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1 Experimental procedures and

characterization data

1.1 General experimental

Chemicals were purchased from Sigma-Aldrich, Acros Organics, Alfa Aesar, chemPUR, abcr
GmbH, TCI Europe or BLDpharm. Deuterated solvents were purchased from Deutero GmbH
or Sigma-Aldrich. Technical grade solvents used during work-up and purification were distilled
prior to use. The Bidentate Lewis acid BDLA was synthesized according to the literature,*
stored and handled in a nitrogen-filled MBRAUN UNIllab glove box. Phthalazines 1b-1i (Figure
S1) were synthesized according to literature.?™

Sensitive reactions were performed in dry glassware under nitrogen atmosphere using Schlenk
techniques or in a nitrogen-filled MBRAUN UNIllab glove box. Oil baths or sand baths were
used for all reactions requiring heating.

NMR spectra were measured on a Bruker Avance Il 400 MHz, Avance Il 400 MHz HD or
Bruker Avance Ill HD 600 MHz spectrometer at 25 °C if not stated otherwise. Chemical
shifts (8) are reported in parts per million (ppm) relative to residual solvent signals. Coupling
constants (J) are reported in Hertz (Hz). Multiplicities are abbreviated as s (singlet), d (doublet),
t (triplet), g (quartet) and m (multiplet).

Flash chromatography was carried out with Silica 60 (0.04 — 0.063 mm) from Marcherey-Nagel
GmbH & Co. KG. Automated flash chromatography was performed on an Advion Interchim
puriFlash XS 520 Plus system using PF-30SIHP or PF-15SIHP columns. Thin layer
chromatography was performed on Polygram®SIL G/UV254 from Macherey Nagel GmbH &
Co. KG. Spots were visualized under UV-light and with basic KMnO, stain.

High-resolution mass spectra were recorded on a Bruker Impact Il spectrometer featuring a
guadrupole time-of-flight (Q-TOF) mass analyzer. Samples were dissolved in methanol.
Melting points were measured on a M5000 melting point meter from A. KRUSS Optronic
GmbH, Germany.
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Figure S1. Overview of phthalazines and pyridazino-aromatics.
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1.2 Synthesis of (1E,5E)-dibromocycloocta-1,5-diene (5)

The synthesis of (1E,5E)-dibromocycloocta-1,5-diene (5) was adapted from literature with

slight modifications:®

Br2 CH20|2 KOt-Bu Etzo
2 ’ B
O _78°C to . 3h Br:O:BF -78°Ctorton. _ o O :
- |
81% Br Br 74%
S1 S2 5

Scheme S1. Synthesis scheme of (1E,5E)-dibromocycloocta-1,5-diene (5).

Synthesis of 1,2,5,6-tetrabromocyclooctane (S2)

A solution of bromine (6.45 mL, 125 mmol, 2.25 eq.) in anhydrous CH,Cl, (100 mL) was slowly
added to a solution of 1,5-cyclooctadiene (S1) (6.9 mL, 56 mmol, 1.0 eq.) in anhydrous CH:Cl,
(200 mL) at —=78 °C under nitrogen atmosphere over 1.5 h. The resulting yellow suspension
was allowed to warm to rt and stirred for another 3 h. Afterwards, a saturated aqueous solution
of Na;S,03 (250 mL) was added. After stirring for 10 min, the layers were separated and the
aqueous layer was extracted with CH>Cl (3 x 200 mL). The combined organic extracts were
dried (MgSOs,), filtered and concentrated in vacuo. Cold hexane (50 mL) was added to the
residual oil and the mixture was placed in the fridge overnight. Afterwards, the solvent was
decanted and the remaining solid was washed with cold hexane (25 mL). The crude
tetrabromide S2 was obtained as a white solid (19.5 g, 45.6 mmol, 81%) which was used in

the next step without further purification.
'H NMR (200 MHz, CDCl3): 8 = 5.12 — 4.17 (m, 4H), 3.02 — 1.90 (m, 8H) ppm.

Analytical data corresponds to literature.®
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Synthesis of (1E,5E)-dibromocycloocta-1,5-diene (5)

Diethyl ether (300 mL) was added to a stirred mixture of powdered tetrabromocyclooctane S2
(10.0 g, 23.4 mmol, 1.00 eq.) and KOt-Bu (8.04 g, 70.2 mmol, 3.00 eq.) at =78 °C under
nitrogen atmosphere over 30 min. The suspension was allowed to warm to rt and stirred
overnight. Afterwards, a saturated aqueous NH4Cl solution (120 mL) and water (100 mL) were
added to the mixture and it was stirred for 10 min. The aqueous layer was separated and
extracted with ethyl acetate (1 x 200 mL, 2 x 100 mL). The combined organic layers were
washed with brine, dried (MgSQO.,) and filtered. Silica gel (20 g) was added to the filtrate and it
was concentrated in vacuo. Purification via column chromatography (180 g silica gel,
cyclohexane) yielded the vinylbromide 5 as a pale yellow oil (mixture of isomers) (4.50 g,

16.9 mmol, 72%) which solidified upon storage at —20 °C.
Mixture of isomers:
H NMR (200 MHz, CDCl3): 8 =6.17 — 5.94 (m, 2H), 3.00 — 2.76 (m, 4H), 2.51 — 2.25 (m, 4H).

Analytical data corresponds to literature.®
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1.3 General procedure for the synthesis of cycloocta-
naphthalenes 4a-d (GP1)

KOt-Bu
18-crown-6
Br hexane Br
Br—: | rt, 2 h |
5 3

Scheme S2. Synthesis of alkyne 3 from dibromocycloocta-1,5-diene 5.

A solution of vinyl bromide 5 (665 mg, 2.50 mmol, 1.00 eq.) in anhydrous hexane (35 mL) was
added dropwise to a suspension of KOt-Bu (1.13 g, 9.83 mmol, 3.93 eq.) and 18-crown-6
(0.16 mg, 0.62 mmol, 0.25eq.) in anhydrous hexane (115mL) at rt under nitrogen
atmosphere. The resulting dark brown mixture was stirred for further 2 h at rt. Afterwards, a
saturated aqueous solution of NH4Cl (25 mL) and water (25 mL) was added. The aqueous
phase was separated and extracted with pentane (3 x 25 mL). The combined organic layers
were washed with brine, dried (Na,SO.), filtered and concentrated in vacuo (bath temp.
<40 °C) to obtain approx. 1 mL of a brown oil containing the crude alkyne 3. The oil was
transferred to a Schlenk tube, diluted with anhydrous 1,4-dioxane (15 mL) and degassed by

three freeze-pump-thaw cycles. This solution was used in the following step without further

purification.
BDLA
N Br 1,4-dioxane Br
N 80-100 °C__ @O
_N
1a-d 3 4a-d
(1.0 eq.) (from 2.5 - 6.0 eq.

of diene 5)

Scheme S3. Synthesis cyclooctanaphthalenes 4a-d via IEDDA reaction.

In a nitrogen filled glove box, phthalazine la-d (1.00 mmol, 1.00 eq.) and BDLA catalyst
(5.1 mg, 25 ymol, 2.5 mol%) were suspended in anhydrous 1,4-dioxane (15 mL). A stir bar
was added, the flask was sealed and taken out of the glove box. A degassed solution of the
crude alkyne 3 (obtained from 2.5 — 6.0 eq. of diene 5) in anhydrous 1,4-dioxane (15 mL) was
added to the phthalazine-BDLA suspension and stirred at the indicated temperature for the
indicated time. Afterwards, the solvent was removed in vacuo and the residue was purified via
column chromatography (conditions noted below). Additional purification steps are noted

below.
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Synthesis of (E)-8-bromo-6,7,10,11-tetrahydrocycloocta[b]-naphthalene (4a)

Br According to GP1, vinyl bromide 5 (1.06 g, 4.00 mmol, 4.00 eq.) in

anhydrous hexane (50 mL) was treated with KOt-Bu (1.80 g,
15.7 mmol, 15.7eq.) and 18-crown-6 (262 mg, 0.990 mmol,

0.990 eq.) in anhydrous hexane (120 mL). The crude alkyne 3 was dissolved in anhydrous 1,4-
dioxane (15 mL), degassed and added to a suspension of phthalazine (1a) (131 mg,
1.00 mmol, 1.00 eq.) and BDLA catalyst (5.1 mg, 25 uymol, 2.5 mol%) in anhydrous 1,4-
dioxane (10 mL). The mixture was stirred at 100 °C for 48 h. The crude product was purified
via column chromatography [40 g silica gel, cyclohexane/toluene (95:5), dry loading (CH-Cl.)]
to obtain a brown oil. Pentane (0.5 mL) was added and the mixture was placed in the fridge
overnight. Afterwards, the solvent was removed with a cannula and the remaining solid was

washed with cold pentane (0.5 mL) to obtain the substituted naphthalene 4a as a pale yellow
solid (206 mg, 717 ymol, 72%).

H NMR (400 MHz, CDCls): & = 7.81 — 7.70 (m, 2H), 7.60 (s, 1H), 7.53 (s, 1H), 7.45 — 7.37 (m,
2H), 5.81 (t, J = 7.1 Hz, 1H), 3.24 (t, J = 7.1 Hz, 2H), 3.15 (t, J = 7.1 Hz, 2H), 3.09 (t, J = 7.1 Hz,
2H), 2.52 (g, J = 7.1 Hz, 2H).

13C{*H} NMR (101 MHz, CDCls): & = 138.6, 137.6, 132.8, 132.6, 130.5, 128.7, 128.1, 127.3,
127.1, 125.5, 125.4, 124.2, 39.4, 33.6, 33.4, 30.3 ppm.

HRMS (ESI): m/z calculated for Ci6HisBr+Na*: 309.0249 [M+Na]*, found: 309.0250.

Melting point: 63 — 64 °C.
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Synthesis of (E)-8-bromo-1,4-difluoro-6,7,10,11-tetrahydro-cycloocta[b]naphthalene
(4b)

F According to GP1, vinyl bromide 5 (665 mg, 2.50 mmol, 2.50 eq.) in
Br anhydrous hexane (35mL) was treated with KOt-Bu (1.13g,

Oe. 9.83 mmol, 9.83eq.) and 18-crown-6 (164 mg, 0.620 mmol,
F 0.620 eq.) in anhydrous hexane (115 mL). The crude alkyne 3 was
dissolved in anhydrous 1,4-dioxane (15 mL), degassed and added to a suspension of
phthalazine 1b (166 mg, 1.00 mmol, 1.00 eq.) and BDLA catalyst (5.1 mg, 25 pmol, 2.5 mol%)
in anhydrous 1,4-dioxane (15 mL). The mixture was stirred at 80 °C for 24 h. The crude product
was purified via column chromatography [30 g silica gel, cyclohexane/toluene (95:5), dry
loading (CH:CI)] to obtain a yellow solid that was washed with a small amount of pentane

(1 mL) to give the desired substituted naphthalene 4b as a pale yellow solid (233 mg,
721 umol, 72%).

