Supporting Information for

Comparison of the effects of perfluoroalkyl and alkyl groups

on cellular uptake in short peptides

Koji Kadota, Ai Kohata, Shinsuke Sando, Jumpei Morimoto, Kohsuke Aikawa, and Takashi Okazoe

Table of Contents

General information
Materials and instruments
Abbreviations
Methods
Cell culture
Evaluation of cellular uptake by flow cytometry5
Evaluation of cellular uptake with endocytosis inhibitor
DLS measurement
Observation of HeLa cells treated with AF ₆₄₇ -R _F /R _H -tripeptides under confocal laser scanning
microscopy (CLSM)
Evaluating colocalization of AF ₆₄₇ -R _F /R _H -tripeptides with Golgi apparatus
Evaluating colocalization of AF_{647} - R_F/R_H -tripeptides with lysosome7
Cytotoxicity evaluation7
Preparation of giant unilamellar vesicles (GUVs) for confocal microscopy
Zeta potential measurement of liposome
LogP measurement
Supplementary Figures and Tables
Synthesis of amino acids and peptides
Synthesis of perfluoroalkylated nitrobenzene: synthetic procedure A
Synthesis of perfluoroalkylated aniline: synthetic procedure B
Synthesis of Fmoc-Asp(R _F)-OAll :synthetic procedure C24
Synthesis of Fmoc-Asp(R _F)-OH : synthetic procedure D24
Synthesis of tripeptides: synthetic procedure E
NMR spectra
References

General information

Materials and instruments

Reagents were purchased from suppliers and used without further purification. ¹H, ¹³C, and ¹⁹F NMR spectra were measured on JNM-ECZ400S (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz, ¹⁹F NMR: 376 MHz) or on ECZ500R (¹H NMR: 500 MHz, ¹³C NMR: 125 MHz, ¹⁹F NMR: 470 MHz spectrometers (JEOL) at ambient temperature. Column chromatography was performed on KANTO Silica Gel 60N (spherical, neutral). High-resolution mass (HRMS) spectra were measured on JMS-T100LP spectrometer (JEOL) in the electron spray ionization time-of-flight (ESI-TOF) mode. IR spectra were measured on IRSpirit spectrometer (Shimadzu). Zetasizer μV (Malvern) was used for DLS measurement containing a 60 mW laser with an operating wavelength of 830 nm. Zeta-potential was measured by Zetasizer pro red (Malvern) containing a 10 mW laser with an operating wavelength of 633 nm. Leica TCS SP8 (Leica) was used for microscopic observation. MALDI-TOF MS analysis was performed on autoflex max (Bruker Daltonics).

Abbreviations

DMEM; Dulbecco's Modified Eagle Medium, D-PBS: Dulbecco's Phosphate Buffer Saline, EDTA; ethylenediaminetetraacetic acid, FBS; fetal bovine serum, GFP; green fluorescent protein, CLSM; confocal laser scanning microscope, ITC; isothermal titration calorimetry, DMSO; dimethyl sulfoxide, Et₂O; diethyl ether, MgSO₄; magnesium sulfate, EtOAc; ethyl acetate, NaHCO₃; sodium bicarbonate, CO₂ All; allyl ester, DCM; dichloromethane, MeOH; methanol THF; tetrahydrofuran, DMF; dimethylformamide, TIPS; triisopropylsilane, TFA; trifluoroacetic acid, COMU; (1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholinocarbenium hexafluorophosphate, Oxyma: ethyl 2-cyano-2-(hydroxyimino)acetate, DIPEA; *N*,*N*diisopropylethylamine, PhSiH₃; phenylsilane, HCl; hydrogen chloride, DMF; *N*,*N*- dimethylformamide, TFA; trifluoroacetic acid

Methods Cell culture

HeLa cells were cultured in DMEM (Nacalai Tesque) supplemented with 10% FBS (v/v) heatinactivated fetal bovine serum (FBS) and antibiotic-antimycotic mixed solution (Nacalai Tesque) at 37 °C in a humidified incubator containing 5% CO₂ respectively. A549 and HeLa cells were provided by the RIKEN BRC through the National Bio-Resource Project of the MEXT, Japan.

Evaluation of cellular uptake by flow cytometry

HeLa cells (2.0×10^4 cells) were seeded in a 96-well culture plate and incubated in DMEM (10% FBS) for 24 h at 37 °C, 5% CO₂. The cell samples were rinsed with D-PBS three times (100 µL) and incubated with 100 µL of serum-free or DMEM (10% FBS) containing 150 nM of AF₆₄₇-R_F/R_H-tripeptides at 37 °C or 4 °C, 5% CO₂ for 1 h. After the incubation, the cells were rinsed with D-PBS three times (500 µL) and incubated in trypsin-EDTA (30 µL) for 5 min. The cells were diluted with DMEM (10% FBS) (200 µL), and the resultant suspension was centrifuged at 200 × g for 3 min. After the removal of the supernatant, the obtained cell pellet was resuspended in PBS (400 µL) and subjected to a flow cytometer. The fluorescence was quantified by flow cytometer.

Evaluation of cellular uptake with endocytosis inhibitor

HeLa cells $(1.0 \times 10^4 \text{ cells})$ were seeded in a 96-well culture plate and incubated in DMEM (10% FBS) for 24 h incubation at 37 °C, 5% CO₂. The cell samples were rinsed with D-PBS three times (100 µL) and preincubated in DMEM (10% FBS) (100 µL) containing an endocytosis inhibitor; EIPA (10 µM), GEN (700 µM), CPZ (10 µM), and methyl- β -cyclodextrin (1 mM) for 30 min, 37 °C, 5% CO₂. The cell samples were rinsed with D-PBS three times (200 µL). Then, the samples were incubated with 100 µL of serum-free DMEM containing the endocytosis inhibitor and 150

nM of AF₆₄₇-R_F/R_H-tripeptides at 37 °C, 5% CO₂ for 1 h. After the incubation, the cells were rinsed with D-PBS three times (500 μ L) and incubated in trypsin-EDTA (30 μ L) for 5 min at 37 °C. The cells were diluted with DMEM (10% FBS) (200 μ L), and the resultant suspension was centrifuged at 200 × g for 3 min. After the removal of the supernatant, the obtained cell pellet was resuspended in PBS (400 μ L) and subjected to a flow cytometer. The fluorescence was quantified by flow cytometry.

DLS measurement

150 nM of AF_{647} - R_F -tripeptide ($R_F = C_8F_{17}$) and AF_{647} - R_H -tripeptide ($R_H = C_{12}H_{25}$) in DMEM (10% FBS) were prepared. The solution was measured at 37 °C by Zetasizer μ V after 0, 60, 90, and 120 min incubation.

Observation of HeLa cells treated with AF₆₄₇-R_F/R_H-tripeptides under confocal laser scanning microscopy (CLSM)

HeLa cells (2.0 × 10⁴ cells) were seeded in an 8-well glass chamber and incubated in DMEM (10% FBS) for 24 h at 37 °C, 5% CO₂. The cells were rinsed with D-PBS three times (500 µL) and incubated with serum-free DMEM (500 µL) containing 150 nM of AF₆₄₇-R_F/R_H-tripeptides at 37 °C, 5% CO₂ for 1 h. After the incubation, the cells were rinsed with D-PBS three times (500 µL) and stained by Hoechst 33342 for 10 min. 500 µL of DMEM (10% FBS) was added to each well. The cells were observed by CLSM. Hoechst 33342: $\lambda_{ex} = 408$ nm, $\lambda_{obs} = 430-470$ nm, Alexa₆₄₇: $\lambda_{ex} = 638$ nm, $\lambda_{obs} = 650-700$ nm.

Evaluating colocalization of AF₆₄₇-R_F/R_H-tripeptides with Golgi apparatus

HeLa cells (1.0×10^4 cells) were seeded in an 8-well glass chamber and incubated in DMEM (10% FBS) for 24 h at 37 °C, 5% CO₂. After washing the cell with D-PBS three times, 8 µL of

CellLightTM Golgi-GFP BacMam reagent (Invitrogen, C10592) was added to the DMEM (10% FBS) and incubated for 16 h. The cell samples were rinsed with D-PBS three times (500 µL) and incubated with serum-free DMEM (500 µL) containing 150 nM of AF₆₄₇-R_F/R_H-tripeptides at 37 °C, 5% CO₂ for 1 h. After the incubation, the cells were rinsed with D-PBS three times (500 µL) and stained by 500 µL of D-PBS containing 2 µg/mL Hoechst 33342 (Dojindo, H342) for 15 min. 500 µL of DMEM (10% FBS) was added to each well. The cells were observed by CLSM. GFP: $\lambda_{ex} = 488$ nm, $\lambda_{obs} = 500-550$ nm, Hoechst 33342: $\lambda_{ex} = 408$ nm, $\lambda_{obs} = 430-470$ nm, Alexa₆₄₇: $\lambda_{ex} = 638$ nm, $\lambda_{obs} = 650-700$ nm.

