Supplementary Information (SI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2025

Electronic Supplementary Material (SI) for Organic Chemistry Frontiers. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Iridium-Cobaloxime mediated Alkene C(sp²)-CF₂H Crosscoupling: Difluoromethylation of Ketene dithioacetal

Baoping Ren,‡ Long Sun,‡ Junsheng Zhi, Qun Liu, Yifei Li,* and Ling Pan*

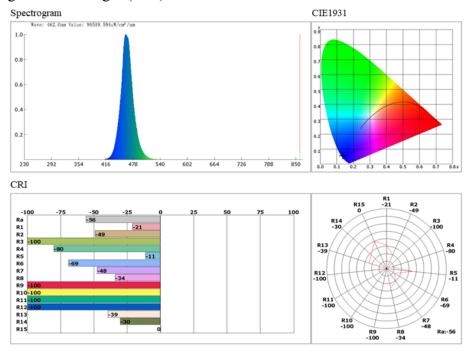
Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.

E-mail: liyf640@nenu.edu.cn, panl948@nenu.edu.cn

I. General Information	S2
II. Additional Optimizations	S3
III. Experimental Sections	S6
IV. Mechanism Investigations	S22
V. Downstream Applications	S31
VI. Crystal Datas of Compound 5w	S33
VII. References	S34
VIII. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra	S37

I. General Information

All reagents and catalysts, with the exception of several cobaloximes, were purchased from commercial sources and used without further purification. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Tsingdao silica gel plates (GF-254) using UV light as visualizing agent. Tsingdao silica gel (60, particle size 0.040-0.063 mm) was used for flash column chromatography. NMR spectra were recorded on a Brüker Advance 600 (1 H: 600 MHz, 13 C: 151 MHz, 19 F: 565 MHz) and Varian 500 (1 H: 500 MHz) at ambient temperature. Data were reported as chemical shifts in ppm relative to CDCl₃ (7.26 ppm) for 1 H NMR and CDCl₃ (77.0 ppm) for 13 C NMR, (trifluoromethyl)benzene (δ -62.9 ppm) as the internal standard for 19 F NMR. Coupling constants are reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. High-resolution mass spectra (HRMS) were obtained using a Bruker micro TOF II focusspectrometer (ESI).


UV-vis absorption analysis was performed on Varian cary 50. Stern-Volmer fluorescence quenching experiments was performed on Full-featured fluorescence spectroscopy system (Edinburgh FLS920P010404) and Cyclic Voltammetry experiments was performed on CH Instruments (CHI 660E).

Photoreactor: The source of the 7 W blue LED using Wattecs Parallel Light Reactor (blue LED Light source, every tube hole groove, 7 W 465 nm).

Emission Spectrum

Spectrogram of blue light (7 W)

II. Additional Optimizations^a

Photosensitizer screening

Table S1. Photosensitizer screening^b

Entry	Photosensitizer (mol%)	Yield ^b (%)
1	$Ru(bpy)_3(PF_6)_2(5.0)$	15
2	$[Ir(ppy)_2(dtbbpy)][PF_6]$ (5.0)	29
3	EosinY(5.0)	33
4	$p ext{-MeOC}_6 ext{H}_4 ext{SH}$ (5.0)	8
5	$Mes-Acr^+-MeBF_4^-$ (5.0)	17
6	Thioxanthone (5.0)	N.O.
7	$[Ir[dFCF_3ppy]_2(bpy)][PF_6]$ (5.0)	31
8	fac-Ir(ppy) ₃ (5.0)	37
9	fac-Ir(ppy) ₃ (1.0)	26
10	fac-Ir(ppy) ₃ (3.0)	37

^aYields were determined by ¹⁹F NMR analysis using PhCF₃ as the internal standard; ^b**1a** (0.3 mmol), **2** (5.0 equiv.), photosensitizer (x mol%), DMSO (0.15 M), 7 W Blue LED, air, rt.

Solvent screening

Table S2. Solvent screening^c

Entry	Solvent (mL)	Time (h)	Yield ^b (%)
10	DMF (2)	24	13
11	DCE (2)	24	24
12	DMAc (2)	24	26
13	THF (2)	24	18
14	MeCN (2)	24	37
15	EtOAc (2)	24	18
16	1,4-dioxane (2)	24	19
17	NMP (2)	24	trace
18	Acetone (2)	24	39
19	MeCN (2)	48	45
20	MeCN (2)	72	37
21	DMSO-MeCN $(2, v/v = 7/1)$	24	45

^c1a (0.3 mmol), 2 (5.0 equiv.), fac-Ir(ppy)₃ (3.0 mol%), solvent (0.15 M), 7 W Blue LED, air, rt.

Base screening

Table S3. Base screening^d

Entry	Additive-I (equiv.)	Yield ^b (%)
22	quinone (1.0)	10
23	DBU (1.0)	0
24	NaHCO ₃ (1.2)	42
25	K_2HPO_4 (1.2)	43
26	NaHSO ₄ (1.2)	45
27	2,6-dimethylpyridine (1.2)	40
28	TBAI (1.2)	0

 $[^]d$ **1a** (0.3 mmol), **2** (5.0 equiv.), fac-Ir(ppy)₃ (3.0 mol%), Additive-I (x equiv.), MeCN (0.15 M), 7 W Blue LED, air, rt, 24 h.

Cobalt catalysts screening

Table S4. Cobalt catalysts screening^e

Entry	[Co] (mol %)	Time (h)	Yield ^b (%)
29	[Co-1] (10.0)	24	38
30	[Co-2] (10.0)	24	42
31	[Co-3] (10.0)	24	22
32	[Co-4] (10.0)	24	45
33	[Co-5] (10.0)	24	57
34	[Co-6] (10.0)	24	42
35	[Co-7] (10.0)	24	32
36	[Co-8] (10.0)	24	46
37	[Co-9] (10.0)	24	75
38 ^f	[Co-5] (7.0)	24	51
39	[Co-5] (7.0), K ₂ S ₂ O ₈ (1.0 equiv.)	24	66
40	[Co-5] (7.0), DIPEA (1.0 equiv.)	24	0
41	[Co-9] (7.0)	72	64
<i>42</i> ^g	[Co-9](7.5)	72	76

^e1a (0.3 mmol), 2 (5.0 equiv.), fac-Ir(ppy)₃ (3.0 mol%), Additive-II (y mol% or equiv.), MeCN (0.1 M), 7 W Blue LED, air, rt; MeCN-H₂O (3 mL, v:v = 24:1); ^gfac-Ir(ppy)₃ (5 mol%).

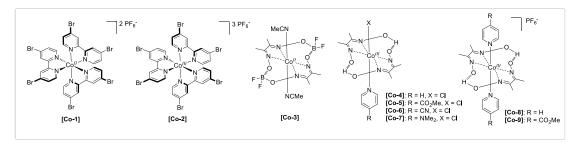
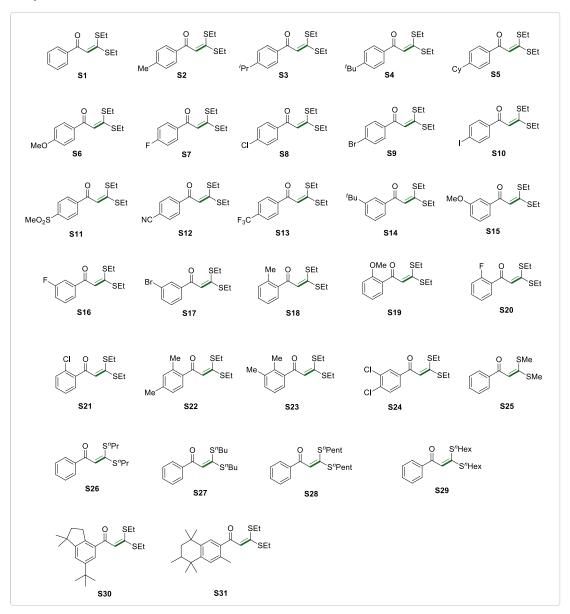


Figure S1. Structures of the cobaloximes used.

Fine-tuning (take 1h as example)

Table S5. Fine-tuning (take 1h as example)^h


Entry	Photosensitizer (mol %)	[Co] (mol %)	Yield ^b (%)
43	<i>fac</i> -Ir(ppy) ₃ (5.0)	[Co-9] (7.0)	66

44	fac-Ir(ppy) ₃ (5.0)	[Co-9] (15.0)	56
45	fac-Ir(ppy) ₃ (7.0)	[Co-9] (7.0)	10
46	fac-Ir(ppy) ₃ (5.0)	[Co-9] (8.0)	60
47	fac-Ir(ppy) ₃ (5.0)	[Co-9] (6.0)	56
48	fac-Ir(ppy)3 (5.0)	[Co-9] (7.5)	70
49	fac-Ir(ppy) ₃ (4.0)	[Co-9] (7.0)	4
50^i	fac-Ir(ppy) ₃ (5.0)	[Co-9] (7.5)	63

 $^{{}^{}h}$ **1a** (0.3 mmol), **2** (5 eq), fac-Ir(ppy)₃ (x mol%), [Co-9] (y mol%), MeCN (0.1 M), 7 W Blue LED, air, rt; i **2** (5.5 equiv.)

III. Experimental Sections

1. Synthesis and characterization of substrates

S1~S31 were synthesized following the reported literature.

General Procedure: 1-5

To a 100 mL round bottom flask, DMF (20 mL), sodium hydride (2.0 equiv.) and acetophenone (5.0 mmol) were added sequentially, and after stirring for 30 min at room temperature, the solution was transferred to 0 °C and carbon disulfide (1.2 equiv.) was added dropwise. After stirring for 1 h, bromoethane (2.2 equiv.) was added dropwise to the mixture, and the reaction was warmed to room temperature. When completed, 20 mL of distilled water was added into the system to quench the reaction; extracted with ethyl acetate (20 mL×3) and then reverse extracted with distilled water (20 mL×3). The whole organic layer was concentrated by evaporation and The residue was separated and purified via column chromatography (petroleum ether/ethyl acetate) to obtain product.

S1-S3, S6~S13, S16~S18, S21, S22, S25 were known compounds as reported.S4, S5, S14, S15, S19, S20, S23, S24, S26-S31 were new compounds prepared

following the procedure above.

2. Synthesis of the cobaloximes

[Co-1], [Co-2]; [Co-3]; [Co-5], [Co-6], [Co-7]⁸⁻⁹ and [Co-9]¹⁰⁻¹¹ were synthesized according to previous reported methods. Others were purchased from commercial

sources.

[Co-9]: Co(NO₃)₂·6H₂O (1.4552 g, 5.0 mmol) was dissolved in 50 mL of methanol, then treated with methyl iso-nicotinate (5.32 mL, 9.0 mol), dimethylglyoxime (dmgH₂) (1.1612 g, 10.0 mmol). The solution was stirred with air passed through for 3.5 h. Afterwards, it became cloudy and was filtered to remove a fraction of brown material, which was discarded. The filtrate was treated with ammonium hexafluorophosphate (0.8150 g, 5.0 mol), and the product precipitated as a light gold powder, which was collected and washed with water (5 mL×1), methanol (5 mL×2), and diethyl ether (5 mLc×3). Then the product should be dried under vacuum to give usable [Co-9] (2.8964 g, 82%). The product could be recrystallized further from acetone to give purer [Co-9]. ¹H NMR (600 MHz, DMSO- d_6) δ (ppm) 8.77 (dd, J = 4.2 Hz, 1H), 8.34 (dd, J = 5.4 Hz, 4H), 7.95 (d, J = 5.4 Hz, 4H), 7.80 (d, J = 4.2 Hz, 1H), 3.87 (s, 1H), 3.84 (s, 6H), 2.24 (s, 12H). ¹³C NMR (151 MHz, DMSO- d_6) δ (ppm) 165.3, 163.7, 156.9, 152.2, 150.9, 140.2, 136.9, 125.7, 122.6, 53.5, 52.9, 40.0, 39.9, 39.7, 39.6, 39.5, 39.3, 39.2, 13.5. HRMS (ESI-TOF) Calcd for C₂₂H₂₈CoN₆O₈ ([M-(PF₆)]³⁺) 563.1295. Found 563.1289.

3. Synthesis of difluoromethylated α - phenacyl ketene dithioacetals

General synthesis procedure (with **3a** as an example): To a 15 ml flask equipped with a stir-bar was add α-phenacyl ketene dithioacetals **1a** (76 mg, 0.3 mmol), sodium difluoromethyl sulfinate **2** (207 mg, 5.0 equiv.), *fac*-Ir(ppy)₃ (9.8 mg, 5.0 mol%), [Co-9] (15.9 mg, 7.5 mol%) and dry MeCN (3 mL, 0.1 M versus **1**) was added into a 15 mL glass tube containing a stir bar. The whole apparatus was then assembled and stirred (800 rpm) under the irradiation of 7 W Blue LED at room temperature (ca. 25 °C) for 72 h. When finished, the crude mixture was poured into 10 mL saturated NaHCO₃ aqueous and immediately separated the water phase. The latter was extracted with EtOAc (5 mL×2) and combined with the previous organic phase. The whole organic

phase was washed with 5 mL saturated NaCl aqueous, discarding the water phase. Concentrating to remove the violated components and purified via flash column chromatography (PE/EA = 120/1 to 100/1, v/v) to get the target molecule **3** (yellow oil, 68.8 mg, 76%).

3a: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-phenylprop-2-en-1-on: yellow oil (68.8 mg, 76%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.93 (d, J = 7.8 Hz, 2H), 7.59 (t, J = 7.2 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 6.95 (t, J = 55.2 Hz, 1H), 2.89 (q, J = 7.2 Hz, 2H), 2.72 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H), 1.05 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) = 191.7, 144.3 (t, J = 10.1 Hz), 140.1 (t, J = 24.8 Hz), 136.7, 133.7, 129.5, 128.6, 111.9 (t, J = 238.4 Hz), 28.2, 28.0, 15.1, 14.6. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) = -110.47 (d, J = 55.1 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₁₄H₁₆F₂NaOS₂ (M+Na)⁺ 325.0503. Found 325.0500. Characterization data were consistent with literature values. ¹²

3b: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-(*p***-tolyl)prop-2-en-1-one:** light yellow oil (71.2 mg, 75%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.83 (d, J = 7.8 Hz, 2H), 7.27 (d, J = 7.8 Hz, 2H), 6.94 (t, J = 55.2 Hz, 1H), 2.88 (q, J = 7.2 Hz, 2H), 2.72 (q, J = 7.2 Hz, 2H), 2.41 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H), 1.07 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 191.3, 144.8, 143.7 (t, J = 10.1 Hz), 140.2 (t, J = 24.8 Hz), 134.1, 129.7, 129.3, 111.9 (t, J = 238.3 Hz), 28.1, 27.9, 21.7, 15.1, 14.7. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) -110.49 (d, J = 55.3 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₁₅H₁₈F₂NaOS₂ (M+Na)⁺ 339.0659. Found 339.0648.

3c: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-(4-isopropylphenyl)prop-2-en-1-one: light yellow oil (65.0 mg, 63%). ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.86 (d, J = 7.8 Hz, 2H), 7.32 (d, J = 7.8 Hz, 2H), 6.95 (t, J = 55.2 Hz, 1H), 3.01 – 2.94 (m, 1H), 2.88 (q, J = 7.2 Hz, 2H), 2.73 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H), 1.28 (s, 3H), 1.26 (s, 3H), 1.07 (t, J = 7.2 Hz, 3H). ¹³C NMR δ (ppm) 191.4, 155.4, 143.7 (t, J = 10.2 Hz), 140.4 (t, J = 24.9 Hz), 134.5, 129.8, 126.7, 112.0 (t, J = 238.4 Hz), 34.3, 28.1, 27.9, 23.6, 15.1, 14.7. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -110.49 (d, J = 55.2 Hz, 2F). HRMS (ESI-TOF) Calcd for C₁₇H₂₂F₂NaOS₂ (M+Na)⁺ 367.0972. Found 367.0963.

3d: 1-(4-(*tert*-butyl)phenyl)-2-(difluoromethyl)-3,3-bis(ethylthio)prop-2-en-1-one: light yellow oil (79.5 mg, 74%). ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.86 (d, J = 7.8 Hz, 2H), 7.48 (d, J = 7.8 Hz, 2H), 6.95 (t, J = 55.2 Hz, 1H), 2.88 (q, J = 7.2 Hz, 2H), 2.73 (q, J = 7.2 Hz, 2H), 1.34 (s, 9H), 1.33 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 191.3, 157.6, 143.8 (t, J = 10.1 Hz), 140.4 (t, J = 24.7 Hz), 134.1, 129.5, 125.6, 112.0 (t, J = 238.3 Hz), 35.2, 31.0, 28.1, 27.9, 15.1, 14.6. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -110.47 (d, J = 55.3 Hz, 2F). HRMS (ESITOF) Calcd for C₁₈H₂₄F₂NaOS₂ (M+Na)⁺ 381.1129. Found 381.1126.