'H NMR (400 MHz, CDCl3): & = 7.82 (s, 1H), 7.75 (s, 1H), 7.00 — 6.92 (m, 2H), 5.81 (t, J =
7.1 Hz, 1H), 3.27 (t, J = 7.1 Hz, 2H), 3.18 (t, J = 7.1 Hz, 2H), 3.11 (t, J = 7.1 Hz, 2H), 2.54 (q,
J =7.1Hz, 2H) ppm.

13C{*H} NMR (101 MHz, CDClIs): d = 155.8 — 155.6 and 153.4 — 153.2 (m, 2C), 140.3, 139.3,
130.3, 124.0, 123.8 (dd, J = 15.2, 6.0 Hz), 123.6 (dd, J = 14.1, 6.0 Hz), 121.6 — 121.4 (m),
121.1 —120.9 (m), 108.2 (dd, J = 22.2, 8.0 Hz), 108.1 (dd, J = 23.2, 9.0 Hz), 39.2, 33.7, 33.5,
30.0 ppm.

19F{1H} NMR (377 MHz, CDCls): 8 = -128.52 (dd, J = 148.5, 21.8 Hz) ppm.
HRMS (ESI): m/z calculated for CiH13BrF2+Na*: 345.0061 [M+Na]*, found: 345.0057.

Melting point: 99 — 100 °C.
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Synthesis of diethyl (E)-8-bromo-6,7,10,11-tetrahydrocyclo-octa[b]naphthalene-2,3-
dicarboxylate (4c)

') According to GP1, vinyl bromide 5 (1.02 g, 3.82 mmol,
EtO Br 2.55eq.) in anhydrous hexane (40 mL) was treated with
EtO Oe. KOt-Bu (1.69g, 14.7mmol, 9.83eq.) and 18-crown-6

') (246 mg, 0.930 mmol, 0.620eq.) in anhydrous hexane

(90 mL). The crude alkyne 3 was dissolved in anhydrous 1,4-dioxane (6 mL), degassed and
added to a suspension of phthalazine 1c (411 mg, 1.50 mmol, 1.00 eq.) and BDLA catalyst
(7.7 mg, 38 ymol, 2.5 mol%) in anhydrous 1,4-dioxane (9 mL). The mixture was stirred at
80 °C for 24 h. The crude product was purified via column chromatography [40 g silica gel,
cyclohexane/EtOAc (98:2 to 62:38), dry loading (CH2Cl)] to obtain a yellow solid. Pentane
(0.5 mL) was added and the mixture was placed in the fridge overnight. Afterwards, the solvent
was removed with a cannula and the remaining solid was washed with cold pentane (2 x
0.5 mL) to obtain the substituted naphthalene 4c as a pale yellow solid (507 mg, 1.18 mmol,
78%).

'H NMR (400 MHz, CDCl3): d = 8.17 (s, 1H), 8.13 (s, 1H), 7.67 (s, 1H), 7.59 (s, 1H), 5.78 (t, J
= 7.0 Hz, 1H), 4.40 (two overlapping g, J = 7.1 Hz, 4H), 3.24 (t, J=7.1 Hz, 2H), 3.16 (t, J = 7.2
Hz, 2H), 3.09 (t, J = 7.1 Hz, 2H), 2.52 (q, J = 7.0 Hz, 2H), 1.40 and 1.39 (two overlapping t, J
= 7.1 Hz, 6H) ppm.

13C{*H} NMR (101 MHz, CDCls): & = 168.1, 168.0, 141.7, 140.7, 132.7, 132.5, 130.3, 129.5,
129.4, 129.3, 128.9, 128.5, 128.4, 123.9, 61.7 (2C), 39.0, 33.6, 33.3, 29.9, 14.3 (2C) ppm.

HRMS (ESI): m/z calculated for C2H23BrOs+Na*: 453.0672 [M+Na]*, found: 453.0672.

Melting point: 74 — 76 °C.
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Synthesis of (E)-8-bromo-2-methoxy-6,7,10,11-tetrahydro-cycloocta[b]naphthalene and
(E)-9-bromo-2-methoxy-6,7,10,11-tetrahydrocycloocta[b]naphthalene (4d)

MeO According to GP1, vinyl bromide 5 (1.60 g, 6.00 mmol, 6.00 eq.)
OO :_Br in anhydrous hexane (70 mL) was treated with KOt-Bu (2.70 g,
23.6 mmol, 23.6eqg.) and 18-crown-6 (393 mg, 1.49 mmol,
1.49 eq.) in anhydrous hexane (150 mL). The crude alkyne 3 was dissolved in anhydrous 1,4-
dioxane (15 mL), degassed and added to a suspension of phthalazine 1d (160 mg, 1.00 mmol,
1.00 eq.) and BDLA catalyst (5.1 mg, 25 pymol, 2.5 mol%) in anhydrous 1,4-dioxane (10 mL).
The mixture was stirred at 100 °C for 72 h. The crude product was purified via column
chromatography [35 g silica gel, cyclohexane/toluene (8:2), dry loading (CH-Cl,)] to obtain an
orange oil. Pentane (0.5 mL) was added and the mixture was placed in the fridge overnight.
Afterwards, the solvent was removed with a cannula and the remaining solid was washed with
cold pentane (0.5 mL) to obtain the substituted naphthalene 4d (mixture of 8-bromo and 9-
bromo isomer) as a pale yellow solid (215 mg, 676 umol, 68%).

Mixture of regioisomers:

IH NMR (400 MHz, CDCl3): & = 7.69 — 7.60 (m, 2H), 7.54 — 7.48 (m, 2H), 7.47 — 7.41 (m, 2H),
7.11 —7.02 (m, 4H), 5.81 (t, J = 7.0 Hz, 2H), 3.93 — 3.87 (m, 6H), 3.25 — 3.15 (m, 4H), 3.16 —
3.03 (M, 8H), 2.56 — 2.45 (m, 4H) ppm.

13C{IH} NMR (101 MHz, CDCls): & = 157.5, 157.4, 139.1, 138.1, 136.1, 135.1, 133.8, 133.6,
130.6, 130.4, 128.8, 128.6, 128.5, 128.3, 128.1, 128.0, 127.7, 127.1, 124.3, 124.1, 118.3,
118.2, 105.3, 105.1, 55.4 (2C), 39.5, 39.4, 33.7, 33.4 (2C), 33.2, 30.3, 30.3 ppm.

HRMS (ESI): m/z calculated for Ci7H17BrO+Na*: 339.0355 [M+Na]*, found: 339.0355.

Melting point: 80 — 81 °C.
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1.4 General procedure for the synthesis of alkynes 6 (GP2)

A solution of vinyl bromide 4 (1.00 eq.) in a mixture of anhydrous hexane (10 mL) and
anhydrous benzene (10 mL) was added dropwise to a suspension of KOt-Bu (2.5 eq.) and 18-
crown-6 (0.25eq.) in anhydrous hexane (45mL) at 0°C under nitrogen atmosphere.
Afterwards, the mixture was stirred for 2 h at 0 °C and 1 h at rt. The resulting suspension was
filtered and the filter cake was rinsed with EtOAc. The combined filtrates were washed with
water and brine, dried (MgSQ.), filtered and concentrated in vacuo. The crude product was
purified via filtration over silica gel (3 — 4 g) with CH.Cl, to afford the desired alkyne 6. If
additional purification was required, it is noted below.

Synthesis of 8,9-didehydro-6,7,10,11-tetrahydrocycloocta[b]-naphthalene (6a)

According to GP2, treatment of vinyl bromide 4a (180 mg, 0.630 mmol,
| 1.00 eqg.) with KOt-Bu (179 mg, 1.57 mmol, 2.50 eq.) and 18-crown-6

(41 mg, 0.16 mmol, 0.25 eq.) afforded the alkyne 6a as a white solid
(116 mg, 0.56 mmol, 89%).

H NMR (400 MHz, CD.Cly): 8 = 7.82 — 7.73 (m, 2H), 7.66 (s, 2H), 7.49 — 7.37 (m, 2H), 3.45
(td, 3 =12.3, 3.6 Hz, 2H), 3.07 (dt, J = 12.5, 2.9 Hz, 2H), 2.60 — 2.49 (m, 2H), 2.40 — 2.26 (m,
2H) ppm.

13C{*H} NMR (101 MHz, CD:Cl,): & = 140.5 (2C), 132.8 (2C), 129.7 (2C), 127.3 (2C), 125.9
(2C), 99.2 (2C), 38.0 (2C), 24.1 (2C) ppm.

HRMS (APCI): m/z calculated for C16H14+H™: 207.1168 [M+H]*, found: 207.1175.

Melting point: slow degradation starting at 100 °C to give a yellow solid and finally a yellow
oil above 110 °C.
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Synthesis of 1,4-difluoro-8,9-didehydro-6,7,10,11-tetrahydro-cycloocta[b]naphthalene
(6b)

F According to GP2, treatment of vinyl bromide 4b (220 mg, 0.680 mmol,
1.00 eq.) with KOt-Bu (195 mg, 1.70 mmol, 2.50 eq.) and 18-crown-6

OO. (45 mg, 0.17 mmol, 0.25 eq.) afforded the crude alkyne 6b as a pale
F yellow solid (145 mg) that was further purified via column chromatography

[10 g silica gel, cyclohexane/toluene (9:1), crude dissolved in eluent with a few drops of CH2Cl5]
to yield a white solid (103 mg, 0.42 mmol, 62%).

IH NMR (400 MHz, CDCly): & = 7.89 (s, 2H), 7.01 (dd, J = 7.5, 6.5 Hz, 2H), 3.50 (td, J = 12.3,
3.7 Hz, 2H), 3.11 (dt, J = 12.4, 2.9 Hz, 2H), 2.63 — 2.51 (m, 2H), 2.41 — 2.28 (m, 2H) ppm.

13C{!H} NMR (101 MHz, CD,Cl,): & = 154.8 (dd, J = 248.9, 5.2 Hz, 2C), 142.5 (2C), 123.7 (dd,
J=13.2,10.5 Hz, 2C), 122.4 (t, J = 3.0 Hz, 2C), 108.6 (dd, J = 18.2, 13.4 Hz, 2C), 99.1 (2C),
38.2 (2C), 24.0 (2C).