Evaluating colocalization of AF₆₄₇-R_F/R_H-tripeptides with lysosome

HeLa cells (2.0 × 10⁴ cells) were seeded in an 8-well glass chamber and incubated in DMEM (10% FBS) for 24 h at 37 °C, 5% CO₂. The cell samples were rinsed with D-PBS three times (500 μ L) and incubated with serum-free DMEM (500 μ L) containing 150 nM of AF₆₄₇-R_F-tripeptides at 37 °C, 5% CO₂ for 1 h. After the incubation, the cells were rinsed with D-PBS three times (500 μ L) and stained by 500 μ L of D-PBS containing Hoechst 33342 (2 μ g/mL) (Dojindo, H342), and LysoTracker Green (75 μ M) (Invitrogen, L7526) for 10 min. 500 μ L of DMEM (10% FBS) was added to each well. The cells were observed by CLSM. LysoTracker Green: $\lambda_{ex} = 488 \text{ nm} \lambda_{obs} = 500-550 \text{ nm}$, Hoechst 33342: $\lambda_{ex} = 408 \text{ nm} \lambda_{obs} = 430-470 \text{ nm}$, Alexa₆₄₇: $\lambda_{ex} = 638 \text{ nm} \lambda_{obs} = 650-700 \text{ nm}$.

Cytotoxicity evaluation

HeLa cells (5.0×10^3 cells) were seeded in a 96-well culture plate and incubated in DMEM (10% FBS) for 24 h incubation at 37 °C, 5% CO₂. The cell samples were rinsed with 100 µL of D-PBS three times and incubated with 100 µL of peptide sample in DMEM without 10% FBS at 37 °C,

5% CO₂ for 1h. After the incubation, the cells were rinsed with D-PBS three times (100 μ L), and then 100 μ L of DMEM containing 10% FBS and 10 μ L of Cell Counting Kit-8 (CCK-8) solution (Dojindo) was added to each well and incubated for 2 h. The absorbance at 450 nm of each sample was measured by a microplate reader (Infinite M200 Pro, Tecan).

Preparation of giant unilamellar vesicles (GUVs) for confocal microscopy

GUVs were prepared following the method given in reference¹. 1 mg/mL of 2,3-dioleoyl-glycero-1-phosphocholine (DOPC) in diethyl ether and 300 mM of sucrose in distilled water were prepared. 500 µL of each solution were combined and vigorously mixed in a 1.5 mL microtube. The microtube was centrifuged at 20,000 × g, at 20 °C for 1 min. The top organic phase and organic-water interface were removed. An aliquot (500 µL) of a 300 mM glucose solution was added to the bottom solution, and the microtube was repeatedly inverted for gentle mixing. The solution was gently centrifuged at $100 \times g$, at 20 °C for 10 min. 100 µL of 300 nM peptide solution and 100 µL of liposome solution were mixed. The resultant suspension was loaded in slide glass using the edge-cut 1 mL micropipette tip, and then the cover glass was equipped. The GUVs were observed under a CLSM. Alexa₆₄₇: $\lambda_{ex} = 638$ nm, $\lambda_{obs} = 650-700$ nm.

Zeta potential measurement of liposome

To a round-bottom flask, 5 mg of DOPC and 2 mL of CHCl₃ were added. The solution was evaporated by a rotary evaporator and then dried in vacuo. After adding 1 mL of 300 mM sucrose solution to the flask, the flask was vigorously shaken. The resultant suspension was extruded by Avantir[®] Mini-extruder (Avanti) 20 times using a 100 nm polycarbonate membrane. 5 mM of liposome solution was prepared by adding 300 mM sucrose solution. The solution of AF_{647} - R_F/R_{H} -tripeptides (150 nM) and 50 μ M of liposome solution was prepared, and the solution was equilibrated for 30 min at room temperature. Zeta potential of the liposome was measured by

Zetasizer Pro red using DTS1070 cell.

LogP measurement

Analysis was conducted on an HPLC system (Shimadzu LC20A) equipped with an octadecyl column (Shim-pack GIS C_{18} column 4.6 × 150 mm). Calibration and determination of log P_{OW} were performed according to the guidelines². Thiourea (t_0 standard), 2-butanone, benzonitrile, anisol, benzophenone, biphenyl. and triphenylamine were chosen as standards.²

Supplementary Figures and Tables

Fig. S1 Histograms of the fluorescence intensities of HeLa cells treated with AF_{647} - R_F/R_H -tripeptides. The experiment was conducted in triplicate and a representative result is shown.

Fig. S2 Histograms of the fluorescence intensities of HeLa cells treated with AF_{647} -Z-Asp(C_8F_{17})-Z. Z represents Phe, Leu, or Pro. The experiment was conducted in triplicate and a representative result is shown.

Fig. S3 Correlation between the relative fluorescence intensities of HeLa cells treated with AF_{647} -Z-Asp(C₈F₁₇)-Z and LogP values of Z-Asp(C₈F₁₇)-Z. Z represents Phe, Leu, or Pro. RFI = relative fluorescence intensity determined by flow cytometry. The experiment was conducted in triplicate. LogP values were determined by the HPLC method shown in Fig. S11 and S12 and Table S2 and S3.

Fig. S4 Histograms of the fluorescence intensities of HeLa cells treated with AF_{647} -Ala-Asp($C_{12}H_{25}$)-Phe. The experiment was conducted in triplicate and a representative result is shown.

Fig. S5 Cellular uptake efficiency of AF_{647} -Ala-Asp($C_{12}H_{25}$)-Phe in the presence of endocytosis inhibitors: 1 mM methyl- β -cyclodextrin (M β CD), 10 μ M 5-(*N*-ethyl-*N*-isopropyl)-amiloride (EIPA), 700 μ M genistein (GEN), and 10 μ M chlorpromazine (CPZ). The error bars represent the standard deviations of triplicates.

Fig. S6 The CLSM image of HeLa cells treated with AF_{647} -labeled tripeptide. The cells were visualized without D-PBS washing process. (A) AF_{647} -R_F-tripeptide ($R_F = C_8F_{17}$), (B) AF_{647} -R_H-tripeptide ($R_H = C_{12}H_{25}$). The scale bar indicates 25 µm.

Fig. S7 The CLSM image of HeLa cells treated with 150 nM of the peptide samples (AF₄₈₈-R_F-tripeptide (R_F = C₈F₁₇) and AF₆₄₇-R_H-tripeptide (R_H = C₁₂H₂₅). To visualize R_F-tripeptide and R_H-tripeptide simultaneously, R_F-tripeptide and R_H-tripeptide were labeled with AF₄₈₈ and AF₆₄₇, respectively. (A) AF₄₈₈-R_F-tripeptide (R_F = C₈F₁₇), green: λ_{ex} = 488 nm, λ_{obs} = 500–550 nm. (B) AF₆₄₇-R_H-tripeptide (R_H = C₁₂H₂₅), red: λ_{ex} = 638 nm, λ_{obs} = 650–700 nm. (C) Nucleus (Hoechst 33342), blue: λ_{ex} = 408 nm, λ_{obs} = 430–470 nm. (D) Overlay of the images in (A)–(C).

Fig. S8 Cytotoxicity of AF_{647} -R_F-tripeptides. Cytotoxicity assay using cell-counting kit-8 (CCK-8); 5×10^3 of HeLa cells were treated with the AF_{647} -R_F -tripeptides for 1 h.

Fig. S9 The CLSM image of the lipid membrane treated with AF_{647} -R_H-tripeptide (R_H = C₁₂H₂₅). The interaction of AF_{647} -R_H-tripeptide (R_H = C₁₂H₂₅) and control against DOPC liposome membrane were evaluated. The scale bar indicates 25 µm.

Fig. S10 Zeta potential distribution histogram of liposome surface after adding (A) AF_{647} -R_F-tripeptides and (B) AF_{647} -R_H-tripeptides.