3e: 1-(4-cyclohexylphenyl)-2-(difluoromethyl)-3,3-bis(ethylthio)prop-2-en-1-one: yellow oil (80.7 mg, 70%). 1 H NMR (600 MHz, CDCl₃) δ (ppm) 7.85 (d, J = 7.8 Hz, 2H), 7.30 (d, J = 7.8 Hz, 2H), 6.94 (t, J = 55.2 Hz, 1H), 2.88 (q, J = 7.2 Hz, 2H), 2.72

(q, J = 7.2 Hz, 2H), 2.57 (m, 1H), 1.91 – 1.82 (m, 4H), 1.79 – 1.72 (m, 1H), 1.47 – 1.36 (m, 4H), 1.33 (t, J = 7.2 Hz, 3H), 1.30 – 1.21 (m, 1H), 1.05 (t, J = 7.2 Hz, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ (ppm) 191.3, 154.5, 143.7 (t, J = 10.2 Hz), 140.4 (t, J = 24.7 Hz), 134.5, 129.7, 127.1, 112.0 (t, J = 238.3 Hz), 44.7, 34.0, 28.1, 27.9, 26.7, 26.0, 15.1, 14.6. ¹⁹F **NMR** (565 MHz, CDCl₃) δ (ppm) -110.48 (d, J = 55.1 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₂₀H₂₆F₂NaOS₂ (M+Na)⁺ 407.1285. Found 407.1295.

3f: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-(4-methoxyphenyl)prop-2-en-1-one: yellow oil (69.7 mg, 70%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.91 (d, J = 7.8 Hz, 2H), 6.95 (d, J = 7.8 Hz, 2H), 6.94 (t, J = 55.8 Hz, 1H), 3.87 (s, 1H), 2.88 (q, J = 7.2 Hz, 2H), 2.73 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H), 1.09 (t, J = 7.2 Hz, 2H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 190.3, 164.2, 143.4 (t, J = 10.1 Hz), 140.4 (t, J = 24.8 Hz), 132.0, 129.7, 113.9, 112.0 (t, J = 238.2 Hz), 55.5, 28.1, 27.9, 15.1, 14.8. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) -110.50 (d, J = 55.2 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₁₅H₁₈F₂NaO₂S₂ (M+Na)⁺ 335.0608. Found 335.0601.

3g: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-(4-fluorophenyl)prop-2-en-1-one: light yellow oil (74.9 mg, 78%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.95 (dd, J = 9.0, 5.4 Hz, 2H), 7.14 (t, J = 9.0 Hz, 2H), 6.94 (t, J = 55.2 Hz, 1H), 2.88 (q, J = 7.2 Hz, 2H), 2.73 (q, J = 7.2 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 190.1, 166.14 (d, J = 256.1 Hz), 144.6 (t, J = 10.1 Hz), 139.6 (t, J = 24.8 Hz), 133.1 (d, J = 2.8 Hz), 132.2 (d, J = 9.4 Hz), 115.8 (d, J = 22.0 Hz), 111.9 (t, J = 238.3 Hz), 28.1, 28.0, 15.0, 14.7. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) -103.84 (tt, J = 8.5, 5.5 Hz, 1F), -110.38 (d, J = 55.0 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₁₄H₁₅F₃NaOS₂ (M+Na)⁺ 343.0409. Found 343.0406.

3h: 1-(4-chlorophenyl)-2-(difluoromethyl)-3,3-bis(ethylthio)prop-2-en-1-one: light yellow oil (76.6 mg, 76%). ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.76 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 6.84 (t, J = 55.2 Hz, 1H), 2.78 (q, J = 7.2 Hz, 2H), 2.63 (q, J = 7.2 Hz, 2H), 1.21 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 190.5, 144.9 (t, J = 10.0 Hz), 140.2, 139.3 (t, J = 24.8 Hz), 135.0, 130.8, 128.9, 111.8 (t, J = 238.4 Hz), 28.1, 28.0, 15.0, 14.7. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -110.33 (d, J = 55.2 Hz, 2F). HRMS (ESI-TOF) Calcd for C₁₄H₁₅ClF₂NaOS₂ (M+Na)⁺ 359.0113. Found 359.0108.

3i: 1-(4-bromophenyl)-2-(difluoromethyl)-3,3-bis(ethylthio)prop-2-en-1-one: light yellow oil (85.5 mg, 75%). ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.79 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 6.94 (t, J = 55.2 Hz, 1H), 2.88 (q, J = 7.2 Hz, 2H), 2.73 (q, J = 7.2 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 190.7, 145.0 (t, J = 10.1 Hz), 139.3 (t, J = 24.7 Hz), 135.5, 131.9, 130.9, 129.0, 111.9 (t, J = 238.4 Hz), 28.2, 28.1, 15.1, 14.7. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -110.35 (d, J = 55.1 Hz, 2F). HRMS (ESI-TOF) Calcd for C₁₄H₁₅BrF₂NaOS₂ (M+Na)⁺ 402.9608. Found 402.9612.

3j: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-(4-iodophenyl)prop-2-en-1-one: yellow oil (66.7 mg, 52%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.84 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 6.93 (t, J = 55.2 Hz, 1H), 2.88 (q, J = 7.2 Hz, 2H), 2.73 (q, J = 7.2 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H), 1.07 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 191.0, 145.0 (t, J = 10.0 Hz), 139.4 (t, J = 24.8 Hz), 137.9, 136.0, 130.7, 111.8

(t, J = 238.4 Hz), 102.0, 28.2, 28.1, 15.1, 14.7. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) - 110.36 (d, J = 55.2 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₁₄H₁₅IF₂NaOS₂ (M+Na)⁺ 428.9650. Found 428.9640.

3k: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-(4-(methylsulfonyl)phenyl)prop-2-en-1-one: dark brown oil (74.2 mg, 65%). ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.10 – 8.02 (m, 4H), 6.95 (t, J = 55.2 Hz, 1H), 3.08 (s, 3H), 2.89 (q, J = 7.2 Hz, 2H), 2.72 (q, J = 7.2 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H), 1.02 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 190.3, 146.7 (t, J = 9.8 Hz), 144.4, 140.9, 138.5 (t, J = 24.9 Hz), 130.0, 127.7, 111.8 (t, J = 238.6 Hz), 44.3, 28.3, 28.2, 15.0, 14.6. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -110.17 (d, J = 55.1 Hz, 2F). HRMS (ESI-TOF) Calcd for C₁₅H₁₉F₂O₃S₃ (M+Na)⁺ 381.0459. Found 381.0453.

31: 4-(2-(difluoromethyl)-3,3-bis(ethylthio)acryloyl)benzonitrile: light yellow oil (37.1 mg, 38%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 8.00 (d, J = 7.8 Hz, 2H), 7.77 (d, J = 7.8 Hz, 2H), 6.95 (t, J = 55.2 Hz, 1H), 2.89 (q, J = 7.2 Hz, 2H), 2.72 (q, J = 7.2 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H), 1.02 (d, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 190.3, 146.6 (t, J = 9.8 Hz), 140.0, 138.5 (t, J = 24.9 Hz), 132.42, 129.60, 117.9, 116.6, 111.8 (t, J = 238.6 Hz), 28.3, 28.2, 15.0, 14.6. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) -110.18 (d, J = 55.0 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₁₅H₁₅F₂NNaOS₂ (M+Na)⁺ 350.0455. Found 350.0449.

3m: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one: light yellow oil (48.3 mg, 44%). ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.03

(d, J = 7.8 Hz, 2H), 7.74 (m, 2H), 6.96 (t, J = 55.2 Hz, 1H), 2.90 (q, J = 7.2 Hz, 2H), 2.73 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H), 1.04 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 190.7, 145.9 (t, J = 9.9 Hz), 139.5, 139.1 (t, J = 24.8 Hz), 134.8 (q, J = 32.5 Hz), 129.7, 125.6 (q, J = 3.9 Hz), 123.6 (q, J = 272.7 Hz), 111.9 (t, J = 238.5 Hz), 28.3, 28.2, 15.1, 14.6. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -63.14(s, 3F), -110.30 (d, J = 55.1 Hz, 2F). HRMS (ESI-TOF) Calcd for C₁₅H₁₅F₅NaOS₂ (M+Na)⁺ 393.0377. Found 393.0381.

3n: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-(3-methoxyphenyl)prop-2-en-1-one: light yellow oil (54.6 mg, 55%). ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.50 (t, J = 1.8 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H)., 7.37 (t, J = 7.8 Hz, 1H), 7.14 (dd, J = 8.4, 2.4 Hz, 1H), 6.94 (t, J = 55.2 Hz, 1H), 3.86 (s, 3H), 2.89 (q, J = 7.2 Hz, 2H), 2.73 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H), 1.07 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 191.5, 159.8, 144.3 (t, J = 10.1 Hz), 140.1 (t, J = 24.6 Hz), 138.0, 129.5, 122.7, 120.7, 112.9, 111.9 (t, J = 238.8 Hz), 55.4, 28.2, 28.0, 15.1, 14.6. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -110.45 (d, J = 55.2 Hz, 2F). HRMS (ESI-TOF) Calcd for C₁₅H₁₈F₂NaO₂S₂ (M+Na)⁺ 355.0608. Found 355.0598.

30: 1-(3-(*tert***-butyl)phenyl)-2-(difluoromethyl)-3,3-bis(ethylthio)prop-2-en-1-one:** light yellow oil (67.6 mg, 63%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.99 (s, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.63 (m, 1H), 7.40 (t, J = 7.8 Hz, 1H), 6.95 (t, J = 55.2 Hz, 1H), 2.89 (q, J = 7.2 Hz, 2H), 2.72 (q, J = 7.2 Hz, 2H), 1.34 (s, 9H), 1.33 (t, J = 7.2 Hz, 3H), 1.05 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 192.1, 151.6, 143.8 (t, J = 10.2 Hz), 140.6 (t, J = 24.8 Hz), 136.5, 131.0, 128.3, 127.0, 126.4, 111.9 (t, J = 238.4 Hz), 34.8, 31.2, 28.1, 27.9, 15.1, 14.7. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) - 110.44 (d, J = 55.0 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₁₈H₂₄F₂NaOS₂ (M+Na)⁺

381.1129. Found 381.1120.

3p: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-(3-fluorophenyl)prop-2-en-1-one: light brown oil (62.4 mg, 65%). ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.70 (d, J = 7.8 Hz, 1H), 7.62 (dt, J = 9.0, 2.4 Hz, 1H), 7.45 (td, J = 7.8, 5.4 Hz, 1H), 7.29 (td, J = 8.4, 2.4 Hz, 1H), 6.94 (t, J = 55.2 Hz, 1H), 2.89 (q, J = 7.2 Hz, 2H), 2.73 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H), 1.05 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 190.5 (d, J = 2.2 Hz), 162.8 (d, J = 241.6 Hz), 145.3 (t, J = 10.0 Hz), 139.3 (t, J = 24.9 Hz), 138.9 (d, J = 6.4 Hz), 130.2 (d, J = 7.8 Hz), 125.3 (d, J = 2.9 Hz), 120.7 (d, J = 21.6 Hz), 115.9 (d, J = 22.6 Hz), 111.9 (t, J = 238.6 Hz), 28.24, 28.09, 15.07, 14.62. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -110.39 (d, J = 55.1 Hz, 2F), -111.88 (td, J = 8.7, 5.4 Hz,1F). **HRMS** (ESI-TOF) Calcd for C₁₄H₁₅F₃NaOS₂ (M+Na)⁺ 343.0409. Found 343.0396.

3q: 1-(3-bromophenyl)-2-(difluoromethyl)-3,3-bis(ethylthio)prop-2-en-1-one: light yellow oil (52.4 mg, 46%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 8.06 (t, J = 1.8 Hz, 1H), 7.83 (dt, J = 7.8, 1.2 Hz, 1H), 7.70 (m, 1H), 7.35 (t, J = 7.8 Hz, 1H), 6.94 (t, J = 55.2 Hz, 1H), 2.89 (q, J = 7.2 Hz, 2H), 2.73 (q, J = 7.2 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H), 1.06 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 190.3, 145.5 (t, J = 10.0 Hz), 139.1 (t, J = 24.7 Hz), 138.5, 136.4, 132.2, 130.1, 128.0, 122.9, 111.8 (t, J = 238.5 Hz), 28.2, 28.1, 15.1, 14.7. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) -110.39 (d, J = 55.0 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₁₄H₁₅BrF₂NaOS₂ (M+Na)⁺ 402.9608. Found 402.9609.

3r: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-(o-tolyl)prop-2-en-1-one: light brown oil (68.3 mg, 72%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.62 (d, J = 7.8 Hz, 1H), 7.40 (t, J = 7.2 Hz, 1H), 7.26 (d, J = 5.4 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 6.94 (t, J = 55.2 Hz, 1H), 2.87 (q, J = 7.2 Hz, 2H), 2.66 (q, J = 7.2 Hz, 2H), 2.63 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 193.5, 145.5 (t, J = 9.7 Hz), 141.6 (t, J = 24.3 Hz), 140.3, 136.9, 132.1, 131.8, 130.9, 125.4, 112.1 (t, J = 238.7 Hz), 28.2, 28.0, 21.4, 15.0, 14.6. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) - 110.47 (d, J = 55.1 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₁₅H₁₈F₂NaOS₂ (M+Na)⁺ 339.0659. Found 339.0647.

3s: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-(2-methoxyphenyl)prop-2-en-1-one: light brown oil (61.6 mg, 62%). ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.81 (dd, J = 7.8, 1.8 Hz, 1H), 7.49 (td, J = 7.8, 7.2, 1.8 Hz, 1H), 7.01 (t, J = 7.2 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.85 (t, J = 55.2 Hz, 1H), 3.84 (s, 3H), 2.85 (q, J = 7.2 Hz, 2H), 2.68 (q, J = 7.2 Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H), 1.02 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 190.5, 159.4, 143.3 (t, J = 23.5 Hz), 141.5 (t, J = 9.5 Hz), 134.5, 131.6, 127.3, 120.5, 112.2 (t, J = 241.6 Hz), 111.8, 55.7, 27.9, 27.8, 15.1, 14.5. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -111.24 (d, J = 55.3 Hz, 2F). HRMS (ESI-TOF) Calcd for C₁₅H₁₉F₂O₂S₂ (M+H)⁺ 333.0789. Found 333.0792.

3t: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-(2-fluorophenyl)prop-2-en-1-one: light brown oil (40.4 mg, 42%). ¹⁹**F yield**: 60%. ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.90 (td, J = 7.8, 1.8 Hz, 1H), 7.59 – 7.53 (m, 1H), 7.27 (q, J = 7.8 Hz, 1H), 7.12 (m, 1H), 6.96 (t, J = 54.6 Hz, 1H), 2.89 (q, J = 7.2 Hz, 2H), 2.75 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H), 1.07 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 188.1, 161.8 (d, J = 258.1 Hz), 144.6 (td, J = 10.5, 3.4 Hz), 141.6 (t, J = 24.2 Hz), 135.0 (d, J = 10.5)

= 9.1 Hz), 131.2, 126.2 (d, J = 9.3 Hz), 124.2 (d, J = 3.8 Hz), 116.6 (d, J = 22.1 Hz), 112.1 (t, J = 239.0 Hz), 28.1 (d, J = 5.1 Hz), 15.0, 14.4. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) -110.85 (ddq, J = 11.7, 8.1, 4.0 Hz, 1F), -111.09 (dd, J = 54.9, 3.7 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₁₄H₁₆F₃OS₂ (M+H)⁺ 321.0589. Found 321.0585.

3u: 1-(2-chlorophenyl)-2-(difluoromethyl)-3,3-bis(ethylthio)prop-2-en-1-one: yellow oil (22.2 mg, 2%). ¹⁹F yield: 63%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.64 (d, J = 7.2 Hz, 1H), 7.47 – 7.37 (m, 2H), 7.31 (t, J = 7.2 Hz, 1H), 6.95 (t, J = 54.6 Hz, 1H), 2.89 (q, J = 7.2 Hz, 2H), 2.70 (q, J = 7.2 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 190.2, 149.6 (t, J = 8.7 Hz), 139.6 (t, J = 23.4 Hz), 137.6, 133.4, 132.4, 130.1, 130.9, 126.4, 112.3 (t, J = 239.6 Hz), 28.8, 28.4, 15.1, 14.5. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -110.29 (d, J = 54.8 Hz, 2F). HRMS (ESI-TOF) Calcd for C₁₄H₁₆ClF₂OS₂ (M+H)⁺ 337.0294. Found 337.0284.