F{*H} NMR (377 MHz, CD.Cl,): -129.26 ppm.
HRMS (APCI): m/z calculated for CisHi2F2+H": 243.0980 [M+H]", found: 243.0982.

Melting point: slow degradation starting at 100 °C to give a yellow solid and finally a yellow
oil above 130 °C.
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Synthesis of 2-methoxy-8,9-didehydro-6,7,10,11-tetrahydro-cycloocta[b]naphthalene
(6d)

MeO According to GP2, treatment of vinyl bromide 4d (197 mg,
| 0.620 mmol, 1.00 eq.) with KOt-Bu (177 mg, 1.55 mmol, 2.50 eq.)
and 18-crown-6 (41 mg, 0.16 mmol, 0.25 eq.) afforded the alkyne

6d as a white solid (131 mg, 0.55 mmol, 89%).

'H NMR (400 MHz, CDCl,): & = 7.70 — 7.63 (m, 1H), 7.57 (s, 1H), 7.56 (s, 1H), 7.12 — 7.03
(m, 2H), 3.90 (s, 3H), 3.49 — 3.36 (m, 2H), 3.08 — 2.98 (m, 2H), 2.59 — 2.46 (m, 2H), 2.39 —
2.23 (m, 2H) ppm.

13C{*H} NMR (101 MHz, CD.Cl,): d = 158.0, 141.0, 138.0, 133.9, 129.5, 128.9, 128.7, 128.3,
118.7, 105.3, 99.4, 99.2, 55.6, 38.0, 37.8, 24.1, 24.1 ppm.

HRMS (ESI): m/z calculated for Ci17H160+Na*: 259.1093 [M+Na]*, found: 259.1095.

Melting point: slow degradation starting at 140 °C to give a yellow solid and finally a yellow
oil above 160 °C.
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1.5 General procedure for the synthesis of arene-fused
CODs (2) (GP3)

In a nitrogen filled glove box, (substituted) phthalazine 1 (1.0 eq.), alkyne 6 (1.0 eq.) and BDLA
catalyst (5 mol%) were suspended in anhydrous 1,4-dioxane (2.0 mL) in a 4 mL-screw cap vial
with a stir bar. The vial was sealed and taken out of the glove box. The mixture was stirred at
the given temperature for the given time. Afterwards, the reaction mixture was concentrated

in vacuo. Purification conditions are noted below.

Synthesis of 1,4-difluoro-6,7,14,15-tetrahydrocycloocta[1,2-b:5,6-b']dinaphthalene (2ab)
F According to GP3, phthalazine 1b (20 mg, 0.12 mmol, 1.0 eq.),

alkyne 6a (26.0 mg, 0.126 mmol, 1.05 eq.) and BDLA catalyst

OO OO (2.2 mg, 6.0 umol, 5.0 mol%) in 1,4-dioxane (2.0 mL) were
F stirred at 80 °C for 24 h. The mixture was concentrated in vacuo

and the remaining solid was recrystallized from toluene. Dinaphthalene 2ab was obtained as
a white solid (26 mg, 76 umol, 63%).

'H NMR (400 MHz, CD.CI./CS;): 7.67 (s, 2H), 7.65 — 7.58 (m, 2H), 7.45 (s, 2H), 7.33 - 7.26
(m, 2H), 6.86 (t, J = 6.9 Hz, 2H), 3.41 (s, 8H) ppm.

13C{*H} NMR (101 MHz, CD,Cl,/CS,): & = 154.7 (dd, J = 249.1, 5.1 Hz, 2C), 141.3 (2C),
138.7 (2C), 132.9 (2C), 128.5 (2C), 127.4 (2C), 125.7 (2C), 123.7 (dd, J = 13.1, 10.4 Hz, 2C),
121.1 (t, J = 3.0 Hz, 2C), 108.3 (dd, J = 18.2, 13.2 Hz, 2C), 35.9 (2C), 35.5 (2C).

F{*H} NMR (377 MHz, CD,Cl,/CS,): & = -127.61 ppm.
HRMS (ESI): m/z calculated for Co4HigFo+Na™: 367.1269 [M+Na]*, found: 367.1261.

Melting point: 233 — 234 °C.
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Synthesis of 1,4,9,12-tetrafluoro-6,7,14,15-tetrahydrocyclo-octa[1,2-b:5,6-
b'ldinaphthalene (2bb)

F F According to GP3, phthalazine 1b (17 mg, 0.10 mmol, 1.1 eq.),
alkyne 6b (23 mg, 0.093 mmol, 1.0 eq.) and BDLA catalyst

O0.0 (2.0 mg, 4.7 pmol, 5.0 mol%) in 1,4-dioxane (2.0 mL) were
F F stirred at 80 °C for 2 d. The mixture was concentrated in vacuo
and filter over a silica plug with toluene. Dinaphthalene 2bb was obtained as a white solid

(26 mg, 0.068 mmol, 73%). Single crystals suitable for X-ray diffraction measurement (see 5.2)

were obtained by recrystallization from toluene and slow cooling to rt over 24 h.

'H NMR (200 MHz, CDCI3/CSy): & = 7.66 (s, 4H), 6.84 (dd, J = 7.3, 6.4 Hz, 4H), 3.40 (s,
8H) ppm.

13C{*H} NMR (101 MHz, CDCI3/CS,): d = 154.2 (dd, J = 249.7, 5.2 Hz, 4C), 140.1 (br, 4C),
123.3 (dd, J = 13.2, 10.4 Hz, 4C), 120.9 (t, J = 2.9 Hz, 4C), 108.0 (dd, J = 18.1, 13.2 Hz, 4C),
35.2 (4C) ppm.

F{'H} NMR (377 MHz, CDCI3/CSy): -127.2 ppm.
HRMS (APCI): m/z calculated for C2sHisF4+H™: 381.1261 [M+H]", found: 381.1264.

Melting point: 273 — 275 °C (color change to dark brown).
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Synthesis of diethyl 10-methoxy-6,7,14,15-tetrahydro-cycloocta[1,2-b:5,6-
b'ldinaphthalene-2,3-dicarboxylate (2bc)

F ') According to GP3, phthalazine 1c¢ (31.8 mg, 116 ymol,
oet 1.00eq.), alkyne 6b (28.1 mg, 116 pmol, 1.00 eq.) and

O0.00 OEt BDLA catalyst (1.2mg, 5.8 umol, 5.0 mol%) in
F o) 1,4-dioxane (2.0 mL) were stirred at 80 °C for 24 h. The
mixture was concentrated in vacuo and purified via flash chromatography [12 g silica gel,

cyclohexane/EtOAc (96:4 to 65:35, dry loading (CH2Cl)]. Dinaphthalene 2bc was obtained as
a pale yellow solid (44 mg, 90 umol, 78%).

IH NMR (400 MHz, CD,Cl,): & = 8.00 (s, 2H), 7.65 (s, 2H), 7.54 (s, 2H), 6.86 (t, J = 7.0 Hz,
2H), 4.31 (q, J = 7.1 Hz, 4H), 3.40 (s, 8H), 1.33 (t, J = 7.1 Hz, 6H) ppm.

13C{*H} NMR (101 MHz, CD.Cl,): & = 168.0 (2C), 154.7 (dd, J = 248.2, 5.1 Hz, 2C), 132.6
(2C), 129.4 (2C), 129.0 (2C), 128.7 (2C), 123.6 (dd, J = 13.4, 10.5 Hz, 2C), 120.9 (t, J = 3.1 Hz,
2C), 108.3 (dd, J = 18.3, 13.3 Hz, 2C), 61.8 (2C), 35.1 (br, 4C), 14.3 (2C) ppm.

Due to peak broadening caused by conformational changes, four 3C signals can't be detected

(compare section 2.1).
F{*H} NMR (377 MHz, CD,Cly): = -129.16 ppm.
HRMS (ESI): m/z calculated for CzoH26F204+Na*: 511.1690 [M+Na]*, found: 511.1690.

Melting point: 186 — 187 °C.
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Synthesis of 1,4,10-trifluoro-6,7,14,15-tetrahydrocycloocta[l,2-b:5,6-b']dinaphthalene
(2be)

F According to GP3, phthalazine 1le (16 mg, 0.11 mmol,
F 1.0eq.), alkyne 6b (27 mg, 0.11 mol, 1.0 eq.) and BDLA

O0.00 catalyst (1.1 mg, 5.5pmol, 5.0 mol%) in 1,4-dioxane
F (2.0 mL) were stirred at 80 °C for 24 h. The mixture was
concentrated in vacuo. The remaining yellow solid was dissolved in hot toluene, filtered over
silica (4 g) and concentrated in vacuo. The remaining pale yellow solid was further purified via

automated flash chromatography [12 g silica gel, cyclohexane/toluene (100:0 to 80:20, dry

loading (toluene)]. Dinaphthalene 2be was obtained as a white solid (25 mg, 69 umol, 63%).

H NMR (400 MHz, CDCI3/CSy): & = 7.64 (s, br, 2H), 7.58 (dd, J = 8.7, 5.8 Hz, 1H), 7.42 (s,
1H), 7.37 (s, 1H), 7.19 (d, J = 9.4 Hz, 1H), 7.05 (td, J = 8.7, 2.6 Hz, 1H), 6.83 (t, J = 6.9 Hz,
2H), 3.36 (s, 8H) ppm.

13C{*H} NMR (101 MHz, CDCI4/CS,): & = 160.2 (d, J = 245.6 Hz), 154.22 (d, J = 250.1 Hz),
154.16 (d, J = 250.1 Hz), 133.1 (d, J = 8.9 Hz), 129.3, 129.3 (d, J = 8.9 Hz), 128.0, 127.4 (d, J
= 5.3 Hz), 123.6 — 123.1 (m, 2C), 120.9 — 120.7 (m, 2C), 115.5 (d, J = 25.3 Hz), 110.0 (d, J =
20.3 Hz), 108.3 — 107.6 (m, 2C), 36.3 — 34.3 (m, 4C) ppm.

Due to peak broadening caused by conformational changes, four 3C signals can't be detected

(compare section 2.1).

9E{IH} NMR (377 MHz, CDCI3/CSy): & = -114.27, -127.20 (d, J = 21.6 Hz), -127.29 (d, J =
21.5 Hz) ppm.

HRMS (ESI): m/z calculated for Co4H17Fs+Na™: 385.1174 [M+Na]*, found: 385.1175.

