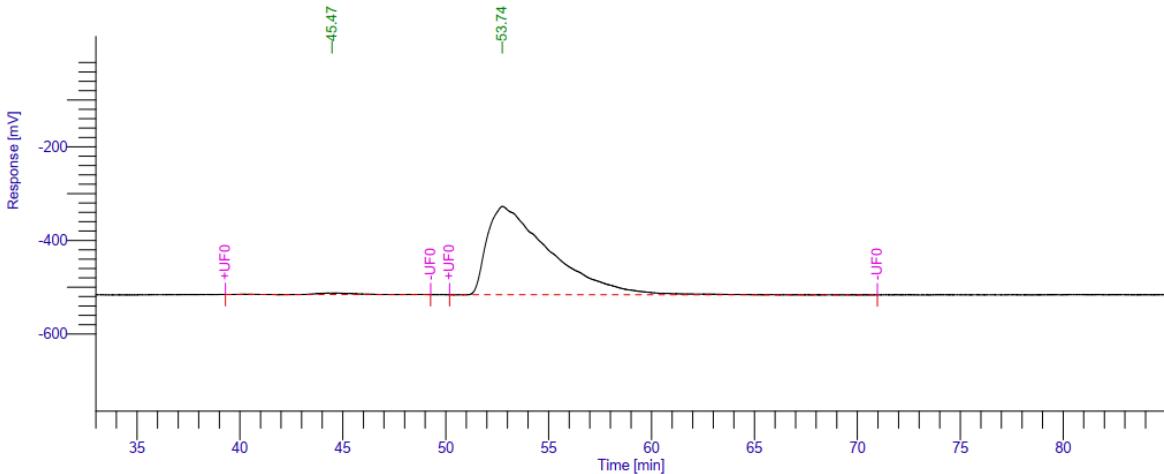
Figure S98. HPLC chromatogram of racemic compound **3w** (OD-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)


AKS-5-166CHIRAL, OD-H

AKS-5-166CHIRAL, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		20.658	15107959.16	191752.84	95.34	95.34			*MM	15.1080	15.1080
2		25.425	738441.93	7598.86	4.66	4.66			*MM	0.7384	0.7384
			15846401.09	199351.70	100.00	100.00				15.8464	15.8464

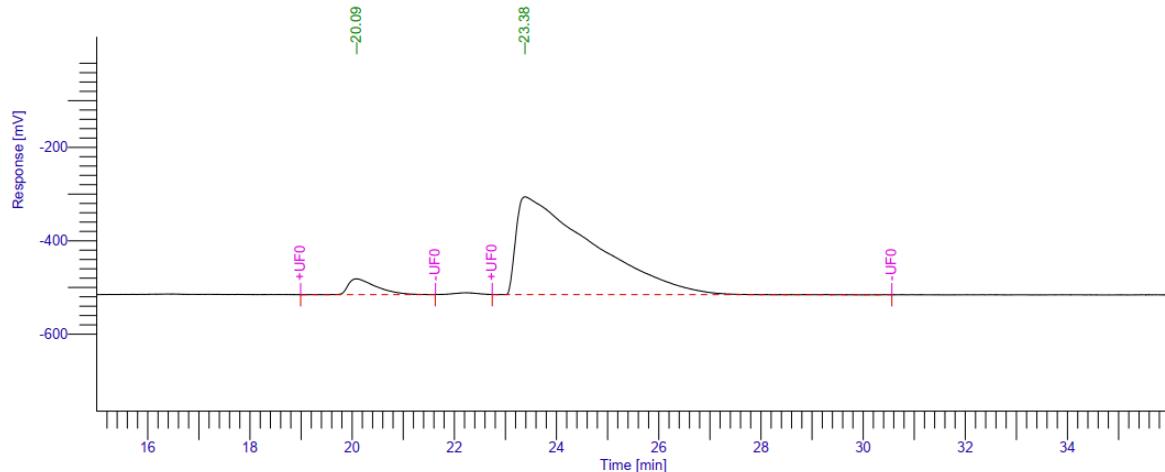
Figure S99. HPLC chromatogram of chiral compound **3w** (OD-H column; 90:10 Hexane–Isopropanol; 1.0 mL min⁻¹)


HPLC Chromatograms of (*S*)-3a and (*R*)-3a (Obtained from non-racemic aziridines)

AKS-6-106CHIRAL, OD-H

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		44.985	68771678.63	331249.11	100.00	100.00			*MM	68.7717	68.7717
2		55.450	240.18	171.66	0.00	0.00			*MM	0.0002	0.0002
			68771918.81	331420.77	100.00	100.00				68.7719	68.7719