AF ₆₄₇ -R _H -tripeptide			AF ₆₄₇ -R _F -tripeptide		
R _H	Zeta potential (mV)	mean	R _F	Zeta potential (mV)	mean
C ₈ H ₁₇	-12.6 -10.8	-13.7 ± 2.9	C ₄ F ₉	-9.6 -9.0 -8.9	-9.2 ± 0.3
	-17.8 -18.5	10.4 ± 1.9	C_6F_{13}	-12.1 -14.2 -15.6	-14.0 ± 1.4
0 ₁₀ n ₂₁	-21.9	-19.4 ± 1.0	C ₈ F ₁₇	-21.9 -23.9 -22.7	-22.9 ± 0.8
C ₁₂ H ₂₅	-27.0 -27.2	-27.0 ± 0.2	$C_{10}F_{21}$	-32.8 -33.7 -33.4	-33.3 ± 0.4

Table S1 Zeta potential of liposome surface after adding AF₆₄₇-R_F/R_H-tripeptides

Fig. S11 HPLC chromatograms of R_F/R_H -tripeptides .

Fig. S12 Calibration curve of standard compounds used to calculate LogP values based on HPLC retention times.

	Retention time (t) [min.]	$k^{[a]}$	log k	log P _{ow} ^[b]
thiourea	1.4			
2-butanone	3.1	1.2	0.1	0.3
benzonitrile	4.1	1.9	0.3	1.6
anisole	5.9	3.1	0.5	2.1
benzophenone	9.8	5.9	0.8	3.2
biphenyl	14.8	9.4	1.0	4.0
triphenylamine	27.7	18.5	1.3	5.7

Table S2 HPLC retention times of standard compounds for generating the calibration curve.

[a] $k = (t - t_0) / t_0$. [b] from ref. [2].

	Retention time (t) [min.]	k ^[a]	log k	log P _{ow}
Ala-Asp(C ₈ H ₁₇)-Phe	3.8	1.6	0.2	1.0
Ala-Asp(C ₁₀ H ₂₁)-Phe	7.1	4.0	0.6	2.6
Ala-Asp(C ₁₂ H ₂₅)-Phe	12.5	7.8	0.9	3.9
Ala-Asp(C ₄ F ₉)-Phe	2.3	0.6	-0.2	-0.8
Ala-Asp (C_6F_{13}) -Phe	3.5	1.4	0.2	0.8
Ala-Asp (C_8F_{17}) -Phe	5.9	3.1	0.5	2.2
Ala-Asp $(C_{10}F_{21})$ -Phe	11.0	6.7	0.8	3.6
Phe-Asp (C_8F_{17}) -Phe	8.6	5.0	0.7	3.1
Leu-Asp(C ₈ F ₁₇)-Leu	7.3	4.1	0.6	2.7
$Pro-Asp(C_8F_{17})$ -Pro	4.7	2.3	0.4	1.6

Table S3 HPLC retention times and calculated log P values of R_F/R_H -tripeptides.

[a] $k = (t - t_0) / t_0$. Note that, although the measurement of the LogP value higher than 0 is recommended by the HPLC method, the hydrophobicity of the peptide with C₄F₉ was determined by extrapolation.

Fig. S13 DLS measurements of particle sizes formed by AF_{647} -R_F-tripeptide (R_F = C₈F₁₇). The experiment was conducted in triplicate. The top image is a representative DLS spectrum. The average diameter value and standard deviation from the triplicate is shown under the spectrum

Name	Fomula	Exact mass ([M] ⁺ calcd)	Observed
AF ₆₄₇ -Ala-Asp(C ₈ H ₁₇)-Phe	$C_{66}H_{88}N_7O_{17}S_4$	1378.5	1378.4
AF ₆₄₇ -Ala-Asp(C ₁₀ H ₂₁)-Phe	$C_{68}H_{92}N_7O_{17}S_4$	1406.5	1406.3
AF ₆₄₇ -Ala-Asp(C ₁₂ H ₂₅)-Phe	C70H96N7O17S4	1434.6	1435.2
AF ₆₄₇ -Ala-Asp(C ₁₀ F ₂₁)-Phe	$C_{68}H_{71}F_{21}N_7O_{17}S_4$	1784.3	1784.7
AF ₆₄₇ -Ala-Asp(C ₈ F ₁₇)-Phe	$C_{66}H_{71}F_{17}N_7O_{17}S_4$	1685.4	1685.8
AF ₆₄₇ -Ala-Asp(C ₆ F ₁₃)-Phe	$C_{64}H_{71}F_{13}N_7O_{17}S_4$	1584.4	1583.8
AF ₆₄₇ -Ala-Asp(C ₄ F ₉)-Phe	$C_{62}H_{71}F_9N_7O_{17}S_4$	1484.4	1484.0
AF ₆₄₇ -Pro-Asp(C ₈ F ₁₇)-Pro	$C_{64}H_{71}F_{17}N_7O_{17}S_4$	1660.4	1659.9
AF ₆₄₇ -Leu-Asp(C ₈ F ₁₇)-Leu	$C_{66}H_{79}F_{17}N_7O_{17}S_4$	1692.4	1692.6
AF ₆₄₇ -Phe-Asp(C ₈ F ₁₇)-Phe	$C_{72}H_{75}F_{17}N_7O_{17}S_4$	1760.4	1760.7

Table S4 Mass list of AF_{647} - R_F/R_H -tripeptides

Fig. S14 HPLC chromatograms of AF_{647} - R_F/R_H -tripeptides

Synthesis of amino acids and peptides

Scheme S1 Synthesis of alkyl chain (R_H)-containing amino acids

Synthesis of perfluoroalkylated nitrobenzene: synthetic procedure A

The mixture of R_FI (2.2 eq.) and Cu powder (2.2 eq.) in DMSO was stirred for 15 min at 80 °C under N₂ atmosphere. 1-Iodo-4-nitrobenzene (1.0 eq.) was added to the mixture. The reaction mixture was stirred for 18 h at 130 °C. The mixture was filtered by Celite® and washed with Et₂O and H₂O. The aqueous layer was extracted with Et₂O (100 mL×2). The organic layer was washed with H₂O and brine, and then dried over Na₂SO₄. The evaporation of the organic phase gave the crude product. The crude product was purified by silica-gel column chromatography with *n*-hexane/EtOAc (10:1) to afford the desired product **1**.

Synthesis of perfluoroalkylated aniline: synthetic procedure B

To a solution of compound 1 in methanol were added Fe (20 eq.) powder and conc. HCl (several drops) at room temperature. The solution was refluxed until the compound 1 was consumed. The reaction mixture was quenched by sat. NaHCO₃. DCM was added, and then the solution was filtered by a paper filter. The organic layer was washed with H₂O and brine, and dried over Na₂SO₄. The evaporation of the organic phase gave the crude product. The crude product was purified by silica-gel column chromatography with *n*-hexane/EtOAc (10:1) to afford the desired product **2**.

Synthesis of Fmoc-Asp(R_F)-OAll :synthetic procedure C

To a solution of Fmoc-Asp-OAll (1.2 eq.) and aniline **2** (1.0 eq.) in DCM (0.1M) were added DIPEA (2.4 eq), Oxyma (1.2 eq.), and COMU (1.2 eq.) at room temperature under N₂ atmosphere. After stirred for 18 h at room temperature, 1 M HCl was added and extracted with DCM. Then combined organic layers were washed with sat. NaHCO₃ aq. and brine, then dried over Na₂SO₄ and filtered. The solution was concentrated under reduced pressure to give the crude product. The product was purified by silica-gel column chromatography to afford the product **3**.

Synthesis of Fmoc-Asp(R_F)-OH : synthetic procedure D

To a solution of Fmoc-Asp(R_F/R_H)-OAll (1.0 eq.) in THF (0.1 M) were added PhSiH₃ (2 eq.), Pd₂(dba)₃ (0.1 eq.), and sodium diphenylphosphinobenzene-3-sulfonate (0.2 eq.) at 0 °C under N₂ atmosphere. After stirring at room temperature for 4 h, the reaction mixture was quenched by 1 N HCl and extracted with EtOAc. The combined organic layers were washed with sat. NaHCO₃ aq. and brine, then dried over Na₂SO₄ and concentrated in vacuo to give the crude product. The crude product was purified by silica-gel column chromatography to give the product **4**.

Synthesis of tripeptides: synthetic procedure E

<u>Resin swelling</u>: Rink amide resin was swelled with a minimal volume of anhydrous DMF in a syringe for 30 min.

DMF was filtered off, and the resin was treated with 20% piperidine/DMF solution to remove Fmoc group.