3v: 2-(difluoromethyl)-1-(2,4-dimethylphenyl)-3,3-bis(ethylthio)prop-2-en-1-one: light yellow oil (64.3 mg, 65%). ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.40 (d, J = 7.8 Hz, 1H), 7.28 (d, J = 7.2 Hz, 1H), 7.11 (t, J = 7.8 Hz, 1H), 6.93 (t, J = 55.2 Hz, 1H), 2.87 (q, J = 7.2 Hz, 2H), 2.67 (q, J = 7.2 Hz, 2H), 2.48 (s, 3H), 2.34 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 194.0, 146.4 (t, J = 9.6 Hz), 141.7 (t, J = 24.5 Hz), 138.1 (d, J = 4.1 Hz), 133.5, 128.0, 124.6, 112.2 (t, J = 238.8 Hz), 28.3, 28.1, 20.4, 16.4, 15.0, 14.6. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -110.34 (d, J = 55.1 Hz, 2F). HRMS (ESI-TOF) Calcd for C₁₆H₂₁F₂OS₂ (M+H)⁺ 331.0996. Found 331.0989.

3w: 2-(difluoromethyl)-1-(2,3-dimethylphenyl)-3,3-bis(ethylthio)prop-2-en-1-one: light yellow oil (69.4 mg, 70%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.53 (d, J = 7.8 Hz, 1H), 7.08 (s, 1H), 7.04 (d, J = 7.8 Hz, 1H), 6.93 (t, J = 55.2 Hz, 1H), 2.86 (q, J = 7.2 Hz, 2H), 2.68 (q, J = 7.2 Hz, 2H), 2.60 (s, 3H), 2.36 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H), 0.98 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 193.0, 144.3 (t, J = 9.8 Hz), 143.0, 141.8 (t, J = 24.4 Hz), 140.6, 133.9, 132.8, 131.7, 126.0, 112.1 (t, J = 238.5 Hz), 28.0 (d, J = 4.4 Hz), 21.6, 21.5, 15.1, 14.7. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) -110.48 (d, J = 55.2 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₁₆H₂₀F₂NaOS₂ (M+Na)⁺ 353.0816. Found 353.0815.

3x: 1-(3,4-dichlorophenyl)-2-(difluoromethyl)-3,3-bis(ethylthio)prop-2-en-1-one: yellow oil (32.2 mg, 29%). ¹⁹F yield: 63%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.00 (d, J = 1.8 Hz, 1H), 7.74 (dd, J = 8.4, 1.8 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 6.94 (t, J = 55.2 Hz, 1H), 2.89 (q, J = 7.2 Hz, 2H), 2.75 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H), 1.08 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 189.5, 145.9 (t, J = 10.0 Hz), 138.7 (t, J = 24.9 Hz), 138.3, 136.4, 133.4, 131.2, 130.8, 128.4, 111.82 (t, J = 238.5 Hz), 28.3, 28.2, 15.1, 14.7. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -110.33 (d, J = 55.0 Hz, 2F). HRMS (ESI-TOF) Calcd for C₁₄H₁₅Cl₂F₂OS₂ (M+H)⁺ 370.9904. Found 370.9908.

3y: 2-(difluoromethyl)-3,3-bis(methylthio)-1-phenylprop-2-en-1-one: light brown oil (44.4 mg, 54%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.93 (d, J = 7.8 Hz, 2H), 7.63 – 7.56 (m, 1H), 7.49 (t, J = 7.8 Hz, 2H), 6.90 (t, J = 55.2 Hz, 1H), 2.42 (s, 3H), 2.19 (s, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 191.4, 147.2 (t, J = 10.0 Hz), 137.4 (t, J = 24.6 Hz), 136.7, 133.7, 129.4, 128.7, 111.8 (t, J = 238.5 Hz), 16.9, 16.6. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) -110.42 (d, J = 55.1 Hz, 2F). **HRMS** (ESI-TOF) Calcd for

 $C_{12}H_{13}F_2OS_2$ (M+H)⁺ 275.0370. Found 275.0367. Characterization data were consistent with literature values¹².

3z: 2-(difluoromethyl)-1-phenyl-3,3-bis(propylthio)prop-2-en-1-one: light yellow oil (48.3 mg, 49%). ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.92 (d, J= 7.8 Hz, 2H), 7.58 (t, J= 7.2 Hz, 1H), 7.46 (t, J= 7.2 Hz, 2H), 6.95 (t, J= 55.2 Hz, 1H), 2.84 (t, J= 7.2 Hz, 2H), 2.67 (t, J= 7.2 Hz, 2H), 1.67 (m, 2H), 1.38 (m, 2H), 1.03 (t, J= 7.8 Hz, 3H), 0.73 (t, J= 7.8 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 191.7, 145.1 (t, J= 10.2 Hz), 139.5 (t, J= 24.7 Hz), 136.8, 133.6, 129.4, 128.5, 112.0 (t, J= 238.4 Hz), 35.9, 35.6, 23.2, 22.8, 13.2, 12.9. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -110.32 (d, J= 55.3 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₁₆H₂₀F₂NaOS₂ (M+Na)⁺ 353.0816. Found 353.0813.

3aa: 3,3-bis(butylthio)-2-(difluoromethyl)-1-phenylprop-2-en-1-one: light yellow oil (44.0 mg, 41%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.92 (d, J= 7.8 Hz, 2H), 7.58 (t, J= 7.2 Hz, 1H), 7.46 (t, J= 7.8 Hz, 2H), 6.94 (t, J= 55.2 Hz, 1H), 2.86 (t, J= 7.2 Hz, 2H), 2.69 (t, J= 7.2 Hz, 2H), 1.63 (m, 2H), 1.44 (m, 2H), 1.32 (m, 2H), 1.14 (m, 2H), 0.95 (t, J= 7.2 Hz, 3H), 0.76 (t, J= 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 191.7, 145.2 (t, J= 10.1 Hz), 139.4 (t, J= 24.6 Hz), 136.8, 133.6, 129.5, 128.5, 112.0 (t, J= 238.4 Hz), 33.6, 33.4, 31.9, 31.4, 21.8, 21.5, 13.5, 13.4. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -110.30 (d, J= 55.3 Hz, 2F). **HRMS** (ESI-TOF) Calcd for $C_{18}H_{24}F_{2}NaOS_{2}$ (M+Na)⁺ 381.1129. Found 381.1121.

3ab: 2-(difluoromethyl)-3,3-bis(pentylthio)-1-phenylprop-2-en-1-one: light brown oil (34.6 mg, 30%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.92 (d, J= 7.8 Hz, 2H), 7.58 (t, J= 7.2 Hz, 1H), 7.46 (t, J= 7.8 Hz, 2H), 6.94 (t, J= 55.2 Hz, 1H), 2.85 (t, J= 7.2 Hz, 2H), 2.68 (t, J= 7.2 Hz, 2H), 1.64 (m, 2H), 1.36 (m, 6H), 1.12 (m, 4H), 0.92 (t, J= 7.2 Hz, 3H), 0.78 (t, J= 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 191.7, 145.3 (t, J= 10.1 Hz), 139.3 (t, J= 24.7 Hz), 136.8, 133.6, 129.5, 128.5, 112.0 (t, J= 238.3 Hz), 33.9, 33.7, 30.8, 30.6, 29.5, 29.1, 22.1, 22.0, 13.9, 13.8. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) -110.30 (d, J= 55.1 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₂₀H₂₈F₂NaOS₂ (M+Na)⁺ 409.1442. Found 409.1438.

3ac: 2-(difluoromethyl)-3,3-bis(hexylthio)-1-phenylprop-2-en-1-one: light brown oil (55.9 mg, 45%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.92 (d, J = 7.8 Hz, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.8 Hz, 2H), 6.94 (t, J = 55.2 Hz, 1H), 2.85 (t, J = 7.2 Hz, 2H), 2.68 (t, J = 7.2 Hz, 2H), 1.64 (m, 2H), 1.42 (m, 2H), 1.37 – 1.27 (m, 6H), 1.18 (m, 2H), 1.14 – 1.08 (m, 4H), 0.90 (t, J = 7.2 Hz, 3H), 0.82 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 191.7, 145.3 (t, J = 10.0 Hz), 139.3 (t, J = 24.7 Hz), 136.8, 133.6, 129.4, 128.5, 112.0 (t, J = 238.4 Hz), 34.0, 33.7, 31.2, 31.1, 29.8, 29.4, 28.3, 28.1, 22.4, 22.3, 13.9, 13.8. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) -110.28 (d, J = 55.1 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₂₂H₃₂F₂NaOS₂ (M+Na)⁺ 437.1755. Found 437.1758.

3ad: 1-(6-(*tert*-butyl)-1,1-dimethyl-2,3-dihydro-1H-inden-4-yl)-2-(difluoromethyl)-3,3-bis(ethylthio)prop-2-en-1-one: light brown oil (83.2 mg, 65%). 1 H NMR (600 MHz, CDCl₃) δ (ppm) 7.58 (d, J = 1.8 Hz, 1H), 7.34 (d, J = 1.8 Hz, 1H), 6.94 (t, J = 55.2 Hz, 1H), 3.24 (t, J = 7.2 Hz, 2H), 2.88 (q, J = 7.2 Hz, 2H), 2.69 (q, J = 7.2 Hz, 2H), 1.96 (t, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H), 1.31 (s, 6H), 1.27 (s, 6H), 1.01 (t, J = 7.2 Hz, 3H). 13 C NMR (151 MHz, CDCl₃) δ (ppm) 193.1, 154.1, 149.5, 143.4 (t, J = 10.2 Hz), 142.3, 141.9 (t, J = 24.5 Hz), 132.7, 126.8, 123.8, 112.0 (t, J = 238.4 Hz), 43.4, 41.4, 34.6, 31.4, 30.3, 28.8, 28.0, 27.8, 15.1, 14.7. 19 F NMR (565 MHz, CDCl₃) δ (ppm) -110.39 (d, J = 55.3 Hz, 2F). HRMS (ESI-TOF) Calcd for $C_{23}H_{32}F_{2}NaOS_{2}$ (M+Na)⁺ 449.1755. Found 449.1758.

3ae: 2-(difluoromethyl)-3,3-bis(ethylthio)-1-(3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)prop-2-en-1-one: light yellow solid (85.8 g, 65%). mp: 94-95 °C. ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.60 (s, 1H), 7.21 (s, 1H), 6.94 (t, J = 55.2 Hz, 1H), 2.87 (q, J = 7.2 Hz, 2H), 2.66 (q, J = 7.2 Hz, 2H), 2.59 (s, 3H), 1.91 – 1.80 (m, 1H), 1.61 (t, J = 13.2 Hz, 1H), 1.38 (dd, J = 13.8, 2.4 Hz, 1H), 1.35 – 1.30 (m, 6H), 1.24 (s, 3H), 1.20 (s, 3H), 1.07 (s, 3H), 0.99 (d, J = 6.6 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 193.1, 150.9, 143.9 (t, J = 9.9 Hz), 142.4 (t, J = 24.5 Hz), 141.8, 136.9, 133.8, 130.7, 130.3, 112.1 (t, J = 238.5 Hz), 43.3, 37.9, 34.4, 33.9, 32.2, 31.8, 28.2, 28.0, 27.9, 24.6, 21.3, 16.7, 15.1, 14.7. ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) -110.34 (dd, J = 55.4, 4.8 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₂₄H₃₄F₂NaOS₂ (M+Na)⁺ 463.1911. Found 463.1915.

4. Unsuccessful Examples

Figure S2. Unsuccessful Examples.

IV. Mechanism Investigations

A. Radical capture experiments

a. TEMPO

O SEt
$$SEt + NaSO_2CF_2H \xrightarrow{TEMPO (2.0 \text{ equiv.})} Standard condition$$

$$SEt + NaSO_2CF_2H \xrightarrow{O} CF_2H$$

$$SEt + O CF_2H$$

$$Sandard condition$$

$$SEt + O CF_2H$$

$$O CF_2H$$

In a 15 mL glass tube added **1a** (76 mg, 0.3 mmol), **2** (207 mg, 5.0 equiv.), *fac*-Ir(ppy)₃ (9.8 mg, 5.0 mol%), [Co-9] (15.9 mg, 7.5 mol%), and TEMPO (93.8 mg, 2.0 equiv.). Then the dry MeCN (0.1 M) was added into the tube. The whole apparatus was assembled and irradiated by Blue LEDs (7 W) under room temperature. When finished, PhCF₃ (0.0812 mmol, 10μ L) was added for indicating the crude mixture from ¹⁹F **NMR** analysis. From the ¹⁹F **NMR** spectrum we found that the yield of **3a** was 7% (sharply decreased) and the yield of **7** was 23%. ¹³⁻¹⁴ This suggested that the generation of difluoromethylation radical in the reaction.

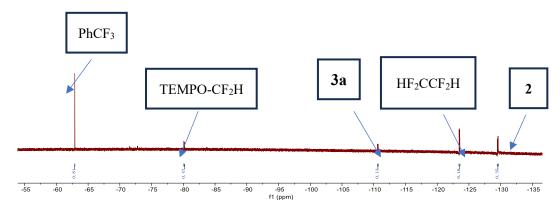


Figure S3. ¹⁹F NMR analysis of the crude mixture (TEMPO as the radical scavenger). Characterization data of 7: ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -80.15 (d, J = 72.8 Hz, 2F). **HRMS**(ESI-TOF) Calcd for C₁₀H₂₀F₂NONa (M+2H)⁺ 209.2. Found 209.2.

Note: Owing to the TEMPO containing tertiary amine sub-structure, the nitrogen atom could abstract a proton from [Co^{III}-H] species, viz. be pronated.¹⁵

b. 1, 1-diphenylethene

In a 15 mL glass tube added **1a** (76 mg, 0.3 mmol), **2** (207 mg, 5.0 equiv.), *fac*-Ir(ppy)₃ (9.8 mg, 5.0 mol%), [Co-9] (15.9 mg, 7.5 mol%). Then the dry MeCN (0.1 M) and 1,1-diphenylethene (35.3 μ L, 2.0 equiv.) was added into the tube. The whole apparatus was assembled and irradiated by Blue LEDs (7 W) under room temperature. When finished, PhCF₃ (0.0812 mmol, 10 μ L) was added for analysis. From the corresponding ¹⁹F NMR, we could note the generation of **8**¹³ (¹⁹F yield: 65%). However, we could not distinguish some peaks because they were not clearly apart from each other. Then we try to isolate them. Afterwards, we obtained the product **3a** (14.7 mg, 16%) and **10** (19.9 mg, 24%), and two **1a** molecules directly coupling product **9** (22.7 mg, 15%) (68% **1a** remained intact).

This might due to 1a could be a stability factor for preventing the Int-0 to back

electron transfer (BET),¹⁶ which could be of value to the radical controllable fluorine chain propagation (CFCE).¹⁴

However, when we attempted to use the **1ai** for stabling the distonic radical cation¹⁶ (**Int-0**), which could be beneficial for the generation of **10**, we eventually failed. Therefore, the use of catalytic amount cobaloxime to replace the stoichiometric base commonly used to realize milder radical CFCE is of elegant future.

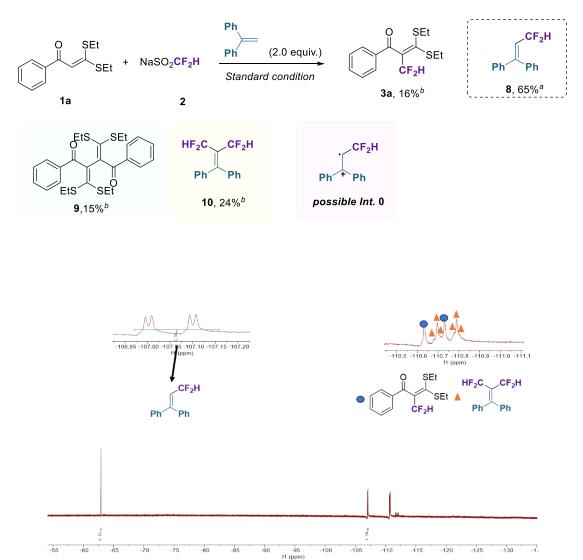


Figure S4. ¹⁹F NMR analysis of the crude mixture (1,1-diphenylethene as the radical scavenger).

step 2: Int-0 possibly mainly reacts with [Co-9] (2nd PCET) and need 1a to prevent BETFigure S5 Possible pathway for the generation of 10.

