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Table S1. Lattice parameters of LC0, LC5, LC7.5, and LC10.

Sample a (Å) V (Å3) R profile

LC0 8.358 583.9 4.50

LC5 8.357 583.8 4.18

LC7.5 8.357 583.8 4.59

LC10 8.358 583.9 4.37

Table S2. Particle size distribution and Zeta potential of LC0, LC5, LC7.5, and LC10.

Sample
D10 (μm) D50 (μm) D90 (μm) Zeta Potential 

(mV)

LC0 4.36 8.14 13.76 65.04±1.5

LC5 5.14 8.24 12.93 -63.03±1.5

LC7.5 5.27 8.73 13.98 -55.57±1.5

LC10 5.16 8.73 14.13 -61.03±2

The zeta potentials of all samples were measured using an electrophoretic light 

scattering spectrophotometer (ELS-2000, Otsuka Electronics Co., Osaka, Japan). A 

dispersion of 0.05 g of LTO and LTO@C in 15 ml deionized water was prepared in a 

quartz cell to determine the electrophoretic mobility.
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Figure S1. (a-d) C 1s, (e-h) O 1s, and (i-l) Ti 2p XPS spectra of LC0, LC5, LC7.5, 
and LC10 powders.

We employed XPS analysis to investigate the differences in the C 1s, O 1s, and Ti 2p 

core-level spectra of the LTO and LTO@C powders, as shown in Figure S1. 

Obviously, the core-level spectra of LTO@C exhibited changes with increasing 

sucrose concentrations (5%, 7.5%, and 10%) following carbon coating. In the C 1s 
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spectrum (Figures S1 (b)-(d)), the C-C signal intensity gradually increased due to the 

carbon coating, which also influenced the O 1s and Ti 2p spectra. The lattice oxygen 

signal intensity in the O 1s and Ti 2p spectra of LTO@C significantly decreased due 

to the carbon coating, with the signal peaks shifting to higher binding energies. [1]

As shown in Figures S1 (a), (e), and (i), the C 1s spectrum of LTO powder showed 
signals at 284.8 eV (C-C), 286.1 eV (C-O), and 289 eV (C=O). The C-C signal 
mainly originates from adventitious carbon, while C=O is contributed by the residual 
Li2CO3 on the surface. In the O 1s spectrum, the signal at 529.8 eV mainly 
corresponds to the lattice oxygen of LTO, while the signal at 531 eV (C=O) is 
attributed to Li2CO3. The Ti 2p spectrum consists of a doublet of peaks located at 
458.3 eV and 464 eV, corresponding to the Ti4+ ion of LTO. [2, 3] 
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Figure S2. The XPS spectra of the LC0, LC5, LC7.5, and LC10 electrodes before 200 
cycles. (a-d) C 1s, (e-h) O 1s, (i-l) Ti 2p, and (m-p) F 1s regions.

Figure S2 presents the XPS spectra of the LC0, LC5, LC7.5, and LC10 electrodes. 
The C 1s spectra reveal additional signals at 285.7 eV (CH₂) and 291 eV (CF₂) 
beyond those observed from the powder, attributed to the PVDF binder. The (C-C) 
signal also includes contributions from carbon black (Super P). The O 1s and Ti 2p 
spectra remained largely unchanged compared to those of the powder. In the F 1s 
spectra, signals at 685 eV (LiF) and 688 eV (CF₂) were detected, with the CF₂ signal 
originating from PVDF and the small LiF peak likely resulting from surface 
contamination during sample preparation.  [4-7] 
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Figure S3. Charge-discharge curves (a) LC0, (b) LC5, (c) LC7.5, and (d) LC10 under 

1C with potential range examined from 1 V to 2 V.

Figure S4. (a) TGA curves of LC0, LC5, LC7.5, and LC10 powders. (b) Tauc plots 

of LC0, LC5, LC7.5, and LC10 samples derived from UV-Vis reflectance spectra.
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