Supplementary data

Investigation of the anticancer activity of modified 4-hydroxyquinolone analogues: *in vitro* and *in silico* studies

Yousra Ouafa Bouone,^a Abdeslem Bouzina,^{*a} Abdelhak Djemel,^{b,c} Sanaa K. Bardaweel,^d Malika Ibrahim-Ouali,^e Boulanouar Bakchiche,^f Farouk Benaceur,^c and Nour-Eddine Aouf^a

^aLaboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji-Mokhtar - Annaba University, Box 12, 23000 Annaba, Algeria.

^bLaboratory of Pharmacology and Phytochemistry, Department of Chemistry, University of Jijel, 18000 Jijel, Algeria.

^cResearch Unit of Medicinal Plants, RUMP, 03000 Laghouat, Attached to Biotechnology Research Center, CRBt, 25000 Constantine, Algeria.

^dDepartment of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan

^eEnsemble TPR,52 Av. Escadrille Normandie Niémen, Marseille, 13013.

^fLaboratory of Biological and Agricultural Sciences (LBAS), Amar Telidji University, Laghouat 03000, Algeria

*Corresponding Author. A.B. Email: <u>abdeslem.bouzina@univ-annaba.dz</u>, <u>bouzinaabdeslem@yahoo.fr</u>.

Table of content

1. Spectra	S3
Figure S1. ¹ H NMR spectrum of 3a (400 MHz, DMSO-d ₆)	S3
Figure S2. ¹³ C NMR spectrum of 3a (101 MHz, DMSO-d ₆).	S4
Figure S3. IR spectrum of 3a	S5
Figure S4. LC-MS spectrum of 3a	S5
Figure S5. ¹ H NMR spectrum of 3b (400 MHz, CDCl ₃)	S5
Figure S6. ¹³ C NMR spectrum of 3b (101 MHz, CDCl ₃)	S6
Figure S7. IR spectrum of 3b	S6
Figure S8. LC-MS spectrum of 3b	S7
Figure S9. ¹ H NMR spectrum of 3c (400 MHz, DMSO-d ₆)	S7
Figure S10. ¹³ C NMR spectrum of 3c (101 MHz, DMSO-d ₆)	S8
Figure S11. IR spectrum of 3c.	S8
Figure S12. LC-MS spectrum of 3c.	S9
Figure S13. ¹ H NMR spectrum of 3d (400 MHz, CDCl ₃).	S9
Figure S14. ¹³ C NMR spectrum of 3d (101 MHz, CDCl ₃)	S10
Figure S15. IR spectrum of 3d	S10
Figure S16. LC-MS spectrum of 3d.	S11
Figure S17. ¹ H NMR spectrum of 3e (400 MHz, DMSO-d ₆)	S11
Figure S18. ¹³ C NMR spectrum of 3e (101 MHz, DMSO-d ₆)	S12
Figure S19. IR spectrum of 3e	S12
Figure S20. LC-MS spectrum of 3e	S13
Figure S21. ¹ H NMR spectrum of 3f (400 MHz, CDCl ₃)	S13
Figure S22. ¹³ C NMR spectrum of 3f (101 MHz, CDCl ₃)	S14
Figure S23. IR spectrum of 3f	S14
Figure S24. LC-MS spectrum of 3f	\$15
Figure S25. ¹ H NMR spectrum of 3g (400 MHz, DMSO-d ₆)	S15
Figure S26. ¹³ C NMR spectrum of 3g (101 MHz, DMSO-d ₆)	S16
Figure S27. IR spectrum of 3g.	S16

Figure S28. LC-MS spectrum of 3g
Figure S29. ¹ H NMR spectrum of 3h (400 MHz, CDCl ₃)
Figure S30. ¹³ C NMR spectrum of 3h (101 MHz, CDCl₃) S18
Figure S31. IR spectrum of 3h S18
Figure S32. LC-MS spectrum of 3h S19
Figure S33. ¹ H NMR spectrum of 3i (400 MHz, CDCl₃)
Figure S34. ¹³ C NMR spectrum of 3i (101 MHz, CDCl ₃) S20
Figure S35. IR spectrum of 3i S20
Figure S36. LC-MS spectrum of 3i S21
Figure S37. ¹ H NMR spectrum of 3j (400 MHz, CDCl₃) S21
Figure S38. ¹³ C NMR spectrum of 3j (101 MHz, CDCl ₃) S22
Figure S39. IR spectrum of 3j S22
Figure S40. LC-MS spectrum of 3j S23
2. Molecular docking
Figure S41. Superimposition of the co-crystallized and the re-docked reference ligand Entrectinib
(RMSD = 0.5852 Å, PDB: 5FTO, co-crystallized: pink, re-docked: blue)
Figure S42. Superimposition of the co-crystallized and the re-docked reference ligand AZD5438
(RMSD = 0.5431 Å, PDB: 5FTO, co-crystallized: pink, re-docked: green)
Table S1. 2D representations of docked ligands inside the cavities of ALK and CDK2. S24