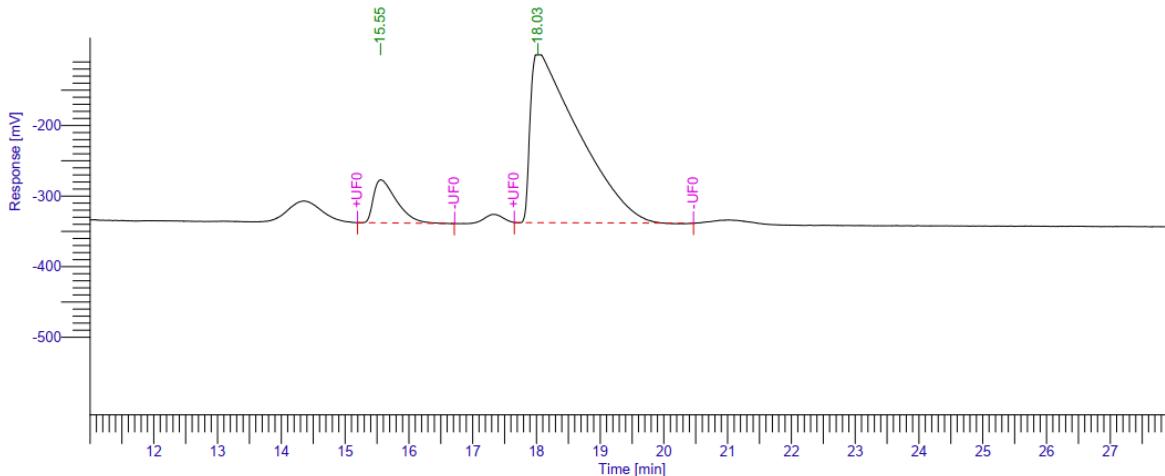
Figure S100. HPLC chromatogram of (*S*)-3a (OD-H column; 97:3 Hexane–Isopropanol; 1.0 mL min⁻¹)



AKS-6-107CHIRAL, OD-H

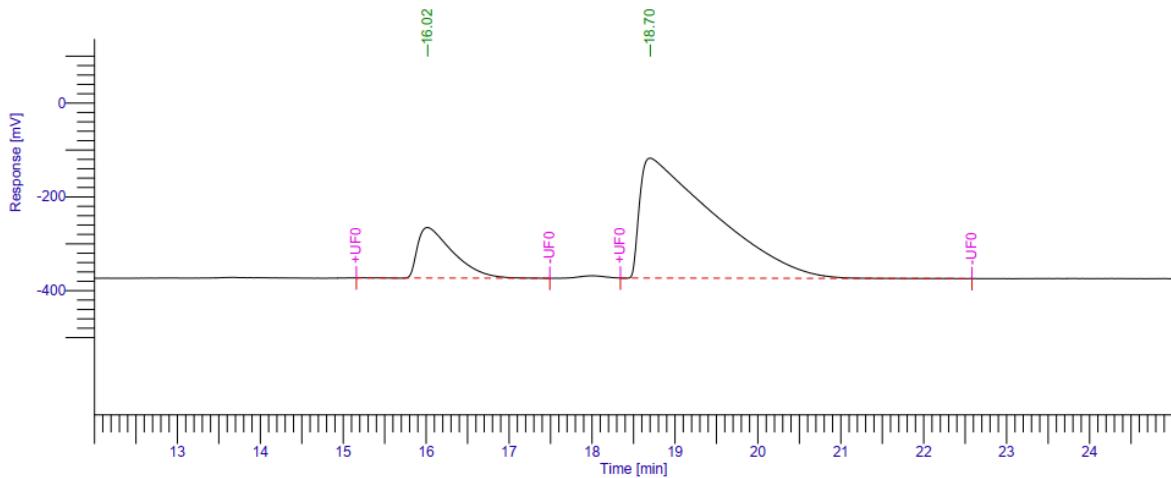
Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		45.466	403719.20	3231.48	1.00	1.00			*MM	0.4037	0.4037
2		53.738	40009143.26	188716.66	99.00	99.00			*MM	40.0091	40.0091
			40412862.46	191948.14	100.00	100.00				40.4129	40.4129

Figure S101. HPLC chromatogram of (*R*)-3a (OD-H column; 97:3 Hexane–Isopropanol; 1.0 mL min⁻¹)


Racemization of (*R*)-1a in the presence of Cu(I)-(S)-XylBINAP at 70 °C in *O*-Xylene