Melting point: 225 — 226 °C.
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Synthesis of 10-chloro-1,4-difluoro-6,7,14,15-tetrahydrocyclo-octa[1,2-b:5,6-
b'ldinaphthalene (2bf)

F According to GP3, phthalazine 1f (21 mg, 0.13 mmol,
Cl 1.1 eq.), alkyne 6b (28 mg, 0.12 mmol, 1.0 eq.) and BDLA

O0.00 catalyst (1.2 mg, 5.8 umol, 5.0 mol%) in 1,4-dioxane
F (2.0 mL) were stirred at 80 °C for 2 d. The mixture was
concentrated in vacuo and remaining yellow solid was purified via flash chromatography [1 g

silica gel, cyclohexane/toluene (9:1)]. Dinaphthalene 2bf was obtained as a white, crystalline
solid (33 mg, 0.086 mmol, 75%).

IH NMR (400 MHz, CDCI3/CSy): 7.64 (s, 2H), 7.58 — 7.48 (m, 2H), 7.41 (s, 1H), 7.35 (s, 1H),
7.22 (dd, J = 8.8, 2.1 Hz, 1H), 6.84 (t, J = 6.9 Hz, 2H), 3.36 (s, 8H) ppm.

13C{!H} NMR (101 MHz, CDCls/CSy): & = 155.9 — 155.2 and 153.6 — 152.7 (m, 2C), 133.0,
131.1, 130.6, 128.5, 128.0, 127.2, 126.1, 125.7, 123.5— 123.1 (m, 2C), 121.1 — 120.6 (m, 2C),
107.9 (dd, J = 21.2, 10.0 Hz, 2C), 35.4 and 35.1 (4C) ppm.

Due to peak broadening caused by conformational changes, four 3C signals can't be detected

(compare section 2.1).
19F{*H} NMR (377 MHz, CDCIs/CS,): -127.18 (d, J = 21.7 Hz), -127.28 (d, J = 21.7 Hz) ppm.
HRMS (APCI): m/z calculated for C24H17CIF2+H*: 379.1060 [M+H]*, found: 379.1062.

Melting point: 216 — 217 °C.
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Synthesis of 1,4-difluoro-10-(trifluoromethyl)-6,7,14,15-tetrahydrocycloocta[l,2-b:5,6-
b'ldinaphthalene (2bg)

According to GP3, phthalazine 1g (22 mg, 0.11 mmol,

F
CFs3 1.0 eq.), alkyne 6b (27 mg, 0.11 mol, 1.0 eg.) and BDLA
OO OO catalyst (1.1 mg, 5.5 pumol, 5.0 mol%) in 1,4-dioxane
F (2.0 mL) were stirred at 80 °C for 24 h. The mixture was

concentrated in vacuo and the remaining solid was recrystallized from toluene. Dinaphthalene

2bg was obtained as a white solid (26 mg, 63 umol, 57%).

'H NMR (400 MHz, CDCI3/CS,): & = 7.90 (s, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.65 (s, 2H), 7.53
and 7.50 (two overlapping s, 2H), 7.45 (d, J = 8.5 Hz, 1H), 6.84 (t, J = 6.9 Hz, 2H), 3.40 (s,
8H) ppm.

13C{*H} NMR (101 MHz, CDCIs/CS;): & = 155.8 — 155.0 and 153.3 — 152.6 (m, 2C), 133.5,
131.1, 128.9, 128.03, 127.98, 127.1 (q, J = 32.1 Hz), 124.7 (9, J = 4.5 Hz), 124.3 (g, J =
272.4 Hz), 123.6 — 123.1 (m, 2C), 121.0 — 120.6 (m, 3C), 108.3 — 107.7 (m, 2C), 35.5 — 34.7
(m, 4C) ppm.

Due to peak broadening caused by conformational changes, four 3C signals can't be detected

(compare section 2.1).

9FE{1H} NMR (377 MHz, CDCI3/CS;,): & = -62.0, -127.2 (d, J = 21.6 Hz), -127.4c (d, J =
21.6 Hz) ppm.

HRMS (APCI): m/z calculated for CasHi7Fs+Na*: 435.1142 [M+Na]*, found: 435.1134.

Melting point: 223 — 224 °C.
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Synthesis of 1,4-difluoro-9-nitro-6,7,14,15-tetrahydrocyclo-octa[1,2-b:5,6-
b'ldinaphthalene (2bh)

F No, According to GP3, phthalazine 1h (7.0 mg, 0.040 mmol,
1.0 eq.), alkyne 6b (10 mg, 0.040 mmol, 1.0 eq.) and BDLA

O0.00 catalyst (0.5 mg, 2.5 pmol, 6.0 mol%) in 1,4-dioxane (2.0 mL)
F were stirred at 80 °C for 24 h. The mixture was concentrated
in vacuo and the remaining solid was purified via automated flash chromatography [4 g silica

gel, cyclohexane/toluene (100:0 to 50:50, dry loading (CH2Cl;)]. Dinaphthalene 2bh was
obtained as a pale yellow solid (12 mg, 31 ymol, 77%).

H NMR (200 MHz, CDCI3/CS,): 6 = 8.26 (s, 1H), 8.08 (d, J = 7.8 Hz, 1H), 7.90 (d, J = 7.8 Hz,
1H), 7.66 (s, 2H), 7.54 (s, 1H), 7.37 (t, J = 7.8 Hz, 1H), 6.88 — 6.80 (m, 3H), 3.57 — 3.31 (m,
8H) ppm.

13C{!H} NMR (101 MHz, CDCls/CSy): & = 155.7 — 155.4 and 153.0 — 152.7 (m, 2C), 145.7,
133.7,133.5, 128.8, 124.2, 123.6 — 123.2 (m, 5C), 121.2 — 121.0 (m), 120.8 — 120.6 (m), 108.3
—107.8 (m, 2C), 35.7 — 34.7 (m, 4C) ppm.

Due to peak broadening caused by conformational changes, four 3C signals can't be detected

(compare section 2.1).
9F{*H} NMR (377 MHz, CDCI3/CS,): 8§ =-126.73 (d, J=21.7 Hz), -127.38 (d, J = 21.7 Hz) ppm.
HRMS (APCI): m/z calculated for C24H17F2NO2+H*: 390.1303 [M+H]*, found: 390.1300.

Melting point: 254 — 256 °C (color change to dark brown).
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Synthesis of 9,12-difluoro-6,7,14,15-tetrahydronaphtho-[2',3":5,6]cycloocta[1,2-
g]quinoline (2bi)

F According to GP3, phthalazine 1li (16.7 mg, 128 umol,
X 1.10eq.), alkyne 6b (28.0 mg, 116 umol, 1.00 eq.) and BDLA

Oe. NG catalyst (1.2 mg, 5.8 pmol, 6.0 mol%) in 1,4-dioxane (2.0 mL)
F were stirred at 80 °C for 24 h. The mixture was concentrated

in vacuo and purified via column chromatography [5g silica gel, toluene/EtOAc (9:1)].
Quinoline 2bi was obtained as a white solid (33 mg, 96 umol, 82%).

IH NMR (200 MHz, CD.Cl,): & = 8.68 (dd, J = 4.0, 2.0 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.73
—7.63 (M, 3H), 7.43 (s, 1H), 7.21 (dd, J = 8.0, 4.0 Hz, 1H), 6.86 (dd, J = 8.0, 6.0 Hz, 2H), 3.55
—3.29 (m, 8H).

13C{*H} NMR (101 MHz, CD,Cl,): & = 156.1 — 155.7 and 153.8 — 153.3 (m, 2C), 150.1, 147.9,
143.0, 141.2 (2C), 139.9, 135.2, 129.7, 128.0, 127.3, 123.9 — 123.3 (m, 2C), 121.3 — 120.6 (m,
3C), 108.2 (dd, J = 22.8, 8.8 Hz, 2C), 35.3 (2C), 35.1, 34.9 ppm.

19F{1H} NMR (377 MHz, CD,Cl,): & = -128.97 (d, J = 22.6 Hz), -129.30 (d, J = 22.6 Hz) ppm.
HRMS (ESI): m/z calculated for CosHi7FoN+Na*: 368.1221 [M+Na]*, found: 368.1223.

Melting point: 216 — 217 °C (color change to dark brown).
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Synthesis of diethyl 10-methoxy-6,7,14,15-tetrahydro-cycloocta[1,2-b:5,6-
b'ldinaphthalene-2,3-dicarboxylate (2dc)

0 According to GP3, phthalazine 1c (27.4 mg,
MeO oet 100umol, 1.00eq), alkyne 6d (23.6 mg,
O0.00 OEt 100 pmol, 1.00 eqg.) and BDLA catalyst (1.0 mg,

o) 5.0 pmol, 6.0 mol%) in 1,4-dioxane (2.0 mL) were

stirred at 80 °C for 24 h. The mixture was concentrated in vacuo and purified via flash

chromatography [12 g silica gel, cyclohexane/EtOAc (97:3 to 54:46, dry loading (CH2CI)].
Dinaphthalene 2dc was obtained as a white solid (41 mg, 86 ymol, 86%).

'H NMR (400 MHz, CD2Cly): & = 8.01 (s, 2H), 7.79 — 7.45 (m, 3H), 7.35 (d, J = 4.6 Hz, 2H),
6.98 —6.91 (m, 2H), 4.32 (q, J = 7.1 Hz, 4H), 3.81 (s, 3H), 3.34 (s, br, 8H), 1.34 (t, J = 7.1 Hz,
6H) ppm.

13C{*H} NMR (101 MHz, CD.Cly): d = 167.8, 167.8, 157.4, 142.7 (br), 133.5, 132.3, 129.1,
129.1, 128.6, 128.5, 128.4, 128.3, 128.3, 127.9, 127.7, 126.9, 117.9, 105.1, 61.5 (2C), 55.3,
35.2 (br), 35.2 (br), 34.9 (br), 34.6 (br), 14.1(2C) ppm.

Due to peak broadening caused by conformational changes, four 3C signals can't be detected

(compare section 2.1).
HRMS (ESI): m/z calculated for C31H300s+Na*: 505.1985 [M+Na]*, found: 505.1983.

Melting point: 143 — 146 °C.
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2 Variable temperature (VT) NMR studies

2.1 VT 3C NMR spectra of quinoline 2bi

For all synthesized dinaphthalenes 2, several 3C signals could not be observed or were
detected as very broad peaks with low intensity. To show that this is due to conformational
changes, *C NMR spectra of quinoline 2bi were measured at different temperatures
(Figure S2). With increasing the temperature up to 60 °C, three sharp signals emerged, which
were assigned to the sp-hybridized carbon atoms of the cyclooctadiene core (Figure S3 and
Figure S4).