Characterization data of 8: 19 F NMR (565 MHz, CDCl₃) δ (ppm) -107.05 (dd, J = 55.5, 7.9 Hz), 19 F yield:65%. Characterization data were consistent with literature values. 13

Characterization data of **10**: ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.44 – 7.37 (m, 6H), 7.21 (d, J = 7.2 Hz, 4H), 6.39 – 6.05 (m, 2H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 155.89 (t, J = 8.4 Hz), 137.61, 129.59, 128.48, 124.24 (t, J = 22.3 Hz), 113.46 (td, J = 238.7, 1.8 Hz). ¹⁹**F NMR** (565 MHz, CDCl₃) δ (ppm) -110.50 (dt, J = 52.9, 8.9 Hz, 2F). **HRMS** (ESI-TOF) Calcd for C₁₆H₁₂F₄Na (M+Na)⁺ 281.0875. Found 281.0940. Characterization data of **9**: ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 7.91 (dd, J = 7.8, 1.2 Hz, 4H), 7.63 – 7.56 (m, 2H), 7.48 (t, J = 7.8 Hz, 4H), 2.97 (q, J = 7.2 Hz, 4H), 2.68 (q, J = 7.2 Hz, 4H), 1.35 (t, J = 7.2 Hz, 6H), 1.09 (t, J = 7.2 Hz, 6H). Characterization data were consistent with literature values. ¹⁷

B. UV-vis spectra analysis

Amounts and concentrations of the components:

Components	1a	2	fac-Ir(ppy)3	[Co-5]	[Co-9]
Amount(mol)	1.5×10 ⁻²	2.0×10 ⁻⁴	5.0×10 ⁻³	1.0×10 ⁻⁵	1.0×10 ⁻⁵
Concentration(M)	1.5×10 ⁻⁴	2.0×10 ⁻²	5.0×10 ⁻⁵	1.0×10 ⁻³	1.0×10 ⁻³

a. No Blue LEDs irradiation

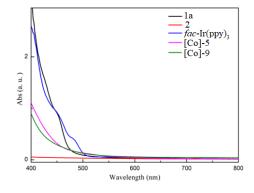


Figure S5. UV-Vis spectrum of each component (No Blue LED irradiation).

We could find that the fac-Ir(ppy)₃ was the best photosensitizer of the reaction.

b. With Blue LED irradiation

To demonstrate the cobaloxime could oxidize fac-Ir(ppy)₃, we executed the following measurement: mixing fac-Ir(ppy)₃ and [Co-5](or [Co-9]) under air atmosphere, and the mixture was irradiated with Blue LEDs (15 W), stirring for several minutes. The aim was to monitor whether the [Co¹] could be generated (ca. 550 nm exists its absorption peak)¹⁸. Unfortunately, we failed to monitor [Co-9] being reduced to the corresponding [Co¹]. We could only see weak absorption peak in ca. 580 nm when using [Co-5]. Thus, we suggest that excited fac-Ir(ppy)₃ could be oxidized by [Co-5](or [Co-9]). The weak new absorption peak might owe to the short irradiation time,

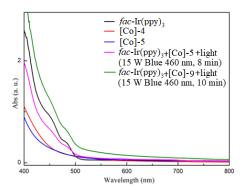
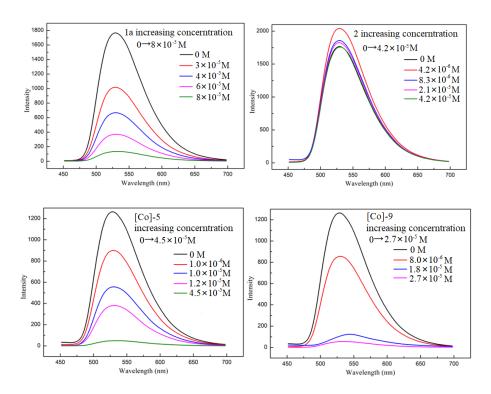
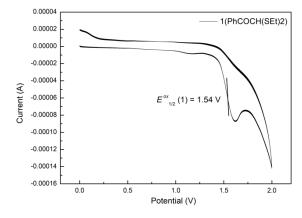



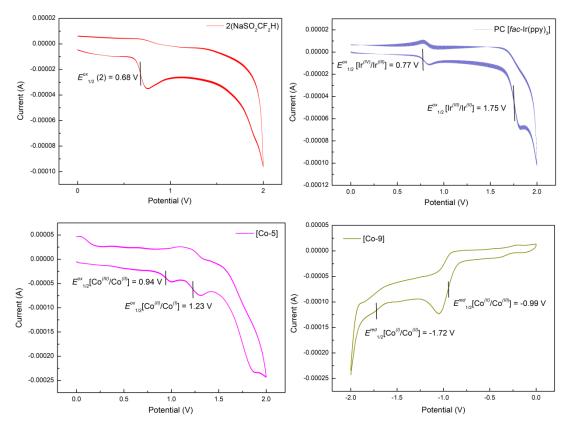
Figure S6. UV-Vis spectrum: fac-Ir(ppy)3, [Co], and mixture (With Blue LED irradiation).

C. Emission quenching experiments

Emission intensities were recorded using Full-featured fluorescence spectroscopy system (Edinburgh FLS920P010404) at ambient temperature. All solutions of *fac*-Ir(ppy)₃ were excited at 365 nm and the emission intensity at 514 nm was observed. Firstly, the emission spectrum of a 5×10⁻⁵ M solution of *fac*-Ir(ppy)₃ in MeCN was collected. Then, appropriate amount of quencher was added to the measured solution and the emission spectrum was collected. The Stern-Volmer emission quenching studies telled us that the [Co-9] are easier than [Co-5] to quench the excited photosensitizer ([Ir^{IV}]), which both easier than 1a.

Figure S7. Emission quenching of *fac*-Ir(ppy)₃ with **1a**, **2**, [Co-5], [Co-9] in MeCN.


Table S7. Comparison: slope of the Stern-Volmer plots


Quencher	1a	2a	[Co-5]	[Co-9]
k_{sv} (1/nm)	2.05×10^{5}	2.94×10^{3}	6.04×10^{5}	1.14×10^6

D. Cyclic voltammetry (CV) experiments

A three-electrode system connected to an electrochemical station was used: (1) the reference electrode (Ag/AgCl in 0.1 M KCl); (2) a glassy carbon electrode as working electrode; (3) a Pt wire as counter electrode. All electrochemical measurements were performed in degassed dry MeCN under N₂ atmosphere.

The fac-Ir(ppy)₃ was in 5×10^{-2} M solution; others were in 3×10^{-2} M solution.

Figure S8. CV spectra in TBAPF₆ (0.1 M) in degassed MeCN with scan rate 100 mV/s. Analysis:

- a. $E_{1/2}^{ox}(2^{-}/2^{\cdot}) = 0.64 \text{ V vs SCE} < E_{1/2}^{ox}[Ir^{(IV)}/Ir^{(III)}] = 0.73 \text{ V vs SCE}$. Hence 2 could be oxidized by *fac*-Ir(ppy)₃.
- b. $E_{1/2}^{ox}(O_2/O_2^-) = 0.87 \text{ V}$, -0.87 V < -0.90 V (-0.94 V). Hence O_2 might help [Co-5] or [Co-9] turnover.¹⁹
 - c. According to literature reports:²⁰

$$E_{0-0} = h \frac{c}{\lambda_{is}} = \frac{6.626 * 10^{-34} \text{ J} \cdot \text{s} * 2.998 * 10^8 \text{ m} \cdot \text{s}^{-1}}{485 * 10^{-9} \text{ m} * 1.602 * 10^{-19} \text{ J} \cdot \text{eV}^{-1}} = 2.56 \text{ eV}$$

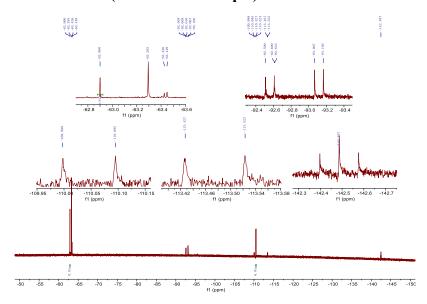
$$E_{1/2}^{ox} [\text{Ir}^{IV} / \text{*Ir}^{III}] = E_{1/2}^{ox} [\text{Ir}^{IV} / \text{Ir}^{III}] - E_{0-0} = -1.79 \text{ V vs Ag/AgCl}$$

$$E_{1/2}^{ox} [\text{Ir}^{IV} / \text{*Ir}^{III}] = -1.79 \text{ V} - 0.039 \text{ V} = -1.83 \text{ V vs SCE}$$

Comparing relevant redox potentials, we suggest that the iridium photosensitizer could easily reduce $[Co^{III}]$ to $[Co^{II}]$, itself being oxidized to $[Ir^{IV}]$.

E. Further reaction parameter analysis (necessity consideration)

Table S8. Further parameter considerations


Entry	[Co] (mol %)	Atmo	Yield ^b (%)
60	[Co-3] (10.0)	Air	22
61	[Co-3] (10.0)	N_2	0
62	[Co-4] (10.0)	Air	56
63	[Co-4] (10.0)	N_2	21
64	[Co-5] (7.0)	Air	57
65	[Co-5] (7.0)	N_2	23
66^k	[Co-5] (7.0)	N_2	40
67^{l}		O_2	0
68		O_2	46

^jReaction conditions: **1a** (0.3 mmol), **2** (5.0 equiv.), *fac*-Ir(ppy)₃ (3.0 mol%), [Co] (*x* mol%), MeCN (0.1 M), 7 W Blue LED, air, rt, 24 h; ^bYields were determined by ¹⁹F NMR analysis using PhCF₃ as the internal standard; ^kAdd PhNO₂ (1.0 equiv.); ¹**2** (2.5 equiv.)_o

- a. For the comparison of $[Co^{II}]$ & $[Co^{III}]$: The latter might be more efficient, possibly owing to their photo-stabilities, quenching efficiencies and redox potentionals.^{7-9, 18}
 - b. For the comparison of reaction atmosphere, we could conclude that:
 - i) Air was superior to O_2 , and O_2 was superior to N_2 .
 - ii) Air was superior to add another oxidant under N2 atmosphere.

These phenomena might due to the product $\bf 3a$ was tend to hydrolyse, $^{21-22}$ where O_2 terminally turned into H_2O^{13} . Meantime, H_2O could also ruin $\bf 2$ for effectively generating sufficient $\cdot CF_2H^{23}$.

F. Possible side reactions (Take 1m as example)

Figure S9. Crude ¹⁹**F NMR** peak identification (take **1m** as example).

According to reported literature, we defer the peaks to the corresponding side reactions (see below).

Table S9. Peak identifications

δ (ррт)	Identifications
-62.90 (s)	PhCF ₃
-63.30 (s)	CF ₃ in 3m
-63.44 (d, $J = 12.7$ Hz, 1F),	2F of [Co]-CF ₂ H ²⁴
-93.12 (d, $J = 56.4$ Hz, 1F)	(ligand exchange) ²⁵
-92.58 (dt, $J = 56.6$, 5.6 Hz, 2F)	O N CF₂H H 26
-110.05 (d, $J = 55.2$, 2F)	F ₃ C SEt SEt SEt
-110.48 (d, $J = 55.0$ Hz, 2F)	CF ₂ H in 3m
-113.48 (dd, $J = 54.3$, 1.3 Hz, 2F)	O SEt SEt CF ₂ H 28
-142.49 (t, <i>J</i> = 50.5 Hz, 2F)	$CF_2H_2^{29}$

We noticed the generation of CF_2H_2 during the reaction²⁹. Thus, we conclude that $\cdot CF_2H$ might be a short-living radical (non-persistent radical)³⁰⁻³¹.

V. Downstream Applications

A. converted to aldehyde (hydrolysis)

In a 25 mL round bottom flask, fresh **3a** was added, followed by silica gel (1.0 g), which was rinsed with 3 mL water. Afterwards, it was heated under 60 °C oil bath for 4 h. When finished, the crude mixture was poured into saturated NaHCO₃ aqueous (10 mL), and quickly distracted by DCM (5 mL×3). Then the solvent was evaporated and the residue was purified via flash column chromatography (PE/EA = 30/1 to 4/1) to obtain target aldehyde **4a** (21.7 mg, 60%).

4a: 2-benzoyl-3,3-bis(ethylthio)acrylaldehyde: light yellow oil (21.7 mg, 60%). ¹**H NMR** (600 MHz, CDCl₃) δ (ppm) 10.24 (s, 1H), 7.83 (dd, J = 7.8, 1.2 Hz, 2H), 7.58 – 7.54 (m, 1H), 7.44 (t, J = 7.8 Hz, 2H), 3.05 – 2.82 (m, 4H), 1.39 – 1.14 (m, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ (ppm) 194.0, 186.9, 161.6, 144.3, 136.2, 133.7, 129.2, 128.6, 29.5, 14.8. **HRMS** (ESI-TOF) Calcd for C₁₄H₁₆NaO₂S₂ (M+Na)⁺ 303.0484. Found 303.0477.

B. cyclization to 3*H*-1,2-dithio-2-thione(s)

R₁ O SEt Lawesson's reagent (2.0 equiv.)

$$CF_2H$$
 dry toluene (0.1 M)
 $90 \, ^{\circ}C$, N_2 , $3 \, h$
 CF_2H Yield of 5o: 51%

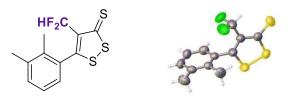
 CF_2H Yield of 5w: 62%

In a glove box (N₂) to a 15 mL pressure tube, fresh **3** (75.9 mg, 0.23 mmol), Lawesson's reagent (94.0 mg, 2.0 equiv) and dry toluene (3 mL, ca. 0.1 M versus **3**) was added. Then the whole system was transferred to an 90 °C oil bath, refluxing for 3 h. After the reaction completed, the toluene was evaporated and the residue was purified by column chromatography (PE/EA = 130/1 to 125/1) to get **5w** (41.1 mg, 62%). $^{32-36}$

5w: 4-(difluoromethyl)-5-(2,3-dimethylphenyl)-3*H*-1,2-dithiole-3-thione: bright orange solid (41.1 mg, 62%). mp: 113-114 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.30 (dd, J = 7.2, 1.8 Hz, 1H), 7.23 – 7.15 (m, 2H), 6.72 (t, J = 53.4 Hz, 1H), 2.34 (s, 3H), 2.22 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 213.4 (t, J = 5.0 Hz), 177.8, 137.9, 137.3 (t, J = 22.8 Hz), 135.0, 132.4, 129.2, 126.9, 125.5, 112.2 (t, J = 241.5 Hz), 20.2, 17.0 (d, J = 2.1 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -116.37 (dd, J = 309.3, 53.4 Hz, 1F), -119.25 (dd, J = 309.4, 53.4 Hz, 1F). HRMS (ESI-TOF) Calcd for C₁₂H₁₁F₂S₃ (M+H)⁺ 288.9985. Found 288.9985.

Procedures to obtain **50** is similar to that of **5w**: Using **30** (60.9 mg, 0.17 mmol), and get **50** (27.3 mg, 51%).

50: 5-(3-(*tert***-butyl)phenyl)-4-(difluoromethyl)-3***H***-1,2-dithiole-3-thione:** bright orange solid (27.3 mg, 51%). mp: 108-109 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.65 (d, J = 1.8 Hz, 1H), 7.61 (ddd, J = 5.4, 3.6, 1.8 Hz, 1H), 7.46 – 7.42 (m, 2H), 6.85 (t, J = 53.4 Hz, 1H), 1.36 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 213.7 (t, J = 53.4 Hz), 178.2, 152.2, 135.7 (t, J = 23.2 Hz), 130.4, 128.9, 128.6, 125.9 (t, J = 23.4 Hz), 125.6 (t, J = 1.7 Hz), 112.6 (t, J = 241.7 Hz), 34.9, 31.1. ¹⁹F NMR (565 MHz, CDCl₃) δ (ppm) -114.52 (d, J = 53.5 Hz, 2F). HRMS (ESI-TOF) Calcd for C₁₄H₁₅F₂S₃ (M+H)⁺ 317.0298. Found 317.0294.


C. further transfromation

In a glove box (N₂) to a 25 mL round bottom flask, fresh 5w (43.2 mg, 0.15 mmol), DMAD (37.0 μ L, 2.0 equiv.), anhydrous Yb(OTf)₃ (37.2 mg, 40 mol%) were added sequentially. Then dry DCM (4 mL) was added, and the flask was tightly sealed. Removing the flask out of the glove box and stirring overnight. After 24 h, the DCM was evaporated. The residue was purified by column chromatography (PE/EA = 20/1

to 4/1). Evenetually, we obtained **6w** (28.5 mg, 44%)³⁷.

6w: dimethyl 2-(1-(2,3-dimethylphenyl)-3,3-difluoro-1-thioxopropan-2-ylidene)-1,3-dithiole-4,5-dicarboxylate: dark green solid (28.5 mg, 44%). mp: 121-122 °C. 1 H NMR (600 MHz, CDCl₃) δ (ppm) 7.18 – 7.08 (m, 2H), 6.90 (d, J = 7.2 Hz, 1H), 6.53 (t, J = 53.4 Hz, 1H), 3.99 (m, 6H), 2.29 (s, 3H), 2.02 (s, 3H). 13 C NMR (151 MHz, CDCl₃) δ (ppm) 213.3 (t, J = 4.7 Hz), 166.7, 160.2, 159.1, 146.1, 137.73, 133.5 (t, J = 3.6 Hz), 131.3, 130.8, 129.9, 126.4 (t, J = 21.4 Hz), 125.8, 123.8, 114.7 (t, J = 240.8 Hz), 54.0, 53.9, 20.3, 16.1. 19 F NMR (565 MHz, CDCl₃) δ (ppm) -115.07 (dd, J = 103.0, 53.7 Hz, 2F). HRMS (ESI-TOF) Calcd for $C_{18}H_{17}F_{2}O_{4}S_{3}$ (M+H)⁺ 431.0252. Found 431.0247.