(*R*)-AZIRIDINE, 3 h

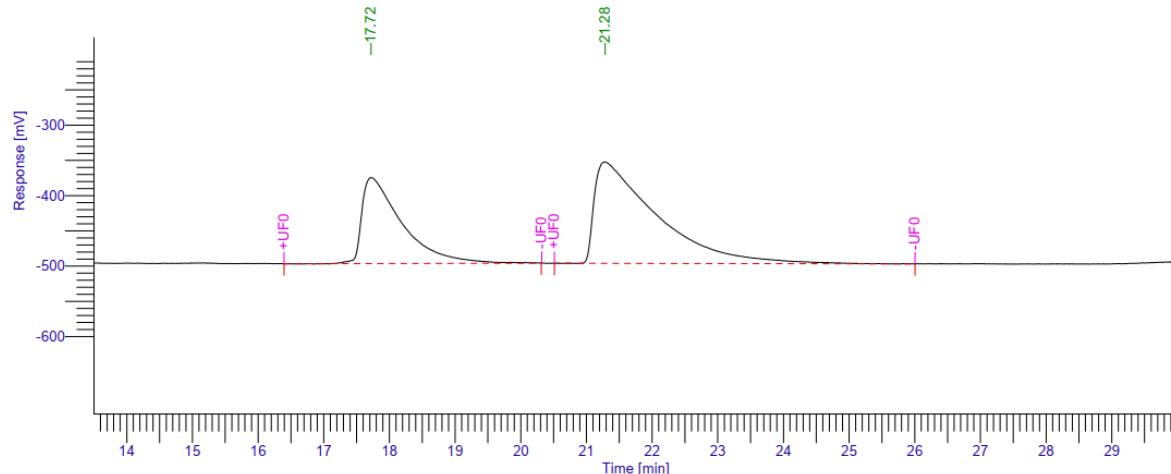
Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		20.086	1276953.27	33722.33	5.57	5.57			*MM	1.2770	1.2770
2		23.379	21654078.62	209280.63	94.43	94.43			*MM	21.6541	21.6541
			22931031.90	243002.96	100.00	100.00				22.9310	22.9310


Figure S102. HPLC Chromatogram of racemized (*R*)-2a' after 3 hours (*ee* 89%); (OJ-H column; 80:20 Hexane–Isopropanol; 1.0 mL min⁻¹)

(*R*)-AZIRIDINE, 6 h

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		15.554	1526569.45	61042.49	10.75	10.75			*MM	1.5266	1.5266
2		18.025	12670363.12	242935.64	89.25	89.25			*MM	12.6704	12.6704
			14196932.57	303978.13	100.00	100.00				14.1969	14.1969

Figure S103. HPLC Chromatogram of racemized (*R*)-2a' after 6 hours (*ee* 79%); (OJ-H column; 80:20 Hexane–Isopropanol; 1.0 mL min⁻¹)

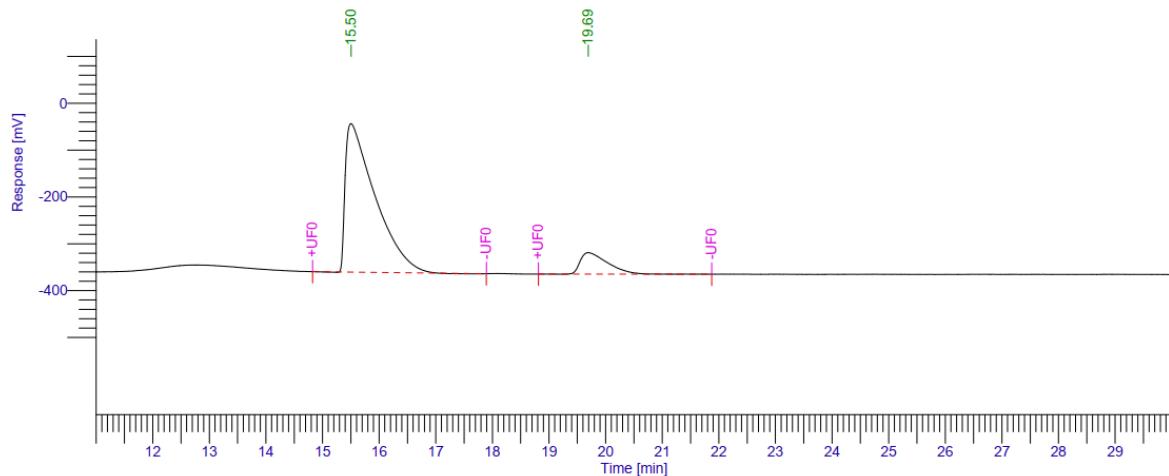


(R)-Aziridine, 9 h

(R)-Aziridine, 12 h

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		16.016	3173919.81	107589.15	16.63	16.63			*MM	1.5266	1.5266
2		18.700	15914922.69	255766.27	83.37	83.37			*MM	12.6704	12.6704
3		56.153	115.08	117.99	0.00	0.00					
				19088957.59	363473.41	100.00	100.00			14.1969	14.1969

