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COMPUTATIONAL DETAILS 

1. Correction of Translational Entropy in Solution 

We evaluated the electronic energy ( ) with zero-point energy correction in solE

solution. For each species, the  is defined through equation (S1): solE

                                                                          (S1) 0
sol

vpot
sol gasE E E 

the  is the potential energy including non-electrostatic energy in solution and pot
solE

 delegates the zero-point vibrational energy in the gas phase. In a bimolecular 0v
gasE

process, such as the Ni(I) complex capture the α-amino radical, the entropy change 

which can decreases considerably must be taken into consideration. In such case, Gibbs 

energy ( ) need be computed as follows: o
solG

0 r v t( )o o o o
solG H T S S S   

r v t( )T o o oE P V T S S S     

                                 (S2) r v t( )o o o
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where  is 0 in solution,  is the thermal correction by translational, vibrational, V thermE

and rotational movements, and , , and  are rotational, vibrational, and r
oS v

oS t
oS

translational entropies, respectively. In general, the Sackur-Tetrode equation is used to 

evaluate translational entropy . In solution, however, the usual Sackur-Tetrode t
oS

equation cannot be directly applied to the evaluation of , because the translation t
oS

movement is suppressed very much in solution.S1 In this context, the translational 

entropy was corrected with the method developed by Whitesides et al., where the 

rotational entropy was evaluated in a normal manner. Thermal correction and entropy 

contributions of vibration movements to the Gibbs energy were evaluated with the 

frequencies calculated at 298.15 K and 1 atm. 
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2. Redox potential 

We calculated the standard redox potential ( ) according to the equation (S3):S2
1/2
redE

                                                                      (S3)SCE
rred E

nF
GE 


2/1

where,  is the Faraday constant and n is the number of electrons transferred, = F SCEE

4.51V, and  is the free energy change of the reaction. rG

Table S1 The calculated redox potential of Ir complexes. 

Redox Potential Cal. i-PrOAc

E1/2
red [IrIV/*IrIII]

E1/2
red [IrIV/IrIII]

E1/2
red [*IrIII/IrII]

E1/2
red [IrIII/IrII]

1.48 V

1.26 V

1.13 V

1.81 V

Table S2 The calculated redox potential of Ni complexes.

Redox Potential Cal. i-PrOAc

E1/2
red [NiII/NiI] 0.13 V

Table S3 The calculated redox potential of S1 complexes.

Redox Potential Cal. i-PrOAc

E1/2
red [S1+/S1] 1.58 V 
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Scheme S1. Single electron transfer processes. ΔG°‡ values of SET processes are given 

in kcal/mol.

E1/2red[IrIV/*IrIII] = 1.48 V
E1/2red[NiII/NiI] = 0.13 V

E1/2red[S1+/S1] = 1.58 V
E1/2red[IrIV/IrIII] = 1.26 V
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3. Activation barrier of single electron transfer step 

According to the Marcus equation, the reorganization energy 𝜆 is normally 

decomposed into internal energy (𝜆𝑖) and external energy (𝜆o). The internal 

reorganization energy 𝜆𝑖 can be estimated according to the equation:

                       (S4)])()([)]()([ P
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P
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where QR and QP are the equilibrium geometries of the reactants and products, 

respectively. In addition, the external reorganization energy 𝜆o may be calculated from 

equation (S7−S9)

                       (S7)  )11( )
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                                             (S9)
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where 𝑎1 is the radii of the oxidant, 𝑎2 is the radii of the reductant, R = 𝑎1 + 𝑎2, 𝜀op is 
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the optical dielectric constant (𝜀op = 2.25), 𝜀 is the static dielectric constant for the 

isopropyl acetate solvent (𝜀 = 4.9), and 𝛥Gr is the free energy change of the reaction. 