VI. Crystal Datas of Compound 5w

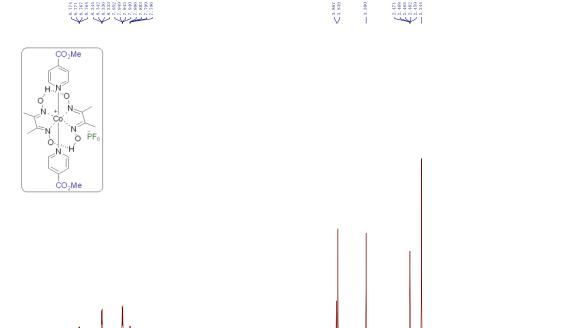
CCDC: 2414244

Table S10. Crystallographic data and structural refinement for 5w

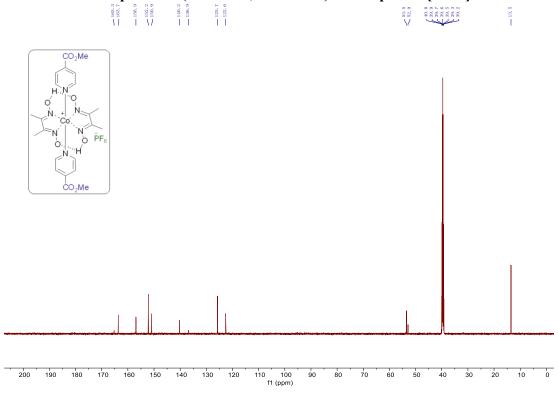
Empirical formula	$C_{14}H_{16}F_2S_3$
Formula weight	288.38
Crystal system	monoclinic
Space group	P-1
a (Å)	11.9779 (9)
b (Å)	8.2686 (6)
c (Å)	13.1934 (10)
α (deg)	90
β (deg)	98.869(5)
γ (deg)	90
Volume (Å ³)	1291.06

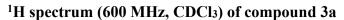
Z	4
Calculated density (mg/m ³)	1.484
Absorption coefficient (mm ⁻¹)	5.264
F(000)	592.0
Theta range for data collection (deg)	3.735 to 64.091
Reflections collected/unique	10789/2112
Goodness-of-fit on F^2	1.089
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0543, WR2 = 0.1998
R indices (all data)	R1 = 0.0693, WR2 = 0.2179

VII. References

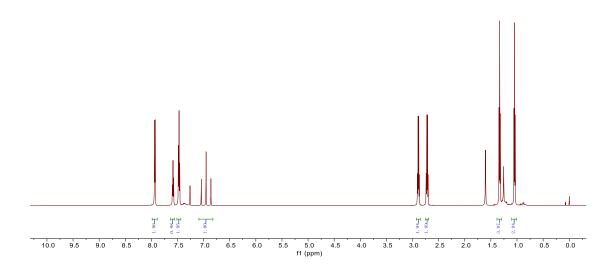

- [1] R. Eskandari, L. Navidpour, M. Amini, A. Shafiee, H. Shafaroodi, A. Shafiee, A convenient synthesis of 5-alkylthio-3,4-diarylisoxazoles by palladium-catalyzed coupling reactions, *J. Heterocyclic Chem.*, 2007, **44**, 449–453.
- [2] Z. Mao, F. Huang, H. Yu, J. Chen, Z. Yu, Z. Xu, Copper-Catalyzed Trifluoromethylation of Internal Olefinic C-H Bonds: Efficient Routes to Trifluoromethylated Tetrasubstituted Olefins and N-Heterocycles, *Chem. Eur. J.*, 2014, **20**, 3439–3445.
- [3] X. Yang, K. Wu, P. Wu, J. Chen, C. Sun, Z. Yu, Brønsted Acid-Mediated Annulation of α-Oxo Ketene Dithioacetals with Pyrroles: Efficient Synthesis of Structurally Diverse Cyclopenta[b]pyrroles, *Chem. Eur. J.*, 2015, **21**, 9323–9327.
- [4] L. Pan, B. Zheng, X. Yang, L. Deng, Y. Li, Q. Liu, Cyclization of Vinylketene Dithioacetals: A Synthetic Strategy for Substituted Thiophenes, *Adv. Synth. Catal.*, 2021, **363**, 234–243.
- [5] Y. Zhou, Y. Lou, Y. Wang, Q. Song, Oxidant-controlled divergent transformations of 3-aminoindazoles for the synthesis of pyrimido[1,2-b]-indazoles and aromatic nitrile-derived dithioacetals, Org. Chem. Front., 2019, 6, 3355–3359.
- [6] A. Y. Chan, A. Ghosh, J. T. Yarranton, J. Twilton, J. Jin, D. M. Arias-Rotondo, H. A. Sakai, J. K. McCusker, D. W. C. MacMillan, Exploiting the Marcus inverted region for first-row transition metal-based photoredox catalysis, *Science*, 2023, 382, 191–197.
- [7] W.-Q. Liu, T. Lei, S. Zhou, X.-L. Yang, J. Li, B. Chen, J. Sivaguru, C.-H. Tung, L.-Z. Wu, Cobaloxime Catalysis: Selective Synthesis of Alkenylphosphine Oxides under Visible Light, *J. Am. Chem. Soc.*, 2019, 141, 13941–13947.
- [8] A. Panagiotopoulos, K. Ladomenou, D. Sun, V. Artero, A. G. Coutsolelos, Photochemical hydrogen production and cobaloximes: the influence of the cobalt axial N-ligand on the system stability, *Dalton Trans.*, 2016, 45, 6732–6738.
- [9] M. Razavet, V. Artero, M. Fontecave, Proton Electroreduction Catalyzed by Cobaloximes: Functional Models for Hydrogenases, *Inorg. Chem.*, 2005, **44**, 4786-4795.
- [10] A. Shao, Y. Li, Y. Ding, Y. Li, S. Wu, Y. Jiang, M. Dong, H. Wu, S. Chen, Photoredox-Cobaloxime

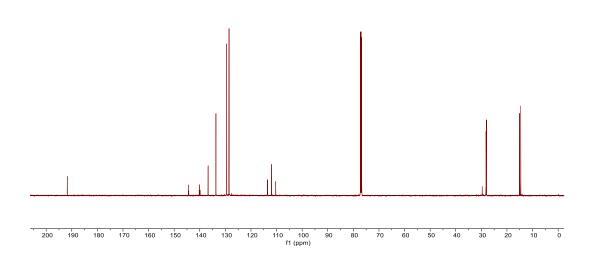
- Catalysis for Selective Oxidative Dehydrogenative [4+2] Annulation of Imidazo-Fused Heterocycles with Alkenes, *Org. Lett.*, 2024, **26**, 2529–2534.
- [11] G. Zhang, Y. Lin, X. Luo, X. Hu, C. Chen, A. Lei, Oxidative [4+2] annulation of styrenes with alkynes under external-oxidant-free conditions, *Nat Commun.*, 2018, **9**, 1225-1231.
- [12] Y. Song, B. Zheng, S. Yang, Y. Li, Q. Liu, L. Pan, Trifluoromethylations of (Hetero)arenes and Polarized Alkenes Using Trifluoroacetic Anhydride under Photoredox Catalysis, *Org. Lett.*, 2023, 25, 2372–2376.
- [13] P. Dai, X. Yu, P. Teng, W.-H. Zhang, C. Deng, Visible-Light- and Oxygen-Promoted Direct Csp² -H Radical Difluoromethylation of Coumarins and Antifungal Activities, *Org. Lett.*, 2018, 20, 6901–6905.
- [14] Y. Hong, J. Qiu, Z. Wu, S. Xu, H. Zheng, G. Zhu, Tetrafluoroisopropylation of alkenes and alkynes enabled by photocatalytic consecutive difluoromethylation with CF₂HSO₂Na, *Nat. Commun.*, 2024, **15**, 5685-5693.
- [15] H. Zhao, A. J. McMillan, T. Constantin, R. C. Mykura, F. Juliá, D. Leonori, Merging Halogen-Atom Transfer (XAT) and Cobalt Catalysis to Override E2-Selectivity in the Elimination of Alkyl Halides: A Mild Route toward contra-Thermodynamic Olefins, J. Am. Chem. Soc., 2021, 143, 14806–14813.
- [16] Q. Xu, B. Zheng, X. Zhou, L. Pan, Q. Liu, Y. Li, Photoinduced C(sp²)–H/C(sp²)–H Cross-Coupling of Alkenes: Direct Synthesis of 1,3-Dienes, *Org. Lett.*, 2020, **22**, 1692–1697.
- [17] Y. Li, X. Xu, H. Shi, L. Pan, Q. Liu, Bicyclization of Isocyanides with Alkenoyl Bis(ketene dithioacetals): Access to 6,7-Dihydro-1 H -indol-4(5H)-ones, *J. Org. Chem.*, 2014, **79**, 5929–5933.
- [18] P. Du, K. Knowles, R. Eisenberg, A Homogeneous System for the Photogeneration of Hydrogen from Water Based on a Platinum(II) Terpyridyl Acetylide Chromophore and a Molecular Cobalt Catalyst, J. Am. Chem. Soc., 2008, 130, 12576–12577.
- [19] R. Prince, M. Segal, Cr²⁺-cobaloxime electron transfer reactions, *Nature*, 1974, **249**, 246-247.
- [20] C.-J. Wu, Q.-Y. Meng, T. Lei, J.-J. Zhong, W.-Q. Liu, L.-M. Zhao, Z.-J. Li, B. Chen, C.-H. Tung, L.-Z. Wu, An Oxidant-Free Strategy for Indole Synthesis via Intramolecular C–C Bond Construction under Visible Light Irradiation: Cross-Coupling Hydrogen Evolution Reaction, ACS Catal., 2016, 6, 4635–4639.
- [21] J. Su, C. Li, X. Hu, Y. Guo, Q. Song, Deaminative Arylation and Alkenyaltion of Aliphatic Tertiary Amines with Aryl and Alkenylboronic Acids via Nitrogen Ylides, *Angew. Chem. Int. Ed.*, 2022, 61, e202212740.
- [22] J. R. Box, M. E. Avanthay, D. L. Poole, A. J. J. Lennox, Electronically Ambivalent Hydrodefluorination of Aryl-CF₃ groups enabled by Electrochemical Deep-Reduction on a Ni Cathode, Angew. *Chem. Int. Ed.*, 2023, 62, e202218195.
- [23] F.-X. Zhang, J.-H. Lin, J.-C. Xiao, Difluoromethylsulfonyl Imidazolium Salt for Difluoromethylation of Alkenes, *Org. Lett.*, 2022, **24**, 7611–7616.
- [24] D. J. Harrison, S. I. Gorelsky, G. M. Lee, I. Korobkov, R. T. Baker, Cobalt Fluorocarbene Complexes, *Organometallics*, 2013, **32**, 12–15.
- [25] F. R. Jensen, R. C. Kiskis, Stereochemistry and mechanism of the photochemical and thermal insertion of oxygen into the carbon-cobalt bond of alkyl(pyridine)cobaloximes, *J. Am. Chem. Soc.*, 1975, **97**, 5825–5831.
- [26] Z.-Q. Zhang, Y.-Q. Sang, C.-Q. Wang, P. Dai, X.-S. Xue, J. L. Piper, Z.-H. Peng, J.-A. Ma, F.-G. Zhang, J. Wu, Difluoromethylation of Unactivated Alkenes Using Freon-22 through Tertiary Amine-Borane-Triggered Halogen Atom Transfer, J. Am. Chem. Soc., 2022, 144, 14288–14296.

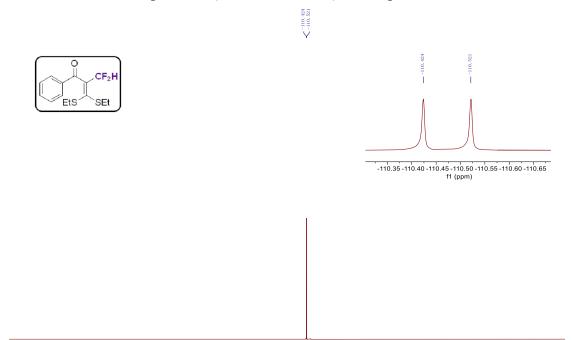

- [27] B. K. Chi, S. J. Gavin, B. N. Ahern, N. Peperni, S. Monfette, D. J. Weix, Sulfone Electrophiles in Cross-Electrophile Coupling: Nickel-Catalyzed Difluoromethylation of Aryl Bromides, *ACS Catal.*, 2024, **14**, 11087–11100.
- [28] C. F. Meyer, S. M. Hell, A. Misale, A. A. Trabanco, V. Gouverneur, Hydrodifluoromethylation of Alkenes with Difluoroacetic Acid, *Angew. Chem. Int. Ed.*, 2019, **58**, 8829–8833.
- [29] S. Kim, H. Kim, Cu-Electrocatalysis Enables Vicinal Bis(difluoromethylation) of Alkenes: Unraveling Dichotomous Role of Zn(CF₂ H)₂ (DMPU)₂ as Both Radical and Anion Source, *J. Am. Chem. Soc.*, 2024, **146**, 22498–22508.
- [30] A. Cai, W. Yan, C. Wang, W. Liu, Copper-Catalyzed Difluoromethylation of Alkyl Iodides Enabled by Aryl Radical Activation of Carbon–Iodine Bonds, *Angew. Chem. Int. Ed.*, 2021, 60, 27070– 27077.
- [31] R. I. Rodríguez, M. Sicignano, J. Alemán, Fluorinated Sulfinates as Source of Alkyl Radicals in the Photo-Enantiocontrolled β-Functionalization of Enals, *Angew. Chem. Int. Ed.*, 2022, 61, e202112632.
- [32] T. J. Curphey, A. H. Libby, Dianions of 3-oxodithioic acids: preparation and conversion to 3H-1,2-dithiole-3-thiones, *Tetrahedron Lett.*, 2000, **41**, 6977–6980.
- [33] S. Koley, T. Chanda, S. Samai, M. S. Singh, Switching Selectivity of α-Enolic Dithioesters: One Pot Access to Functionalized 1,2- and 1,3-Dithioles, *J. Org. Chem.*, 2016, **81**, 11594–11602.
- [34] Z.-Y. Liu, J.-W. Hu, C.-H. Huang, T.-H. Huang, D.-G. Chen, S.-Y. Ho, K.-Y. Chen, E. Y. Li, P.-T. Chou, Sulfur-Based Intramolecular Hydrogen-Bond: Excited-State Hydrogen-Bond On/Off Switch with Dual Room-Temperature Phosphorescence, *J. Am. Chem. Soc.*, 2019, 141, 9885–9894.
- [35] S. T. Bhaskaran, P. Mathew, Microwave assisted synthesis of functionalized 2H-chromene-2-thiones and 1,2-dithiole-3-thiones from β-oxodithioesters: Characterization, in vitro cytotoxicity and in silico docking studies, *J. Mol. Struct.*, 2022, **1251**, 132071.
- [36] J. Sheng, W. Danowski, A. S. Sardjan, J. Hou, S. Crespi, A. Ryabchun, M. P. Domínguez, W. Jan Buma, W. R. Browne, B. L. Feringa, Formylation boosts the performance of light-driven overcrowded alkene-derived rotary molecular motors, *Nat. Chem.*, 2024, 16, 1330–1338.
- [37] V. A. Ogurtsov, Y. V. Karpychev, Y. V. Nelyubina, P. V. Primakov, P. A. Koutentis, O. A. Rakitin, Synthesis of 6,7-Dihydropyrrolo[2,1-c][1,3]thiazino[3,2-a]pyrazine-4(11bH)-(thi)ones from 1,2-Dithiolo-3-(thi)ones, *Eur. J. Org. Chem.*, 2019, **2019**, 4149–4158.