<u>Elongation of peptide</u>: Fmoc-AAs-OH (1–4 eq.), COMU (4 eq.), oxyma (4 eq.), and DIPEA (8 eq.) with continuous shaking for 1–2 h. After removing the solution, the resin was washed with DMF three times. The resin was treated with 20% piperidine/DMF for 3 min twice and then

washed with DMF.

<u>Peptide cleavage</u>: The peptides were cleaved by treating the resin with 95/2.5/2.5 TFA/TIPS/H₂O (v/v) for 2 h. The solution was transferred to a flask and TFA solution was removed under the reduced pressure. The crude product was dissolved in 40/60 acetonitrile/water and purified by a reversed phase column (C₁₈ column) on HPLC.

C₄F₉-Ar-NO₂: 1a

The title compound was obtained from 1-iodo-4-nitrobenzene (10.0 mmol) and perfluorobutyl iodide following the procedure **A**. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 10/1) gave C₄F₉-Ar-NO₂ **1a** (1.1 g, 3.2 mmol, 32% yield) as a colorless solid; ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.38 (d, *J* = 8.9 Hz, 2H), 7.82 (d, *J* = 8.7 Hz, 2H); ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -80.8 (s, 3F), -111.5 (s, 2F), -111.5 (s, 2F), -122.5 (s, 2F), -125.4 (s, 2F).

C₆F₁₃-Ar-NO₂: 1b

The title compound was obtained from 1-iodo-4-nitrobenzene (10.0 mmol) and perfluorohexyl iodide following the procedure **A**. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 10/1) gave C₆F₁₃-Ar-NO₂ **1b** (1.2

g, 2.8 mmol, 28% yield) as a colorless solid; ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.38 (d, J = 8.9 Hz, 2H), 7.81 (d, J = 8.7 Hz, 2H); ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -80.8 (s, 3F), -111.2 (s, 2F), -121.4 (s, 2F), -121.6 (s, 2F), -122.8 (s, 2F), -126.2 (s, 2F).

C₈F₁₇-Ar-NO₂: 1c

The title compound was obtained from 1-iodo-4-nitrobenzene (10.0 mmol) and perfluorooctyl iodide following the procedure **A**. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 10/1) gave C₈F₁₇-Ar-NO₂ **1c** (1.5

g, 2.7 mmol, 27% yield) as a colorless solid; ¹H NMR (400 MHz, CHLOROFORM-D) δ 8.39 (d, J = 8.9 Hz, 2H), 7.82 (d, J = 8.7 Hz, 2H); ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -80.7 (s, 3F), -111.1 (s, 2F), -121.1--122.6 (m, 10F), -126.1 (s, 2F).

C10F21-Ar-NO2: 1d

The title compound was obtained from 1-iodo-4-nitrobenzene (10.0 mmol) and perfluorodecyl iodide following the procedure **A**. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 10/1) gave C₁₀F₂₁-Ar-NO₂ **1d** (3.7

g, 5.7 mmol, 57% yield) as a colorless solid; ¹H NMR (400 MHz, ACETONE-D₆) δ 8.56 (d, J = 8.9 Hz, 2H), 8.11 (d, J = 8.7 Hz, 2H); ¹⁹F NMR (376 MHz, ACETONE-D₆) δ -81.6 (t, J = 10.0, Hz, 3F), -111.3 (t, J = 14.3 Hz, 2F), -121.6--123.2 (m, 14F), -126.7 (s, 2F).

C₄F₉-Ar-NH₂: 2a

The title compound was obtained from **1a** (5.0 mmol) following procedure **B**. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 10/1) gave C₄F₉-Ar-NH₂ **2a** (1.7 g, 4.1 mmol, 81% yield); ¹H-NMR (400 MHz, CHLOROFORM-D) δ 7.34 (d, *J* = 8.7 Hz, 2H), 6.71 (d, *J* = 8.7 Hz, 2H), 3.97 (br, 2H); ¹⁹F-NMR (376 MHz, CHLOROFORM-D) δ -81.0 (s, 3F), -109.6 (s, 2F), -122.8 (s, 2F), -125.6 (s, 2F).

C₆F₁₃-Ar-NH₂: 2b

The title compound was obtained from **1b** (5.0 mmol) following procedure **B**. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 10/1) gave C₆F₁₃-Ar-NH₂ **2b** (2.1 g, 4.1 mmol, 81% yield); ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.36 (d, *J* = 8.7 Hz, 2H), 6.70 (d, *J* = 8.7 Hz, 2H), 3.97 (s, 2H); ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -81.0 (t, *J* = 10.1 Hz, 3F), -109.5 (t, *J* = 14.4 Hz, 2F), -121.6 (s, 2F), -122.1 (s, 2F), -122.9 (s, 2F), -126.3 (s, 2F).

C₈F₁₇-Ar-NH₂: 2c

The title compound was obtained from 1c (5.0 mmol) following procedure **B**. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 10/1) gave C₈F₁₇-Ar-NH₂ 2c (0.87 g, 1.6 mmol, 32% yield) as a colorless solid; ¹H NMR (400 MHz, CHLOROFORM-D) δ 7.34 (d, J = 8.7 Hz, 2H), 6.71 (d, J = 11.2 Hz, 2H), 3.97

(s, 2H); ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -80.8 (s, 3F), -109.4 (s, 2F), -121.2 (s, 2F), -121.9 (s, 6F), -122.9 (s, 2F), -126.1 (s, 2F).

C₁₀F₂₁-Ar-NH₂: 2d

The title compound was obtained from **1d** (5.0 mmol) following the procedure **B**. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 10/1) gave C₁₀F₂₁-Ar-NH₂ **2d** (0.61 g, 1.0 mmol, 20% yield) as a colorless solid; ¹H

NMR (400 MHz, CHLOROFORM-D) δ 7.34 (d, J = 8.7 Hz, 2H), 6.71 (d, J = 8.7 Hz, 2H), 3.98 (s, 2H); ¹⁹F NMR (376 MHz, CHLOROFORM-D) δ -80.7 (t, J = 9.9 Hz, 3F), -109.4 (t, J = 14.3 Hz, 2F), -121.2 (s, 2F), -121.8 (d, J = 76.6 Hz, 10F), -122.6 (s, 2F), -126.0 (s, 2F).

Fmoc-Asp(C₄F₉)-OAll: 3a

The title compound was obtained from Fmoc-L-aspartic acid 1allyl ester and C₄F₉ArNH₂ **2a** (2.0 mmol) following the procedure **C**. Purification by silica-gel column chromatography (*n*hexane/EtOAc = 2/1) gave Fmoc-Asp(C₈F₁₇)-OAll **3a** (867 mg, 1.22 mmol, 61% yield) as a colorless solid; ¹H NMR (400 MHz,

ACETONE-D₆) δ 9.68 (s, 1H), 7.89-7.81 (m, 4H), 7.67-7.59 (m, 4H), 7.38-7.24 (m, 4H), 6.94 (d, J = 8.5 Hz, 1H), 5.89 (dq, J = 22.5, 5.4 Hz, 1H), 5.31 (d, J = 17.3 Hz, 1H), 5.13 (d, J = 10.5 Hz, 1H), 4.76-4.71 (m, 1H), 4.61 (d, J = 5.5 Hz, 2H), 4.36-4.27 (m, 2H), 4.21 (t, J = 7.1 Hz, 1H), 2.96-3.12 (2H); ¹⁹F NMR (376 MHz, ACETONE-D₆) δ -82.0 (s, 3F), -110.6 (s, 2F), -123.2 (s, 2F), -126.3 (s, 2F); ¹³C NMR (101 MHz, ACETONE-D₆) δ 171.6, 169.7, 156.9, 145.0, 144.9, 143.8, 142.1, 133.2, 128.5, 127.9, 126.1, 120.8, 120.0, 119.9, 118.0, 67.3, 66.3, 51.8, 47.9, 39.4; FT-IR (neat, cm⁻¹) 518, 531, 587, 621, 675, 722, 739, 757, 826, 1047, 1088, 1147, 1203, 1256, 1289, 1364, 1411, 1526, 1601, 1666, 1696, 2853, 2924, 3316; HRMS (ESI-TOF) calcd for C₃₂H₂₅F₉N₂O₅Na [M+Na]⁺: 711.1517, found: 711.1514.