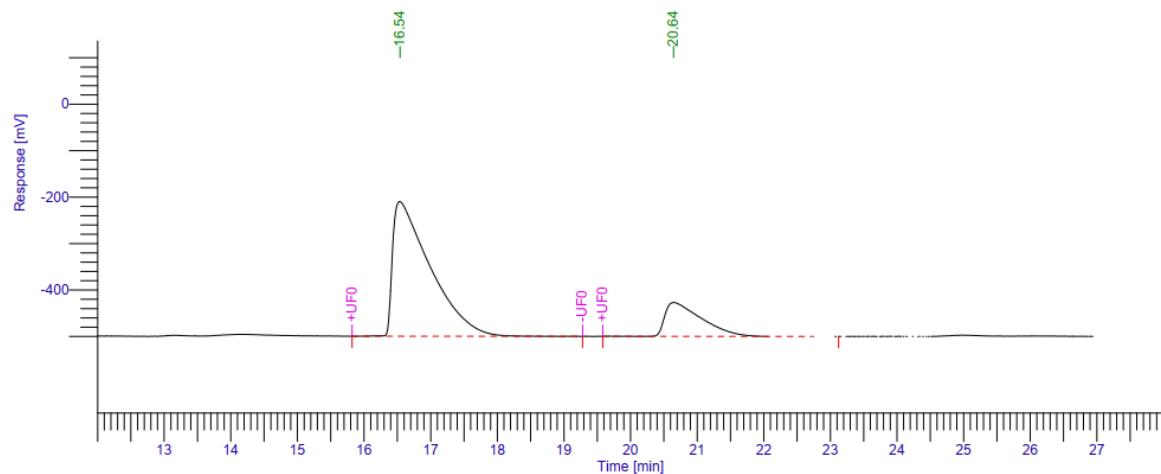
Figure S104. HPLC Chromatogram of racemized (R)-2a' after 9 hours (*ee* 67%); (OJ-H column; 80:20 Hexane–Isopropanol; 1.0 mL min⁻¹)



(R)-AZIRIDINE, 16 h

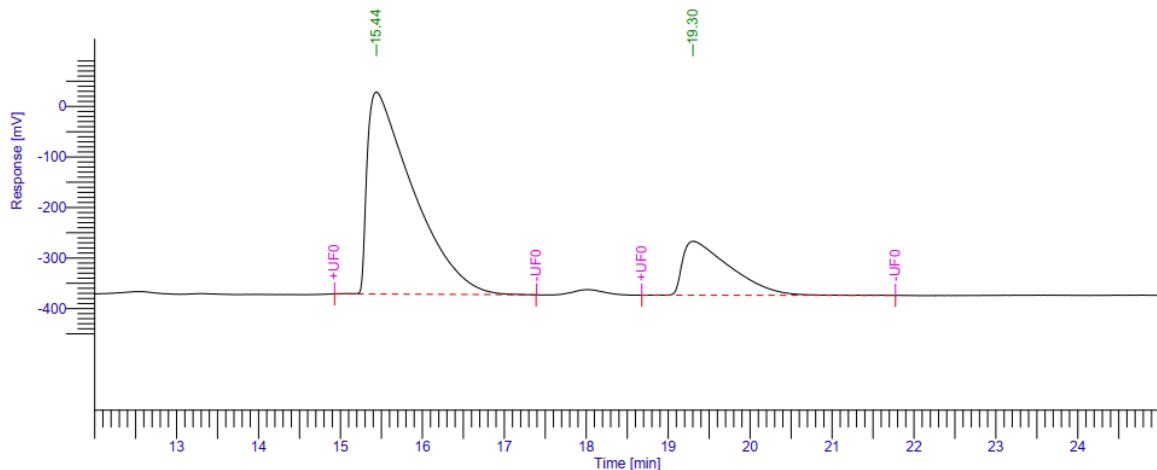
Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		17.717	5166183.07	121906.46	35.27	35.27			*MM	5.1662	5.1662
2		21.281	9480549.84	143885.18	64.73	64.73			*MM	9.4805	9.4805
				14646732.90	265791.64	100.00	100.00			14.6467	14.6467