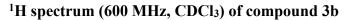

VIII. Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

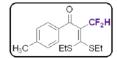
¹H spectrum (600 MHz, DMSO-d₆) of compound [Co-9]

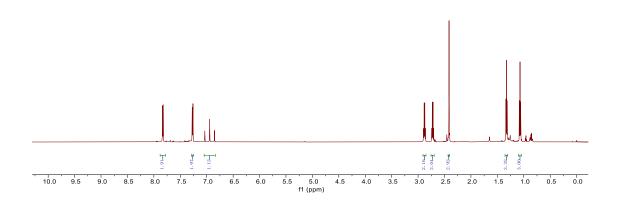

¹³C spectrum (151 MHz, DMSO-d₆) of compound [Co-9]

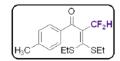


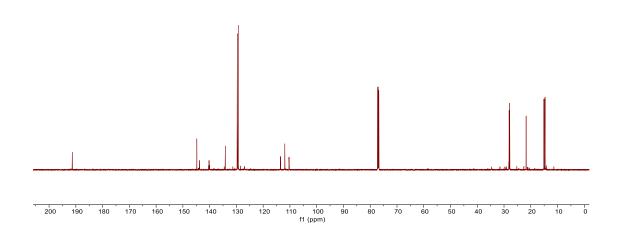



¹³C spectrum (151 MHz, CDCl₃) of compound 3a

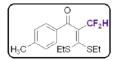


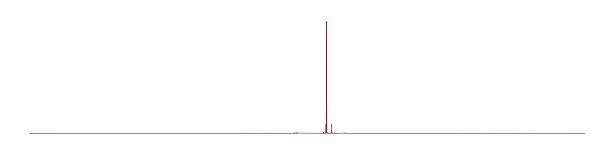

$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3a

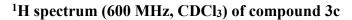




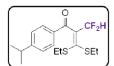
¹³C spectrum (151 MHz, CDCl₃) of compound 3b

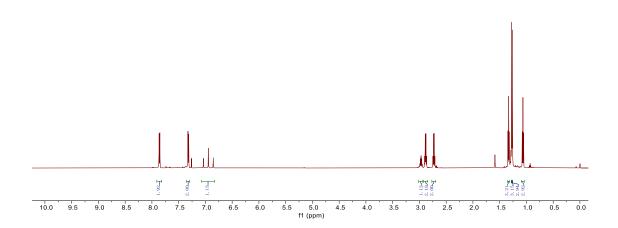

| 101.13 | 101.14 | 101.15 | 1

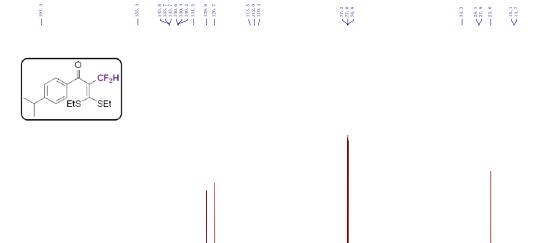


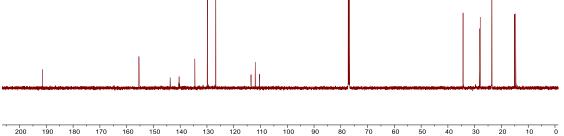


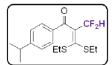
$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3b

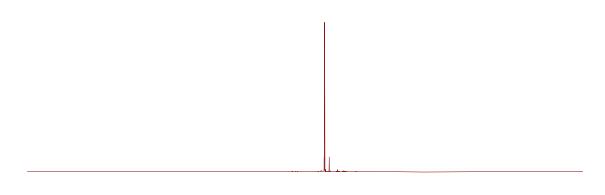


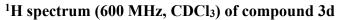


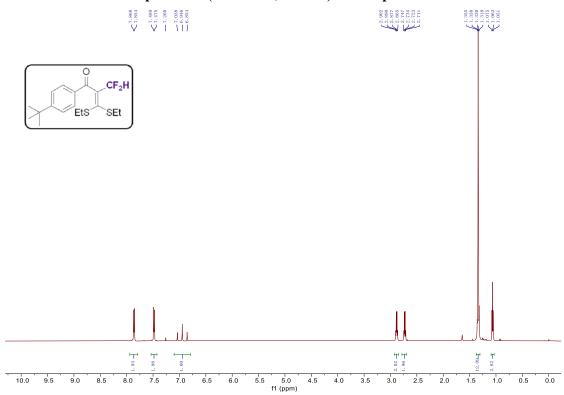


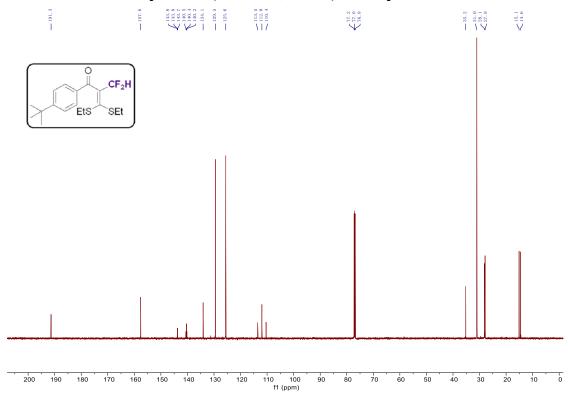


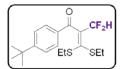

¹³C spectrum (151 MHz, CDCl₃) of compound 3c



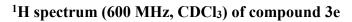



$^{19}\mbox{F}$ spectrum (565 MHz, CDCl₃) of compound 3c

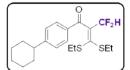


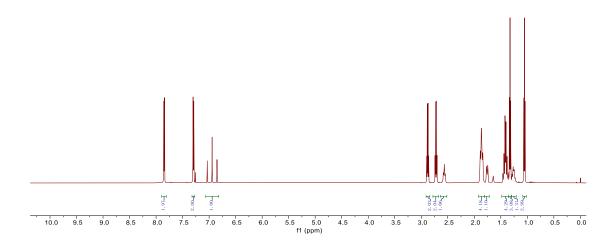


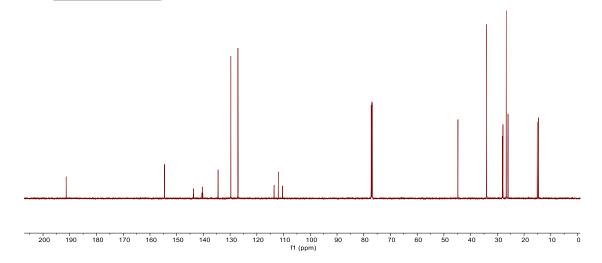
¹³C spectrum (151 MHz, CDCl₃) of compound 3d

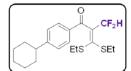


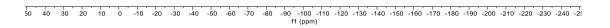
$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3d



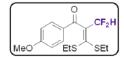


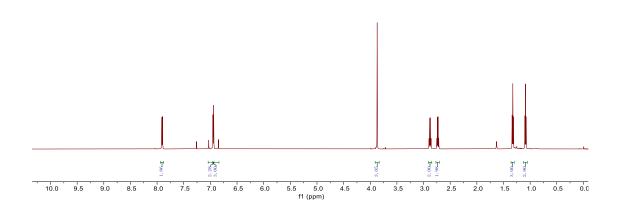


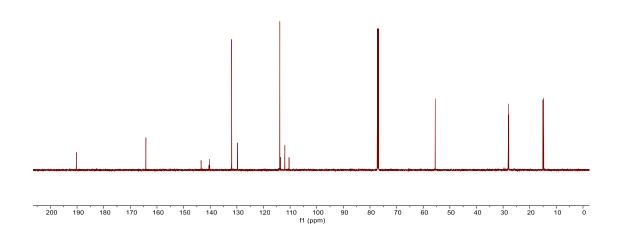

¹³C spectrum (151 MHz, CDCl₃) of compound 3e

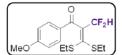


$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3e



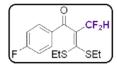


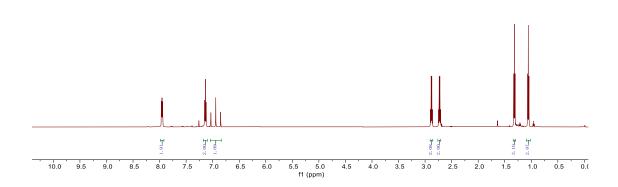




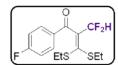
¹³C spectrum (151 MHz, CDCl₃) of compound 3f

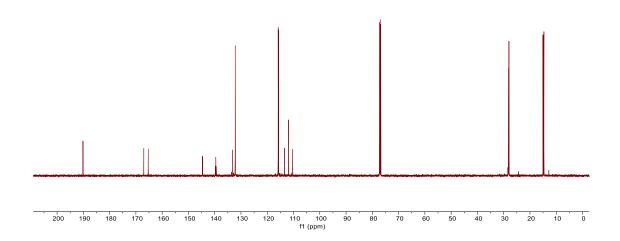
¹⁹F spectrum (565 MHz, CDCl₃) of compound 3f

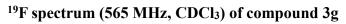




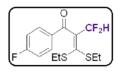
¹H spectrum (600 MHz, CDCl₃) of compound 3g

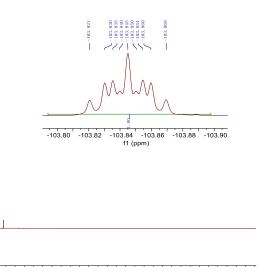


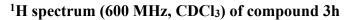


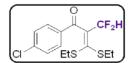


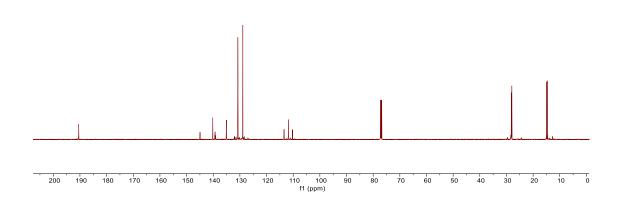
¹³C spectrum (151 MHz, CDCl₃) of compound 3g

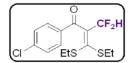

| 190.1 | 190.1 | 190.2 | 190.

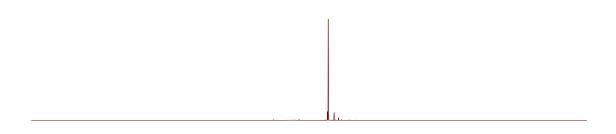


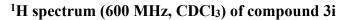




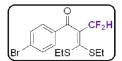


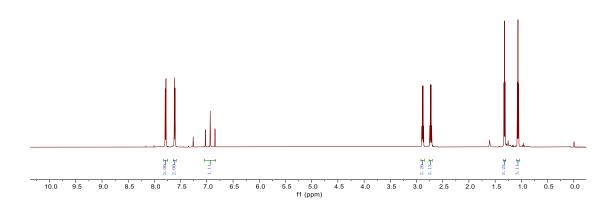


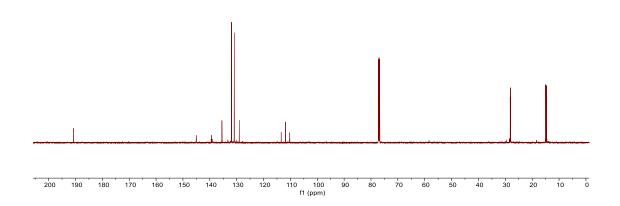

¹³C spectrum (151 MHz, CDCl₃) of compound 3h

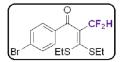


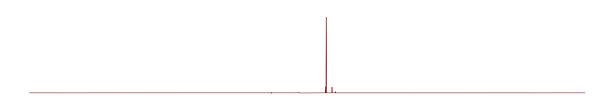
$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3h

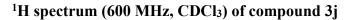




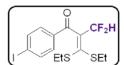


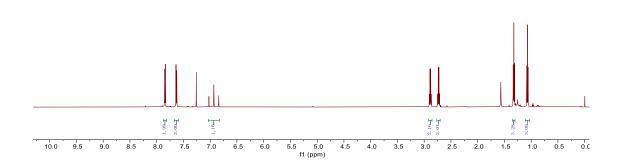


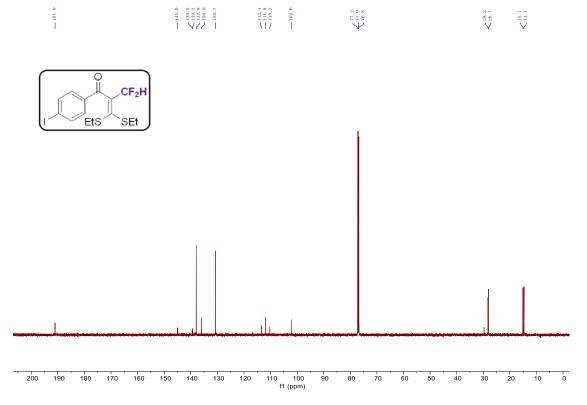

¹³C spectrum (151 MHz, CDCl₃) of compound 3i

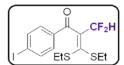


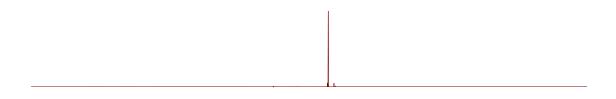
$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3i





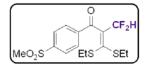


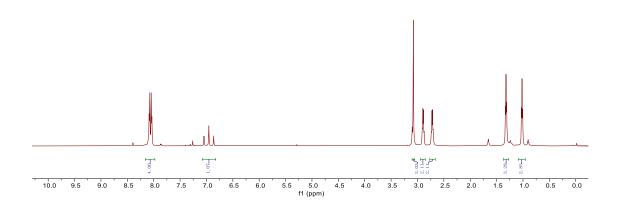


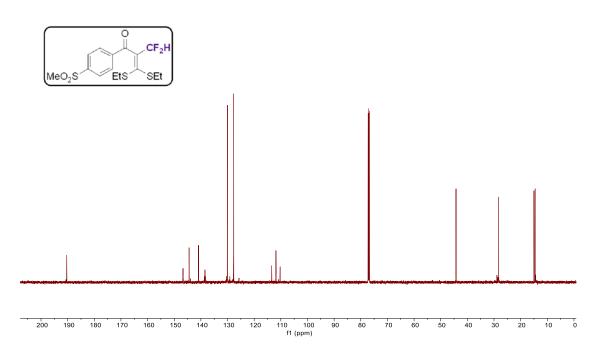

¹³C spectrum (151 MHz, CDCl₃) of compound 3j

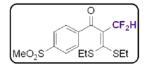


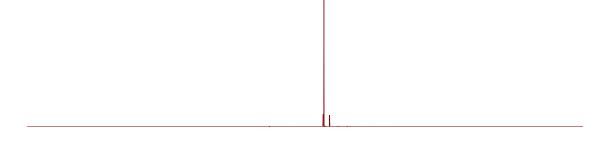
¹⁹F spectrum (565 MHz, CDCl₃) of compound 3j

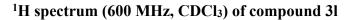




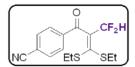


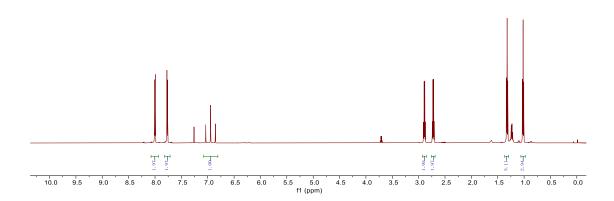

^{13}C spectrum (151 MHz, CDCl₃) of compound 3k

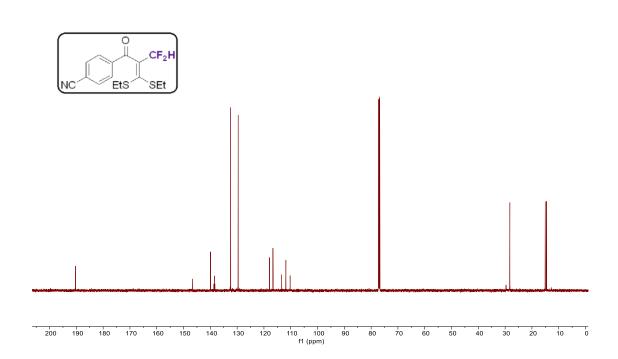


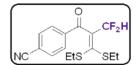


$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3k

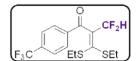


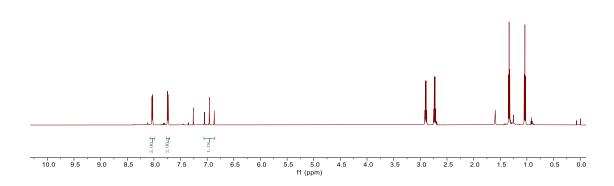





¹³C spectrum (151 MHz, CDCl₃) of compound 3l

$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3l





¹H spectrum (600 MHz, CDCl₃) of compound 3m

¹³C spectrum (151 MHz, CDCl₃) of compound 3m

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

190.77

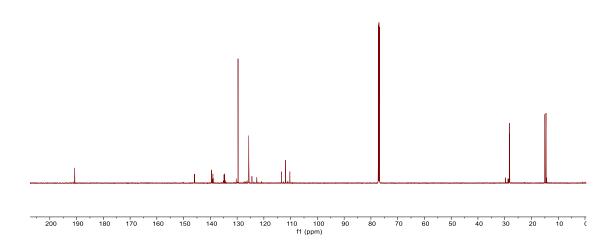
190.77

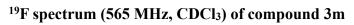
190.77

190.77

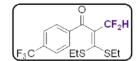
190.77

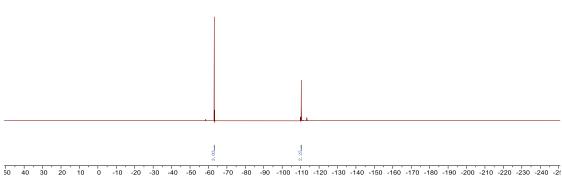
190.77

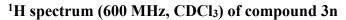

190.77

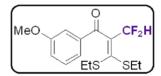

190.77

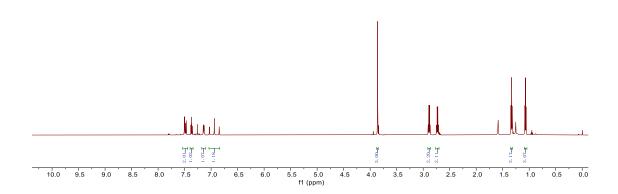

190.77


190.77

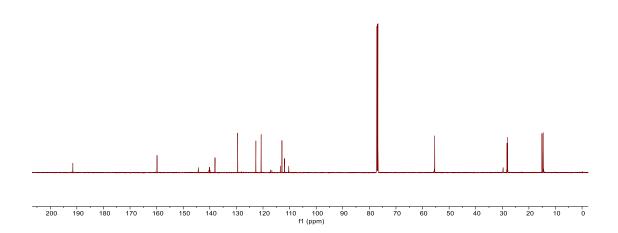

190.77

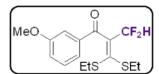


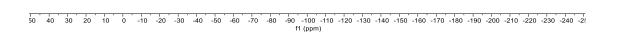


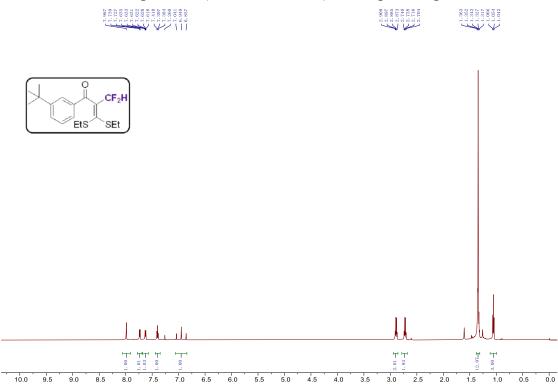


50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2 f1 (ppm)