20 °C (CD,Cl,)

40 °C (Cl,CDCDCL,)

WWMMMWMMWM

50 °C (Cl,CDCDCL,)

60 °C (Cl,CDCDCL,)

(IR .

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
66 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 108 106 104 102
chemical shift [ppm]

Figure S2. Excerpts of the ¥C{*H} NMR spectra (151 MHz) of quinoline 2bi at different
temperatures.
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Figure S3. Assignment of the aromatic *H (400 MHz) (top) and **C{*H} (101 MHz) (bottom)
NMR signals (CD-Cl,) of quinoline 2bi.
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2.2 VT 'H NMR studies of the twist-boat/chair conversion

2.2.1 VT *H NMR spectra
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Figure S5. VT 'H NMR spectra (600 MHz, CD.Cl,) of dinaphthalenes 2bc (top) and 2dc
(bottom).
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Dinaphthalene 2bc:

For the VT NMR analysis of dinaphthalene 2bc, 'H NMR signals at 223 K were assigned to
the twist-boat (tb) and the chair (c) conformation by analyzing the 2D EXSY/NOESY spectrum
(Figure S6).
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Figure S6. 'H NMR spectrum with peak assignment (top) and *H-'H EXSY/NOESY NMR
spectrum (bottom) of dinaphthalene 2bc at 223 K (600 MHz, CD-,Cl,).
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Dinaphthalene 2dc:
For the VT NMR analysis of dinaphthalene 2dc, *H NMR signals at 228 K were assigned to
the twist-boat (tb) and the chair (c) conformation by analyzing the 2D EXSY/NOESY spectrum

(Figure S7).
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Figure S7. *H NMR spectrum with peak assignment (top) and 'H-'H EXSY/NOESY NMR

spectrum (bottom) of dinaphthalene 2dc at 228 K (600 MHz, CD-Cl,).
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2.2.2 Thermodynamic study

The thermodynamic parameters of the twist-boat/chair equilibrium were studied by analyzing
the ratio of twist-boat to chair conformation at different temperatures via integration of well
separated signals in the *H NMR spectra. NMR spectra were measured on a Bruker Avance |
HD 600 MHz spectrometer using CD.Cl, as solvent and a sample concentration of 4 mg/mL.
Changing the sample concentration to 8 mg/mL had virtually no effect on the equilibrium. Peak
areas were obtained using the line fitting tool in MestReNova (version 14.2.1-27684). As
significant peak broadening was observed around the coalescence temperature, the analysis
was restricted to spectra acquired at and below 233 K. The ratios of twist-boat to chair
conformer were used to calculate the equilibrium constants Keq at different temperatures. A
plot of InKeq vs. 1/T yielded a linear correlation that was fitted using OriginPro® 2020 (64-bit).
AH° and AS° were determined from the slope and the y-intercept, respectively, of the linear fit
using the following equation:
AH® 1 AS°

Keg =~F 7t

The Gibbs free energy difference AG° at 298 K of the two conformers was calculated from the

following equation:

AG® = AH® — T - AS°
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Dinaphthalene 2bc:
The signals 2-c (6. = 7.79 ppm) and 2-tb (6w = 7.47 ppm) were integrated at different
temperatures to determine the populations of chair and twist-boat conformers, respectively,

from which the equilibrium constants Keq were calculated. The results are shown Table S1.

Table S1. Equilibrium constants Keq 0Of the tb/c equilibrium of dinaphthalene 2bc at different

temperatures determined from tb and ¢ populations.

T [K] Population of ¢ Population of th Keq
193 0.1382 0.8618 0.160
203 0.1472 0.8528 0.173
213 0.1580 0.8420 0.188
223 0.1758 0.8242 0.213
228 0.1760 0.8240 0.214
233 0.1808 0.8192 0.221

The linear fit of InKeq vs. 1/T is shown in Figure S8 and was used to calculate the differences
in enthalpy (AH®) and entropy (AS°) of tb and ¢ conformer (Table S2).

-1.54

Gleichung y=a+bx
[} Zeichnen In(Keq)
Gewichtung Keine Gewichtung
Schnittpunkt mit der Y-Achse 0.12185 + 0.12195
Steigung -378.72869 + 26.10607
Summe der Fehlerquadrate 0.0016
Pearson R -0.99063
R-Quadrat (COD) 0.98135

Kor. R-Quadrat 0.97669

-1.6

In(Keq)

-1.8

0.0644 0.0I046 O.OIO48 0.0I050 0.0I052
uT
Figure S8. Linear fit of InKeq vs. 1/T of dinaphthalene 2dc.

Table S2. Enthalpy (AH?), entropy (AS®) and Gibbs free energy (AGP) difference of th and c

conformation of dinaphthalene 2bc calculated from the linear fit of InKeq vs. 1/T.

y-intercept  slope [K] AH°[kJ/mol] AS°[J/K-mol] AG° [kJ/mol] at 298 K
0.12+0.12 -378.7+26.1 3.1 1.0 2.8
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Dinaphthalene 2dc:
The signals 10-c (6. = 3.88 ppm) and 10-tb (dw = 3.74 ppm) were integrated at different
temperatures to determine the populations of chair and twist-boat conformers, respectively,

from which the equilibrium constants Keq were calculated. The results are shown in Table S3.

Table S3. Equilibrium constants Keq Of the tb/c equilibrium of dinaphthalene 2dc at different

temperatures determined from tb and ¢ populations.

T [K] Population of ¢ Population of th Keq
193 0.1738 0.8262 0.210
203 0.1846 0.8154 0.226
213 0.1904 0.8096 0.235
223 0.2003 0.7997 0.251
233 0.2068 0.7932 0.261

The linear fit of InKeq vs. 1/T is shown in Figure S9 and was used to calculate the differences
in enthalpy (AH®) and entropy (AS?) of tb and ¢ conformer (Table S4).

Gleichung y=a+b*x
Zeichnen In(Keq)
Gewichtung Keine Gewichtung
Schnittpunkt mit der Y-Achse -0.31579 +0.05333
Steigung -239.29448 + 11.2836
Summe der Fehlerquadrate 1.88967E-4
Pearson R -0.99668
R-Quadrat (COD) 0.99337

Kor. R-Quadrat 0.99117

-1.4

In(Keq)

-1.54

T T T T T T T T T
0.0044 0.0046 0.0048 0.0050 0.0052
1T

Figure S9. Linear fit of InKeq vs. 1/T of dinaphthalene 2dc.

Table S4. Enthalpy (AH?), entropy (AS®) and Gibbs free energy (AGP) difference of th and c

conformation of dinaphthalene 2dc calculated from the linear fit of InKeq vs. 1/T.

y-intercept  slope [K] AH°[kJ/mol] AS°[J/K-mol] AG° [kJ/mol] at 298 K
-0.32+0.07 -239.3x11.3 2.0 -2.6 2.8
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2.2.3 Kinetic study

The kinetics of the twist-boat/chair conversion were studied below the coalescence
temperature using the dynamic NMR (DNMR) lineshape analysis tool integrated in Brukers
TopSpin (version 4.1.4). NMR spectra were measured on a Bruker Avance Ill HD 600 MHz
spectrometer using CD:Cl, as solvent and a sample concentration of 4 mg/mL. The

temperatures of the measurements are given below in Table S5 and Table S7.

The chemical shifts of exchanging nuclei were identified and a region of the spectrum that
showed well separated signals was used for the DNMR analysis. The selected region was
simulated using an unequally populated two-site model. The rate constant k at each
temperature was obtained by iterative refinement of the simulated spectrum until the best
overlap (>90%) with the experimental data was obtained. A plot of In(k/T) vs. 1/T yielded a
linear correlation that was fitted using OriginPro® 2020 (64-bit). The activation parameters AH*
and AS* were determined from the slope and the y-intercept, respectively, of the linear fit using
the Eyring—Polanyi equation:
AH¥ 1 kg AS*

k
=g gty x

The Gibbs free energy of activation AG* at 298 K was calculated from the following equation:

AG* = AH¥ — T - AS*
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Dinaphthalene 2bc:
The signals 2-c (6. = 7.79 ppm) and 2-tb (8w = 7.47 ppm) were used for the determination of k
via DNMR lineshape analysis. The results are shown in Table S5.

Table S5. Rate constants k for the twist-boat/chair conversion of dinaphthalene 2bc

determined via DNMR lineshape analysis at different temperatures.

T [K] k [s™]
223 8.2

228 11.8
233 21.6
238 35.2
243 50.0
248 74.2

The linear fit of In(k/T) vs. 1/T is shown in Figure S10 and was used to calculate the activation

parameters (Table S6).

Gleichung y=a+b*
Zeichnen In(k/T)
Gewichtung Keine Gewichtung
Schnittpunkt mit der Y-Achse =~ 18.06937 + 0.75282
Steigung -4772.7899 + 176.93838
Summe der Fehlerquadrate 0.01791
Pearson R -0.99726
R-Quadrat (COD) 0.99453

Kor. R-Quadrat 0.99317

0.0040 0.0042 0.0044
/T [LK]

Figure S10. Linear fit of In(k/T) vs. 1/T of dinaphthalene 2bc.

Table S6. Activation parameters of the twist-boat/chair conversion of dinaphthalene 2bc

calculated from the linear fit of In(k/T) vs. 1/T.

y-intercept  slope [K] AH*¥[kJ/mol] AS*[J/K-mol] AG* [kJ/mol] at 298 K
18.07+0.75  -4772+177 39.7 -47.3 53.8
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Dinaphthalene 2dc:
The signals 10-c (&c = 3.88 ppm) and 10-tb (& = 3.74 ppm) belonging to the protons of the
methoxy group were used for the determination of k via DNMR lineshape analysis. The results

are shown in Table S7.

Table S7. Rate constants k for the twist-boat/chair conversion of dinaphthalene 2dc

determined via DNMR lineshape analysis at different temperatures.

TIK] k [s7]
228 15.2
233 19.7
238 34.4
243 46.3
248 67.4
253 88.7
258 126.9

The linear fit of In(k/T) vs. 1/T is shown in Figure S11 and was used to calculate the activation

parameters (Table S8).