Fmoc-Asp(C₆F₁₃)-OAll: 3b

The title compound was obtained from Fmoc-L-aspartic acid 1allyl ester and $C_6F_{13}ArNH_2$ **2b** (2.0 mmol) following the procedure **C**. Purification by silica-gel column chromatography (*n*hexane/EtOAc = 2/1) gave Fmoc-Asp(C₆F₁₃)-OAll **3b** (1.24 g, 1.53 mmol, 76% yield) as a colorless solid; ¹H NMR (400 MHz,

ACETONE-D₆) δ 9.71 (s, 1H), 7.87 (dd, J = 28.4, 6.9 Hz, 4H), 7.65 (dd, J = 18.1, 7.1 Hz, 4H), 7.39-7.26 (m, 4H), 6.96 (d, J = 7.1 Hz, 1H), 5.96-5.87 (m, 1H), 5.33 (d, J = 17.4 Hz, 1H), 5.15 (d, J = 9.6 Hz, 1H), 4.76 (d, J = 6.0 Hz, 1H), 4.64 (s, 2H), 4.36-4.30 (m, 2H), 4.23 (s, 1H), 3.06 (d, J = 14.2 Hz, 2H); ¹⁹F NMR (376 MHz, ACETONE-D₆) δ -81.6 (s, 3F), -110.2 (s, 2F), -121.9 (s, 2F), -122.4 (s, 2F), -123.3 (s, 2F), -126.6 (s, 2F); ¹³C NMR (101 MHz, ACETONE-D₆) δ 171.6, 169.7, 156.9, 145.0, 144.9, 143.8, 142.1, 133.2, 128.5, 127.9, 126.0, 120.8, 120.0, 118.0, 67.4, 66.3, 51.8, 47.9, 39.4, 29.8; FT-IR (neat, cm⁻¹) 401, 412, 418, 457, 569, 621, 696, 737, 758, 1088, 1106, 1146, 1185, 1201, 1227, 1289, 1314, 1363, 1411, 1429, 1526, 1602, 1665, 1692, 3323; HRMS (ESI-TOF) calcd for C₃₄H₂₅F₁₃N₂NaO₅ [M+Na]⁺: 811.1448, found: 811.1441.

Fmoc-Asp(C₈F₁₇)-OAll: 3c

The title compound was obtained from Fmoc-L-aspartic acid 1allyl ester and $C_8F_{17}ArNH_2$ **2c** (2.0 mmol) following the procedure **C**. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 2/1) gave Fmoc-Asp(C_8F_{17})-OAll **3c** (1.49 g, 1.64 mmol, 82% yield) as a colorless solid; ¹H NMR (400 MHz,

ACETONE-D₆) δ 9.69 (s, 1H), 7.91 (d, J = 8.7 Hz, 2H), 7.85 (d, J = 7.6 Hz, 2H), 7.69 (d, J = 7.3 Hz, 2H), 7.64 (d, J = 8.9 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.29 (t, J = 7.4 Hz, 2H), 6.94 (d, J = 8.5 Hz, 1H), 5.97-5.87 (m, 1H), 5.34 (dq, J = 17.4, 1.6 Hz, 1H), 5.17 (dd, J = 10.5, 1.1 Hz, 1H), 4.78-4.73 (m, 1H), 4.64 (dt, J = 5.5, 1.5 Hz, 2H), 4.39-4.30 (m, 2H), 4.25 (t, J = 7.1 Hz, 1H), 3.02-3.14 (2H); ¹⁹F NMR (376 MHz, ACETONE-D₆) δ -81.5 (t, J = 9.9 Hz, 3F), -110.2 (t, J = 14.3 Hz, 2F), -121.7--123.1 (m, 10F), -126.6 (s, 2F); ¹³C NMR (101 MHz, ACETONE-D₆) δ 171.6, 169.7, 156.9, 145.0, 145.0, 143.8, 142.1, 133.3, 128.5, 127.9, 126.1, 120.8, 120.0, 119.9, 118.0, 67.4, 66.3, 51.8, 47.9, 39.4; FT-IR (neat, cm ⁻¹) 413, 429, 441, 458, 558, 584, 652, 738, 1049, 1088, 1110, 1147, 1196, 1411, 1605, 1694, 3322 ; FT-IR (neat, cm⁻¹): 515, 531, 554, 561, 587, 621, 643, 739, 755, 803, 847, 940, 956, 997, 1019, 1048, 1086, 1094, 1149, 1157, 1193, 1228, 1255, 1297, 1313, 1326, 1370, 1411, 1429, 1452, 1524, 1601, 1668, 1694, 1742, 3334; HRMS (ESI-TOF) calcd for C₃₆H₂₅F₁₇N₂NaO₅ [M+Na]⁺: 911.1384, found: 911.1388.

Fmoc-Asp(C₁₀F₂₁)-OAll: 3d

The title compound was obtained from Fmoc-L-aspartic acid 1allyl ester and $C_{10}F_{21}ArNH_2$ **2d** (2.0 mmol) following the procedure **C**. Purification by silica-gel column chromatography (*n*-hexane/EtOAc = 2/1) gave Fmoc-Asp($C_{10}F_{21}$)-OAll **3d** (1.47 g, 1.46 mmol, 73% yield) as a colorless solid; ¹H-NMR (400 MHz,

ACETONE-D₆) δ 9.73 (s, 1H), 7.91 (d, J = 8.7 Hz, 2H), 7.84 (d, J = 7.3 Hz, 2H), 7.69 (d, J = 7.3 Hz, 2H), 7.64 (d, J = 8.7 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.28 (t, J = 7.4 Hz, 2H), 6.96 (d, J = 8.5 Hz, 1H), 5.92 (dq, J = 22.6, 5.3 Hz, 1H), 5.34 (d, J = 17.2 Hz, 1H), 5.16 (d, J = 10.5 Hz, 1H), 4.76 (dd, J = 14.2, 5.7 Hz, 1H), 4.64 (d, J = 5.5 Hz, 2H), 4.39-4.30 (m, 2H), 4.24 (t, J = 7.1 Hz, 1H), 3.08 (d, J = 5.7 Hz, 2H); ¹⁹F-NMR (376 MHz, ACETONE-D₆) δ -81.5 (t, J = 9.9 Hz, 3F), -110.2 (t, J = 14.3 Hz, 2F), -121.7--123.1 (m, 14F), -126.6 (s, 2F); ¹³C-NMR (101 MHz, ACETONE-D₆) δ 170.7, 169.3, 156.1, 144.1, 141.3, 141.0, 132.4, 131.6, 127.7, 127.1, 125.3, 124.9, 122.2, 119.9, 117.3, 116.4, 66.5, 65.4, 50.9, 47.1, 38.6; FT-IR (neat, cm⁻¹) 418, 425, 442, 446, 457, 472, 526, 536, 553, 587, 620, 669, 737, 756, 780, 794, 821, 925, 991, 1007, 1047, 1086, 1103, 1170, 1208, 1411, 1445, 1450, 1465, 1477, 1527, 1597, 1655, 1697, 2851, 2920, 3303; HRMS (ESI-TOF) calcd for C₃₈H₂₅F₂₁N₂NaO₅ [M+Na]⁺: 1011.1320, found: 1011.1720.

Fmoc-Asp(C₈H₁₇)-OAll: 3e

The title compound was obtained from Fmoc-L-aspartic acid 1allyl ester (2.0 mmol) and octylaniline following the procedure **C**. Purification by silica-gel column chromatography (*n*hexane/EtOAc = 2/1) gave Fmoc-Asp(C₈H₁₇)-OAll (936 mg, 1.60 mmol, 80% yield) as a colorless solid; ¹H-NMR (400 MHz,

CHLOROFORM-D) δ 7.73 (d, J = 7.3 Hz, 2H), 7.63-7.26 (m, 7H), 7.10 (d, J = 8.2 Hz, 2H), 6.17 (d, J = 8.2 Hz, 1H), 5.91-5.85 (m, 1H), 5.33-5.19 (m, 2H), 4.67 (d, J = 5.0 Hz, 3H), 4.42-4.29 (m, 2H), 4.21 (t, J = 7.0 Hz, 1H), 3.03 (ddd, J = 85.4, 15.9, 4.1 Hz, 2H), 2.54 (t, J = 7.7 Hz, 2H), 1.55 (br, 2H), 1.26 (d, J = 7.8 Hz, 10H), 0.87 (t, J = 6.8 Hz, 3H); ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 170.9, 168.1, 156.4, 143.9, 143.7, 141.4, 139.6, 135.0, 131.6, 129.0, 127.8, 127.2, 125.3, 120.2, 120.1, 118.9, 77.4, 77.1, 76.8, 67.4, 66.6, 51.0, 47.1, 38.8, 35.5, 32.0, 31.6, 29.6, 29.4, 29.3, 22.8, 14.2; FT-IR (neat, cm⁻¹) 404, 412, 418, 425, 447, 453, 457, 472, 476, 480, 496, 511, 518, 525, 553, 587, 620, 737, 757, 778, 926, 991, 1007, 1019, 1047, 1086, 1103, 1170, 1208, 1266, 1283, 1411, 1445, 1450, 1465, 1477, 1527, 1597, 2851, 2920, 3303; HRMS (ESI-TOF) calcd for C₃₆H₄₂N₂NaO₅ [M+Na]⁺: 605.2986, found: 605.2964.