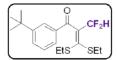


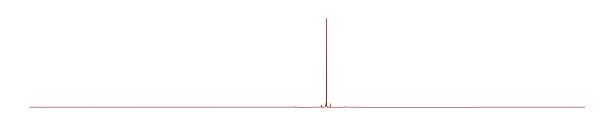

¹³C spectrum (151 MHz, CDCl₃) of compound 3n

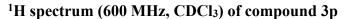

$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3n

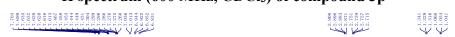


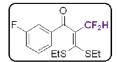
¹H spectrum (600 MHz, CDCl₃) of compound 3p

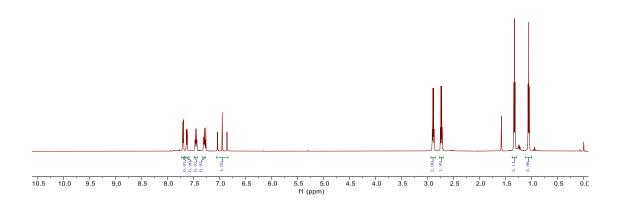


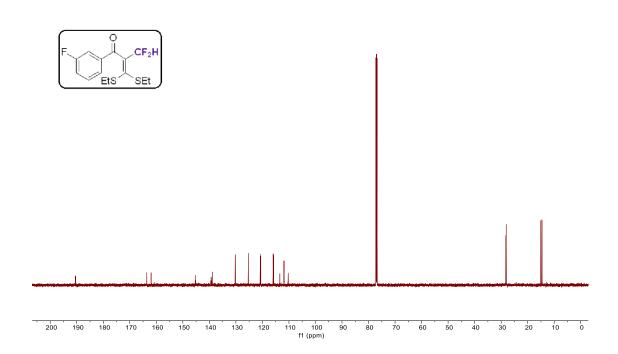

¹³C spectrum (151 MHz, CDCl₃) of compound 3p

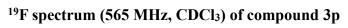


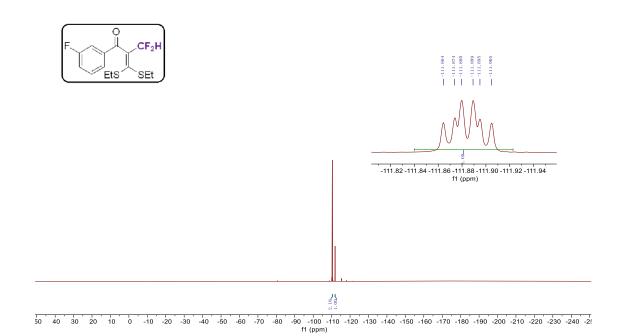

¹⁹F spectrum (565 MHz, CDCl₃) of compound 3p

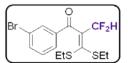


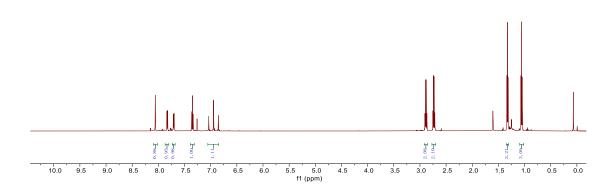


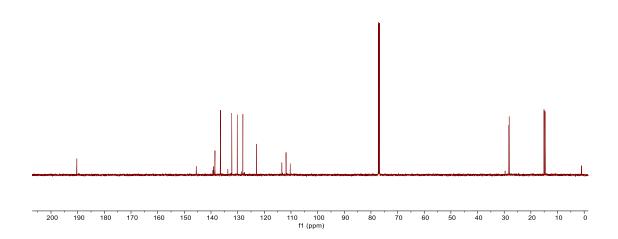


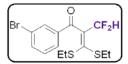


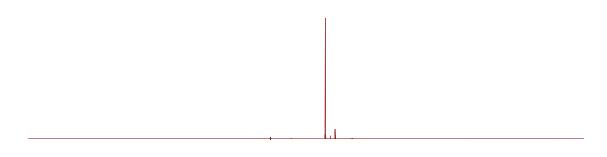

¹³C spectrum (151 MHz, CDCl₃) of compound 3p

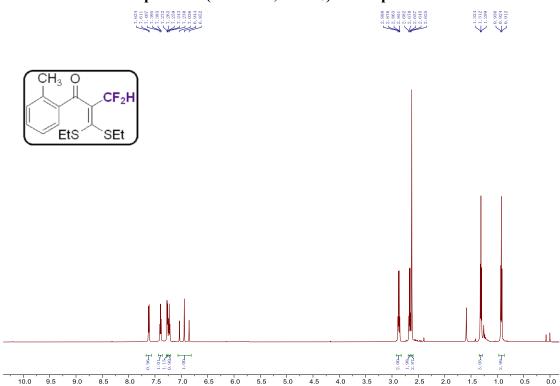


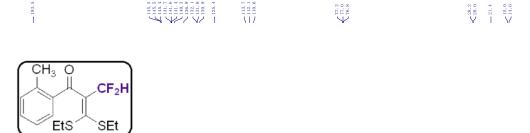


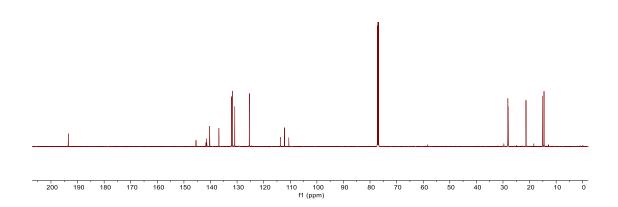

¹H spectrum (600 MHz, CDCl₃) of compound 3q



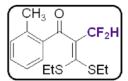

¹³C spectrum (151 MHz, CDCl₃) of compound 3q


$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3q

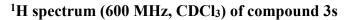


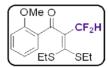


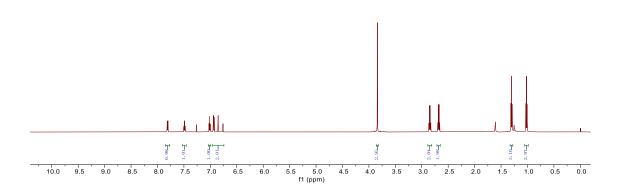
¹H spectrum (600 MHz, CDCl₃) of compound 3r


¹³C spectrum (151 MHz, CDCl₃) of compound 3r

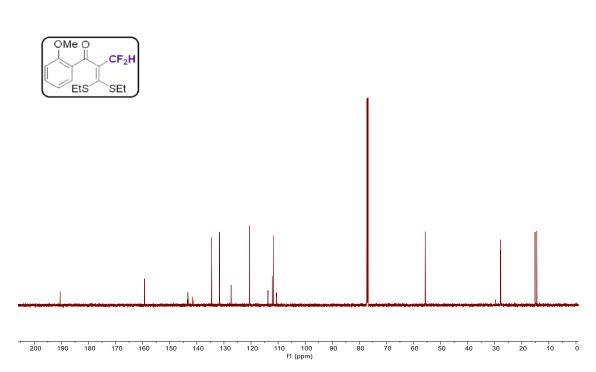



$^{19}\mbox{F}$ spectrum (565 MHz, CDCl₃) of compound $3\mbox{r}$

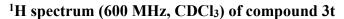


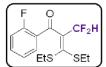


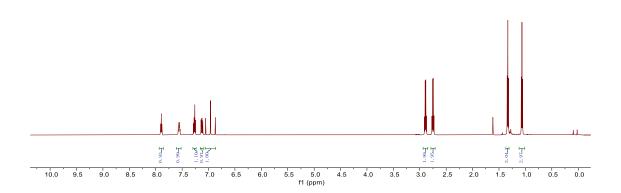
50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2! f1(ppm)



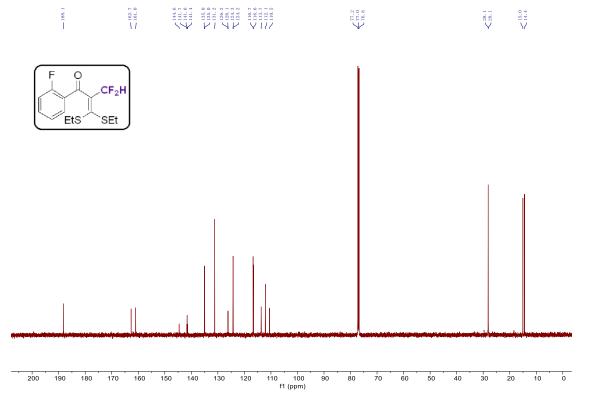
¹³C spectrum (151 MHz, CDCl₃) of compound 3s

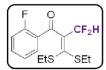


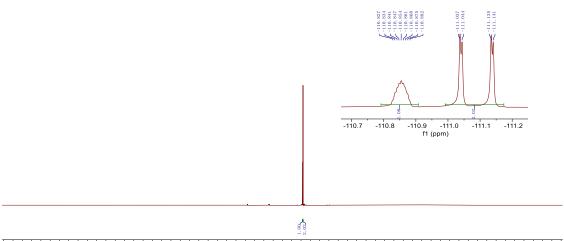

^{19}F spectrum (565 MHz, CDCl₃) of compound 3s

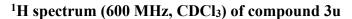


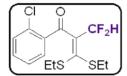
50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2!

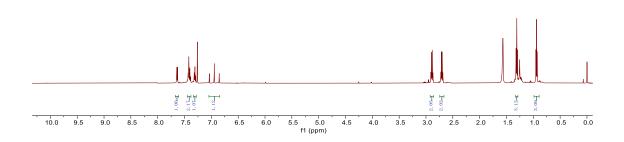


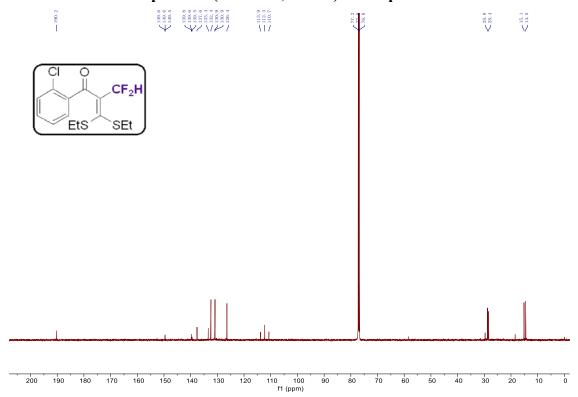


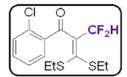

¹³C spectrum (151 MHz, CDCl₃) of compound 3t



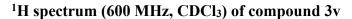


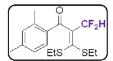


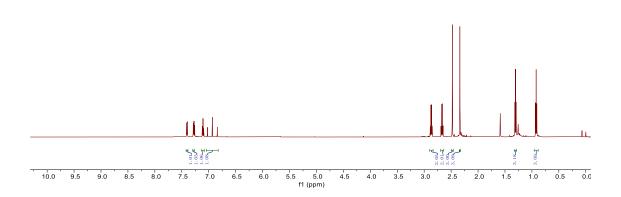




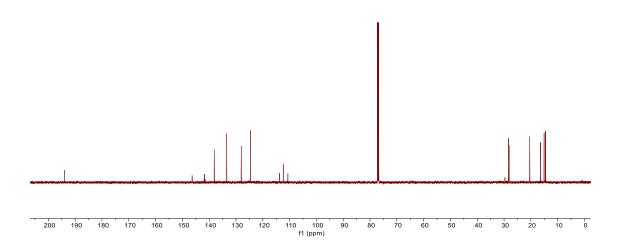
¹³C spectrum (151 MHz, CDCl₃) of compound 3u

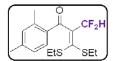

$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3u

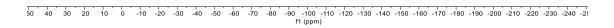


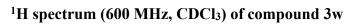


50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2!

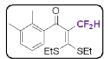


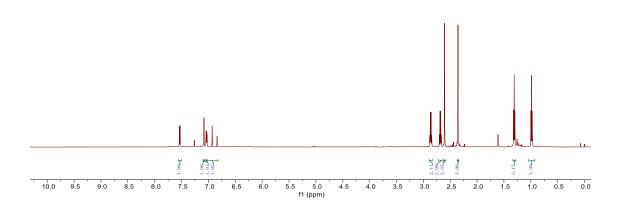


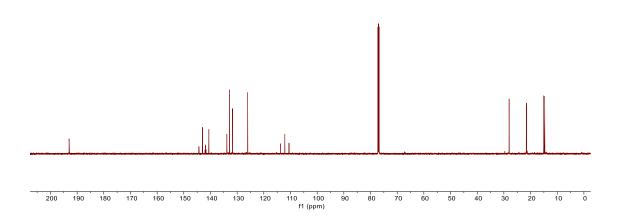

$^{13}\mathrm{C}$ spectrum (151 MHz, CDCl₃) of compound 3v

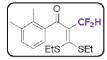


$^{19}\mbox{F}$ spectrum (565 MHz, CDCl₃) of compound 3v

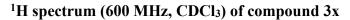




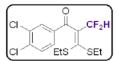


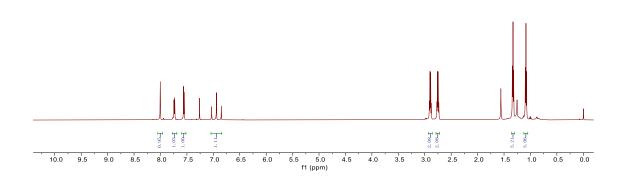


^{13}C spectrum (151 MHz, CDCl₃) of compound 3w

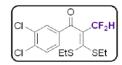


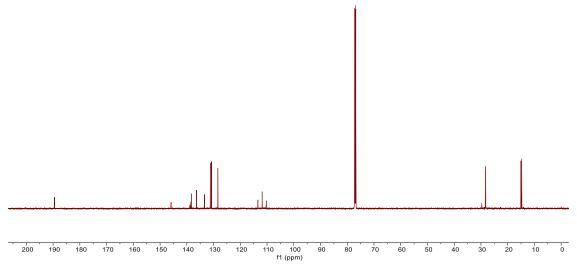
$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3w



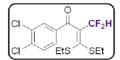


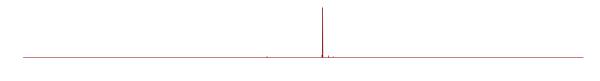
50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2!