Gleichung y=a+b*x
Zeichnen In(k/T)
Gewichtung Keine Gewichtung
Schnittpunkt mit der Y-Achse 14.73414 + 0.56941
Steigung -3984.33549 + 138.01385
Summe der Fehlerquadrate 0.01926
Pearson R -0.99701
R-Quadrat (COD) 0.99404

Kor. R-Quadrat 0.99284

0.0040 0.0042 0.0044
/T [1K]

Figure S11. Linear fit of In(k/T) vs. 1/T of dinaphthalene 2dc.

Table S8. Activation parameters of the twist-boat/chair conversion of dinaphthalene 2dc

calculated from the linear fit of In(k/T) vs. 1/T.

y-intercept  slope [K] AH*[kJ/mol] AS*[J/K-mol] AG* [kd/mol] at 298 K
14.73£0.57 -3984x138 33.1 -75.0 55.5
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2.2.4 Determination of the twist-boat to chair ratio above the

coalescence tem perature

At temperatures above the coalescence temperature T, the ratio of twist-boat to chair
conformers was determined from the chemical shift of the coalesced signal of H-3 (&.bs) relative
to the chemical shifts of the corresponding signals assigned to the twist-boat (dw) and chair
(d¢) conformation below T..® The following equations were used to calculate the population of

twist-boat and chair, respectively:

SC - 60bs
Population of th = ————
U
Sops — O
Population of ¢ = -2 2
5c - 5tb

The observed chemical shifts at 298 K and the corresponding chair and twist-boat populations
of dinaphthalenes 2bc and 2dc are shown in Table S9.

Table S9. Populations of chair and twist-boat conformer at 298 K calculated from the observed

chemical shifts of H-3.

Compound Oobs o O Population of ¢ Population of tb
[ppm]  [ppm]  [ppm]
2bc 7.998 8.180 7.940 0.242 0.758
2dc 8.003  8.177 7.940 0.266 0.734
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3 Theoretical calculations

3.1 Computational methods

Initial Geometry optimizations were carried out using extended tight binding (XTB),~** followed
by conformer screenings with the conformer rotamer ensemble sampling tool (CREST).12-15
The resulting conformers of the twist-boat, chair and boat family were optimized by the means
of Density Functional Theory (DFT) calculations. All calculations were carried out using the
ORCA software package.’® Geometry optimizations and frequency calculations were carried
out on a PBEO/def2-TZVP/D4/CPCM(CH2CI2) level of theory.”-2t On all atoms, the def2/J
auxiliary basis set was used for the RIJCOSX approximation.?-32

For a more accurate implicit solvation, single point energy calculations were carried out on a
PBEO/def2-TZVPP/D4/SMD(CH2CI2) level of theory to obtain both electrostatic and cavity-
dispersion interactions.*® Finally, single point energies were refined using the domain based
local pair natural orbital (DLPNO)-CCSD(T) method.**-38 Thermodynamic corrections as well

as solvent interactions were taken from aforementioned DFT calculations.

Visualization of non-covalent interactions (NCIs) were carried out using the NCIPLOT software
package and the visual molecular dynamics (VMD) program. Visualization was carried out

using the VMD template supplied in the NCIPLOT software package.34°

3.2 Calculated energies

Table S10. Calculated energies of dinaphthalene 2bc.

G2IT/Hartree  G2ET/kcal/mol G Hartree  Gyop"/kcal/mol
twist-boat -1657.900 0.000 -1656.878 0.000
chair -1657.899 1.100 -1656.874 2.554
twist -1657.893 4.445 -1656.868 5.927

Table S11. Calculated energies of dinaphthalene 2dc.

GOfTIHartree  GPLT/kcal/mol  Gggy/Hartree  Gygj"/kcal/mol
twist-boat -1573.920 0.000 -1572.970 0.000
chair -1573.918 1.090 -1572.967 2.302
twist -1573.912 4.769 -1572.961 5.998
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3.3 Geometry data

Dinaphthalene 2bc:

62

C30H2604F2 — 2bc_twistboat; G_rel = 0 kcal/mol

r T T O O O T T O T T O O O O O O O o O O O O

3.423182000

3.143357000

3.188284000

3.503836000

3.784605000

3.731879000

3.553561000

3.861891000

4.127727000

4.093730000

3.927337000

3.042234000

3.636200000

4.965081000

1.806961000

2.762760000

3.612287000

1.842398000

3.071597000

4.378606000

2.858357000

3.243940000

4.998493000

-4.158095000
-3.796892000
-2.483752000
-1.454280000
-1.818232000
-3.184989000
-0.094253000
0.883785000
0.516274000
-0.804146000
2.316061000
3.324004000
2.335455000
2.665122000
2.688640000
4.122466000
3.791045000
2.061438000
2.103541000
1.572963000
1.515147000
3.131231000

1.162362000

-0.517876000

-1.850109000

-2.204944000

-1.296441000

0.045080000

0.382047000

-1.657411000

-0.745834000

0.603396000

0.970768000

-1.203480000

-0.431559000

-2.255336000

-1.162297000

0.125567000

-1.121593000

0.372335000

1.403447000

2.270422000

1.633860000

3.164855000

2.609060000

2.433185000
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H

I =T

Tn

r T r 60 T T O O T o T O O o o o T T O O o o T T

4.945236000

4.000042000

3.394766000

2.895219000

2.921892000

4.301615000

3.342148000

0.655101000

-0.503752000

-0.467705000

0.720129000

0.737417000

0.630991000

-1.690083000

-2.797213000

-2.772259000

-1.625165000

-4.023561000

-1.612333000

-3.958357000

-1.712204000

-3.801754000

-4.940325000

-5.625499000

-4.527335000

-5.613884000

-6.436356000

-4.911068000

-6.020570000

2.393013000

-3.524443000

-5.195132000

-4.550174000

-2.135440000

-1.078501000

0.179186000

2.655082000

2.000784000

1.363370000

1.417704000

0.931772000

3.137817000

1.942122000

1.284828000

0.673116000

0.709439000

0.144516000

0.258079000

1.172151000

2.401847000

-0.886836000

-1.441305000

-0.632972000

-1.865446000

-2.496368000

-2.939958000

-3.289549000

-2.067664000

1.190990000

1.655112000

-0.207856000

-2.587234000

-3.475854000

1.998697000

-2.684536000

-0.618445000

-0.159839000

1.104994000

1.860472000

2.831104000

-1.590851000

-0.920780000

-0.457160000

0.823477000

1.573169000

1.419100000

2.558312000

-1.382468000

-1.902798000

2.227475000

2.911841000

3.168537000

3.826875000

2.071301000

2.636974000

1.808826000

1.154025000
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0
0
0
C
C
H
H
H
H
H

62

-5.110954000

-4.408840000

-4.369952000

-5.474724000

-6.801066000

-5.348922000

-5.365087000

-6.897804000

-7.605419000

-6.921191000

0.633482000
2.099196000
-0.086320000
-0.340543000
-0.116467000
-1.383152000
0.291451000
-0.748392000
-0.370212000

0.925510000

1.219405000

-2.012000000

-1.496724000

-2.384614000

-1.703709000

-2.675522000

-3.266607000

-0.819457000

-2.398220000

-1.404705000

C30H2604F2 — 2bc_chair, G_rel = 1.100 kcal/mol

I O T T O O O O O O O o O O O O

8.493302000

8.541238000

7.388757000

6.135328000

6.087164000

7.295522000

4.937903000

3.734831000

3.686562000

4.843788000

2.495394000

1.989959000

1.694257000

2.706799000

0.697294000

1.848571000

-2.208015000
-1.613188000
-1.158959000
-1.253334000
-1.852039000
-2.314101000
-0.788403000
-0.892647000
-1.493338000
-1.959438000
-0.358985000

0.980389000
-1.101574000
-0.206492000

0.863112000

1.692371000

-0.047278000

-1.322794000

-1.886770000

-1.250989000

0.033136000

0.590370000

-1.827939000

-1.176453000

0.114255000

0.685351000

-1.829017000

-1.230057000

-1.778158000

-2.888433000

-0.481297000

-2.044604000
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r T T T O O O =T

I T T

Tn

o T o T 0O o0 o o o T T O O O O T T

2.764686000

0.645880000

1.884133000

2.395226000

1.668437000

2.683968000

1.620906000

2.540937000

7.244512000

9.394367000

9.480213000

7.430475000

4.807022000

4.974051000

-0.459956000

-1.706293000

-1.758827000

-0.561057000

-0.603342000

-0.423103000

-2.901777000

-4.102234000

-4.152033000

-3.002066000

-5.404518000

-3.036973000

-5.320345000

-2.871817000

-5.557093000

1.401782000

0.258794000

-0.274221000

-1.611897000

-0.428579000

0.470062000

-2.038252000

-2.321331000

-2.881681000

-2.578456000

-1.516081000

-0.591288000

-2.425796000

-0.339474000

1.329918000

1.222073000

0.617156000

0.153949000

-0.296646000

1.799406000

1.686636000

1.562808000

0.982892000

0.515563000

1.034190000

0.090245000

1.971755000

2.123789000

-0.038714000

-0.583339000

0.808512000

1.464105000

0.866239000

2.522452000

1.417533000

0.222204000

1.682257000

1.808151000

0.425216000

-1.853114000

-3.104820000

1.663014000

-2.813733000

-1.052656000

-0.405871000

0.873860000

1.453449000

2.440370000

-2.030895000

-0.991329000

-0.345370000

0.949162000

1.530739000

1.743865000

2.527032000

-1.096129000

-1.983344000

2.512822000
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62

-6.706308000

-6.884464000

-6.407429000

-7.914358000

-8.749689000

-7.712273000

-8.211592000

-6.167136000

-5.399073000

-6.268587000

-7.496513000

-8.435925000

-7.915912000

-7.255861000

-8.010951000

-8.663058000

-9.370010000

-0.065540000
0.941135000
-0.711133000
-0.612449000
-0.682950000
-1.610384000
0.038524000
1.971545000
2.986602000
1.042668000
1.309095000
2.158622000
0.321142000
1.781309000
3.144267000
1.681347000

2.288903000

3.379920000

3.759217000

4.205393000

2.662737000

3.363127000

2.268641000

1.839191000

1.720129000

-1.746544000

-1.035093000

-1.738602000

-0.920617000

-1.926583000

-2.691777000

-0.727295000

0.033797000

-1.472141000

C30H2604F2, 2bc_twist, G_rel = 4.445 kcal/mol

O o o o o o o o O

8.654324000

8.807080000

7.712030000

6.418105000

6.264172000

7.415195000

5.278492000

4.028821000

3.872606000

-2.239348000
-1.156092000
-0.430382000
-0.711885000
-1.802855000
-2.534905000

0.031578000
-0.265502000

-1.369554000

-0.148503000

-1.035545000

-1.391622000

-0.911195000

-0.020880000

0.330629000

-1.270349000

-0.785003000

0.105048000
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r T T T O O O T T O T T O O O