Figure S1. ¹H NMR spectrum of 3a (400 MHz, DMSO-d₆).

Figure S2. ¹³C NMR spectrum of 3a (101 MHz, DMSO-d₆).

Figure S3. IR spectrum of 3a.

Figure S5. ¹H NMR spectrum of **3b** (400 MHz, CDCl₃).

Figure S6. ¹³C NMR spectrum of 3b (101 MHz, CDCl₃).

Figure S7. IR spectrum of 3b.

Line#:1 R.Time:----(Scan#:----) MassPeaks:175 Spectrum Mode:Averaged 0,567-0,600(35-37) Base Peak:270(560933) BG Mode:Calc Segment 1 - Event 1

Figure S8. LC-MS spectrum of 3b.

Figure S9. ¹H NMR spectrum of 3c (400 MHz, DMSO-d₆).

60

Figure S11. IR spectrum of 3c.

Line#:1 R.Time:----(Scan#:----) MassPeaks:238 Spectrum Mode:Averaged 0,567-0,600(35-37) Base Peak:202(1076800) BG Mode:Calc Segment 1 - Event 1

Figure S13. ¹H NMR spectrum of 3d (400 MHz, CDCl₃).

Figure S15. IR spectrum of 3d.

Figure S17. ¹H NMR spectrum of **3e** (400 MHz, DMSO-d₆).

Figure S19. IR spectrum of 3e.

Line#:1 R.Time:----(Scan#:----) MassPeaks:229 Spectrum Mode:Averaged 0,583-0,617(36-38) Base Peak:202(1569936) BG Mode:Calc Segment 1 - Event 1

Figure S21. ¹H NMR spectrum of 3f (400 MHz, CDCl₃).

Figure S23. IR spectrum of 3f.

Figure S25. ¹H NMR spectrum of 3g (400 MHz, DMSO-d₆).

Figure S27. IR spectrum of 3g.

Line#:1 R.Time:----(Scan#:----) MassPeaks:222 Spectrum Mode:Averaged 0,550-0,583(34-36) Base Peak:298(305291) BG Mode:Calc Segment 1 - Event 1

Figure S29. ¹H NMR spectrum of **3h** (400 MHz, CDCl₃).

Figure S31. IR spectrum of 3h.

Line#:1 R.Time:----(Scan#:----) MassPeaks:28 Spectrum Mode:Averaged 0.072-0.086(21-25) Base Peak:312(219040) BG Mode:Calc Segment 1 - Event 1

Figure S33. ¹H NMR spectrum of 3i (400 MHz, CDCl₃).

Figure S35. IR spectrum of 3i.

Figure S37. ¹H NMR spectrum of 3j (400 MHz, CDCl₃).

Figure S38. ¹³C NMR spectrum of 3j (101 MHz, CDCl₃).

Figure S39. IR spectrum of 3j.

Figure S40. LC-MS spectrum of 3j.

Figure S41. Superimposition of the co-crystallized and the re-docked reference ligand Entrectinib (RMSD = 0.5852 Å, PDB: 5FTO, co-crystallized: pink, re-docked: blue).

Figure S42. Superimposition of the co-crystallized and the re-docked reference ligand AZD5438 (RMSD = 0.5431 Å, PDB: 5FTO, co-crystallized: pink, re-docked: green).

Entry (2D figures			
Entry	5FTO	6GUE		
За	ASP 122 (122) (12	VAL PIE PIE PIE PIE PIE PIE PIE PIE		

Table S1. 2D representations of docked ligands inside the cavities of ALK and CDK2.

egative) Polar Unspecified residue Water Hydration site Hydration site (displaced)	····· 	Distance H-bond Metal coordination Pi-Pi stacking Pi-cation	0	Salt bridge Solvent exposure	
--	-----------	---	---	---------------------------------	--