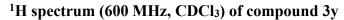


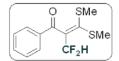


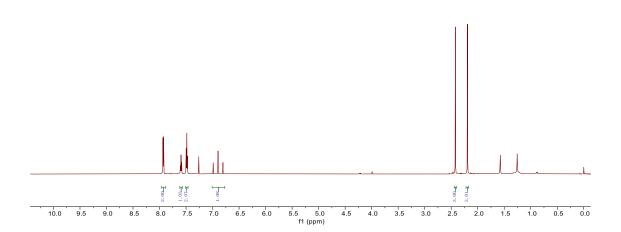
¹³C spectrum (151 MHz, CDCl₃) of compound 3x



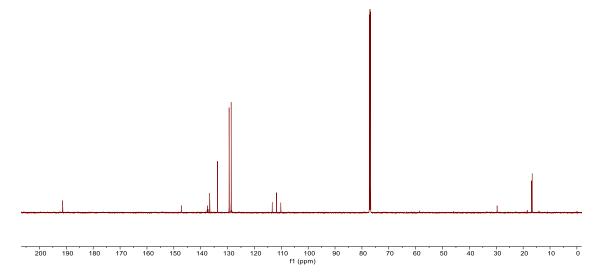


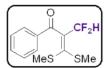

$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3x

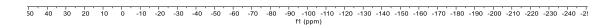




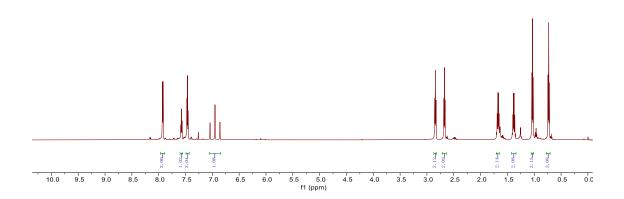
50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2!



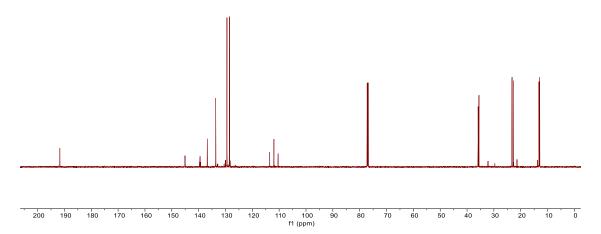

¹³C spectrum (151 MHz, CDCl₃) of compound 3y


| 191.4 | 147.2 | 147.2 | 147.2 | 158.4 | 158.4 | 158.4 | 158.8 | 16.6

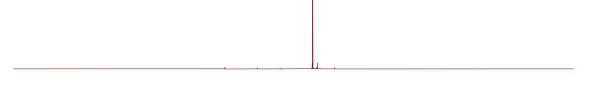
$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3y

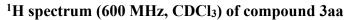


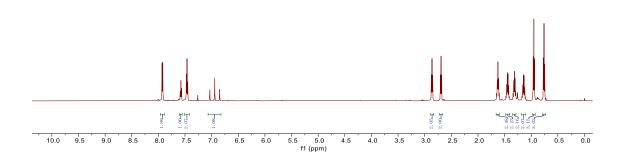
¹H spectrum (600 MHz, CDCl₃) of compound 3z



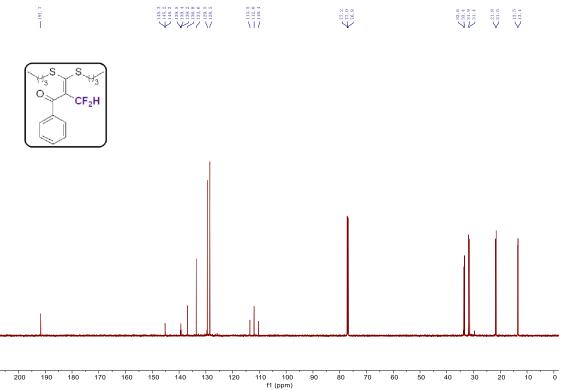
¹³C spectrum (151 MHz, CDCl₃) of compound 3z

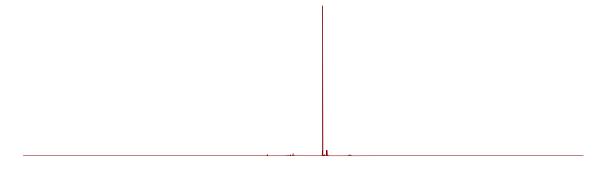


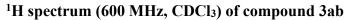

$^{19}\mbox{F}$ spectrum (565 MHz, CDCl₃) of compound 3z

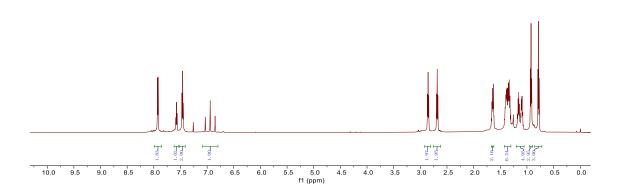


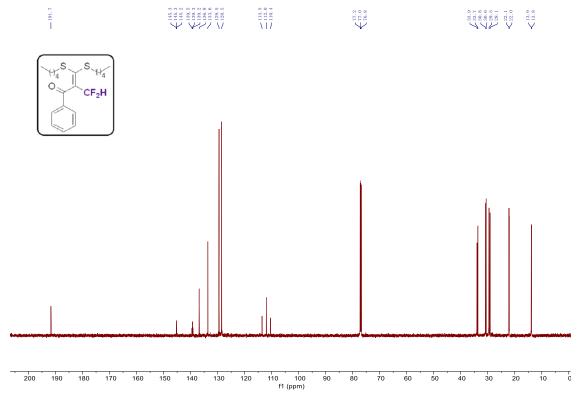
50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2!

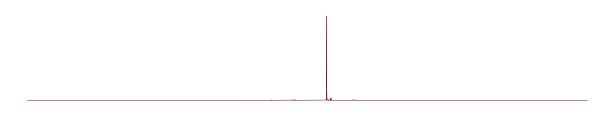



¹³C spectrum (151 MHz, CDCl₃) of compound 3aa

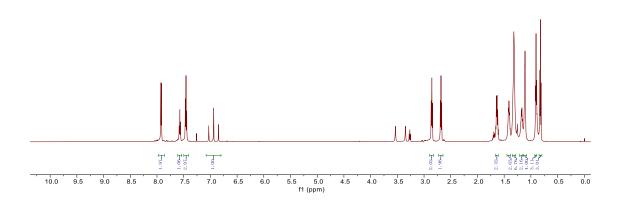

$^{19}\mbox{F}$ spectrum (565 MHz, CDCl3) of compound 3aa

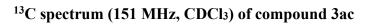


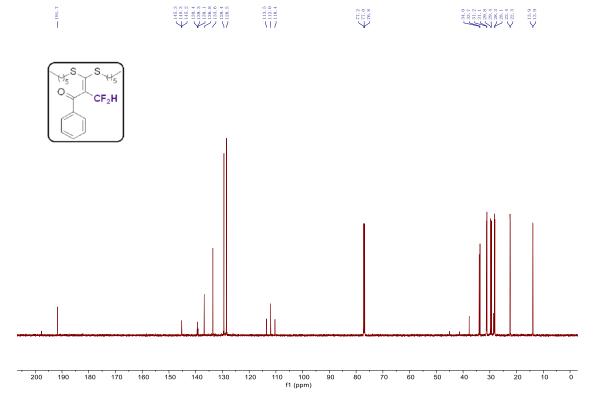

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25 f1 (ppm)

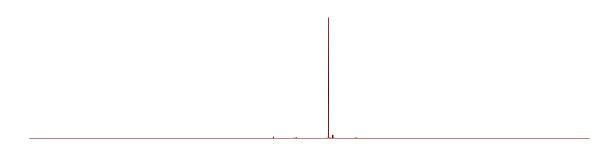

¹³C spectrum (151 MHz, CDCl₃) of compound 3ab

$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3ab

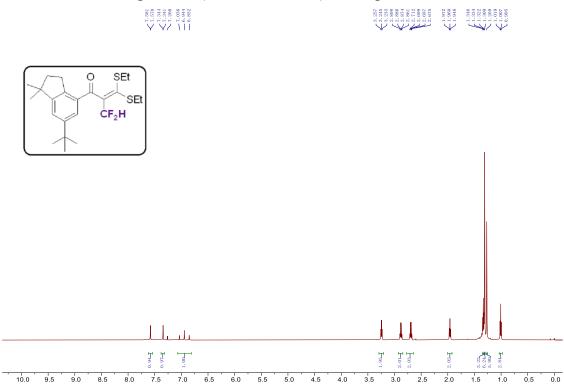


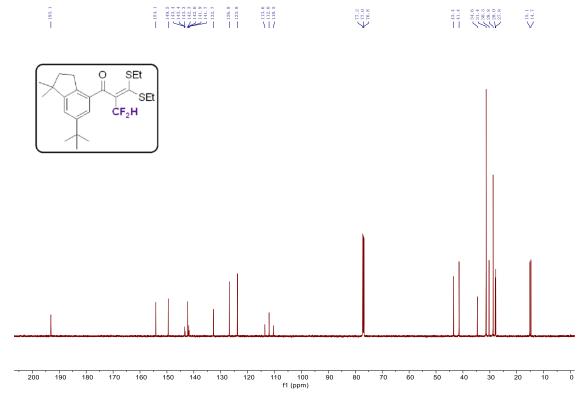



50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25 f1 (ppm)

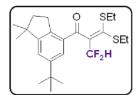


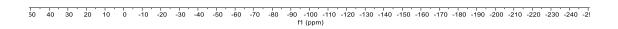
$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3ac



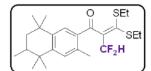


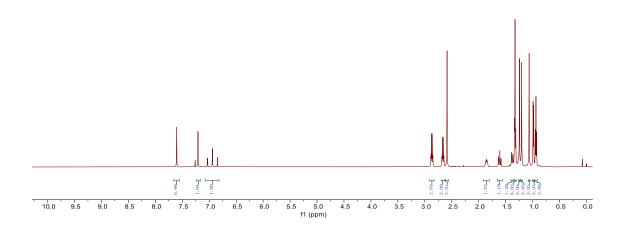
50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25 f1 (ppm)

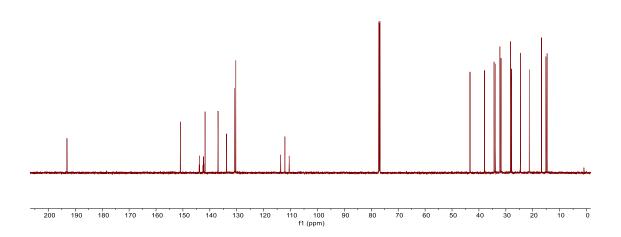


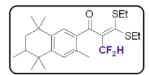

¹³C spectrum (151 MHz, CDCl₃) of compound 3ad

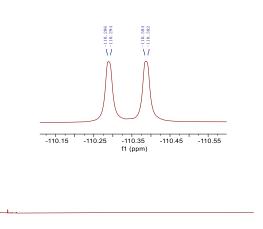
$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 3ad

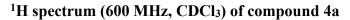


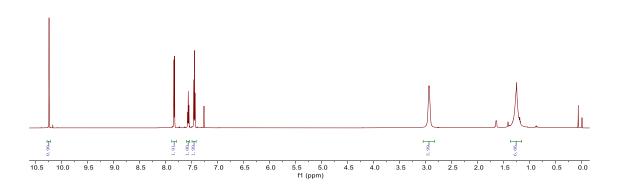


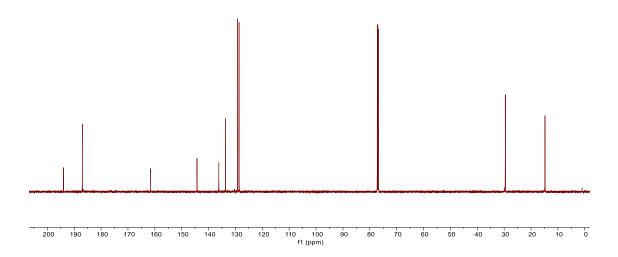

¹H spectrum (600 MHz, CDCl₃) of compound 3ae

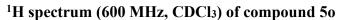


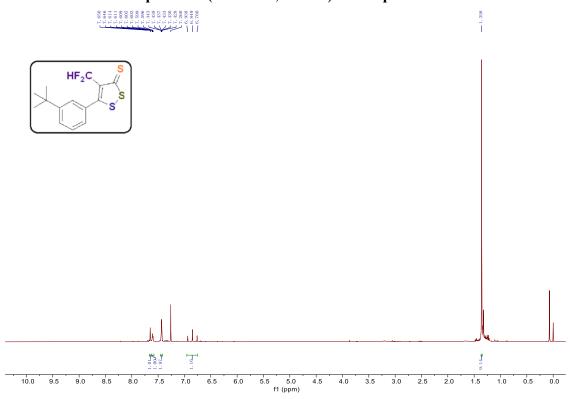

¹³C spectrum (151 MHz, CDCl₃) of compound 3ae

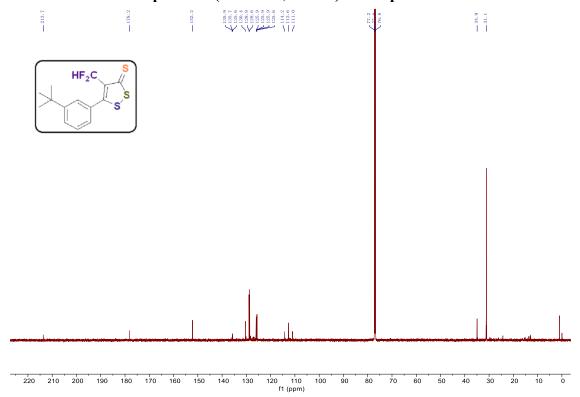


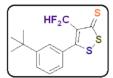



50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2!

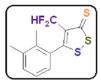


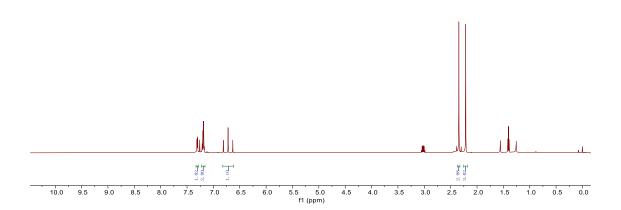



¹³C spectrum (151 MHz, CDCl₃) of compound 4a

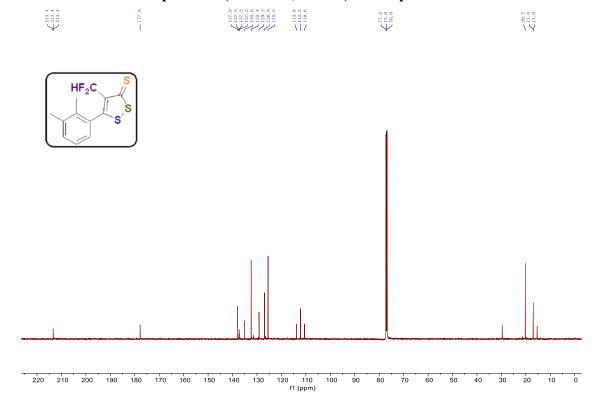


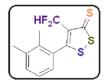
$^{19}\mathrm{F}$ spectrum (565 MHz, CDCl₃) of compound 50

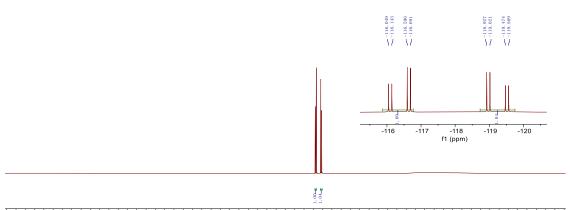




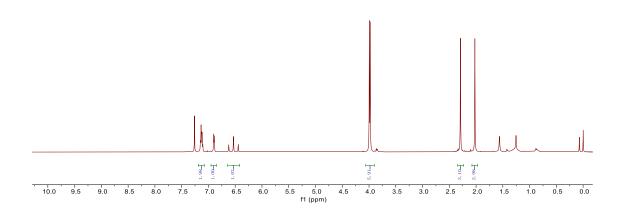
30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 ff (ppm)

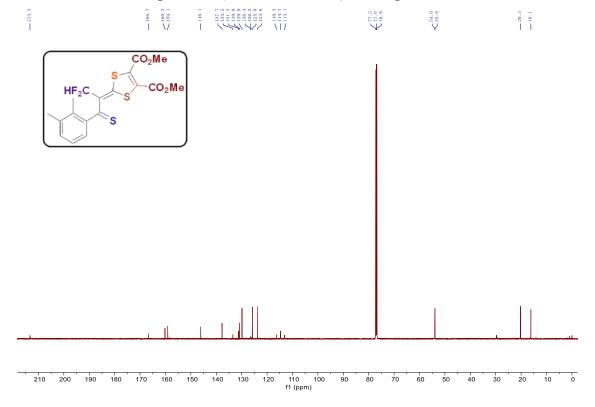




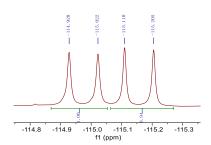

¹³C spectrum (151 MHz, CDCl₃) of compound 5w

$^{19}\mbox{F}$ spectrum (565 MHz, CDCl₃) of compound 5w




50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2! f1 (ppm)

¹H spectrum (600 MHz, CDCl₃) of compound 6w



¹³C spectrum (151 MHz, CDCl₃) of compound 6w

¹⁹F spectrum (565 MHz, CDCl₃) of compound 6w

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2! f1 (ppm)