I T ™

T

O o T T O O O O T =T

4.977935000

2.876091000

1.632256000

3.237430000

2.590889000

0.407099000

1.881393000

1.368773000

0.434048000

1.695655000

2.538464000

1.410727000

2.314700000

1.955285000

2.725656000

7.264660000

9.508385000

9.781166000

7.852960000

4.862603000

5.397555000

-0.783236000

-1.985720000

-1.960685000

-0.734613000

-0.721862000

-0.805858000

-3.207115000

-4.359767000

-2.099711000

0.599275000

-0.149934000

1.254119000

1.269882000

-0.049128000

-1.202209000

0.241459000

-0.296795000

-0.650234000

-1.779397000

-0.942593000

0.243371000

-2.292536000

-2.533451000

-3.567780000

-2.833304000

-0.899124000

0.604258000

-2.933127000

0.864310000

0.290954000

0.393347000

0.140586000

-0.204742000

-0.404102000

0.491096000

0.749386000

0.847845000

0.466337000

-1.215387000

-1.725394000

-2.009838000

-0.399327000

-0.858986000

-1.892373000

-2.709159000

0.546653000

1.284813000

0.666381000

2.296663000

1.407770000

-0.104062000

1.432508000

1.177923000

0.151737000

-1.432422000

-2.238414000

1.149598000

-1.953855000

-1.454169000

-0.730128000

0.662224000

1.262087000

2.329326000

-2.521010000

-1.338391000

-0.606828000
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r r r  r OO O O o rx T r 6o xT T O O T OO T O O O

-4.341940000

-3.161573000

-5.614018000

-3.151287000

-5.570933000

-3.226074000

-5.481954000

-6.639868000

-6.230807000

-7.184675000

-7.511837000

-8.348590000

-7.914671000

-6.948796000

-6.636056000

-5.920790000

-6.159451000

-7.332083000

-8.576407000

-7.173507000

-7.375374000

-8.524803000

-9.441091000

-8.725671000

0.562446000

0.227708000

0.459164000

-0.008346000

1.345422000

0.975083000

0.849255000

0.731121000

0.615246000

-0.173577000

1.956910000

1.864050000

2.069933000

2.855864000

0.024381000

0.954493000

2.330798000

2.920323000

2.130078000

3.004283000

3.919585000

1.125574000

2.640428000

2.050553000

0.783673000

1.395077000

1.540590000

2.452757000

1.314831000

2.398965000

2.804157000

3.651490000

4.654893000

3.380106000

3.550354000

4.246405000

2.542770000

3.808824000

1.063715000

-2.402817000

-0.644938000

-1.237381000

-0.920919000

-2.313153000

-0.804918000

-1.342690000

-1.351697000

0.156942000
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Dinaphthalene 2dc:

66

C31H3005, 2dc_twistboat; G_rel = 0.00 kcal/mol
-2.17266 -5.18445 -0.74656
-1.61192 -4.76740 -1.97735
-1.84542 -3.50073 -2.45191
-2.64616 -2.60362 -1.70675
-3.20478 -3.01654 -0.47154
-2.94690 -4.33128 -0.01801
-2.91008 -1.29215 -2.15404
-3.67543 -0.40992 -1.43143
-4.21574 -0.82358 -0.18292
-3.98292 -2.10032 0.26123

-3.93144 0.96653 -1.98753

C
C
C
C
C
C
C
C
C
C
C
C -3.53564 2.15957 -1.08316
H -4.99158 1.06763 -2.24566
H -3.37554 1.04662 -2.92382
C -2.38533 1.82847 -0.18565
H -4.38913 2.48663 -0.48794
H -3.26594 2.99784 -1.72874
C -2.61858 1.19678 1.06915
C -4.01078 0.96624 1.59194
C -4.95734 0.15193 0.67725
H -4.48101 1.93101 1.81357
H -3.91618 0.44281 2.54542
H -5.55216 0.82231 0.05500
H -5.66202 -0.38407 1.31654
H -1.96861 -6.19248 -0.40393
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-0.86022

-4.39889

-2.48666

-1.09980

0.01125

-0.21661

-1.54361

-1.71079

-0.92625

1.33820

2.40164

2.17285

0.89201

3.27438

0.72611

3.77498

1.51238

4.16797

5.30546

5.58987

6.09550

5.01105

4.71000

4.21813

5.91018

3.31738

4.59453

3.97980

5.25408

-5.70058
-2.41836
-0.97604
2.06453
1.66781
1.01454
0.80165
0.30636
2.55515
1.89342
1.47836
0.79465
0.58670
0.19923
0.05496
1.88827
2.42843
-0.40444
-1.00597
-0.39314
-0.96141
-2.42784
-3.02341
-2.46524
-2.87613
0.21421
2.31461
1.77569

2.22782

-2.60288

1.21340

-3.10300

-0.60066

0.16749

1.40400

1.82544

2.77692

-1.55386

-0.25354

0.50397

1.72657

2.16286

2.52679

3.09341

0.11436

-1.18013

1.74981

2.39255

3.24838

1.64291
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3.4 Non-covalent interaction plots

Figure S13. NCI plot of the twist-boat conformer of dinaphthalene 2dc.
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4 NMR spectra
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Figure S15. 'H (400 MHz) (top) and *C{*H} (101 MHz) (bottom) NMR spectra (CDCls) of (E)-
8-bromo-1,4-difluoro-6,7,10,11-tetrahydrocycloocta[b]naphthalene (4b).
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Figure S17. *H (400 MHz) (top) and 3*C{*H} (101 MHz) (bottom) NMR spectra (CDCls) of
diethyl (E)-8-bromo-6,7,10,11-tetrahydrocycloocta[b]naphthalene-2,3-dicarboxylate (4c).

S57



o o o o o o o o o o o o o o o o
=3 =3 S =3 =3 o o =} 1=} o o o =} =3 S =3 S S S S S S S =3 o o o =) =) o o =) S S
S R ] E 8 8 8 8 8 8 8 ] 8 8 =1 R 8 B 8¢ 8 R 8 8 8 8 8 8 8 8 8 8 8 S g
S = - - = & @ N © n ¥ ) I = o - - - - - - - - = & ® R ) n ¥ @ N - o o
L L L L L L L L L L L L L L L L wn L L L L L L L L L L L L L L L L L L L L
v -3
sz g8 8 8 8 8 8 o)
6v'C o o (=] o o o (2] 3
pol ®© b ¥ m N A o © o
I L L L L L I o) rFo
15°C 6v'C 5}
257 .
o ] om.NW L= n
b7 ] ro
e ] e °
90 § ol Fe o
90°€ bae L2
90°€ WM.E NE o
] e [J] g
o€ 90'€ 2 1 [ 0 9208
a0°e | o0t S © A eco
60°€ 1 €] L®Rg B ozee -
. 80°€ ~NE e\ —
e 60°€ @ o o -
e ore | P b woee”
42N S.mJ Fa 2 Nw.mmv
e ] £ 75'6€
ere zrey o8 n
81°€ o I— ey Fm S 6T e
67°€ M.MJ
61°€ | e 1 [~ o
T7°€ A ™ - g [
S — 61\ ries .
TTE B — ) g 255 — -
iy T\ ~ -
. TTE~ re J
£ze +
HN.mV. “
06°€
o o
e =ero | 2
n
<
S
e
(=%
o
"<
Fu &
605~ Z
S.mN — 002 o
€8s Le g
0L £ PI'S0T ~
S0z < ze's0T
90, [\
90 ©
90,
0L o .
. LS 8T'8IT
0L _ Eeow [N crgrr >
8027 ETVZI
80°¢ [ ° ° ° ° #1027 | 8Tver =
60 f /// S =1 =1 =1 0z [N LT —= . ]
s f g ] Q = 1) Byoz oz f & @
6072 1 I 1 I 1 o g6zt A
4 [ o [A%: 4% w —
e - _ sz'8er p—
mm.m 1 o @ - " vsger 4 —
05 [ Fos 65'82T
25| veger ]
55N ~ TH0ET
€9°¢ ] e LS S570¢T
v | £ voeer |
v9'L S 9L €T ]
5oL m S . eer ]
- = ) €T'GET —
5oL Ng Fo et ]
'] £ 60°9ET |
9 & 60'BET |
LY s e 80°6€T
£ =] m.\nm&
5 6b°L5T
n 1
L2 |2
S d O/
N \
g o O
N Lo o, B
— H3
O O ~
N N e~ L3
I e —
bS T
<
L

160

140 130 120 110

150

180 170

190

chemical shift [ppm]

Figure S18. 'H (400 MHz) (top) and *C{*H} (101 MHz) (bottom) NMR spectra (CDCIs) of (E)-

(E)-9-bromo-2-

and
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Figure S19. *H (400 MHz) (top) and *C{*H} (101 MHz) (bottom) NMR spectra (CD.Cl,) of 8,9-
didehydro-6,7,10,11-tetrahydrocycloocta[b]naphthalene (6a).
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Figure S21. F{*H} (377 MHz) NMR spectrum (CD:Cl;) of 1,4-difluoro-8,9-didehydro-
6,7,10,11-tetrahydrocycloocta[b]naphthalene (6b).
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Figure S22. 'H (400 MHz) (top) and **C{*H} (101 MHz) (bottom) NMR spectra (CD,Cl,) of 2-
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diethyl 10-methoxy-6,7,14,15-tetrahydrocycloocta[1,2-b:5,6-b'ldinaphthalene-2,3-
dicarboxylate (4bc).