Fmoc-Asp(C₁₀H₂₁)-OAll: 3f

The title compound was obtained from Fmoc-L-aspartic acid 1allyl ester (2.0 mmol) and decylaniline following the procedure **C**. Purification by silica-gel column chromatography (*n*hexane/EtOAc = 2/1) gave Fmoc-Asp(C₁₀H₂₁)-OAll **3f** (897 mg, 1.44 mmol, 72% yield) as a colorless solid; ¹H-NMR (400 MHz,

CHLOROFORM-D) δ 7.73 (d, J = 7.1 Hz, 2H), 7.57 (d, J = 7.1 Hz, 2H), 7.52 (s, 1H), 7.36 (t, J = 8.2 Hz, 4H), 7.26 (s, 3H), 7.10 (d, J = 7.3 Hz, 2H), 6.16 (d, J = 8.0 Hz, 1H), 5.93-5.85 (m, 1H), 5.31 (d, J = 17.0 Hz, 1H), 5.21 (d, J = 10.5 Hz, 1H), 4.68 (s, 3H), 4.42-4.29 (m, 2H), 4.21 (t, J = 6.8 Hz, 1H), 3.15-2.90 (m, 2H), 2.54 (t, J = 7.4 Hz, 2H), 1.55 (t, J = 6.1 Hz, 2H), 1.26 (m, J = 10.3 Hz, 14H), 0.87 (t, J = 5.8 Hz, 3H); ¹³C-NMR (101 MHz, CHLOROFORM-D) δ 170.8, 168.1, 156.4, 143.9, 143.7, 141.4, 139.6, 135.0, 131.6, 129.0, 127.8, 127.2, 125.2, 120.2, 120.1, 118.9, 67.4, 66.6, 51.0, 47.1, 38.8, 35.5, 32.0, 31.6, 29.7, 29.7, 29.6, 29.3, 22.8, 14.2; FT-IR (neat, cm⁻¹) 406, 419, 425, 457, 472, 536, 552, 587, 620, 737, 756, 778, 821, 926, 991, 1047, 1086, 1103, 1170, 1208, 1411, 1450, 1465, 1477, 1527, 1598, 1655, 1697, 1738, 2851, 2921, 3301; HRMS (ESI-TOF) calcd for C₃₈H₄₆N₂NaO₅ [M+Na]⁺: 633.3299, found: 633.3277.

Fmoc-Asp(C₁₂H₂₅)-OAll: 3g

The title compound was obtained from Fmoc-L-aspartic acid 1allyl ester (2.0 mmol) and dodecylaniline following the procedure **C**. Purification by silica-gel column chromatography (*n*hexane/EtOAc = 2/1) gave Fmoc-Asp(C₁₂H₂₅)-OAll **3g** (1018 mg, 1.54 mmol, 77% yield) as a colorless solid; ¹H NMR (400 MHz,

CHLOROFORM-D) δ 7.75 (d, *J* = 7.3 Hz, 2H), 7.58 (d, *J* = 7.1 Hz, 2H), 7.47-7.26 (m, 6H), 7.11 (d, *J* = 7.8 Hz, 2H), 6.17 (d, *J* = 8.2 Hz, 1H), 5.95-5.85 (m, 1H), 5.33 (d, *J* = 17.2 Hz, 1H), 5.22 (d, *J* = 10.3 Hz, 1H), 4.69 (d, *J* = 5.0 Hz, 2H), 4.44-4.31 (m, 2H), 4.22 (t, *J* = 7.0 Hz, 1H), 3.18-2.91 (m, 2H), 2.56 (t, *J* = 7.7 Hz, 2H), 1.57 (t, *J* = 6.5 Hz, 2H), 1.30-1.26 (m, 18H), 0.89 (t, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CHLOROFORM-D) δ 170.8, 168.0, 156.3, 143.8, 143.7, 141.3, 139.6, 134.9, 131.5, 128.9, 127.7, 127.1, 125.2, 120.1, 120.0, 118.8, 67.4, 66.5, 50.9, 47.1, 38.8, 35.4, 31.9, 31.5, 29.7, 29.7, 29.6, 29.5, 29.4, 29.3, 22.7, 14.2; FT-IR (neat, cm⁻¹) 405, 418, 425, 446, 452, 457, 472, 526, 588, 620, 665, 737, 758, 776, 819, 840, 935, 991, 1007, 1045, 1088, 1102, 1170, 1259, 1363, 1411, 1451, 1598, 1658, 1697, 1737, 2849, 2917, 3309; HRMS (ESI-TOF) calcd for C₄₀H₅₀N₂NaO₅ [M+Na]⁺: 661.3617, found: 661.3614.

Fmoc-Asp(C₄F₉)-OH: 4a

The title compound was obtained from Fmoc-Asp(C₄F₉)-OAll **3a** (711 mg, 1 mmol) following procedure **D**. Purification by silica-gel column chromatography (CHCl₃/MeOH = 20/1) gave Fmoc-Asp(C₄F₉)-OH **4a** (297 mg, 0.46 mmol, 46% yield) as a colorless solid; ¹H NMR (400 MHz, ACETONE-D₆) δ 9.83 (s, 1H), 7.91 (d,

J = 8.2 Hz, 2H), 7.81 (d, J = 7.6 Hz, 2H), 7.67 (d, J = 7.6 Hz, 2H), 7.59 (d, J = 8.2 Hz, 2H), 7.35 (t, J = 7.4 Hz, 2H), 7.25 (t, J = 7.3 Hz, 2H), 6.89 (d, J = 8.2 Hz, 1H), 4.72 (t, J = 6.1 Hz, 1H), 4.31 (m, 2H), 4.21 (t, J = 7.1 Hz, 1H), 3.06 (d, J = 5.3 Hz, 2H); ¹⁹F NMR (376 MHz, ACETONE-D₆) δ -81.8 (t, J = 9.8 Hz, 3F), -110.5 (t, J = 13.2 Hz, 2F), -123.2 (m, 2F), -126.1--126.2 (m, 2F); ¹³C NMR (101 MHz, ACETONE-D₆) δ 172.9, 170.0, 157.0, 145.0, 143.9, 142.1, 128.5, 127.9, 126.2, 123.2 (t, $J_{FC}=24.1$ Hz), 120.8, 120.0, 119.9, 67.4, 51.6, 47.9, 39.5; FT-IR (neat, cm⁻¹) 482, 535, 585, 622, 631, 691, 761, 805, 854, 880, 937, 989, 1002, 1027, 1052, 1088, 1107, 1134, 1162, 1187, 1203, 1266, 1315, 1352, 1409, 1428, 1523, 1602, 1673, 1693, 1757, 3331; HRMS (ESI-TOF) calcd for C₂₉H₂₀F₉N₂O₅ [M-H]⁻: 647.1234, found: 647.1208.

Fmoc-Asp(C₆F₁₃)-OH: 4b

The title compound was obtained from Fmoc-Asp(C₆F₁₃)-OAll **3b** (811 mg, 1.0 mmol) following procedure **D**. Purification by silicagel column chromatography (CHCl₃/MeOH = 20/1) gave Fmoc-Asp(C₆F₁₃)-OH **4b** (418 mg, 0.56 mmol, 56% yield) as a colorless solid; ¹H-NMR (400 MHz, ACETONE-D₆) δ 9.75 (s, 1H), 7.90 (d,

J = 8.7 Hz, 2H), 7.84-7.80 (m, 2H), 7.67 (d, J = 7.6 Hz, 2H), 7.60 (d, J = 8.7 Hz, 2H), 7.35 (t, J = 7.4 Hz, 2H), 7.26 (d, J = 7.3 Hz, 2H), 6.84 (d, J = 8.2 Hz, 1H), 4.72-4.67 (m, 1H), 4.32-4.30 (m, 2H), 4.21 (t, J = 6.9 Hz, 1H), 3.05 (d, J = 5.7 Hz, 2H); ¹⁹F-NMR (376 MHz, ACETONE-D₆) δ -81.6 (t, J = 10.1 Hz, 3F), -110.2 (t, J = 14.4 Hz, 2F), -121.9--123.3 (m, 6F), -126.6--126.7 (m, 2F); ¹³C-NMR (101 MHz, ACETONE-D₆) δ 172.0, 169.2, 156.1, 144.2, 144.1, 143.0, 141.2, 127.7, 127.1, 125.3,122.8, 120.0, 119.2, 66.5, 50.7, 47.1, 38.7; FT-IR (neat, cm⁻¹) 401, 412, 418, 457, 569, 621, 696, 737, 758, 1088, 1106, 1146, 1185, 1201, 1227, 1289, 1314, 1363, 1411, 1429, 1526, 1602, 1665, 1692, 3323; HRMS (ESI-TOF) calcd for C₃₁H₂₀F₁₃N₂O₅ [M-H]⁻: 747.1170, found: 747.1136.

