Enzymatic properties of iron oxide nanoclusters

and their application as a colorimetric glucose

detection probe

Dahyun Bae, Minhee Kim, Jin-sil Choi

Department of Chemical and Biological Engineering, Hanbat National University, Daejeon

34158, Korea

E-mail: jinsil.choi@hanbat.ac.kr

Figure S1. Zeta potential of IOCs dispersed in buffer solution (citrate buffer: pH2–6, phosphate buffer: pH7 and 8).

Figure S2. Hydrodynamic sizes of (a) IOC_30, (b) IOC_100, (c) IOC_200, and (d) IOC_400 (DIW).

Figure S3. TGA analysis of the percentage of PAA present in IOCs.

Figure S4. XRD diffraction pattern of IOCs.

Figure S5. Fe 2p XPS spectra of (a) IOC_30, (b) IOC_100, (c) IOC_200, and (d) IOC_400. (e) Fe²⁺ to Fe³⁺ ratio of IOCs based on correlated peak area in XPS spectra.

Figure S6. (a) TEM image of SIO. (b) Nanozyme activity of IOC and SIO color change and absorption intensity at 652 nm for indication solution containing TMB (3.12 mM) and H_2O_2 (100 mM) at 5 min at pH 4 at room temperature.

Figure S7. PAA concentration-dependent color change and absorption intensity at 652 nm for indication solution containing TMB (3.12 mM) and H_2O_2 (5 mM) at 10 min at room temperature.

Figure S8. (a) IOC_400 and (b) HRP concentration-dependent color change and absorption intensity at 652 nm for indicator solution containing TMB (3.12 mM) and H_2O_2 (5 mM) at 10 min at room temperature.

Figure S9. Nanozyme activity of IOC dispersed in water and stored at room temperature after 1 week, 1 month, and 3 months. IOC size-dependent color changes at 30 min and absorption intensities at 652 nm for indication solution containing IOCs (100 μ g Fe/mL), TMB (3.12 mM) and H₂O₂ (50 mM) at pH 4.

Figure S10. Batch-to-batch reproducibility of IOC nanozyme activity. Color changes at 30 minutes and absorption intensities at 652 nm for indication solution containing IOCs (100 μ g

Fe/mL), TMB (3.12 mM), and H_2O_2 (50 mM) at pH 4 demonstrate consistent activity across three independent batches.

Substrate											
			H_2O_2	TMB							
catalyst	diameter	K _m (mM)	V _{max} (mM/min.)	K _{cat} (/min.)	K _m (mM)	V _{max} (mM/min.)	K _{cat} (/min.)	ref			
IOC_30	30 nm	59.588	0.229	2.43×10^{5}	1.060	0.138	1.46×10^{5}	This work			
IOC_100	100 nm	30.189	0.330	1.30 × 107	0.490	0.442	1.74×10^{7}	This work			
IOC_200	200 nm	20.780	0.371	1.17×10^{8}	0.429	0.522	1.64×10^{8}	This work			
IOC_400	400 nm	19.711	0.737	1.85 × 10 ⁹	0.297	0.682	1.72 × 109	This work			
Fe ₃ O ₄	300 nm	154	5.87 × 10 ⁻⁶	5.15 × 10 ⁶	0.098	1.87 × 10 ⁻⁶	1.81 × 10 ⁶	Nat. Nanotechnol. 2007 , 2, 577– 583			
Fe ₃ O ₄	500 nm	458.9	1.84 × 10 ⁻⁵	1.87 × 10 ⁷	101.4	2.60 × 10 ⁻⁶	5.30 × 10 ⁷	<i>Chem.</i> <i>Commun.</i> 2017 , 53, 424–427			
HRP		0.964	0.969	4.27 × 10 ⁷	1.647	0.457	2.01×10^{7}	This work			

Table S1. K_m , V_{max} and K_{cat} values obtained using H_2O_2 and TMB as a substrate, respectively.

Calculation of K_{cat}

We used IOCs containing 3 μ g Fe (~5.67 × 10⁶ nanoparticles) or 0.1 ng of HRP in 100 μ L.

The K_{cat} was calculated as below:

$$K_{cat} = \frac{V_{max}}{[E]}$$

[E] = Enzyme concentration

Material	TMB (mM)	NP concentration (μg/mL)	Volume (mL)	LOD (µM)	Reference
Fe ₃ O ₄	55.56	3.89	4.5	0.37	<i>J. Colloid interface</i> <i>Sci.</i> 2017 , 506, 46– 57
Fe ₃ O ₄ +ATP	1	30	0.2	50	Colloids Surf. B Bi ointerfaces 2017, 153, 52–60
Casein- MNP/GOx	0.08	25	3	1	Biosens. Bioelectron. 2014, 52, 391–396
graphene- Fe ₃ O ₄	0.49	29.13	1.03	0.8	ACS Appl. Mater. Interfaces 2017 , 9, 7465–7471
Fe ₃ O ₄ @SiO ₂ / GOx	0.5	2764.02	0.24	3	<i>Chem. Eur. J.</i> 2011 , 17, 10700– 10707
Fe ₃ O ₄ /m-GC	0.044	11.11	0.9	0.24	<i>Microchim. Acta</i> 2021 , 188
Fe single iron site nanozyme	0.24	40	0.25	2.1	Small 2020, 16
IOC_400	3.12	138.20	0.1	252	This work

Table S2. Comparison of the glucose detection capability between iron oxide based colorimetry sensor system.

Calculation of the limit of detection (LOD) and quantitation (LOQ)

The limit of detection (LOD) and quantitation (LOQ) were calculated as below:

$$LOD = \frac{3.3 \sigma}{S}$$
$$LOQ = \frac{10 \sigma}{S}$$

- σ = standard deviation of the response
- S = slope of the calibration curve