S67



-129.16'

400000

F o
/\
S CHy 350000
NG
F o

300000

250000
) 300000
8
i 200000
200000
| 100000 150000
ro 100000
T T T T
-128.8 -129.0 -129.2 -129.4
chemical shift [ppm]
50000
o

T T T T T T T T T T T T T T T T T T T T T T T T
-40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 ~-155
chemical shift [ppm]
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Figure S29. H (400 MHz) (top) and **C{*H} (101 MHz) (bottom) NMR spectra (CDCIls/CS,) of
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Figure S32. ®F{*H} (377 MHz) NMR spectrum (CDCI3/CS;) of 10-chloro-1,4-difluoro-
6,7,14,15-tetrahydrocycloocta[1,2-b:5,6-b']dinaphthalene (4bf).
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Figure S33. H (400 MHz) (top) and **C{*H} (101 MHz) (bottom) NMR spectra (CDCIls/CS,) of
1,4-difluoro-10-(trifluoromethyl)-6,7,14,15-tetrahydrocycloocta[1,2-b:5,6-b']dinaphtha-
lene (4bg).
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Figure S34. °F{*H} (377 MHz) NMR spectrum (CDCIs/CS;) of 1,4-difluoro-10-(trifluoromethyl)-
6,7,14,15-tetrahydrocycloocta[1,2-b:5,6-b']dinaphthalene (4bg).
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Figure S35. H (400 MHz) (top) and **C{*H} (101 MHz) (bottom) NMR spectra (CDCIls/CS,) of
1,4-difluoro-9-nitro-6,7,14,15-tetrahydrocycloocta[1,2-b:5,6-b']dinaphthalene (4bh).
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Figure S36. °F{*H} (377 MHz) NMR spectrum (CDCIs/CS:,) of 1,4-difluoro-9-nitro-6,7,14,15-
tetrahydrocycloocta[1,2-b:5,6-b'ldinaphthalene (4bh).
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Figure S37. 'H (400 MHz) (top) and *C{*H} (101 MHz) (bottom) NMR spectra (CD.Cl,) of
9,12-difluoro-6,7,14,15-tetrahydronaphtho[2',3":5,6]cycloocta[1,2-g]quinoline (4bi).
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Figure S38. °F{!H} (377 MHz) NMR spectrum (CD:Cl,) of 9,12-difluoro-6,7,14,15-
tetrahydronaphtho[2',3":5,6]cycloocta[1,2-g]quinoline (4bi).
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Figure S39. 'H (400 MHz) (top) and *C{*H} (101 MHz) (bottom) NMR spectra (CD.Cl,) of
diethyl 10-methoxy-6,7,14,15-tetrahydro-cycloocta[1,2-b:5,6-b']dinaphthalene-2,3-
dicarboxylate (4dc).
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5 XRD analysis

5.1 General crystallographic experimental details

Suitable single crystals for X-ray structure determination were selected and transferred in
protective perfluoropolyether oil on a microscope slide. The selected and mounted crystals
were transferred to the cold gas steam on the diffractometer. The diffraction data were obtained
at 100 K on a Bruker D8 three circle diffractometer, equipped with a PHOTON 100 CMOS
detector and a |uS microfocus sources with Quazar mirror optics (Mo-Ka radiation, A =
0.71073 A).

The data obtained were integrated with SAINT and a semi-empirical absorption correction from
equivalents with SADABS-2016/2 was applied.** The structures were solved by direct methods
using SHELXT-2018/2.%? Structure refinement was done using SHELXT-2018/3.4® All non-
hydrogen atoms were refined anisotropically and C-H hydrogen atoms were positioned at
geometrically calculated positions and refined using a riding model. The isotropic displacement
parameters of all hydrogen atoms were fixed to 1.2x or 1.5x (CH3s hydrogens) the Ueq value of

the atoms they are linked to.
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5.2 Crystallographic details of 2bb

Figure S41. Thermal ellipsoid plot of 2bb with the anisotropic displacement parameters drawn

at the 50% probability level.
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Crystal data and structure refinement for CCDC: 2433662.

Identification code 2433662

Empirical formula C24 H16 F4

Formula weight 380.37

Temperature 293(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2i/c

Unit cell dimensions a=4.8992(13) A o= 90°.
b =8.306(2) A B=91.874(13)°.
¢ =20.760(5) A y =90°.

Volume 844.3(4) A3

Z 2

Density (calculated) 1.496 Mg/m3

Absorption coefficient 0.117 mm-!

F(000) 392

Crystal size 0.649 x 0.034 x 0.031 mm3

Theta range for data collection 2.641t0 29.571°.

Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [I>2sigma(l)]
R indices (all data)
Extinction coefficient

Largest diff. peak and hole

-6<=h<=6, 0<=k<=11, 0<=I<=28
2939

2939 [R(int) = 7]

99.7 %

Semi-empirical from equivalents
0.745906 and 0.284011
Full-matrix least-squares on F2
2939/0/128

1.068

R1=0.1086, wR2 = 0.2769
R1=0.1442, wR2 = 0.3015

n/a

0.459 and -0.367 e.A-3
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Atomic coordinates ( x 10%) and equivalent isotropic displacement parameters (A2x 103) for CCDC: 2433662.

U(eq) is defined as one third of the trace of the orthogonalized U'i tensor.

X y z U(eq)
F(1) 2481(6) 5495(4) 7236(1) 22(1)
F(2) 5039(7) 11100(4) 6032(2) 26(1)
C@) 8460(9) 5399(5) 5836(2) 13(1)
C(2) 9092(9) 6861(6) 5510(2) 15(1)
C@3) 11177(10) 6888(5) 4992(2) 14(1)
C(4) 9838(9) 3831(5) 5669(2) 14(1)
C(5) 6519(9) 5404(5) 6305(2) 14(1)
C(6) 5153(9) 6833(6) 6472(2) 14(1)
C(7) 5795(10) 8296(5) 6153(2) 14(1)
C(8) 7789(10) 8268(5) 5675(2) 16(1)
C(9) 3132(10) 6905(6) 6947(2) 16(1)
C(10) 1835(10) 8281(6) 7109(2) 20(1)
C(11) 2491(10) 9736(6) 6797(2) 19(1)
C(12) 4401(10) 9706(6) 6336(2) 18(1)
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Bond lengths [A] and angles [°] for CCDC: 2433662.

F(1)-C(9) 1.359(6) H(3A)-C(3)-H(3B) 107.6
F(2)-C(12) 1.360(6) C(1)-C(4)-C(3)#11 113.5(4)
C(1)-C(5) 1.383(6) C(1)-C(4)-H(4A) 108.9
C(1)-C(2) 1.429(6) C(3)#1-C(4)-H(4A) 108.9
C(1)-C(4) 1.512(6) C(1)-C(4)-H(4B) 108.9
C(2)-C(8) 1.380(7) C(3)#1-C(4)-H(4B) 108.9
C(2)-C(3) 1.507(6) H(4A)-C(4)-H(4B) 107.7
C(3)-C(4)#1 1.563(6) C(1)-C(5)-C(6) 121.1(4)
C(3)-H(3A) 0.9700 C(1)-C(5)-H(5) 119.4
C(3)-H(3B) 0.9700 C(6)-C(5)-H(5) 119.4
C(4)-H(4A) 0.9700 C(5)-C(6)-C(9) 123.5(4)
C(4)-H(4B) 0.9700 C(5)-C(6)-C(7) 119.4(4)
C(5)-C(6) 1.412(6) C(9)-C(6)-C(7) 117.1(4)
C(5)-H(5) 0.9300 C(12)-C(7)-C(8) 123.6(4)
C(6)-C(9) 1.422(6) C(12)-C(7)-C(6) 117.8(4)
C(6)-C(7) 1.423(6) C(8)-C(7)-C(6) 118.6(4)
C(7)-C(12) 1.414(7) C(2)-C(8)-C(7) 121.6(4)
C(7)-C(8) 1.415(7) C(2)-C(8)-H(8) 119.2
C(8)-H(8) 0.9300 C(7)-C(8)-H(8) 119.2
C(9)-C(10) 1.356(7) C(10)-C(9)-F(1) 119.9(4)
C(10)-C(11) 1.413(7) C(10)-C(9)-C(6) 123.4(4)
C(10)-H(10) 0.9300 F(1)-C(9)-C(6) 116.7(4)
C(11)-C(12) 1.360(7) C(9)-C(10)-C(11) 119.5(4)
C(11)-H(11) 0.9300 C(9)-C(10)-H(10) 120.3
C(5)-C(1)-C(2) 119.7(4) C(11)-C(10)-H(10) 120.3
C(5)-C(1)-C(4) 119.1(4) C(12)-C(11)-C(10) 118.6(5)
C(2)-C(1)-C(4) 121.2(4) C(12)-C(11)-H(11) 120.7
C(8)-C(2)-C(1) 119.5(4) C(10)-C(11)-H(11) 120.7
C(8)-C(2)-C(3) 119.6(4) F(2)-C(12)-C(11) 119.0(4)
C(1)-C(2)-C(3) 120.9(4) F(2)-C(12)-C(7) 117.4(4)
C(2)-C(3)-C(4)#1 114.6(4) C(11)-C(12)-C(7) 123.6(4)
C(2)-C(3)-H(3A) 108.6

C(4)#1-C(3)-H(3A) 108.6 Symmetry transformations used to generate
C(2)-C(3)-H(3B) 108.6 equivalent atoms: #1 -x+2,-y+1,-z+1
C(4)#1-C(3)-H(3B) 108.6
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Anisotropic displacement parameters (A2x 103) for CCDC: 2433662. The anisotropic displacement factor

exponent takes the form: -2r2[ h2 a*2Ul + ... + 2 h k a* b* U12]

Ull U22 U33 U23 U13 U12
F(1) 23(2) 24(2) 19(1) 5(1) 8(1) -1(1)
F(2) 31(2) 15(1) 34(2) 3(1) 15(1) 2(1)
c(1) 11(2) 15(2) 14(2) 2(2) -1(2) 2(2)
C(2) 11(2) 18(2) 14(2) -1(2) 1(2) -4(2)
c(@) 14(2) 13(2) 15(2) 2(2) 1(2) 0(2)
C(4) 14(2) 13(2) 15(2) 3(2) 1(2) 2(2)
C(5) 14(2) 15(2) 13(2) 2(2) -1(2) 2(2)
C(6) 12(2) 18(2) 11(2) -4(2) 0(2) 2(2)
c(7) 12(2) 15(2) 16(2) 0(2) 0(2) -1(2)
Cc(8) 17(2) 12(2) 19(2) -1(2) 3(2) -3(2)
C(9) 15(2) 20(2) 13(2) 2(2) 1(2) 2(2)
C(10) 15(2) 25(2) 19(2) 2(2) 5(2) 2(2)
C(11) 18(2) 19(2) 20(2) -4(2) 6(2) 2(2)
C(12) 20(2) 14(2) 18(2) 0(2) 2(2) 2(2)
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Hydrogen coordinates ( x 104) and isotropic displacement parameters (A2x 10 3) for CCDC: 2433662.

X y z U(eq)
H(3A) 12773 6290 5144 17
H(3B) 11740 7993 4925 17
H(4A) 9511 3052 6006 17
H(4B) 11793 4008 5658 17
H(5) 6107 4448 6515 17
H(8) 8232 9220 5468 19
H(10) 526 8268 7424 24
H(11) 1634 10694 6904 22
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