Table S4 Estimation of the activation barriers for SET step. 
SET
step

𝑎1

(Å)
𝑎2

(Å)
R

(Å)
λ

(kcal/mol)
ΔGr

(kcal/mol)
ΔGSET

(kcal/mol)
(a)
(b)
(c)
(d)

4.50
3.46
3.46
4.73

4.73
4.59
4.50
4.31

9.23
8.05
7.96
9.04

23.0
32.4
51.7
23.9

10.5
35.6
40.1
6.8

1.7
0.3
0.7
3.1

Table S5 The NBO population of key compounds. 

species Ir(III) *Ir(III) Ir(IV)
Ni(II)

T6
Ni(I)

D1
Ni(II)

T4R

Ni(III)
D3

Ni(II)
T5R

Natural Charge 
of metal center

0.26 0.32 0.40 0.76 0.45 0.76 0.91 0.72

d-orbital 
population 

7.83 7.75 7.66 8.33 8.87 8.39 7.50 8.34

Scheme S2. The sketch map of optical physical processes of IrIII.
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Scheme S3. The Gibbs free energy change (ΔG°298.15 in kcal/mol) of the reductive 

quenching process of *IrIII(Cl) with TNiII to afford IrII and DNiIII species steps for 

generating α-carbon centered radical.
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Scheme S4. IrIII/NiII metallaphotoredox dual catalytic cycles: (A) (a1) oxidative 

quenching cycle of photocatalyst *IrIII [PF6], (a2) reductive quenching cycle of 

photocatalyst *IrIII [PF6], and (b) possible nickel catalytic cycles. (B) possible 

mechanism of photocatalyst *IrIII [Cl] participation. 
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Fig. S6. Energy profiles (ΔG°298.15) of various competitive nickel catalytic 

pathways (Scheme S3B). 

In addition, we also considered the catalytic mechanism triggered by the 

photocatalyst IrIII(Cl) in Scheme S3B. The results show that continuous single 

electron transfer is unfavorable with thermodynamically and kinetically (DM3R → 

DM4R → DM5R, DM3S → DM4S → DM5S). And this pathway in Fig. S6 has less 

favorable in reaction kinetics than Fig. 2 (23.7 kcal mol1 vs 21.4 kcal mol1). 
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Fig. S7. Electron spin density of nickel compounds in various valence states (D1, 
D3, T4R, T5R).



S13



S14

REFERENCES

S1. (a) Sakaki, S.; Ohnishi, Y. Y.; Sato, H., Theoretical and Computational Studies of 

Organometallic Reactions: Successful or Not? Chem. Rec. 2010, 10, 29–45; (b) Ishikawa, A., 

Nakao, Y., Sato, H.; Sakaki, S., Oxygen Atom Transfer Reactions of Iridium and Osmium 

Complexes: Theoretical Study of Characteristic Features and Significantly Large Differences 

between These Two Complexes. Inorg. Chem. 2009, 48, 8154–8163; (c) Ishikawa, A., Nakao, 

Y., Sato, H.; Sakaki, S., Pd(II)-Promoted Direct Cross-Coupling Reaction of Arenes via 

Highly Regioselective Aromatic C–H Activation: A Theoretical Study. Dalton Trans. 2010, 

39, 3279–3289. 

S2. Marenich, A. V., Ho, J., Coote, M. L., Cramer, C. J.; Truhlar, D. G., Computational 

Electrochemistry: Prediction of Liquid-phase Reduction Potentials. Phys. Chem. Chem. Phys. 

2014, 16, 15068–15106. 

S3. (a) Baba, H., Suzuki, S.; Takemura, T., Configuration Analysis in the LCAO Molecular 

Orbital Theory. J. Chem. Phys. 1969, 50, 2078−2086. (b) Kato, S., Yamabe, S.; Fukui, K., 

Molecular Orbital Calculations of the Electronic Structure of Borazane. J. Chem. Phys. 1974, 

60, 572−578. (c) Dapprich, S.; Frenking, G., Rotational Analysis of n=4–7 Rydberg States of 

CO Observed by Ion-Dip Spectroscopy. J. Phys. Chem. 1995, 99, 9352−9362. 