Figure S105. HPLC Chromatogram of racemized (R)-2a' after 16 hours (*ee* 29%); (OJ-H column; 80:20 Hexane–Isopropanol; 1.0 mL min⁻¹)


Racemization of (S)-1a in the presence of Cu(I)-(S)-XylBINAP at 70 °C in *O*-Xylene

(S)-AZIRIDINE, 3 h

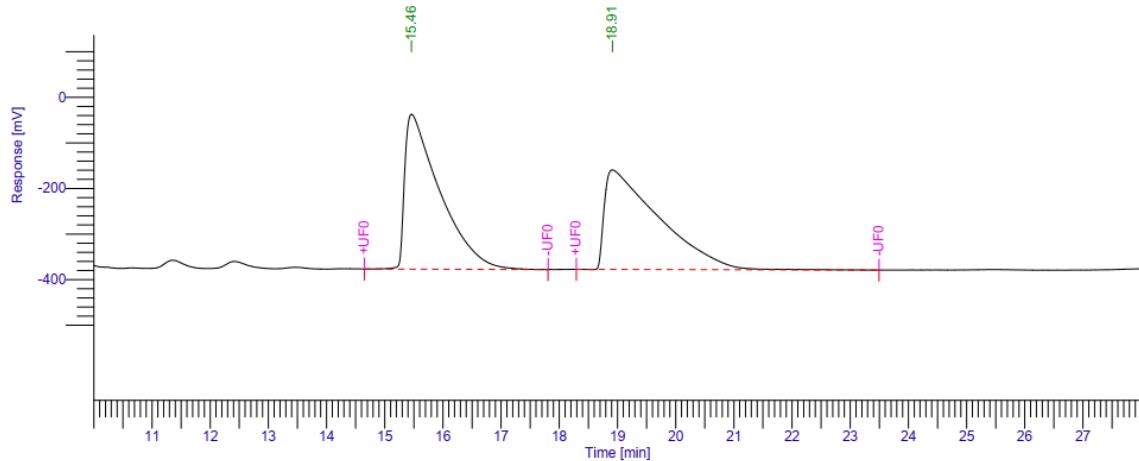
Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		15.503	11587881.27	316887.54	88.33	88.33			*MM	11.5879	11.5879
2		19.690	1531562.55	45820.18	11.67	11.67			*MM	1.5316	1.5316
			13119443.81	362707.72	100.00	100.00				13.1194	13.1194


Figure S106. HPLC Chromatogram of racemized (S)-2a'' after 3 hours (*ee* 77%); (OJ-H column; 80:20 Hexane–Isopropanol; 1.0 mL min⁻¹)

(S)-AZIRIDINE, 6 h

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		16.537	11372666.02	289833.93	80.40	80.40			*MM	11.3727	11.3727
2		20.643	2771973.31	72961.30	19.60	19.60			*MM	2.7720	2.7720
			14144639.32	362795.23	100.00	100.00				14.1446	14.1446

Figure S107. HPLC Chromatogram of racemized (S)-2a'' after 6 hours (*ee* 61%); (OJ-H column; 80:20 Hexane–Isopropanol; 1.0 mL min⁻¹)



(S)-Aziridine, 9 h

(S)-Aziridine, 9 h

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		15.437	15604077.31	399686.39	78.41	78.41			*MM	12.6778	12.6778
2		19.301	4295803.51	106731.95	21.59	21.59			*MM	1.3216	1.3216
3		35.531	131.91	92.61	0.00	0.00					
				19900012.74	506510.95	100.00	100.00			13.9994	13.9994

Figure S108. HPLC Chromatogram of racemized (S)-2a'' after 9 hours (*ee* 51%); (OJ-H column; 80:20 Hexane–Isopropanol; 1.0 mL min⁻¹)

(S)-Aziridine, 16 h

(S)-Aziridine, 16 h

Peak #	Component Name	Time [min]	Area [uV*sec]	Height [uV]	Area [%]	Norm. Area [%]	Cal. Range	Volt Range	BL	Raw Amount	Adjusted Amount
1		15.459	14198744.41	339811.99	50.01	52.01			*MM	14.1987	14.1987
2		18.913	14194230.78	218333.22	47.99	47.99			*MM	13.1942	13.1942
				28392975.19	558145.21	100.00	100.00			27.3930	27.3930

Figure S109. HPLC Chromatogram of racemized (S)-2a'' after 16 hours (*ee* 5%); (OJ-H column; 80:20 Hexane–Isopropanol; 1.0 mL min⁻¹)