Fmoc-Asp(C₈F₁₇)-OH: 4c

The title compound was obtained from Fmoc-Asp(C_8F_{17})-OAll **3c** (911 mg, 1.0 mmol) following procedure **D**. Purification by silicagel column chromatography (CHCl₃/MeOH = 20/1) gave Fmoc-Asp(C_8F_{17})-OH **4c** (508 mg, 0.60 mmol, 60% yield) as a colorless solid; ¹H-NMR (400 MHz, ACETONE-D₆) δ 9.67 (s, 1H), 7.89 (d,

J = 8.5 Hz, 2H), 7.81 (d, J = 7.3 Hz, 2H), 7.66 (d, J = 7.3 Hz, 2H), 7.61 (d, J = 8.7 Hz, 2H), 7.36 (t, J = 7.4 Hz, 2H), 7.25 (t, J = 7.4 Hz, 2H), 6.83 (d, J = 8.5 Hz, 1H), 4.71-4.65 (m, 1H), 4.34-4.20 (m, 4H), 3.05 (d, J = 5.5 Hz, 2H); ¹⁹F-NMR (376 MHz, ACETONE-D₆) δ -81.5 (t, *J* = 10.1 Hz, 3F), -110.2 (t, *J* = 14.3 Hz, 2F), -121.7--123.2 (m, 10F), -126.6 (s, 2F); ¹³C-NMR (101 MHz, ACETONE-D₆) δ 171.9, 169.1, 156.1, 144.2, 144.1, 143.0, 141.2, 137.7, 127.7, 127.1, 125.3, 120.0, 119.2, 66.5, 50.6, 47.1, 38.6; FT-IR (neat, cm⁻¹) 621, 703, 735, 757, 816, 939, 1048, 1087, 1110, 1146, 1197, 1298, 1410, 1599, 1685, 3303; HRMS (ESI-TOF) calcd for C₃₃H₂₁F₁₇N₂O₅ [M-H]⁻: 847.1106, found:847.1158.

Fmoc-Asp(C₁₀F₂₁)-OH: 4d

The title compound was obtained from Fmoc-Asp($C_{10}F_{21}$)-OAll **3d** (1011 mg, 1.0 mmol) following procedure **D**. Purification by silica-gel column chromatography (CHCl₃/MeOH = 20/1) gave Fmoc-Asp($C_{10}F_{21}$)-OH **4d** (464 mg, 0.49 mmol, 49% yield) as a colorless solid; ¹H-NMR (400 MHz, ACETONE-D₆) δ 9.59 (s, 1H),

7.88 (d, J = 7.3 Hz, 2H), 7.80 (d, J = 6.9 Hz, 2H), 7.66 (d, J = 6.4 Hz, 2H), 7.60 (d, J = 7.8 Hz, 2H), 7.37-7.34 (m, 2H), 7.27-7.24 (m, 2H), 6.67 (s, 1H), 4.69 (br, 1H), 4.34-4.22 (m, 3H), 3.04 (d, J = 4.6 Hz, 2H); ¹⁹F-NMR (376 MHz, ACETONE-D₆) δ -81.5 (t, J = 9.0 Hz, 3F), -110.0 (t, J = 13.7 Hz, 2F), -121.4--122.9 (m, 14F), -126.4 (s, 2F); ¹³C-NMR could not be measured due to the low solubility. FT-IR (neat, cm⁻¹) 417, 423, 510, 539, 587, 621, 736, 757, 775, 821, 938, 989, 1049, 1087, 1105, 1149, 1259, 1411, 1450, 1528, 1599, 1658, 1694, 2851, 2922, 3306; HRMS (ESI-TOF) calcd for C₃₅H₂₀F₂₁N₂O₅ [M-H]⁻: 947.1042, found: 947.10315.

Fmoc-Asp(C₈H₁₇)-OH: 4e

The title compound was obtained from Fmoc-Asp(C_8H_{17})-OAll **3e** (585 mg, 1.0 mmol) following procedure **D**. Purification by silicagel column chromatography (CHCl₃/MeOH = 20/1) gave Fmoc-Asp(C_8H_{17})-OH **4e** (389 mg, 0.72 mmol, 72% yield) as a colorless solid; ¹H-NMR (400 MHz, ACETONE-D₆) δ 9.28 (s, 1H), 7.84 (d,

J = 7.6 Hz, 2H), 7.69 (d, J = 7.3 Hz, 2H), 7.56 (d, J = 8.2 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.28

(t, J = 7.4 Hz, 2H), 7.13 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.5 Hz, 1H), 4.71-4.66 (m, 1H), 4.34-4.31 (m, 2H), 4.24 (t, J = 7.2 Hz, 1H), 3.06-2.96 (m, 2H), 2.56 (t, J = 7.7 Hz, 2H), 1.58 (t, J = 7.2 Hz, 2H), 1.29 (d, J = 16.3 Hz, 10H), 0.87 (t, J = 6.8 Hz, 3H); ¹³C-NMR (101 MHz, ACETONE-D₆) δ 172.1, 168.3, 156.1, 144.2, 144.2, 141.2, 138.0, 136.9, 128.6, 127.7, 127.1, 125.4, 120.0, 119.4, 66.5, 50.8, 47.1, 38.4, 35.1, 31.8, 31.6, 29.4, 29.1, 22.5, 13.5; FT-IR (neat, cm⁻¹) 405, 418, 539, 587, 621, 736, 757, 777, 822, 936, 989, 1047, 1086, 1103, 1261, 1411, 1526, 1599, 1658, 1694, 2852, 2922, 3301; HRMS (ESI-TOF) calcd for C₃₅H₃₇N₂O₅ [M-H]⁻: 541.2708, found: 541.2747

Fmoc-Asp(C₁₀H₂₁)-OH: 4f

The title compound was obtained from Fmoc-Asp(C₁₀H₁₇)-OAll **3f** (840 mg, 1.3 mmol) following procedure **D**. Purification by silica-gel column chromatography (CHCl₃/MeOH = 20/1) gave the compound (603 mg, 1.0 mmol, 82% yield) as a colorless solid.; ¹H-NMR (400 MHz, ACETONE-D₆) δ 9.28 (s, 1H), 7.80 (d, *J* =

7.3 Hz, 2H), 7.66 (d, J = 6.9 Hz, 2H), 7.54 (d, J = 7.1 Hz, 2H), 7.35 (t, J = 7.2 Hz, 2H), 7.25 (s, 2H), 7.10 (d, J = 7.6 Hz, 2H), 6.81 (d, J = 5.7 Hz, 1H), 4.72-4.66 (m, 1H), 4.30-4.20 (m, 3H), 3.00 (d, J = 17.4 Hz, 2H), 2.55-2.51 (m, 2H), 1.55 (br, 2H), 1.26 (d, J = 13.3 Hz, 14H), 0.84-0.82 (m, 3H); ¹³C-NMR (101 MHz, ACETONE-D₆) δ 172.2, 168.3, 156.1, 144.2, 144.1, 141.2, 138.0, 136.9, 128.6, 127.7, 127.1, 125.4, 120.0, 119.4, 66.6, 50.8, 47.1, 38.4, 35.1, 31.8, 31.6, 29.5, 29.1, 22.5, 13.6; FT-IR (neat, cm⁻¹): 405, 411, 533, 584, 621, 736, 755, 776, 822, 936, 986, 1042, 1086, 1101, 1265, 1412, 1599, 1658, 1694, 2852, 2922; HRMS (ESI-TOF) calcd for C₃₅H₄₁N₂O₅ [M-H]⁻: 569.3021, found: 569.3058.

Fmoc-Asp(C₁₂H₂₅)-OH: 4g

The title compound was obtained from Fmoc-Asp(C₁₂H₂₅)-OAll **3g** (640 mg, 1.0 mmol) following procedure **D**. Purification by silica-gel column chromatography (CHCl₃/MeOH = 20/1) gave Fmoc-Asp(C₁₂H₂₅)-OH **4g** (513 mg, 0.86 mmol, 86% yield) as a colorless solid; ¹H-NMR (400 MHz, ACETONE-D₆) δ 9.25 (s,

1H), 7.98 (d, J = 3.2 Hz, 0H), 7.81 (d, J = 7.1 Hz, 2H), 7.66 (d, J = 7.1 Hz, 2H), 7.53 (d, J = 6.6 Hz, 2H), 7.37-7.34 (m, 2H), 7.25 (t, J = 6.8 Hz, 2H), 7.10 (d, J = 6.4 Hz, 2H), 6.79 (d, J = 8.0 Hz, 1H), 4.65 (d, J = 5.5 Hz, 1H), 4.25 (dd, J = 30.1, 6.8 Hz, 3H), 2.97 (d, J = 4.8 Hz, 2H), 2.75 (d, J = 3.2 Hz, 0H), 2.55-2.51 (m, 2H), 1.55 (br, 2H), 1.26 (d, J = 15.1 Hz, 18H), 0.84 (dd, J = 6.8, 3.8 Hz, 3H); ¹³C-NMR (101 MHz, ACETONE-D₆) δ 172.1, 168.3, 156.1, 144.2, 144.2, 141.2, 138.0, 136.9, 128.6, 127.7, 127.1, 125.3, 120.0, 119.4, 66.5, 50.8, 47.1, 38.4, 35.1, 31.8, 31.6, 120.2 Hz

29.6, 29.5, 29.1, 22.5, 13.5; FT-IR (neat, cm⁻¹) 419, 423, 452, 457, 473, 621, 648, 736, 756, 775, 822, 936, 988, 1048, 1088, 1106, 1260, 1363, 1411, 1526, 1597, 1658, 1718, 2851, 2922, 3309; HRMS (ESI-TOF) calcd for C₃₇H₄₅N₂O₅ [M-H]⁻: 597.3334, found: 597.3330.

Pro-Asp(C₈F₁₇)-Pro

25 μ mol of Rink amide resin was used for the synthesis. Fmoc-Pro-OH (4 eq.) and Fmoc-Asp(C₈F₁₇)-OH (2 eq.) were used as building blocks. A part of the crude was purified by HPLC. LRMS (ESI-TOF) calcd for C₂₈H₂₇F₁₇N₅O₄: 820.18, found: 820.18.

Leu-Asp(C₈F₁₇)-Leu

25 μ mol of Rink amide resin was used for the synthesis. Fmoc-Leu-OH (4 eq.) and Fmoc-Asp(C₈F₁₇)-OH (2 eq.) were used as building blocks. A part of the crude was purified by HPLC. LRMS (ESI-TOF) calcd for C₃₀H₃₅F₁₇N₅O₄: 852.24, found: 852.55.

Phe-Asp(C₈F₁₇)-Phe

25 μ mol of Rink amide resin was used for the synthesis. Fmoc-Phe-OH (4 eq.) and Fmoc-Asp(C₈F₁₇)-OH (2 eq.) were used as building blocks. A part of the crude was purified by HPLC. LRMS (ESI-TOF) calcd for C₃₆H₃₁F₁₇N₅O₄: 920.21, found: 920.17.

Ala-Asp(C₁₂H₂₅)-Phe

25 μ mol of Rink amide resin was used for the synthesis. Fmoc-Ala-OH (4 eq.), Fmoc-Asp(C₁₂H₂₅)-OH (2 eq.), and Fmoc-Phe-OH (4 eq.) were used as building blocks. A part of the crude was purified by HPLC. LRMS (ESI-TOF) calcd for C₁₂H₂₅C₃₄H₅₂N₅O₄ [M+H]⁺: 594.40, found: 594.63.

Ala-Asp(C₁₀H₂₁)-Phe

25 μ mol of Rink amide resin was used for the synthesis. Fmoc-Ala-OH (4 eq.), Fmoc-Asp(C₁₀H₂₁)-OH (2 eq.), and Fmoc-Phe-OH (4 eq.) were used as building blocks. A part of the crude was purified by HPLC. LRMS (ESI-TOF) calcd for C₃₂H₄₈N₅O₄ [M+H]⁺: 566.37, found: 566.56.

Ala-Asp(C₈H₁₇)-Phe

25 μ mol of Rink amide resin was used for the synthesis. Fmoc-Ala-OH (4 eq.), Fmoc-Asp(C₈H₁₇)-OH (4 eq.), and Fmoc-Phe-OH (4 eq.) were used as building blocks. A part of the crude was purified by HPLC. LRMS (ESI-TOF) calcd for C₃₀H₄₄N₅O₄ [M+H]⁺: 538.34, found: 538.53.

Ala-Asp(C₁₀F₂₁)-Phe

25 μ mol of Rink amide resin was used for the synthesis. Fmoc-Ala-OH (4 eq.), Fmoc-Asp(C₁₀F₂₁)-OH (2 eq.), and Fmoc-Phe-OH (4 eq.) were used as building blocks. A part of the crude was purified by HPLC. LRMS (ESI-TOF) calcd for C₃₂H₂₇F₂₁N₅O₄Na[M+Na]⁺: 966.15, found: 965.85.

25 μ mol of Rink amide resin was used for the synthesis. Fmoc-Ala-OH (4 eq.), Fmoc-Asp(C₈F₁₇)-OH (4 eq.), and Fmoc-Phe-OH (4 eq.) were used as building blocks. A part of the crude was purified by HPLC. LRMS (ESI-TOF) calcd for C₃₀H₂₇F₁₇N₅O₄[M+H]⁺: 844.18, found: 844.57.

Ala-Asp(C₆F₁₃)-Phe

25 μ mol of Rink amide resin was used for the synthesis. Fmoc-Ala-OH (4 eq.), Fmoc-Asp(C₆F₁₃)-OH (4 eq.), and Fmoc-Phe-OH (4 eq.) were used as building blocks. A part of the crude was purified by HPLC. LRMS (ESI-TOF) calcd for C₂₈H₂₇F₁₃N₅O₄ [M+H]⁺: 744.18, found: 744.48.

Ala-Asp(C₄F₉)-Phe

 μ mol of Rink amide resin was used for the synthesis. Fmoc-Ala-OH (4 eq.), Fmoc-Asp(C₄F₉)-OH (4 eq.), and Fmoc-Phe-OH (4 eq.) were used as building blocks. A part of the crude was purified by HPLC. LRMS (ESI-TOF) calcd for C₂₆H₂₇F₉N₅O₄ [M+H]⁺: 644.19, found: 644.81.

NMR spectra

C₆F₁₃-Ar-NO₂ (1b)

C₈F₁₇-Ar-NO₂ (1c)

C₁₀F₂₁-Ar-NO₂ (1d)

C₆F₁₃-Ar-NH₂ (2b)

C₈F₁₇-Ar-NH₂ (2c)

C₁₀F₂₁-Ar-NH₂ (2d)

Fmoc-Asp(C₄F₉)-OAll (3a)

Fmoc-Asp(C₆F₁₃)-OAll (3b)

Fmoc-Asp(C₈F₁₇)-OAll (3c)

Fmoc-Asp(C₁₀F₂₁)-OAll (3d)

Fmoc-Asp(C₈H₁₇)-OAll (3e)

Fmoc-Asp(C₁₀H₂₁)-OAll (3f)

Fmoc-Asp(C₁₂H₂₅)-OAll (3g)

Fmoc-Asp(C₆F₁₃)-OH (4b)

Fmoc-Asp(C₈F₁₇)-OH (4c)

Fmoc-Asp(C₁₀F₂₁)-OH (4d)

Fmoc-Asp(C₁₀H₂₁)-OH (4f)

Fmoc-Asp(C₁₂H₂₅)-OH (4g)

References

- (1) K. Tsumoto, Y. Hayashi, J. Tabata, and M. Tomita, *Colloids Surf. A Physicochem. Eng.* Asp. 2018, 546, 74–82.
- (2) OECD/OCDE, Section 1, OECD Guideline for the Testing of Chemicals, Partition Coefficient (noctanol/water), High Performance Liquid Chromatography (HPLC) Method, **2022**.
- (3) H. Osanai, T. Ikehara, S. Miyauchi, K. Shimono, J. Tamogami, T. Nara, and N. Kamo, *J. Biophys. Chem.*, **2013**, *4*, 11–21.